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Electron backscattering from surfaces: The invariant-embedding approach
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1Institute of High Current Electronics, Akademichesky 4, Tomsk, Russia

2Physics Department, University of Southern Denmark, DK-5230, Odense M, Denmark
~Received 15 April 2003; published 10 October 2003!

Distributions of electrons reflected from a solid surface corresponding to a reflection electron energy loss
spectroscopy~REELS! experiment are calculated within the invariant-embedding approach. The technique is
based upon a formalism recently developed by Vicanek. In this paper we show that the pertinent balance
equations readily allow effective numerical evaluation of various electron distributions relevant for REELS.
The solutions are very accurate~with the relative errors readily reduced to&1024 for given cross sections! and
the resulting technique offers significant advantages over the Monte Carlo approach, though it is less generally
applicable. The approach delivers, in a single calculation, the probability distributions resolved in the number
of elastic as well as inelastic collisions for all angles of incidence and emission. From these results, one readily
obtains other related distributions, e.g., path length and energy spectra. Compared to Monte Carlo simulations,
the scheme is faster by up to several orders of magnitude while producing a better accuracy. For a wide range
of energies and targets, various distributions of backscattered electrons are exemplified and discussed. The
elastic-peak results and a procedure for extraction of the inelastic mean free path are tested by comparison to
recent Monte Carlo simulations and typically excellent agreement is found; discrepancies observed in a few
cases are shown to be due to deficiencies in the Monte Carlo scheme.
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I. INTRODUCTION

When a solid surface is bombarded with a monoenerg
beam of electrons, some of these are emitted after ha
suffered a number of elastic and inelastic collisions. The
ergy spectrum of backscattered electrons contains valu
information on the electronic excitations in the solid, givin
rise to the technique long known as reflection electron
ergy loss spectroscopy~REELS!.1 Some years ago, a simpl
algorithm was developed for the determination of the inel
tic electron scattering cross section from analysis of an
perimental REELS spectrum.2–4 This method allows quanti
tative interpretation and has been applied to many solids5

In principle, it is always possible to determine electr
fluxes relevant for quantitative analysis of REELS spectra
Monte Carlo simulations cf., for example, Refs. 6–8. Ho
ever, achieving good statistics in adequate simulations
quires typically a very large computational effort, as the c
culated fluxes should be ideally resolved in both emiss
direction and, e.g., the number of collisions or path length
most applications of REELS, this has resulted in either
plying rather rough approximations for the effects of elas
electron scattering or leaving unresolved some of the des
variables.

A similar and related problem arises in connection w
the determination of the inelastic electron mean free p
~IMFP! from a REELS experiment. This method relies on t
fact that the intensity of theelastically backscattered elec
trons depends strongly on the IMFP, which allows one
determine the latter by measuring the former8–11 and com-
paring the measurement to model calculations. In this
called elastic peak electron spectroscopy~EPES! method, the
elastic-peak intensity is usually calculated by Monte Ca
simulations of electron trajectories and accurate elas
scattering cross sections are assumed known, while the IM
0163-1829/2003/68~15!/155409~15!/$20.00 68 1554
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is treated as an adjustable parameter. Although the Mo
Carlo calculations are faster when only the elastic peak
tensity is needed rather than the distribution of collisions
the full energy spectra, it is still a very time-consumin
method. Therefore, various approximate solutions to ca
late the elastic peak intensity have been proposed. Th
include, e.g., the transport approximation12,13 and expansion
in multiple-scattering contributions.14 Both approximations
take advantage of the strong predominance for elastic s
tering in the forward direction. In a recent paper15 the range
of validity of some of these models was studied by compa
son to Monte Carlo simulations.

Significant progress was recently achieved by Vican6

within the framework of the invariant-embeddin
approach.16,17 Vicanek’s treatment is based upon balan
equations for the distributions of the number of elastic co
sions and path lengths for electrons emitted in a given s
angle, which allowed him to establish a simple analytic
relation between the two distributions. Finally, the elast
peak intensity and the inelastic-collision number distributi
~of primary interest for EPES and REELS, respectively! are
readily determined from the path length distribution, pr
vided that the mean free path for inelastic electron scatte
is known.

Although Vicanek’s analysis gave invaluable new insig
into the fundamental physics of REELS, the numerical c
culation technique developed in his paper6 still relied on
Monte Carlo results for one of the distributions. Vicanek th
used his analytical relations to calculate the path leng
inelastic-collision number, and energy distributions of t
emitted electrons from the simulated elastic-collision num
distribution. This calculation scheme offers certa
advantages6 but, being ultimately based upon Monte Car
~MC! results, it still has the corresponding limitations wi
respect to accuracy and computing time.
©2003 The American Physical Society09-1
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In the present paper, though basically following up
Ref. 6, we show that the invariant-embedding equations
low direct calculation of electron fluxes relevant for REEL
and EPES. This approach involves no simulations at
stage and, in our opinion, is a powerful alternative to M
based techniques though is not as generally applicable. It
significant advantages compared to the latter as regards
accuracyandcomputing speed. Depending on the set of re
solved variables, the technique is faster than compar
Monte Carlo simulations by up to several orders of mag
tude. It delivers practically exact results for a given elas
scattering cross section, and therefore the technique ha
difficulty in handling, e.g., cross sections with seve
maxima and minima in the angular distribution which c
cause problems in Monte Carlo simulations.15 Comparison of
the present results to those of recent simulations shows
occassional deviations observed are due to limitations of
Monte Carlo scheme.

Section II below serves to list the basic invarian
embedding equations and the main relations between var
distributions of interest; it also considers important gene
properties of the solutions. In Sec. III, we discuss briefly
numerical technique used to calculate electron fluxes and
timate computing time required. The capabilities of the a
proach are illustrated in Sec. IV where various exempl
results are presented, discussed, and compared to r
Monte Carlo simulations. Finally, Sec. V briefly conside
the main limitations of the approach at present and desir
extensions.

II. INVARIANT-EMBEDDING EQUATIONS
AND THEIR PROPERTIES

A. Basic relations

In this subsection we summarize the relevant results
Vicanek,6 with minor changes of notation and appropria
comments. Although more general treatments should be
sible, we will follow Ref. 6 and assume that the medium
semi-infinite and homogeneous, and that the energy varia
of all pertinent cross sections as well as angular deflect
in the inelastic scattering events are negligible. These a
reasonable approximations when only the part of the ene
spectrum that corresponds to smallrelative energy loss is
considered. Though with obvious reservations, the assu
tions are usually well fulfilled for calculations relevant fo
EPES and REELS, which typically use electrons of ene
>100 eV emitted after none or a few inelastic collisions.

