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Noncontact friction between nanostructures
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We calculate the van der Waals friction between two semi-infinite solids in normal relative motion and find
a drastic difference in comparison with the parallel relative motion. The case of good conductors is investigated
in detail both within the local optic approximation and using a nonlocal optic dielectric approach. We show that
the friction may increase by many orders of magnitude when the surfaces are covered by adsorbates, or can
support low-frequency surface plasmons. In this case the friction is determined by resonant photon tunneling
between adsorbate vibrational modes, or surface plasmon modes. The theory is compared to atomic force
microscope experimental data.
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I. INTRODUCTION

A great deal of attention has been devoted to noncon
friction between nanostructures, including, for example,
frictional drag force between two-dimensional quantu
wells,1–4 and the friction force between an atomic force m
croscope tip and a substrate.5–9

In noncontact friction the bodies are separated by a po
tial barrier thick enough to prevent electrons or other p
ticles with a finite rest mass from tunneling across it, b
allowing interaction via the long-range electromagnetic fie
which is always present in the gap between bodies. The p
ence of inhomogeneous tip-sample electric field is difficult
avoid, even under the best experimental conditions.7 For ex-
ample, even if both the tip and sample were metallic sin
crystals, the tip would still have corners present and m
than one crystallographic plane exposed. The presenc
atomic steps, adsorbates, and other defects will also con
ute to the inhomogeneous electric field. The electric field
be easily changed by applying a voltage between the tip
the sample.

The electromagnetic field can also be created by the fl
tuating current density, due to thermal and quantum fluct
tions inside the solids. This fluctuating electromagnetic fi
is always present close to the surface of any body, and c
sists partly of traveling waves and partly of evanesc
waves which decay exponentially with the distance aw
from the surface of the body. The fluctuating electromagn
field originating from the fluctuating current density insid
the bodies gives rise to the well-known long-range attrac
van der Waals interaction between two bodies.10 If the bodies
are in relative motion, the same fluctuating electromagn
field will give rise to a friction which is frequently named th
van der Waals friction. Van der Waals friction can be cons
ered to be mediated by photon exchange between the bo
One body emit a photon, and the other absorbs it, thus tr
ferring momentum between the bodies, resulting in a frict
force. At large distances between the bodies, the main c
tribution to the friction comes from photon exchange, cor
sponding to the propagating electromagnetic waves. H
ever, this contribution is very small because the phot
corresponding to propagating waves carry a very small m
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mentum, no larger thankBT/c. The photons, correspondin
to the evanescent electromagnetic waves, carry the mom
tum ,\d21. Thus for distancesd between two bodies
smaller than the characteristic distancedT5\c/kBT, which
depends on temperature~at room temperaturedT;105 Å),
the main contribution to the friction comes from the evan
cent electromagnetic field. In analogy with electron tunn
ing, this mechanism of momentum transfer can be con
ered to be associated with the photon tunneling.

Although the dissipation of energy connected with t
noncontact friction is always of electromagnetic origin, t
detailed mechanism is not totally clear, since there are s
eral different mechanisms of energy dissipation connec
with the electromagnetic interaction between bodies. Fi
the electromagnetic field from one body will penetrate in
the other body, and induce an electric current. In this c
friction is due to ohmic losses inside the bodies. The fluc
ating electromagnetic field can also excite the vibrations
the adsorbates or other surface localized modes, e.g., su
plasmons and polaritons. In this case friction is due to ene
relaxation of the surface modes. Another contribution to fr
tion from the electromagnetic field is associated with t
time-dependent stress acting on the surface of the bod
This stress can excite acoustic waves, or induce tim
dependent deformations which may result in a tempera
gradient. It can also induce motion of defects either in
bulk, or on the surface of the bodies. The contribution
friction due to nonadiabatic heat flow, or motion of defec
is usually denoted as internal friction.

It is very worthwhile to get a better understanding of d
ferent mechanisms of noncontact friction because of it pr
tical importance for ultrasensitive force detection expe
ments. This is because the ability to detect small force
inextricably linked to friction via the fluctuation-dissipatio
theorem. For example, the detection of single spins by m
netic resonance force microscopy, which has been propo
for three-dimensional atomic imaging11 and quantum
computation,12 will require force fluctuations to be reduce
to unprecedented levels. In addition, the search for quan
gravitation effects at short length scale13 and future measure
ments of the dynamical Casimir forces14 may eventually be
limited by noncontact friction effects.
©2003 The American Physical Society20-1
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A. I. VOLOKITIN AND B. N. J. PERSSON PHYSICAL REVIEW B68, 155420 ~2003!
Recently Gotsmann and Fuchs6 observed long-range non
contact friction between an aluminum tip and a gold~111!
surface. The friction forceF acting on the tip is proportiona
to the velocityv, F5Gv. For motion of the tip normal to the
surface the friction coefficientG(d)5b•d23, whered is the
tip-sample spacing andb5(8.024.5

15.5)310235 N s m2.6 Later
Stipeet al.7 observed a noncontact friction effect between
gold surface and a gold-coated cantilever as a function of
tip-sample spacingd, the temperatureT, and the bias voltage
V. For vibration of the tip parallel to the surface they fou
G(d)5a(T)(V21V0

2)/dn, where n51.360.2 and V0

;0.2 V. At 295 K, for the spacingd5100 Å they foundG
51.5310213 kgs21, which is ;500 times smaller that re
ported in Ref. 6 at the same distance using a parallel ca
lever configuration.

In a recent paper, Dorofeevet al.5 claimed that the non-
contact friction effect observed in Refs. 5 and 6 is due
Ohmic losses mediated by the fluctuating electromagn
field. This result is controversial, however, since the van
Waals friction has been shown15–18 to be many orders o
magnitude smaller than the friction observed by Dorofe
et al.Presently, the origin of the difference in magnitude a
distance dependence of the long-range noncontact fric
effect observed in Refs. 6 and 7 is not well understood.

