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Self-consistent modification to the electron density of states due to electron-phonon
coupling in metals
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The ‘‘standard’’ theory of a normal metal consists of an effective electron band which interacts with phonons
and impurities. The effects due to the electron-phonon interaction are often delineated within the Migdal
approximation; the properties of many simple metals are reasonably well described with such a description. On
the other hand, if the electron-phonon interaction is sufficiently strong, a polaron approach is more appropriate.
The purpose of this paper is to examine to what degree the Migdal approximation is self-consistent, as the
coupling strength increases. We find that changes in the electron density of states become significant for very
large values of the coupling strength; however, there is no critical value, nor even a crossover regime where the
Migdal approximation has become inconsistent. Moreover, the extent to which the electron band collapses is
strongly dependent on the detailed characteristics of the phonon spectrum.
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INTRODUCTION

The Migdal approximation for the electron self-ener
due to the electron-phonon interaction consists of neglec
vertex corrections. This procedure was first justified
Migdal1 based on an approximate treatment of the first-or
vertex correction. He found that the correction to the b
vertex is of orderO@l(vD /eF)#, wherel is the dimension-
less electron-phonon coupling constant,vD is the typical
phonon frequency, andeF is the electron Fermi energy. If w
ignore the factor ofl,2 then the ratiovD /eF is generally
very small in a metal.

Subsequently, Engelsberg and Schrieffer3 performed nu-
merical calculations of the self-energy and spectral functi
based on the Migdal approximation.4 The result is found in
several reviews and texts,5,6 and we quote here the mai
results. The electron self-energy is given by a frequen
dependent, momentum-independent function,

S~v1 id!5E
0

`

dna2F~n!F22p i @n~n!11/2#

1cS 1

2
1 i

n2v

2pT D2cS 1

2
2 i

n1v

2pT D G , ~1!

wherec(x) is the digamma function5,7 and the entire expres
sion has been written for a frequency just above the real a
v1 id. In Eq. ~1! n(n) is the Bose function, anda2F(n) is
the electron-phonon spectral function. A truly self-consist
approach would require, among other things, a s
consistent correction to the phonon spectrum, due to the
teraction with electrons. Migdal estimated this correctio
and found that the phonon frequencies are renormalized,
an instability is encountered as the bare coupling stren
increases. However, we are adopting a more phenomeno
cal approach here. The common practice8 is to take informa-
tion concerning the phonons from experiment as input i
the theory for the electrons. The justification for this com
from experiment, where well-defined phonons are obser
in neutron-scattering experiments,9 for example. Since thes
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are used in the theory for the electron properties, it would
incorrect to compute renormalizations for the phonons.
follow this philosophy in everything that follows.10

Nonetheless, Eq.~1! was obtained with a number of othe
simplifying assumptions and approximations. In particu
the self-energy of the electron is determined by an infinite
of diagrams in which phonon lines do not cross; these can
summarized by the diagram in Fig. 1, where the full electr
Green function, G(k,v1 id)[1/@v1 id2ek2S(k,v
1 id)#, is required, and of course depends on the very s
energy that we are trying to calculate. Yet Eq.~1! shows no
sign of self-consistency. The reason was noted alread
Ref. 1 and arises because the bandwidth is assumed t
essentially infinite compared to the typical phonon ener
Then, the nested diagrams which arise from iterating
equation in Fig. 1 all contribute zero, and the same resu
obtained by simply replacing the full electron Green functi
in the figure with the noninteracting Green function.

Engelsberg and Schrieffer3 relaxed the assumption of in
finite bandwidth,11 but used realistic values for the phono
frequency and Fermi energy for materials known at that tim
They found only very small effects. More recently, Alexa
drov et al.12 readdressed the question of the impact of a fin
~i.e., not infinite! bandwidth on the electron properties, an
adopted much more extreme values of the ratio of the typ
phonon frequency to Fermi energy,vD /eF ~referred to here-
after as the frequency ratio!. They concluded that the Migda
approximation breaks down for coupling strengths that
ceed unity.