Let the solid surface be bombarded by electrons of ene
E0 ~parametric dependence on which is omitted in furth
formulas! and direction of incidenceV05(u0 ,f0); some of
these will escape in the directionV5(u,f). Hereu0 andu
denote the incidence and emission angles with respect to
inward surface normal (0<u0,p/2,u<p; see Fig. 1!. Let
further Wn(V0 ,V) be the elastic-collision number distribu
tion; i.e., Wn(V0 ,V)d2V is the probability for an electron
incident in directionV0 to be emitted into the solid angl
(V,d2V) after n elastic collisions.

The basic idea in the invariant-embedding argumen
that the distribution of backscattered electrons from a se
15540
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infinite medium is unchanged when a layer~of the same
material! is added to the surface. The collisions that ta
place in the added infinitesimal layer may be divided in
four distinct collision processes, the joint effect of which o
Wn must cancel. This leads to the following recurrence re
tions for Wn ~Ref. 6!:

S 1

cosu0
1

1

u cosuu D Wn

lel
5dn1J1J3Wn211Wn213J

1 (
m

Wm3J3Wn212m . ~1!

Here, dn151 for n51 and 50 otherwise, lel
5@N * sel(V0 ,V)d2V#21 is the mean free path be
tween elastic collisions,Wn5Wn(V0 ,V), J5J(V0 ,V)
[Nsel(V0 ,V)/u cosu0u, N the atomic density of the solid
and sel(V0 ,V)d2V the elastic-collision differential cros
section forV0→V scattering. The symbol3 in Eq. ~1! sig-
nifies an integration of the type

A3B[ E d2V8A~V0 ,V8!B~V8,V!, ~2!

where the integration interval in each term corresponds
putting Wn(V0 ,V)50 for cosu0,0 and/or cosu.0. For
backscattered electrons we may also putWn[0 for n<0,
and thus the rightmost term in Eq.~1! vanishes forn<2 and
otherwise the summation extends over the interval 1<m
<n22. The right-hand side of Eq.~1! involves only func-
tionsWm with m,n; i.e., Eq.~1! is in fact an explicit recur-
rence formula that in principle allows one to evaluate t
functionsWn sequentially, starting from the obvious analy
cal result forn51:

W1~V0 ,V!5
Nlelsel~V0 ,V!u cosuu

cosu01u cosuu
. ~3!

As shown by Vicanek,6 the setWn at given incidence and
emission directionsV0 ,V ~or a range thereof! uniquely de-
termines the associated path length and inelastic-collis
number distributionsQ and Vm , which are defined as fol-

FIG. 1. Schematics of the REELS process considered in
paper. Note that the angles of incidenceu0 and emissionu are both
defined with respect to the inward surface normal.
9-2
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lows: Q(V0 ,V;R)d2V dR and Vm(V0 ,V)d2V are prob-
abilities for an electron incident in the directionV0 to be
emitted into the solid angle (V,d2V) after having, respec
tively, traveled the path length (R,dR) and experiencedm
inelasticcollisions within the solid. The principle of invari
ant embedding readily leads to a balance equation foQ
analogous to Eq.~1! ~Ref. 6!; comparison of the two equa
tions allows one to explicitly relate their solutions:

Q~V0 ,V;R!5
1

lel
e2R/lel (

n51

`
~R/lel!

n21

~n21!!
Wn~V0 ,V!.

~4!

From the path length distribution, an expression for
inelastic-collision number distribution Vm(V0 ,V)(m
50,1, . . . ) isfound by applying Poisson statistics for ea
path length:6

Vm~V0 ,V!5
1

m! E0

`

Q~V0 ,V;R!S R

l in
D m

e2R/l in dR ~5!

5 (
n51

`
~n1m21!!

m! ~n21!!

lel
ml in

n

~lel1l in!m1n
Wn~V0 ,V!,

~6!

wherel in is the inelastic mean free path. Finally, the ener
loss distribution is readily determined as~elastic peak ex-
cluded!

F1~V0 ,V,T!5 (
m51

`

Vm~V0 ,V!km~T!, ~7!

wherekm is them-fold convolution of the normalized exci
tation cross sectionk(T) ~Ref. 6!:

km~T!5 E km21~T8!k~T2T8!dT8. ~8!

In Eqs.~4!–~8! the quantities of interest are expressed
terms of the elastic-collision number distribution. The det
mination of the latter is then the only nontrivial task f
evaluation of quantities pertaining to electron backscatte
from solids. Thus, withWn and relevant mean free path
given, one immediately obtainsQ andVm by means of Eqs.
~4!–~6!. On the other hand, Eq.~6! with m50 is the elastic-
peak intensity. This can be used to determinel in , as com-
monly done for EPES, by adjustingl in until V0 equals the
measured elastic-peak intensity. Having calculatedVm , one
may further evaluate the REELS energy spectrum from
~7! utilizing available energy loss cross sections, e.g.,
approximate ‘‘universal’’ cross sections.18Alternatively, from
Vm and a measured REELS spectrum one may determ
k(T) applying one of the available simple deconvoluti
techniques6,19 to Eqs.~7! and ~8!.

In Ref. 6, Eq.~1! was utilized for analysis and derivatio
of Eq. ~4! but not for direct calculation ofWn . Instead, in
explicit examples, the elastic-collision number distributi
was determined by Monte Carlo simulations, whileQ, Vm ,
andF1 were thereafter calculated from Eqs.~4!, ~6!, and~7!.
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Due to the smoothing effect of the latter formulas, the p
cedure has the advantage that statistical noise in the d
mined distributions is reduced considerably compared
what one obtains by their direct Monte Carlo simulatio
However, below we demonstrate the inefficiency of this p
cedure compared to direct calculation ofWn from the deter-
ministic relations in Eq.~1!.

