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Two-dimensional tunnel correlations with dissipation
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Tunneling of two particles in synchronous and asynchronous regimes is studied in the framework of dissi-
pative quantum tunneling. The critical temperatureTc corresponding to a bifurcation of the underbarrier
trajectory is determined. The effect of a heat bath local mode on the probability of two-dimensional tunneling
transfer is also investigated. At certain values of the parameters, the degeneracy of antiparallel tunneling
trajectories is important. Thus, 4, 6, 12, etc., pairs of the trajectories should be taken into account~a cascade
of bifurcations!. For parallel particle tunneling the bifurcation resembles a phase transition of the first kind,
while for antiparallel transfer it behaves as a second-order phase transition. The proposed theory allows for an
explanation of experimental data on quantum fluctuations in two-proton tunneling in porphyrins near the
critical temperature.
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I. INTRODUCTION

The quantum tunneling dynamics of a particle interact
with a heat bath is one of the important problems of mod
condensed matter physics.1–30 The interest in this problem is
related to studies of low-temperature superconductive tun
junctions,5,6,9dissipative quantum tunneling in crystals,13 and
low-temperature chemical reactions.1,24–30 In low-
dimensional systems an effective mass approximation o
fails. Thus, quantum tunneling with dissipation becomes
important tool in the description of electron transfer.3,13 In
many physical processes tunneling oftwo particles occurs.
For example, Semenov and Dakhnovskii28,29 found the bista-
bility of the tunneling trajectories in a two-proton transfe
Later, Benderskii and co-workers extended their investi
tions to different two-dimensional potentials.30 Some fea-
tures of the two-dimensional tunneling dynamics were st
ied in interacting Josephson junctions.6

Another example of two-particle tunneling is a tw
proton transfer in porphyrin systems.27–29Porphyrins are im-
portant molecules in biology31 and a new area of electronic
molecular wires and devices.32 There are experimenta
data24–26,33 that clearly indicate that a tunneling instabili
occurs at some critical temperature. Such a behavior in
rate constant demonstrates the existence of bifurcation
two-dimensional underbarrier trajectories. Apparently, t
effect requires a thorough investigation when the protons
teract with a thermal bath.

In this paper, we continue to study bifurcation effects
two-dimensional tunneling. In particular, we consider tw
0163-1829/2003/68~15!/155426~12!/$20.00 68 1554
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proton correlations of different types within the framewo
of the dissipative quantum tunneling~instanton! approach.
Moreover, we discuss the fine structure of bifurcations
systems with various potential energy surfaces.27–30,33,34In
Sec. II, we introduce two-dimensional model potential e
ergy surfaces for a pair of interacting particles. In Sec.
we study the effect of temperature on the tunneling rate
Secs. IV and V, we calculate the rate for the parallel a
antiparallel tunneling and provide an analysis of the origin
bifurcation. The effect of a promoting mode~an environ-
ment! is studied in Sec. VI.

II. TWO-DIMENSIONAL POTENTIAL
ENERGY SURFACES

Consider two charges that tunnel in two independ
double-well potentialsU(q1) and U(q2) presented as
follows:7,27–29

Ũ~qi !5
1

2
v2~qi1a!2u~2qi !

1F2DI 1
1

2
v2~qi2b!2Gu~qi !, i 51,2, ~1!

where the suma1b determines the length of a ‘‘link’’ in the
corresponding macrocluster fragment,DI 5v2(b22a2)/2 is
a bias~an asymmetry parameter of the potential!, u(qi) is a
step function, andv is the frequency~see discussion in Ref
27!. The mass is absorbed into the definition ofq.
©2003 The American Physical Society26-1
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The interaction between two charges, e.g., protons, is c
sidered in a dipole-dipole approximation28

Vint~q1 ,q2!52
a

2
~q12q2!2, ~2!

wherea is a positive constant. We use the same interac
potential as in Ref. 6.

Thus, the total two-dimensional potential energy surfa
for parallel tunneling normalized byv2 is given by

Up~q1 ,q2!5
2Ũp~q1 ,q2!

v2

5~q11a!2u~2q1!1@2~b22a2!

1~q12b!2#u~q1!1~q21a!2u~2q2!

1@2~b22a2!1~q22b!2#u~q2!

2
a*

2
~q12q2!2. ~3!

Here, a* 52a/v2 is the dimensionless parameter,a* ,1,
a.e2/(«R0

3), e is the electron charge,R0 is the separation
distance between the reaction coordinatesq1 and q2 of the
tunneling particles, and« is the dielectric constant. The form
of the potential energy surface~3! is shown in Fig. 1.

For antiparallel transfer, the two-dimensional potential e
ergy with the interaction term can be defined as

Ua~q1 ,q2!5
2Ũa~q1 ,q2!

v2
5~q11a!2u~2q1!

