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Finite-size effects and localization properties of disordered quantum wires with chiral symmetry
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Finite-size effects in the localization properties of disordered quantum wires are analyzed through conduc-
tance calculations. Disorder is induced by introducing vacancies at random positions in the wire and thus
preserving the chiral symmetry. For quasi-one-dimensional geometries and low concentration of vacancies, an
exponential decay of the mean conductance with the wire length is obtained even at the center of the energy
band. For wide wires, finite-size effects cause the conductance to decay following a nonpure exponential law.
We propose an analytical formula for the mean conductance that reproduces accurately the numerical data for
both geometries. However, when the concentration of vacancies increases above a critical value, a transition
towards the suppression of the conductance occurs. This is a signature of the presence of ultra-localized states
trapped in finite regions of the sample.
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[. INTRODUCTION For quasi-one-dimensional wires we show that, unlike the
random hopping model, the present model of disorder exhib-

Disorder effects in the transport properties of quantumits exponential localization at the band center irrespective of
wires have been the subject of extensive investigations ithe parity in the number of transmission channels. We pro-
recent years. Among these works, models with pure offose an analytical formula that reproduces the behavior of
diagonal disorder have been studied in connection to peculidhe mean conductance as a function of the vacancy concen-
properties that seem to differentiate them from models witHration. For wide wires, as finite-size effects become impor-
pure diagonal disorder only® Unusual phenomena like tantin the mesoscopic regime, a detailed analysis of the in-
anomalies in the density of statd30S) and in the localiza- fluence of the geometry on the conductance and on the
tion properties of quantum wires have been reported for docalization properties will be performed.
random hopping model of disorder in the vicinity of energy ~ As the vacancy concentration increases above a critical
E=0. As an example, in Refs. 2—4 the authors pointed ouvalue we show that ultralocalized states are formed. These
that for a wire with an odd number of channels and at thestates influence dramatically the value of the conductance
band center, the conductance decays algebraically with th@nd a transition towards the suppression of the conductance
wire length rather than exponentially, as is usual in the probin the wires is observed.
lem of Anderson localizatioh.These behaviors have been  The present model supports the conjecture that the chiral
attributed to the existence of a delocalized statEat0 ~ Symmetry appears to be a necessary but not a sufficient con-
(Ref. 7,9 that arises as a consequence of an additional latticgition for the existence of anomalies at the band center in the
symmetry, absent in models with pure diagonal disorder. Duéocalization properties of disordered quantum wires.
to this symmetry, referred as chiral, the eigenvalues appear in
pairsziz-‘E and the spectrum is symmetric with respecttto II. CONDUCTANCE CALCULATIONS
=0.7"

However, for other models of disorder with chiral sym- The wires are stripes of |engthand qulth\_lv defmec_i on
metry the existence of a localized state near the center of th Square lattice. We employ the tight-binding Hamiltonian
band is still a subject of debate. One source of discrepancy &ith @ single atomic level per site:
the large localization length obtained near the center of the
band, which makes it difficult to decide from numerical data — 3 ata

. H=-2 ¢'c, (1)
whether or not states are localized. i '

In view of this controversy, we find instructive to study an R
alternative model of disorder that, like the random hoppingwhere the operatoe; destroys an electron on the siteAll
model, has chiral symmetry. The localization properties willthe hopping integrals are taken equaHd and restricted to
be inferred from conductance calculations performed imearest neighborg; labelsonly the existing nearest neigh-
wirelike geometries. Disorder is induced by introducing abors of sitei after introducingN, =« W L vacancies at ran-
number of vacancie®, at random positions in a regular dom positions. Ideal leads of widW are attached at both
lattice that defines the wire. Vacancies represent sites with aends of the sample through hopping integrals equat fig
infinite energy that block the motion of the electrons. There-and enter in the Hamiltonian, Eq(1), as complex
fore the only way an electron may propagate across theelf-energies? The Landauer formalisi is employed to
sample is through a path with no vacancies. This modetalculate the conductance for each realization of disorder.
could be thought as a limiting case of the random site perOpen boundary conditions are imposed in the direction trans-
colation probler known as the binary-alloy modéf:*t verse to conduction.
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! ' ' T ' T ' for simplicity with the symboly. The total number of vacan-
cies for each concentration i$,=a L W.
osk _ We start analyzing the effect dfi,=1 vacancy on the

conductance. Due to the fact that the perfect wire has trans-
lation symmetry along the longitudinal directiox)( the

