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Electron backscattering from surfaces: The invariant-embedding approach
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Distributions of electrons reflected from a solid surface corresponding to a reflection electron energy loss
spectroscopyYREELS experiment are calculated within the invariant-embedding approach. The technique is
based upon a formalism recently developed by Vicanek. In this paper we show that the pertinent balance
equations readily allow effective numerical evaluation of various electron distributions relevant for REELS.
The solutions are very accurdigith the relative errors readily reduced=010* for given cross sectionsnd
the resulting technique offers significant advantages over the Monte Carlo approach, though it is less generally
applicable. The approach delivers, in a single calculation, the probability distributions resolved in the number
of elastic as well as inelastic collisions for all angles of incidence and emission. From these results, one readily
obtains other related distributions, e.g., path length and energy spectra. Compared to Monte Carlo simulations,
the scheme is faster by up to several orders of magnitude while producing a better accuracy. For a wide range
of energies and targets, various distributions of backscattered electrons are exemplified and discussed. The
elastic-peak results and a procedure for extraction of the inelastic mean free path are tested by comparison to
recent Monte Carlo simulations and typically excellent agreement is found; discrepancies observed in a few
cases are shown to be due to deficiencies in the Monte Carlo scheme.
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[. INTRODUCTION is treated as an adjustable parameter. Although the Monte
Carlo calculations are faster when only the elastic peak in-

When a solid surface is bombarded with a monoenergetitensity is needed rather than the distribution of collisions or
beam of electrons, some of these are emitted after havintpe full energy spectra, it is still a very time-consuming
suffered a number of elastic and inelastic collisions. The enmethod. Therefore, various approximate solutions to calcu-
ergy spectrum of backscattered electrons contains valuablate the elastic peak intensity have been proposed. These
information on the electronic excitations in the solid, giving include, e.g., the transport approximatfiofif and expansion
rise to the technique long known as reflection electron enin multiple-scattering contribution$. Both approximations
ergy loss spectroscogfREELS.! Some years ago, a simple take advantage of the strong predominance for elastic scat-
algorithm was developed for the determination of the inelastering in the forward direction. In a recent papehe range
tic electron scattering cross section from analysis of an exef validity of some of these models was studied by compari-
perimental REELS spectrum? This method allows quanti- son to Monte Carlo simulations.
tative interpretation and has been applied to many sélids. Significant progress was recently achieved by Vicdnek

In principle, it is always possible to determine electronwithin the framework of the invariant-embedding
fluxes relevant for quantitative analysis of REELS spectra byapproach®!’ Vicanek’s treatment is based upon balance
Monte Carlo simulations cf., for example, Refs. 6—8. How-equations for the distributions of the number of elastic colli-
ever, achieving good statistics in adequate simulations resions and path lengths for electrons emitted in a given solid
quires typically a very large computational effort, as the cal-angle, which allowed him to establish a simple analytical
culated fluxes should be ideally resolved in both emissiorrelation between the two distributions. Finally, the elastic-
direction and, e.g., the number of collisions or path length. Inpeak intensity and the inelastic-collision number distribution
most applications of REELS, this has resulted in either ap{of primary interest for EPES and REELS, respectiyelse
plying rather rough approximations for the effects of elasticreadily determined from the path length distribution, pro-
electron scattering or leaving unresolved some of the desiredded that the mean free path for inelastic electron scattering
variables. is known.

A similar and related problem arises in connection with  Although Vicanek’s analysis gave invaluable new insight
the determination of the inelastic electron mean free patlinto the fundamental physics of REELS, the numerical cal-
(IMFP) from a REELS experiment. This method relies on theculation technique developed in his pdbpetill relied on
fact that the intensity of thelastically backscattered elec- Monte Carlo results for one of the distributions. Vicanek then
trons depends strongly on the IMFP, which allows one toused his analytical relations to calculate the path length,
determine the latter by measuring the forfiét and com- inelastic-collision number, and energy distributions of the
paring the measurement to model calculations. In this soemitted electrons from the simulated elastic-collision number
called elastic peak electron spectroscOpPES method, the distribution. This calculation scheme offers certain
elastic-peak intensity is usually calculated by Monte Carloadvantagesbut, being ultimately based upon Monte Carlo
simulations of electron trajectories and accurate elastictMC) results, it still has the corresponding limitations with
scattering cross sections are assumed known, while the IMRRspect to accuracy and computing time.
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In the present paper, though basically following up on
Ref. 6, we show that the invariant-embedding equations al-
low direct calculation of electron fluxes relevant for REELS
and EPES. This approach involves no simulations at any
stage and, in our opinion, is a powerful alternative to MC-
based techniques though is not as generally applicable. It has
significant advantages compared to the latter as regards both
accuracyand computing speedDepending on the set of re-
solved variables, the technique is faster than comparable . 0
Monte Carlo simulations by up to several orders of magni- 9
tude. It delivers practically exact results for a given elastic- 0
scattering cross section, and therefore the technique has no
difficulty in handling, e.g., cross sections with several
maxima and minima in the angular distribution which can . _ _
cause problems in Monte Carlo simulatidﬁ@omparison of FIG. 1. Schematics of the_ REELS process c_onS|dered in the
the present results to those of recent simulations shows thBfPe" Note that the angles .Of incidenteand emissiorg are both
occassional deviations observed are due to limitations of th8e7ned With respect to the inward surface normal.

Monte Carlo scheme.

Section 1l below serves to list the basic invariant-
embedding equations and the main relations between variou
distributions of interest; it also considers important genera
properties of the solutions. In Sec. Ill, we discuss briefly . X
numerical technique used to calculate electron fluxes and eg-" must cancel. Th.|s leads to the following recurrence rela-
timate computing time required. The capabilities of the ap_'uons forW, (Ref. 6:
proach are illustrated in Sec. IV where various exemplary \( 1 1

infinite medium is unchanged when a lay@f the same

ateria) is added to the surface. The collisions that take
ace in the added infinitesimal layer may be divided into
our distinct collision processes, the joint effect of which on

results are presented, discussed, and compared to recen
Monte Carlo simulations. Finally, Sec. V briefly considers
the main limitations of the approach at present and desirable