B. Azimuth-integrated distributions

Numerical evaluation of Eq.~1! is of course simpler for
the emission intensity integrated over the azimuthal varia
f. In order to make the approach more transparent,
present paper limits explicit calculations to azimut
integrated quantities, and thus graphical examples will re
to the case of normal incidence. Note, however, that ca
lations with fully resolved azimuths can be performed by t
same method, with only minor modifications andinsignifi-
cant increase in computing effort; this will be shown in our
forthcoming publication.

For the present calculations, we introduce the azimu
integrated distributions

H Wn~h0 ,h!

Q~h0 ,h;R!

Vn~h0 ,h!
J [ E

0

2pH Wn~V0 ,V!

Q~V0 ,V;R!

Vn~V0 ,V!
J df, ~9!

where h0[ cosu0 and h[u cosuu are cosines of incidence
and emission angles with respect to the inward and outw
surface normals, respectively; 0,h0 ,h<1. The physical
meaning of the functions in Eq.~9! is rather evident; e.g.
Wn(h0 ,h)dh is the probability for an electron incident i
directionh0 to be emitted within the cosine interval (h,dh)
after having experiencedn elastic collisions. The correspond
ing distribution in emissionangleis Wn(h0 ,u cosuu) sinu du.
Similar interpretations hold for the path-length (Q) and
inelastic-collision number (Vm) distributions ~see Table I!.
Implying axial symmetry for elastic scattering, we may e
press the normalized cross section for elastic collisions a
function of the cosine of the scattering angle:

K~V0•V![lelNsel~V0 ,V!, 2p E
21

1

K~h!dh51.

~10!

Now by integration of Eq.~1! over azimuths we get the
following recurrence formulas forWn :

S 1

h0
1

1

h DWn5dn1J21J13Wn211Wn213J1

1 (
m

Wm3J23Wn212m , ~11!

whereWn5Wn(h0 ,h), the symbol3 denotes now the inte
gration

A3B[ E
0

1

A~h0 ,h8!B~h8,h!dh8, ~12!

and the kernelsJ6 are defined by
9-3
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TABLE I. Overview of the distribution functions used in the paper.h05 cosu0 andh5u cosuu whereu0

andu are the electron incidence and emission angles defined in Fig. 1.

Probability for an electron incident in directionh0 to be emitted
within the cosine interval (h,dh) after

Wn(h0 ,h)dh having experiencedn elastic collisions
Vmn(h0 ,h)dh having experiencedm inelastic andn elastic collisions
Vm(h0 ,h)dh having experiencedm inelastic collisions
Q(h0 ,h;R)dh dR having traveled the path length (R,dR) in the solid
co
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J65J6~h0 ,h![
1

h0
K6~h0 ,h!,

K6~h0 ,h![ E
0

2p

K~6h0h1A12h0
2A12h2 cosf!df.

~13!

The latter kernels govern transformations of direction
sinesin a single elastic collision. Thus, for 0,h0 ,h<1, an
electron moving in directionh0 is scattered into the interva
(6h,dh) with the probabilityK6(h0 ,h)dh. In accordance
with this result, for anyh0 ,K6 satisfy the normalization
condition

E
0

1

@K1~h0 ,h!1K2~h0 ,h!#dh[1. ~14!

For a given elastic-collision cross section, formula~11! al-
lows one to recurrently calculate the functionsWn starting
from

Wn[0, n<0,

W1~h0 ,h!5J2~h0 ,h!
h0h

h01h
5K2~h0 ,h!

h

h01h
.

~15!

With minor changes, Eqs.~4!–~7! obviously hold also for the
azimuth-integrated functions. The respective formulas for
path-length and inelastic-collision number distributio
which will be utilized below, are

Q~h0 ,h;R!5
1

lel
e2R/lel (

n51

`
~R/lel!

n21

~n21!!
Wn~h0 ,h!,

~16!

Vm~h0 ,h![ (
n51

`

Vmn~h0 ,h!, ~17!

with

Vmn~h0 ,h!5
~n1m21!!

m! ~n21!!

lel
ml in

n

~lel1l in!m1n
Wn~h0 ,h!.

~18!

Note that the termsVmn defined in Eq.~18! deliver an even
more detailed description of the electron fluxes and repre
the ‘‘joint’’ collision number distribution. Thus
Vmn(h0 ,h)dh is the probability for an electron incident i
15540
-
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direction h0 to be emitted in the direction (h,dh) after m
(>0) inelastic andn(>1) elastic collisions. Table I gives a
overview of the probability distributions considered in th
paper.

C. Properties of solutions

Before we make explicit calculations, we consider fi
some general invariance properties of the distributions
fined above. First we note an important symmetry with
spect to exchange of incidence and emission directions.
ing the obvious propertyK6(h0 ,h)5K6(h,h0), one easily
proves by induction that the functionsWn(h0 ,h)/h, as de-
termined by Eqs.~11! and ~15!, are symmetric with respec
to the substitutionh0↔h. From Eqs.~16!–~18!, the same
result follows forVm(h0 ,h)/h andQ(h0 ,h,R)/h, i.e.,

h0Wn~h0 ,h!5hWn~h,h0!,

h0Q~h0 ,h;R!5hQ~h,h0 ;R!,

h0Vm~h0 ,h!5hVm~h,h0!. ~19!

Another important property of the distributions is implic
in the utilized elastic-collision expansion and the underlyi
use of the elastic mean free path as the auxiliary model
rameter. Typically, the cross sections for elastic scattering
strongly peaked in the forward direction and the detai
cross section for small-angle scattering is very dependen
the particular electron-atom interaction potential used to c
culate the cross section.20 Therefore, as has been pointed o
before,21 the elastic-scattering cross section and the co
spondinglel are not well defined. Furthermore, small-ang
scattering events have only a weak influence on the elec
trajectories and should therefore have negligible effect
measurable physical quantities. For these reasons, it cou
argued that expansion in the number of elastic-scatte
events might not be a good and efficient choice.

For example, the electron trajectories will be unchange
we introduce ‘‘collisions’’ with negligible angular scatterin
and transform the cross section fromsel(V0 ,V) to

s̃el~V0 ,V!5sel~V0 ,V!1s fd~V02V!, ~20!

wheres f is a constant. The physical solution must therefo
be insensitive to the transformation of cross section in
~20! although it will indeed change both the elastic mean f
pathlel and the elastic-collision number distributionWn to
9-4
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l̃el5
lell f

lel1l f
,

W̃n5 (
m51

n
~n21!!