In order to improve the basic understanding of noncon
friction, we present results for the van der Waals friction.
Ref. 15 we developed a theory of van der Waals friction
surfaces in parallel relative motion. Here we generalize
theory also to include the case when the surfaces are in
mal relative motion, and we show that there is a drastic
ference between these two cases. Thus, for normal rela
motion of clean good conductor surfaces, the friction
many orders of magnitude larger than for parallel relat
motion, but still smaller than observed experimentally. A
other enhancement mechanism of the noncontact friction
be connected with resonant photon tunneling between s
localized on the different surfaces. Recently it was disc
ered that resonant photon tunneling between surface plas
modes give rise to an extraordinary enhancement of the
tical transmission through subwavelength hole arrays.19 The
same surface modes enhancement can be expected fo
der Waals friction if the frequency of these modes is su
ciently low to be excited by thermal radiation. At room tem
perature only modes with frequencies below;1013 s21 can
be excited. For normal metals surface plasmons have m
too high frequencies; at thermal frequencies the dielec
function of normal metals becomes nearly purely imagina
which exclude a surface plasmon enhancement of the van
Waals friction for good conductors. However, surface pl
mons for semiconductors are characterized by much sm
frequencies and damping constants, and they can give
important contribution to van der Waals friction. Other su
face modes which can be excited by thermal radiation
adsorbate vibrational modes. Especially for parallel vib
tions these modes may have very low frequencies.

All information about the long-range electromagnetic
teraction between two noncontacting bodies is, in princip
contained in the reflection factors of the electromagne
field. At the present time very little is known about the r
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flection factors for large wave vectors and for extreme
small frequencies. In our previous calculations of the van
Waals friction15–18 we mostly considered good conductor
In this case it was shown that the important contributi
comes from the nonlocal optic effects in the surface regi
However, it was shown that the van der Waals friction b
comes much larger for a high resistivity material, for whi
the volume contribution from nonlocal effects is also impo
tant. Nonlocal optics refer to the fact that the current at po
r depends on the electric field not only at pointr , as it is
assumed within local optic approximation, but also at poi
r 8Þr in a finite region around the pointr . In the case when
both points are located outside the surface region the die
tric response function can be expressed through the diele
function appropriate for a semi-infinite electron gas. Ho
ever, if one of the pointr or r 8 is located in the surface
region, the dielectric response function will be different fro
its volume value, and this gives a surface contribution fro
nonlocality. It is easy to see that within the local optic a
proximation the van der Waals friction diverge when the co
ductivity of materials tend to zero. This means that the lo
optic approximation breaks down for high-resistivity mate
als. This situation is completely different from the heat tran
fer between bodies via photon tunneling,17 where the heat
flux is maximal at conductivities corresponding to semim
als. In order to clarify the situation we study the depende
of the van der Waals friction on the dielectric properties
the materials within the nonlocal dielectric approach, wh
was proposed some years ago for an investigation of
anomalous skin effects.20

II. CALCULATION OF THE FLUCTUATING
ELECTROMAGNETIC FIELD

We consider two semi-infinite metals1 and2 having par-
allel flat surfaces. We introduce a coordinate system with
xy plane in the surface of body1, and thez axis along the
upward normal. The surface of body2 is located atz5d,
performing small amplitude vibrations along thez axes with
displacement coordinateuz(t)5u0e2 iv0t. Since the system
is translation invariant in thex5(x,y) plane, the electromag
netic field can be represented by the Fourier integrals

E~x,z!5E d2q

~2p!2 eiq•xE~q,z!, ~1!

B~x,z!5E d2q

~2p!2 eiq•xB~q,z!, ~2!

whereE andB are the electric and magnetic induction field
andq is the two-dimensional wave vector in the~x,y! plane.
After Fourier transformation it is convenient to choose t
coordinate axis in the~x,y! plane along the vectorsq andn
5@ ẑ3q#. The scattering of the electromagnetic wave w
the frequencyv on the vibrating surface of body2 will give
rise to the harmonics at the frequenciesv6v0 . Thus in the
vacuum gap between the bodies the electric fieldE(q,v,z)
can, to linear order in the displacement coordinate, be wri
in the form
0-2
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NONCONTACT FRICTION BETWEEN NANOSTRUCTURES PHYSICAL REVIEW B68, 155420 ~2003!
E~q,v,z!5@~w0eipz1v0e2 ipz!1~w1eip1z

1v1e2 ip1z!e2 iv0t#e2 ivt. ~3!

From Eq.~3! and the Maxwell equation

2
1

c

]B

]t
5“3E, ~4!

we get the magnetic induction fieldB(q,v,z),

B~q,v,z!5cF 1

v
~@k213v0#e2 ipz1@k13w0#eipz!

1
1

v1v0
~@k1

23v1#e2 ip1z

1@k1
13w1#eip1z!e2 iv0tGe2 ivt, ~5!

where k65q6 ẑp, p5((v/c)22q2)1/2, p15p(v1v0),
k1

15k1(v1v0), andk1
25k2(v1v0). In Eqs.~3! and~5!

w0 , v0 , etc. are unknown amplitudes which are to be fou
using appropriate boundary conditions~see below!. At the
surfaces of the bodies the amplitude of the outgoing elec
magnetic wave must be equal to the amplitude of the
flected wave plus the amplitude of the radiated wave. I
convenient to decompose the electromagnetic field intop-
and s-polarized electromagnetic waves. For thep-polarized
electromagnetic waves the electric field is in the incid
plane determined by the vectorsq and n, and for the
s-polarized electromagnetic waves the electric field is norm
to the incident plane. Thus the boundary conditions for
electromagnetic field atz50 can be written in the forms

w0z~y!5R1p~s!~v!v0z~y!1E1z~y!
f ~v!, ~6!

w1z~y!5R1p~s!~v1v0!v1z~y! , ~7!

whereR1p(s)(v) is the reflection amplitude for surface1 for
the p(s)-polarized electromagnetic field, and whe
E1z(y)

f (v) are the components of the fluctuating electric fie
outside surface1 in the absence of body2. The boundary
condition at the surface of body2 must be written in the
reference frame where body2 is at rest. The electric field in
this reference frame is determined by a Lorentz transfor
tion. Performing a Lorentz transformation to linear order
v0 gives