Wh
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Costo | [cosd]) Ny 01T+ TXWho 1+ Who 1 X T

extensions. + 3 W XTXWi g (1)
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II. INVARIANT-EMBEDDING EQUATIONS Here, 6,=1 for n=1 and =0 otherwise, A\
AND THEIR PROPERTIES =[N [ 0¢(Q0,02)d’Q]" ! is the mean free path be-

tween elastic collisions W,=W,(Q0,Q), J=T(Q2q,Q)
_ _ _ =No(Qq,Q)/| coshy|, N the atomic density of the solid,
In this subsection we summarize the relevant results bynd 4,(Q,,0Q)d2Q the elastic-collision differential cross

Vicanek? with minor changes of notation and appropriate section forQ,— Q scattering. The symbok in Eq. (1) sig-
comments. Although more general treatments should be pogifies an integration of the type

sible, we will follow Ref. 6 and assume that the medium is
semi-infinite and homogeneous, and that the energy variation
of all pertinent cross sections as well as angular deflections AXB= J d?Q'A(020,Q')B(Q2',Q), v
in the inelastic scattering events are negligible. These are
reasonable approximations when only the part of the energwhere the integration interval in each term corresponds to
spectrum that corresponds to smadlative energy loss is putting W,(£2,02)=0 for cosfy,<O and/or co®>0. For
considered. Though with obvious reservations, the assumpackscattered electrons we may also py{=0 for n<0,
tions are usually well fulfilled for calculations relevant for and thus the rightmost term in E(l) vanishes fon<2 and
EPES and REELS, which typically use electrons of energytherwise the summation extends over the intervaini
=100 eV emitted after none or a few inelastic collisions. =<n-—2. The right-hand side of Ed1) involves only func-
Let the solid surface be bombarded by electrons of energtions W,, with m<n; i.e., Eqg.(1) is in fact an explicit recur-
E, (parametric dependence on which is omitted in furtherrence formula that in principle allows one to evaluate the
formulag and direction of incidenc€,=(6,,$.); some of  functionsW, sequentially, starting from the obvious analyti-
these will escape in the directidd= (6, ¢). Herefp, and@  cal result forn=1:
denote the incidence and emission angles with respect to the
inward surface normal (8 6,< 7/2< 6<r; see Fig. L Let ~ Ngoe(Q0,€)| cosé|
further W,(Qg,Q) be the elastic-collision number distribu- Wi(€o, )= cosf,y+ | cosé)
tion; i.e., W,h(Qq,Q2)d2Q is the probability for an electron
incident in direction€), to be emitted into the solid angle As shown by Vicanek the setWV, at given incidence and
(,d2Q) aftern elastic collisions. emission direction€)y, € (or a range therepfuniquely de-
The basic idea in the invariant-embedding argument igermines the associated path length and inelastic-collision
that the distribution of backscattered electrons from a seminumber distributionsQ and V,,,, which are defined as fol-

A. Basic relations

()
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lows: Q(QO,Q;R)dZQ dR and Vm(QO,Q)dZQ are prob- Due to the smoothing effect of the latter formulas, the pro-
abilities for an electron incident in the directidd, to be  cedure has the advantage that statistical noise in the deter-
emitted into the solid angle(¥,d?Q) after having, respec- Mined distributions is reduced considerably compared to
tive|y, traveled the path |engtfR(dR) and experiencem what one obtains by their direct Monte Carlo simulation.
inelastic collisions within the solid. The principle of invari- However, below we demonstrate the inefficiency of this pro-
ant embedding readily leads to a balance equationdor cedure compared to direct calculation)df, from the deter-
analogous to Eq(1) (Ref. 6; comparison of the two equa- Ministic relations in Eq(1).
tions allows one to explicitly relate their solutions:
B. Azimuth-integrated distributions
o (R

Q(Qy,Q:R)= ie—mm 2 ( Wi(Qo,Q) Numerical evaluation of Eq.l) is of course simpler for
T Al n=1 , .

(n—=1)! the emission intensity integrated over the azimuthal variable
(4) ¢. In order to make the approach more transparent, the
doresent paper limits explicit calculations to azimuth-
integrated quantities, and thus graphical examples will refer
to the case of normal incidence. Note, however, that calcu-
lations with fully resolved azimuths can be performed by the
same method, with only minor modifications amgignifi-
m cant increase in computing effoithis will be shown in our
e ®*n dR  (5) forthcoming publication.
For the present calculations, we introduce the azimuth-
integrated distributions

From the path length distribution, an expression for th
inelastic-collision  number distribution V,,(2q,Q)(mMm
=0,1,...) isfound by applying Poisson statistics for each
path lengtH:

R

1 o)
Vin(Qp, Q) = =y fo Q(QO,Q;R)()\—m

(n+m—1)! NeiNin

=1 mi(n—1)! ()\el+)\in)m+nwn(ﬂo’ﬂ)’ Wh(70,7) Wi(£0,€)

2
©) QR = [ 71 0% 2R g, @
where\,, is the inelastic mean free path. Finally, the energy Vi(70,7) Vn(€20,92)
loss distribution is readily determined é&slastic peak ex- \\ hare 0= C0S6, and 7=| cosé| are cosines of incidence
cluded and emission angles with respect to the inward and outward
w surface normals, respectively;<Opq,7=<1. The physical
Fi(Qq,Q.T)= V(0.0 T, 7 meaning of the functions in Ed9) is rather evident; e.g.,
18 ) mzzl ml $20.£2) k() @) W,(70,7)d7 is the probability for an electron incident in

direction 7, to be emitted within the cosine intervak(d »)
after having experiencedelastic collisions. The correspond-
ing distribution in emissiomngleis W,(7,,| cosé]) sin 6 dé.
Similar interpretations hold for the path-lengti®@) and
Km(T)= f Km—1(T)&(T=T")dT". (8) inelastic-collision number\(;,) distributions(see Table )l
Implying axial symmetry for elastic scattering, we may ex-

In Egs. (4)—(8) the quantities of interest are expressed inP'€SS the normalized cross section for elastic collisions as a
! function of the cosine of the scattering angle:

terms of the elastic-collision number distribution. The deter-
mination of the latter is then the only nontrivial task for 1
2’7Tf

where k,, is the m-fold convolution of the normalized exci-
tation cross sectior(T) (Ref. 6:

evaluation of quantities pertaining to electron backscattering C(Qq- Q)=ANog(2g,Q), K(n)dn=1.
from solids. Thus, withV,, and relevant mean free paths 1
given, one immediately obtaing andV,, by means of Egs. (10
(4)—(6). On the other hand, E@6) with m=0 is the elastic- Now by integration of Eq.1) over azimuths we get the
peak intensity. This can be used to determipg as com-  following recurrence formulas fow, :
monly done for EPES, by adjusting, until V, equals the
measured elastic-peak intensity. Having calculatgd one
may further evaluate the REELS energy spectrum from Eq.
(7) utilizing available energy loss cross sections, e.g., the
approximate “universal” cross section®Alternatively, from + z WX I~ XW (11)
V., and a measured REELS spectrum one may determine m noimm
«(T) applying one of the available simple deconvolution
technique$'®to Eqgs.(7) and(8).