1@2~b22a2!1~q12b!2#u~q1!

1~q22a!2u~q2!1@2~b22a2!

1~q21b!2#u~2q2!2
ã*

2
~q12q2!2, ~4!

FIG. 1. Asymmetric potential energy surface~3! for parallel
tunneling:a52, b52.5, a* 50.0001.A andB indicate the initial
and final states of the particles, respectively. The minimum of
potential atB is lower than that atA. The other two~intermediate!
minima are lower than those atA and higher than atB.
15542
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where ã* 52ã/v2 is a dimensionless parameter,ã* ,1.
The potential~4! is depicted in Fig. 2. The main differenc
between the potential energy surfaces~3! and ~4! is in the
initial location of the second particle,6a.

The potential energy~3! can be referred to as ‘‘parallel’
while the potential energy~4! as ‘‘antiparallel.’’ We also de-
fine a ‘‘symmetric’’ potential energy as a particular case
the potential~4! under the conditiona5b, i.e.,

Us~q1 ,q2!5
2Ũs~q1 ,q2!

v2
5~q11a!2u~2q1!

1~q12a!2u~q1!1~q22a!2u~q2!

1~q21a!2u~2q2!2
ã**

2
~q12q2!2, ~5!

e

FIG. 2. Asymmetric potential energy surface~4! for antiparallel

tunneling: ~a! a52, b52.3, ã* 50.1 ~top panel!; ~b! a52, b

52.3, ã* 50.5 ~bottom panel!. A and B indicate initial and final
states of the particles. The minimum of the potential atB is lower
than that atA. The other two~intermediate! minima are higher than
those atA andB.
6-2
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where the constantã** ,1. The potential energy~5! is pre-
sented in Fig. 3.

As shown in Refs. 28, 29, and 33, such model poten
energy surfaces describe well the dynamics in porphyrin

In many practical cases, the effect of a bath on the part
tunneling should be also included. In the next section
consider two particles embedded in a harmonic medium
linearly interacting with the bath modes.

III. TWO-PARTICLE TRANSITION PROBABILITY

We assume that two particles independently interact w
a harmonic bath. Such an interaction is considered in a
linear approximation. The dynamics of the environment
described by the oscillator Hamiltonian~we use\51, kB
51 units with the oscillator masses equal to 1!

Hph5
1

2 (
i

~Pi
21v i

2Qi
2!. ~6!

FIG. 3. Symmetric potential energy surface~5!: ~a! a52, b

52, ã** 50.1 ~top panel!; ~b! a52, b52, ã** 50.5 ~bottom
panel!. A and B denote the initial and final states of the particle
The minimum of the potential energy atB is equal to that atA. The
other two~intermediate! minima are higher than those atA andB.
15542
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Each of the tunneling particles~electrons or effective
charges! interacts with the oscillator bath in the followin
way:

Vp-ph
(1) ~q1 ,Qi !5q1(

i
CiQi , Vp-ph

(2) ~q2 ,Qi !5q2(
i

CiQi .

~7!

As in Ref. 28, we are interested in the transition probabi
per unit time or, more precisely, only in its exponential p
which can be written in the Langer’s form

G52T
Im Z

ReZ
. ~8!

In such a consideration, metastable levels can be present

G522 ImE, E5E02 iG/2. ~9!

It should be emphasized that Eq.~8! is valid only for tem-
peratures below the crossover temperature while for hig
temperatures a different prefactor is required.23

Equation ~8! is obtained by generalizing the expressi
~9! to nonzero temperatures:2–17

G5

2( e2E0i /TIm Ei

e2E0i /T
5

2T Im ( e2Ei /T

Re( e2Ei /T

5
2T Im Z

ReZ
.

~10!

Here i labels the energy levels in the metastable state,Z is
the partition function of the system, andT is the temperature

To calculateG, it is convenient to presentZ in the form of
a path integral2–17

Z5)
i
E Dq1Dq2DQiexp@2S$q1 ,q2 ,Qi%#. ~11!

Here S denotes an underbarrier action for the total syste
The imaginary part ImZ is due to the decay of the energ
states in the initial well. The validity of this approximatio
requires dissipation to be strong enough so that only an
coherent decay occurs.23 The imaginary part in the partition
function with a double-well potential energy can be also e
plained due to the strong dissipation to the bath. Indeed,
particles do not come back to their initial state. Coher
oscillations can happen only if the interaction with bosons
weak enough8 or the bath is in nonequilibrium state.35,37

The integral ~11! can be performed over phono
coordinates,28 resulting in

S$q1 ,q2%5E
2b/2

b/2

dtF1

2
q̇1

21
1

2
q̇2

21V~q1 ,q2!