In this paper we wish to assess this conclusion, by exa

FIG. 1. Diagram for the electron self-energy. Note that the s
consistent electron Green function~heavy solid line! is used in this
calculation.
©2003 The American Physical Society02-1
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ining the effect of a more realistic phonon spectral functio
Alexandrovet al.12 used an Einstein spectrum to simplify th
calculation. This spectrum is, of course, singular, and i
perhaps not too surprising if singular behavior in the elect
properties results. We will first outline the problem as pos
by Alexandrovet al. and demonstrate that singular behav
exists for any coupling strength. We argue that this beha
does not necessarily invalidate the calculation, as tacitly
sumed in Ref.12. Instead those authors properly focused
the more global behavior of the electron density of sta
~EDOS!, as a function of increased coupling strength. W
examine in much more detail this global behavior as a fu
tion of the parameters in the problem, so that a more qu
titative assessment of the breakdown can be obtained. In
ticular we examine the dependency of the band collapse
the frequency ratio, the electron-phonon coupling stren
the presence of a secondary band, the shape of the bare
~Lorentzian versus square!, and finally, the shape of the elec
tron phonon spectral function,a2F(n). For convenience
a2F(n) is modified from an Einstein spectrum to a Loren
zian. In this way a single parameter~the width of the spec-
trum! controls its shape. We find that there is no clear tr
sition or even crossover to a regime where the Mig
approximation has become inconsistent. Nonetheless,
conclusion is not meant to imply that this calculation sho
that the Migdal approximation is accurate in the intermedi
or strong-coupling regime. As will be summarized in t
final section, other work suggests that this is not the ca
Our calculation merely shows that within the Migdal fram
work, a signal of this potential breakdown doesnot occur, if
a broad phonon spectrum is used.

SELF-CONSISTENT MIGDAL APPROXIMATION

The self-consistent Migdal approximation results in t
following equation for the electron self-energyS(v1 id):

S~v1 id!5E
0

`

dna2F~n!E
2`

`

dv8
N~v8!

N+~0! S n~n!1 f ~2v8!

v1 id2n2v8

1
n~n!1 f ~v8!

v1 id1n2v8
D , ~2!

where

N~v!5E
2`

`

deN+~e!A~e,v!. ~3!

In these equationsf (v) and n(n) are the Fermi and Bos
distribution functions, respectively,N+(e) is the noninteract-
ing ~bare! electron density of states, andN(v) is the self-
consistently calculated electron density of states. The e
tron spectral functionA(e,v) is given by

A~e,v![2
1

p
Im G~e,v1 id!, ~4!

where the single-electron Green function is given by
16510
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G~e,v1 id!5
1

v1 id2e2S~v1 id!
. ~5!

Notice that we have tacitly assumed that the electron s
energy is independent of momentum~i.e., independent ofe).
The arguments that justify this simplification are provide
for example, in Ref. 5.

In Eq. ~3!, if N+(e) is taken to be a constan
@5N+(0)#, extending over all energies, then using the fa
that S is independent of momentum~i.e., e), we obtain
N(v)5N+(0). Thus the standard approximation that t
Fermi energy and bandwidth are large energies compare
the phonon energy~so that we can neglect the former an
simply integrate from2` to `) leads to an electron densit
of states which is unmodified by the electron-phonon int
action. This is true even though the self-energy has a n
trivial frequency dependence.13 When a more realistic bare
electron density of states is used, then Eq.~3! leads to an
altered EDOS. For example, withN+(e)5N+(0)u(D/2
2ueu), i.e., a constant over a limited energy range, Eq.~3!
gives

N~v!

N+~0!
5

1

p FarctanS D/21ReS~v1 id!2v

uIm S~v1 id!u D
1arctanS D/22ReS~v1 id!1v

uIm S~v1 id!u D G . ~6!

If a Lorentzian form is used the bare density of states
given by

N+~e!5N+~0!
~D/2!2

e21~D/2!2 . ~7!

In either caseN+(0) is the density of states at the Fermi lev
andD is the full bandwidth, defined in an obvious way in th
case of the constant case, and as the full width at half m
mum in the Lorentzian case. For this latter case, Eq.~3!
gives12

N~v!

N+~0!
5

D/2@D/21uIm S~v1 id!u#

@ReS~v1 id!2v#21@ uIm S~v1 id!u1D/2#2
.

~8!

