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Orientational regularities in two-dimensional quasidipole system with degenerate ground states
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A two-dimensional quasidipole system with discrete moment orientations and a degenerate grouad state
the temperaturd =0) is modeled by a Hamiltonian for a pair of Ising subsystdmsnds) coupled by a
so-called fluctuation interaction vanishingTat 0. A system of this kind is proved to reduce to a special case
of the anisotropic spin-3/2 Ising model. A phase diagram in the coordiidfgsandJ,/J, is constructed J;
is the constant of the~o ands-s interactionsJ, is the constant of the fluctuatians interactions, and’ is
the absolute temperature in energy unitmsed on the analytical solution for the Bethe lattice with the
coordination number 4 and on the Monte Carlo simulation for a square lattice. In addition to ordinary phases,
a high-temperature disordered phas€ ¢)X=(s)=0) and a low-temperature ordered phasé(#) and(s)

#0), an intermediate-temperature correlated phase(tis(#0 at (o)=(s)=0) is also possible for the
system concerned at valués close toJ, . For strong fluctuation interactioly =J,, an exact solution of the
statistical problem on a square lattice is obtained. For a quasidipole system, phase Ill corresponds to an
orientational ordering with spontaneous anisotropy but without polarization and is observable in the monolay-
ers of adsorbed molecules.
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[. INTRODUCTION not only ordinaryo-o ands-s interactions(with the interac-
tion constantl;) but also the so-called fluctuatians inter-

Among various systems with complex periodic orienta-actions (J,), giving no contribution to the degenerate ground
tions of magnetic or electric moments, those with a continustate. This degeneracy originates from the fact that the fluc-
ously degenerate ground state occupy a special place. Suchuation interactions along horizontal and vertical lattice
degeneracy usually corresponds to certain rotations of theonds give canceling contributions of opposite sign in the
moments in antiferromagnetic sublattices, and can be reground state. As a consequence, the model in question is
moved by thermodynamic fluctuations, which occasionallyessentially anisotropic. Evidently, a system with a pair of
leads to interesting physical effedso-called “ordering due spins,c==*1 ands= %1, should be equivalent to a spin-3/2
to disorder?).>2 Within this class, the two-dimensioné2D) Ising model whose isotropic versions have been under vig-
dipole modei=® is particularly promising, since it is appli- orous investigatiottsee, for instance, Refs. 11 and 12 and the
cable to phase transitions in real systems consisting not onlfeferences therejnThat is why here we also give an alter-
of 2D antiferromagnets with dipole interactions but of ad-native representation of the Hamiltonian derived in terms of
sorbed molecules as wéll. The latter systems are also char- the anisotropic spin-3/2 Ising model.
acterized by adsorption potentials whose azimuthal symme- An exact solution for the above-formulated model has
try enables the development of models with discretébeen unknown for a square lattice with arbitrary values of the
orientations of the dipole moments. Such models are promeonstantsJ; and J,; nor can the self-consistent-field ap-
ising both in an applied treatment of concrete adsorbates argtoximation describe the fluctuation interactions. Thus, it is
in fundamental studies of systems with a degenerate groungasonable to invoke the prototype of this model on the Be-
state. This significant aspect deserves detailed consideratiotie lattice(according to the approach of Baxt8rthe solu-

A treatment of lattice systems with discrete moment ori-tions obtained for the Bethe lattice can be regarded as exact
entations can be reduced to models in which each lattice sitenes. In Sec. Ill, a phase diagram is constructed in the co-
is characterized by several spin variables. Such md@sls ordinatesT/J; andJ,/J; (T the absolute temperature in en-
emplified by the well-known Ashkin-Teller modef9 gen-  ergy unit§ which includes, in addition to the ordinary
eralize the Ising model and in some cases admit exact solghases,viz. the high-temperature disordered phase(d)(
tions which are of paramount importance in the phase=(s)=0) and low-temperature ordered phase((d) and
transition theory. For the degenerate ground state, the Hami{s)#0), an intermediate-temperature correlated phase IlI
tonian and the corresponding solutions have such a structuf€os)#0 at{o)=(s)=0). A phase of this kind resembles
which describes an unusual orientational behavior of the syshat arising in the well-known Ashkin-Teller mod&1:° but,
tem within a certain region of the values of spin interactionin our treatment, i.e., in terms of the quasidipole model, it
constants. The properties of such systems are detailed in tlw@rresponds to an orientational ordering with spontaneous
present paper. anisotropy but without polarization.

In Sec. I, we start from a general form of the quasidipole In the casel,=J,, the low-temperature phase Il can exist
Hamiltonian of a 2D system of moments with four possibleonly in the ground state, and the system is characterized by a
orientations on a square lattice and derive the correspondingjngle transition between phases | and Il at nonzero tem-
Hamiltonian in terms of spin variablesands which covers peratures. It turns out that this important special case admits
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an exact solution of the statistical problem also for a square ¥y

lattice (see Sec. Y. The partition function under study en-

ables states for one spin subsystem to be summed up in an T= 'IA
explicit form. Then the sum over the states of the second spin g

subsystem is formally expressible in terms of the partition

function of the 2D Ising model with an unusual interaction 7=

parameter which is thermodynamically averaged over the — X

spins of the first subsystem. To extend the phase diagram on €

a square lattice to the region of intermediate values of the

fluctuation interaction constant €J,=<J,), the Monte

Carlo simulation is invoked. In Sec. V we consider an orien- T= 'IT

tational phase transition in the monolayer CO/NAG0)

which represents the I-1l transition, and also discuss the pos- FIG. 1. The correspondence between four orientations of the

sibility for phase 1l to be detected experimentally. vectorse,,, and four pairs of values of spin variables,,= =1 and
The paper includes an appendix of independent interest. K,,= =1 (or 7n=0mnSmn) -

presents a straightforward analytical approach to the expres-

sion for the free energy and also to the equations of state faqqaCl(100) surfacé®]. With the orientations,,, specified by

an arbitary-spin system in an external field on the anisotropighe spin variablesr,,, ands,,, (see Fig. 1

Bethe lattice. The relations derived are extremely compact

and easy to apply in further calculations. The efficiency of N "

the technique developed is demonstrated well by a brief and emnzi[(_ D"(omnt Smn)»(—1)™(0mn—Smn),01, (2)

easy derivation of the expression for the free energy in the

anisotropic Ising model on the Bethe latti¢his formulais  Hamiltonian(1) reduces to the following form:

normally obtained by a tedious integration of the equations

of state over the external fief. The same general relations

are also involved in Sec. lll to analyze the states of a system

with fluctuation interactions.