In Ref. 6, Eq.(1) was utilized for analysis and derivation
of Eq. (4) but not for direct calculation ofV,,. Instead, in 1
explicit examples, the elastic-collision number distribution AXB= J A(n9,7")B(7",m)d7’, (12)
was determined by Monte Carlo simulations, whilke V,,, 0
andF, were thereafter calculated from Ed4), (6), and(7).  and the kernel§* are defined by

1
+ ; Wn=5n1J_+J+XWn_1+Wn_1><J+

7o

whereW,=W,(7q,7), the symbolxX denotes now the inte-
gration
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TABLE |. Overview of the distribution functions used in the papg§= cosé, and »=| cosé| whereé,
and 6 are the electron incidence and emission angles defined in Fig. 1.

Probability for an electron incident in directiog, to be emitted
within the cosine interval 4,d ») after

W, (79,7)d7 having experienced elastic collisions
Vil 70,17)d7 having experienceth inelastic andh elastic collisions
Vi(m0,m)d7n having experiencedh inelastic collisions
Q(79,7;R)dn dR having traveled the path lengtiR(dR) in the solid
1 direction 7, to be emitted in the directionz{,d#) afterm
J==3%(n0,m=—K (10,7, (=0) inelastic and(=1) elastic collisions. Table | gives an
0 overview of the probability distributions considered in the

paper.

2
K= (mo,m)= fo K(= nom+\1— n5\1— n*cosg)d¢.

(13) C. Properties of solutions

The latter kernels govern transformations of direction co- Before we make explicit calculations, we consider first
sinesin a single elastic collisionThus, for 0< 70, 7<1, an some general invariance properties of the distributions de-
electron moving in directiony, is scattered into the interval fined above. First we note an important symmetry with re-
(= 7,d7) with the probabilityK * (7, 7)d7. In accordance spect to exchange of incidence and emission directions. Us-
with this result, for anyz,,K* satisfy the normalization "9 the obvious properti= (7o, 7) =K=(#, 7,), one easily
condition proves by induction that the functioM§,(»,,7)/ 7, as de-
termined by Egs(11) and(15), are symmetric with respect

1o B to the substitutionyg«< . From Eqgs.(16)—(18), the same
fo (K" (70,7)+K (79,7)]dn=1. (14 result follows forV( 7o, 7)/ 7 andQ(7,, 7,R)/ 7, i.e.,

For a given elastic-collision cross section, form{id) al- 7oWn( 70, 7)= 7Ws(7,70),

lows one to recurrently calculate the function, starting

from 70Q( 70, 7:R) = 7Q(7,70;R),

W,=0, n=<0,
" 70Vl 70, 7) = 7V (7, 70)- (19
Wi( 79, 7)=3"(79,7) 07 _ K~ (79,7) 7 ) Another important property of the distributions is implicit
Mot 7 N0t 7 in the utilized elastic-collision expansion and the underlying

(15 use of the elastic mean free path as the auxiliary model pa-
With minor changes, Eq$4)—(7) obviously hold also for the rameter. Typically, the cross sections for elastic scattering are
azimuth-integrated functions. The respective formulas for thetrongly peaked in the forward direction and the detailed
path-length and inelastic-collision number distributionscross section for small-angle scattering is very dependent on

which will be utilized below, are the particular electron-atom interaction potential used to cal-
culate the cross sectidiTherefore, as has been pointed out

_ I o~ (RI"? before?! the elastic-scattering cross section and the corre-
Q(mo, mR)= (W o n§=:1 an( 70,7, sponding\ ¢ are not well defined. Furthermore, small-angle

(16) scattering events have only a weak influence on the electron
trajectories and should therefore have negligible effect on
measurable physical quantities. For these reasons, it could be

s}

Vi(no,m)= 2 Vi 70, 7), (17 argued that expansion in the number of elastic-scattering
n=1 events might not be a good and efficient choice.
with For example, the electron trajectories will be unchanged if
we introduce “collisions” with negligible angular scattering
(n+m—1)! NeiNin and transform the cross section frarg(£2y,2) to
Ven(70,7) = Wn(70,7).

I'(n—1)! _ym+n
mi(n ) ()\e|+)\|n) (18) }e|(ﬂo,ﬂ):UeI(QOrQ)"'G—f‘S(QO_Q)’ (20)

Note that the term¥,,, defined in Eq.(18) deliver an even whereo; is a constant. The physical solution must therefore
more detailed description of the electron fluxes and represeitie insensitive to the transformation of cross section in Eq.
the “joint” collision number distribution. Thus (20) although it will indeed change both the elastic mean free
Vi 7m0,7m)dn is the probability for an electron incident in path\¢ and the elastic-collision number distributiof,, to
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- Neh tion” X is defined by Eq.(12). Neither the functions
T N N Ta(70,n) nor any kernels entering E¢23) contain singu-
et i larities in 7q, 7; thus Egs(23) and(22) are well suited for
n straightforward numerical tabulation of the elastic-collision
W= >, 21 number distribution. Note that this calculation schef@e is
Wﬂ | | m? ( ) . . . N
m=1 (N—m)!I(M=1)! (\ +x))" generally characteristic for the invariant-embedding ap-
proach does not allow one to limit evaluation ¥, to, e.g.,

whereX;=1/(No¢). Equations(21) can be found from the ific inci o le. Th h
Poisson distribution and are also in agreement with the red SPechic incidencéor emission angle. Thus, the recurrence

currence relatiorf1) relations requiréV,(7q,7n) to be calculated for the whole
However, as could be expected, all quantities whose defiange G= 77.0’.77$1 prior to' e\{aluatlon OWn..4 an_d S0 the
nition does not directly refer to the number of elastic colli- elastic-collision number distribution is necessarily tabulated