Equation~8! or ~6! is required to self-consistently calcula
the electron self-energy given by Eq.~2!. In what follows we
further simplify the calculation by adoptingT50, as in Ref.
12. This simplifies Eq.~2! since f (v)→u(2v) and n(n)
→0 in this limit. Also, we will adopt particle-hole symmetr
throughout this paper. The final equations, separated out
their real and imaginary parts, are given by

ReS~v1 id!5E
0

`

dna2F~n!

3S E
0

`

dv8
N~v8!

N+~0!

2v

v22~n1v8!2D ~9!

and
2-2
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Im S~v1 id!52pE
0

`

dna2F~n!S N~v2n!

N+~0!
u~v2n!

1
N~v1n!

N+~0!
@12u~v1n!# D . ~10!

As mentioned in the introduction, the primary purpose of t
paper is to explore the consequences of a nonsingular
non spectrum. For simplicity we will adopt a Lorentzia
spectrum for the phonons, given by

a2F~n!5
l8vE

2p S d

~n2vE!21d2
2

d

h21d2D
3u~h2uvE2nu!, ~11!

where the subtracted term ensures that the spectrum is
tinuous everywhere, particularly at the endpoints, andh is
the full width of the spectral function~less thanvE). As the
parameterd approaches zero, this spectrum approaches
Einstein spectrum centered atv5vE , andl8→l. Figure 2
shows several spectra for different values ofd.

As a technical aside, simplifications occur for the Einst
spectrum, wherea2F(n)5(lvE/2)d(n2vE). As is appar-
ent from Eq.~10!, Im S(v1 id) becomes simply related t
the self-consistent EDOS. The real part of the self-ene
becomes singular, as is evident when Eq.~9! is rewritten for
an Einstein phonon spectrum as

ReS~v1 id!5
lvE

2 F E
0

`

dv8S ~N~v8!2N~v2vE!

N+~0! D
3

2v

v22~vE1v8!2

1
N~v2vE!

N+~0!
lnUv2vE

v1vE
UG , ~12!

and the logarithmic singularity is now explicit. Using a
EDOS that is constant with infinite bandwidth gives zero

FIG. 2. The sequence of phonon spectral functions used
model broadening. The curves are truncated Lorentzians as
scribed in the text with widths as labeled.
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the v8 integral in Eq.~12!, and we recover the ‘‘standard
result3 for the electron self-energy.

RESULTS

Einstein phonon spectrum

It is clear from the discussion in the previous section t
there is a simple scaling relation among the energies in
problem. Nonetheless, we will use real units, and the rea
can scale the results to other energy scales, if so desired
begin with vE510 meV, and use a bandwidth 103 this
amount, i.e.,D510vE5100 meV. For definiteness we us
l52, which is considered very strong coupling~Pb, for ex-
ample, hasl'1.5), andN+(0)51/D. In Fig. 3 we plot the
~a! real and~b! imaginary parts of the electron self-energy
a function of frequency for these parameters. We adop
Lorentzian shape for the bare EDOS. Three curves
shown; one is for the standard theory, where an infinit
wide band with constant density of states is assumed,
second is for the non-self-consistent result, where the b
EDOS @N+(v)# is substituted forN(v) on the right-hand
side of Eqs.~12! and ~10!, and the third represents the fu
self-consistent solution to these same equations, using
~8! in addition.

In parts~c! and~d! we plot the same quantities, calculate
this time for a bare EDOS which is constant betwee
2D/2 and D/2. What is clear from these plots is that
singularity in the real part of the self-energy exists at t
Einstein frequency, regardless of the particular approxim
tion used. In fact, as Eq.~12! makes clear, the singularity i
logarithmic, and existsregardless of the value ofl. Thus,
even forl'0.01, as long as it is nonzero, the Migdal a
proximation results in a logarithmic singularity in the se
energy. That this is not a serious problem is hinted at by
~9!, where one can see that, as long as a broader pho
spectrum is used, the logarithmic singularity will be int
grated to a nonsingular result. Furthermore, as mentio
earlier, even in the case of an Einstein phonon spectrum,
electron density of states will remain unaltered when
‘‘standard’’ approximation of infinite bandwidth is used. Th
point of Ref. 12 was, however, that this is not the case wh
a bare EDOS with a noninfinite bandwidth is used. T
EDOS is plotted in Fig. 4, again using the same parame
as in Fig. 3, and for the same levels of approximation~the
bare EDOS is also included for reference!. In Fig. 4~a! @~b!#
we use a bare EDOS which is Lorentzian~constant! with
bandwidthD. In both cases the singularity manifests itself
the final EDOS in both the non-self-consistent and se
consistent Migdal approximations. Thus it would appear t
the EDOS has collapsed, and the effective bandwidth is
order 2vE . However, an examination of the self-consisten
determined EDOS is shown in Fig. 5, for several values ofl.
Here the collapse of the band is shown explicitly to occur
even very small values ofl, consistent with the singula
behavior in the real part of the self-energy. Yet the Migd
approximation ought to be valid at least for very weak co
pling.