H= % [_Jl(o'mna'm+l,n+ SmnSm+1,n

+ O'mno'm,n+1+ Smnsm,n+l)

II. ISING-LIKE HAMILTONIAN WITH FLUCTUATION —Jo(TmSms 10t SmnTms 10— TmnSmn+ 1

INTERACTION
_Smno'm,n+l)]r (3)

with J;= —D,/4 andJ,= —D,/4—D,/2. At 0<J,<J,, the
ground state of this Hamiltoniatd ;= —4NJ,, is indepen-
HDipZE [D1(&nn: €m+1nt €mn  €mn+1) dent of the interaction constady betweeno ands spins.
mn The ground state degeneracy also occurs at arbifraty J,
1) ratios. Figure 2 demonstrates the phase diagram of the
ground states. Clearly, the spin variables can be relabeled so
that each phase region is describable by HamiltotBamith
the substitutiord,;«— J, and/or the change @, andJ, signs.
As a result, all the phase regions have the same statistical
properties and we can limit the consideration to the region
0=<J,=<J,; without loss of generality.

It is conceptually impossible to analyze the states of such
systems within the framework of the self-consistent-field ap-
proximation which neglects the interaction of thermody-
namic fluctuations, since the sum of products of average
spins (o )(s) goes to zero and the dependenceJgnvan-
ishes. We therefore use the teflactuation interactiongor

Consider the general form of the dipole Hamiltonian

X X
+ D2(emnem+ 1,n+ e?,nne?/n,n+ 1)]

(enn denotes the unit vectors, arel,, and e}, are their
projections onto the square lattice axgswhich the param-
etersD,; and D, can differ from the standard valud3;
=u?la®, D,=—3u?/a® (u is the dipole moment, and is
the lattice constant provided the systems concerned have
surface-quasinormsl or surface-paralléf orientations of
nonpolar molecules. In this case, the paramegrand D,

are governed by the constants of actual interactigonadru-
pole, van der Waals, ejcor by the parameters of the
Lennard-Jones potential. At<0OD ;< —D,, the ground state

of the system withN lattice sitesHy=—N|D,|, is degener- ) . ;
ate in the parameteD,. The degeneracy is, however, re- the interactions between the spin subsystemand s de-

moved with rising temperature, which gives rise to coIIineartsgrr;‘t:tal(rj1 b?/s:r_:ar:ﬂtbosnI?trgl)’]sD(I)Snceuizlgr?otthbeuir;nrzgﬁltlso\éwmelT/\-/ell-
orientations of dipole moments along any of the square Iatknown gotroglc moyjel of Ashkin and Teller,

tice axes and results in the stabilization of the long-range P

orientational ordet® If the systems of adsorbed molecules

are characterized by the adsorption potential of the symmetry H = 2 [~ J31(0mnOm+ 10+ SmrSm+ 10+ TmnCmn+ 1

C, which strongly depends upon the azimuthal angle, only
four discrete orientation&long the axes of the square lat-
tice) may prove allowed for the vectoss,, [as, for instance,

in the 2x1 monolayer of CO molecules adsorbed on the + 0mnSmnTmn+1Smn+1) 1 (4)

+ SmnSm,n+ 1) —J4(OmrSmnSm+ 1nOm+1n
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= into which the new interaction constants enter:
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Comparing Hamiltonian&4) and(7), one can see that a spin-
. 3/2 Ising model is equivalent to the Ashkin-Teller model
J with an additional term proportional to the interaction con-
stantJ, (one-site interactions;s; can be nullified by the
appropriate choice of the constahy. It follows thereto that
at J,=0, a spin-3/2 Ising model is also reducible to the
eight-vertex model(a relevant deduction was reported in
Refs. 11 and 12, the latter involving a less general condition
thanJ,=0 used herg

An anisotropic spin-3/2 Ising model can be formulated as
a model described by Hamiltoniai@), with the interaction
constants differing for differently orientedj( bonds. For a

FIG. 2. The phase diagram for the ground states of two Isingsquare lattice, Hamiltoniang3) and (7) correlate with the
subsystems on a square lattice, with fluctuation interaction betweeproviso thatJ,;=J;, J,=A=0, and the constani, alter-
them[see Eq(3)]. Four phase regions are separated by the straighhates in sign along the horizontal and vertical bondsJ At
lines J;=+J,. Each phase is characterized by two degenerate= —A/5#0, a generalized Ashkin-Teller model results,
states corresponding to the horizontal and vertical orientations ofvhich includes fluctuation interactior(she full analysis of
the unit vectorse,, represented by the arrows and specified by Eq.its properties will be presented elsewheieabeling interac-

(2) (also see Fig. 1 tion constants along the horizontal and vertical bonds by the

with its phase diagram basically reproducible even in themdmesx andy in Hamiltonian(7), we arrive at the follow-

self-consistent-field approximatiort® It is noteworthy that ing relations:
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Hamiltonian(3) with the additional ternd,<0 from Eq.(4) 4 9 73
accounts for the orientational properties of the system =—— - — =
CO/NaCl100. Prop g Mxy= =5 Iy~ 20b0r It =gglbathy). 9

B It should_be noted that a system with & pair of spis, \yhich establish a univocal correspondence between the an-
=*1 ands=*1, positioned at each lattice site is essentially;soropic spin-3/2 Ising model and the generalized Ashkin-
equivalent to a spin-3/2 Ising model. So far, only iSotropiCta|ier model with fluctuation interactions.

particular cases of this model have been attracting theoretical

interest. In the framework of this model, the Hamiltonian

covering various interactions of spirg= *=1/2, +3/2 be- lll. PHASE TRANSITIONS ON THE BETHE LATTICE

tween the neighboring sitésand| of an arbitrary lattice is The partition function for Hamiltoniari3) on a Cayley
normally written in the form" tree with the coordination number 4 ahdshells (N=0 for
the tree leavescan be represented as
H=— 12 JSS + KPS+ LSS+ M i+ S’s
=2 |ISSTKSSHLSSH S (SSHSS) 4
Z(N)= 2 x((N)YE(N), (10
—AY S (5)
I

where the valueg;(N) andy;(N) are determined for a cer-

The simplest relation between the spfinda; , s; appears tain deeply lying node of the tree by a system of recurrent

as equations:
1 4
S=oi+ 55 (6) xi(N):;1 APX(N=1)y?(N-1),
Substituting Eq.(_6) into Eq. (5) affords the Hamiltonian in 4
terms cI‘ the variables ands: yi(N)ZJZl Ai(jy)yj(N_ 1)x]-2(N— 1), (11)
H:_EiE;tj 10101+ 0188+ Jo( 015+ 5107) + J40iSi 05, Here the indices, j=1, 2, 3, 4 respectively refer to the

following coupled values of the spin variablesands: +1,
+1; -1, —1; +1, —1; —1, +1. The matrices\ ® and A )
of the dimensionality &4 are expressible in block form:

5 5
J4+ ZJ4(O’iSi+S]‘O’j) Z+Uisi); (7)

_AZ

" 16
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A C B C c -2 e -1/2
A= A0 = S, (Cysa) (Cya2) an
c B/ cC A T (cysd ™ (cya M)
e2(K1+Ky)  g=2(Ky+Ky) where
= e~ 2(Ki+Kg)  g2(Ky+Ky) | 1
7’3,4=Z[Ci(32_b2)], ¥3v4=1. (18)
e2(K1—Ky)  g=2(Kyi—Kp)
B= ( e-2(Ki=Kp)  g2(K;1—Ky) ) : Then the system of equatiofikl) in the limit N— o appears
as follows:
(1 1) 4 4
C= , 12
11 S andsx=0, 3 a-adspyi=o,
with Ky ,=J; /T (T is the absolute temperature in energy

units). k=1,2,3,4. (19

For an arbitrary spin system on an anisotropic Cayley tregnroducing the ratios of the variables andy; ,
with the coordination numbey, we derive a general formula

for the free energy of the corresponding Bethe lat{asso- Xi Yi
ciated with the Cayley tree given bit—o<)—see the Appen- §i=y =y (20
dix. At g=4, this relation affords the free energy of the sys- _ . ) o )
tem concernedper site of the Bethe lattige we rewrite Egs(19) in an explicit form:
fBethe:TInZa (13) 2 1- N12 _ 1- 734
is specifi i it PN ma) NG mad €S
whereZ is specified by Eq(10) with the quantities; andy; 28521 12 116437 7734)531
(already independent &) obeying the system of equations 1+ 734— ya(1+ 712) 724

(12). In other words, recurrent equatiofikl) in the limit N = 5 7 >
—oo determine a stable poing, y; which defines, in turn, N3l (€431 730 8317 73(&21F 7112) 724]
the free energy13). The same quantities specify the aver- 1+ 9aat Ya(1+ 912 724

ages of the spin variables: = ,
g P Nl (Exa+ 130 E51F Va( Ea1+ 112) 124l

4 4
<0>227121 oix?y?, <S>=Zili=21 six2y?, g2 1-E43 _ 1-¢x
S No( M5 €49 Na(Mi— E21) Moa

4
. 1+ & ya(1+ &4
<G'S>:Z 12 O'iSiXizyiz. (14) = > 2t Zs( §4§ §31
=1 N3l (722 £20) 721~ Y3( 734 £43) €31
The eigenvalues of the matricés® and A", B 1+ &o1+ ya(1+ £43) €as (21)
1 Nal (7ot €20 mor+ Va( 3t €49 éad]
M=ap, Na=by, Ags=5[azthy+cl, In terms of variable$20), the averages of the spin variables
(14) become
c=+(a,—b 2116, (15
| (2 | 2) : . oy P BBt (= 98
are convenient to manipulate, as they are expressible in S 222 (A
terms of the eigenvalues of the matricksnd B: (7i2+ £20) Maat (Msat €49 €31
2 _ 42 2 2 _ 4242
a;=2sinhAK;+K,), a,=2cosh2K;+Kj), (s)= (77;2_ %1) 7’34_ ( 7734_ 5‘2‘3)531
(71t &30 moat (34t E39) 51
b1:2 sinh ZKl_KZ)l b2:2 COShZKl_KZ)' (16)
. . (75t E50) moa— (miaat E40) €5
The eigenvectors of tha® and AY) are expressible as (os)= 77;2 = 7734 77;’4 33) L) (22)
the block-structured matrices: (722 €20 20t (7347 €33 €3
S S S, S, It is noteworthy that the symmetry of the system provides
s(x):< ) (Y):( ) the equality(o)= *(s). Without the loss of generality, one
S S can consider thato)=(s) hence it appears that &)

0 o2 =(s)>0 the right-hand orientation of the averaged vectors
( ) €,m IS singled out(see Fig. 1 Then it follows from Eq(22)
0 —27%) that 73,=&43. The condition{o)=(s)=0 is met with the

2—1/2 0
31:< _p-12 0) J
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proviso that another equality holdg;,= &,,. Since all the A
fractions in Eqs.(21) should be positive, the equalitys, 25 \\B
=¢,3 leads tonz,= é43= 1, whereas the quantities;, and I -
&5, satisfy the following three-sided inequality:<Gé,;<1 | NN !
= 712 At 521: 7]12:1 we haVe<0'>:<S>:o Thus, the ini- | T, R :\\\\
tial system of eight equationd9) in eight unknownsx;, y; 2 L Tl e £ E
(i=1, 2, 3, 4 reduces to the system of four equations, with . “:ﬁ
the unknowns chosen as ..-3;"
- c
¢ (2 : \
P1= 821, P27 M2, 1= 31 1.5 . ; : ; \
1+p 05 0.6 0.7 0.8 09 D4
JolJ,
a
§2:7(1+P2) 724 (23 2
An algebraic transform of Eqg21) enables the following 12 1.2
representation of the four equations: x
A4 A1+ 2(vivy— 1) L1 vivpl5 o) 08 |
—vo1(r =281 (L1~ 2)(r — Vl,zﬁ,z)zzoy
(24) 04 - 04
_ (L+p)(pi=p2) Nahs Lo 0 , o
M1= = ’ ‘
! (1_P2)(P§+P2) ahy {H—2 0 0.3 0.6 0.94 0.97 1
. Jaold, JalJ
_(At+p)(pa—p1)  Aghgap (25 b
H2 (1=p)(ps+p1)  Ai(r—2¢1) _ _ _
. ) . FIG. 3. (a) A section of the phase diagram for two Ising sub-
with 2=<{; ;=<r/2 and with the notation systems with fluctuation interactions on the Bethe lattice. Phases |,
) Il, and 1l respectively imply thato)=(s)=(os)=0, (o)=(s)
r=a.b.=4 .= (1+p1)7(1+p2) #0 at{(os)#0, and(os)#0 at{c)=(s)=0. The phase boundaries
2R T A2+ py) I-11, 1111, and II-11l are indicated by the linesABF, FE, andFCD,
respectively. The solid linesAB, FE, and CD) denote second-
4(p5+p1) order transitions, and the dashed lif@FC) corresponds to first-
v (26) order transitions. The lineABF’ andF’CD graphically represent

