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Orientational regularities in two-dimensional quasidipole system with degenerate ground states
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A two-dimensional quasidipole system with discrete moment orientations and a degenerate ground state~at
the temperatureT50) is modeled by a Hamiltonian for a pair of Ising subsystems~s and s) coupled by a
so-called fluctuation interaction vanishing atT50. A system of this kind is proved to reduce to a special case
of the anisotropic spin-3/2 Ising model. A phase diagram in the coordinatesT/J1 andJ2 /J1 is constructed (J1

is the constant of thes-s ands-s interactions,J2 is the constant of the fluctuations-s interactions, andT is
the absolute temperature in energy units! based on the analytical solution for the Bethe lattice with the
coordination number 4 and on the Monte Carlo simulation for a square lattice. In addition to ordinary phases,
a high-temperature disordered phase I (^s&5^s&50) and a low-temperature ordered phase II~^s& and ^s&
Þ0), an intermediate-temperature correlated phase III (^ss&Þ0 at ^s&5^s&50) is also possible for the
system concerned at valuesJ2 close toJ1 . For strong fluctuation interactionJ15J2 , an exact solution of the
statistical problem on a square lattice is obtained. For a quasidipole system, phase III corresponds to an
orientational ordering with spontaneous anisotropy but without polarization and is observable in the monolay-
ers of adsorbed molecules.

DOI: 10.1103/PhysRevB.68.155405 PACS number~s!: 68.35.Rh, 64.60.Cn, 05.50.1q
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I. INTRODUCTION

Among various systems with complex periodic orien
tions of magnetic or electric moments, those with a conti
ously degenerate ground state occupy a special place. Su
degeneracy usually corresponds to certain rotations of
moments in antiferromagnetic sublattices, and can be
moved by thermodynamic fluctuations, which occasiona
leads to interesting physical effects~so-called ‘‘ordering due
to disorder’’!.1,2 Within this class, the two-dimensional~2D!
dipole model3–5 is particularly promising, since it is appli
cable to phase transitions in real systems consisting not
of 2D antiferromagnets with dipole interactions but of a
sorbed molecules as well.6,7 The latter systems are also cha
acterized by adsorption potentials whose azimuthal sym
try enables the development of models with discr
orientations of the dipole moments. Such models are pr
ising both in an applied treatment of concrete adsorbates
in fundamental studies of systems with a degenerate gro
state. This significant aspect deserves detailed considera

A treatment of lattice systems with discrete moment o
entations can be reduced to models in which each lattice
is characterized by several spin variables. Such models~ex-
emplified by the well-known Ashkin-Teller model8–10! gen-
eralize the Ising model and in some cases admit exact s
tions which are of paramount importance in the pha
transition theory. For the degenerate ground state, the Ha
tonian and the corresponding solutions have such a struc
which describes an unusual orientational behavior of the
tem within a certain region of the values of spin interacti
constants. The properties of such systems are detailed in
present paper.

In Sec. II, we start from a general form of the quasidipo
Hamiltonian of a 2D system of moments with four possib
orientations on a square lattice and derive the correspon
Hamiltonian in terms of spin variabless ands which covers
0163-1829/2003/68~15!/155405~14!/$20.00 68 1554
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not only ordinarys-s ands-s interactions~with the interac-
tion constantJ1) but also the so-called fluctuations-s inter-
actions (J2), giving no contribution to the degenerate grou
state. This degeneracy originates from the fact that the fl
tuation interactions along horizontal and vertical latti
bonds give canceling contributions of opposite sign in
ground state. As a consequence, the model in questio
essentially anisotropic. Evidently, a system with a pair
spins,s561 ands561, should be equivalent to a spin-3/
Ising model whose isotropic versions have been under
orous investigation~see, for instance, Refs. 11 and 12 and t
references therein!. That is why here we also give an alte
native representation of the Hamiltonian derived in terms
the anisotropic spin-3/2 Ising model.

An exact solution for the above-formulated model h
been unknown for a square lattice with arbitrary values of
constantsJ1 and J2 ; nor can the self-consistent-field ap
proximation describe the fluctuation interactions. Thus, it
reasonable to invoke the prototype of this model on the
the lattice~according to the approach of Baxter,10 the solu-
tions obtained for the Bethe lattice can be regarded as e
ones!. In Sec. III, a phase diagram is constructed in the
ordinatesT/J1 andJ2 /J1 (T the absolute temperature in en
ergy units! which includes, in addition to the ordinar
phases,viz. the high-temperature disordered phase I (^s&
5^s&50) and low-temperature ordered phase II~^s& and
^s&Þ0), an intermediate-temperature correlated phase
(^ss&Þ0 at ^s&5^s&50). A phase of this kind resemble
that arising in the well-known Ashkin-Teller model,8–10 but,
in our treatment, i.e., in terms of the quasidipole model
corresponds to an orientational ordering with spontane
anisotropy but without polarization.

In the caseJ25J1 , the low-temperature phase II can exi
only in the ground state, and the system is characterized
single transition between phases I and III at nonzero te
peratures. It turns out that this important special case ad
©2003 The American Physical Society05-1
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an exact solution of the statistical problem also for a squ
lattice ~see Sec. IV!. The partition function under study en
ables states for one spin subsystem to be summed up i
explicit form. Then the sum over the states of the second s
subsystem is formally expressible in terms of the partit
function of the 2D Ising model with an unusual interacti
parameter which is thermodynamically averaged over
spins of the first subsystem. To extend the phase diagram
a square lattice to the region of intermediate values of
fluctuation interaction constant (0<J2<J1), the Monte
Carlo simulation is invoked. In Sec. V we consider an orie
tational phase transition in the monolayer CO/NaCl~100!
which represents the I-II transition, and also discuss the p
sibility for phase III to be detected experimentally.

The paper includes an appendix of independent interes
presents a straightforward analytical approach to the exp
sion for the free energy and also to the equations of state
an arbitary-spin system in an external field on the anisotro
Bethe lattice. The relations derived are extremely comp
and easy to apply in further calculations. The efficiency
the technique developed is demonstrated well by a brief
easy derivation of the expression for the free energy in
anisotropic Ising model on the Bethe lattice.~This formula is
normally obtained by a tedious integration of the equatio
of state over the external field10!. The same general relation
are also involved in Sec. III to analyze the states of a sys
with fluctuation interactions.

II. ISING-LIKE HAMILTONIAN WITH FLUCTUATION
INTERACTION

Consider the general form of the dipole Hamiltonian

HDip5(
mn

@D1~emn•em11,n1emn•em,n11!

1D2~emn
x em11,n

x 1emn
y em,n11

y !# ~1!

