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Finite-size effects and localization properties of disordered quantum wires with chiral symmetry

G. Chiappe* and M. J. Sa´nchez†
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Finite-size effects in the localization properties of disordered quantum wires are analyzed through conduc-
tance calculations. Disorder is induced by introducing vacancies at random positions in the wire and thus
preserving the chiral symmetry. For quasi-one-dimensional geometries and low concentration of vacancies, an
exponential decay of the mean conductance with the wire length is obtained even at the center of the energy
band. For wide wires, finite-size effects cause the conductance to decay following a nonpure exponential law.
We propose an analytical formula for the mean conductance that reproduces accurately the numerical data for
both geometries. However, when the concentration of vacancies increases above a critical value, a transition
towards the suppression of the conductance occurs. This is a signature of the presence of ultra-localized states
trapped in finite regions of the sample.
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I. INTRODUCTION

Disorder effects in the transport properties of quant
wires have been the subject of extensive investigation
recent years. Among these works, models with pure
diagonal disorder have been studied in connection to pec
properties that seem to differentiate them from models w
pure diagonal disorder only.1–5 Unusual phenomena like
anomalies in the density of states~DOS! and in the localiza-
tion properties of quantum wires have been reported fo
random hopping model of disorder in the vicinity of ener
E50. As an example, in Refs. 2–4 the authors pointed
that for a wire with an odd number of channels and at
band center, the conductance decays algebraically with
wire length rather than exponentially, as is usual in the pr
lem of Anderson localization.6 These behaviors have bee
attributed to the existence of a delocalized state atE50
~Ref. 7,8! that arises as a consequence of an additional la
symmetry, absent in models with pure diagonal disorder. D
to this symmetry, referred as chiral, the eigenvalues appe
pairs 6E and the spectrum is symmetric with respect toE
50.2–4

However, for other models of disorder with chiral sym
metry the existence of a localized state near the center o
band is still a subject of debate. One source of discrepanc
the large localization length obtained near the center of
band, which makes it difficult to decide from numerical da
whether or not states are localized.

In view of this controversy, we find instructive to study a
alternative model of disorder that, like the random hopp
model, has chiral symmetry. The localization properties w
be inferred from conductance calculations performed
wirelike geometries. Disorder is induced by introducing
number of vacanciesNv at random positions in a regula
lattice that defines the wire. Vacancies represent sites wit
infinite energy that block the motion of the electrons. The
fore the only way an electron may propagate across
sample is through a path with no vacancies. This mo
could be thought as a limiting case of the random site p
colation problem9 known as the binary-alloy model.10,11
0163-1829/2003/68~15!/155408~5!/$20.00 68 1554
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For quasi-one-dimensional wires we show that, unlike
random hopping model, the present model of disorder exh
its exponential localization at the band center irrespective
the parity in the number of transmission channels. We p
pose an analytical formula that reproduces the behavio
the mean conductance as a function of the vacancy con
tration. For wide wires, as finite-size effects become imp
tant in the mesoscopic regime, a detailed analysis of the
fluence of the geometry on the conductance and on
localization properties will be performed.

As the vacancy concentration increases above a crit
value we show that ultralocalized states are formed. Th
states influence dramatically the value of the conducta
and a transition towards the suppression of the conducta
in the wires is observed.

The present model supports the conjecture that the ch
symmetry appears to be a necessary but not a sufficient
dition for the existence of anomalies at the band center in
localization properties of disordered quantum wires.