E85E2
iv0u~ t !@ êz3B#

c
. ~8!
15542
d

o-
-

s

t

l
e

a-

For thep-polarized electromagnetic waves the second te
in Eq. ~8! is of the order of magnitudev0u0v/pc2 relative to
the first one and can be neglected for the most pract
cases. However, for thes-polarized electromagnetic wave
the second term is of the order of magnitudev0u0p/v, and
can be of the same order of magnitude as the first term. In
rest frame of body2 there is also a mixture ofs- and
p-polarized electromagnetic waves. In Ref. 15 it was sho
that this gives a contribution of the order (v0u0 /c)2, and
thus can be neglected. After performing Lorentz transform
tion to linear order inv0 and u0 we get v085v0 and w08
5w0 :

v1z~x!8 5v1z~x!2 ipu0v0z~x! , w1z~x!8 5w1z~x!1 ipu0w0z~x! ,

w1y8 5w1y1
v1v0

v
ipu0w0y , v1y8 5v1y2

v1v0

v
ipu0v0y.

The boundary conditions for the electromagnetic field az
5d1u(t) in the rest frame of body2 can be written in the
form

v0z~y!5e2ipdR2p~s!~v!w0z~y!1eipdE2z~y!
f ~v!, ~9!

v1z2 ipu0v0z5e2ip1dR2p~v1v0!~w1z1 ipu0w0z!,
~10!

v1y2 ipu0

~v1v0!v0y

v

5e2ipdR2s~v1v0!S v1y1 ipu0

~v1v0!w0y

v D
~11!

whereR2p(s)(v) is the reflection amplitude for surface2 for
a p- ~s-! polarized electromagnetic field, and whe
E2z(y)

f (v) are the components of the fluctuating electric fie
outside surface2 in the absence of body1. From Eqs.~6! and
~7! and ~9!–~11! we get

w0z~y!5
R1p~s!E2z~y!

f eipd1E1z~y!
f

D
, ~12!

v0z~y!5
e2ipdR2p~s!E1z~y!

f 1E2z~y!
f eipd

D
, ~13!
v1z5 ipu0

~e2ipdR2p
f 1e2ip1dR2p

1 !E1z
f 1~11e2ip1dR2p

1 R1!E2z
f eipd

DpDp
1 , ~14!

v1y5 ipu0

v1v0

v

~e2ipdR2s1e2ip1dR2s
1 !E1y

f 1~11e2ip1dR2s
1 R1s!E2y

f eipd

DsDs
1 , ~15!

w1z~y!5R1p~s!
1 v1z~y! , ~16!
0-3
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A. I. VOLOKITIN AND B. N. J. PERSSON PHYSICAL REVIEW B68, 155420 ~2003!
where Rp(s)
1 5Rp(s)(v1v0), Dp(s)512e2ipdR2p(s)R1p(s) ,

andDp(s)
1 5Dp(s)(v1v0). The other components of the fluc

tuating electromagnetic field can be found from the transv
sality conditions

qwx1pwz50, qvx2pvz50. ~17!

The fundamental characteristic of the fluctuating electrom
netic field is the correlation function, determining the av
age product of componentsEf(q,v). According to the gen-
eral theory of the fluctuating electromagnetic field~see, for
example, Ref. 17! these correlation functions are given by

^uEy
f ~q,v!u2&5

\v2

2c2upu2 S n~v!1
1

2D @~p1p* !~12uRsu2!

1~p2p* !~Rs* 2Rs!#, ~18!

^uEz
f~q,v!u2&5

\q2

2upu2 S n~v!1
1

2D @~p1p* !~12uRpu2!

1~p2p* !~Rp* 2Rp!#, ~19!

where ^¯& denotes a statistical average over the rand
field, and where the Bose-Einstein factor is

n~v!5
1

e\v/kBT21
.

We note thatp is real for q,v/c ~propagating waves!,
and purely imaginary forq.v/c ~evanescent waves!. Thus
for q,v/c and q.v/c the correlation functions are dete
mined by the first and second terms in Eqs.~18! and ~19!,
respectively.

III. CALCULATION OF THE FRICTION FORCE
BETWEEN TWO SEMI-INFINITE BODIES

IN NORMAL RELATIVE MOTION

The frictional stresss which act on the surfaces of th
two bodies can be obtained from thezz-component of the
Maxwell stress tensors i j , evaluated atz50:

szz5
1

4p E
0

`

dvE d2q

~2p!2 @^uEz~q,v,z!u2&1^uBz~q,v,z!u2&

2^uEx~q,v,z!u2&2^uEy~q,v,z!u2&2^uBx~q,v,z!u2&

2^uBy~q,v,z!u2&#z50 . ~20!

To linear order in the vibrational coordinateu(t) and the
frequencyv0 , the stress acting on the surface1 can be writ-
ten in the form

szz5s0zz~d!1u~ t !
]

]d
s0zz~d!1 iv0g'u~ t !. ~21!

Here the first term determines the conservative van der W
stress and the second term is the adiabatic change o
conservative van der Waals stress during vibration. The
term determines the frictional stress with friction coefficie
g' . For normal relative motion~see the Appendix! we ob-
15542
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rad1g'

evan, where the con-
tribution to the friction coefficient from the propagating ele
tromagnetic waves is given by

g'
rad5

\

4p2 E
0

`

dvS 2
]n

]v D E
0

v/c

dqqp2

3@~12uR1pR2pu2!21u~12uR1pu2!R2peipd

1~12uR2pu2!R1p* e2 ipdu2#
1

u12e2ipdR1pR2pu4

1@p→s#, ~22!

and where the contribution to the friction from the evane
cent electromagnetic waves is given by

g'
evan5

\2

p2 E
v/c

`

dvS 2
]n

]v D E
v/c

`

dqqk2e22kd

3@~ Im R1p1e22kduR1pu2 Im R2p!

3~ Im R2p1e22kduR2pu2 Im R1p!