06 7 wire with one vacancy has inversion symmetry along this
p direction with respect to a transverse line that contains the
vacancy. Therefore the wave functions of the system with
one vacancy can be written as linear combinations of prod-
ucts of plane waves along the direction of conduction and
02~ . functions with a node in the site of the vacancy in the trans-
verse direction to conductiofalong they line that contains
the site of the vacangyThen, due to the chiral symmetry,

4 2 0 2 4 the number of active transverse modes at endfgyO is
E determined by the number of independent solutions of the

FIG. 1. Density of state@DOS) p as a function of the enerdy isolated vertical line that containd/— 1 sites. It _is exactly
for a clean quantum wiréhin line) of W=5 andL =100 and for W-1. The_refore the value of the C_ondUCtance 'S_ reduced_ by
the same geometry but when=0.02 (thick line). The chirality ~ ON€ unit with respect to the value in the clean wire. That is-

04 =

manifests in the symmetry with respect to fhe:0 axis. g,=W-1, where the subscript refers to the number of va-
cancies and it is understood tHat 0.
The present model of disorder has chifparticle-hole If a second vacancy is added at the sanaes the first one

symmetry. This is illustrated in Fig. 1, where we plot the but at a different coordinate, the number of transverse
DOS as a function of the enerdyfor a wire of W=5 and modes remains the same as in the case of one vacancy.
L=100. For comparison we show the ideal situatiaith-  Therefore the conductance Et=0 is still W—1. On the

out vacanciesand when the concentration of vacancies isother hand, if the second vacancy is put at the saroeor-
a=0.02. In both cases, the chiral symmetry is manifested irdinate as the first one, but at a differgnttoordinate, the

the symmetry of the spectrum with respectBe-0 energy number of transverse channels is reduced by two with re-

axis. spect to the value in the clean case. Therefore the conduc-
The conductance of a quantum wire of widiti which  tance aE=0 would beW—2. For any other spatial location
supportsN(E) open channels, of the second vacancy, the separability among the transverse
and longitudinal modes is lost. This implies that the conduc-
N(E) 2 NE) tance will not beexactly an integer number any more. In
G= n21 g(“’=g n; L |tn,m|2, (2 order to have an insight about how the conductance is modi-

fied in a generic situation, we will keep in mind that the

is related to the transmission amplitudgs, connecting the effect of a single vacancy in a cllean wirg is to cut exactly one
incoming moden at the entrance lead with the outgoing channel regardless of the spatial location of the vacancy in
modemin the exit lead. Therefore for a perfect wire with no the sample.
vacancies it is well known that the dimensionless conduc- Alternatively, we could calculate thgneanconductance
tanceg=G/(e%/%) increases by one unit when a new incom- of a wire with only one vacancy as the sum of the individual
ing channel is opened. FoN(E) open channels isy conductances diV single channel conductors, each one with
=N(E), and at the band centg(E=0)=N(E=0)=W. a mean conductance oWW— ;)/W. This _give391:W[(W

In the following we will perform conductance calcula- —1)/W]=W—1, as we previously obtained. In the follow-
tions as a function of the vacancy concentratianwe will N to compute the conductance we imagine the wire as com-
focus on the results at the band cente=0). This is the posed of single-channel conductors in parallel. This approxi-

special energy value for which anomalies in the conductancB'ation neglects interference effects among the different
have been reported in the random hopping model ofransverse channels when vacancies are added and relies on

disorde”* We will obtain an analytical formula that repro- th€ fact that the wire is quasi-one-dimensiofia., the en-
duces quite satisfactorily the behavior of the mean conducE'9Y Separation between transverse modes is very)large

tance as a function of the vacancy concentration for quasi€fect of the second vacancy will be to suppress exactly one

one-dimensional wires and also for wide wires in whish ~channel in a “clean wire” composed AV single-channel
=L conductors, each one with a mean conductance Wf (

