
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 68, 161310~R! ~2003!
Probe-configuration-dependent dephasing in a mesoscopic interferometer
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Dephasing in a ballistic four-terminal Aharonov-Bohm geometry due to charge and voltage fluctuations is
investigated. Treating two terminals as voltage probes, we find a strong dependence of the dephasing rate on
the probe configuration in agreement with a recent experiment by Kobayashi, Aikawa, Katsumoto, and Iye@J.
Phys. Soc. Jpn.71, 2094~2002!#. Voltage fluctuations in the measurement circuit are shown to be the source
of the configuration dependence.
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Recently, Kobayashi, Aikawa, Katsumoto, and Iye1 mea-
sured the reduction of the Aharonov-Bohm~AB! effect2 in a
ballistic four-terminal ring due to decoherence and therm
averaging. Not only was the visibility of the AB oscillation
found to be much larger in the nonlocal configuration~see
Fig. 1!, but also decoherence was observed to be cons
ably weaker than in the local configuration~see Fig. 1!. That
the external measurement circuit can strongly influence
physical properties of a mesoscopic conductor has b
shown for a variety of problems ranging from dephasing
disordered conductors3 to Coulomb blockade4 or the higher
moments of the noise in a tunnel junction.5 However, to the
best of our knowledge the experiment of Kobayashiet al.1

provides the first experimental evidence of such a strik
dependence of the coherence properties of open mesos
conductors on themeasurement configuration. Such a mea-
surement circuit is part of every conductance measurem
and it is therefore important to provide a theoretical exp
nation of this phenomenon.

In the experiment,1 the decoherence rate was extract
from a measurement of the four-terminal resistanceRab,gd .
The two contactsa,b are voltage biased and monitored b
an ammeter while the two contactsg,d are connected to a
voltmeter. In mesoscopic transport, the four-probe chara
of resistance measurements6 becomes apparent if the probe
are within a coherence volume of the sample.7 A resistance
measurement is termedlocal if the voltage probes are alon
the current path and is termednonlocal if the voltage probes
are far from the current path. For the conductor shown
Fig. 1, R14,23 is a local resistance, whereasR12,34 is an ex-
ample of a nonlocal resistance. We emphasize that
sample is the same, independent of the resistance meas
what changes is how the sample is connected to the cu
source and to the voltmeter.

AB oscillations are the result of quantum interferen
from electrons traveling through the two arms of the ring.
ballistic mesoscopic rings these oscillations can be lar
than 50% of the total current amplitude,1,8,9 and their decay
is a measure of decoherence in the system~once thermal
averaging is taken into account!. Experimental
investigations10,11 found a linear temperature dependence
the dephasing rate.11 A theoretical explanation, starting from
fluctuating electrostatic potentials in the ring, is given in R
12. Similar results for the temperature dependence of
dephasing rate, both experimental13,14and theoretical,15 have
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been obtained previously for chaotic quantum dots. Here,
are concerned with another feature of the dephasing r
namely, its probe-configuration dependence.1

First, we illustrate our approach for a~reflectionless! elec-
tronic Mach-Zehnder interferometer~MZI !.12 In a second
step, we consider interferometers with backscattering at
intersections. In both cases, the arms of the ring are tre
as perfect one-channel leads that can be charged up rel
to nearby side gates via the capacitancesCA and CB . The
setup is sketched in Fig. 1. For the MZI, the intersections
described as reflectionless beam splitters~see inset in Fig. 2!
with a scattering matrix

SB5S 0 s

s 0D , s5S AT iA12T
iA12T AT D . ~1!

Here,AT is the amplitude for going straight through the i
tersection andiA12T the amplitude for being deflected. Du
to the absence of backscattering, the MZI does not exh
closed electronic trajectories.

Electron-electron interactions give rise to fluctuations
the internal potentialsUi(t) ( i 5A,B). In the presence of
interactions, the dimensionless conductanceG13 relating cur-
rent at contact 1 to a voltage applied to contact 3 is12

FIG. 1. Ballistic four-terminal ring: An internal potentialUi(t)
and a charge1Qi(t) belong to each arm of the ring (i 5A,B).
Each arm is coupled to a side gate via a capacitanceCi . The local
and nonlocal probe configurations are indicated.
©2003 The American Physical Society10-1
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G1352^T13&522T~12T!@11e2tGfcos~2pF!#. ~2!