1e22kd@ Im~R1pR2p!#2#
1

u12e22kdR1pR2pu4

1@p→s#, ~23!

where k5upu. The symbol@p→s# in Eqs. ~22! and ~23!
denotes the term which is obtained from the first one
replacement of the reflection amplitudeRp(v), for
p-polarized waves, by the reflection amplitudeRs(v) for
s-polarized waves. The friction coefficient for two flat su
faces in parallel relative motion was obtained by us befor15

and can be written asg i5g i
rad1g i

evan, where the contribu-
tion to the friction coefficient from the propagating electr
magnetic waves is given by

g i
rad5

\

8p2 E
0

`

dvS 2
]n

]v D E
0

v/c

dqq3

3
~12uR1pu2!~12uR2pu2!

u12e2ipdR1pR2pu2 1@p→s#, ~24!

and where the contribution to the friction from the evane
cent electromagnetic waves is given by

g i
rad5

\

2p2 E
0

`

dvS 2
]n

]v D E
v/c

`

dqq3e22kd

3Im R1p Im R2p

1

u12e22kdR1pR2pu2 1@p→s#.

~25!

There is a principal difference between the friction coe
cient for normal and parallel relative motion, related to t
denominator in the formulas for the friction coefficient. Th
resonant condition corresponds to the case when the den
nator of the integrand in Eqs.~22!–~25!, which is due to
multiple scattering of the evanescent electromagnetic wa
from the opposite surfaces, is small. For two identical s
faces andRi!1<Rr , whereRi and Rr are the imaginary
0-4
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NONCONTACT FRICTION BETWEEN NANOSTRUCTURES PHYSICAL REVIEW B68, 155420 ~2003!
and real part of the reflection amplitude (R5Rr1 iRi), this
corresponds to the resonant conditionRr

2 exp(22kd)'1. At
resonance the denominators in the integrands of Eqs.~22!–
~25! have the small factorsRi

4 andRi
2 for normal and parallel

relative motion, respectively, and the nominators have
same factorRi

2 in the both cases. Thus at resonance for n
mal relative motion the integrands in Eqs.~22! and~23! have
a large addition factor;1/Ri

2, in comparison to the case o
parallel relative motion. The resonance condition can be
filled even for the case when exp(22kd)!1 because for eva
nescent electromagnetic waves there is no restriction on
magnitude of the real part or the modulus ofR. This open up
the possibility of resonant denominators forRr

2@1.

IV. CASE OF THE GOOD CONDUCTORS

A well-conducting metal has a dielectric functione51
24p is/v ~s is the conductivity! with an absolute value
much larger than unity at thermal frequencies, and con
quentlyRpi!1 andRpr'1. Thus an enhancement in frictio
due to multiple scattering of the electromagnetic waves fr
the opposite surfaces is possible only for very smallq
!1/d. The entire subsequent calculation of the friction
this section is accurate to the leading order in the surf
impedancez5e21/25z82 i z9, uzu!1.

It is convenient to write the friction coefficient for the tw
flat surfaces in the form

g5\E
0

`

dvS 2
]n

]v D ~ I p1I s!. ~26!

Within the local optic approximation the reflection facto
for the s- and p-polarized electromagnetic waves are det
mined by the Fresnel formulas

Rp5
p2s/e

p1s/e
, Rs5

p2s

p1s
~27!

where

s5F S v

c D 2

e2q2G1/2

. ~28!

Taking into account thatqdq5kdk, from Eq. ~23! for nor-
mal relative motion of clean surfaces within the local op
approximation, we get the following contribution to the fri
tion from the evanescentp-and s-polarized electromagneti
waves:

I'p
evan5E

0

` dk

p2 k5@Re~s/e!#2@@~k21us/eu2!coshkd

12k@ Im~s/e!#sinhkd#21~k22us/eu2!2#

3
1

u~~s/e!22k2!sinhkd12ik~s/e!coshkdu4,

~29!
15542
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I's
evan5E

0

` dk

p2 k5@Res#2@@~k21usu2!coshkd

12k Im s sinhkd#21~k22usu2!2#

3
1

u~s22k2!sinhkd12iks coshkdu4
. ~30!

For I'p
evan, for (c/v)ueu23/2,d,(c/v)ueu1/2 anduzu!1 there

is a singularity in the integrand of the type21/k3 in the limit
k→0, and the main contribution to the integral comes fro
this singularity. Taking into account that sinhkd'kd and
coshkd'1 ask→0, to first order inz we get

I'p
evan52~v/c!2z8E

0

` dk

p2

k5

uk2d22i ~v/c!~z!u4

5
vz8

p2cd3 S p

2
1arctanz9/z82

z9/z8

11~z9/z8!2D . ~31!

As k→0, there is no singularity in the integrand ofI's
evan,

thus the main contribution to the integral comes fromk
;d21. For d,(c/v)ueu21/2, I s becomes slowly dependen
on d:

I's'E
0

` dk

p2 k@Ak41~v/c!4ueu22k2#e22kd

'
1

8p2 ~v/c!4ueu2~1.222 ln~2dueu1/2v/c!!, ~32!

while for d.(c/v)ueu21/2 we get

I's'~c/v!2z82d26. ~33!

For the propagating electromagnetic waves, taking into
count thatqdq52pdp, we get

I'p
rad5~v/c!2z82E

0

v/c dp

p2 p5
11cos2~pd!

up sinpd12i ~v/c!z cospdu4
,

~34!

I's
rad5~v/c!2z82E

0

v/c dp

p2 p5
11cos2~pd!

u~v/c!sinpd12ipz cospdu4
.

~35!

For d,(c/v)ueu21/2 the contribution to the friction from the
propagating wave is negligibly small in the comparison w
the contribution from the evanescent waves. Ford
.(c/v)ueu21/2 the main contribution to integrals~34! and
~35! comes from the integration near the singularities ap
5pn5pn/d,v/c ~wheren is an integer!, when sinkd50.
For the contribution toI p

rad from singularity atn50 we get

I'p
rad'

vz8

4p2cd3 S p

2
2arctanz9/z81

z9/z8

11~z9/z8!2D . ~36!

