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Tunneling of two particles in synchronous and asynchronous regimes is studied in the framework of dissi-
pative quantum tunneling. The critical temperatlrg corresponding to a bifurcation of the underbarrier
trajectory is determined. The effect of a heat bath local mode on the probability of two-dimensional tunneling
transfer is also investigated. At certain values of the parameters, the degeneracy of antiparallel tunneling
trajectories is important. Thus, 4, 6, 12, etc., pairs of the trajectories should be taken into daccastade
of bifurcationg. For parallel particle tunneling the bifurcation resembles a phase transition of the first kind,
while for antiparallel transfer it behaves as a second-order phase transition. The proposed theory allows for an
explanation of experimental data on quantum fluctuations in two-proton tunneling in porphyrins near the
critical temperature.
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[. INTRODUCTION proton correlations of different types within the framework
of the dissipative quantum tunnelin@gnstanton approach.
The quantum tunneling dynamics of a particle interactingMoreover, we discuss the fine structure of bifurcations for
with a heat bath is one of the important problems of moderrsystems with various potential energy surfates>*%*in
condensed matter physits’ The interest in this problem is Sec. Il, we introduce two-dimensional model potential en-
related to studies of low-temperature superconductive tunndrgy surfaces for a pair of interacting particles. In Sec. Ill,
junctions>®°dissipative quantum tunneling in crystafgnd ~ We study the effect of temperature on the tunneling rate. In
low-temperature  chemical reactiohd2° In  low- Se(_:s. IV and V, we calculate_ the rate for_the parallgl_and
dimensional systems an effective mass approximation oftefiltiParallel tunneling and provide an analysis of the origin of
fails. Thus, quantum tunneling with dissipation becomes alplfurcgtlon. 'I.'he.effect of a promoting moden environ-
important tool in the description of electron transfét.In men) is studied in Sec. VI.
many physical processes tunnelingtafo particles occurs.

For example, Semenov and Dakhnov&k’ found the bista- II. TWO-DIMENSIONAL POTENTIAL

bility of the tunneling trajectories in a two-proton transfer. ENERGY SURFACES

Later, Benderskii and co-workers extended their investiga- ) ] )

tions to different two-dimensional potentiafs.Some fea- Consider two charges that tunnel in two independent
tures of the two-dimensional tunneling dynamics were studdOUble';Ng! potentialsU(q,) and U(q,) presented as
ied in interacting Josephson junctidhs. follows:™

Another example of two-particle tunneling is a two-
proton transfer in porphyrin systeri§2° Porphyrins are im-
portant molecules in biolody and a new area of electronics: ()
molecular wires and devicé$. There are experimental
datg*2%33that clearly indicate that a tunneling instability
occurs at some critical temperature. Such a behavior in the
rate constant demonstrates the existence of bifurcations in
two-dimensional underbarrier trajectories. Apparently, thiswhere the suna+ b determines the length of a “link” in the
effect requires a thorough investigation when the protons incorresponding macrocluster fragment, = w?(b?—a?)/2 is
teract with a thermal bath. a bias(an asymmetry parameter of the potenti@(q;) is a
In this paper, we continue to study bifurcation effects instep function, and is the frequencysee discussion in Ref.
two-dimensional tunneling. In particular, we consider two-27). The mass is absorbed into the definitiongof

1
= EwZ(Qi+a)29(_Qi)

1
+—AI+§w2(qi—b)2 0(qp), =12, (1)
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FIG. 1. Asymmetric potential energy surfa¢® for parallel
tunneling:a=2, b=2.5, a* =0.0001.A andB indicate the initial
and final states of the particles, respectively. The minimum of the 107 b
potential atB is lower than that aA. The other twa(intermediate 8

minima are lower than those Atand higher than aB.

e
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The interaction between two charges, e.g., protons, is con- "
sidered in a dipole-dipole approximatfén ¢

- s
==
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7z
=
o

a 2 \ \:\\i R
Vin(G1,02) =~ 5 (41— 02)", 2 .\ﬁ..\.\s;a
\‘ . .‘\.\\-
wherea is a positive constant. We use the same interaction _“_\_\_ ﬁ!}{l
potential as in Ref. 6. \ i}'
Thus, the total two-dimensional potential energy surface s\ V
for parallel tunneling normalized by? is given by Ny *
~ ' \
2U (qlaQZ) \
p A\
Up(d1,02) = ————
w
=(gy+ a)20( —qy)+[— (bz— az) FIG. 2. Asymmetric potential energy surfa@b for antiparallel

tunneling: (a) a=2, b=2.3, a*=0.1 (top panel; (b) a=2, b

2 2 z
+(a:=0)710(q1) +(d2+a)"0(—ap) =2.3, a*=0.5 (bottom panel A and B indicate initial and final

+l—(b2—a2) +(g.—Db)2 states of the particles. The minimum of the potentiaBas lower
[=( )+(d2=b)710(az) than that afA. The other twaintermediatg minima are higher than
a* 5 those atA andB.