1E
2b/2

b/2

dt8D~t2t8!@q1~t!1q2~t!#

3@q1~t8!1q2~t8!#G , ~12!

where

.

6-3
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D~t!5
1

b (
n52`

`

D~nn!einnt, ~13!

b5\/(kBT) is an inverse temperature~below we assume
that \51 andkB51), nn52pn/b is the Matsubara’s fre-
quency, and

D~nn!52(
i

Ci
2

v i
21nn

2
. ~14!

A trajectory that minimizes the Euclidean actionScan be
found from the equations of motion. In particular, we emba
on the antiparallel tunneling

2q̈11V0
2q11ã1q21E

2b/2

b/2

dt8K~t2t8!@q1~t8!1q2~t8!#

1v2au~2q1!2v2bu~q1!50, ~15!

2q̈21V0
2q21ã1q21E

2b/2

b/2

dt8K~t2t8!@q1~t8!1q2~t8!#

2v2au~q2!1v2bu~2q2!50. ~16!

In Eqs.~15! and ~16! the kernelK is defined by

K~t!5
1

b (
n52`

`

jneinnt. ~17!

Herejn is the Green’s function defined by Eq.~14! without
the zero-frequency term,

D~nn!52(
i

Ci
2

v i
2

1jn . ~18!

Thus, we seek solutions of Eqs.~15! and ~16! by expanding
the trajectoriesq1(t) andq2(t) into Fourier series,

q15
1

b (
n52`

`

qn
(1)einnt, q25

1

b (
n52`

`

qn
(2)einnt. ~19!

Introducing the renormalized frequency and interaction c
stant

V0
25v22(

i

Ci
2

v i
2

2ã, ã15ã2(
i

Ci
2

v i
2

, ~20!

respectively, and substituting Eqs.~19! into Eqs. ~15! and
~16!, we obtain that, forn50,

q0
(1)1q0

(2)5
2v2~a1b!«

V0
21ã1

,

q0
(1)2q0

(2)52
2v2ab

V0
22ã1

1
4v2~a1b!t0

V0
22ã1

, ~21!

and, forn5” 0,
15542
k

-

qn
(1)1qn

(2)5
2v2~a1b!~sinnnt12sinnnt2!

nn~nn
21V0

21ã112jn!
,

qn
(1)2qn

(2)5
2v2~a1b!~sinnnt11sinnnt2!

nn~nn
21V0

22ã1!
. ~22!

Here we have introduced the following notation:

«5t12t2 , t05~t11t2!/2. ~23!

The time instantst1 andt2, at which the particles pass th
top points of the barrier, are determined from the followi
equations:

q1~t1!50, q2~t2!50. ~24!

Equations~24! allow us to change the argument of theu
function. Namely, instead of theq1 andq2 dependences, we
can use a time-dependentu function. This reduces Eqs.~15!
and ~16! to a linear form.

Finally, substituting the trajectory determined from Eq
~19!, ~21!, and~22! into Eq. ~12!, we arrive at the following
expression for the instanton action:

S5
4v4a~a1b!t0

V0
22ã1

2
v4~a1b!2«2

b~V0
21ã1!

2
4v4~a1b!2t0

2

b~V0
22ã1!

2
8v4~a1b!2

b (
n51

` F sin2nnt0cos2~nn«/2!

~nn
21V0

22ã1!nn
2

1
cos2nnt0sin2~nn«/2!

~nn
21V0

21ã112jn!nn
2G . ~25!

IV. PARALLEL PARTICLE TUNNELING

For the case of parallel particle tunneling, the Euclide
actionScan be determined similarly to antiparallel tunnelin
@see Eqs.~15! and ~16!#. The trajectory minimizing the Eu-
clidean action~instanton! can be determined from the equ
tions of motion. As in the previous section, we seek solutio
of these equations in the form of the Fourier expansion~19!.
The time instantst1 andt2 are determined by Eqs.~24!.

In the case of parallel tunneling particles@the potential
energy~3!#, the resulting Euclidean action is given as fo
lows:

S52a~a1b!~t11t2!v22
1

b
v2~a1b!2~t11t2!2

2
v4~a1b!2~t12t2!2

~v222a!b

2
2v4~a1b!2

b (
n51

` F ~sinnnt11sinnnt2!2

nn
2~nn

21v21jn!

1
~sinnnt12sinnnt2!2

nn
2~nn

21v222a!
G , ~26!

wherejn is defined by Eq.~18!.
Below, we use the following notation:
6-4
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«5«* v5~t12t2!v,

t52t* v5~t11t2!v,

b* 5bv/2,

a* 52a/v2,

b* 5b/a,
15542
and assume that

b>a.