(emn denotes the unit vectors, andemn
x and emn

y are their
projections onto the square lattice axes! in which the param-
eters D1 and D2 can differ from the standard valuesD1
5m2/a3, D2523m2/a3 ~m is the dipole moment, anda is
the lattice constant!, provided the systems concerned ha
surface-quasinormal13 or surface-parallel14 orientations of
nonpolar molecules. In this case, the parametersD1 andD2
are governed by the constants of actual interactions~quadru-
pole, van der Waals, etc.! or by the parameters of th
Lennard-Jones potential. At 0,D1,2D2 , the ground state
of the system withN lattice sites,H052NuD2u, is degener-
ate in the parameterD1 . The degeneracy is, however, r
moved with rising temperature, which gives rise to colline
orientations of dipole moments along any of the square
tice axes5 and results in the stabilization of the long-ran
orientational order.15 If the systems of adsorbed molecul
are characterized by the adsorption potential of the symm
C4 which strongly depends upon the azimuthal angle, o
four discrete orientations~along the axes of the square la
tice! may prove allowed for the vectorsemn @as, for instance,
in the 231 monolayer of CO molecules adsorbed on t
15540
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NaCl~100! surface16#. With the orientationsemn specified by
the spin variablessmn andsmn ~see Fig. 1!:

emn5
1

2
@~21!n~smn1smn!,~21!m~smn2smn!,0#, ~2!

Hamiltonian~1! reduces to the following form:

H5(
mn

@2J1~smnsm11,n1smnsm11,n

1smnsm,n111smnsm,n11!

2J2~smnsm11,n1smnsm11,n2smnsm,n11

2smnsm,n11!#, ~3!

with J152D2/4 andJ252D2/42D1/2. At 0<J2<J1 , the
ground state of this Hamiltonian,H0524NJ1 , is indepen-
dent of the interaction constantJ2 betweens and s spins.
The ground state degeneracy also occurs at arbitraryJ1 to J2
ratios. Figure 2 demonstrates the phase diagram of
ground states. Clearly, the spin variables can be relabele
that each phase region is describable by Hamiltonian~3! with
the substitutionJ1↔J2 and/or the change ofJ1 andJ2 signs.
As a result, all the phase regions have the same statis
properties and we can limit the consideration to the reg
0<J2<J1 without loss of generality.

It is conceptually impossible to analyze the states of s
systems within the framework of the self-consistent-field a
proximation which neglects the interaction of thermod
namic fluctuations, since the sum of products of avera
spins ^s&^s& goes to zero and the dependence onJ2 van-
ishes. We therefore use the termfluctuation interactionsfor
the interactions between the spin subsystemss and s de-
scribed by Hamiltonian~3!. Discussing the models with in
teracting Ising subsystems, one cannot but mention the w
known isotropic model of Ashkin and Teller,8

HAT5(
mn

@2J1~smnsm11,n1smnsm11,n1smnsm,n11

1smnsm,n11!2J4~smnsmnsm11,nsm11,n

1smnsmnsm,n11sm,n11!#, ~4!

FIG. 1. The correspondence between four orientations of
vectorsemn and four pairs of values of spin variables,smn561 and
smn561 ~or tmn5smnsmn).
5-2
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ORIENTATIONAL REGULARITIES IN TWO- . . . PHYSICAL REVIEW B 68, 155405 ~2003!
with its phase diagram basically reproducible even in
self-consistent-field approximation.9,10 It is noteworthy that
Hamiltonian~3! with the additional termJ4,0 from Eq.~4!
accounts for the orientational properties of the syst
CO/NaCl~100!.13

It should be noted that a system with a pair of spinss
561 ands561, positioned at each lattice site is essentia
equivalent to a spin-3/2 Ising model. So far, only isotrop
particular cases of this model have been attracting theore
interest. In the framework of this model, the Hamiltoni
covering various interactions of spinsS561/2, 63/2 be-
tween the neighboring sitesi and j of an arbitrary lattice is
normally written in the form11,12

H52
1

2 (
iÞ j

FJSiSj1KSi
2Sj

21LSi
3Sj

31
M

2
~SiSj

31Si
3Sj !G

2D(
i

Si
2 . ~5!

The simplest relation between the spinsSi ands i , si appears
as

Si5s i1
1

2
si . ~6!

Substituting Eq.~6! into Eq. ~5! affords the Hamiltonian in
terms of the variabless ands:

H52
1

2 (
iÞ j

FJ1s is j1J18sisj1J2~s isj1sis j !1J4s isis j sj

1
25

16
J41

5

4
J4~s isi1sjs j !G2D(

i
S 5

4
1s isi D , ~7!

FIG. 2. The phase diagram for the ground states of two Is
subsystems on a square lattice, with fluctuation interaction betw
them@see Eq.~3!#. Four phase regions are separated by the stra
lines J156J2 . Each phase is characterized by two degene
states corresponding to the horizontal and vertical orientation
the unit vectorsemn represented by the arrows and specified by E
~2! ~also see Fig. 1!.
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into which the new interaction constants enter:

S J1

J18

J2

D 5S 1 49/16 7/4

1/4 169/64 13/16

1/2 91/32 5/4
D S J

L
M
D , J45K. ~8!

Comparing Hamiltonians~4! and~7!, one can see that a spin
3/2 Ising model is equivalent to the Ashkin-Teller mod
with an additional term proportional to the interaction co
stant J2 ~one-site interactionss isi can be nullified by the
appropriate choice of the constantD!. It follows thereto that
at J250, a spin-3/2 Ising model is also reducible to th
eight-vertex model~a relevant deduction was reported
Refs. 11 and 12, the latter involving a less general condit
thanJ250 used here!.

An anisotropic spin-3/2 Ising model can be formulated
a model described by Hamiltonian~7!, with the interaction
constants differing for differently oriented (i j ) bonds. For a
square lattice, Hamiltonians~3! and ~7! correlate with the
proviso thatJ15J18 , J45D50, and the constantJ2 alter-
nates in sign along the horizontal and vertical bonds. AtJ4
52D/5Þ0, a generalized Ashkin-Teller model result
which includes fluctuation interactions~the full analysis of
its properties will be presented elsewhere!. Labeling interac-
tion constants along the horizontal and vertical bonds by
indicesx andy in Hamiltonian~7!, we arrive at the follow-
ing relations:

Mx,y52
4

5
Jx,y2

9

20
Lx,y , Jx1Jy5

73

16
~Lx1Ly!, ~9!

which establish a univocal correspondence between the
isotropic spin-3/2 Ising model and the generalized Ashk
Teller model with fluctuation interactions.

III. PHASE TRANSITIONS ON THE BETHE LATTICE

The partition function for Hamiltonian~3! on a Cayley
tree with the coordination number 4 andN shells (N50 for
the tree leaves! can be represented as

Z~N!5(
i 51

4

xi
2~N!yi

2~N!, ~10!

where the valuesxi(N) andyi(N) are determined for a cer
tain deeply lying node of the tree by a system of recurr
equations:

xi~N!5(
j 51

4

L i j
(x)xj~N21!yj

2~N21!,

yi~N!5(
j 51

4

L i j
(y)yj~N21!xj

2~N21!. ~11!

Here the indicesi , j 51, 2, 3, 4 respectively refer to th
following coupled values of the spin variabless ands: 11,
11; 21, 21; 11, 21; 21, 11. The matricesL (x) andL (y)

of the dimensionality 434 are expressible in block form:

g
en
ht
te
of
.
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V. M. ROZENBAUM, A. N. MOROZOV, AND S. H. LIN PHYSICAL REVIEW B68, 155405 ~2003!
L (x)5S A C

C BD ,L (y)5S B C

C AD ,

A5S e2(K11K2) e22(K11K2)

e22(K11K2) e2(K11K2) D ,

B5S e2(K12K2) e22(K12K2)

e22(K12K2) e2(K12K2) D ,

C5S 1 1

1 1D , ~12!

with K1,25J1,2/T (T is the absolute temperature in ener
units!.