2= T+ p)%(1tpy)

First we consider the solutions with;=p,=1 which
correspond to the cager)=(s)=0. For them, the equality
v1=v,=1 holds and Eqs(24) are simplified:

(r={3)%(285, 1L+ 2r)=0. 27
At 4<r=<16, a single solution is possible:
[1= 0= (28)

By virtue of the equalityn,,= &31, this solution accounts for
the state with(os)=0 [see. Eq.(22)]. At r>16, another
solution with {,> ¢, emerges,

1
Loa= 7TV (r -1, (29
which describes the state witlors)>0:
r1/2(r _ 16) 1/2
(o8)=—"—g (30)

The states withos)=0 and(os)>0 at{c)=(s)=0 will
be referred to as phases | and (phase Il will identify the

Eq. (40) with regard to Eqs(37) and(42), the valuesc<1 referring
only to the segment8B andCD. The lineEFF’, along with its
continuation, is specified by the equatior16. (b) The J,/J;
dependence of the parametercalculated by formulag39) and
(43).

state with(o) =(s)>0). The line of the continuous second-
order phase transitions 111l defined by the equatienl6 is
presented in the phase diagram with the akel andJ,/J;
[see the lineEFF’ and its continuation in Fig. (@]. The
caselJ,=J, is imaged in this line by the poirk:

43,
In(4+ /15)

In the vicinity of line I-11l within phase Ill, the quantityos)
undergoes a power-law decay with the critical exponent 1/2
[see formulg30)], which agrees with the critical index value
for the temperature dependence of the order parameter in the
classical “mean-field theory.”

We now turn to the analysis of the solutions wjih<<1
<p,, corresponding to the cage’)=(s)>0 (phase I). As-
suming the second-order transitions between phases | and Il
(at 4<r=<16) or lll and Il (atr>16), the variablep, and

cosh 4<1:4, T|_||| = %193851 (31)

155405-5
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p» should continuously approach unity in the vicinity of the
lines I-1l or llI-Il within phase II. The limiting behavior of
the system of equation®4) and (25 at p;, p,—1 must
therefore be considered in order that the equations of thdlow it is possible to approximately solve the system of
corresponding lines be found. In so doing, the varialples equationg24) with respect to the variableg and{,, and to
andp, are conveniently expressed in termsuof, u, using  insert the expressions derived into E¢5) so as to find the
Egs.(25): variablesp; and w,. The latter afford, with definition§33)
and (35), a closed equation in the small parametelSince
2(p1 ot D234+ 1) = (12~ 1) (o0t 1)2F VD the system of equatiori@4) has, in a zero-order approxima-
2(u1ot1)2(u3,—1) ' tion in ¢, two solutions[Egs. (28) gnd (29)], depending on
’ (32) the parameter, we separately discuss the casesr4<16
D=(—1+pmq+ pr+3uqmr)(L+3uq— ot pypms) and r>16. The two intervals of the values respectively
refer to phase transitions I-Il and IlI-II.
At 4<r=<16 we deduce

1 2 1 2
V1~1—Zp(p+2)s, 1/2’~V1+Z(1+2p)8. (36)

P12=

X (1= py+3uot papn)(3+py+ o= papn).

The limit concernedp,, p,—1, corresponds to the region 112
pl2_ T P22 ’ 2
t=3+us+tpr—p1u2=0, w1=1, w=1. (33 G 5 el 2va,— (M= 2) vy ple”,
Indeed, att—0 we obtain, accurate to the terms of the Py 12
ordert 2(vitv) 1w,y
’ m1~Frg 1t (24— °
~1-pe+ Epzs2 ~1+e+ 382 e<1, (34
P1 2 v P2 28 ) f r1/2(r1/2+ 2) f az(r1/2+ 2) , (57/1,2)
=, = T Vqo— .
with the notation ! azh; ? ren vt ]
(37)
J2t 1 _ o .
e= == —1).
PSR P 2(,“1 1) (350 The solution of the equation ia can be written as
1
Substitution of power serig84) into expression$26) gives, e2= 2 t 38)
. = a2 L
with the same accuracy, (f1+1)%(1-«)
|
2(1-p?)(f1—fp) +r*3(1+4p+p?) +p(p+2)f,+(1+2p)f,] a9
K= 2r1’2(4—r1’2)(f1+1)2 . (39
|
The quantities and p are determined by relation83) and 1 1+4p+p? ,
(35), with the valuesf, andf, from Eq.(37) substituted for (0)=5(1+p)s, (os)= Aa—r7 e
mq and u,. According to solution(38), the second-order
transition |-l occurs if
(os)—(a)?=0. (42)

t=3+f,+f,—f;f,=0 (40) . .
From relationg33), (38), and(40) it follows that the param-

etert is proportional to the temperature differentg-T [T

provided that the coefficient falls within the range from 0
to 1. The lines defined by Eq&10) andr =16 [see the lines
ABF and EFF’ in Fig. 3@)] intersect at the poinf’

(J,/3,=0.8353,T/J,;=1.7938). At the left, Fig. @) shows

is the temperature within phase T is the temperature of
the phase transition I-1l which obeys E@O0)] and the pa-
rametere is proportional tot*2. To put it another way, the
quantity (o) in phase Il in the vicinity of the I-Il phase

the J,/J;-dependence of the coefficient along the line  boundary tends to zero with the critical exponent 1/2, which
ABF’ given by Eq.(40). The valuex=1 is found at poinB is in agreement with the temperature dependence of the order
(J,/3;=0.5633, T/J;=2.4725). As a result, the second- parameter in the mean-field approximation. For the quantity
order transition I-1l can be realized on the interval 0 (os), the corresponding critical exponent is equal to 1. In
<J,/J;<0.5633[line AB in Fig. 3@]. On substitutingp,, the limit t—0 with J,=0, we arrive at:p=1r?=5/2
p,and{;, {, as power series i [see Eqs(34) and(37)] and (os)=(o)2=g2=t/2, where t=16(1—-22z), z=exp

into relations(22), we obtain, with designations introduced (—2K;). This is consistent with the results of the Ising model
in Eq. (23): on the Bethe lattic® which implies the following tempera-
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ture dependence for the averages of the statistically indepen-
dent spins o and s in the ordered phase{o)=(1 {1~ g”(l','é)
—479)1212(1-27%).