In the vicinity of other singularitiespnÞ0, putting p5pn
1p8, we have sinpd'(21)np8d and cospd'(21)n,
0-5



e

th
i

ric
vi

o
tio
r
i

fo
th

are

no
s
en-

in

f-

nt
tic

A. I. VOLOKITIN AND B. N. J. PERSSON PHYSICAL REVIEW B68, 155420 ~2003!
I'p
rad'2~v/c!2z82E dp8

p2

1

upnp8d12i ~v/c!zu4

'
pn

4c

8p2vdz8 S p

2
2arctanz9/z82

z9/z8

11~z9/z8!2D .

~37!

The numberm of such contribution is obviously equal to th
integer part of the quantityy5vd/pc (m5@y#), so that the
total pnÞ0 contribution becomes

p2c

8vd5z8 S p

2
2arctanz9/z82

z9/z8

11~z9/z8!2D (
n51

m

n4

5
p2c

8vd5z8 S p

2
2arctanz9/z82

z9/z8

11~z9/z8!2D
3F ~m11!5

5
2

~m11!4

2
1

~m11!3

3
2

m

30
2

1

30G .
~38!

In the integralI's
rad there is no singularity atpn50, and the

contribution from the vicinity of the pointpnÞ0 is

2~v/c!2z82E
0

v/c dp8

p2

pn
5

u~v/c!p8d12ipnzu4

5
vn2

8cd3z8 S p

2
2arctanz9/z82

z9/z8

11~z9/z8!2D ,

and, consequently,

I's
rad5

v

8cd3z8 S p

2
2arctanz9/z82

z9/z8

11~z9/z8!2D (
n51

m

n2

5
v

48cd3z8 S p

2
2arctanz9/z82

z9/z8

11~z9/z8!2D
3m~m11!~2m11!. ~39!

For m@1, where we can assumem'pv/cd, the s- and
p-wave contributions are approximately equal, and for
total contribution from propagating electromagnetic waves
this limit we get

I'
rad5I'p

rad1I's
rad'

11v4

240p3c4z8
. ~40!

The above formulas were obtained from the Eqs.~22! and
~23! by neglecting the spatial dispersion of the dielect
function. But these formulas depend only on the solids
the surface impedancez, which is equal to the ratio of the
tangential components of the electric and magnetic fields
the boundary of the body. Thus, the results in this sec
also remain valid in the presence of spatial dispersion, p
vided only that the surface impedance of the medium
small enough. Thus, we would have arrived at the same
mulas if we had assumed from the very beginning that
Leontovich boundary conditionE5zH3n is satisfied on the
surface of the metal.
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At not too low temperatures, the impedances of metals
given by

z85z95~v/8ps!1/2. ~41!

In the local optic approximation we assume that there is
dependence ofs on q. In the Wien region of frequencies it i
also a good approximation to neglect the frequency dep
dence of s. In this approximation using Eq.~31! for
lW(kBT/4p\s)3/2,d,lW(4p\s/(kBT)1/2) (lW
5c\/(kBT)), we get

g'p
evan5\E

0

`

dvS 2
]n

]v D I'p
evan'0.13

\

d3lW
S kBT

4p\s D 1/2

.

~42!

For comparison, thep-wave contribution for parallel relative
motion for d,lc , (lc5c/(4pskBT)1/2) is given by15,17

g ip
evan'0.3

\

d4 S kBT

4p\s D 2

. ~43!

It is interesting to note that for normal relative motion,
contrast to parallel relative motion, practically for alld.0
the main contribution to friction comes from retardation e
fects, since Eq.~42!, in contrast to Eq.~43!, contains the
light velocity.

From Eq.~32! we get thes-wave contribution to friction
for d,lc :

g's
evan'1022

\

lc
4 @325 ln~2d/lc!#. ~44!

For parallel relative motion thes-wave contribution is two
times smaller.

For d.lc , taking into account that Eq.~33! is valid only
for v.c2/4psd2, we get

g's
evan'

pkBTs

d2c2 . ~45!

From Eq. ~40! for d.lW we get a distance independe
contribution to the friction from propagating electromagne
waves

g'
rad'1.9•1022

\

lW
3 lc

. ~46!

V. PHOTON TUNNELING ENHANCEMENT
OF THE VAN DER WAALS FRICTION

We rewrite the denominator of Eq.~23! in the form

u12e22kdR2u45@~12e2kdRr !
21e22kdRi

2#2

3@~11e2kdRr !
21e22kdRi

2#2, ~47!

whereRr and Ri are real and imaginary parts ofR, respec-
tively (R5Rr1 iRi). Let us suppose thatuRr u@Ri . In this
case resonant conditions are determined by the equation

Rr~v6~k!!56ekd. ~48!
0-6
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Close to resonance we can write

@~16e2kdRr !
21e22kdRi

2#'e22kdRr8
2~v6!$~v2v6!2

1@Ri~v6!/Rr8~v6!#2%,

~49!

where

Rr8~v6!5
dRr~v!

dv U
v5v6

,

which leads to the following contribution to the friction co
efficient:

g'6'
\2

16kBT E
0

qc
dkk3

e2kd

@ uRr8~v6!uRi~v6!sinh2 \v6/2kBT#
.

~50!

The parameterqc in this expression defines the region
,k,qc where the two pole approximation is valid. To pr
ceed further let us make the following simplifications. Clo
to a pole we can use the approximation

R5
a

v2v02 ih
, ~51!

wherea is a constant. Then from resonant condition~48! we
get

v65v06ae2kd.

For the two poles approximation to be valid the differen
Dv5uv12v2u must be greater than the widthh of the
resonance. From this condition we getqc< ln(2a/h)/d. For
short distances the parameterqc defines the value ofk where
the solution of Eq.~48! ceases to exit.

For v0.a andqcd.1, from Eq.~50! we get

g'65
3

128

\2a2

d4kBTh

1

sinh2~\v0/2kBT!
. ~52!

For parallel relative motion, using the same approxim
tion as above, we get

g i5
\2hqc

4

128pkBT

1

sinh2~\v0/2kBT!
. ~53!

