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Probe-configuration-dependent dephasing in a mesoscopic interferometer
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Dephasing in a ballistic four-terminal Aharonov-Bohm geometry due to charge and voltage fluctuations is
investigated. Treating two terminals as voltage probes, we find a strong dependence of the dephasing rate on
the probe configuration in agreement with a recent experiment by Kobayashi, Aikawa, Katsumoto, ghd lye
Phys. Soc. Jpnzl, 2094(2002]. Voltage fluctuations in the measurement circuit are shown to be the source
of the configuration dependence.
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Recently, Kobayashi, Aikawa, Katsumoto, andllyeea-  been obtained previously for chaotic quantum dots. Here, we
sured the reduction of the Aharonov-BoliiB) effecf ina  are concerned with another feature of the dephasing rate,
ballistic four-terminal ring due to decoherence and thermahamely, its probe-configuration dependehce.
averaging. Not only was the visibility of the AB oscillations  First, we illustrate our approach for(eeflectionlesselec-
found to be much larger in the nonlocal configuratisee tronic Mach-Zehnder interferometéMzI1).*? In a second
Fig. 1), but also decoherence was observed to be considestep, we consider interferometers with backscattering at the
ably weaker than in the local configuratiteee Fig. 1. That  intersections. In both cases, the arms of the ring are treated
the external measurement circuit can strongly influence th&s perfect one-channel leads that can be charged up relative
physical properties of a mesoscopic conductor has beei® nearby side gates via the capacitanGgsand Cg. The
shown for a variety of problems ranging from dephasing insetup is sketched in Fig. 1. For the MZI, the intersections are
disordered conductotdo Coulomb blockadkor the higher  described as reflectionless beam splitisese inset in Fig. 2
moments of the noise in a tunnel junctidflowever, to the  With a scattering matrix
best of our knowledge the experiment of Kobayashal?

provides the first experimental evidence of such a striking 0 s VT i1-
dependence of the coherence properties of open mesoscopic SB=( , S= ( . (1)
conductors on theneasurement configuratiosuch a mea- s 0 iV1-T T

surement circuit is part of every conductance measurement
and it is therefore important to provide a theoretical expla-Here, 7 is the amplitude for going straight through the in-
nation of this phenomenon. tersection andly'1— 7the amplitude for being deflected. Due
In the experiment, the decoherence rate was extractedto the absence of backscattering, the MZI does not exhibit
from a measurement of the four-terminal resistaRgg ,5.  closed electronic trajectories.
The two contactsy, 8 are voltage biased and monitored by  Electron-electron interactions give rise to fluctuations of
an ammeter while the two contaciss are connected to a the internal potentialdJ;(t) (i=A,B). In the presence of
voltmeter. In mesoscopic transport, the four-probe charactenteractions, the dimensionless conducta@Gggrelating cur-
of resistance measuremehtecomes apparent if the probes rent at contact 1 to a voltage applied to contact'8 is
are within a coherence volume of the sample resistance
measurement is termddcal if the voltage probes are along
the current path and is termednlocalif the voltage probes local™"Ls,
are far from the current path. For the conductor shown in
Fig. 1, Ry 23 is a local resistance, where&s, 34 is an ex-
ample of a nonlocal resistance. We emphasize that the
sample is the same, independent of the resistance measureds
what changes is how the sample is connected to the current 0
source and to the voltmeter. |
AB oscillations are the result of quantum interference §
from electrons traveling through the two arms of the ring. In &
ballistic mesoscopic rings these oscillations can be larger
than 50% of the total current amplitudé&? and their decay
is a measure of decoherence in the systemce thermal
averaging is taken into account Experimental
investigation&”** found a linear temperature dependence of
the dephasing rate.A theoretical explanation, starting from  FiG. 1. Ballistic four-terminal ring: An internal potentil,(t)
fluctuating electrostatic potentials in the ring, is given in Ref.and a charget Q;(t) belong to each arm of the ring €A,B).
12. Similar results for the temperature dependence of th&ach arm is coupled to a side gate via a capacit&hceThe local
dephasing rate, both experimenitdf*and theoretical® have  and nonlocal probe configurations are indicated.
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T 1.2k . A | Here, y'¢ and y':,)' are the probe-configuration specific contri-
_ NG . ] butions. The experimehshows transmission between neigh-
S~ N boring contacts to be significant. For better comparison, we
L1F Ssol ] therefore included a finite incoherent transmissiqp= T,
st ] =T21=Ta4=Tys (see Fig. 2
e ., ., . == The results for the dephasing rates are strongly dependent
0 0.1 02 p 03 0.4 0.5 on the symmetry of the interferometer. In the symmetric case