sions are invariant with respect to the transformatia@). for all incidence and emission angles within a single calcu-

o~ ~ . lation. Hence, in contrast to Monte Carlo simulations, one
For example, substitutinge andV, instead ofke andWn  oes not have the option to reduce computing time by simply

into Eq.(4), one finds by simple though cumbersome evalueqcing the set of considered incidence directions; however,
ation that~the resulting path-length distribution is equal to thgp;s jimitation is compensated by many other advantages.
original: 9= Q. From Egs(5) and(7), the same conclusion  For a given elastic-scattering cross section, the numerical
immediately follows for bothV,, and the energy spectrum. procedure is naturally split into three stefi3:First, the ker-
The above argument shows that, in spite of possible ambigthels K*(7,,7) are tabulated according to E(L3); this is
ities in forward-elastic scattering and hencehig and)V,,,  done only once for specifitc(#), and the numerical accu-
the latter may still be used as auxiliary quantities in electronracy is chosen to be superior to that of the multiple integra-
transport calculationsy ¢ and W, just should be considered tions over direction cosines in pdit). (i) W, (7o, 7) in the
as definedapart from a transformation such as E@1).  whole range & 7, 7<1 are sequentially tabulated up to a
However, while, e.g.Q and V), are not sensitive to a renor- certainn=n,, in accordance with Eqg22) and (23). (iii)
malization of forward-elastic scattering, convergence of therinally, various quantities and dependences of interest are
expansiong4) and (6) may well be, and appropriately se- extracted from or calculated with the use of tWé, data
lected transformation¢21) can be used for improving con- saved, including calculations of path-length and inelastic-
vergence In some cases. collision number distributions in accordance with EG6)—
Note that the invariance of measurable physical quantities18). Note that, if the cross-section data utilized has rela-
with respect to transformations of the cross sections in Eqsively low resolution in scattering angle, a spline fit is made
(20) and (21) holds for exact solutions but not for models to the data: the resultindgC(»), from Eq. (10), will be
where only the first few collisions are described accurateljthought of as exact and perfectly resolved in estimates of the
while the remaining scattering events are treated within someg|culation accuracy below.
approximation. One should be aware of this potential prob- The integrals involved can be evaluated by a vast variety
lem when using the transpéttor modified P; (Ref. 22 of simple schemes with comparable merits; we shall only
approximation for multiple &1, 2, or 3 elastic collisions, as  stress nontrivial features and mention those details that are

(n—1)! oy AT

well as the model of Oswald, Kasper, and Gaukfer. relevant for estimation of computing time and accuracy. The
range[ 0,1] of direction cosines §, and ) is split intoN,,
I1l. NUMERICAL EVALUATION TECHNIQUE grid intervals; the functionW,(#7q,7) for a given n
AND ITS EFFICIENCY is thus represented by an array oN,(+ 1)? values.

The scheme implemented for calculation &f~XW,,
= [SK= (70,7 )Wn(7',7)dn’ and similar integrals is

For numerical evaluation dNn, it is convenient to elimi- based upon a three_point po|yn0mia| interpo|ationvmrt1;
nate the singularities~1/70,1/7) in Eq. (11) by the substi-  we stress that interpolation of neithi&™ nor the whole in-
tution tegrand is implied. Such a scheme has the advantage that its

accuracy is rather insensitive to the behavior of the kernels

_ (22) K* (e.g., the sharpness of the forward-scattering péak
ot 7 cause the resulting numerical errors are exclusively due to

According to Eq.(19), the thus-defined function¥, are interpo_lation of+smooth functionWr,, while the r_elevant
symmetric: T,(79,7)=T.(7n,70). Recurrence relations for cqeff|C|ents~K— are once an_d for all evaluate_d in part
T, follow immediately from Eq(11): with an accuracy far superior to that obtained from a

N,-point grid.

A. Numerical procedure

Wh(70,7)=Tn(70,7)

Ti=K™, Tp=K"XW,_;+Wj_;xK*
B. Efficiency of the calculation scheme

+% Wi XK XWy 1 for n=2, (23 Let us now estimate the computing time for the recurrent
W, tabulation[step(ii) abovd which is by far the most time-
where  W,=W,(79,7), To=Tn(70,7), and K= consuming part of the calculation for largg, andN,,. The
=K*(79,7), while WI=W,(7,7,); the “product opera- basic operation here is evaluation Kf X W,, and similar
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integrals that enter Eq23). Each integration(for all grid 1 T L T

o
values ofzg, 7) takeSZZN?7 floating-point arithmetic opera- (az;lsr) Au: 1
tions. The right-hand side of E€3) contains 21— 1) such 0 100 eV === 300 eV 3
integrations, scstraightforward recurrent evaluation oW, of A\ — — 500eV - - - 5000eV
up to n=n,, would requireP(n)=2N3nZ arithmetic op- N

erations. However, there are two simple ways to economize g
further: () Using the symmetryT (770, 7) = Tn(7,70), one

reduces the number of independent tertizs be found by o1
actual integrationin the right-hand side of E¢23). (b) Pret-
abulation of integrals: the integrilV} X K~ is tabulated and oot

saved immediately aftew, has been found, so that, when
evaluating all higher-order functions, we perform only one  1E3 1 1 1
actual integratiorfinstead of twg in each term of the sum in 0 ® %0 135 180
Eqg. (23). Eachof these methods reduces computing time by Scattering angle (degrees)

about a factor of 2, taking our estimate down to

FIG. 2. (Color onling Elastic-collision cross sections,, (Refs.

20 and 23 for electrons in gold at energies 100, 300, 500, and 5000
1 eV; units ofaglsr, a0:0.529A being the Bohr radius.