~n2m!! ~m21!!

lel
n2ml f

m

~lel1l f !
n
Wm , ~21!

wherel f51/(Ns f). Equations~21! can be found from the
Poisson distribution and are also in agreement with the
currence relation~1!.

However, as could be expected, all quantities whose d
nition does not directly refer to the number of elastic co
sions are invariant with respect to the transformation~20!.
For example, substitutingl̃el andW̃n instead oflel andWn
into Eq. ~4!, one finds by simple though cumbersome eva
ation that the resulting path-length distribution is equal to
original: Q̃5Q. From Eqs.~5! and~7!, the same conclusion
immediately follows for bothVm and the energy spectrum
The above argument shows that, in spite of possible amb
ities in forward-elastic scattering and hence inlel andWn ,
the latter may still be used as auxiliary quantities in electr
transport calculations;lel andWn just should be considere
as definedapart from a transformation such as Eq.~21!.
However, while, e.g.,Q andVm are not sensitive to a renor
malization of forward-elastic scattering, convergence of
expansions~4! and ~6! may well be, and appropriately se
lected transformations~21! can be used for improving con
vergence in some cases.

Note that the invariance of measurable physical quanti
with respect to transformations of the cross sections in E
~20! and ~21! holds for exact solutions but not for mode
where only the first few collisions are described accurat
while the remaining scattering events are treated within so
approximation. One should be aware of this potential pr
lem when using the transport13 or modified P1 ~Ref. 22!
approximation for multiple (.1, 2, or 3! elastic collisions, as
well as the model of Oswald, Kasper, and Gaukler.14,15

III. NUMERICAL EVALUATION TECHNIQUE
AND ITS EFFICIENCY

A. Numerical procedure

For numerical evaluation ofWn , it is convenient to elimi-
nate the singularities (;1/h0,1/h) in Eq. ~11! by the substi-
tution

Wn~h0 ,h!5Tn~h0 ,h!
h

h01h
. ~22!

According to Eq. ~19!, the thus-defined functionsTn are
symmetric:Tn(h0 ,h)5Tn(h,h0). Recurrence relations fo
Tn follow immediately from Eq.~11!:

T15K2, Tn5K13Wn211Wn21
T 3K1

1(
m

Wm
T 3K23Wn212m for n>2, ~23!

where Wn[Wn(h0 ,h), Tn[Tn(h0 ,h), and K6

5K6(h0 ,h), while Wn
T[Wn(h,h0); the ‘‘product opera-
15540
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tion’’ 3 is defined by Eq.~12!. Neither the functions
Tn(h0 ,h) nor any kernels entering Eq.~23! contain singu-
larities in h0 ,h; thus Eqs.~23! and ~22! are well suited for
straightforward numerical tabulation of the elastic-collisi
number distribution. Note that this calculation scheme~as is
generally characteristic for the invariant-embedding a
proach! does not allow one to limit evaluation ofWn to, e.g.,
a specific incidence~or emission! angle. Thus, the recurrenc
relations requireWn(h0 ,h) to be calculated for the whole
range 0<h0 ,h<1 prior to evaluation ofWn11 and so the
elastic-collision number distribution is necessarily tabula
for all incidence and emission angles within a single cal
lation. Hence, in contrast to Monte Carlo simulations, o
does not have the option to reduce computing time by sim
reducing the set of considered incidence directions; howe
this limitation is compensated by many other advantages

For a given elastic-scattering cross section, the numer
procedure is naturally split into three steps:~i! First, the ker-
nels K6(h0 ,h) are tabulated according to Eq.~13!; this is
done only once for specificK(h), and the numerical accu
racy is chosen to be superior to that of the multiple integ
tions over direction cosines in part~ii !. ~ii ! Wn(h0 ,h) in the
whole range 0<h0 ,h<1 are sequentially tabulated up to
certain n5nm in accordance with Eqs.~22! and ~23!. ~iii !
Finally, various quantities and dependences of interest
extracted from or calculated with the use of theWn data
saved, including calculations of path-length and inelas
collision number distributions in accordance with Eqs.~16!–
~18!. Note that, if the cross-section data utilized has re
tively low resolution in scattering angle, a spline fit is ma
to the data; the resultingK(h), from Eq. ~10!, will be
thought of as exact and perfectly resolved in estimates of
calculation accuracy below.

The integrals involved can be evaluated by a vast var
of simple schemes with comparable merits; we shall o
stress nontrivial features and mention those details that
relevant for estimation of computing time and accuracy. T
range@0,1# of direction cosines (h0 andh) is split into Nh
grid intervals; the functionWn(h0 ,h) for a given n
is thus represented by an array of (Nh11)2 values.
The scheme implemented for calculation ofK63Wm

[ *0
1 K6(h0 ,h8)Wm(h8,h)dh8 and similar integrals is

based upon a three-point polynomial interpolation ofWm ;
we stress that interpolation of neitherK6 nor the whole in-
tegrand is implied. Such a scheme has the advantage th
accuracy is rather insensitive to the behavior of the kern
K6 ~e.g., the sharpness of the forward-scattering peak! be-
cause the resulting numerical errors are exclusively due
interpolation of smooth functionsWm , while the relevant
coefficients;K6 are once and for all evaluated in part~i!
with an accuracy far superior to that obtained from
Nh-point grid.

B. Efficiency of the calculation scheme

Let us now estimate the computing time for the recurr
Wn tabulation@step~ii ! above# which is by far the most time-
consuming part of the calculation for largenm andNh . The
basic operation here is evaluation ofK63Wm and similar
9-5
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integrals that enter Eq.~23!. Each integration~for all grid
values ofh0 ,h) takes.2Nh

3 floating-point arithmetic opera
tions. The right-hand side of Eq.~23! contains 2(n21) such
integrations, sostraightforward recurrent evaluation ofWn

up to n5nm would requireP(nm).2Nh
3nm

2 arithmetic op-
erations. However, there are two simple ways to econom
further: ~a! Using the symmetryTn(h0 ,h)5Tn(h,h0), one
reduces the number of independent terms~to be found by
actual integration! in the right-hand side of Eq.~23!. ~b! Pret-
abulation of integrals: the integralWn

T3K2 is tabulated and
saved immediately afterWn has been found, so that, whe
evaluating all higher-order functions, we perform only o
actual integration~instead of two! in each term of the sum in
Eq. ~23!. Eachof these methods reduces computing time
about a factor of 2, taking our estimate down to

P~nm!.
1

2
Nh

3nm
2 . ~24!