(7=1/2) the contribution to the dephasing rate due to volt-
FIG. 2. The ratio of the local to the nonlocal decoherence rate iige fluctuations vanishes for both measurement configura-
shown as a function of the transmissi@rat the beam splitters for tions. Away from the symmetry poinf=1/2, the local and
different values of the incoherent parallel resistancg&,.1l/All the nonlocal decoherence rate differ Strorfﬁl),Ok local deco-
curves are symmetric with respectTe=1/2. In the inset, the two  herence rate several times larger than the nonlocal one can
possible electron paths at the beam splitter and the resistafige 1/easily be obtained for small enoughy,. The ratio of the

(in units ofh/e?) are indicated. decoherence rates for the two-probe configurations is shown
in Fig. 2 as a function of the transmission probability
Gig= —(T199=—2T1-T)[1+e Tscog27d)]. (2) To derive the results presented in E¢5a) and (5b), we

need to know the spectral functidh,(0) for the two dif-

Here, Ty3is the transmission probability,=L/vg is the tra-  ¢orent probe configurations. To start with, we want to express
versal time® is the magnetic flux through the rif@ units the Fourier transform\U(w)=AU A(w)—AUg(w) of the

of the flux quantun and we have taken equal arm lengths ing oy ations of the internal potential operator through the op-
the ring,Lo,=Lg=L. The angular brackets denote an aver-q oiors for the bare charngb(w) (i=A,B) and current
age over the potential fluctuations in the ritfgn the limit AP(0) (a=1 2) quctuati(I)ns in the _;,ample For these

of classical Nyquist noise, the decoherence rate quantities it is known how to calculate the spectral functions.
5 The notationAO=0—(0O) denotes deviations of an opera-
_ tor O from its expectation value. There are two independent
r,= S uu(0) (3 . ; : :
2%2 equations relating charge and potential fluctuations, namely,

is proportional to the spectral functidiy,,(0) of the poten-
tial difference U(t)=U,(t) —Ug(t) in the zero-frequency
limit. If all four contacts are connected to a zero-impedance

externa_l circuit kept at constant voltage, the ratg of Here, AQib(w) are the charge fluctuations at constant
dephas_,lng. due tdgsmall energy transfgrelectron-electron voltage and internal potential, ank\V () are the voltage
scattering Is fluctuations at contack. The response to a change in the
applied voltage at contaat is determined by the average
injectivity DW(w)=(DW (w))=(Q;)/e?sV,. The term
with the negative sign in Eq(6) is the screening charge
induced in response to a change in the internal potential. In
Here, T is the temperatureRq=h/(4e2) is the charge relax- the Thomas-Fermi approximation, the response function is
ation resistance, and the electrochemical capacit@g;b the densityD (w)=—#(Q;)/e€’JU; . For zero frequency, we
=C !+(e?D) ! is the series combination of the geometri- find D=EaDg)=4L/th as a consequence of gauge invari-
cal capacitance and the density of stdfed/e assumedC,  ance. The injectivities are the diagonal elements of the local
=Cg=C. density of states matri*2°which is related to the scattering
In the experiment,two probes are connected to a voltme- matrix S,z Of the system. In the zero-frequency limit
ter which ideally has infinite impedance. The voltage at a

AQ;=CAU;=AQP—e?DAU+e2>, DVAV,. (6)

o 2KTé€
7¢: ﬁZ

(4)