_7(Q1_Q2) . 3

Here, a* =2a/w? is the dimensionless parametert <1, ~ Where a* =2a/w? is a dimensionless parameter} <1.
a:ezl(ng), eis the electron chargeR, is the separation The potential(4) is d_eplcted in Fig. 2. The main dl_fference
distance between the reaction coordinajesand q, of the ~ P€tween the potential energy surfad8s and (4) is in the
tunneling particles, and is the dielectric constant. The form initial location of the second particle; a.

of the potential energy surfa®) is shown in Fig. 1. The potential energy3) can be referred to as “parallel”
For antiparallel transfer, the two-dimensional potential enhile the potential energi4) as "antiparallel.” We also de-
ergy with the interaction term can be defined as fine a symmetrlc potential energy as a particular case of
3 the potential(4) under the conditiom=b, i.e.,
2U401.92)
Ud(01,02)= aT=(ql+a>20<—ql> 200
01,92
Udd1,02) = ————=(ds+a)?6(—dy)
[~ (b?~a?)+ (a3 b)]0(cry) AT T "

+(g2—a)?6(qy) +[ — (b*—a?) +(g1—a)%6(qy) + (0~ a)26(ds)

(04 o
+(0z+b)?] 9(‘Q2)‘7(Q1‘Q2)2, (4) +(gp+a)?0(—qy) — T(Ql_%)zy 5
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FIG. 3. Symmetric potential energy surfa®: (a) a=2, b
=2, a** =0.1 (top panel; (b) a=2, b=2, a** =0.5 (bottom
pane). A and B denote the initial and final states of the particles.
The minimum of the potential energy Btis equal to that af\. The
other two(intermediat¢ minima are higher than those Atand B.

where the constant** <1. The potential energgb) is pre-
sented in Fig. 3.
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Each of the tunneling particlegelectrons or effective
charges interacts with the oscillator bath in the following
way:

Vil a1,Q) =02 CiQi, V2, Q)= CQ:-
(7
As in Ref. 28, we are interested in the transition probability

per unit time or, more precisely, only in its exponential part
which can be written in the Langer’s form

r=21 _Im z 8

- " Rez’ ®

In such a consideration, metastable levels can be presented as
I'=-2ImE, E=Ey—il'/2. (9)

It should be emphasized that E@®) is valid only for tem-
peratures below the crossover temperature while for higher
temperatures a different prefactor is requiféd.

Equation(8) is obtained by generalizing the expression
(9) to nonzero temperaturést’

2> e BifimE, 2TIm>, e &/T

_2TImZ

ReY, e E/T Rez

(10

Herei labels the energy levels in the metastable states
the partition function of the system, afids the temperature.

To calculatd’, it is convenient to presetin the form of
a path integrar®’

Z:H fDqlDQZDQieXF[_S{qlquin}]- (11

Here S denotes an underbarrier action for the total system.
The imaginary part InZ is due to the decay of the energy
states in the initial well. The validity of this approximation
requires dissipation to be strong enough so that only an in-
coherent decay occuf3.The imaginary part in the partition
function with a double-well potential energy can be also ex-

As shown in Refs. 28, 29, and 33, such model potentiapjained due to the strong dissipation to the bath. Indeed, the
energy surfaces describe well the dynamics in porphyrins. particles do not come back to their initial state. Coherent
In many practical cases, the effect of a bath on the particlesscillations can happen only if the interaction with bosons is

tunneling should be also included. In the next section weyeak enoughor the bath is in nonequilibrium stat&3’
consider two particles embedded in a harmonic medium and The integral (11) can be performed over phonon

linearly interacting with the bath modes.

IIl. TWO-PARTICLE TRANSITION PROBABILITY

We assume that two particles independently interact with

coordinate® resulting in

1. 2 1. 9
EQN‘ EQ2+V(Q1.QZ)

BI2
S{Q1,Q2}:f dr|
—BI2

a harmonic bath. Such an interaction is considered in a bi- 2 ,
linear approximation. The dynamics of the environment is + —B/ZdT D(7—7)[a:(7) +0qz(7)]

described by the oscillator Hamiltonigwe usef=1, kg
=1 units with the oscillator masses equal o 1