In the absence of interaction with an oscillator bath, i.
at jn50, the action~26! as a function of the parameters«
andt yields
S5
~a1b!2v

2 H 4at

a1b
2

t

a1b S 11
1

12a*
D 1

~t2u«u!a*

12a*
1cothb* 2sinh21b* @cosh~b* 2t!cosh«

1cosh~b* 2t!2cosh~b* 2u«u!#2~12a* !23/2
„2coth~bA12a* !

1sinh21~bA12a* !$cosh@~b* 2t!A12a* #@cosh~«A12a* !21#1cosh@~b* 2u«u!A12a* #%…J . ~27!

As soon as the trajectory is found, Eqs.~24! can be presented in the following form:

sinh«@cosht cothb* 2sinht2cothb* #1
1

12a*
sinh~«A12a* !@cosh~tA12a* !coth~b* A12a* !2sinh~tA12a* !

1coth~b* A12a* !#50, 32
4

11b*
2

1

12a*
1cosh«@sinht cothb* 2cosht21#1sinht cothb* 2cosht

1
1

12a*
cosh~«A12a* !@sinh~tA12a* !coth~b* A12a* !2cosh~tA12a* !11#

2
1

12a*
@sinh~tA12a* !coth~b* A12a* !2cosh~tA12a* !#50. ~28!

Simple analytic solutions of Eqs.~28! are obtained in the particular case when

«5~t12t2!v50, ;b, a,v2/2,

t15t25
t

2v
5

1

2v
arcoshF12b*

11b*
sinh

bv

2 G1
b

4
. ~29!

However, a complete analysis requires numerical studies.
At sufficiently low temperatures,vb@1, for 1,b/a,3, and

b2a

2~b1a!
<

2a

v2
,ac* [

2~b2a!

3b2a
,

we finally obtain, with exponential accuracy,

e2tA12a* .F32
4

11b*
2

1

12a*
G ~12a* !1/(12A12a* )H 11~12a* !1/(12A12a* )

3F2 1

12a*
1S 32

4

11b*
2

1

12a*
D Y ~12A12a* !G J 21

, e2«.F32
4

11b*
2

1

12a*
GetA12a* 1

1

12a*
.

~30!
6-5
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The solution~30! is valid at

b.bc[
tA12a*

v
. ~31!

We point out that an approximate solution can be found
large values of the parameterb* ~and smalla* ). However,
below we focus on the more important solution~30!. The
analysis indicates that there are no perturbative solution
Eqs.~28! at low temperatures and small«.

For «50 @see Eq.~29!#, the action~27! results in

S«505v~b22a2!arcoshFb* 21

b* 11
sinh

vb

2 G
2

1

2
v2~b22a2!b1v~b1a!2

3Fcosh
vb

2 S 11
~b* 21!2

~b* 11!2
sinh2

vb

2 D 1/2G
3sinh21

vb

2
. ~32!

The action~32! coincides~up to a factor of 2! with that of
calculated in Ref. 27. Thus, we have calculated the tw
particle Euclidean action for the case of synchronous para
motion of the two interacting particles.

FIG. 4. Trajectories~a single path is characterized by«50 and
a split path is characterized by«5” 0) for two parallel moving par-
ticles, at vb@1. ~1!–~4! label the projections of the minima o
potential energy~3!.

FIG. 5. Instanton action as a function of the interaction para
eter a* 52a/v2 of the two parallel moving particles, atvb@1;
Sp5S/(va2). ~1! is the single trajectory;~2! is the split trajectory.
15542
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In the symmetric case (b* 51), the action~32! reduces to

S«50
a5b

54v2tanh
vb

4
. ~33!

At b* .1, the character of the temperature dependenc
almost the same.

At «5” 0, the corresponding actionS can be obtained by
substituting Eq.~30! into Eq. ~27! ~for brevity, this cumber-
some expression is omitted!. A simple analysis shows tha
S«5” 0,S«50. Moreover, it appears that the differenceDS
5S«5” 02S«50 has a maximum atvb@1.

The tunneling paths~19! are presented by the solution
~29! and ~30!. At the critical pointb5bc , defined by Eq.
~31!, a relatively abrupt change in the dynamics results i
splitting of the single trajectory («50) into two («5” 0), as
shown in Fig. 4.

At b.bc , i.e., for temperatures below the critical tem
perature,T,Tc , only a split trajectory («5” 0) occurs since
S«5” 0,S«50 ~see Fig. 5!.

When b,bc , i.e., atT.Tc , anda.ac @see Eq.~30!#,
the solution is determined by a single trajectory. We ha
also found that the single-trajectory solution holds in t
whole temperature range for a symmetric potential ene
(b* 51).