For an arbitrary spin system on an anisotropic Cayley t
with the coordination numberq, we derive a general formula
for the free energy of the corresponding Bethe lattice~asso-
ciated with the Cayley tree given atN→`)—see the Appen-
dix. At q54, this relation affords the free energy of the sy
tem concerned~per site of the Bethe lattice!:

f Bethe5T ln Z, ~13!

whereZ is specified by Eq.~10! with the quantitiesxi andyi
~already independent ofN) obeying the system of equation
~11!. In other words, recurrent equations~11! in the limit N
→` determine a stable pointxi , yi which defines, in turn,
the free energy~13!. The same quantities specify the ave
ages of the spin variables:

^s&5Z21(
i 51

4

s ixi
2yi

2 , ^s&5Z21(
i 51

4

sixi
2yi

2 ,

^ss&5Z21(
i 51

4

s isixi
2yi

2 . ~14!

The eigenvalues of the matricesL (x) andL (y),

l15a1 , l25b1 , l3,45
1

2
@a21b27c#,

c5A~a22b2!2116, ~15!

are convenient to manipulate, as they are expressible
terms of the eigenvalues of the matricesA andB:

a152 sinh 2~K11K2!, a252 cosh 2~K11K2!,

b152 sinh 2~K12K2!, b252 cosh 2~K12K2!. ~16!

The eigenvectors of theL (x) andL (y) are expressible a
the block-structured matrices:

S(x)5S S1 S3

S2 S4
D , S(y)5S S2 S4

S1 S3
D ,

S15S 221/2 0

2221/2 0D , S25S 0 221/2

0 2221/2D ,
15540
e
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S3,45S ~cg3,4!
21/2 ~cg4,3!

21/2

~cg3,4!
21/2 ~cg4,3!

21/2D , ~17!

where

g3,45
1

4
@c6~a22b2!#, g3g451. ~18!

Then the system of equations~11! in the limit N→` appears
as follows:

(
i 51

4

~12lkyi
2!Sik

(x)xi50, (
i 51

4

~12lkxi
2!Sik

(y)yi50,

k51,2,3,4. ~19!

Introducing the ratios of the variablesxi andyi ,

j i j 5
xi

xj
, h i j 5

yi

yj
. ~20!

we rewrite Eqs.~19! in an explicit form:

x1
25

12h12

l2~j21
2 2h12!

5
12h34

l1~j43
2 2h34!j31

2

5
11h342g3~11h12!h24

l3@~j43
2 1h34!j31

2 2g3~j21
2 1h12!h24#

5
11h341g4~11h12!h24

l4@~j43
2 1h34!j31

2 1g4~j21
2 1h12!h24#

,

y4
25

12j43

l2~h34
2 2j43!

5
12j21

l1~h12
2 2j21!h24

2

5
11j212g3~11j43!j31

l3@~h12
2 1j21!h21

2 2g3~h34
2 1j43!j31#

5
11j211g4~11j43!j31

l4@~h12
2 1j21!h21

2 1g4~h34
2 1j43!j31#

. ~21!

In terms of variables~20!, the averages of the spin variable
~14! become

^s&5
~h12

2 2j21
2 !h24

2 1~h34
2 2j43

2 !j31
2

~h12
2 1j21

2 !h24
2 1~h34

2 1j43
2 !j31

2 ,

^s&5
~h12

2 2j21
2 !h24

2 2~h34
2 2j43

2 !j31
2

~h12
2 1j21

2 !h24
2 1~h34

2 1j43
2 !j31

2 ,

^ss&5
~h12

2 1j21
2 !h24

2 2~h34
2 1j43

2 !j31
2

~h12
2 1j21

2 !h24
2 1~h34

2 1j43
2 !j31

2 . ~22!

It is noteworthy that the symmetry of the system provid
the equality^s&56^s&. Without the loss of generality, on
can consider that̂ s&5^s& hence it appears that at^s&
5^s&.0 the right-hand orientation of the averaged vect
enm is singled out~see Fig. 1!. Then it follows from Eq.~22!
that h345j43. The condition^s&5^s&50 is met with the
5-4
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proviso that another equality holds:h125j21. Since all the
fractions in Eqs.~21! should be positive, the equalityh34
5j43 leads toh345j4351, whereas the quantitiesh12 and
j21 satisfy the following three-sided inequality: 0,j21<1
<h12. At j215h1251 we havê s&5^s&50. Thus, the ini-
tial system of eight equations~19! in eight unknownsxi , yi
( i 51, 2, 3, 4! reduces to the system of four equations, w
the unknowns chosen as

r15j21, r25h12, z15
2a2

11r1
j31,

z25
a2

2
~11r2!h24. ~23!

An algebraic transform of Eqs.~21! enables the following
representation of the four equations:

4z1,2@r 12~n1n221!z1,22n1n2z1,2
2 #2

2n2,1~r 22z1,2!~z1,222!~r 2n1,2z1,2
2 !250,

~24!

m1[
~11r2!~r1

22r2!

~12r2!~r1
21r2!

5
l3l4

a2l2

z2

z222
,

m2[
~11r1!~r2

22r1!

~12r1!~r2
21r1!

5
l3l4a2

l1~r 22z1!
, ~25!

with 2<z1,2<r /2 and with the notation

r[a2b2>4, n1[
~11r1!2~11r2!

4~r1
21r2!

,

n2[
4~r2

21r1!

~11r2!2~11r1!
. ~26!

First we consider the solutions withr15r251 which
correspond to the casês&5^s&50. For them, the equality
n15n251 holds and Eqs.~24! are simplified:

~r 2z12
2 !2~2z12

2 2r z1212r !50. ~27!

At 4<r<16, a single solution is possible:

z15z25r 1/2. ~28!

By virtue of the equalityh245j31, this solution accounts fo
the state with^ss&50 @see. Eq.~22!#. At r .16, another
solution withz2.z1 emerges,

z2,15
1

4
r 1/2@r 1/26~r 216!1/2#, ~29!

which describes the state with^ss&.0:

^ss&5
r 1/2~r 216!1/2

r 28
. ~30!

The states witĥ ss&50 and ^ss&.0 at ^s&5^s&50 will
be referred to as phases I and III~phase II will identify the
15540
state with^s&5^s&.0). The line of the continuous second
order phase transitions I–III defined by the equationr 516 is
presented in the phase diagram with the axesT/J1 andJ2 /J1
@see the lineEFF8 and its continuation in Fig. 3~a!#. The
caseJ25J1 is imaged in this line by the pointE:

cosh 4K154, TI-III 5
4J1

ln~41A15!
'1.9385J1 . ~31!

In the vicinity of line I-III within phase III, the quantitŷss&
undergoes a power-law decay with the critical exponent
@see formula~30!#, which agrees with the critical index valu
for the temperature dependence of the order parameter in
classical ‘‘mean-field theory.’’