1
Hpn=3 2 (P{+ofQ). (6)

X[Ql(T’)+Q2(T')]}a (12

where

155426-3
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1 v ). (2 202 (@Fb)(sinv,m—sinv,7p)
B(7) B n:Zoc D(wn)e™", (13 G Gn va(V2+ Q%+, +2¢,)
B=1/(kgT) is an inverse temperaturdelow we assume 2 ; ;
thatA=1 andkg=1), v,=2mn/B is the Matsubara’s fre- qﬁ,l)—qﬁ,z):zw (a+b)(25|n VnlelLsmvnTZ) (22
quency, and vo(ve+Q5— ay)
, Here we have introduced the following notation:
D(r)=-2 —5- (14) e=m— 15, To=(11t 1)/2. (23)
ity The time instants; and 7, at which the particles pass the
) . ) . top points of the barrier, are determined from the following
A trajectory that minimizes the Euclidean actiSrcan be equations:
found from the equations of motion. In particular, we embark
on the antiparallel tunneling q1(71)=0, gs(7,)=0. (24)

. - B2 Equations(24) allow us to change the argument of tife
—q1+Q§q1+ a1q2+f d7'K(7—7")[qu(7")+qx(7")] function. Namely, instead of thg; andq, dependences, we
2 can use a time-dependefittunction. This reduces Eq§l5)
+w2af(—qy)— 0?bo(gy) =0, (15  and(16) to a linear form.
Finally, substituting the trajectory determined from Egs.
(19), (21), and(22) into Eq.(12), we arrive at the following

/2
/ d7'K(7—7")[q1(7")+qx(7")] expression for the instanton action:
2

. - B
— Qo+ Qf0a+ a0+ f_

_4o'a(atb)ry  w'(a+b)?e? 4o*(a+b)?73

—w?ab(g,) + w?bo(—qg,)=0. (16) — — —
Qo_al B(Qo+a1) E(Qo_al)

In Egs.(15) and(16) the kernelK is defined by

8w*(a+h)? & {sinzvnrocosz( vhel2)
n=1

1 < . =
K(n=% 2 &e (17) p (vt Qf—an) v}
n=—owx
: : : . S in?(vel2
Here &, is the Green's function defined by E(.4) without c;) V”ZTOSl (Ve )2 ) (25
the zero-frequency term, (vt Qo+ ay+28,) v,
Ciz IV. PARALLEL PARTICLE TUNNELING
D(rp)==2 —+é. (18 _ _ _
I For the case of parallel particle tunneling, the Euclidean

actionScan be determined similarly to antiparallel tunneling
[see Egs(15) and (16)]. The trajectory minimizing the Eu-
clidean action(instanton can be determined from the equa-
102 12 tions of motion_. As i_n the previous section,_ we seek solutions
== > qWen7 q,== > q®en. (190 of these equations in the form of the Fourier expan$id).
n=-o n=—o The time instants; and r, are determined by Eq$24).

In the case of parallel tunneling particlghe potential

energy(3)], the resulting Euclidean action is given as fol-

Thus, we seek solutions of Eq4.5 and(16) by expanding
the trajectories),(t) andq,(t) into Fourier series,

Introducing the renormalized frequency and interaction con

stant lows:
P e c? S=2a(ath)(r+ )0 = w(atb)i(rt 1)
Oi=w _Ei ——a, a1=a—z — (20 112 B 1772
a)i | [OF
4 2 _ 2
respectively, and substituting Eg&l9) into Egs.(15) and _wXatb)(r—7p
(16), we obtain that, fon=0, (0?—2a)B
20%(a+b)e 20*a+b)? & | (sinv,ry+siny,7,)2
o= T 202+
Qé'f'al n=1 vi(vpt o+ &)
Sinv,7,— SiNv,7,)°
L 20%8B  4eXatb)r . e 27 (26)
gV —q®=— — s (21 vi(vpt+ 0 —2a)
o~y 05— ay . .
where¢, is defined by Eq(18).
and, forn#0, Below, we use the following notation:

155426-4



TWO-DIMENSIONAL TUNNEL CORRELATIONS WITH . .. PHYSICAL REVIEW B68, 155426 (2003

e=g*w=(1—T)o, and assume that
=27 w=(11+ 1),
b=a.
B* =Lwl2,
a* =2al w?, In the absence of interaction with an oscillator bath, i.e.,
at £,=0, the action(26) as a function of the parametess
b*=bl/a, and r yields

1 )+ (7—|e|)a*

1-a*

1+ + coth* —sinh™ 1B*[cosh B* — 7)coshe

. (a+b)’w | 4ar T
B 2 atb a+b

l1-a

+cosh B* — 1) — cosh B* — |&|)]— (1— a*) ~¥%(— coth B\1— a*)

+sinh }(By1—a*){cosh (B* — 7)y1—a* |[cosi{e V1 —a*)—1]+cosi(B* —|e|) V1—a*]})|. (27)

As soon as the trajectory is found, E¢g24) can be presented in the following form:

1
sinhe[ coshr cothB* —sinh7— cothB* |+ P sinh(e y1—a*)[cosi{7y1—a*)coth B* y1—a*)—sinh 7y1—a*)
-
+coth B* y1—a*)]=0, 3— b 1o +coshe[ sinh7 cothB* —coshr— 1]+ sinhr coth8* —coshr
-

+ 1 ! . cosieJ1—a*)[sinh(7y1l—a*)coth B* y1—a*)—cosi7yl—a*)+1]
-

— 1 ! *[sinr(r\/l—a*)cotr(,B* J1—a*)—cosi7y1l—a*)]=0. (28
—

Simple analytic solutions of Eq$28) are obtained in the particular case when

e=(m—1)w=0, VB, a<w??2,

o 1 l_b*'hﬁw B 29
T =Tp=5 =5 arcos sinh—-|+ 7. (29
However, a complete analysis requires numerical studies.
At sufficiently low temperaturesy8>1, for 1<b/a<3, and
b—a 2, 2(b-a)
s —<af=—F——
2(b+a) 4,2 ¢ 3b—a’
we finally obtain, with exponential accuracy,
e—’r\/l—a*z 33— 4 _ (1_a*)1/(1—\/1—a*) 1+(1_a*)1/(1—\/1—a*)
1+b* 1-a*
-1
4 1 4 1 Nrery 1
X|— +| 3— - / 1-VJl-ao* , € °=[3— - erVlmam 4 .
1-a* ( 1+b* 1—a*) ( )H { 1+b* 1-a* 1-a*
(30

155426-5
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FIG. 4. Trajectorieda single path is characterized by=-0 and IS o i
a split path is characterized ky#0) for two parallel moving par- 0 12
ticles, atwB>1. (1)—(4) label the projections of the minima of ’ ' : ’ ¢ ? ‘
potential energy3). 10
(oo C ——
o G
The solution(30) is valid at /
5 z
W1-a* ‘k
18>ﬁCE—' (31) T \_
w - - e nler w o
We point out that an approximate solution can be found for Lk 7 7 5 7 S(t‘ 'TZ)wﬁ

large values of the parametef (and smalla*). However,

below we focus on the more important soluti¢80). The FIG. 6. Numerical solutions of transcendental equati(28).
analysis indicates that there are no perturbative solutions gf, addition to the studied solutiom, = 7,, with larger 8 there

Egs.(28) at low temperatures and small _ are additional solutions;; # 7,, shown in panelgb) and(c). Panel
Fore=0 [see Eq(29)], the action(27) results in (b) reveals asingle additional solution corresponding to the lower
b* 1 P value of the Euclidean action. Panét) shows two different
_ o - . . )
S,_o=w(b?—a?)arcos sinh—2 addltlonall solutions with the one corresponding to the lower value
b* +1 2 of the action.
1
- sz(bz—az)ﬁ+ w(b+a)? In the symmetric casebf =1), the action(32) reduces to
12
wp (b* —1)? wp
X h—— —— sinkF— wp
cosi (” (b* + 1)25'”“2 2 S.-o=4w’tanh—-. (33)
L 0p .
xsinh™=—-. (32 At b*>1, the character of the temperature dependence is
) o . almost the same.
The action(32) coincides(up to a factor of 2 with that of At £#0, the corresponding actioB can be obtained by

calc_ulated in Ref. 27_. Thus, we have calculated the tWOSubstituting Eq(30) into Eq. (27) (for brevity, this cumber-
part_lcle Euclidean _actlon fpr the case of synchronous parallelgme expression is omittedA simple analysis shows that
motion of the two interacting particles. S,20<S,_o. Moreover, it appears that the differendeS
=S,10— S;= has a maximum ab3>1.
N 1 The tunneling path$19) are presented by the solutions
3] (29 and (30). At the critical point3= ., defined by Eq.
~ (31), a relatively abrupt change in the dynamics results in a
2.5 splitting of the single trajectorye(=0) into two (¢ #0), as
o ) shown in Fig. 4.
2 At B> ., i.e., for temperatures below the critical tem-
perature, T<T., only a split trajectory £ #0) occurs since
1.5 S, £0<S.-, (see Fig. 5.
When < 8., i.e., atT>T,, anda> a, [see Eq.(30)],
0 0.05 0.1 0.15 0.2 . . . . .
o the solution is determined by a single trajectory. We have
FIG. 5. Instanton action as a function of the interaction param-2lso found that the single-trajectory solution holds in the
eter o* =2a/w? of the two parallel moving particles, ai>1; whole temperature range for a symmetric potential energy
S,=S/(wa?). (1) is the single trajectory(2) is the split trajectory. ~ (b* =1).

155426-6
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FIG. 7. Parametet, as a function of inverse temperature, at a  FIG. 8. Parametep,, is presented as a function of the interac-
fixed value of the frequency and asymmetry parametb¥ . tion parameter of the two tunneling particles.