P(nm):ENinzm. (24)
depend slowly orEg: n,<25 for smaller andn.>25 for
For example, foN,,= 100 andn,,= 100, the whole calcula- ar9er energies depictedHence, for each primary energy,
tion for a specific electron energy and target material in-vic@nek's Monte Carlo calculation requires
volves =5x10° floating-point arithmetic operations. The
computing time amounts t&1 min on a relatively modern Puc=nnP.~2.5x 10'P, (25)
PC. This computing speed was judged tolerable; therefore,
no further optimization of the scheme was attempted, andloating-point arithmetic operations, whelRe is the number
most of the calculations presented below were performedf operations required to handle one collision. This is to be
with N, =ny,=100. The accuracy of the resultitg,( 7o, 7) compared to Eq(24): P(50)=1.25% 103Nf, for n,=50.
is easily tested, e.g., by repeating the calculations with difNow, P entering Eq(25) may vary somewhat for different
ferentN, ; as expected, the accuracy depends strongBdpn  Monte Carlo codes, bRy, cannot be much less than, e.g.,
and to a much lesser extenton 75, 7, and the actual cross P(50)=1.25<10° for N,=100 [and must well exceed
section. FoN, =100 andn=<100, therelative errors in the  P(50)=1.6x 10° for N,=50]. Thus, in this example, the
resultingW, values are typically~10 °-10" 4. This accu- present scheméwith n,,=50, N,=100) and the Monte
racy usually well exceeds that of typical Monte Carlo simu-Carlo algorithm are comparable as regards to the needed cal-
lations and the precision of available cross sections, so for aiulation time. There are, however, drastic differences with
practical purposes the present scheme’s results may be reespect to the quantities calculated:
garded axactfor a given cross section. If needed, the cal- (i) While the MC calculation treats a single direction of
culation time can be appreciably reduced in comparison witlincidence ¢,=1 in Ref. 6, the present scheme delivers
the above example. The valueg=100 andN,=100 are results for alln, at once(with 100-point resolution
typically larger than needed for sufficiently accurate REELS- (i) Also, while the MC calculation produces only,
and EPES-related calculations. So while still maintaining ansummed over all emission directions, the present scheme re-
acceptable accuracy, bot, and n,, may usually be de- solvesW, in the angle of emissiofagain, 100 poinis

creased by a factor of 2 or more; the correspond®tg,) (iii ) Alsa while the accuracy of the MC results is subject
scales in accordance with E(24) and the computing time to statistical limitations, the present scheme delivers practi-
may be reduced to seconds on a PC. cally exact results for a given cross section.

Let us now compare the calculation time of the present All in all, while the MC program resolvesne variable
scheme with that of Monte Carlo simulations. Consider, for(the number of elastic collisions), the present scheme re-
example, the simulations depicted in Fig. 2 of Vicanek'ssolvesthree(n, 7o, %) and with better accuracy. Resolving
papef (W, for n<50, carbon target, normal incidence, all incidence or emission angles or significant improvement of
emission angles countedor each value of electron energy, accuracy are of course possible also within the MC scheme,
the distributionaW,, shown are based an=10° trajectories.  but any of these tasks will involve appropriate increase in
Note that one cannot significantly economize by simple recalculation time, in any case by ordgrof magnitude.
duction of n, because moderate irregularities of results are
already visible. This is of course due to resolving the number
of collisions: e.g., about half oV,, values shown lie below
0.005 and each is therefore contributed to<b$000 trajec- In this section we will illustrate some of the capabilities of
tories. Now, calculatingV, up to n=>50, the Monte Carlo the formalism presented above. The elastic-scattering cross
program handlesn average p~25 collisions per trajectory sections needed for the calculations were taken from the da-
(this will suffice for an overall estimate, though is seen to  tabase developed by Jablonski and Tougd3fdAs an ex-

IV. EXAMPLES AND DISCUSSION
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0.04 0.04
W, W
Top to bottom: n
n =1,2,5,10,20,40
0.02 0.02
0.00 0.00
0.15 0.15
Top to bottom:
= 10,20,40
0.10 n=125 0.10
0.05 0.05

0.00 0.00

0.04 | 5000 eV | Top to bottom: /' 0.04

n =1,2,5,10,20,40

0.02p 0.02
0.00 le PO """ L
0.0 0.5 1.0 0.00

@ n=lcosBl (b) Number of elastic collisions: n

FIG. 3. (Color onling (a) DistributionsW,,(779=1,7) in cosinen of emission angle for electrons having experienced a certain number
of elastic collisions 1=1,2,5,10,20,40). Normal incidencey{=1), Au target, initial energies 100, 500, 5000 €dp to bottom. (b):
Distributions of backscattered electrons in the number of elastic collisions for specific emission [&tiglegs=1,7) for »=1,0.5,0.2]
indicated on the graphs and summed over all emission direc{tigﬁbwn(no:l,n)dn, marked “all " ]. Normal incidence f,=1), Au
target, initial energies 100, 500, 5000 é&dp to botton).

ample, Fig. 2 shows the cross sections for elastic scattering A. Elastic-collision number and path-length distributions
of 100, 300, 500, and 5000 eV electrons in Au. The results  rigyre 3a) shows the elastic-collision number distribu-

shown in Secs. IV A and IV C are all calculated for gold at tjgp, W,, calculated from Eq(11) for electrons of 100, 500,
these energies, while the examples in Sec. IV D are evaluyng 5000 eV energy in gold as a function ®# | cosé| (7
ated for Au and a few other materials. =1 corresponds to electron emission normal to the surface
In all examples depiCtEd below, the direction of the in- and 7’20 to g|ancing electron emissibrFor g|ancing emis-
coming electrons is taken to be normal to the surfagg ( sion angles withd—90°<15° (»<0.25), it is seen that
=1). Note, however, that the calculation scheme describegdv, >W, for all n=2 although there is also a significant
above delivers results for all incidence and emission anglesontribution from electrons that have undergone more than
at once; thus, all results shown below for a given energy andne scattering event. For larger emission angles, the multiply
target are a minor fraction of those actually obtained within ascattered electrons contribute more and, e.g., at 100 eV and
single program run. n=0.5 both W; and W, are smaller tharWV, for all n
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=3-10; as evident from Fig.(B), the same property holds
also for the elastic-collision number distribution summed A4Q(R)
over all emission directions. 0.03
The distributionsW, of electrons emitted after a single
elastic collision demonstrate significant variation of their
shapes with energy. In accordance with E4S) and (15), 0.02
W, for normal incidence is simply related to the elastic-
collision cross section for scattering angle90°: W4 (7q
=1,7)=2wK(—n)n/(1+n). Thus, apart from the factor 0.01
2wl (1+ n) common for all targets and energies, the distri-
butionsW; reflect the behavior of the respective cross sec-
tions and therefore vary with energy as much as the curve:  0.00
shown in Fig. 2(at scattering angles 90°). Due to integra-
tions in Eq.(11), the distributiond\V,, for largern are gener-
ally smoother and less sensitive to the details of the under-
lying cross sections. Apart from normalization, the shapes of
the high-order distributions become similar for different en-
ergies: with increasing, W, are seen to gradually approach
the ~n dependence corresponding to an isotropic flux of
emitted electrons, but even for the largasiepicted in Fig.
3(a), W, still deviate appreciably from the simpte 7 law.
Figure 3b) shows corresponding distributio,, in the
numbern of elastic collisions for various emission angles as