For example, forNh5100 andnm5100, the whole calcula-
tion for a specific electron energy and target material
volves .53109 floating-point arithmetic operations. Th
computing time amounts to&1 min on a relatively modern
PC. This computing speed was judged tolerable; theref
no further optimization of the scheme was attempted,
most of the calculations presented below were perform
with Nh5nm5100. The accuracy of the resultingWn(h0 ,h)
is easily tested, e.g., by repeating the calculations with
ferentNh ; as expected, the accuracy depends strongly onNh
and to a much lesser extent onn, h0 , h, and the actual cros
section. ForNh5100 andn<100, therelative errors in the
resultingWn values are typically;1025–1024. This accu-
racy usually well exceeds that of typical Monte Carlo sim
lations and the precision of available cross sections, so fo
practical purposes the present scheme’s results may b
garded asexactfor a given cross section. If needed, the c
culation time can be appreciably reduced in comparison w
the above example. The valuesnm5100 andNh5100 are
typically larger than needed for sufficiently accurate REEL
and EPES-related calculations. So while still maintaining
acceptable accuracy, bothNh and nm may usually be de-
creased by a factor of 2 or more; the correspondingP(nm)
scales in accordance with Eq.~24! and the computing time
may be reduced to seconds on a PC.

Let us now compare the calculation time of the pres
scheme with that of Monte Carlo simulations. Consider,
example, the simulations depicted in Fig. 2 of Vicane
paper6 (Wn for n<50, carbon target, normal incidence, a
emission angles counted!. For each value of electron energ
the distributionsWn shown are based onnt5106 trajectories.
Note that one cannot significantly economize by simple
duction of nt because moderate irregularities of results
already visible. This is of course due to resolving the num
of collisions: e.g., about half ofWn values shown lie below
0.005 and each is therefore contributed to by,5000 trajec-
tories. Now, calculatingWn up to n550, the Monte Carlo
program handleson average nc;25 collisions per trajectory
~this will suffice for an overall estimate, thoughnc is seen to
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depend slowly onE0 : nc,25 for smaller andnc.25 for
larger energies depicted!. Hence, for each primary energy
Vicanek’s Monte Carlo calculation requires

PMC.ntncPc;2.53107Pc ~25!

floating-point arithmetic operations, wherePc is the number
of operations required to handle one collision. This is to
compared to Eq.~24!: P(50).1.253103Nh

3 for nm550.
Now, Pc entering Eq.~25! may vary somewhat for differen
Monte Carlo codes, butPMC cannot be much less than, e.g
P(50).1.253109 for Nh5100 @and must well exceed
P(50).1.63108 for Nh550]. Thus, in this example, the
present scheme~with nm550, Nh5100) and the Monte
Carlo algorithm are comparable as regards to the needed
culation time. There are, however, drastic differences w
respect to the quantities calculated:

~i! While the MC calculation treats a single direction
incidence (h051 in Ref. 6!, the present scheme delive
results for allh0 at once~with 100-point resolution!.

~ii ! Also, while the MC calculation produces onlyWn
summed over all emission directions, the present scheme
solvesWn in the angle of emission~again, 100 points!.

~iii ! Also, while the accuracy of the MC results is subje
to statistical limitations, the present scheme delivers pra
cally exact results for a given cross section.

All in all, while the MC program resolvesone variable
~the number of elastic collisionsn), the present scheme re
solvesthree(n, h0 , h) and with better accuracy. Resolvin
incidence or emission angles or significant improvement
accuracy are of course possible also within the MC sche
but any of these tasks will involve appropriate increase
calculation time, in any case by order~s! of magnitude.

IV. EXAMPLES AND DISCUSSION

In this section we will illustrate some of the capabilities
the formalism presented above. The elastic-scattering c
sections needed for the calculations were taken from the
tabase developed by Jablonski and Tougaard.20,23 As an ex-

FIG. 2. ~Color online! Elastic-collision cross sectionssel ~Refs.
20 and 23! for electrons in gold at energies 100, 300, 500, and 50
eV; units ofa0

2/sr, a0.0.529Å being the Bohr radius.
9-6
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FIG. 3. ~Color online! ~a! DistributionsWn(h051,h) in cosineh of emission angle for electrons having experienced a certain num
of elastic collisions (n51,2,5,10,20,40). Normal incidence (h051), Au target, initial energies 100, 500, 5000 eV~top to bottom!. ~b!:
Distributions of backscattered electrons in the number of elastic collisions for specific emission angles@Wn(h051,h) for h51,0.5,0.2]
indicated on the graphs and summed over all emission directions@ *0

1 Wn(h051,h)dh, marked ‘‘all h ’’ #. Normal incidence (h051), Au
target, initial energies 100, 500, 5000 eV~top to bottom!.
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and
ample, Fig. 2 shows the cross sections for elastic scatte
of 100, 300, 500, and 5000 eV electrons in Au. The res
shown in Secs. IV A and IV C are all calculated for gold
these energies, while the examples in Sec. IV D are ev
ated for Au and a few other materials.

In all examples depicted below, the direction of the
coming electrons is taken to be normal to the surfaceh0
51). Note, however, that the calculation scheme descri
above delivers results for all incidence and emission an
at once; thus, all results shown below for a given energy
target are a minor fraction of those actually obtained withi
single program run.
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A. Elastic-collision number and path-length distributions

Figure 3~a! shows the elastic-collision number distribu
tion Wn calculated from Eq.~11! for electrons of 100, 500
and 5000 eV energy in gold as a function ofh5u cosuu (h
51 corresponds to electron emission normal to the surf
andh.0 to glancing electron emission!. For glancing emis-
sion angles withu290°,15° (h,0.25), it is seen that
W1.Wn for all n>2 although there is also a significan
contribution from electrons that have undergone more t
one scattering event. For larger emission angles, the mult
scattered electrons contribute more and, e.g., at 100 eV
h50.5 both W1 and W2 are smaller thanWn for all n
9-7
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LEV G. GLAZOV AND SVEN TOUGAARD PHYSICAL REVIEW B68, 155409 ~2003!
53–10; as evident from Fig. 3~b!, the same property hold
also for the elastic-collision number distribution summ
over all emission directions.