The above consideration is based on the analytic solutio
(29) for 7, near the critical point. A complete analysis of
Eq. (28) requires more detail. one

The numerical study of the set of transcendental equationsh Flguref 6 demor;lstrates thOW theh critical p?ramqﬁghr i
(28) reveals remarkable features of two-dimensional tunnel$@NYES from Synchronous 1o asynchronous values with 'em-

ing. The value of the critical parameter, decreases with perature. Figures(B) and §c) reveal the existence of addi-

temperature as shown in Figs. 6, 7, and 8. The temperaturi%o?r?é Fl%l;’;]s,ere;?rtrendng}r?s :);m.ﬁzgor;g:"t?]t:’tczrrg?pr%g?g?
dependence o indicates to the existence of a finite low- 9 " Ing regi : Wwo biiurcatl

temperature limit. It becomes clear that the weaker the interpg'r?éss Sohnodvlntcl)n trljzlag.Itf?/:g,ero?/glluoen?)flsth%hfgt(i:gL:e::cu;f d I
action between the tunneling particle, the lower temperature int ip metastable However, for sufficiently small differ-
required for the synchronous tunneling. Since the asynchroD-0 s metasta owever, for sutliciently smaif ditter-

nous tunneling is valid only fo <T, [see Eq.(31)], the ences between the values of the action at these bifurcation

dependence oB; on the interaction parameter reveals thatpomtsi both close .pointsj contribute, thuslleading to corre-
the minimum occcurs at* —=0.2. The nonmonotonic behav- sponding “fluctuations” in the system during the change of

ior of 8, as a function ofa* can be explained by the* the regimes. For lower temperatures, such fluctuations be-
dependénce of as well P y come negligible because two bifurcation points contribute

Additionally, the curve in Fig. 8 exhibits an anomalous differently. Thus, a stable character of the asynchronous tun-

behavior (an increasing part of the curvéhat can be ex nel transfer is achieved due to a much lower value of the
. : ng p . . ., action at one of the bifurcation points.
plained in the following way: a two-dimensional potential

enerav for parallel tunneling is evidently deformed by an For the chemical reactions mentioned in Introduction,
energy paral 1€ling y oy e effect of the change in the tunneling regimes reveals a
increase of the interaction constant. Indeed, the minima o

the potential surface become lower and the distance betwee:rlleavagem the experimental temperature dependence of the

them is larger. Small deformations in the potential energyunneling constant. The fine details of this instgbility have
surface changé the contribution produced by the temperatupOt be_gn studied yet. Neverth.eless,.the very emstenpe of an
increase towards a synchronous character of the tunnelin'ﬁStab'“ty at the edgg of the b|f_urcat|on can be' explained as
However, for sufficiently large deformations of the potential € resqlt of _spec_lﬁc flgctuat|ons. A T‘“m.e”c?" a’?a'ys's

S ; ; o . of the bifurcations in antiparallel tunneling is given in the
the situation is a quite opposite. The significant deformation

. . 0N ext section.
are in favor of synchronous transfer. Thus, an increase in the

interaction constant provides a similar effect when tempera- \, 1\wo_DIMENSIONAL ANTIPARALLEL TUNNELING

ture increases. Such a behavior takes place up to a certain

value of the interaction constant, beyond which the potential For antiparallel tunneling of two particlésee the poten-
energy surface becomes strongly perturbed. Thus, Figs. 7 atidl energy (4)], the instanton action as a function of the
8 are complimentary to each other. Consequently, Fig. 8 caparameterg andr is determined by Eq25). For ¢,=0, we
be viewed as a bifurcation diagram. Indeed, the region belowbtain

n%:e curve corresponds to the synchronous tunneling, while
the region above the curve corresponds to the asynchronous

wr(b2—a?) w(a+b)2[ ( 1 ) sinh(|e|V1—a*)
- - B + ~s

1o 2 (1—a* )32 inh&|

+cosr(s Vi-a*)+1

(1_'&*)3/2

1— ~
1-a*

= = = coshe —1
X[sinh B* V1—a*)] Ycosh(B* —r)V1—a*)—cosiB* V1—a*)]+ Tﬁ*[coshﬂ* —7)+coshg*];. (39
sin
The parameters and 7 are found from the following set of equatiofsee Eq.(24)]:

155426-7
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—sinheg[ coth8* + coshr cothB* —sinh7] +

4

PHYSICAL REVIEW B 68, 155426 (2003

_1~* sinh(e V1 —a*)[coth( B* V1—a*)—cosh 7V1—a*)coth B* V1—a*)

+sinh7yl—a*)]=0, —1-

— +
(1+b*)(1-a*) 11—«

Simple analytic solutions of Eq$35) can be obtained in the
following form:

)w=0, Vg, a< 0?2,

e=(11—

1

2w\/1 a*

1-b*

sin Bw —V1

arcos+

1+b*
(36)

Similarly to the case of parallel tunneling, we obtain that

at low temperaturesp 3> 1, with exponential accuracy,

A(l_'&*)lly
1-(1—a*) YAl y—(1—

e*‘er*a*

a*)™

ey 1
eserTV17a _ . (37)
1-a*
Here
4 3 —=
=—1—- = + ~ = 1_ 1_ a* 1
(1+b5(1-a*) 1-a*

while a*, b*, &, and 7 are determined as for the parallel
transfer.