Here,T13 is the transmission probability,t5L/vF is the tra-
versal time,F is the magnetic flux through the ring~in units
of the flux quantum!, and we have taken equal arm lengths
the ring,LA5LB5L. The angular brackets denote an av
age over the potential fluctuations in the ring.16 In the limit
of classical Nyquist noise, the decoherence rate

Gf5
e2

2\2
SUU~0! ~3!

is proportional to the spectral functionSUU(0) of the poten-
tial difference U(t)5UA(t)2UB(t) in the zero-frequency
limit. If all four contacts are connected to a zero-impedan
external circuit kept at constant voltage, the rateGf of
dephasing due to~small energy transfer! electron-electron
scattering is

gf
0 5

2kTe2

\2 S Cm

C D 2

Rq . ~4!

Here,T is the temperature,Rq5h/(4e2) is the charge relax-
ation resistance, and the electrochemical capacitanceCm

21

5C211(e2D)21 is the series combination of the geomet
cal capacitance and the density of states.17 We assumedCA
5CB5C.

In the experiment,1 two probes are connected to a voltm
ter which ideally has infinite impedance. The voltage a
lead connected to the voltmeter fluctuates to maintain z
net current. These voltage fluctuations give rise to fluct
tions of the internal potentials which in turn leads to ad
tional dephasing. For the interferometer shown in Fig. 1, t
new contribution to the dephasing rate turns out to dep
strongly on the probe configuration. For the dephasing ra
in the local~l! and the nonlocal (nl) configuration we obtain,
respectively,

FIG. 2. The ratio of the local to the nonlocal decoherence rat
shown as a function of the transmissionT at the beam splitters fo
different values of the incoherent parallel resistance 1/T0. All
curves are symmetric with respect toT51/2. In the inset, the two
possible electron paths at the beam splitter and the resistanceT0

~in units of h/e2) are indicated.
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Gf
l 5gf

0 1gf
l , gf

l 5gf
0 ~2T21!2

2T~12T!1T0
, ~5a!

Gf
nl5gf

0 1gf
nl , gf

nl5gf
0 ~2T21!2

112T0
. ~5b!

Here,gf
l andgf

nl are the probe-configuration specific cont
butions. The experiment1 shows transmission between neig
boring contacts to be significant. For better comparison,
therefore included a finite incoherent transmissionT05T12
5T215T345T43 ~see Fig. 2!.

The results for the dephasing rates are strongly depen
on the symmetry of the interferometer. In the symmetric c
(T51/2) the contribution to the dephasing rate due to vo
age fluctuations vanishes for both measurement config
tions. Away from the symmetry point,T51/2, the local and
the nonlocal decoherence rate differ strongly.18 A local deco-
herence rate several times larger than the nonlocal one
easily be obtained for small enoughT0. The ratio of the
decoherence rates for the two-probe configurations is sh
in Fig. 2 as a function of the transmission probabilityT.

To derive the results presented in Eqs.~5a! and ~5b!, we
need to know the spectral functionSUU(0) for the two dif-
ferent probe configurations. To start with, we want to expr
the Fourier transformDU(v)5DUA(v)2DUB(v) of the
fluctuations of the internal potential operator through the
erators for the bare chargeDQi

b(v) ( i 5A,B) and current
DI a

b(v) (a51, . . . ,4) fluctuations in the sample. For thes
quantities it is known how to calculate the spectral functio
The notationDO5O2^O& denotes deviations of an opera
tor O from its expectation value. There are two independ
equations relating charge and potential fluctuations, nam

DQi5CDUi5DQi
b2e2DDUi1e2(

a
Da

( i )DVa . ~6!

Here, DQi
b(v) are the charge fluctuations at consta

voltage and internal potential, andDVa(v) are the voltage
fluctuations at contacta. The response to a change in th
applied voltage at contacta is determined by the averag
injectivity Da

( i )(v)5^Daa
( i ) (v)&5]^Qi&/e

2]Va . The term
with the negative sign in Eq.~6! is the screening charg
induced in response to a change in the internal potentia
the Thomas-Fermi approximation, the response function
the densityD(v)52]^Qi&/e

2]Ui . For zero frequency, we
find D5(aDa

( i )54L/hvF as a consequence of gauge inva
ance. The injectivities are the diagonal elements of the lo
density of states matrix19,20 which is related to the scatterin
matrix Sab of the system. In the zero-frequency limit

Dab
( i ) ~E!52

1

2p i (
g

Sga
† ~E!

dSgb~E!

edUi
~7!

with i 5A,B anda,b,g51, . . . ,4. Thescattering matrix for
the electronic interferometer can be derived using Eq.~1!
~see also Ref. 12!.