—1)/W. Therefore the conductance fidf,=2 can be calcu-

lated as the sum of the conductance$\6f 1 single channel

conductors each one with an average conductance\bf (
Here we present conductance calculations for quasi-one-1)/W. This gives g,=(W—-1)(W—-1)/W=W[(W

dimensional wires wher8V<L. Averages over configura- —1)/W].

tions of disorder have been performed to obtain the mean Following this simple scheme up td, vacancies, we

conductance that unless other specification we will denotebtain

A. Quasi-one-dimensional wires
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— ~1/L, thatis, wherN,~W, the conductance becomes lower
than one, in agreement with E¢B) and the model of W
independent channels.

7] In the limit 1<W<L, &é~1/a. WhenW<L, it is satis-
fied that the mean free path and the localization lengtl
are related byt=W/.'? Thus /=L/N,, as expected for
quasi-one-dimensional samples.

7 B. Wide wires: Finite-size effects

] When the aspect ratio of the sampleW/L increases,
. interference effects between the transverse channels become
relevant. Therefore the conductance can not be calculated as
Y . . a sum of the conductances of one-dimensional wires. As a
TR T a7 el S T T T Rt Y consequence one should expect that Bydeparts from the
a a numerical results when the aspect ratis 1.

FIG. 2. Left panel: Mean conductanggfor 100 realizations of As was already mentioned, when vacancies are added at
disordej at the band centeE=0, as a function of the vacancy arbitrary locations in the sample, the wave functions cannot
concentratione for a quantum wire oMW=6 andL=2000. The b€ written as products of functions of the longitudinal coor-
dots are the numerical results and the full line is the analyticadinate by functions of the transverse coordinate. Disorder
estimate given by Eq3). Right panel: Idem as left panel but for a Mixes the transverse and longitudinal modes and then the

wire of W=5 andL =2000. separability is lost.
When the first vacancy is added, exactly one channel is
W—1\No
—— =Wexg—aWin

suppressed. This is the maximum suppression possible when
L); (3) asite is eliminated and it is due to the fact that the “one
w vacancy problem” is separable, as already discussed. How-
ever, due to the mixing between channels, when a new va-
where we have replaced, = «WL in the right-hand side in cancy is added the maximum value is not attained and less
order to show explicitly the exponential decay of the mearthan one channel is effectively eliminated. Therefore the ef-
conductance with the length of the sample. ficiency of the vacancies for decreasing the conductance is

Therefore, from Eq(3) one concludes that the quasi-one- reduced.
dimensional wire withN,, vacancies could be modeled \a5 In a classical picture the carriers can now propagate fol-
single-channel conductors in parallel, each one with an avetowing nonrectilinear paths along the direction of conduc-
age conductance ¢{W—1)/W]No. tion, avoiding the obstaclesacancies Therefore, even af-

In the left(right) panel of Fig. 2 we show as a function ter including the rescaling of the mean conductance per
of the vacancy concentration for a wire of width W  channel each time a new vacancy is adfiasl it was done
=6(W=5) and L=2000. The solid line in both panels When we obtained Eq(3)], the actual conductance for a
shows the exponential law, E¢B), that follows accurately given value ofa should be greater than the value predicted
the numerical result&ots for an ample range of values of by the pure exponential decay, ES).

a. It is interesting to remark that the localization properties Taking into account the effect described above, we pro-
of this model do not depend on the parity of the number ofpose for wide wires the following ansatz for the mean con-
transverse channels as it happens in the random hoppirfjictance as a function af,
model studied in Refs. 2—4. However in a recent pjamnd
for the same model of disorder, it was shown that the mean _ '{_ ( W-g )