Figure 4 shows another interesting feature, which is
significant alteration of high-energy states. This is partic

to
e-
2-3
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FIG. 3. The~a! real and~b! imaginary parts of the electron self-energy as a function of frequency, using an Einstein spectrum
phonons and a Lorentzian for the bare EDOS, withvE /D51/10. The curves are computed withvE510 meV, andl52. The non-self-
consistent result uses the diagram shown in Fig. 1 with the fully interacting electron Green function replaced with the noninteracting
Green function. Also shown is the standard result with infinite electron bandwidth~short-dashed curve!. Note the singularity in the real par
of the self-energy, which occurs at all levels of approximation. Parts~c! and ~d! show similar results obtained with a constant bare ED
with bandwidthD. An additional singularity occurs atv5D1vE and is due to the abrupt band edge in this model. Note that the imagi
parts of the self-energy,~b! and~d!, are zero up tovE , and then turn on abruptly, because the phonon is ad function. For the constant densit
of states~d! this imaginary part of the self-energy extends to infinity in the case where the bandwidth is infinite~dotted curve!. For a finite
bandwidth~dashed curve!, the imaginary part of the self-energy extends toD1vE .
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larly prominent in Fig. 4~b!, where states are created at e
ergies above the band edge. This would occur for m
smaller values of the electron-phonon coupling strength,
for even larger values of the bare bandwidthD. This result is
somewhat counterintuitive. We normally anticipate tha
perturbative interaction affects states just near the Fe
level. However, here, as in the exact solution, all states
modified in an additive way, so even states well away fr
the Fermi level get pushed to higher energies.

Rather than focusing on the self-energy correction its
Alexandrovet al.12 used a different criterion for the phenom
enon of band collapse~which they attributed to polaron for
mation!. They simply took the full width at half maximum o
the converged EDOS, regardless of what structure the ED
contains at lower frequencies. For example, in Fig. 5 th
would first be an initialincreasein the effective bandwidth
asl increases. Only forl*3 does the effective bandwidt
decrease belowD ~in this case 100 meV!. For increased cou
pling strengths, the effective bandwidth decreases smoo
to about 4D/5, but then has a number of erratic jumps as
decreases to approximately 2vE . Note that Alexandrov
et al.12 found a smooth decrease to 1vE for two reasons.
16510
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First, much of the fine structure visible in Fig. 5 was n
obtained in their solutions, and second, they included a s
ondary band which served to smooth out some of the
structure and reduce the impact of the electron-phonon c
pling.

Nonetheless, Fig. 5 demonstrates that the Einstein m
for the phonon spectrum leads to anomalous behavior in
self-consistent EDOS; to determine how much of this is d
to the physics of band narrowing, and how much is attrib
able to the singular nature of the phonon spectrum, we
study the effect of a broadened phonon spectrum.

Before doing so, however, we show in Fig. 6 the se
consistently calculated EDOS for several values ofvE /D. In
Fig. 6~a! ~b! we usel51.0 ~5.0!, and plot the resulting
EDOS forvE /D51/2,1/5,1/10, and 1/20. Clearly as the Ei
stein frequency becomes comparable to the bare bandw
the narrowing effects become more pronounced, particul
for large values ofl. Interestingly, while in the opposite
limit, vE /D→0, we approach the ‘‘standard’’ model wher
the bare EDOS is unmodified by interactions, this particu
approach to that limit always shows the collapse in
EDOS atv5vE . This is true even in the case of a consta
2-4
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SELF-CONSISTENT MODIFICATION TO THE . . . PHYSICAL REVIEW B 68, 165102 ~2003!
bare band with finite width, where there is an even clo
connection to the standard model in this limit.