Figure 4a) demonstrates the order parametés$ and
(os), the quantity{os)—(o)?, and the specific heaC rv) —8(vi+v})
against temperature. The value of the paramétéd, is put Ml,ﬁfl,z{ 1+2(LM -2) MTr)S
equal to 1/3 as is the case in realistic dipole-dipole interac-
tions. To evaluate the temperature dependences of the order
parameterg22), the system of equation®1) was solved (r—a)z{m ay(r—4) Iy
numerically, and the specific heat was found by numerical f;= fo=—"—m, n ZE<7'—) ,

2N ' de

rvy,—8(vytwy) ,
1+4—r(16—r) e

2

differentiation of expressior{13). Note that the quantity 2azM, 162 £=0

(os)—(c)? behaves nonmotonically and the specific heat (42)

undergoes a jump at the transition pofat T/J;=2.751),

which is typical of the mean-field approximation. where 8" refer to valueg29) for phase Ill. Equatior(38)
Passing on to the analysis of the second-order transitionsolds the same form, with the valde specified by Eq(42)

[I-11l occurring atr>16, we rewrite relation$37): and with the parameter expressed differently:

é«(llll) ) [(1+2p)fl_p(p+2)f2]r+8(p2_1)(f1+f2)
T r(fy+1)? 16 ~3 Ly “

K

The second-order transition IlI-1l is realized subject to thebonds tending to zero; such vanishing interaction is modeled
same condition(40), provided that the coefficienk falls by the differencel;—J, entering into the above equation.
within the range from 0 to Isee the ling'CD in Fig. 3@  The only distinction is in the coefficient values, and it arises,
and the right-hand part in Fig.(8] but the valuex=1 is first, from the specificity of the model in question which
now realized at the point CJg/J;=0.9590,T/J;=1.7663).  involves two spin sublattices and, second, from the fact that
Hence it is obvious that the second-order transition Ill-1l canthe fluctuation interaction is intrinsically given less weight
take place on the interval 0.9580,/J;=<1 [see the line  for the Bethe lattice than for a square latticelJ#J, =1, the

CD in Fig. 3@]. The following relation should be substi- ground state with the structure of phase Il exists only at zero
tuted for Eq.(41): temperature. An infinitesimal increase in temperature imme-
diately brings the system into phase Ill which persists up to

(o)= +p e the temperaturd |, found from Eq.(31). In the next sec-
1+ (LM gJmy2 tion, we consider this special case when the spin interaction
constant within one subsystem is the same as between two
8(1+4p+p?) subsystems and demonstrate that this peculiarity enables ex-
<US>_<US>|||:m82, (44)  act calculation of the partition function not only for the Be-
the lattice but for a square lattice as well.
[here(as),, is determined by expressidB0) for phase II]. In the previously published communicatidha simplified

The critical exponents for these order parameters are thenalysis of the system of equatiot8l) was performed
same as in phase Il atdr <16. To illustrate the temperature Which enabled Eq(40) to be derived and interpreted as an
dependences of thermodynamic values on the interval corequation accounting for second-order transitions to phase Il
cerned, we have chosen the valdg/J;=0.97 [see Fig. without any limitations. It followed from the paper that
4(c)]. Two second-order phase transitions proceed at the tenphase Il was separated from phases | and Ill by the lines
peraturesT . /J;=1.73 and T, /J;=1.92, either being ABF andF’'CD, respectively[see Fig. 8)]. In fact, the
accompanied by a jump of specific heat. line of second-order transitions to phase Il has its extremities
As the parameted,/J; approaches unity, the phase tran- at the_pomts B and C. On the_ other hand, the numerical
sition temperature goes to zero. A§/J,—1, Eq.(40) be-  analysis of the system of equatiofl) [or (24) and (25)]

comes simpler: suggests that only first-order transitions to phase Il can hap-
pen between the points B and @e., on the interval
8J; 3 0.5633<J,/J,=<0.9590)—see the dashed line in Figa3
T = Ny Tom 131=3,)1° '~ & J;—J1. (49 This line has common tangents with the lireB andCD at

pointsB andC, respectively, in accord with the properties of
Equation (45) is identical in form to the Ising-model critical points between the lines of first-order and second-
asymptotic equation in transition temperature for a squarerder phase transitions in terms of the Landau th&dow
lattice, with interactions along either horizontal or vertical phase Il has a boundary with phase | along the A= and
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1 6 1
1 : 1
o8l <g>, <gs>, \ Cc 0.8 x
100(<o's >-<g>%)
14 [
06 | 2 0.6
| <og>, <0s>,
3 <os>-<g>?
04 | 04 |
4 12 “
02} 0.2 ’_’//’//?/,\
Y . 0 0 - s .
1 15 2 2.5 3 1.7 1.8 19
TiJ, TiJ,
a
1 -1 a
0.8
<o>, <05 >, 1 -2 4
06 I 1p(<os>-<s>?)
04
1-3 4.04
0.2
FlJ,
0 T T T T -4 4.08
2 21 22 23 24 25
Tid,
b
15 4.12
c
<G>, <G5>, b
<os>-<o>’
gs><o 41 10 FIG. 5. Temperature dependences of the thermodynamic char-
acteristics in the cross-section of the phase diagram by the line
J,/3:=0.92 which includes the triple poinfa) The lines 1, 2, and
3 indicate the respective order parametéss=(s), (os), and
18 {as)—(a)? in phase II, and the line 4 represextss) in phase IIl.
(b) Free energies of phases |, I, and III.
, 0 while the lines Il and | join with a dog leg. Accordingly,
18 5 transition IlI-I is characterized by a jump solely in specific
T, heat, and the transition Il-1 implies an energy jufisee, for
c instance, line 4 in Fig. @)]. The only(first-orde) transition

occurs in the range 0.5633],/J,;<0.92[as in Fig. 4b)],

FIG. 4. Temperature dependences of the thermodynamic chagnd two (first-order and second-ordetransitions fall within
acteristics for the system under study on the Bethe lattice ajpg range 0.92 J,/J,<0.9590.

J,1J,=1/3 (a), 0.6 (b), and 0.97(c). The lines 1, 2, and &ee the
left-hand axis of ordinatescorrespond to the value&or)=(s),
(os), {os)—(a)?; the line 4(see the right-hand axis of ordinates IV. PHASE TRANSITIONS ON A SQUARE LATTICE
represents specific he@t[(a), (c)] or energyE (b).