II. CONDUCTANCE CALCULATIONS

The wires are stripes of lengthL and widthW defined on
a square lattice. We employ the tight-binding Hamiltoni
with a single atomic level per site:

H52(
i , j i

ĉi
†ĉ j i

, ~1!

where the operatorĉi destroys an electron on the sitei. All
the hopping integrals are taken equal to21 and restricted to
nearest neighbors.j i labelsonly the existing nearest neigh
bors of sitei after introducingNv5a W L vacancies at ran-
dom positions. Ideal leads of widthW are attached at both
ends of the sample through hopping integrals equal to21,
and enter in the Hamiltonian, Eq.~1!, as complex
self-energies.12 The Landauer formalism13 is employed to
calculate the conductance for each realization of disor
Open boundary conditions are imposed in the direction tra
verse to conduction.
©2003 The American Physical Society08-1
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The present model of disorder has chiral~particle-hole!
symmetry. This is illustrated in Fig. 1, where we plot th
DOS as a function of the energyE for a wire of W55 and
L5100. For comparison we show the ideal situation~with-
out vacancies! and when the concentration of vacancies
a50.02. In both cases, the chiral symmetry is manifested
the symmetry of the spectrum with respect toE50 energy
axis.

The conductance of a quantum wire of widthW which
supportsN(E) open channels,

G[ (
n51

N(E)

g(n)5
e2

\ (
n,m51

N(E)

utn,mu2, ~2!

is related to the transmission amplitudestn,m connecting the
incoming moden at the entrance lead with the outgoin
modem in the exit lead. Therefore for a perfect wire with n
vacancies it is well known that the dimensionless cond
tanceg[G/(e2/\) increases by one unit when a new incom
ing channel is opened. ForN(E) open channels isg
5N(E), and at the band centerg(E50)5N(E50)5W.

In the following we will perform conductance calcula
tions as a function of the vacancy concentrationa. We will
focus on the results at the band center (E50). This is the
special energy value for which anomalies in the conducta
have been reported in the random hopping model
disorder.2–4 We will obtain an analytical formula that repro
duces quite satisfactorily the behavior of the mean cond
tance as a function of the vacancy concentration for qu
one-dimensional wires and also for wide wires in whichW
&L.

A. Quasi-one-dimensional wires

Here we present conductance calculations for quasi-o
dimensional wires whereW!L. Averages over configura
tions of disorder have been performed to obtain the m
conductance that unless other specification we will den

FIG. 1. Density of states~DOS! r as a function of the energyE
for a clean quantum wire~thin line! of W55 andL5100 and for
the same geometry but whena50.02 ~thick line!. The chirality
manifests in the symmetry with respect to theE50 axis.
15540
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for simplicity with the symbolg. The total number of vacan
cies for each concentration isNv5a L W.

We start analyzing the effect ofNv51 vacancy on the
conductance. Due to the fact that the perfect wire has tra
lation symmetry along the longitudinal direction (x), the
wire with one vacancy has inversion symmetry along t
direction with respect to a transverse line that contains
vacancy. Therefore the wave functions of the system w
one vacancy can be written as linear combinations of pr
ucts of plane waves along the direction of conduction a
functions with a node in the site of the vacancy in the tra
verse direction to conduction~along they line that contains
the site of the vacancy!. Then, due to the chiral symmetry
the number of active transverse modes at energyE50 is
determined by the number of independent solutions of
isolated vertical line that containsW21 sites. It is exactly
W21. Therefore the value of the conductance is reduced
one unit with respect to the value in the clean wire. That
g15W21, where the subscript refers to the number of v
cancies and it is understood thatE50.

If a second vacancy is added at the samey as the first one
but at a different coordinatex, the number of transvers
modes remains the same as in the case of one vaca
Therefore the conductance atE50 is still W21. On the
other hand, if the second vacancy is put at the samex coor-
dinate as the first one, but at a differenty coordinate, the
number of transverse channels is reduced by two with
spect to the value in the clean case. Therefore the con
tance atE50 would beW22. For any other spatial location
of the second vacancy, the separability among the transv
and longitudinal modes is lost. This implies that the cond
tance will not beexactly an integer number any more. I
order to have an insight about how the conductance is m
fied in a generic situation, we will keep in mind that th
effect of a single vacancy in a clean wire is to cut exactly o
channel regardless of the spatial location of the vacanc
the sample.