. . . g=Wexpg —aWIn L[ (5)
conductance of a quantum wire with quantum point contacts W-1+5
can decay exponentially depending on the positions of th%vith B=(a)'(1— ). For a<1 orr<1, B—0 and the

leads. . . . . )
. . — pure exponential decay predicted in E8) is reobtained.
Obg?nzgilrggaég(s;')mate of the localization lenggfcan be In Fig. 3 we show the conductances as a function édr
' three different samples with/=20 andL =20,50, and 100.
The aspect ratios are=1,0.4, and 0.2, respectively. It is
1 clear that even for relatively small concentrations, the pure
) , 4) exponential formula, Eq.3), departs from the numerical re-

On, =W W—1

g:

sults. On the other hand, E€p) gives a quite satisfactory fit

to the numerical results even for large concentratises the
caption of Fig. 3.

which in the limit of W~1 givesé~0. This is consistent However, there is a critical value of the concentration
with the fact that only one vacancy suffices to suppress thabove which the conductance falls abruptly towards zero.
conductance of a one-dimensional wire, thatgis=0 for  Figure 4 shows in a In-lin plot the numerical values for the
W=1, as we have previously obtained. Moreover, wlaen mean conductance together with those predicted by(H&q.

ann(W—l
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FIG. 3. Mean conductanag at E=0, as a function of the va-
cancy concentratiorr for quantum wires ofW=20 andL =100 FIG. 5. DOSp(E) for a wire of W=20 andL=50. The solid
[the dots are the numerical results, the full line is the analytical(dashed line corresponds to a concentratian=0.02(0.2) below
estimate given by Eq3), and the thick full line is the analytical (above the critical concentrationy. The peak atE=0 for a
estimate given by Eq5)], L=50 [the triangles are the numerical =0.2, p(0), is asignature of the presence of localized states. In
results, the thin dashed line is the analytical estimate given by Ecprder to show that the peak represents a Dirac’s delta function, the
(3) and the thick dashed line is the analytical estimate given by Edinset shows thatp(0) increases linearly with & for o=0.2
(5)] and L=20 [the crosses are the numerical results, the thinwhereas forx=0.02 it does not depend ah[ § is the small imagi-
dotted-dashed line is the analytical estimate given by (Bnand  nary part defined to compuis(E)].

the thick dotted-dashed line is the analytical estimate given by Eg. )
(5)). and two values of the concentratian below and above the

critical value (o) respectively. In order to have the exis-
. tence of ultralocalized states as evidence, we include in the
for two samples withV=20 andL =70 andL =20, respec- .10 tation of the DOS a small imaginary partsuch that
t!vely. In both plots, and in spite of the numer_lcal fluctua- p(E)=ImX,1/(H—E+i5); . The small quantitys does not
tions, the fall of the conductance towards zero is clearly Obmodify the DOS when ultralocalized states are abgest
served. The suppression of the conductance is a signature gfember that we are computing the DOS for an open system
the presence of ultralocalized states formed by the effect ofn the other hand, when the ultralocalized states exist, a
the vacancies &= 0. These ultralocalized states correspondsing|e pole in the DOS will appear Bt=0. It corresponds to
to eigenstates of the disorder isolattl stripe which per- a peak with a height that increases linearly witt# s &
sist even after the system is embedded with the léeds  —O0.
these eigenstates extend along a distahcé). To illustrate Figure 5 shows the DOS as a function of the endegy
this point, we evaluate the DOS for a wigtripe with leads  p(E), for a wire of L=50 andW=20 and two concentra-
tions a=0.02<ay and a=0.2>ay (ap~0.12 for this
T T T T T ! T T T sample.
10 9 1°F = The peak in the DOS & =0 for «a=0.2 is the signature
ot T of the presence of ultralocalized states which are trapped in
finite regions of the sample defined by the spatial distribution
0 J v 7 of the vacancies. It should be remarked that it is not neces-
g % g . sary that the vacancies completely enclose the region in
L I | which the state is trapped, as it was already noted in Ref. 10.
10 T1°r T It is worth to note that the smooth part of the DQRat is,
. oe obtained with6=0) at E=0 has a dip but it is not zero,
sl L. 1 sl e showing the coexistence of ultralocalized states and generic
107 L 9w }’% @
5 - states at the same energy. As the conductance falls down to
e N "t zero for concentrationa> «, they should be spatially dis-
16 | I T e connectedindeed the extended states must necessary come
EER from the leads Therefore, when ultralocalized states are
0 0.1 02 0 0.2 0.4 formed, the transport across the wire is forbidden.
As the aspect ratio of a sample increases, the valug,of
FIG. 4. Left panel: Ln-lin plot of the mean conductangeat ~ around which the transition takes place also increases. This is
E=0 as a function ofx for a quantum wire of¥=20 andL=70  consistent with the fact that interference effects between lon-
[the squares are the numerical results and the full line is the anggitudinal and transverse channéghich are maximized for
lytical estimate given by Eq5)]. Right panel: Idem as left panel the square geometriesavors the conduction along the
but for a wire of W=20 andL = 20. sample.
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For a< ayg, that is, before the transition towards the sup- _ 1
pression of the conductance occurs, the nonpure exponential = W—g ' (6)
law Eq. (5) implies that, unlike the quasi one-dimensional awm(—
wires, it is not possible to define a localization length in the W-1+p8