Interestingly, the explicitd dependence has dropped out
Eq. ~53!. However,g i is still d dependent, due to thed de-
pendence ofqc . For small distances one can expect thatqc is
determined by the dielectric properties of the material a
does not depend ond. In this case the friction will also be
distance independent. Thus, perhaps the weak distance
pendence observed in Ref. 7 can be explained by the r
nant photon tunneling.

VI. NUMERICAL RESULTS

At d, l , vF /v, where l is the electron mean free path
and wherevF is the Fermi velocity, respectively, the syste
will be characterized by a nonlocal dielectric functio
15542
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e(q,v). In this paper we use the nonlocal optic dielect
approach, proposed some years ago for investigations o
optical properties of a semi-infinite electron gas,20 which
should accurately describe the nonlocal optic effects.

Accordingly to Ref. 20, the reflection factor for
p-polarized electromagnetic field, incident on the flat surfa
is determined by20

Rp5
p2Zp

q1Zp
, ~54!

where the surface impedanceZp is given by

Zp5
2i

p E
0

` dqz

Q2 S q2

e l~v,Q!
1

~v/c!2qz
2

~v/c!2e t~v,Q!2Q2D ,

~55!

wheree l is the finite lifetime generalization of the longitud
nal Lindhard dielectric function, which, according to Ref. 2
can be written as

e l~v,V!51

1
~11 i /vt!@e l

0~v1 i /t,Q!21#

11~ i /vt!@e l
0~v1 i /t,Q!21#/@e l

0~0,Q!21#
,

~56!

e l
0~v,Q!511

3vp
2

Q2vF
2 f l , ~57!

f l5
1

2
1

1

8z S @12~z2u!2# ln
z2u11

z2u21

1@12~z1u!2# ln
z1u11

z1u21D , ~58!

where Q25q21qz
2, z5Q/2kF , u5v/(QvF), vp is the

plasma frequency,t is the Drude relaxation time, wherevF
andkF are the Fermi velocity and wave vector, respective
For s polarization the reflection factor is determined by

Rs5
12Zsp

11Zsp
, ~59!

where

Zs5
2i

p E
0

` dqz

~v/c!2e t~v,Q!2Q2 , ~60!

e t~v,Q!512
vp

2

v~v1 ig!
f t , ~61!

f t5
3

8
~z213u8211!2

3

32z S @12~z2u8!2#2 ln
z2u811

z2u821

1@12~z1u8!2#2 ln
z1u811

z1u821D , ~62!

with u85(v1 i t21)/(QvF). We will show below that the
maximum of the van der Waals friction is reached for sm
0-7
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electron densities, where the electron gas becomes no
generate~the electron gas is degenerate forkBT!«F and
nondegenerate forkBT>«F , where«F is the Fermi energy!.
For a nondegenerate electron gas we use the following c
sical expressions for dielectric functions:22

e l
0~v,Q!511S vp

QvT
D 2F11FS v

&QvT
D G , ~63!

e t~v,Q!511
vp

2

v~v1 ig!
FS v1 ig

&QvT
D , ~64!

where the functionF(x) is defined by the integral

F~x!5
x

Ap
E

2`

1`

dz
e2z2

z2x2 i0
, ~65!

andvT5AkBT/m, wherem is the electron mass.
Figures 1 and 2 show the calculated contribution to

friction coefficientg from evanescent electromagnetic wav
for two semi-infinite solids, with parameters chosen to c
respond to copper (t2152.531013 s21 and vp51.6
31016 s21) at T5273 K, for parallel~Fig. 1! and normal
~Fig. 2! relative motions. Results are shown separately
both thes- andp-wave contributions. The dashed line sho
the result when the local~long-wavelength! dielectric func-
tion e(v)5e l5e t is used, where

e~v!512
vp

2

v~v1 i t21!
. ~66!

In this case the integration in Eqs.~55! and ~60! can be
performed analytically resulting in Fresnel formulas. Figu
1 shows that, for sufficiently small separationsd

FIG. 1. The friction coefficient for two flat surfaces in parall
relative motion as a function of separationd at T5273 K with
parameter chosen to correspond to copper (t2152.531013 s21 and
vp51.631016 s21). The contributions from thes- andp-polarized
electromagnetic fields are shown separately. The full curves re
sent the results obtained within the nonlocal optic dielectric form
ism, and the dashed curves represent the result obtained withi
local optic approximation.~The log function is with basis 10.!
15542
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,1000 Å), for parallel relative motion the nonlocal opt
effects become important for thep-wave contribution. How-
ever, for thes-wave contribution, for both parallel and no
mal relative motion, the nonlocal optic effects are negligib
small for practically all separations. For normal relative m
tion, for the p-wave contribution the nonlocal optic effec
are less important than for the parallel relative motion. In
present calculations we have taken into account the nonl
effects in the bulk of the solids. There are also nonlo
contributions from the surface region which we investiga
in our previous publications.16,17 Comparing our previous
calculations with the present one, we find that ford.10 Å
the volume contribution from the nonlocal effects is of t
same importance as the surface contribution.

To estimate the friction coefficientG for an atomic force
microscope tip we can use an approximate formula23,24

G52pE
0

`

dr rg@z~r!#, ~67!

where it is assumed that the tip has cylinder symmetry. H
z(r) denotes the tip-surface distance as a function of
distancer from the tip symmetry axis, and the friction coe
ficient g@z(r)# is determined by the expressions for the fl
surfaces. This scheme was proposed in Ref. 23 for the
culation of the conservative van der Waals interaction. T
error of these scheme is not larger than 5–10 % in practic
an atomic force microscopy experiment, and 25% in a wo
case situation.24 Although this scheme was proposed for t
conservative van der Waals interaction, we assume that
same scheme is also valid for the calculation of the van
Waals friction. We assume that the tip has a paraboloid sh
given @in cylindrical coordinates (z,r)] by the formula:z
5d1r2/2R, whered is the distance between the tip and t

e-
l-
the

FIG. 2. The friction coefficient for two flat surfaces in norm
relative motion as a function of separationd at T5273 K with
parameter chosen to correspond to copper (t2152.531013 s21 and
vp51.631016 s21). The contributions from thes- andp-polarized
electromagnetic fields are shown separately. The full curves re
sent the results obtained within the nonlocal optic dielectric form
ism, and the dashed curves represent the result obtained within
local optic approximation.~The log function is with basis 10.!
0-8
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NONCONTACT FRICTION BETWEEN NANOSTRUCTURES PHYSICAL REVIEW B68, 155420 ~2003!
flat surface, and whereR is the radius of curvature of the tip
In the case of the power dependence

g~r!5
C

S d1
r2

2RD n , ~68!

we get

G5
2pR

n21

C

dn21 5
2pRd

n21
g~d!5Aeffg~d!,

where Aeff52pRd/(n21) is the effective surface area. In
more general case one must use numerical integration.