The results obtained in the previous section for the Bethe
with phase Il along the lin€ECD. The pointF at which the lattice with the coordination number 4 can be regarded as a
three phases coexist is defined by the coordindtgls);  cluster approximation of the model on a square lattice de-
~0.92 andT/J,~1.87. The temperature dependences of thescribed by Hamiltonian(3). Distinctions between the two
order parameters and free energies for these phases are pagproaches are due to the fact that the cluster approximation
sented in Fig. 5 at the fixed valuk /J; corresponding to neglects the interactions of order-parameter fluctuations at a
pointF. Lines Il and | have a common tangent at this point, distance longer than the cluster size. In the trivial special
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—— g —— (Kj=J;/T,j=1,2). Since the hyperbolic cosine arguments
take on only two values, i, and 0, we involve the identity

cosi 1= 7)) (1% m)K=exd (1+ 7)) (1= 7)K],

~ 1
K= —In(cosh K 48
| e 2 ) (49
m,n+1 to reduce the partition function to the form
—— g g —T =1 Z= ZN(COSh 4<1)N/22Ising(R) . (49)

mn. m+l,n Here Z,sing(R) designates the partition function of the 2D

FIG. 6. A sample distribution of spin variables over the sites ofISIng model with the effective Hamiltonian

a square lattice. For the cadg=J,, the solid lines connect the ~ L

coupled o spins which provide the energy contribution &f4J; He=—J>, [TmnTm+1nt TmnTmn+1l,  J=TK, (50)

(the sign is governed by the values @ivariableg. Upon the sum- mn

mation over the states af spins, the energy of effective interac- j, \yhich the temperature-dependent interaction conslant

tions in the pairs of neighboring, and 7, spins appears as accounts for the thermodynamically averaged coupling of

—J7175, whereJ=(T/4)In(cosh4,/T) (see the explanation in the two o-neighboring spins. The temperature of the phase tran-

text). sition from the disordered(7)=0) to the ordered{7)#0)
state corresponding to the appearance of the nonequivalent

case free of fluctuation interactiond,(=0), itis possible 1o andy directions is derived from the equation sirfi21 for

compare the results gained by the cluster approximation anghe critical temperature of the 2D Ising model:
the 2D Ising model for either of spin subsystems. For ex-

ample, the phase transition temperature is equal to 28854 cosh&K,=3+2v2, T, =1.6337;. (51)

for the Bethe lattice and to 2.26912for_a square lattice. It A comparison of relationés1) and(31) shows that the value
turns out that the casi =J, also admits of an exact solu- T =~ for a square lattice is smaller than that for the Bethe
tion on a square lattice. To find this solution, introduce thejattice in accordance with the tendency for the cluster ap-
new spin variablesry,=omnSmn and rewrite Hamiltonian  proximation (resulting from the Bethe-lattice treatmgrio
(3) as overestimate the transition temperature.
Turning to the analysis of the phase diagram in the region
where the fluctuation interaction constant has intermediate

H= _% ([ TmnTime 1)1 values (6<J,=<J,), it should be noted first of all that the
chains of o spins(see Fig. 6 become coupled ai,—J,
T (Tmnt Tm+10)92]0mnOme 10+ (1 + TnTmn+1)J1 since one of the bracketed expressions in (&) assumes a

nonzero value, 2I;—J,), and a spontaneous polarization
thus arises in the system. The temperaijrg, of the phase
ransition into the state wittw)#0 is given by Eq(45) with

e numerical coefficieny of the order of unity. On the other

—(Tmnt 7'm,n+1)‘32]0'mn0'm,n+1}- (46)

At J,=J, the bracketed expressions can assume only tw
values, 4; and 0. The former corresponds to the horlzontalhand' the valudf,_,,, specified by formuld51) remains prac-

bond ith 7iny= 7m 10 =1 or the vertical bond withry, tically unchanged in the vicinity of the poidt/J;=1. As a

=Tmn+1=—1. The zero value resullts in all other'c'ases. As a onsequence, phase Ill win=0 is now intermediate in
consequence, the diagram expansion of the partition functlofl '

ove the ¢ spns” [unich nvoles the ety exp) | TPREUIS QS Besce ) L LI e svien e
=cosha+o sinha, o==1] will include only horizontal and gp 5, P

vertical chains having no common sitésee Fig. 6. The '_[I|_ons_l+lll anghlll-ll W|III_!{n:¢rsect at lat_trlple point Wgeret d
subsystem ofr spins thus becomes quasi—one—dimensionalb"'”h_ f-n i else ?ufr’“ a 'er ﬁpecu a |onst:);1lre c?rrohora €

the long-range order vanishir{¢gor)=0). Hence, the summa- y the ana ytical so utl|ons of the same problem for the cor-
tion over 2 states ofo spins will nullify all the summands responding Bethe latticesee Sec. Il

conaining at st ene yperolc sie ameng coactors ng 1% % 100 0 SIUALen, | becenes Posebie o
we arrive at the following partition function: 9

interaction constant (€J,=<J,) into the phase diagram. To
this end, the Metropolis algorithfhat decreasing tempera-

7= E exp( — H/T) ture was employed. Th_e system undgr study was r.epresented
{7}{o} by a square cluster with the linear dimensiba (a is the
lattice constantand the periodic boundary conditions. To
_oN reach the thermodynamic equilibrium and to average the
2 % 1,1] {LeoSHL+ 7o) (1 7ins1.0) K] guantities of interest, we used the Markov chains with the
length of the order 0and 16—10 steps per lattice site,
X[cosh1— 7mp) (1= T+ 1)K} (47)  respectively. A plausible statistic for the Hamiltonian con-

155405-9



V. M. ROZENBAUM, A. N. MOROZOQOV, AND S. H. LIN PHYSICAL REVIEW B68, 155405 (2003

5
4| 31
I
3~ e, A i
c 2]
27 TIJ1 2
1
0
0.5 1 15 2 25 3 15 :
T, 0.84 0.99
] . . . .
FIG. 7. Temperature dependences of specific heat calculatec 0 0.2 0.4 0.6 0.8 1
from the exact expressions for the free enelgyes) and from the Jold4
Monte Carlo computational dafd. =14 (filled triangles and dia-
mondg, L =10 (dashey andL = 18 (empty trianglej| for the cases FIG. 8. The phase diagram of the two Ising subsystems with
J,1J,=0 (the dashed line and diamondendJ,/J;=1 (the solid fluctuation interactions on a square lattice. Phases I, Il, and Il are
line as well as triangles and dashes the same as in Fig.(8). The vicinity of the point at which the three

phases coexist is shown on an enlarged scale in the box. Triangles

cerned in the critical region was aained with the number Otfmd circles with error bars connected with dotted lines indicate the
9 9 ransitions to phase Il and between phases | andthi result of

steps tvyo c_>rders qf magnitude larger than in the absenge onte Carlo simulation fol.=14). Empty squares at,/J,=0
fluctuation interactiongsee, e.g., Ref. 30The phase transi- and 1 correspond to the exact calculation of the partition function.
tion temperatures were determined from the peaks of specifithe solid line corresponds to the duality transformatias pre-
heat and also from the inflection points of the temperatur&ented in Ref. 18 sint' 2K, —sinH 2K,=1, for the phase transitions
dependences dbr) and(os), both approaches being in nice I-Il.