Lorentzian phonon spectrum

In Fig. 7 we show~a! the real part and~b! the imaginary
part of the self-energy and~c! the self-consistent density o
states, for a band of electrons with a bare Lorentzian ED
with width D510vE interacting with a broadened electro
phonon spectrum (d55.0 meV in the phonon spectrum
Lorentzian centered atvE510 meV). Results are shown fo
l50,0.1,0.5,1.0,2.0, and 3.0. By the criterion describ
above that was used by Alexandrovet al.,12 no band narrow-
ing has occurred up tol53.0. However, inspection of the
self-consistent EDOS shown illustrates that this criter
may be too simplistic to describe the more global behav
that is evident in Fig. 7.

For instance, it is clear that profound changes take pl
within vE of the Fermi level. So, while the full width at ha
maximum actually increases with increasingl in the range
shown, the EDOS clearly narrows close to the Fermi ene
(v50). Thus we could plot instead the normalized EDOS

FIG. 4. The self-consistently computed EDOS for the para
eters of Fig. 3, with~a! a Lorentzian bare EDOS, and~b! a constant
bare EDOS. Note the collapse atv5vE , and the multiphonon
structure apparent in the self-consistent calculation.
16510
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v'vE , for example, as a function of coupling strength. Th
is shown in Fig. 8 for various values ofvE /D.

Interestingly, Fig. 8 shows that the fastest modificati
with increasing coupling strength occurs nearl50. This is
in contrast to the criterion used in Ref. 12, where the m
sure of band collapse used there plummeted at a partic
value ofl'3. The development of a resonant peak near
Fermi level can indicate new physics~e.g., polaron forma-
tion!, but there is nothing in Fig. 8 to indicate that this occu
abruptly at some coupling strength. Calculations with a b
electron band which is constant with bandwidthD produce
results qualitatively and quantitatively similar to those sho
in Fig. 8. This result clearly shows a very smooth evoluti
of the EDOS as a function of coupling strength out to ve
large values ofl. Inspection of the self-consistent EDOS
a function of frequency for values ofl near 10 show no
qualitative differences with those shown in Fig. 7~c!.

SUMMARY

We have revisited the Migdal approximation at a sligh
more sophisticated level than the standard treatment w
an infinitely broad electron band is assumed. This was d
by self-consistently computing the electron density of sta
for electrons in a band with finite bandwidth interacting wi
phonons. In fact the self-consistency is not at all necessar
observe the changes near the Fermi level that result from
interaction. The non-self-consistent calculation captures
tendency for the band to form a resonance with width giv
by the characteristic phonon energy just as well. The k
element is that the bare EDOS has a finite bandwidth.

Previous work12 has focused on the Einstein spectrum f
the phonons coupled to an electron band described b
Lorentzian density of states. We have considered a cons
bare EDOS as well, and found very little difference in t
results. A qualitative change in the results does occur, h

-

FIG. 5. The self-consistently computed EDOS computed wit
bare Lorentzian EDOS withvE /D51/10, computed for a variety
of values of the electron-phonon coupling strength. Note that
collapse atv5vE occurs forall values ofl. The multiphonon
structure becomes more apparent asl increases. Moreover, mor
spectral weight is pushed to higher energies asl increases.
2-5
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F. DOĞAN AND F. MARSIGLIO PHYSICAL REVIEW B 68, 165102 ~2003!
ever, when a broad phonon spectrum is used instead o
delta function that characterizes the Einstein model. In
latter case the electron self-energy is always singular, reg
less of the level of self-consistency used to calculate
Migdal approximation. With a bare EDOS with finite ban
width, this singularity results in an electron density of sta
that collapses at the Einstein frequencyvE , for any nonzero
value of the electron-phonon coupling constantl. This col-
lapse, however, is due to the unphysical nature of the E
stein spectrum,14 and does not signal a metal-insulator tra
sition.