0.15

0.10

0.05

well as those integrated over all emission directions. fror 0.00
§5, W, may increase or decrease W_ith'increasirrg)epend- 0.04b i | 5000 eV I,
ing on the energy and angle of emission. Except for near- \ R
normal emission §=1), the general trend is thaw, de- N - = an=05
creases rather slowly witim and the fraction of emitted N ——=n=02
electrons in a given direction that have undergone a few and N
e.g., 40 elastic scattering events is comparable. Because ¢ b ~
this result, models that expand the spectrum in terms of mul- oz e N - 1
tiple elastic-scattering events need a large number of terms S s _
This is due to the high cross section for small-angle elastic
scattering(see Fig. 2 B
Figure 3b) demonstrates that the elastic-collision number . e S
distributionW,, may either monotonically decrease witlor SLL 1'0 2‘0
have a maximum ah>1. For distributions integrated over
emission direction, the issue was analyzed in some detail ir Relative path length: R/},

Ref. 6. In the numerical examples theréaf. Figs. 2 and 3 . o _
in Ref. 6, all distributionsW,, for a carbon target have a  FIG- 4. (Color onling Distributions Q(7,,7:R) of emitted
maximum atn>1 while those for gold decrease monotoni- electrons in path length traveled within the solid calculated from
cally; this distinction could be readily attributed to the dif- 5?6(22.:3“92?%2 71u_n|;3005m8, ) a-;h'?l dq'csatl:;bd“tc')?]n;srer;;;:ze'
ferences of scattering cross sections for heavier and Iighte|JI 1SS giesp=-,9.9,5.2 as Indl . , 9
atoms. Figure @) covers a wider range of electron energiessummed over all emission directiorimarked “all »"). Normal

d th. Nustrat id f oot indicati incidence (o=1), Au target, initial energies 100, 500, 5000 eV
an us nljustrates a wider range ot options, indicating, e'g'(top to botton); the respective values af, (as determined froror
that the angle-integrated distribution for gold also becomeg, ki, » _

. e ) ) g. 2 are\y=1.70,3.91,11.82 A .

nonmonotonic for sufficiently low energy. Resolving the di-
rection of emission adds another dimension to the issue as — ) _ ) o _
even for fixed energy and target J— the Shape Of the distribuhsted in the Capt|0n to F|g 4. Due to statistical correlation
tion is seen to drastically depend a@n For example, for 100 between path length and the number of elastic collisions, the
eV electrons, Fig. 3 shows a wide range of possible distribudepicted path-length distributions closely reproduce the
tions: monotonic decrease far=0.2, a maximum ah=4 shapes of the respectiW,, in Fig. 3b), although the tran-
for »=0.5, and even a distribution with two pealat n  sition fromW, (7o, 7) versusn to Q(7y,7;R) versusR/\g
=1 andn=38) for »=1. results in a smoothening effetin particular, the path-length

Figure 4 shows the corresponding distributions of pathdistributions in Fig. 4 show the same variety of shapes and
lengths for the emitted electrons calculated from Ekf)  peak locations as discussed above \dy; in general, this
and given in units ok;l; the respective values of, (as  situation discourages the use of simple and inflexible models

determined from the cross sections plotted in Fig.aPe  for Q(7q,7;R).
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B. Extraction of the inelastic mean free path

From Egs.(17) and(18), the elastic-peak intensity is Vou
v s (e )y 29 ]
ol 70, 7)= 2\ Nt n(70,7). (26)

SinceW,, are non-negative, E@26) is a monotonic function
of Nin/(Ngt\in). Therefore Eq(26) allows one to uniquely 001k
extract \;, if W, and A, are known and the elastic-peak
intensity is measured for a given angle of emission. This is
the basic idea behind the EPES metfot.

To test the procedure, the values of inelastic mean free
path used in this paper were determined in this way from the
Monte Carlo results of Dubust all® for the elastic-peak
intensities which thus served as a substitute for experimenta
V, data. Extracted\;, values were in particular used for
evaluation of the elastic-peak intensity, from E@6); cf.
Sec. IV D for comparison with original Monte Carlo d4ta
for a range of solids and energies. Elastic-collision cross sec
tions utilized in Ref. 15 were the same as in the present
calculations, and th&;, extraction procedure accurately re-
produced the IMFP values according to the general TPP-2V
formula®* underlying the MC calculations. In particular, the
resulting inelastic-collision number distributions and elastic-
peak intensitiegcf. Secs. IV C and IV ) were practically 0.00
identical to those obtained by direct application of the
TPP-2M formula for\;,; minor deviations were observed g3}
only in a few cases associated with significant inaccuracies
of the MC results; cf. Sec. IV D below.

As expected, in most cases thg-extraction procedure
provided equivalent results when applied for different ranges 902
of emission angles. There were a few exceptions, however
most notably Cu and Au at 300 eV and Ag at 500 &Y.

Figs. 8b)—8(d) below]; as discussed in Sec. IV D, in these (¢
cases the Monte Carlo results are appreciably inaccurate, an

caution had to be exercised when picking the range of emis-

sion angles for extraction of;,. To the extent that other —
factors(such as, e.g., surface excitations and surface rough 90-00
nesg can be neglected, this example shows that the require . .
ment of the extracted IMFP being independent of the emis- Number of elastic collisions: n

sion and |nC|denpe ar)g'les can be gaSIIy utilized to test FIG. 5. (Color onling DistributionsV,(79=1,7) of elastically
whether the elastic-collision cross section used and calculgs,cyscattered electrons according to the number of elastic colli-

tion procedure applied are consistent with measured elastigjons n. Plotted are distributions for a few specific emission angles

0.00

0.10

0.05p

5000 eV: b
—=—alln
——n =1
—+—n =05 ]

—v—n = 0.2

0 5 10

peak intensities. (7=1,0.5,0.2) and all emission directiofg'§ Von(70=1,7)d7,
marked “all " ]. Normal incidence f,=1), Au target, initial en-
C. Inelastic collision-number distribution ergies 100, 500, 5000 eWtop to bottom.