accordance. Thé-dependence of the thus found transition

temperatures was studied for the cases0 andJ,=J; II-lll, just as the duality transformation within the Ashkin-
admitting of the exact solutions. Far=14, the phase tran- Teller model fails to reveal the phase wiflors)#0, (o)
sition temperatures proved to be aboutd, above the exact =(s)=0.

values for the corresponding infinite system. Figure 7 dem-

onstrates the agreement between the temperature dependence V. DISCUSSION
of specific heat found from the exact expression for the free ) _
energy and that provided by the Monte Carlo simulation. Phase diagrams constructed on a square lattice and on the

To construct a phase diagram in a wide range of the Va|Bethe lattice with the coordination number 4 Strongly evi-
ues 0<J,<J,, we involved a cluster witi. =14, which dence for the occurrence of phase Il at the vallieslose to
enabled a compromise between the computer time and thl- Phase lIl corresponds to the average vales)+0,
calculation accuracy. The simulation results presented in Fig.o)=(s)=0 and resembles, in this sense, one of the phases
8 Support the occurrence of the tr|p|e point and the appeaﬂﬂVOlved in the Ashkin-Teller mOdétlo For the quaSidip()le
ance of a new phase IlI, and also furnish a good approximasystems considered here this phase represents a new type of
tion of the I-1l and I-Ill phase transition temperatures. TheOrientational ordering. Using the relationship between the
computational difficulties, however, emerged in modellingunit vectorsey, and spin variablefsee Eq(2)], it is readily
the IlI-1l transition at the values, close toJ;, since the shown that phase Il witkios) # 0 implies the nonequivalent
system “froze” in phase II. This may be attributable to an mean-square  projections ((e},)%)=(1+(os))/2  and
underestimated probability of the IlI-1l transition in a cluster {(€},)2)=(1—(os))/2 in the absence of spontaneous polar-
of the given size which causes a distortion of the distributionization (e, =0). Thus, thex andy axes become inequiva-
function. The same effect is also likely to account for thelent in the system.
systematically underestimated values of specific heat in An exact solution as such is of value in the theory of
phase Il atJ,=J,, in contrast to the cas& =0 when the critical phenomengwhere only a few exact results are avail-
low-temperature shoulder of the specific heat was reproable and generally provides a new insight into the physics of
duced practically exactlysee Fig. 7. This impediment can the system under study. So does the exact solution consid-
be surmounted using cluster algorithitike that developed ered in Sec. IV: it gives the clue to the mechanism by which
in Ref. 21 for the Potts model phase Il arises.

Figure 8 also includes the line of phase transition I-Il  Indeed, with the conditiod,/J;=1, one of the spin sub-
which is specified by the equation sfitk,—sint2K,=1  systems(the subsystenv, specifying the left-right or up-
[resulting from the duality transformation—see E81) at  down direction of the unit vectoe,,, becomes guasi-one-
K3=0 in Ref. 13 and agrees well with the corresponding dimensional; as a consequence, the other(dresubsystem
Monte Carlo computational data within the accuracy of ther=os, specifying the horizontal or vertical alignment of the
method. Clearly, this line cannot describe the phase boundamnit vectore,,,) is describable by the effective Hamiltonian
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of the 2D Ising model, but with a peculigtemperature- 0.64 (only for quadrupole-quadrupole interaction,/J;
dependentinteraction constant averaged over the spins of=0.6). Phase Il therefore cannot result for the system CO/
the first subsystensee Fig. 6. At J,/J;—1, the quasi-one- NaCl(100) and the orientational transition observed at the
dimensionality of the first subsystem vanishes and the sysemperaturel .=17.5-21.5 K (Ref. 229 occurs in this sys-
tem is characterized by two phase transitions at non-zertem between phases | and Il. The Monte Carlo simulation
temperatured,, andT,_, [see Eqs(51) and(45) with the  performed by us provides the phase transition temperature
numerical coefficient of the order of unity. Thus, phase Ill T, which falls within the same temperature range.
results from the quasi-one-dimensionality of one of the spin The values of numerical coefficients for the parameigrs
subsystems. At the value$,/J; strongly deviating from and J, in Egs. (52) merit notice. The equality;=J,>0
unity, the prerequisites for the phase Ill occurrence disapholds atW=(3/2)U. As a consequence, there are no fun-
pear. damental obstacles to the realization and experimental obser-
We now turn to the possibility for phase Il to be detectedvation of phase Ill: it can be detected provided dispersion
experimentally. For systems with real dipole-dipole interac-interactions are strong in comparison with quadrupole-
tions, the ratioJ,/J;=1/3 is strictly specified and phase Ill quadrupole interactions. This becomes quite plausible, e.g.,
cannot be realized. Consider a system of nonpolar moleculesr the molecules with high polarizabilities and small
with quasinormal orientations relative to the lattice of ad-quadrupole moments or with relatively small molecular
sorption centers. It was shown previouglshat in this case  separations.
the angular dependences of quadrupole-quadrupole, disper- In summary, systems with fluctuation interactions repre-
sion, and repulsive interactions are described well by theent a discrete counterpart of a more populated class of sys-
Hamiltonian of dipole-dipole interactions, with the renormal- tems with the continuously degenerate ground state. At the
ized constant®, andD, [see Eq.(1)]. Below are the ex- same time, Hamiltoniarg3) is remarkable not only for its
plicit dependences of the parametdysandJ, as well as the specific applications in the description of the orientational
parameted, of the Ashkin-Teller mode]see Eq(4)] on the  states for adsorbates, but because it underlies a fruitful model
constants of quadrupole-quadrupole and dispersion interaéa phase transition theory. It is not so sophisticated in struc-
tions (repulsive interactions are not treated here, since theture as the spin representation of the eight-vertex mtfdel,
are negligible for the real adsorption systems in which interimplies three phases, and enablasa certain parameter ra-
molecular separations are governed by the lattice of adsorpio) an exact calculation of the partition function. We have
tion centers and far exceed the equilibrium values in theconstructed the full phase diagram by Monte Carlo modeling
gas-phase dimers and also using the equivalent Bethe lattias shown in Ref.
23, calculations on a Bethe lattice are more reliable than
conventional mean-field calculations, the latter being quite
inapplicable to the model concerned heréhese findings
clearly demonstrate the occurrence of an intermediate phase
state and thus represent a great stride toward understanding
cog g sir? 0, the nature of the systems with continuously degenerate
ground states. Such systems might be expected to have a
(52) state similar to phase Ill and an effect of “ordering due to
J =—(5—7U—§W) siffg. U= Q_ disorder” with more fascinating features than commonly
4 16 2 ' 2 supposed. This conjecture is supported by the appeatance
a very narrow parameter rangef the short-range-ordered
h * , ) phase without polarization in the context of the strict dipole
W=mfo [xi(io) = x, (0)]dw. model (J,/J;=1/3).° Thus it is tempting to extend the
analysis to the continuously quasidipole case withJ;
HereQ is the molecular quadrupole momeatjs the inter- —1, as it may reveal a more clearcut analog of phase Ill. It
molecular distancéthe lattice constait y,(w) and x, (o)  is also promising to study the Ashkin-Teller model with al-
designate polarizability components longitudinal and translowance made for the newly introduced fluctuation interac-
verse with respect to the long molecular axis. For quasinortions, i.e., to superpose Hamiltonia®) and (4). Such a
mal orientations, the valud, is small by virtue of the small combined treatment should furnish an even more intriguing
angle # at which the molecules are inclined to the surface-phase diagram than either of the two individual models and
normal direction. As an example, the energy of quadrupolewill be particularly helpful in the analysis of orientational
quadrupole interaction in the system CO/NAOD, U  states of adsorbates.
~1.63 meV, is more than three times as large as the energy
of anisotropic component of dispersion interactiow]
~0.5 meV, and exceeds by more than ten times the energy
of dipole-dipole interactiongdue to the smallness of the di-  This work was financially supported by National Science
pole moment of the molecule GOEven a relatively large Council of Taiwan. V. M. R. thanks Professor N. Sh. Izmail-
value of the angle? (about 253 for this systen® affords a ian for fruitful discussions on free energy calculations on the
sufficient smallness of the valul (J,/J;~—0.2). The ra- Bethe lattice and Dr. M. L. Dekhtyar for useful remarks on
tio J,/J, does not depend ofi and approximately equals the material presentation, and gratefully acknowledges the
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APPENDIX. GENERAL FORM OF THE FREE ENERGY f f
FOR AN ARBITRARY-SPIN ANISOTROPIC MODEL o I o I
ON THE BETHE LATTICE 0 | L
J J