The distributionsW1 of electrons emitted after a singl
elastic collision demonstrate significant variation of th
shapes with energy. In accordance with Eqs.~13! and ~15!,
W1 for normal incidence is simply related to the elast
collision cross section for scattering angles.90°: W1(h0

51,h)52pK(2h)h/(11h). Thus, apart from the facto
2ph/(11h) common for all targets and energies, the dis
butionsW1 reflect the behavior of the respective cross s
tions and therefore vary with energy as much as the cu
shown in Fig. 2~at scattering angles.90°). Due to integra-
tions in Eq.~11!, the distributionsWn for largern are gener-
ally smoother and less sensitive to the details of the un
lying cross sections. Apart from normalization, the shape
the high-order distributions become similar for different e
ergies: with increasingn, Wn are seen to gradually approac
the ;h dependence corresponding to an isotropic flux
emitted electrons, but even for the largestn depicted in Fig.
3~a!, Wn still deviate appreciably from the simple;h law.

Figure 3~b! shows corresponding distributionsWn in the
numbern of elastic collisions for various emission angles
well as those integrated over all emission directions. Fon
<5, Wn may increase or decrease with increasingn depend-
ing on the energy and angle of emission. Except for ne
normal emission (h51), the general trend is thatWn de-
creases rather slowly withn and the fraction of emitted
electrons in a given direction that have undergone a few a
e.g., 40 elastic scattering events is comparable. Becaus
this result, models that expand the spectrum in terms of m
tiple elastic-scattering events need a large number of te
This is due to the high cross section for small-angle ela
scattering~see Fig. 2!.

Figure 3~b! demonstrates that the elastic-collision numb
distributionWn may either monotonically decrease withn or
have a maximum atn.1. For distributions integrated ove
emission direction, the issue was analyzed in some deta
Ref. 6. In the numerical examples therein~cf. Figs. 2 and 3
in Ref. 6!, all distributionsWn for a carbon target have
maximum atn.1 while those for gold decrease monoton
cally; this distinction could be readily attributed to the d
ferences of scattering cross sections for heavier and lig
atoms. Figure 3~b! covers a wider range of electron energi
and thus illustrates a wider range of options, indicating, e
that the angle-integrated distribution for gold also becom
nonmonotonic for sufficiently low energy. Resolving the d
rection of emission adds another dimension to the issue a
even for fixed energy and target — the shape of the distr
tion is seen to drastically depend onh. For example, for 100
eV electrons, Fig. 3 shows a wide range of possible distri
tions: monotonic decrease forh50.2, a maximum atn54
for h50.5, and even a distribution with two peaks~at n
51 andn58) for h51.

Figure 4 shows the corresponding distributions of p
lengths for the emitted electrons calculated from Eq.~16!
and given in units oflel

21 ; the respective values oflel ~as
determined from the cross sections plotted in Fig. 2! are
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listed in the caption to Fig. 4. Due to statistical correlati
between path length and the number of elastic collisions,
depicted path-length distributions closely reproduce
shapes of the respectiveWn in Fig. 3~b!, although the tran-
sition from Wn(h0 ,h) versusn to Q(h0 ,h;R) versusR/lel

results in a smoothening effect.6 In particular, the path-length
distributions in Fig. 4 show the same variety of shapes a
peak locations as discussed above forWn ; in general, this
situation discourages the use of simple and inflexible mod
for Q(h0 ,h;R).

FIG. 4. ~Color online! Distributions Q(h0 ,h;R) of emitted
electrons in path length traveled within the solid calculated fr
Eq. ~16! and given in units oflel

21 . The distributions are for spe
cific emission angles (h51,0.5,0.2 as indicated on the graphs! and
summed over all emission directions~marked ‘‘all h ’’ !. Normal
incidence (h051), Au target, initial energies 100, 500, 5000 e
~top to bottom!; the respective values oflel ~as determined fromsel

in Fig. 2! arelel51.70,3.91,11.82 Å .
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ELECTRON BACKSCATTERING FROM SURFACES: THE . . . PHYSICAL REVIEW B 68, 155409 ~2003!
B. Extraction of the inelastic mean free path

From Eqs.~17! and ~18!, the elastic-peak intensity is

V0~h0 ,h!5 (
n51

` S l in

lel1l in
D n

Wn~h0 ,h!. ~26!

SinceWn are non-negative, Eq.~26! is a monotonic function
of l in /(lel1l in). Therefore Eq.~26! allows one to uniquely
extract l in if Wn and lel are known and the elastic-pea
intensity is measured for a given angle of emission. This
the basic idea behind the EPES method.8–11

To test the procedure, the values of inelastic mean
path used in this paper were determined in this way from
Monte Carlo results of Dubuset al.15 for the elastic-peak
intensities which thus served as a substitute for experime
V0 data. Extractedl in values were in particular used fo
evaluation of the elastic-peak intensity, from Eq.~26!; cf.
Sec. IV D for comparison with original Monte Carlo data15

for a range of solids and energies. Elastic-collision cross s
tions utilized in Ref. 15 were the same as in the pres
calculations, and thel in extraction procedure accurately r
produced the IMFP values according to the general TPP
formula24 underlying the MC calculations. In particular, th
resulting inelastic-collision number distributions and elas
peak intensities~cf. Secs. IV C and IV D! were practically
identical to those obtained by direct application of t
TPP-2M formula forl in ; minor deviations were observe
only in a few cases associated with significant inaccura
of the MC results; cf. Sec. IV D below.

As expected, in most cases thel in-extraction procedure
provided equivalent results when applied for different ran
of emission angles. There were a few exceptions, howe
most notably Cu and Au at 300 eV and Ag at 500 eV@cf.
Figs. 8~b!–8~d! below#; as discussed in Sec. IV D, in thes
cases the Monte Carlo results are appreciably inaccurate
caution had to be exercised when picking the range of em
sion angles for extraction ofl in . To the extent that othe
factors~such as, e.g., surface excitations and surface rou
ness! can be neglected, this example shows that the requ
ment of the extracted IMFP being independent of the em
sion and incidence angles can be easily utilized to
whether the elastic-collision cross section used and calc
tion procedure applied are consistent with measured ela
peak intensities.