C, 2R
Cc)

lead connected to the voltmeter fluctuates to maintain zero e L T dS,4(E)

net current. These voltage fluctuations give rise to fluctua- Dap(B)=— 2 Ey Sya(E)TUi )
tions of the internal potentials which in turn leads to addi-

tional dephasing. For the interferometer shown in Fig. 1, thisvith i=A,B anda,8,y=1, . . . ,4. Thescattering matrix for

new contribution to the dephasing rate turns out to depenthe electronic interferometer can be derived using @&g.
strongly on the probe configuration. For the dephasing ratesee also Ref. 12

in the local(l) and the nonlocalr{l) configuration we obtain, The voltage fluctuations entering E&) are related to the
respectively, current fluctuationg |, througt!
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AIQ=AI2+§ GapAVs. (8)
1.8 \ i
In this Langevin-like equationd1® are the bare current fluc- L e=001|%
tuations ands 5= Go(M o 8as—(Tap)) are elements of the T:A]“S_ _ g:ggg i
conductance matrixq,8=1, ... ,4). For the MZI wehave < L |—€=090
M,=1+T, whereT, is the incoherent transmission be- “wl 4_‘ N i
tween neighboring external leads at the same intersection. ’ S .
The probabilities for coherent transmission aig,z N ’\,\
=|S,4/% The central new ingredient in this paper are the 1.2r TNsall ]
boundary conditions imposed on the voltage fluctuations \\\Z:'_i';';-:._.:,ﬂ
AV, and the fluctuations of the total currenid , by the 1F ; | X 1 e
external measurement circuit. These boundary conditions de- 0 0.1 0.2 T 0.3 04

pend on the measurement configuration. Inltdwal configu-
ration (see Fig. 1 we choose contacts 1 and 4 as the current
probes (they exhibit no voltage fluctuationsAV;=AV,
=0) while contacts 2 and 3 are the voltage probes cur-
rent fluctuationsAl,=Al;=0). In thenonlocal configura-
tion, on the other hand, the voltage probes are contacts 3 ar 1/2.
4 (cf. Fig. 1) and thusAV;=AV,=0 andAl;=Al,=0.
Equation(8), together with the boundary conditions for volt-

The

FIG. 3. Ratio of the local to the nonlocal potential fluctuation
spectrum as a function of the transmission probabiigt the beam
splitters for different values of. The parametee controls the
admixture of chaotic scattering. All curves are symmetric around
inset shows the distribution ofP=(3,,
—3U)/(EUy+324y) for different values o and forT=0.2.

ages and currents, can now be used to eliminate the voltagehe factor in the rectangular brackets in H40) can be
fluctuations in Eq(6) in favor of the fluctuations of the bare understood as an enhancement of the charge relaxation resis-

currents. The potential fluctuatiorAU can then be ex-
pressed through the fluctuations of the bare currAmﬁsand

chargesAQ?P. The result forAU will be different for the

local and the nonlocal configuration as a consequence of th
different boundary conditions.

The spectral function of the potential fluctuations is de-
fined through the relation 28(w+w')2yy(w)
=(AU(w)AU(0')+AU(w')AU(w))/2. Since we now
know how to express the potential fluctuations for the loca
and the nonlocal case through the fluctuations of the bar
currents and charges, we can also express the spectral furfie

tanceR, . Attaching a voltmeter and thus closing some exits
of the MZI will render charge relaxation more difficult. From
comparison with Eqs(2) and (3), it becomes clear that Eq.
0) is a self-consistent equation for the dephasing rate. In
the limit of weak decoherence, the transmission probability
entering Eq(10) is flux dependent. In contrast, for the limit
of strong decoherence, we can neglect the flux dependence of
(T13) in Eq. (10). Using Eq.(3), we then obtain the local
|dephasing rate, Eq5a). In the nonlocal case, the spectral
gmction is independent of the magnetic field even when
phasing is weak. It is given by{),(0)=(24%e*T},

tion 3,u(w), through the correlators of the bare charge'eading to the dephasing rate for the nonlocal configuration,

EQibQE(w) (i,k=A,B), the current correlator§|b|z(w) Eq. (5b).%2

(a,8=1,...,4), and thecross correlatorsSQimb(w) be-

In the MZI, the intersections between contacts and arms
are described by ideal beam splittdeee Eq.(1)]. Back-

tween charges and currents. For zero frequency and in thecattering was included only through the incoherent trans-

classical limit, the correlator of the charge fluctuatian@”
andAQP in armsi andk is®?°

missionT, between neighboring contacts. Ideal beam split-
ters are rarely realized in an experiment where it is probable

that scattering in the intersections exhibits a certain degree of

EQ?QE(O)szhQEﬁ (DYIDYY =5, kTDN2.  (9)

randomness. For better comparison with the experimental
situation, we now investigate numerically a model that inter-

polates between the ideal beam splitter and fully random

The second equation is obtained from Eg). and the scat-
tering matrix of the interferometdsee Ref. 12 Finally, the  section is
current correlation functions are given by the generalized

Nyquist formula? 3015(0)=kT(G s+ Gpa), While cross
correlations between fluctuations of the bare charge iniarm
and current fluctuations at conta@tvanish[EQF.g(O)ZO]

because of the absence of backscattering in our model.