The solution(37) is valid ata¥ <a*<a?¥,, where the
lower and upper bounde? and a*, are derived from a
cumbersome transcendental equatifor brevity it is not
presented heje Particularly, in the symmetric case =1,
we obtain the condition in a simple analytic form 1/4
<2alw?<1.

Furthermore, an approximate solution can be found for,

large values of the parametd&* =b/a (and small a*).

{&{Umshsﬁl—a*)+1HSmHTV1—Ef)mﬁHB*Vl—a*)—aBKTV1—a*H—1DSK8V1—E*H=0.
—

1
=+ (coshe —1)(sinh7 cothB* — coshr) + coshe

(35

A(1—a*)Y

A1 )'
Y 1-a*

(39)

1-(1- aﬂ”{

At wB>1, the solutions of Eq9.35 can be found per-
turbatively (for smalle) with given values of the parameters

(b—a)/(b+a) anda*. At £=0 [the solution(36)], the ac-
tion (34) yields
’{ wﬂ\/l a*
arcos

sinh
3 w?B(b%—a?) . w(b+a)?
2(1-a%  (1-a*)%?

(_ N
—| sinh 5 +

w(b?>—a?)

(1_;(*)3/2

(%

1—
2

0B

coth
1/21

For the symmetric potentiala=b) ands=0, we obtain
that (see Fig. 7

(b—a)?
(b+a)?

(39

(40)

We do not present here a cumbersome expressio,fog
which one can obtain by substituting the solutianand e
into Eq.(34). A simple analysis reveals th& .,>S,_ for
3>BC and for relevant* . Similarly to parallel transfer, the
tunnel paths can be found from Eq86) and (37). These
trajectories on thed; ,q,) plane are shown in Fig. 9.

As for parallel tunneling and eﬂ>,~8c, the pair tunneling
changes from a single- to a double-trajectory regime. In con-
trast to the parallel tunneling, such a splitting occurs at any
values of the parameters of the potential 3¢ 3., we have
S.40>S,.-( and, thereforeS,_, determines the tunneling

rate. At 3<p., the two degenerated trajectories are trans-
formed into a single trajectoryy; g,, corresponding to
synchronous antiparallel transfer.

For single-particle tunneling, there is only a single tunnel-

However, we restrict our analysis to the more importanting path (instanton minimizing the action. Hence, there are

physical solution(37).
The B-dependent solutiof87) is valid for 8>3, , where

two different types of trajectories for the pair of interacting
particles. Namely, the main contribution to the instanton ac-
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A Q2
2 2.5
'_K\_"'\ alll-a" 1 5
[} /’_\_ —— gioms
\,w’: '\{\:’; 6 1.5
Rk T P %)
1 \ - N~ - ),,_ i
1
~ bil-&7) ¢
1 o
> o _b-T) % )
—all-87) M ] \ ! '
0 > 0
~ 1 (ex0)
A ’ 1
HOX A NG
3 ‘zi}“u! : RN FIG. 10. Instanton action for antiparallel tunneling=0, a
A S A = 4\ Y =b) as a function of an inverse temperature at the two different
—b/(l—&‘) Mo !‘ 4 values of the interaction paramet&;=S/(4wa?), w=wp/4. (1)

a*=0.5, (2) «*=0.1, and(3) a dashed line corresponds to the

action(33) for the parallel transitiong=0, a=b).
FIG. 9. Trajectoriegthe basic path characterized by-0 and