-

FIG. 6. Numerical solutions of transcendental equations~28!.
In addition to the studied solutiont15t2, with larger b there
are additional solutions,t15” t2, shown in panels~b! and~c!. Panel
~b! reveals asingle additional solution corresponding to the lowe
value of the Euclidean action. Panel~c! shows two different
additional solutions with the one corresponding to the lower va
of the action.
6-6
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The above consideration is based on the analytic solut
~29! for t1,2 near the critical point. A complete analysis
Eq. ~28! requires more detail.

The numerical study of the set of transcendental equat
~28! reveals remarkable features of two-dimensional tunn
ing. The value of the critical parameterac decreases with
temperature as shown in Figs. 6, 7, and 8. The tempera
dependence ofac indicates to the existence of a finite low
temperature limit. It becomes clear that the weaker the in
action between the tunneling particle, the lower temperatu
required for the synchronous tunneling. Since the async
nous tunneling is valid only forT,Tc @see Eq.~31!#, the
dependence ofbc on the interaction parameter reveals th
the minimum occurs ata* 50.2. The nonmonotonic behav
ior of bc as a function ofa* can be explained by thea*
dependence oft as well.

Additionally, the curve in Fig. 8 exhibits an anomalo
behavior ~an increasing part of the curve! that can be ex-
plained in the following way: a two-dimensional potenti
energy for parallel tunneling is evidently deformed by
increase of the interaction constant. Indeed, the minima
the potential surface become lower and the distance betw
them is larger. Small deformations in the potential ene
surface change the contribution produced by the tempera
increase towards a synchronous character of the tunne
However, for sufficiently large deformations of the potenti
the situation is a quite opposite. The significant deformati
are in favor of synchronous transfer. Thus, an increase in
interaction constant provides a similar effect when tempe
ture increases. Such a behavior takes place up to a ce
value of the interaction constant, beyond which the poten
energy surface becomes strongly perturbed. Thus, Figs. 7
8 are complimentary to each other. Consequently, Fig. 8
be viewed as a bifurcation diagram. Indeed, the region be

FIG. 7. Parameterac as a function of inverse temperature, at
fixed value of the frequencyv and asymmetry parameterb* .
15542
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the curve corresponds to the synchronous tunneling, w
the region above the curve corresponds to the asynchro
one.

Figure 6 demonstrates how the critical parameterbc
changes from synchronous to asynchronous values with t
perature. Figures 6~b! and 6~c! reveal the existence of add
tional points, referred to as bifurcation points, correspond
to the change of tunneling regimes. For the two bifurcat
points shown in Fig. 6~c!, only one is physical because
corresponds to the lower value of the action~the second
point is metastable!. However, for sufficiently small differ-
ences between the values of the action at these bifurca
points, both close points contribute, thus leading to corr
sponding ‘‘fluctuations’’ in the system during the change
the regimes. For lower temperatures, such fluctuations
come negligible because two bifurcation points contrib
differently. Thus, a stable character of the asynchronous
nel transfer is achieved due to a much lower value of
action at one of the bifurcation points.

For the chemical reactions mentioned in Introductio
the effect of the change in the tunneling regimes revea
cleavagein the experimental temperature dependence of
tunneling constant. The fine details of this instability ha
not been studied yet. Nevertheless, the very existence o
instability at the edge of the bifurcation can be explained
the result of specific fluctuations. A numerical analys
of the bifurcations in antiparallel tunneling is given in th
next section.

V. TWO-DIMENSIONAL ANTIPARALLEL TUNNELING

For antiparallel tunneling of two particles@see the poten-
tial energy ~4!#, the instanton action as a function of th
parameters« andt is determined by Eq.~25!. Forjn50, we
obtain

FIG. 8. Parameterbc is presented as a function of the intera
tion parameter of the two tunneling particles.
S52
vt~b22a2!

12ã*
2

v~a1b!2

2 H u«uS 12
1

12ã*
D 1

sinh~ u«uA12ã* !

~12ã* !3/2
2sinhu«u1

cosh~«A12ã* !11

~12ã* !3/2

3@sinh~b*A12ã* !#21@cosh~~b* 2t!A12ã* !2cosh~b*A12ã* !#1
cosh«21

sinhb*
@cosh~b* 2t!1coshb* #J . ~34!

The parameters« andt are found from the following set of equations@see Eq.~24!#:
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2sinh«@cothb* 1cosht cothb* 2sinht#1
1

12ã*
sinh~«A12ã* !@coth~b*A12ã* !2cosh~tA12ã* !coth~b*A12ã* !