The voltage fluctuations entering Eq.~6! are related to the
current fluctuationsDI a through21
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/
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DI a5DI a
b1(

b
GabDVb . ~8!

In this Langevin-like equation,DI a
b are the bare current fluc

tuations andGab5G0(Madab2^Tab&) are elements of the
conductance matrix (a,b51, . . . ,4). For the MZI wehave
Ma511T0, where T0 is the incoherent transmission b
tween neighboring external leads at the same intersec
The probabilities for coherent transmission areTab
5uSabu2. The central new ingredient in this paper are t
boundary conditions imposed on the voltage fluctuatio
DVa and the fluctuations of the total currentsDI a by the
external measurement circuit. These boundary conditions
pend on the measurement configuration. In thelocal configu-
ration ~see Fig. 1! we choose contacts 1 and 4 as the curr
probes ~they exhibit no voltage fluctuations:DV15DV4
50) while contacts 2 and 3 are the voltage probes~no cur-
rent fluctuations:DI 25DI 350). In thenonlocal configura-
tion, on the other hand, the voltage probes are contacts 3
4 ~cf. Fig. 1! and thusDV15DV250 and DI 35DI 450.
Equation~8!, together with the boundary conditions for vol
ages and currents, can now be used to eliminate the vol
fluctuations in Eq.~6! in favor of the fluctuations of the bar
currents. The potential fluctuationsDU can then be ex-
pressed through the fluctuations of the bare currentsDI a

b and
chargesDQi

b . The result forDU will be different for the
local and the nonlocal configuration as a consequence o
different boundary conditions.

The spectral function of the potential fluctuations is d
fined through the relation 2pd(v1v8)SUU(v)
5^DU(v)DU(v8)1DU(v8)DU(v)&/2. Since we now
know how to express the potential fluctuations for the lo
and the nonlocal case through the fluctuations of the b
currents and charges, we can also express the spectral
tion SUU(v), through the correlators of the bare char
SQ

i
bQ

k
b(v) ( i ,k5A,B), the current correlatorsS I

a
b I

b
b(v)

(a,b51, . . . ,4), and thecross correlatorsSQ
i
bI

a
b(v) be-

tween charges and currents. For zero frequency and in
classical limit, the correlator of the charge fluctuationsDQi

b

andDQk
b in armsi andk is19,20

SQ
i
bQ

k
b~0!5kTh(

ab
^Dab

( i ) Dba
(k)&5d ikkTDh/2. ~9!

The second equation is obtained from Eq.~7! and the scat-
tering matrix of the interferometer~see Ref. 12!. Finally, the
current correlation functions are given by the generaliz
Nyquist formula,21 S I

a
b I

b
b(0)5kT(Gab1Gba), while cross

correlations between fluctuations of the bare charge in ai
and current fluctuations at contacta vanish@SQ

i
bI

a
b(0)50#

because of the absence of backscattering in our model.
We are now in a position to calculate the spectrum of

potential fluctuations in the zero-frequency limit. In the loc
configuration we obtain

SUU
l ~0!54kTRqS Cm

C D 2F11
~2T21!2

T01^T13&
G . ~10!
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The factor in the rectangular brackets in Eq.~10! can be
understood as an enhancement of the charge relaxation r
tanceRq . Attaching a voltmeter and thus closing some ex
of the MZI will render charge relaxation more difficult. From
comparison with Eqs.~2! and ~3!, it becomes clear that Eq
~10! is a self-consistent equation for the dephasing rate
the limit of weak decoherence, the transmission probabi
entering Eq.~10! is flux dependent. In contrast, for the lim
of strong decoherence, we can neglect the flux dependen
^T13& in Eq. ~10!. Using Eq.~3!, we then obtain the loca
dephasing rate, Eq.~5a!. In the nonlocal case, the spectr
function is independent of the magnetic field even wh
dephasing is weak. It is given bySUU

nl (0)5(2\2/e2)Gf
nl ,

leading to the dephasing rate for the nonlocal configurati
Eq. ~5b!.22

In the MZI, the intersections between contacts and ar
are described by ideal beam splitters@see Eq.~1!#. Back-
scattering was included only through the incoherent tra
missionT0 between neighboring contacts. Ideal beam sp
ters are rarely realized in an experiment where it is proba
that scattering in the intersections exhibits a certain degre
randomness. For better comparison with the experime
situation, we now investigate numerically a model that int
polates between the ideal beam splitter and fully rand
scattering. The corresponding scattering matrix for one in
section is