the split one characterized hy#0) atwB>1 of two antiparallel 6 pairs[Fig. 11(c)], and there are even 12 pairs of additional
tunneling particles(1)—(4) denote the projections of the minima of Solutions at8* =19.2009 @* =0.05), etc. We refer to this
the potential energy surfadg,(q,,q,) defined by Eq(4). phenomenon as a multiplication of bifurcations arescade
of bifurcations Such an effect resembles a scenario of tran-
tion is determined by either the single- or double-sition to chaos.
degenerated path depending on the valug.dfVe also point Although the synchronous regime is preferred due to the
out that in the case of parallel tunneling, the particles do nominimal instanton action, in a certain temperature range its
simultaneously pass the top points of the barrig# 75, for ~ value is comparable with those of corresponding to the cas-
B>p.. This means that the tunneling transfer is asynchrocade solutions. As a resulguantum fluctuation®f a non-
nous. regular character occur in contrast to parallel transfer. Anti-
At small values of the interaction parametef [see Eq. parallel tunneling is, thus, characterized by the instability of
(30)] and at temperatures such tha& 3. [see Eq.(31)], the transition due to the synchronous to asynchronous behav-
there is no splitting of a single patlgq{=q,). Therefore, the ior. Such instabilities are similar to a continuous second-
particles pass the top of the barriers at the same instan@der phase transition, while parallel tunneling is viewed as a
(r,=1,). Consequently, the transfer of the particles is syn-Step process similar to the phase transition of first ofsee
chronous. The temperature dependence for the antiparall&ig. 6). The dependences shown in Figs. 7 ang&a) and
transfer action is plotted in Fig. 10 at various . ay(B), for antiparallel transfer are found to be of the same
The type of the interaction given by Eq®)—(5) is such character as those _Of parglle! transfer. ) )
that it does not affect the motion along the “center-of-mass”, N SUmmary, our investigation reveals a quite complicated
coordinateg; =q,. For this reason, the Euclidean action is fine structure of the_tran3|t_|on for parallel and antlpgrallel
independent of the interaction parameter as for parallel trandUnneling of two particles with different degenerate trajecto-
fer. Since the state of the interacting system characterized HieS léading to the bifurcation cascade.
a maximal value of the relative coordinatge;=—qy, is
preferable(as it provides the lower actipnit becomes clear
that the instanton action decreases with the interaction pa- In this section, we study the effect of a heat bath on the
rameter in the parallel transfer along the degenerated tunnalnneling transition of two interacting particles. In many tun-
trajectories and increases with the interaction parameter fatieling reactions, the interaction with a vibrational subsystem
the antiparallel tunneling. can often be approximated by the interaction with a single
For antiparallel tunneling, synchronous transfer=t ,) vibrational mode(a so-called promoting mogleAs follows
takes place, while asynchronous transfer is forbidden due tfrom Eq. (12), a heat bath affects only the dynamics of the
the greater contribution to the Euclidean actisee Fig. 10 center of massd; =q,). Therefore, in the case of antiparal-
The validity condition for weakly interacting instanton— lel motion, the medium does not affect the rate constant,
anti-instanton pairs, in the adiabatic approximation, was diswhile for parallel tunneling it essentially contributes to the
cussed in Ref. 27. transfer rate. For both parallel and antiparallel transfer, the
The numerical analysis of the transcendental equatiobilinear interaction of particles with a single oscillator can
(35 reveals interesting features for a transition region bemake a qualitative change in the character of tunneling.
tween the tunneling regimes, i.e., a fine structure near the At small values of the interaction parameter between the
first bifurcation point for the antiparallel transfer. The nu-two tunneling particles dissipative effects become
merical results are presented in Fig. 11. We found that, inmportant®’ In two dimensions the dissipative effects are
addition to the first bifurcation point characterized by the twomore pronounced for parallel rather than antiparallel tunnel-
solutions [Fig. 11(@], there exist additional bifurcation ing. The latter increases with temperature with a consider-
points at lower temperatures, i.e., the 4 péitig. 11(b)], the  able contribution to the prefactor. In the present work, we are

VI. EFFECT OF A PROMOTING MODE
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(n+5)w . (2) (n+5)o ®)
B p*=18.74 I~ B =18.77

.5 75F

L FIG. 11. Numerical solutions
Sl i : o s5.0) of the transcendental equation
. H H - ol . = 0 oy .
e F Ji, (amn NI Ly, e (35). In addition to the studied so-
-5 3 0 3 5 -5 3 0 3 5 lution 7,=7,, with respect tog,
there are the additional solutions,
(+5)0 © T1# 75, shown in panelga), (b),
- B =18.83 and (c), which correspond to one,
R . T four, and six(pairg additional so-

= lutions, respectively.

interested in the tunneling rate assuming only exponential25) can be calculated with the following vibronic Green’s

evolution of the transition probability. However, nonexpo- function:

nential evolution can occur in an nonequilibrium

environment>—#Such a case is not discussed here. Accord- c?

ingly, a reservoir is assumed to be in thermodynamic equi- D(vn)=-— m (42)

librium; i.e., the tunneling transition is rather slow compared -

to the thermodynamic relaxation. Thus, we assume that disvhere o is the frequency of the vibrational mode. After

sipation affects the value of instanton action only. some tedious calculations, one obtains the following expres-
For the case of antiparallel tunnel transfer, the actiorsion for the instanton actio(25):

2

2

B 2(»4(a2—b2)7-0_2w4(a+b)2 B sin Qo B12— 7o) ]sinb( Qg 7g) B(QZ—wL)cosr[Q (BI2— 74)]coshQ; 7o)