Figure 5 shows the distributions,,, of electrons emitted
without inelastic scattering according to the numipenf  confirmed by comparison of Figs(l8 and 5. However, the
elastic-scattering events for various emission angles. In aglecrease still is not fast enough to neglect the higher-order
cordance with Eq(18), for fixed incidence and emission Vg, contributions altogether: for example, except for angles
angles, Vg, is simply related to W,: Von(70,7) of emission close to the surface plane, Fig. 5 indicates a
=W, (70, 7)/(1+N\g/\;p)"; i.e., Von /W, monotonically de-  significant contribution to the elastic peak from electrons that
creases with increasing. Thus, compared to the total have been elastically scattered more than 5 times.
elastic-collision number distribution, largeeontributions to Figures 6a) and 6b) show the distribution¥,,, andV,,,
elastic-peak intensityre strongly reduced due to statistical respectively, as a function aof=| cosé|. V, is the angular
correlation between the numbers of elastic and inelastic coldistribution of electrons emitted without inelastic scattering
lisions suffered by an electron. In particular, compared tcandV;, the distribution of electrons that have been inelasti-
W,, Vg is more likely to decrease monotonically which is cally scattered once. It is clearly seen that, as expected, the
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v 0.010

V, |
o Top to bottom: 100 eV

n=1234,5

0.02

In

0.005
0.01

0.00 0.000
0.04
[500 eV |
0.10
Top to bottom: Top to bottom:
n=12,3,45 n=1234,5
{ 0.02
0.05

0.00 0.00
0.03 b 5000 eV | i 0.010 p | 5000 eV I
Top to bottom:
0.02k n=122345 d Bottom to top:
n=12,34,5

0.005

{

0.01

0.000
0000 0.5 1.0 0.0 0.5 1.0

(b) n=lcosbl

(a) n=lcosol

FIG. 6. (Color onling (a): DistributionsV,,(7o=1,7) in cosinezn of emission angle for electromdasticallybackscattered after a certain
number =1, ...,5) ofelastic collisions. Normal incidencepf=1), Au target, initial energies 100, 500, 5000 &@p to bottom. (b):
Distributions V1,(79=1,7) in cosine » of emission angle for electrons backscattered aftsingle inelasticand a certain numbem(
=1,...,5) ofelastic collisions. Normal incidencepf=1), Au target, initial energies 100, 500, 5000 &dp to bottom.

relative importance of electrons that experienced multiple The above results indicate that significant inaccuracies
elastic collisions is larger fov,,, than forVy,. may be expected from models in which the first two scatter-
The distributionV,, of electrons that have undergone ing events are treated exactly while a rough approximation is
inelastic collisions(regardless of the number of elastic- used to describe multiply scattered electrons. The use of such
scattering evenjshas been calculated from E@L7) and is  models is especially problematic when the energy loss spec-
shown in Figs. 7 (distributions in emission direction for trum is calculated because then the relative contributions
variousm) and 7b) (distributions in the number of inelastic from large path lengthéand thereby from, for largen)
collisions for various angles of emissiorNote that, due to are more important. Note, however, that even for evaluation
correlation between the path length and the number of inelasf the elastic-peak intensity, both the transport and the OKG
tic collisions, the distributions in Fig.(B) are still smoother approximation have been found to give significant deviations
but otherwise very similar to the path-length distributions infrom Monte Carlo simulation¥>?°
Fig. 4. It should be noted that the present approach regards rel-
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V, vV |——
it | 100 eV | " \.51' | 100 eV |
0.08 0.08 n= 4
Top to bottom:
m =0,1,2,5,10
0.04 0.04
0.00 0.00
0.2 0.2
Top to bottom:
0.1 0.1
0.0 0.0
| 5000 eV | Top to bottom:
0.10f m=0,1,2,510 4 0.10
0.05 0.05
0.00 - 0.00
0.0 0.5 1.0
(a) n=lcosbl (b) Number of inelastic collisions: m

FIG. 7. (Color onling (a) DistributionsV,,(7o=1,7) in cosineyn of emission angle for electrons having experienced a certain number
of inelastic collisions n=0,1,2,5,10). Normal incidencen=1), Au target, initial energies 100, 500, 5000 éwp to botton). (b):
Distributions of backscattered electrons in the number of inelastic collisions for specific emission[afdleg=1,7) for »=1,0.5,0.2]
indicated on the graphs and summed over all emission direq‘:tﬁn‘dm( 170=1,7)d7n, marked “all " ]. Normal incidence fo=1), Au
target, initial energies 100, 500, 5000 é&dp to botton).

evant cross sections as functions of the initial energy of theV is expected to be inaccurate fef\;,=2-3, though still
incident electrons but independent of further energy changesnay be used, e.g., for the calculation &, and V;
This is no problem for the calculation of the elastic peak.from Eq. (5).

This approximation is also feasible for calculations of vari-
ous distributions as long as the relative energy loss is small
but it may limit the validity of results corresponding to elec-  Over the past decade, several approximations for the cal-
trons that have undergone a significant relative energy losgsulation of the angular distribution of elastically backscat-
This is most problematic at low energies. The typical energytered electrons have been proposed. In a recent critical
loss in a single inelastic scattering event~5—-20 eV!®  review!® the accuracy and range of validity of various ana-
Therefore, e.g., the results for 100 eV electrons in Fig. 7 mayytical models were investigated. In that paper, a Monte
be inaccurate fon=2-3. Similarly Q(R) in Fig. 4 at 100 Carlo simulation was taken as the exact reference and the

D. Elastic peak: Comparison with Monte Carlo results

155409-11



LEV G. GLAZOV AND SVEN TOUGAARD PHYSICAL REVIEW B 68, 155409 (2003

validity of the individual models was judged by the deviation respective Monte Carlo results. Likewise, the two minima of

from this reference. the 500 eV cross section in Fig. 2 — at scattering angles
In this section we show that the present solutions give ar=153° and 110° — result in the minima of the 500 eV angle

excellent comparison to the Monte Carlo calculations andjistribution in Fig. d) at 180°— §=25° and 73°, respec-

that in those cases where deviations occur these are actuatlyely; the 2°—3° deviations between locations of the distri-
due to deficiencies of the Monte Carlo scheme. The elastiqyytion’s minima in Fig. &) and those of the underlying

peak intensity distribution i¥q( 7o, 7). However, to getrea- ross section are due to the angle-dependent faetddli-
sonable statistics, the probabilities of elastic backscatteringy 1o K) in Eq. (27) and then>1 contributions to the