1sinh~tA12ã* !#50, 212
4

~11b* !~12ã* !
1

1

12ã*
1~cosh«21!~sinht cothb* 2cosht!1cosh«

1
1

12ã*
$@cosh~«A12ã* !11#@sinh~tA12ã* !coth~b*A12ã* !2cosh~tA12ã* !#2cosh~«A12ã* !%50. ~35!
a

el

/4

fo

n

s

on-
ny

ns-

el-
e
g

ac-
Simple analytic solutions of Eqs.~35! can be obtained in the
following form:

«5~t12t2!v50, ;b, ã,v2/2,

t15t25
t

2v

5
1

2vA12ã*
arcoshF12b*

11b*
sinhS bv

2
A12ã* D G1

b

4
.

~36!

Similarly to the case of parallel tunneling, we obtain th
at low temperatures,vb@1, with exponential accuracy,

e2tA12ã* .
A~12ã* !1/g

12~12ã* !1/g@A/g2~12ã* !21#
,

e«.AetA12ã* 2
1

12ã*
. ~37!

Here

A5212
4

~11b* !~12ã* !
1

3

12ã*
, g512A12ã* ,

while ã* , b* , «, and t are determined as for the parall
transfer.

The solution~37! is valid at ãc1* ,ã* ,ãc2* , where the

lower and upper boundsãc1* and ãc2* are derived from a
cumbersome transcendental equation~for brevity it is not
presented here!. Particularly, in the symmetric caseb* 51,
we obtain the condition in a simple analytic form 1
,2ã/v2,1.

Furthermore, an approximate solution can be found
large values of the parameterb* 5b/a ~and small ã* ).
However, we restrict our analysis to the more importa
physical solution~37!.

Theb-dependent solution~37! is valid for b.b̃c , where
15542
t

r

t

b̃c[2
1

vA12ã*
ln

A~12ã* !1/g

12~12ã* !1/gS A

g
2

1

12ã*
D .

~38!

At vb@1, the solutions of Eqs.~35! can be found per-
turbatively~for small«) with given values of the parameter
(b2a)/(b1a) and ã* . At «50 @the solution~36!#, the ac-
tion ~34! yields

S5
v~b22a2!

~12ã* !3/2
arcoshFb2a

b1a
sinh

vbA12ã*

2
G

2
v2b~b22a2!

2~12ã2!
1

v~b1a!2

~12ã* !3/2F coth
vbA12ã*

2

2S sinh22
vbA12ã*

2
1

~b2a!2

~b1a!2D 1/2G . ~39!

For the symmetric potential (a5b) and«50, we obtain
that ~see Fig. 7!

S5
4va2

~12ã* !3/2
tanh

vbA12ã*

4
. ~40!

We do not present here a cumbersome expression forS«5” 0
which one can obtain by substituting the solutionst and «
into Eq. ~34!. A simple analysis reveals thatS«5” 0.S«50 for
b.b̃c and for relevantã* . Similarly to parallel transfer, the
tunnel paths can be found from Eqs.~36! and ~37!. These
trajectories on the (q1 ,q2) plane are shown in Fig. 9.

As for parallel tunneling and atb.b̃c , the pair tunneling
changes from a single- to a double-trajectory regime. In c
trast to the parallel tunneling, such a splitting occurs at a
values of the parameters of the potential. Atb.b̃c , we have
S«5” 0.S«50 and, therefore,S«50 determines the tunneling
rate. At b,b̃c , the two degenerated trajectories are tra
formed into a single trajectory,q152q2, corresponding to
synchronous antiparallel transfer.

For single-particle tunneling, there is only a single tunn
ing path~instanton! minimizing the action. Hence, there ar
two different types of trajectories for the pair of interactin
particles. Namely, the main contribution to the instanton
6-8
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tion is determined by either the single- or doub
degenerated path depending on the value ofb. We also point
out that in the case of parallel tunneling, the particles do
simultaneously pass the top points of the barrier,t15” t2, for
b.bc. This means that the tunneling transfer is asynch
nous.

At small values of the interaction parametera* @see Eq.
~30!# and at temperatures such thatb,bc @see Eq.~31!#,
there is no splitting of a single path (q15q2). Therefore, the
particles pass the top of the barriers at the same inst
(t15t2). Consequently, the transfer of the particles is s
chronous. The temperature dependence for the antipar
transfer action is plotted in Fig. 10 at variousã* .

The type of the interaction given by Eqs.~2!–~5! is such
that it does not affect the motion along the ‘‘center-of-mas
coordinate,q15q2. For this reason, the Euclidean action
independent of the interaction parameter as for parallel tra
fer. Since the state of the interacting system characterize
a maximal value of the relative coordinate,q152q2, is
preferable~as it provides the lower action!, it becomes clear
that the instanton action decreases with the interaction
rameter in the parallel transfer along the degenerated tu
trajectories and increases with the interaction parameter
the antiparallel tunneling.