0?2 B - 203sinh(Q,B/2) —1)'203(Q2-Q2%)sinhQ;8/2)
Be Be BsinheQy) & BOP—wd)sinneQ)  BcostisQy)
- Qo(BI2—2
+4(w2—2c2/wf) 4Q§+ 403 2 ~1)1403(02-02) +4Qgsmh(/mo/2){ oSt ol /2= 270)]

QB2 Z B(Qz_wﬁ)ms“‘gﬂi) Q,(BI2—270)]+ cost{ 2, 512 42)
coshQB/2)} — L — 12030 Q%)sinl’(,BQi/Z){COSk[ i(B 7o) ]+ cosi(;B/2)} .

Here, we have introduced the following notation:

1
QSsz—az, QfZE[w2+ wf+ (wz—wf)2+8C2],

1
03=5[0*+ ol — (0~ w})?+8C?].

For the parallel tunneling transition, a corresponding action can be found in a similar way. The(2¢}iaa a function of
the parameters* = 1, — 7, and ™ = (7, + 7,)/2, with vibronic frequencys, and coupling constari, yields(see also Ref. 27
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o*(a+b)?e* 4w’(a+b)?7? 4dw*(a+b)?e*?
2(w?—2a) B (0?>—2a)B

2 i _ . : i
- w2(a+ b)2 E (-1 (a)2 X3-i) (COI}‘(%X—I) _sinhl(&x—')(cosy{

2y = i 2

+;cos}{(§—27*—s*)\/x—i ]

+cos»{(§—8*)m %COS{(;-W-S*)M

)

S=(a+b)(3a—b)w?r* -

§—2T*)\/;i

—cos&{(g—s*)\/x—i

N w*(a+b)?
2(w®—2a)3?

WX

+Ecos E—2 *+e*
2 2 T &

(— cotI-( g\/H)

+sinh‘1(§\/E) ( —cosr{(g—zﬁ) Jo?—2a

Jo’—2a

+Ecos E—Zr*+ *
2 2 ¢

Here we have denoted also assumed exponential evolution of the transition
probability?7:35-38

5 2 Cc?| 1. We have shown that the change in a tunneling regime

X1275| @ +w"+w_f o7 from synchronous to asynchronous transfer for a parallel

transition occurs as a step process, similar to a phase transi-
o\ 2 tion of first order, while for antiparallel transfer it resembles
w2+ wf+ _2) —4w2wf. a second-order phase transition.

v \/ We have explained the effect ofcéeavagein the experi-
mentally observedd~2¢33temperature dependence of the re-

For particular values of the interaction constanand in the  4(ion rate for two tunneling particles. It has been shown that
absence of an interaction with the oscillator bath, the Cl’ltlca‘:he effect of symmetry breaking is stable for parallel and

temperaturdl; (at which the synchronous and asynchronousnstaple for antiparallel transfer, as is observed experimen-
tunnel regimes mterchanges found from Eqgs.(31) and. tally for some porphyrin systen?®é-263We have found a
(38). These equations can be generalized to a nonzero intefomplicated fine structure in the bifurcation region due to
action with the promoting mode. Typically, the critical tem- q,antym fluctuationfor parallel two-dimensional tunneling.
perature is found to be in the range from 10 to 400 K. Ingq; antiparallel tunneling, the contribution of 4, 6, 12, etc.,

glassesT can be very small while for chemical reactions it hairs of trajectory becomes important, resembling the transi-
can be rather large. Additionally,. depends on the mean tign to chaos

distanc.e between the particles and, therefore, on their con- Additionally, we have studied the interaction of two par-
centration. S ticles with phonons. Such coupling essentially modifies the
Quantum tunneling is importafitwhenkeTc/(fiw)<1.  antiparallel and parallel transitions in different ways. As fol-
Therefore, the symmetry breaking effects can take place agws from Eq.(12), the interaction with the reservoir does
relatively high temperatures depending on the “frequency”not change the dynamics of the center of mass for the anti-
of a barrier. For example, for porphyrins the critical temperaparajlel motion, while it makes a significant contribution to
ture T is estimated to be about 200 K. the transfer rate for the parallel transfer. Finally, Egl)
determines the validity condition for temperatures beyond
VIl. CONCLUSIONS which stable two-dimensional synchronous tunneling corre-

N

In the single-instanton approximation, we have calculateéat'ons of all kinds occur.
the Euclidean actiorf12) for the models characterized by
the different adiabatic potential energy surfac&’, (4),
and (5), and made a detailed comparative analysis of the
tunneling rate for two interacting particles moving in parallel The authors would like to thank A. I. Larkin and B. I.
or antiparallel within a dissipative environment. We havelvlev for the stimulating interest in this work.
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