As expected, the use of a broadened phonon spec
eliminates the singularity in the self-energy, and in the s
consistent EDOS. Figure 7~c! epitomizes the change that o
curs~compare with Fig. 5!. There is still a strong suppressio
of the EDOS at energiesvE away from the Fermi energy
which indicates that a resonance occurs near the Fermi le

FIG. 6. The self-consistently computed EDOS computed wit
bare Lorentzian EDOS with~a! l51 and ~b! l55. The latter is
chosen purposely very large to better see the trends. We use
values of the adiabatic ratiovE /D, as labeled. In~a! the bare
Lorentzian EDOS are also shown with lighter curves so that
modifications due to the electron-phonon interaction are readily
ible. The bare EDOS are not shown in~b! for clarity; nonetheless, it
is clear that more significant changes occur for the higher valu
l. Note that there is not a sum rule when the bandwidthD is
changed, as is the case here.
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FIG. 7. ~a! Real and~b! Imaginary parts of the electron self
energy vs frequency for a bare Lorentzian EDOS withvE /D
51/10, using a broadened truncated Lorentzian line shape for
phonon spectrum. We use central frequencyvE510 meV, half
width d55 meV, with truncation ath5vE69.95 meV. Results
are shown for various values ofl as labeled. Note that a singularit
in ~a! is no longer present. Panel~c! shows the self-consistently
computed EDOS using the results of~a! and~b!. Consistent with~a!
a collapse atv5vE is no longer present. All sharp features are
longer present, but a dip nearv5vE and excess spectral weight a
high energy remain.
2-6
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SELF-CONSISTENT MODIFICATION TO THE . . . PHYSICAL REVIEW B 68, 165102 ~2003!
These states clearly are pushed to much higher energies
fact that the energy scale for the resonance isvE is indicative
of increased involvement of phonons in the electron sta
near the Fermi level~and therefore of polaron formation!,
but there is no signal in these results of a collapse of
conduction band forl of the order of unity. Eventually, a
Fig. 8 indicates, the resonance dominates the EDOS for
large values ofl, particularly for relatively large values o
the adiabatic ratiovE /D. In fact, for small values of the
adiabatic ratio, the self-consistent Migdal approximation
properly adjusting the EDOS to at least partially incorpor
some of the physics of polaron formation, i.e., that the
ergy scale for the electrons becomes comparable to tha
the phonons.

Reference 12 utilized a secondary band; as the pres
of this band serves to ‘‘soften’’ the impact of the electro
phonon interaction on the primary band, we have omitte
here. The same qualitative results are obtained, excep

FIG. 8. Normalized EDOS atv5vE vs coupling strength. This
frequency is used because it roughly corresponds to the minimu
the EDOS@see Fig. 7~c!#. Note that the collapse is most seve
when the bare bandwidth is comparable to the characteristic pho
frequency. Also note that the ‘‘collapse,’’ as measured by this in
cator, evolves smoothly as a function of coupling strength. T
most significant change occurs at weak coupling.
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somewhat higher values of the coupling strength.15

Finally, over the last four decades there have been m
studies of electrons interacting with phonons, and the po
tial of a crossover to a regime where polaronic behav
dominates the physics. Many of these studies use the H
stein model for the phonons, for the sake of simplicity. T
exact studies~see Ref. 16 for a short review and pertine
references! account for the phonon renormalization; thus,
principle, these include phonon broadening effects. In pr
tice, unfortunately, many of these studies are carried out
finite lattices, or in various limits~e.g., the adiabatic approxi
mation!, so that a completely satisfactory solution is n
available. Nonetheless, as reviewed in Ref. 16, the majo
of these studies suggest that a crossover occurs from
electron-like to polaronic behavior, nearl'1. We make a
cautionary note, however, in relation to this work; the pre
ous statement applies to the bare dimensionless coup
constantl. However, in those studies, the ‘‘operationa
value of l is in fact much higher, because phonons ha
softened, etc.19 It is this operational value which mor
closely corresponds to the value ofl used in this work. In
any event, the limitations on coupling strength in the Migd
approximation in the normal state, or the correspond
Eliashberg formalism in the superconducting state20 must ul-
timately come from these exact studies. Achieving a nons
gular result within the Migdal approximation scheme is i
sufficient grounds for its accuracy.

We should also remark that some work has also been d
on the Barisˇić-Labbé-Friedel model17 @also known as the
SSH ~Su-Schrieffer-Heeger! model18#, where dispersion in
the phonon spectrum exists at the start. This model may
distinct from other cases where phonons are broadened
to the electron-phonon interaction itself or anharmonic
since it contains sharp dispersive modes vs individua
broadened dispersive modes. Questions concerning t
models deserve further study.
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