We now turn to the analysis of the solutions withr1,1
,r2 , corresponding to the case^s&5^s&.0 ~phase II!. As-
suming the second-order transitions between phases I a
~at 4<r<16) or III and II ~at r .16), the variablesr1 and

FIG. 3. ~a! A section of the phase diagram for two Ising su
systems with fluctuation interactions on the Bethe lattice. Phas
II, and III respectively imply that̂ s&5^s&5^ss&50, ^s&5^s&
Þ0 at^ss&Þ0, and^ss&Þ0 at^s&5^s&50. The phase boundarie
I-II, I-III, and II-III are indicated by the linesABF, FE, andFCD,
respectively. The solid lines (AB, FE, and CD) denote second-
order transitions, and the dashed line (BFC) corresponds to first-
order transitions. The linesABF8 andF8CD graphically represent
Eq. ~40! with regard to Eqs.~37! and~42!, the valuesk,1 referring
only to the segmentsAB andCD. The lineEFF8, along with its
continuation, is specified by the equationr 516. ~b! The J2 /J1

dependence of the parameterk calculated by formulas~39! and
~43!.
5-5
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r2 should continuously approach unity in the vicinity of th
lines I-II or III-II within phase II. The limiting behavior of
the system of equations~24! and ~25! at r1 , r2→1 must
therefore be considered in order that the equations of
corresponding lines be found. In so doing, the variablesr1
andr2 are conveniently expressed in terms ofm1 , m2 using
Eqs.~25!:

r1,25
2~m1,211!2~m2,1

2 11!2~m1,221!2~m2,111!27AD

2~m1,211!2~m2,1
2 21!

,

~32!
D5~211m11m213m1m2!~113m12m21m1m2!

3~12m113m21m1m2!~31m11m22m1m2!.

The limit concerned,r1 , r2→1, corresponds to the region

t[31m11m22m1m2>0, m1>1, m2>1. ~33!

Indeed, att→0 we obtain, accurate to the terms of th
order t,

r1'12p«1
1

2
p2«2, r2'11«1

1

2
«2, «!1, ~34!

with the notation

«[
A2t

m111
, p[

1

2
~m121!. ~35!

Substitution of power series~34! into expressions~26! gives,
with the same accuracy,
r

-
0

d

15540
e

n1'12
1

4
p~p12!«2, n2'11

1

4
~112p!«2. ~36!

Now it is possible to approximately solve the system
equations~24! with respect to the variablesz1 andz2 , and to
insert the expressions derived into Eqs.~25! so as to find the
variablesm1 andm2 . The latter afford, with definitions~33!
and ~35!, a closed equation in the small parameter«. Since
the system of equations~24! has, in a zero-order approxima
tion in «, two solutions@Eqs. ~28! and ~29!#, depending on
the parameterr , we separately discuss the cases 4<r<16
and r .16. The two intervals of the valuesr respectively
refer to phase transitions I-II and III-II.

At 4<r<16 we deduce

z1,2'r 1/22
1

2

r 1/222

42r 1/2 @2n2,18 2~r 1/222!n1,28 #«2,

m1,2' f 1,2F16
2~n181n28!2r 1/2n2,18

r 1/2~42r 1/2!
«2G

f 1[
r 1/2~r 1/212!

a2l2
, f 2[

a2~r 1/212!

r 1/2l1
, n1,28 [S ]n1,2

]«2 D
«50

.

~37!

The solution of the equation in« can be written as

«25
2

~ f 111!2~12k!
t, ~38!
k5
2~12p2!~ f 12 f 2!1r 1/2@3~114p1p2!1p~p12! f 11~112p! f 2#

2r 1/2~42r 1/2!~ f 111!2 . ~39!
f

ich
rder
tity
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-

The quantitiest and p are determined by relations~33! and
~35!, with the valuesf 1 and f 2 from Eq. ~37! substituted for
m1 and m2 . According to solution~38!, the second-orde
transition I-II occurs if

t531 f 11 f 22 f 1f 250 ~40!

provided that the coefficientk falls within the range from 0
to 1. The lines defined by Eqs.~40! andr 516 @see the lines
ABF8 and EFF8 in Fig. 3~a!# intersect at the pointF8
(J2 /J150.8353,T/J151.7938). At the left, Fig. 3~b! shows
the J2 /J1-dependence of the coefficientk along the line
ABF8 given by Eq.~40!. The valuek51 is found at pointB
(J2 /J150.5633, T/J152.4725). As a result, the second
order transition I-II can be realized on the interval
<J2 /J1<0.5633@line AB in Fig. 3~a!#. On substitutingr1 ,
r2 andz1 , z2 as power series in« @see Eqs.~34! and ~37!#
into relations~22!, we obtain, with designations introduce
in Eq. ~23!:
^s&5
1

2
~11p!«, ^ss&5

114p1p2

4~42r 1/2!
«2,

^ss&2^s&2>0. ~41!

From relations~33!, ~38!, and~40! it follows that the param-
etert is proportional to the temperature differenceTc2T @T
is the temperature within phase II;Tc is the temperature o
the phase transition I-II which obeys Eq.~40!# and the pa-
rameter« is proportional tot1/2. To put it another way, the
quantity ^s& in phase II in the vicinity of the I-II phase
boundary tends to zero with the critical exponent 1/2, wh
is in agreement with the temperature dependence of the o
parameter in the mean-field approximation. For the quan
^ss&, the corresponding critical exponent is equal to 1.
the limit t→0 with J250, we arrive at:p51,r 1/255/2
and ^ss&5^s&25«25t/2, where t516(122z), z[exp
(22K1). This is consistent with the results of the Ising mod
on the Bethe lattice10 which implies the following tempera
5-6
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ture dependence for the averages of the statistically inde
dent spins s and s in the ordered phase:̂ s&5(1
24z2)1/2/2(122z2).

Figure 4~a! demonstrates the order parameters^s& and
^ss&, the quantity ^ss&2^s&2, and the specific heatC
against temperature. The value of the parameterJ2 /J1 is put
equal to 1/3 as is the case in realistic dipole-dipole inter
tions. To evaluate the temperature dependences of the o
parameters~22!, the system of equations~21! was solved
numerically, and the specific heat was found by numer
differentiation of expression~13!. Note that the quantity
^ss&2^s&2 behaves nonmotonically and the specific h
undergoes a jump at the transition point~at T/J152.751),
which is typical of the mean-field approximation.

Passing on to the analysis of the second-order transit
II-III occurring at r .16, we rewrite relations~37!:
he

an
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t
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z1,2'z1,2
(III) F114

rn2,18 28~n181n28!

r ~162r !
«2G ,

m1,2' f 1,2F112~z1
(III) 22!

rn1,28 28~n181n28!

r ~162r !
«2G ,

f 1[
~r 24!z1

(III)

2a2l2
, f 2[

a2~r 24!

2l1z2
(III) , n1,28 [S ]n1,2

]«2 D
«50

,

~42!

wherez2,1
(III) refer to values~29! for phase III. Equation~38!

holds the same form, with the valuef 1 specified by Eq.~42!
and with the parameterk expressed differently:
k5
z1

(III) 22

r ~ f 111!2 H @~112p! f 12p~p12! f 2#r 18~p221!~ f 11 f 2!

r 216
23~p221!J . ~43!
led
.

es,
h
hat
ht

ero
e-
to

tion
two
ex-

e-

n
e II
t

nes

ties
ical

ap-

of
nd-
The second-order transition III-II is realized subject to t
same condition~40!, provided that the coefficientk falls
within the range from 0 to 1@see the lineF8CD in Fig. 3~a!
and the right-hand part in Fig. 3~b!# but the valuek51 is
now realized at the point C (J2 /J150.9590,T/J151.7663).
Hence it is obvious that the second-order transition III-II c
take place on the interval 0.9590<J2 /J1<1 @see the line
CD in Fig. 3~a!#. The following relation should be subst
tuted for Eq.~41!:

^s&5
11p

11~z1
(III) /z2

(III) !2
«,

^ss&2^ss& III 5
8~114p1p2!