C. Inelastic collision-number distribution

Figure 5 shows the distributionsV0n of electrons emitted
without inelastic scattering according to the numbern of
elastic-scattering events for various emission angles. In
cordance with Eq.~18!, for fixed incidence and emissio
angles, V0n is simply related to Wn : V0n(h0 ,h)
5Wn(h0 ,h)/(11lel /l in)

n; i.e., V0n /Wn monotonically de-
creases with increasingn. Thus, compared to the tota
elastic-collision number distribution, large-n contributions to
elastic-peak intensityare strongly reduced due to statistic
correlation between the numbers of elastic and inelastic
lisions suffered by an electron. In particular, compared
Wn , V0n is more likely to decrease monotonically which
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confirmed by comparison of Figs. 3~b! and 5. However, the
decrease still is not fast enough to neglect the higher-o
V0n contributions altogether: for example, except for ang
of emission close to the surface plane, Fig. 5 indicate
significant contribution to the elastic peak from electrons t
have been elastically scattered more than 5 times.

Figures 6~a! and 6~b! show the distributionsV0n andV1n ,
respectively, as a function ofh5u cosuu. V0n is the angular
distribution of electrons emitted without inelastic scatteri
andV1n the distribution of electrons that have been inelas
cally scattered once. It is clearly seen that, as expected

FIG. 5. ~Color online! DistributionsV0n(h051,h) of elastically
backscattered electrons according to the number of elastic c
sions,n. Plotted are distributions for a few specific emission ang
(h51,0.5,0.2) and all emission directions@ *0

1 V0n(h051,h)dh,
marked ‘‘all h ’’ #. Normal incidence (h051), Au target, initial en-
ergies 100, 500, 5000 eV~top to bottom!.
9-9
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FIG. 6. ~Color online! ~a!: DistributionsV0n(h051,h) in cosineh of emission angle for electronselasticallybackscattered after a certai
number (n51, . . . ,5) ofelastic collisions. Normal incidence (h051), Au target, initial energies 100, 500, 5000 eV~top to bottom!. ~b!:
Distributions V1n(h051,h) in cosineh of emission angle for electrons backscattered after asingle inelasticand a certain number (n
51, . . . ,5) ofelastic collisions. Normal incidence (h051), Au target, initial energies 100, 500, 5000 eV~top to bottom!.
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relative importance of electrons that experienced multi
elastic collisions is larger forV1n than forV0n .

The distributionVm of electrons that have undergonem
inelastic collisions~regardless of the number of elasti
scattering events! has been calculated from Eq.~17! and is
shown in Figs. 7~a! ~distributions in emission direction fo
variousm) and 7~b! ~distributions in the number of inelasti
collisions for various angles of emission!. Note that, due to
correlation between the path length and the number of ine
tic collisions, the distributions in Fig. 7~b! are still smoother
but otherwise very similar to the path-length distributions
Fig. 4.
15540
e

s-

The above results indicate that significant inaccurac
may be expected from models in which the first two scatt
ing events are treated exactly while a rough approximatio
used to describe multiply scattered electrons. The use of s
models is especially problematic when the energy loss sp
trum is calculated because then the relative contributi
from large path lengths~and thereby fromWn for large n)
are more important. Note, however, that even for evaluat
of the elastic-peak intensity, both the transport and the O
approximation have been found to give significant deviatio
from Monte Carlo simulations.15,25

It should be noted that the present approach regards
9-10
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FIG. 7. ~Color online! ~a! DistributionsVm(h051,h) in cosineh of emission angle for electrons having experienced a certain num
of inelastic collisions (m50,1,2,5,10). Normal incidence (h051), Au target, initial energies 100, 500, 5000 eV~top to bottom!. ~b!:
Distributions of backscattered electrons in the number of inelastic collisions for specific emission angles@Vm(h051,h) for h51,0.5,0.2]
indicated on the graphs and summed over all emission directions@*0

1 Vm(h051,h)dh, marked ‘‘all h ’’ #. Normal incidence (h051), Au
target, initial energies 100, 500, 5000 eV~top to bottom!.
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evant cross sections as functions of the initial energy of
incident electrons but independent of further energy chan
This is no problem for the calculation of the elastic pea
This approximation is also feasible for calculations of va
ous distributions as long as the relative energy loss is sm
but it may limit the validity of results corresponding to ele
trons that have undergone a significant relative energy l
This is most problematic at low energies. The typical ene
loss in a single inelastic scattering event is;5 – 20 eV.18

Therefore, e.g., the results for 100 eV electrons in Fig. 7 m
be inaccurate forn*2–3. SimilarlyQ(R) in Fig. 4 at 100
15540
e
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eV is expected to be inaccurate forR/l in*2–3, though still
may be used, e.g., for the calculation ofV0 and V1
from Eq. ~5!.

D. Elastic peak: Comparison with Monte Carlo results

Over the past decade, several approximations for the
culation of the angular distribution of elastically backsc
tered electrons have been proposed. In a recent cri
review,15 the accuracy and range of validity of various an
lytical models were investigated. In that paper, a Mon
Carlo simulation was taken as the exact reference and
9-11
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LEV G. GLAZOV AND SVEN TOUGAARD PHYSICAL REVIEW B68, 155409 ~2003!
validity of the individual models was judged by the deviati
from this reference.

In this section we show that the present solutions give
excellent comparison to the Monte Carlo calculations a
that in those cases where deviations occur these are act
due to deficiencies of the Monte Carlo scheme. The elas
peak intensity distribution isV0(h0 ,h). However, to get rea-
sonable statistics, the probabilities of elastic backscatte
in Ref. 15 were summed over emission-angle intervals
4.5°. To compare toV0(h0 ,h), the resolution of the presen
calculations must be artificially lowered. We have therefo
plotted

E
cos 4.5°n

cos 4.5°(n21)

V0~h0 ,h!dh

5 E
180°24.5°n

180°24.5°(n21)

V0~h0 ,u cosuu! sinu du

versus 4.5°~2n21!/2,

as well as the continuous distributio
(p/40)V0(h0 ,u cosuu) sinu where the normalization facto
(p/40)rad54.5°.