Alternatively, we could calculate the~mean!conductance
of a wire with only one vacancy as the sum of the individu
conductances ofW single channel conductors, each one w
a mean conductance of (W21)/W. This givesg15W@(W
21)/W#5W21, as we previously obtained. In the follow
ing to compute the conductance we imagine the wire as c
posed of single-channel conductors in parallel. This appro
mation neglects interference effects among the differ
transverse channels when vacancies are added and reli
the fact that the wire is quasi-one-dimensional~i.e., the en-
ergy separation between transverse modes is very large!. The
effect of the second vacancy will be to suppress exactly
channel in a ‘‘clean wire’’ composed ofW single-channel
conductors, each one with a mean conductance ofW
21)/W. Therefore the conductance forNv52 can be calcu-
lated as the sum of the conductances ofW21 single channel
conductors each one with an average conductance ofW
21)/W. This gives g25(W21)(W21)/W5W@(W
21)/W#2.

Following this simple scheme up toNv vacancies, we
obtain
8-2
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FINITE-SIZE EFFECTS AND LOCALIZATION . . . PHYSICAL REVIEW B68, 155408 ~2003!
gNv
5WS W21

W D Nv

5W expX2a W lnS W

W21DL C; ~3!

where we have replacedNv5aWL in the right-hand side in
order to show explicitly the exponential decay of the me
conductance with the length of the sample.

Therefore, from Eq.~3! one concludes that the quasi-on
dimensional wire withNv vacancies could be modeled asW
single-channel conductors in parallel, each one with an a
age conductance of@(W21)/W#Nv.

In the left ~right! panel of Fig. 2 we showg as a function
of the vacancy concentrationa for a wire of width W
56(W55) and L52000. The solid line in both panel
shows the exponential law, Eq.~3!, that follows accurately
the numerical results~dots! for an ample range of values o
a. It is interesting to remark that the localization propert
of this model do not depend on the parity of the number
transverse channels as it happens in the random hop
model studied in Refs. 2–4. However in a recent paper14 and
for the same model of disorder, it was shown that the m
conductance of a quantum wire with quantum point conta
can decay exponentially depending on the positions of
leads.

An analytical estimate of the localization lengthj can be
obtained from Eq.~3!,

j5
1

aW lnS W

W21D , ~4!

which in the limit of W;1 gives j;0. This is consistent
with the fact that only one vacancy suffices to suppress
conductance of a one-dimensional wire, that isg150 for
W51, as we have previously obtained. Moreover, whena

FIG. 2. Left panel: Mean conductanceg ~for 100 realizations of
disorder! at the band centerE50, as a function of the vacanc
concentrationa for a quantum wire ofW56 and L52000. The
dots are the numerical results and the full line is the analyt
estimate given by Eq.~3!. Right panel: Idem as left panel but for
wire of W55 andL52000.
15540
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;1/L, that is, whenNv;W, the conductance becomes low
than one, in agreement with Eq.~3! and the model of W
independent channels.

In the limit 1!W!L, j;1/a. WhenW!L, it is satis-
fied that the mean free pathl and the localization lengthj
are related byj5Wl .12 Thus l 5L/Nv , as expected for
quasi-one-dimensional samples.

B. Wide wires: Finite-size effects

When the aspect ratio of the sampler[W/L increases,
interference effects between the transverse channels bec
relevant. Therefore the conductance can not be calculate
a sum of the conductances of one-dimensional wires. A
consequence one should expect that Eq.~3! departs from the
numerical results when the aspect ratior &1.

As was already mentioned, when vacancies are adde
arbitrary locations in the sample, the wave functions can
be written as products of functions of the longitudinal coo
dinate by functions of the transverse coordinate. Disor
mixes the transverse and longitudinal modes and then
separability is lost.

When the first vacancy is added, exactly one channe
suppressed. This is the maximum suppression possible w
a site is eliminated and it is due to the fact that the ‘‘o
vacancy problem’’ is separable, as already discussed. H
ever, due to the mixing between channels, when a new
cancy is added the maximum value is not attained and
than one channel is effectively eliminated. Therefore the
ficiency of the vacancies for decreasing the conductanc
reduced.