usual way(i.e., as the inverse of the decay rate in the expo+this quantity could be interpreted as a localization length that
nential law for the conductance as a function of the lengthdepends on the finite dimensions of the wire.
L). Finally, a new abrupt transition to the suppression of the
conductance is observed when the concentration of vacancies
IIl. CONCLUSIONS a goes beyond some critical value, (which is indeed
sample dependenin a finite system. This transition, which

In this work we study the localization properties of disor-is a signature of the formation &=0 of ultralocalized
der quantum wires. Disorder is simulated distributing vacanstates trapped in finite regions of the sample, can be also
cies at random positions in the sample and thus preservinigterpreted as the quantum analog of the classical cluster
the chiral symmetry. Conductance calculation§at0 have  percolation transitionCPT). Classically, the CPT and the
been performed as a function of the concentration of vacarsuppression of the conductivity occurs at the same critical
ciesa, in quasi-one-dimensional and in wide wires, respecconcentratiort’ In a quantum system they could be sepa-
tively. rated d_ue to the_ fact that ultral_oqalized states could be

For quasi-one-dimensional wires we have shown that thérmed in an infinite cluster for a finite value,>0.
conductance decays with the length of the wire following an  The ultralocalized states are poleskat 0 of the DOS,
exponential law irrespective of the parity in the number of€Ven after the leads are included, and therefore should be
transverse channels. This is at odds with previous resul§Patially separated from any other extended state of the
reported for the random hopping model of disorder in Whichleads. We should mention that ultral_ocallzed stateEap _
the scaling of the conductance at the band center would dd1ave been already reported for the binary-alloy model in iso-
pend on the parity of the number of transverse charfhels. 1ated samples by Kirkpatrick and Eggartein addition, we

We have derived an analytical formula, E8), that re- do not opserve in the DOS a signature of the presence of
produces quite accurately the behavior of the mean Condu‘y_ltralocallzed states out of the band center when the leads are
tance for an ample range of concentratiens mcluded: - .

For wide wires and low values of a pure exponential In an infinite 2 quantum system the c_on;iuctance is sup-
decay of the mean conductance with the lengthas also pressed as soon as a single vacancy IS introduced, so the
been observed. This exponential localization is consisterffonductance is not of r_eleva_m_t magpnitude to detect the guan-
with the quantum percolation transition predicted for thetd™ CPT. However, as in afinite quantum system there is not
binary-alloy model in 2 lattices ata=0 (Ref. 11 (all the a complete suppression of the conductance for f|n|@e values
states are exponentially localized for any amount of disordeP! @ and the conductance can be employed to estimate the
in a 2d lattice). Therefore, in an infinite system, only one C”“C?" concentration for the quantum CPT. We are currently
vacancy is enough to suppress the conductance. working along this line.

However, for wide wires and greater values @®f we
found that the conductance decays following a nonpure ex-
ponential law. We have proposed an ansatz, &g. that We would like to thank P.W. Brouwer and J.A. Vesgier
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