For d.10 Å the main contribution to the friction coeffi
cient g comes froms-polarized waves. In particularly, atd
5100 Å the s-wave contributiongs'1025 kgs21 m22, so
that with the effective surface areaAeff'10214 m22 ~typical
for probe scanning microscopy!, the friction coefficient is
G'gsAeff;10219 kgs21. Thes-wave contribution is charac
terized by weak distance dependence ford,100 Å, andg
;d22 for d.100 Å. For good conductors like copper, ev
for very short distances, the main contribution to the fricti
coefficient comes from thes-polarized electromagneti
waves. This difference betweenp- ands-polarized waves re-
sults from screening effects: Good conductors are good
flectors for thep-polarized field, which implies that they ar
ineffective in the emission and absorption of evanesc
p-polarized waves. However these screening effects are
important fors-polarized waves.

As pointed out in Refs. 4, 15, 17, and 18, thep-wave
contribution increase and thes-wave contribution decreas
when the free electron density decrease. Within the lo
optic approximation the friction diverges in the limit of ze
conductivity. This situation is different from the radiativ
heat transfer, where, even in the local optics approximat
a maximum in the heat transfer occurs for conductivities c
responding to semimetals. Figure 3 shows the dependen
the coefficient of friction on the electron density. When t
electron density decreases there is transition from a dege
ate electron gas to a nondegenerate electron gas at the
sity nF;(kBTm)3/2/p2\3. At T5273 K the transition den-
sity is nF;1025 m23. For n.nF we use the~nonlocal!
dielectric function appropriate for a degenerate electron g
while for n,nF we use an expression corresponding to
nondegenerate electron gas. In the calculations we used
electron mean free pathl'600 Å. At d5100 Å the maxi-
mum value gmax;1024 kg s21 is obtained for nmax
;1022 m23, corresponding to the dc conductivitys
;1(V m)21.

Resonant photon tunneling enhancement of the van
Waals friction is possible for two semiconductor surfac
which can support low-frequency surface plasmon mod
As an example we consider two clean surfaces of silic
carbide~SiC!. The optical properties of this material can b
described using an oscillator model25

e~v!5e`S 11
vL

22vT
2

vT
22v22 iGv D , ~69!
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with e`56.7, vL51.831014 s21, vT51.4931014 s21, and
G58.931011 s21. The frequency of surface plasmons is d
termined by conditione r(vp)521 and from Eq.~6! we get
vp51.7831014 s21. In Fig. 4 we plot the friction coefficient
g(d): note that the friction between the two semiconduc
surfaces is several order of magnitude larger than betw
two clean good conductor surfaces.

Another enhancement mechanism is connected with re
nant photon tunneling between adsorbate vibrational mo
localized on different surfaces. In the local optic approxim
tion, where the dielectric function is assumed to depend o
on the frequencyv, the reflection factorsRp andRs for flat
surfaces, covered by an adsorbate layer, are given by:26

Rp5
p2s/e24p inaq@sa i /e2qa'#

p1s/e24p inaq@sa i /e1qa'#
, ~70!

FIG. 3. The friction coefficient for two flat surfaces in parall
relative motion as a function of the free electron densityn at T
5273 K. The full curve was obtained by interpolation between
result ~dashed lines! obtained within the nonlocal optic dielectri
approach, with dielectric functions corresponding to a degene
electron gas forn.nF;1025 m23, and to a nondegenerate electro
gas forn,nF . The calculation were performed with the dampin
constantt2152.531013 s21, separationd5100 Å, andn058.6
31028 m23. ~The log function is with basis 10.!

FIG. 4. The friction coefficient for two clean semiconduct
surfaces in~a! normal and~b! parallel relative motions, as a func
tion of the separationd. T5300 K and with parameters chosen
correspond to a surfaces of silicon carbide~SiC! ~see the text for an
explanation!. ~The log-function is with basis 10.!
0-9
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Rs5
p2s24p ina~v/c!2a i

p1s14p ina~v/c!2a i
, ~71!

and wherea i anda' are the polarizabilities of adsorbates
a direction parallel and normal to the surface, respectiv
Here e5e(v) is the bulk dielectric function andna is the
concentration of adsorbates. For clean surfacesna50, and in
this case formulas~70! and ~71! reduce to the well-known
Fresnel formulas.

As an example, let us consider ions with chargee* ad-
sorbed on metal surfaces. The polarizability for ion vibrati
normal to the surface is given by

a'5
e* 2

M ~v'
2 2v22 ivh'!

, ~72!

wherev' is the frequency of the normal adsorbate vibratio
andh' is the damping constant. In Eq.~70! the contribution
from parallel vibrations is reduced by the small factor 1e.
However, the contribution of parallel vibrations to the v
der Waals friction can nevertheless be important due to
indirect interaction of parallel adsorbate vibration with t
electric field, via the metal conduction electron.27 Thus the
small parallel component of the electric field will induce
strong electric current in the metal. The drag force betw
the electron flow and adsorbates can induce adsorbate v
tions parallel to the surface. This gives the polarizability

a i5
e21

n

e*

e

vh i

~v i
22v22 ivh i!