~r 28!~r 216!
«2, ~44!

@here^ss& III is determined by expression~30! for phase III#.
The critical exponents for these order parameters are
same as in phase II at 4<r<16. To illustrate the temperatur
dependences of thermodynamic values on the interval c
cerned, we have chosen the valueJ2 /J150.97 @see Fig.
4~c!#. Two second-order phase transitions proceed at the t
peraturesTII-III /J151.73 andTIII-I /J151.92, either being
accompanied by a jump of specific heat.

As the parameterJ2 /J1 approaches unity, the phase tra
sition temperature goes to zero. AtJ2 /J1→1, Eq. ~40! be-
comes simpler:

TII-III '
8J1

ln@gTII-III /~J12J2!#
, g5

3

4
, J2→J1 . ~45!

Equation ~45! is identical in form to the Ising-mode
asymptotic equation in transition temperature for a squ
lattice, with interactions along either horizontal or vertic
he

n-

m-

re
l

bonds tending to zero; such vanishing interaction is mode
by the differenceJ12J2 entering into the above equation
The only distinction is in the coefficient values, and it aris
first, from the specificity of the model in question whic
involves two spin sublattices and, second, from the fact t
the fluctuation interaction is intrinsically given less weig
for the Bethe lattice than for a square lattice. IfJ2 /J151, the
ground state with the structure of phase II exists only at z
temperature. An infinitesimal increase in temperature imm
diately brings the system into phase III which persists up
the temperatureTI-III found from Eq.~31!. In the next sec-
tion, we consider this special case when the spin interac
constant within one subsystem is the same as between
subsystems and demonstrate that this peculiarity enables
act calculation of the partition function not only for the B
the lattice but for a square lattice as well.

In the previously published communication,17 a simplified
analysis of the system of equations~21! was performed
which enabled Eq.~40! to be derived and interpreted as a
equation accounting for second-order transitions to phas
without any limitations. It followed from the paper tha
phase II was separated from phases I and III by the li
ABF8 and F8CD, respectively@see Fig. 3~a!#. In fact, the
line of second-order transitions to phase II has its extremi
at the points B and C. On the other hand, the numer
analysis of the system of equations~21! @or ~24! and ~25!#
suggests that only first-order transitions to phase II can h
pen between the points B and C~i.e., on the interval
0.5633<J2 /J1<0.9590)—see the dashed line in Fig. 3~a!.
This line has common tangents with the linesAB andCD at
pointsB andC, respectively, in accord with the properties
critical points between the lines of first-order and seco
order phase transitions in terms of the Landau theory.18 Now
phase II has a boundary with phase I along the lineABF and
5-7
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V. M. ROZENBAUM, A. N. MOROZOV, AND S. H. LIN PHYSICAL REVIEW B68, 155405 ~2003!
with phase III along the lineFCD. The pointF at which the
three phases coexist is defined by the coordinatesJ2 /J1
'0.92 andT/J1'1.87. The temperature dependences of
order parameters and free energies for these phases are
sented in Fig. 5 at the fixed valueJ2 /J1 corresponding to
point F. Lines III and I have a common tangent at this poi

FIG. 4. Temperature dependences of the thermodynamic c
acteristics for the system under study on the Bethe lattice
J2 /J151/3 ~a!, 0.6 ~b!, and 0.97~c!. The lines 1, 2, and 3~see the
left-hand axis of ordinates! correspond to the valueŝs&5^s&,
^ss&, ^ss&2^s&2; the line 4~see the right-hand axis of ordinate!
represents specific heatC @~a!, ~c!# or energyE ~b!.
15540
e
pre-

,

while the lines II and I join with a dog leg. Accordingly
transition III-I is characterized by a jump solely in specifi
heat, and the transition II-I implies an energy jump@see, for
instance, line 4 in Fig. 4~b!#. The only~first-order! transition
occurs in the range 0.5633,J2 /J1,0.92 @as in Fig. 4~b!#,
and two~first-order and second-order! transitions fall within
the range 0.92,J2 /J1,0.9590.

IV. PHASE TRANSITIONS ON A SQUARE LATTICE

The results obtained in the previous section for the Be
lattice with the coordination number 4 can be regarded a
cluster approximation of the model on a square lattice
scribed by Hamiltonian~3!. Distinctions between the two
approaches are due to the fact that the cluster approxima
neglects the interactions of order-parameter fluctuations
distance longer than the cluster size. In the trivial spec

r-
at

FIG. 5. Temperature dependences of the thermodynamic c
acteristics in the cross-section of the phase diagram by the
J2 /J150.92 which includes the triple point.~a! The lines 1, 2, and
3 indicate the respective order parameters^s&5^s&, ^ss&, and
^ss&2^s&2 in phase II, and the line 4 represents^ss& in phase III.
~b! Free energies of phases I, II, and III.
5-8
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ORIENTATIONAL REGULARITIES IN TWO- . . . PHYSICAL REVIEW B 68, 155405 ~2003!
case free of fluctuation interactions (J250), it is possible to
compare the results gained by the cluster approximation
the 2D Ising model for either of spin subsystems. For
ample, the phase transition temperature is equal to 2.885J1
for the Bethe lattice and to 2.2692J1 for a square lattice. It
turns out that the caseJ15J2 also admits of an exact solu
tion on a square lattice. To find this solution, introduce
new spin variablestmn5smnsmn and rewrite Hamiltonian
~3! as

H52(
mn

$@~11tmntm11,n!J1

1~tmn1tm11,n!J2#smnsm11,n1@~11tmntm,n11!J1

2~tmn1tm,n11!J2#smnsm,n11%. ~46!

At J15J2 the bracketed expressions can assume only
values, 4J1 and 0. The former corresponds to the horizon
bond with tmn5tm11,n51 or the vertical bond withtmn
5tm,n11521. The zero value results in all other cases. A
consequence, the diagram expansion of the partition func
over the s spins18 @which involves the identity exp(as)
5cosha1s sinha, s561# will include only horizontal and
vertical chains having no common sites~see Fig. 6!. The
subsystem ofs spins thus becomes quasi-one-dimension
the long-range order vanishing~^s&50!. Hence, the summa
tion over 2N states ofs spins will nullify all the summands
containing at least one hyperbolic sine among cofactors
we arrive at the following partition function:

Z5 (
$t%,$s%

exp~2H/T!

52N(
$t%

)
mn

$@cosh~11tmn!~11tm11,n!K1#

3@cosh~12tmn!~12tm,n11!K1#% ~47!