In a classical picture the carriers can now propagate
lowing nonrectilinear paths along the direction of condu
tion, avoiding the obstacles~vacancies!. Therefore, even af-
ter including the rescaling of the mean conductance
channel each time a new vacancy is added@as it was done
when we obtained Eq.~3!#, the actual conductance for
given value ofa should be greater than the value predict
by the pure exponential decay, Eq.~3!.

Taking into account the effect described above, we p
pose for wide wires the following ansatz for the mean co
ductance as a function ofa,

g5W expX2aW lnS W2b

W211b DL C; ~5!

with b[(a) r(12a r /2). For a!1 or r !1, b→0 and the
pure exponential decay predicted in Eq.~3! is reobtained.

In Fig. 3 we show the conductances as a function ofa for
three different samples withW520 andL520,50, and 100.
The aspect ratios arer 51,0.4, and 0.2, respectively. It i
clear that even for relatively small concentrations, the p
exponential formula, Eq.~3!, departs from the numerical re
sults. On the other hand, Eq.~5! gives a quite satisfactory fi
to the numerical results even for large concentrations~see the
caption of Fig. 3!.

However, there is a critical value of the concentrati
above which the conductance falls abruptly towards ze
Figure 4 shows in a ln-lin plot the numerical values for t
mean conductance together with those predicted by Eq.~5!

l
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G. CHIAPPE AND M. J. SA´ NCHEZ PHYSICAL REVIEW B68, 155408 ~2003!
for two samples withW520 andL570 andL520, respec-
tively. In both plots, and in spite of the numerical fluctu
tions, the fall of the conductance towards zero is clearly
served. The suppression of the conductance is a signatu
the presence of ultralocalized states formed by the effec
the vacancies atE50. These ultralocalized states correspo
to eigenstates of the disorder isolatedWL̇ stripe which per-
sist even after the system is embedded with the leads~i.e.,
these eigenstates extend along a distanced,L). To illustrate
this point, we evaluate the DOS for a wire~stripe with leads!

FIG. 3. Mean conductanceg at E50, as a function of the va-
cancy concentrationa for quantum wires ofW520 andL5100
@the dots are the numerical results, the full line is the analyt
estimate given by Eq.~3!, and the thick full line is the analytica
estimate given by Eq.~5!#, L550 @the triangles are the numerica
results, the thin dashed line is the analytical estimate given by
~3! and the thick dashed line is the analytical estimate given by
~5!# and L520 @the crosses are the numerical results, the t
dotted-dashed line is the analytical estimate given by Eq.~3! and
the thick dotted-dashed line is the analytical estimate given by
~5!!.

FIG. 4. Left panel: Ln-lin plot of the mean conductanceg at
E50 as a function ofa for a quantum wire ofW520 andL570
@the squares are the numerical results and the full line is the
lytical estimate given by Eq.~5!#. Right panel: Idem as left pane
but for a wire ofW520 andL520.
15540
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and two values of the concentrationa, below and above the
critical value (a0) respectively. In order to have the exis
tence of ultralocalized states as evidence, we include in
computation of the DOS a small imaginary partd, such that
r(E)[Im( j1/(H2E1 id) j j . The small quantityd does not
modify the DOS when ultralocalized states are absent~re-
member that we are computing the DOS for an open syste!.
On the other hand, when the ultralocalized states exis
single pole in the DOS will appear atE50. It corresponds to
a peak with a height that increases linearly with 1/d as d
→0.

Figure 5 shows the DOS as a function of the energyE,
r(E), for a wire of L550 andW520 and two concentra
tions a50.02,a0 and a50.2.a0 (a0;0.12 for this
sample!.

The peak in the DOS atE50 for a50.2 is the signature
of the presence of ultralocalized states which are trappe
finite regions of the sample defined by the spatial distribut
of the vacancies. It should be remarked that it is not nec
sary that the vacancies completely enclose the region
which the state is trapped, as it was already noted in Ref.

It is worth to note that the smooth part of the DOS~that is,
obtained withd50) at E50 has a dip but it is not zero
showing the coexistence of ultralocalized states and gen
states at the same energy. As the conductance falls dow
zero for concentrationsa.a0, they should be spatially dis
connected~indeed the extended states must necessary c
from the leads!. Therefore, when ultralocalized states a
formed, the transport across the wire is forbidden.