T5|3eff 15 were s?ymmed ovetr] emissliorll-angilehintervals Objistribution. The minima of the resulting 500 eV distribution
.5°. To compare Wo(7o,7), the resolution of the present in Fig. 8(d) are not as pronounced as those for 300 eV and do

calculations must be artificially lowered. We have thereforenot differ as much from the respective Monte Carlo results;

plotted however, as expected, the largest relative deviations
cos 4.5°0—1) (=15%) are observed at 186°9=25°, i.e., in the vicinity
f Vo(79,m)dn of the minimum associated with the sharpest extremum of
cos 4.5n the elastic-collision cross section in Fig. 2.
180°—4.5°(n—1)
= f Vo(70,| cosh|) sind dé
180°—4.5°n
versus 4.5¢2n—1)/2, V. SUMMARY AND OUTLOOK
as well as the  continuous  distribution  We have studied an application of the invariant-
(m/40)Vo(70,| cosél) sind where the normalization factor embedding approach for evaluation of the probability distri-
(m/40)rad=4.5°. butions of electrons backscattered from a solid surface. The

The results for Al, Cu, Ag, and Au at various energies aréyasic formalism was developed by Vicafiekho gave an
shown in Figs. 8a)-8(d). Except for a few cases, the agree- jnortant contribution to the fundamental understanding of
ment with the Monte Carlo simulations is excellent. The ex-pEE| 5 byt resorted to Monte Carlo simulations in order to

?;ptlons arefCuﬂ?t %OO eV, Ag atrSOQ et\(; alr)d .,tAut.at 30? tehvobtain explicit solutions. In the present paper, we demon-
€ reason for the |.screpancy €S n the imitations of €104 that deterministic invariant-embedding equations are
Monte Carlo scheme: the applied random number generator : .
: . more effectively solved numerically. It has been shown

for the elastic-scattering events does not sample the angl%?)ove that the resulting calculation scheme demonstrates sig-
correctly when the cross section shows several maxima and... 9 9
ificant advantages over the Monte Carlo approach as re-

minima as a function of the scattering angle. This problerr{1 : )
was acknowledged in the review paffeand is further illus- 92rds to both accuracy and CPU time required.

trated here for Au at 100 and 300 eV in Fig. 9 where the However, along with its advantages, our approach pres-
probabilities of elastic backscattering after one\(y;), two ently has_5|gn|f|cant limitations. As is us_ually_cha_racterlstlc
(~Vq), and=3 (~ 3,5 Vo) elastic collisions are com- Of analytical treatments, the assumptions implied above
pared to the Monte Carlo resulfsFor 100 eV, the agree- Make the present scheme less generally applicable than, e.g.,
ment is good, while for 300 eV there are large deviationsMonte Carlo simulations. Although the simplifications used
The latter deviations are seen to originate primarily from theare typically suitablefand are in fact rather commpifor

n=1 contribution(described by aexactformula within the ~ REELS- and EPES-related calculations, the present scheme
present approach; cf. Secs. Il B and IV avhich is most may not be applicable in a more general context, e.g., for a
sensitive to the shape of the elastic-collision cross section atomprehensive description of electron backscattering. Let us
scattering angles>90°: for normal incidence considered list here the most important limitations implied above.

here, then=1 contributions in Fig. 9left) are (i) The scheme is limited to the case of sufficiently small
. relative energy loss. This gives rise to a number of simplifi-
sin 6| cos| cations: variation of cross sections with instantaneous elec-

~Wy(70=1,7) sinfg~K(—| cosd|) (27)

1+|cosf| * tron energy is neglected; angular and energy loss scattering
events are statistically uncoupled and ascribed to, respec-
Comparing the calculated distributions to the underlyingtively, elastic and inelastic collisions; secondary electrons are
elastic-collision cross sectior§ike, e.g., those in Fig. 2  disregarded.
one concludes that the random number generator used in (ii) The target is assumed to be semi-infinite and homo-
Ref. 15 is inappropriate when there are sharp extrema,pf geneous, with an ideal planar surface. Thus, the technique
in scattering angle; such features are associated with theannot be directly utilized for analysis of concentration pro-
most drastic deviations between the present and Monte Carlfiles of inhomogeneous samples, etc.
results. For example, the cross section for Au at 300V (iii) While some applications in REELS to scattering as a
Fig. 2) exhibits two sharp minima at scattering angte80°,  function of azimuth angle would be highly desirable, in this
which are seen to result in the pronounced minima at 180paper only azimuth-integrated quantities were considered.
—6~30° and 60° of then=1 and total 300 eV distributions Consequently, the graphical examples refered exclusively to
in Figs. 8d) and 9(left), which, however, are smeared out in the case of normally incident electrons, although in fact the
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FIG. 8. (Color onling (a) Probability of elastic backscattering within emission-angle intervals 3862[4.5°(n—1)—4.5%]. Triangles:
present results. Squares: Monte Carlo results of Ref. 15. Solid lines show continuous distribati)¥ §( 7,=1,| cosé|) sin § in emission
angle(present calculationsNormal incidence f,=1), Al target, electron energies 100, 500, 5000(&p to bottom. (b) Same aga) for
Cu target and energies 100, 300, 500, 5000(eMSame asa) for Ag target.(d) Same aga) for Au target and energies 100, 300, 500, 5000
ev.
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FIG. 8. (Continued.

applied calculation scheme produces simultaneously similaally to the variables treated above. It is really striking that —
results for all incidence angles. in contrast to other approaches including Monte Carlo —
The latter limitation here is relatively easy to overcome. Itadditional resolving of azimuths within the present formal-
turns out that the present scheme is readily generalized tem is performedwithout appreciable loss of accuracy or
include computations with fully resolved azimutlagldition-  significant increase of CPU time; the latter typically in-
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creases only by a factor of 2 or less compared to the azimutterease of accuracy. A more appealing technique may be
integrated calculations described above. Such an extensidrased upon a nontrivial modification of the invariant-
of the calculation scheme and azimuth-resolved results wilembedding approach; such a work is now in progress.
be presented in a forthcoming paper.
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