FIG. 6. A sample distribution of spin variables over the sites
a square lattice. For the caseJ15J2 , the solid lines connect the
coupleds spins which provide the energy contribution of64J1

~the sign is governed by the values ofs variables!. Upon the sum-
mation over the states ofs spins, the energy of effective interac
tions in the pairs of neighboringt1 and t2 spins appears a

2 J̃t1t2 , whereJ̃5(T/4)ln(cosh4J1 /T) ~see the explanation in th
text!.
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(K j5Jj /T, j 51,2). Since the hyperbolic cosine argumen
take on only two values, 4K1 and 0, we involve the identity

cosh~16t1!~16t2!K15exp@~16t1!~16t2!K̃#,

K̃5
1

4
ln~cosh 4K1! ~48!

to reduce the partition function to the form

Z52N~cosh 4K1!N/2ZIsing~K̃ !. ~49!

Here ZIsing(K̃) designates the partition function of the 2
Ising model with the effective Hamiltonian

Heff52 J̃(
mn

@tmntm11,n1tmntm,n11#, J̃5TK̃, ~50!

in which the temperature-dependent interaction constanJ̃
accounts for the thermodynamically averaged coupling
two s-neighboring spins. The temperature of the phase tr
sition from the disordered~^t&50! to the ordered~^t&Þ0!
state corresponding to the appearance of the nonequivalex

andy directions is derived from the equation sinh 2K̃c51 for
the critical temperature of the 2D Ising model:

cosh 4K15312&, TI-III 51.6337J1 . ~51!

A comparison of relations~51! and~31! shows that the value
TI-III for a square lattice is smaller than that for the Bet
lattice in accordance with the tendency for the cluster
proximation ~resulting from the Bethe-lattice treatment! to
overestimate the transition temperature.

Turning to the analysis of the phase diagram in the reg
where the fluctuation interaction constant has intermed
values (0<J2<J1), it should be noted first of all that the
chains ofs spins ~see Fig. 6! become coupled atJ2→J1 ,
since one of the bracketed expressions in Eq.~46! assumes a
nonzero value, 2(J12J2), and a spontaneous polarizatio
thus arises in the system. The temperatureTII-III of the phase
transition into the state witĥs&Þ0 is given by Eq.~45! with
the numerical coefficientg of the order of unity. On the othe
hand, the valueTI -III specified by formula~51! remains prac-
tically unchanged in the vicinity of the pointJ2 /J151. As a
consequence, phase III witĥt&Þ0 is now intermediate in
temperature between phases I and II. It is also evident
with the decreasing parameterJ2 , the lines of phase transi
tions I-III and III-II will intersect at a triple point where
TI-III 5TII-III . These qualitative speculations are corrobora
by the analytical solutions of the same problem for the c
responding Bethe lattice~see Sec. III!.

Using a Monte Carlo simulation, it becomes possible
include the region of intermediate values of the fluctuat
interaction constant (0<J2<J1) into the phase diagram. To
this end, the Metropolis algorithm19 at decreasing tempera
ture was employed. The system under study was represe
by a square cluster with the linear dimensionLa (a is the
lattice constant! and the periodic boundary conditions. T
reach the thermodynamic equilibrium and to average
quantities of interest, we used the Markov chains with
length of the order 105 and 106– 107 steps per lattice site
respectively. A plausible statistic for the Hamiltonian co

f
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cerned in the critical region was gained with the number
steps two orders of magnitude larger than in the absenc
fluctuation interactions~see, e.g., Ref. 20!. The phase transi
tion temperatures were determined from the peaks of spe
heat and also from the inflection points of the temperat
dependences of^s& and^ss&, both approaches being in nic
accordance. TheL-dependence of the thus found transiti
temperatures was studied for the casesJ250 and J25J1

admitting of the exact solutions. ForL514, the phase tran
sition temperatures proved to be about 0.1J1 above the exac
values for the corresponding infinite system. Figure 7 de
onstrates the agreement between the temperature depen
of specific heat found from the exact expression for the f
energy and that provided by the Monte Carlo simulation.

To construct a phase diagram in a wide range of the
ues 0<J2<J1 , we involved a cluster withL514, which
enabled a compromise between the computer time and
calculation accuracy. The simulation results presented in
8 support the occurrence of the triple point and the app
ance of a new phase III, and also furnish a good approxi
tion of the I-II and I-III phase transition temperatures. T
computational difficulties, however, emerged in modelli
the III-II transition at the valuesJ2 close toJ1 , since the
system ‘‘froze’’ in phase II. This may be attributable to a
underestimated probability of the III-II transition in a clust
of the given size which causes a distortion of the distribut
function. The same effect is also likely to account for t
systematically underestimated values of specific heat
phase III atJ25J1 , in contrast to the caseJ250 when the
low-temperature shoulder of the specific heat was rep
duced practically exactly~see Fig. 7!. This impediment can
be surmounted using cluster algorithms~like that developed
in Ref. 21 for the Potts model!.

Figure 8 also includes the line of phase transition I
which is specified by the equation sinh4 2K12sinh4 2K251
@resulting from the duality transformation—see Eq.~21! at
K350 in Ref. 13# and agrees well with the correspondin
Monte Carlo computational data within the accuracy of
method. Clearly, this line cannot describe the phase boun

FIG. 7. Temperature dependences of specific heat calcul
from the exact expressions for the free energy~lines! and from the
Monte Carlo computational data@L514 ~filled triangles and dia-
monds!, L510 ~dashes!, andL518 ~empty triangles!# for the cases
J2 /J150 ~the dashed line and diamonds! andJ2 /J151 ~the solid
line as well as triangles and dashes!.
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II-III, just as the duality transformation within the Ashkin
Teller model fails to reveal the phase with^ss&Þ0, ^s&
5^s&50.

V. DISCUSSION

Phase diagrams constructed on a square lattice and o
Bethe lattice with the coordination number 4 strongly e
dence for the occurrence of phase III at the valuesJ2 close to
J1 . Phase III corresponds to the average values^ss&Þ0,
^s&5^s&50 and resembles, in this sense, one of the pha
involved in the Ashkin-Teller model.9,10 For the quasidipole
systems considered here this phase represents a new ty
orientational ordering. Using the relationship between
unit vectorsemn and spin variables@see Eq.~2!#, it is readily
shown that phase III witĥss&Þ0 implies the nonequivalen
mean-square projections ^(emn

x )2&5(11^ss&)/2 and
^(emn

y )2&5(12^ss&)/2 in the absence of spontaneous pol
ization (̂ emn&50). Thus, thex andy axes become inequiva
lent in the system.

An exact solution as such is of value in the theory
critical phenomena~where only a few exact results are ava
able! and generally provides a new insight into the physics
the system under study. So does the exact solution con
ered in Sec. IV: it gives the clue to the mechanism by wh
phase III arises.