As the aspect ratio of a sample increases, the value oa0
around which the transition takes place also increases. Th
consistent with the fact that interference effects between
gitudinal and transverse channels~which are maximized for
the square geometries! favors the conduction along th
sample.

l

q.
q.
n

q.

a-

FIG. 5. DOSr(E) for a wire of W520 andL550. The solid
~dashed! line corresponds to a concentrationa50.02(0.2) below
~above! the critical concentrationa0. The peak atE50 for a
50.2, r(0), is a signature of the presence of localized states.
order to show that the peak represents a Dirac’s delta function,
inset shows thatr(0) increases linearly with 1/d for a50.2
whereas fora50.02 it does not depend ond @d is the small imagi-
nary part defined to computer(E)].
8-4
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For a,a0, that is, before the transition towards the su
pression of the conductance occurs, the nonpure expone
law Eq. ~5! implies that, unlike the quasi one-dimension
wires, it is not possible to define a localization length in t
usual way~i.e., as the inverse of the decay rate in the ex
nential law for the conductance as a function of the len
L).

III. CONCLUSIONS

In this work we study the localization properties of diso
der quantum wires. Disorder is simulated distributing vac
cies at random positions in the sample and thus preser
the chiral symmetry. Conductance calculations atE50 have
been performed as a function of the concentration of vac
ciesa, in quasi-one-dimensional and in wide wires, resp
tively.

For quasi-one-dimensional wires we have shown that
conductance decays with the length of the wire following
exponential law irrespective of the parity in the number
transverse channels. This is at odds with previous res
reported for the random hopping model of disorder in wh
the scaling of the conductance at the band center would
pend on the parity of the number of transverse channels4

We have derived an analytical formula, Eq.~3!, that re-
produces quite accurately the behavior of the mean con
tance for an ample range of concentrationsa.

For wide wires and low values ofa a pure exponentia
decay of the mean conductance with the lengthL has also
been observed. This exponential localization is consis
with the quantum percolation transition predicted for t
binary-alloy model in 2d lattices ata50 ~Ref. 11! ~all the
states are exponentially localized for any amount of disor
in a 2d lattice!. Therefore, in an infinite system, only on
vacancy is enough to suppress the conductance.

However, for wide wires and greater values ofa, we
found that the conductance decays following a nonpure
ponential law. We have proposed an ansatz, Eq.~5!, that
takes into account how interference effects between chan
affect the conductance of the sample as the concentratioa
increases. If from Eq.~5! we define
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this quantity could be interpreted as a localization length t
depends on the finite dimensions of the wire.

Finally, a new abrupt transition to the suppression of
conductance is observed when the concentration of vacan
a goes beyond some critical valuea0 ~which is indeed
sample dependent! in a finite system. This transition, whic
is a signature of the formation atE50 of ultralocalized
states trapped in finite regions of the sample, can be
interpreted as the quantum analog of the classical clu
percolation transition~CPT!. Classically, the CPT and th
suppression of the conductivity occurs at the same crit
concentration.15 In a quantum system they could be sep
rated due to the fact that ultralocalized states could
formed in an infinite cluster for a finite valuea0.0.

The ultralocalized states are poles atE50 of the DOS,
even after the leads are included, and therefore should
spatially separated from any other extended state of
leads. We should mention that ultralocalized states atE50
have been already reported for the binary-alloy model in i
lated samples by Kirkpatrick and Eggarter.10 In addition, we
do not observe in the DOS a signature of the presence
ultralocalized states out of the band center when the leads
included.

In an infinite 2d quantum system the conductance is su
pressed as soon as a single vacancy is introduced, so
conductance is not of relevant magnitude to detect the qu
tum CPT. However, as in a finite quantum system there is
a complete suppression of the conductance for finite va
of a, and the conductance can be employed to estimate
critical concentration for the quantum CPT. We are curren
working along this line.
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