The results for Al, Cu, Ag, and Au at various energies a
shown in Figs. 8~a!–8~d!. Except for a few cases, the agre
ment with the Monte Carlo simulations is excellent. The e
ceptions are Cu at 300 eV, Ag at 500 eV, and Au at 300
The reason for the discrepancy lies in the limitations of
Monte Carlo scheme: the applied random number gener
for the elastic-scattering events does not sample the an
correctly when the cross section shows several maxima
minima as a function of the scattering angle. This probl
was acknowledged in the review paper15 and is further illus-
trated here for Au at 100 and 300 eV in Fig. 9 where t
probabilities of elastic backscattering after one (;V01), two
(;V02), and >3 (; (n>3 V0n) elastic collisions are com
pared to the Monte Carlo results.15 For 100 eV, the agree
ment is good, while for 300 eV there are large deviatio
The latter deviations are seen to originate primarily from
n51 contribution~described by anexactformula within the
present approach; cf. Secs. II B and IV A! which is most
sensitive to the shape of the elastic-collision cross sectio
scattering angles.90°: for normal incidence considere
here, then51 contributions in Fig. 9~left! are

;W1~h051,h! sinu;K~2u cosuu!
sinuu cosuu
11u cosuu

. ~27!

Comparing the calculated distributions to the underly
elastic-collision cross sections~like, e.g., those in Fig. 2!,
one concludes that the random number generator use
Ref. 15 is inappropriate when there are sharp extrema ofsel
in scattering angle; such features are associated with
most drastic deviations between the present and Monte C
results. For example, the cross section for Au at 300 eV~cf.
Fig. 2! exhibits two sharp minima at scattering angles.90°,
which are seen to result in the pronounced minima at 1
2u;30° and 60° of then51 and total 300 eV distributions
in Figs. 8~d! and 9~left!, which, however, are smeared out
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respective Monte Carlo results. Likewise, the two minima
the 500 eV cross section in Fig. 2 — at scattering ang
.153° and 110° — result in the minima of the 500 eV ang
distribution in Fig. 8~d! at 180°2u.25° and 73°, respec
tively; the 2° –3° deviations between locations of the dis
bution’s minima in Fig. 8~d! and those of the underlying
cross section are due to the angle-dependent factor~addi-
tional to K) in Eq. ~27! and then.1 contributions to the
distribution. The minima of the resulting 500 eV distributio
in Fig. 8~d! are not as pronounced as those for 300 eV and
not differ as much from the respective Monte Carlo resu
however, as expected, the largest relative deviati
(.15%) are observed at 180°2u.25°, i.e., in the vicinity
of the minimum associated with the sharpest extremum
the elastic-collision cross section in Fig. 2.

V. SUMMARY AND OUTLOOK

We have studied an application of the invarian
embedding approach for evaluation of the probability dis
butions of electrons backscattered from a solid surface.
basic formalism was developed by Vicanek6 who gave an
important contribution to the fundamental understanding
REELS but resorted to Monte Carlo simulations in order
obtain explicit solutions. In the present paper, we dem
strated that deterministic invariant-embedding equations
more effectively solved numerically. It has been show
above that the resulting calculation scheme demonstrates
nificant advantages over the Monte Carlo approach as
gards to both accuracy and CPU time required.

However, along with its advantages, our approach pr
ently has significant limitations. As is usually characteris
of analytical treatments, the assumptions implied abo
make the present scheme less generally applicable than,
Monte Carlo simulations. Although the simplifications us
are typically suitable~and are in fact rather common! for
REELS- and EPES-related calculations, the present sch
may not be applicable in a more general context, e.g., fo
comprehensive description of electron backscattering. Le
list here the most important limitations implied above.

~i! The scheme is limited to the case of sufficiently sm
relative energy loss. This gives rise to a number of simpli
cations: variation of cross sections with instantaneous e
tron energy is neglected; angular and energy loss scatte
events are statistically uncoupled and ascribed to, res
tively, elastic and inelastic collisions; secondary electrons
disregarded.

~ii ! The target is assumed to be semi-infinite and hom
geneous, with an ideal planar surface. Thus, the techn
cannot be directly utilized for analysis of concentration p
files of inhomogeneous samples, etc.

~iii ! While some applications in REELS to scattering as
function of azimuth angle would be highly desirable, in th
paper only azimuth-integrated quantities were conside
Consequently, the graphical examples refered exclusivel
the case of normally incident electrons, although in fact
9-12



00

ELECTRON BACKSCATTERING FROM SURFACES: THE . . . PHYSICAL REVIEW B 68, 155409 ~2003!
FIG. 8. ~Color online! ~a! Probability of elastic backscattering within emission-angle intervals 180°2u5@4.5°(n21) –4.5°n#. Triangles:
present results. Squares: Monte Carlo results of Ref. 15. Solid lines show continuous distributions (p/40)V0(h051,u cosuu) sinu in emission
angle~present calculations!. Normal incidence (h051), Al target, electron energies 100, 500, 5000 eV~top to bottom!. ~b! Same as~a! for
Cu target and energies 100, 300, 500, 5000 eV.~c! Same as~a! for Ag target.~d! Same as~a! for Au target and energies 100, 300, 500, 50
eV.
155409-13
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FIG. 8. ~Continued!.
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applied calculation scheme produces simultaneously sim
results for all incidence angles.

The latter limitation here is relatively easy to overcome
turns out that the present scheme is readily generalize
include computations with fully resolved azimuths,addition-
15540
ar

t
to

ally to the variables treated above. It is really striking that
in contrast to other approaches including Monte Carlo
additional resolving of azimuths within the present form
ism is performedwithout appreciable loss of accuracy o
significant increase of CPU time; the latter typically i
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FIG. 9. ~Color online! Com-
parison of present ~left! and
Monte Carlo~Ref. 15! ~right! re-
sults for the total elastic-
backscattering probability@as in
Fig. 8~d!# and partial contributions
corresponding to certain number
n(1,2,or>3) of elastic collisions.
Total current: squares.n51: up
triangles. n52: down triangles.
n>3: diamonds. Normal inci-
dence (h051), Au target, elec-
tron energy 100 eV~top! and 300
eV ~bottom!.
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creases only by a factor of 2 or less compared to the azim
integrated calculations described above. Such an exten
of the calculation scheme and azimuth-resolved results
be presented in a forthcoming paper.

The first two items above are not as trivial. While th
equations of Sec. II are readily generalized to include a
trarily large energy losses and/or inhomogeneous targ
straightforward extension of the numerical scheme to th
cases would be associated with a drastic or even prohib
increase of the computing effort required and/or likewise
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