, ~73!

wheren is the conduction electron concentration. As an
lustration, in Fig. 5 we show coefficient of friction for th
two Cu~001! surfaces covered by a low concentration of p
tassium atoms (na51018 m22). In theq integral in Eqs.~23!
and~25! we used the cutoffqc;p/a ~wherea'1 nm is the
interadsorbate distance! because our microscopic approach
applicable only when the wave length of the electromagn
field is larger than double average distance between the

FIG. 5. The friction coefficient for two surface covered by a
sorbates in~a! normal and~b! parallel relative motion, as a functio
of the separationd. T5273 K and with parameters chosen to co
respond to K/Cu~001! ~Ref. 28!. (v'51.931013 s21, v i54.5
31012 s21, h i52.831010 s21, h'51.631012 s21, and e*
50.88e). ~The log function is with basis 10.!
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sorbates. In comparison, the friction between two clean s
face at separationd51 nm is seven order of magnitud
smaller. Atd51 nm the friction coefficientG for an atomic
force microscope tip withR;1 mm is ;10212 kgs21 (g
;103 kgs21 m22; see Fig. 5!; this is of the same order o
magnitude as the observed friction.7

VII. SUMMARY AND CONCLUSION

We have calculated the van der Waals friction betwe
two flat surfaces for normal relative motion and have foun
drastic difference in the comparison with parallel relati
motion. This difference is connected with a resonance c
dition, produced by the multiple scattering of the electroma
netic waves from the opposite surfaces. In the case of a s
resonance, the normal relative motion gives a much lar
contribution to the friction, as compared to the parallel re
tive motion.

We have studied in detail the friction between two go
conductors and have found that for normal relative moti
even for very small distances the main contribution to fr
tion comes from the retardation effects. We have shown
nonlocal optic effects are very important for thep-wave con-
tribution to the friction for parallel relative motion and muc
less important for normal relative motion. For thes-wave
contribution, the nonlocal optic effects are unimportant
both directions of relative motion.

In the case of van der Waals friction we have found th
for distances between the bodies;100 Å, for good conduc-
tors with a high free electrons concentration, the main c
tribution to the friction is associated with thes-polarized
electromagnetic waves. Ford,100 Å this mechanism gives
a friction coefficient per unit areag;1025 kgs21 m22,
nearly independent of the distanced, while for d.100 Å the
friction coefficient g depends on distance asd22. For an
atomic force microscope tip with the effective surface a
Aeff'10214 m2, we got the friction coefficientG;gAeff
;10219kgs21 for d,100 Å. When the concentration o
electrons decreases, thes contribution to the friction de-
creases while thep contribution increases. Atd5100 Å and
with the electron lifetimet54310214 s, thep contribution
reaches a maximumgmax;1024 kgs21 m22 at the electron
concentrationn;1022 m23, which corresponds to the con
ductivity s;1 (Vm)21.

We have shown that the van der Waals friction can
enhanced by several orders of magnitude in the case of r
nant photon tunneling between low-frequency surface p
mon modes and adsorbate vibrational modes. In the cas
friction for two Cu~100! surfaces covered by a low conce
tration of potassium atoms atd510 Å we have found the
friction of the same order of magnitude as it was observed
experiment.7 However, the distance dependence in this c
is stronger than observed in Ref. 7. Further experiments w
well defined tips and samples must be performed to elucid
different energy dissipation mechanisms in the noncon
friction. The results obtained in this paper should have
broad application in noncontact friction microscopy, and
the design of new tools for studying adsorbate vibratio
dynamics and optical properties of surface plasmons.
0-10
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APPENDIX

After substituting Eqs.~3! and~5! into formula~20!, we obtain, to linear order in vibrational coordinateu0 and frequency
v0 ,

szz5
1

4p E
0

`

dvE d2q

~2p!2F p

q2 @~p1p* !~^uw0zu2&1^uv0zu2&!1~p2p* !~^w0zv0z* &1c.c.!#

1S c

v D 2

p@~p1p* !~^uw0yu2&1^uv0yu2&!1~p2p* !~^w0yv0y* &1c.c.!#

1S p1

q2 @~p1p* !~^w1zw0z* &1^v1zv0z* &1c.c.!~p2p* !~^w1zv0z* &1^v1zw0z* &1c.c.!#

1
c2

v~v1v0!
p1@~p1p* !~^w1yw0y* &1^v1zv0z* &1c.c.!1~p2p* !~^w1yv0y* &1^v1yw0y* &1c.c.!# De2 iv0tG . ~A1!

From Eqs.~21! and ~A1! it follows that the friction coefficient is determined by the formula

g'5
1

4pu0i E0

`

dv0E d2q

~2p!2F ]

]v0
S p1

q2 @~p1p* !~^w1zw0z* &1^v1zv0z* &2c.c.!~p2p* !^w1zv0z* &1^v1zw0z* &2c.c.!]

1
c2

v~v1v0!
p1@~p1p* !~^w1yw0y* &1^v1zv0z* &2c.c.!1~p2p* !~^w1yv0y* &1^v1yw0y* &2c.c.!# D G

v050

. ~A2!

Using Eqs.~12!–~16!, ~18! and ~19!, we get

1

q2

]

]v0
@p1~p1p* !~^w1zw0z* &1^v1zv0z* &!2c.c.#v050

52iu0S n~v!1
1

2D ]

]v Fp2
~1u2R1pR2pu2!21u~12uR1pu2!R2peipd1~12uR2pu2!R1p* e2 ipdu2

uDpu4 G , ~A3!

1

q2

]

]v0
[ p1~p2p* !~^w1zv0z* &1^v1zw0z* &2c.c.#v050

58iu0S n~v!1
1

2D ]

]v S p2

uDpu4
[(Im R1p1e22upuduR1pu2 Im R2p)(Im R2p1e22upuduR1pu2 Im R2p)

1e22upud Im(R1pR2p)2]e22upudD . ~A4!

Other similar expressions for thes-wave contribution can be obtained from Eqs.~A3! and~A4! by replacement of the reflectio
amplitudeRp for thep-polarized wave by the reflection amplitudeRs for thes-polarized wave. After substituting Eqs.~A3! and
~A4!, and similar expressions fors-polarized waves, in Eq.~A2! we get formulas~22! and~23! for the friction coefficient for
normal relative motion.
ys.
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