S=\V1—¢Ss—eS5S[1— V1-eSsSc] 1Ss,

where Sg is given in Eqg.(1) and S is a random matrix
chosen from the circular orthogonal ensenfBl&he param-
etere controls the admixture of chaos=0 corresponds to

scattering. The corresponding scattering matrix for one inter-

(11

We are now in a position to calculate the spectrum of thea ideal beam splitter, while=1 corresponds to com-

potential fluctuations in the zero-frequency limit. In the local
configuration we obtain
C 2

(27-1)?
E'UU(O)=4kTRq(€“

(R R
Tot+(T1a

} . (10
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pletely random scattering. In Fig. 3, the ratio of local to
nonlocal potential fluctuations is shown for different values
of the parametee. The results given there are valid in the
limit of strong dephasindas in Fig. 2 and include an en-
semble average over the random matri§gf the two in-
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tersections. From Fig. 3 it is clear that increasing the degrethe case of a reflectionless interferometer=Q) where we

of chaotic scattering in the intersections suppresses the difind

ference between the local and the nonlocal configuration.

Backscattering, on the ensemble average, thus has a similar h To—(Ti3

effect as an incoherent parallel transmissidn between Riss=-> T+ T (T (1239
. . o . : 2e 0= (T13

neighboring contacts. In the limit where the intersections are

fully chaotic (¢=1), there is no difference between the local

and the nonlocal configuration. Ensemble averaging makes R _L 1-2(Tyg

the ring symmetric to any measurement configuration. 1245~ 262 (To+H{(T1))(1+To—(T13)
The ratio of the fluctuation spectra is of course strongly ] ) )

sample specific. This point is emphasized in the upper insdfr the local and the nonlocal configuration, respectively.

of Fig. 3 where the distribution of the quantify:(E'UU Equations(123 and(l?b) show .that the gttenuatlon of the

_EBIU)/(ELJU+EBIU) is shown for different values of and local and nonlocal resistances is determined by the decoher-

for T=0.2. For weak disorders(=0.01, dotted curvg P ence rates Eqg5g) and (Sh) respectively.

almost always takes the value expected for an ideal beansqtr;?ntcso?mdu(i%?j' gvethhea\:re]ezzg\r/gr;]g;ﬁtc}?ceuiflei(\:/tgcr?slecfon;
splitter whereas for strong disorde £0.9, full line) the robe-confri) urationyde endence of the de hagin rate. This
distribution of P is roughly symmetric aroun®=0. Still, P . 9 pen ) phasing ’
: : effect is most pronounced in an ideal quantum interferometer
there is a good chance to find a sample wie#0 and thus : . . .
that is strongly asymmetric, but was found to persist even in

the local and nonlocal fluctuation spectra differ from eaChthe resence of a considerable admixture of incoherent trans-
other. Finally, in the intermediate case 0.3, dashed- P

. T . mission or randomnesévith ensemble averagingWhile
dotted ling the distribution interpolates between the two lim there may be other physical mechanisms for producing such

(12b

iting cases. diff di . f dephasi licitly includ

In the experiment, the four-terminal resistanc® a diference, our discussion of dephasing explicitly includes
—(V,— V)l with | ’——I was measured. In termgﬁbﬁhe the effect of the external electrical circuit and leads to a
My TN a B« ' result consistent with unanticipated experimental observa-

conductance matrix elements, the four-terminal resistanceﬁO ns

are Raﬁ’,ya:(GyaG(gﬁ_G.},Bega)/D,e whereD is any sub- '

determinant of rank 3 of the total conductance matrix. The This work was supported by the Swiss National Science
four-terminal resistance takes a particularly simple form inFoundation.
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