Indeed, with the conditionJ2 /J151, one of the spin sub-
systems~the subsystems, specifying the left-right or up-
down direction of the unit vectoremn) becomes quasi-one
dimensional; as a consequence, the other one~the subsystem
t5ss, specifying the horizontal or vertical alignment of th
unit vectoremn) is describable by the effective Hamiltonia

ed

FIG. 8. The phase diagram of the two Ising subsystems w
fluctuation interactions on a square lattice. Phases I, II, and III
the same as in Fig. 3~a!. The vicinity of the point at which the three
phases coexist is shown on an enlarged scale in the box. Trian
and circles with error bars connected with dotted lines indicate
transitions to phase II and between phases I and III~the result of
Monte Carlo simulation forL514). Empty squares atJ2 /J150
and 1 correspond to the exact calculation of the partition functi
The solid line corresponds to the duality transformation~as pre-
sented in Ref. 13!, sinh4 2K12sinh4 2K251, for the phase transitions
I-II.
5-10
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ORIENTATIONAL REGULARITIES IN TWO- . . . PHYSICAL REVIEW B 68, 155405 ~2003!
of the 2D Ising model, but with a peculiar~temperature-
dependent! interaction constant averaged over the spins
the first subsystem~see Fig. 6!. At J2 /J1→1, the quasi-one-
dimensionality of the first subsystem vanishes and the
tem is characterized by two phase transitions at non-z
temperaturesTI-III andTII-III @see Eqs.~51! and~45! with the
numerical coefficientg of the order of unity#. Thus, phase III
results from the quasi-one-dimensionality of one of the s
subsystems. At the valuesJ2 /J1 strongly deviating from
unity, the prerequisites for the phase III occurrence dis
pear.

We now turn to the possibility for phase III to be detect
experimentally. For systems with real dipole-dipole intera
tions, the ratioJ2 /J151/3 is strictly specified and phase I
cannot be realized. Consider a system of nonpolar molec
with quasinormal orientations relative to the lattice of a
sorption centers. It was shown previously13 that in this case
the angular dependences of quadrupole-quadrupole, dis
sion, and repulsive interactions are described well by
Hamiltonian of dipole-dipole interactions, with the renorma
ized constantsD1 and D2 @see Eq.~1!#. Below are the ex-
plicit dependences of the parametersJ1 andJ2 as well as the
parameterJ4 of the Ashkin-Teller model@see Eq.~4!# on the
constants of quadrupole-quadrupole and dispersion inte
tions ~repulsive interactions are not treated here, since t
are negligible for the real adsorption systems in which int
molecular separations are governed by the lattice of ads
tion centers and far exceed the equilibrium values in
gas-phase dimers!.

J15S 15

4
U2

3

2
WD cos2 u sin2 u,

J25S 9

4
U2

1

2
WD cos2 u sin2 u,

~52!

J452S 57

16
U2

5

2
WD sin4 u, U5

Q2

a5 ,

W5
\

2pa6 E
0

`

@x i~ iv!2x'~v!#2dv.

HereQ is the molecular quadrupole moment,a is the inter-
molecular distance~the lattice constant!, x i(v) and x'(v)
designate polarizability components longitudinal and tra
verse with respect to the long molecular axis. For quasin
mal orientations, the valueJ4 is small by virtue of the smal
angleu at which the molecules are inclined to the surfac
normal direction. As an example, the energy of quadrupo
quadrupole interaction in the system CO/NaCl~100!, U
'1.63 meV, is more than three times as large as the en
of anisotropic component of dispersion interaction,W
'0.5 meV, and exceeds by more than ten times the en
of dipole-dipole interactions~due to the smallness of the d
pole moment of the molecule CO!. Even a relatively large
value of the angleu ~about 25°! for this system16 affords a
sufficient smallness of the valueJ4 (J4 /J1'20.2). The ra-
tio J2 /J1 does not depend onu and approximately equal
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0.64 ~only for quadrupole-quadrupole interactions,J2 /J1
50.6). Phase III therefore cannot result for the system C
NaCl~100! and the orientational transition observed at t
temperatureTc517.5421.5 K ~Ref. 22! occurs in this sys-
tem between phases I and II. The Monte Carlo simulat
performed by us provides the phase transition tempera
Ts , which falls within the same temperature range.

The values of numerical coefficients for the parametersJ1
and J2 in Eqs. ~52! merit notice. The equalityJ15J2.0
holds atW5(3/2)U. As a consequence, there are no fu
damental obstacles to the realization and experimental ob
vation of phase III: it can be detected provided dispers
interactions are strong in comparison with quadrupo
quadrupole interactions. This becomes quite plausible, e
for the molecules with high polarizabilities and sma
quadrupole moments or with relatively small molecu
separations.

In summary, systems with fluctuation interactions rep
sent a discrete counterpart of a more populated class of
tems with the continuously degenerate ground state. At
same time, Hamiltonian~3! is remarkable not only for its
specific applications in the description of the orientation
states for adsorbates, but because it underlies a fruitful m
in phase transition theory. It is not so sophisticated in str
ture as the spin representation of the eight-vertex mode10

implies three phases, and enables~at a certain parameter ra
tio! an exact calculation of the partition function. We ha
constructed the full phase diagram by Monte Carlo model
and also using the equivalent Bethe lattice~as shown in Ref.
23, calculations on a Bethe lattice are more reliable th
conventional mean-field calculations, the latter being qu
inapplicable to the model concerned here!. These findings
clearly demonstrate the occurrence of an intermediate ph
state and thus represent a great stride toward understan
the nature of the systems with continuously degene
ground states. Such systems might be expected to ha
state similar to phase III and an effect of ‘‘ordering due
disorder’’ with more fascinating features than common
supposed. This conjecture is supported by the appearanc~in
a very narrow parameter range! of the short-range-ordere
phase without polarization in the context of the strict dipo
model (J2 /J151/3).15 Thus it is tempting to extend the
analysis to the continuously quasidipole case withJ2 /J1
→1, as it may reveal a more clearcut analog of phase III
is also promising to study the Ashkin-Teller model with a
lowance made for the newly introduced fluctuation intera
tions, i.e., to superpose Hamiltonians~3! and ~4!. Such a
combined treatment should furnish an even more intrigu
phase diagram than either of the two individual models a
will be particularly helpful in the analysis of orientationa
states of adsorbates.
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APPENDIX. GENERAL FORM OF THE FREE ENERGY
FOR AN ARBITRARY-SPIN ANISOTROPIC MODEL

ON THE BETHE LATTICE

The Bethe lattice is regarded as a convenient tool in s
ies on ‘‘spinlike’’ systems since it enables recurrent relatio
for the equations of states for such systems to be introdu
and also provides qualitatively correct results.23 The Bethe
lattice is the infinite ‘‘interior’’ of the infinite Cayley tree
which is characterized by the large contribution from t
boundary ‘‘surface’’ nodes. Thus, the latter cause a great
fect on the thermodynamic properties24,25 and make them
behave differently than in the ‘‘interior’’ which is just th
focus of our attention. Intensive quantities are rather eas
derive from the stable point of the recurrent equations
state, whereas the calculation of extensive quantities enc
ters certain difficulties associated with eliminating the ou
part of the Cayley tree and also with choosing the corr
ratio (q/2) of the number of bonds to the number of sites
the Bethe lattice with the coordination numberq. To sur-
mount these difficulties, one has to invoke some auxili
techniques, for instance, to integrate the equations of st
over the external field so as to obtain the free energy of
system.10 A straightforward geometrical method for calcula
ing the free energy of the Bethe lattice was propos
previously.23 A similar result can also be obtained by
‘‘more transparent’’ algebraic approach.26,27Though intuition
suggests that these results should be independent of wh
spin coupling constants are isotropic or anisotropic alo
different bonds on the Bethe lattice, it is nevertheless ex
dient to derive the relations concerned for the anisotro
model. Moreover, the derivation proposed here is conc
and free of any additional assumptions~used, e.g., in Ref.
27!, and it yields a remarkably brief and easy-to-apply fo
of the final expression for the free energy and the co
sponding equation of state. This general result for
arbitrary-spin anisotropic model is exemplified by a comp
derivation of the free energy in the anisotropic Ising mo
on the Bethe lattice. We use the same general relations
in Sec. III to analyze the states of the system with fluctuat
interactions.