For antiparallel tunneling, synchronous transfer (t15t2)
takes place, while asynchronous transfer is forbidden du
the greater contribution to the Euclidean action~see Fig. 10!.

The validity condition for weakly interacting instanton
anti-instanton pairs, in the adiabatic approximation, was
cussed in Ref. 27.

The numerical analysis of the transcendental equa
~35! reveals interesting features for a transition region
tween the tunneling regimes, i.e., a fine structure near
first bifurcation point for the antiparallel transfer. The n
merical results are presented in Fig. 11. We found that
addition to the first bifurcation point characterized by the t
solutions @Fig. 11~a!#, there exist additional bifurcation
points at lower temperatures, i.e., the 4 pairs@Fig. 11~b!#, the

FIG. 9. Trajectories~the basic path characterized by«50 and
the split one characterized by«5” 0) at vb@1 of two antiparallel
tunneling particles.~1!–~4! denote the projections of the minima o
the potential energy surfaceUa(q1 ,q2) defined by Eq.~4!.
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6 pairs@Fig. 11~c!#, and there are even 12 pairs of addition
solutions atb* 519.2009 (a* 50.05), etc. We refer to this
phenomenon as a multiplication of bifurcations or acascade
of bifurcations. Such an effect resembles a scenario of tra
sition to chaos.

Although the synchronous regime is preferred due to
minimal instanton action, in a certain temperature range
value is comparable with those of corresponding to the c
cade solutions. As a result,quantum fluctuationsof a non-
regular character occur in contrast to parallel transfer. A
parallel tunneling is, thus, characterized by the instability
the transition due to the synchronous to asynchronous be
ior. Such instabilities are similar to a continuous secon
order phase transition, while parallel tunneling is viewed a
step process similar to the phase transition of first order~see
Fig. 6!. The dependences shown in Figs. 7 and 8,bc(a) and
ac(b), for antiparallel transfer are found to be of the sam
character as those of parallel transfer.

In summary, our investigation reveals a quite complica
fine structure of the transition for parallel and antiparal
tunneling of two particles with different degenerate trajec
ries leading to the bifurcation cascade.

VI. EFFECT OF A PROMOTING MODE

In this section, we study the effect of a heat bath on
tunneling transition of two interacting particles. In many tu
neling reactions, the interaction with a vibrational subsyst
can often be approximated by the interaction with a sin
vibrational mode~a so-called promoting mode!. As follows
from Eq. ~12!, a heat bath affects only the dynamics of t
center of mass (q15q2). Therefore, in the case of antipara
lel motion, the medium does not affect the rate consta
while for parallel tunneling it essentially contributes to th
transfer rate. For both parallel and antiparallel transfer,
bilinear interaction of particles with a single oscillator ca
make a qualitative change in the character of tunneling.

At small values of the interaction parameter between
two tunneling particles dissipative effects becom
important.27 In two dimensions the dissipative effects a
more pronounced for parallel rather than antiparallel tunn
ing. The latter increases with temperature with a consid
able contribution to the prefactor. In the present work, we

FIG. 10. Instanton action for antiparallel tunneling («50, a
5b) as a function of an inverse temperature at the two differ
values of the interaction parameter:Sa5S/(4va2), w5vb/4. ~1!

ã* 50.5, ~2! ã* 50.1, and~3! a dashed line corresponds to th
action ~33! for the parallel transition («50, a5b).
6-9
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FIG. 11. Numerical solutions
of the transcendental equatio
~35!. In addition to the studied so
lution t15t2, with respect tob,
there are the additional solutions
t15” t2, shown in panels~a!, ~b!,
and ~c!, which correspond to one
four, and six~pairs! additional so-
lutions, respectively.
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interested in the tunneling rate assuming only exponen
evolution of the transition probability. However, nonexp
nential evolution can occur in an nonequilibriu
environment.35–38Such a case is not discussed here. Acco
ingly, a reservoir is assumed to be in thermodynamic eq
librium; i.e., the tunneling transition is rather slow compar
to the thermodynamic relaxation. Thus, we assume that
sipation affects the value of instanton action only.

For the case of antiparallel tunnel transfer, the act
15542
al
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~25! can be calculated with the following vibronic Green
function:

D~nn!52
C2

nn
21vL

2
, ~41!

where vL is the frequency of the vibrational mode. Afte
some tedious calculations, one obtains the following expr
sion for the instanton action~25!:
S5
2v4~a22b2!t0

V0
2

2
2v4~a1b!2

b H 2
b sinh@V0~b/22t0!#sinh~V0t0!

2V0
3sinh~V0b/2!

1(
i 51

2 b~V i
22vL

2!cosh@V i~b/22t0!#cosh~V it0!