S5A12« SB2«SBSC@12A12«SBSC#21SB , ~11!

where SB is given in Eq. ~1! and SC is a random matrix
chosen from the circular orthogonal ensemble.23 The param-
eter« controls the admixture of chaos,«50 corresponds to
the ideal beam splitter, while«51 corresponds to com
pletely random scattering. In Fig. 3, the ratio of local
nonlocal potential fluctuations is shown for different valu
of the parameter«. The results given there are valid in th
limit of strong dephasing~as in Fig. 2! and include an en-
semble average over the random matricesSC of the two in-

FIG. 3. Ratio of the local to the nonlocal potential fluctuatio
spectrum as a function of the transmission probabilityT at the beam
splitters for different values of«. The parameter« controls the
admixture of chaotic scattering. All curves are symmetric arou
T51/2. The inset shows the distribution ofP5(SUU

l

2SUU
nl )/(SUU

nl 1SUU
l ) for different values of« and forT50.2.
0-3
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tersections. From Fig. 3 it is clear that increasing the deg
of chaotic scattering in the intersections suppresses the
ference between the local and the nonlocal configurat
Backscattering, on the ensemble average, thus has a si
effect as an incoherent parallel transmissionT0 between
neighboring contacts. In the limit where the intersections
fully chaotic («51), there is no difference between the loc
and the nonlocal configuration. Ensemble averaging ma
the ring symmetric to any measurement configuration.

The ratio of the fluctuation spectra is of course stron
sample specific. This point is emphasized in the upper in
of Fig. 3 where the distribution of the quantityP5(SUU

l

2SUU
nl )/(SUU

l 1SUU
nl ) is shown for different values of« and

for T50.2. For weak disorder («50.01, dotted curve!, P
almost always takes the value expected for an ideal b
splitter whereas for strong disorder («50.9, full line! the
distribution of P is roughly symmetric aroundP50. Still,
there is a good chance to find a sample wherePÞ0 and thus
the local and nonlocal fluctuation spectra differ from ea
other. Finally, in the intermediate case («50.3, dashed-
dotted line! the distribution interpolates between the two lim
iting cases.

In the experiment,1 the four-terminal resistanceRab,gd
5(Vg2Vd)/I a with I b52I a was measured. In terms of th
conductance matrix elements, the four-terminal resistan
are Rab,gd5(GgaGdb2GgbGda)/D,6 whereD is any sub-
determinant of rank 3 of the total conductance matrix. T
four-terminal resistance takes a particularly simple form
oc

er,

ys

R

nd

.

.
v.

P

T.
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the case of a reflectionless interferometer («50) where we
find

R14,235
h

2e2

T02^T13&
11T02^T13&

, ~12a!

R12,435
h

2e2

122^T13&
~T01^T13&!~11T02^T13&!

~12b!

for the local and the nonlocal configuration, respective
Equations~12a! and ~12b! show that the attenuation of th
local and nonlocal resistances is determined by the deco
ence rates Eqs.~5a! and ~5b! respectively.

In conclusion, we have shown that the electrical co
straints imposed by the measurement circuit give rise t
probe-configuration dependence of the dephasing rate.
effect is most pronounced in an ideal quantum interferome
that is strongly asymmetric, but was found to persist even
the presence of a considerable admixture of incoherent tr
mission or randomness~with ensemble averaging!. While
there may be other physical mechanisms for producing s
a difference, our discussion of dephasing explicitly includ
the effect of the external electrical circuit and leads to
result consistent with unanticipated experimental obser
tions.

This work was supported by the Swiss National Scien
Foundation.
n,

ot

re
1K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, J. Phys. S
Jpn.71, 2094~2002!.

2Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
3B.L. Altshuler, A.G. Aronov, and D. Khmelnitskii, J. Phys. C15,

7367 ~1982!.
4M.H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothi

and C. Urbina, Phys. Rev. Lett.64, 1824~1990!.
5C.W.J. Beenakker, M. Kindermann, and Yu.V. Nazarov, Ph

Rev. Lett.90, 176802~2003!.
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