Consider a Cayley tree~see Fig. 9! with the nodes each
containing the spins which takes on 2s11 values (s5
2s,2s11,...,s21,s). We begin the analysis at the so-calle
central node surrounded byN shells which is bound toq
branches labeled in the same way as the correspon
bonds,viz. by the indexj 51,2,...,q, whereq is the coordi-
nation number of the tree.~For the anisotropic model in
volved here, the interaction constants for different bonds
assumed different.! With the spin at the central node denot
by s0 , the partition function of the spin system on a giv
Cayley tree can be written as follows:

ZN5(
s0

W~s0!)
j 51

q

gN
( j )~s0!. ~A1!
15540
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HereW(s0) designates the Boltzmann weight for the inte
action betweens0 and external fields, andgN

( j )(s0) is the
restricted partition function obtained by summing over
spins belonging to thej th branch of the Cayley tree in eac
of N shells~see Fig. 9!. The recurrence equation relates t
quantity for thej th branch in the innermost shell,gN

( j )(s0),

to that for thej 8th branch in the next shell,gN21
( j 8) (s1) ~the

spins1 is positioned at the node incident to thej th bond and
q21 j 8th bonds!:

gN
( j )~s0!5(

s1

Wj~s0 ,s1! )
j 8(Þ j )

gN21
( j 8) ~s1!. ~A2!

Wj (s0 ,s1) denotes the Boltzmann weight for thej th bond
which is contributed by the coupling between the spinss0
ands1 as well as by the interaction betweens1 and external
fields.

At N@1, the extensive quantitiesgN
( j )(s0) can be repre-

sented as the products of the extensive quantityzN
( j ) ~depend-

ing on N but not ons0) and the intensive quantityz( j )(s0)
~independent ofN):

gN
( j )~s0!5zN

( j )z( j )~s0!. ~A3!

@The treatment of the isotropic system27 involved, instead of
zN

( j ) , the analogous quantities irrespective ofj which were
put equal togN(s).] Then the quantitiesz( j )(s0) are defined
by the system of equations

z( j )~s0!5@CN21
( j ) #21(

s1

Wj~s0 ,s1! )
j 8(Þ j )

z( j )~s1!,

~A4!

in which CN21
( j ) can be regarded as the coefficients of t

recurrent relationships forzN
( j ) :

zN
( j )5CN21

( j ) )
j 8(Þ j )

zN21
( j 8) . ~A5!

FIG. 9. The central part of the Cayley tree with the coordinat
number q54. The central node at which the spins0 resides is
bound to four branches labeled by the indexj 51, 2, 3, 4. The
spin s1 is positioned at the node incident to the bondj and three
bondsj 8.
5-12
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The free energy of the Cayley tree is described by
expression

2FN
Cayley/T5 ln ZN5(

j 51

q

ln zN
( j )1 ln F, ~A6!

where

F5(
s0

W~s0!)
j 51

q

z( j )~s0!. ~A7!

On substituting Eq.~A5! into Eq. ~A6! and repeating this
recurrent procedureM times, we are led to the following
relation for the free energy of the Cayley tree:

FN
Cayley5~q21!MFN2M

Cayley1FMN ,
~A8!

2FMN /T5 (
k51

M

~q21!k21(
j 51

q

ln CN2M
( j )

2@~q21!M21# ln F.

The central part of the Cayley tree consisting ofM shells can
be imaged, atN→`, by the Bethe lattice which includes th
following number of sites:

NSite5
2

q
NBond52

~q21!M21

q22
. ~A9!

Thus, we arrive at the expression for the free energy of
Bethe lattice per lattice site:

2 f Bethe/T5 lim
N→`

~2FMN /NSiteT!

5
1

2 (
j 51

q

ln C ( j )2
q22

2
ln F, ~A10!

whereC ( j ) is the limiting value ofCN21
( j ) at N→`. For an

isotropic system, the above expression reduces to tha
ported in Ref. 27.

It is noteworthy that relation~A10! is invariant under the
transformation

z( j )~s!5 z̃( j )~s!z̃ ( j ),

C ( j )5C̃ ( j )@ z̃ ( j )#22 )
j 851

q

z̃ ( j 8),

F5F̃)
j 51

q

z̃ ( j ). ~A11!

The quantitiesz̃ ( j ) can therefore be always chosen so th
C ( j )51 for all j 51,...,q. As a result, relation~A10! is ex-
pressible in a very simple form convenient for calculation

f Bethe5
q22

2
T ln F̃, F̃5(

s0

W~s0!)
j 51

q

z̃( j )~s0!,

~A12!
15540
e

e

re-

t

:

where the quantitiesz̃( j )(s0) satisfy, in terms of relations
~A4! and ~A11!, the system of equations

z̃( j )~s0!5(
s1

Wj~s0 ,s1! )
j 8(Þ j )

z̃( j )~s1!. ~A13!

Since the second of expressions~A12! and ~A13! respec-
tively coincide with Eqs. ~A1! and ~A2! provided that

z̃( j )(s0)5gN
( j )(s0) and F̃5ZN , one can formally conside

Eq. ~A2! as a usual system of equations in the variab
g( j )(s0). The quantityg( j )(s0) thus defined enables calcu
lation of the analog of the partition functionZ and the cor-
responding analog of the free energy. The latter coinci
accurate to the factor (22q)/2 with the correct expression
for the free energy of the Bethe lattice per lattice site. T
technique significantly simplifies the calculations, which
illustrated well by the analysis of the model given in Sec. I

The efficiency of the above-developed technique is a
exemplified by a brief deduction of the free energy for t
anisotropic Ising model on the Bethe lattice. The Boltzma
weights W(s0) and Wj (s0 ,s1) for the anisotropic Ising
model withs51/2 appear as

W~s0!5exp~hs0!, Wj~s0 ,s1!5exp~K js0s11hs1!.
~A14!

Substituting them into the system of equations~A2!, we im-
mediately arrive at the solution

g( j )~1/2!5S 12t2xj
22

12t
eK j 1ht D 1/2

, ~A15!

where

t[)
j 51

q

g( j )~1/2!5F)
j 51

q S 12t2xj
22

12t
eK j 1hD 1/2G2/~22q!

,

xj[
g( j )~21/2!

g( j )~1/2!
, t[)

j 51

q

xj ~A16!

andxj obeys the equation

xj2txj
215~12t !e22K j . ~A17!

The notation specified in Eq.~A16! enables relation~A1! to
be written in the form

Z5~11t !eht, ~A18!

which affords, with regard to Eq.~A16!, the known expres-
sion for the free energy~see Eq.~4.9.6! from Ref. 10!:

2 f Behte/T5h1
1

2 (
j 51

q

K j1 ln~11t !1
1

2 (
j 51

q

ln
12t2xj

22

12t2 .

~A19!
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