~21! i2V i
3~V1

22V2
2!sinh~V ib/2!

1
b«

4~v222C2/vL
2!

2
b«

4V0
2

1
b sinh~«V0!

4V0
3

1(
i 51

2 b~V i
22vL

2!sinh~«V i !

~21! i4V i
3~V1

22V2
2!

1
b cosh~«V0!

4V0
3sinh~bV0/2!

$cosh@V0~b/222t0!#

2cosh~V0b/2!%2(
i 51

2 b~V i
22vL

2!cosh~«V i !

~21! i4V i
3~V1

22V2
2!sinh~bV i /2!

$cosh@V i~b/222t0!#1cosh~V ib/2!%J . ~42!

Here, we have introduced the following notation:

V0
25v22a2, V1

25
1

2
@v21vL

21A~v22vL
2!218C2#,

V2
25

1

2
@v21vL

22A~v22vL
2!218C2#.

For the parallel tunneling transition, a corresponding action can be found in a similar way. The action~27! as a function of
the parameters«* 5t12t2 andt* 5(t11t2)/2, with vibronic frequencyvL and coupling constantC, yields~see also Ref. 27!
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S5~a1b!~3a2b!v2t* 2
v4~a1b!2«*

2~v222a!
2

4v2~a1b!2t* 2

b
2

4v4~a1b!2«* 2

~v222a!b

2
v2~a1b!2

2g̃
(
i 51

2
~21! i~v22x32 i !

Axi
XcothS bAxi

2 D 2sinh21S bAxi

2 D H coshF S b

2
22t* DAxi G2coshF S b

2
2«* DAxi G

1
1

2
coshF S b

2
22t* 2«* DAxi G1

1

2
coshF S b

2
22t* 1«* DAxi G J G1 v4~a1b!2

2~v222a!3/2X2cothS b

2
Av222a D

1sinh21S b

2
Av222a D H 2coshF S b

2
22t* DAv222a G1coshF S b

2
2«* DAv222aG1

1

2
coshF S b

2
22t* 2«* DAv222a G

1
1

2
coshF S b

2
22t* 1«* DAv222aG J C. ~43!
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Here we have denoted

x1,25
1

2 S v21vL
21

C2

vL
2D 7

1

2
g̃,

g̃5AS v21vL
21

C2

vL
2D 2

24v2vL
2.

For particular values of the interaction constanta and in the
absence of an interaction with the oscillator bath, the criti
temperatureTc ~at which the synchronous and asynchrono
tunnel regimes interchange! is found from Eqs.~31! and
~38!. These equations can be generalized to a nonzero i
action with the promoting mode. Typically, the critical tem
perature is found to be in the range from 10 to 400 K.
glasses,Tc can be very small while for chemical reactions
can be rather large. Additionally,Tc depends on the mea
distance between the particles and, therefore, on their
centration.

Quantum tunneling is important28 when kBTc /(\v)<1.
Therefore, the symmetry breaking effects can take plac
relatively high temperatures depending on the ‘‘frequenc
of a barrier. For example, for porphyrins the critical tempe
ture Tc is estimated to be about 200 K.

VII. CONCLUSIONS

In the single-instanton approximation, we have calcula
the Euclidean action~12! for the models characterized b
the different adiabatic potential energy surfaces,~3!, ~4!,
and ~5!, and made a detailed comparative analysis of
tunneling rate for two interacting particles moving in paral
or antiparallel within a dissipative environment. We ha
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also assumed exponential evolution of the transit
probability.27,35–38

We have shown that the change in a tunneling regi
from synchronous to asynchronous transfer for a para
transition occurs as a step process, similar to a phase tra
tion of first order, while for antiparallel transfer it resembl
a second-order phase transition.

We have explained the effect of acleavagein the experi-
mentally observed24–26,33temperature dependence of the r
action rate for two tunneling particles. It has been shown t
the effect of symmetry breaking is stable for parallel a
unstable for antiparallel transfer, as is observed experim
tally for some porphyrin systems.24–26,33 We have found a
complicated fine structure in the bifurcation region due
quantum fluctuationsfor parallel two-dimensional tunneling
For antiparallel tunneling, the contribution of 4, 6, 12, et
pairs of trajectory becomes important, resembling the tra
tion to chaos.

Additionally, we have studied the interaction of two pa
ticles with phonons. Such coupling essentially modifies
antiparallel and parallel transitions in different ways. As fo
lows from Eq.~12!, the interaction with the reservoir doe
not change the dynamics of the center of mass for the a
parallel motion, while it makes a significant contribution
the transfer rate for the parallel transfer. Finally, Eq.~31!
determines the validity condition for temperatures beyo
which stable two-dimensional synchronous tunneling cor
lations of all kinds occur.
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