The Bethe lattice is regarded as a convenient tool in stud- ‘ \

ies on “spinlike” systems since it enables recurrent relations oo Lob
for the equations of states for such systems to be introduced Jth branch /'th branch
and also provides qualitatively correct resdftsthe Bethe ——

lattice is the infinite “interior” of the infinite Cayley tree
which is characterized by the large contribution from the
boundary “surface” nodes. Thus, the latter cause a great ef- FIG. 9. The central part of the Cayley tree with the coordination
fect on the thermodynamic properti€> and make them numberq=4. The central node at which the spin, resides is
behave differently than in the “interior” which is just the bound to four branches labeled by the index1, 2, 3, 4. The
focus of our attention. Intensive quantities are rather easy tepin o, is positioned at the node incident to the bgndnd three
derive from the stable point of the recurrent equations ofondsj’.

state, whereas the calculation of extensive quantities encoun-

ters certain difficulties associated with eliminating the outeHere W(o ) designates the Boltzmann weight for the inter-
part of the Cayley tree and also with choosing the correchaction betweenr, and external fields, ang(h{)(ao) is the
ratio (q/2) of the number of bonds to the number of sites forrestricted partition function obtained by summing over all
the Bethe lattice with the coordination numbegr To sur-  spins belonging to th¢th branch of the Cayley tree in each
mount these difficulties, one has to invoke some auxiliaryof N shells(see Fig. 9. The recurrence equation relates the
techniques, for instance, to integrate the equations of statefantity for thejth branch in the innermost sheti{}’ (o),
over the external field so as to obtain the free energy of the; ihat for thej’th branch in the next She|g(d’_)1(01) (the

0 . .
;ysterrﬂ A straightforward geometrical mgthod for calculat- pina is positioned at the node incident to tft& bond and
ing the free energy of the Bethe lattice was propose —1 j’th bonds:

previously?® A similar result can also be obtained by a

“more transparent” algebraic approaéh?’ Though intuition

suggests that these results shpuld be indepe_ndent (_)f whether gg\{)(go)zz W;(aq,07) 11 g&l’_)l(gl)_ (A2)
spin coupling constants are isotropic or anisotropic along o1 i7(#0)

different bonds on the Bethe lattice, it is nevertheless expe- . .

dient to derive the relations concered for the anisotropicdVj(?0,01) denotes the Boltzmann weight for theh bond
model. Moreover, the derivation proposed here is concisé/hich is contributed by the coupling between the spins
and free of any additional assumptiofissed, e.g., in Ref. a_mda1 as well as by the interaction betweef and external
27), and it yields a remarkably brief and easy-to-apply formfields. ] o,

of the final expression for the free energy and the corre- At N>1, the extensive quantitiez\’(c) can be repre-
sponding equation of state. This general result for arented as the products of the extensive quagfity(depend-
arbitrary-spin anisotropic model is exemplified by a compacing onN but not ono) and the intensive quantitg’) (o)
derivation of the free energy in the anisotropic Ising model(independent oN):

on the Bethe lattice. We use the same general relations also

in Sec. Il to analyze the states of the system with fluctuation g (a0)=Wz0) (). (A3)
interactions.

Consider a Cayley treésee Fig. 9 with the nodes each [The treatment of the isotropic systéhinvolved, instead of
containing the spins which takes on 8+1 values ¢= Q)| the analogous quantities irrespectivejofvhich were

—s,—s+1,...s—1,5). We begin the analysis at the so-called put equal togy(s).] Then the quantitieg!) (o) are defined
central node surrounded By shells which is bound ta by the system of equations

branches labeled in the same way as the corresponding

bonds,viz. by the indexj=1,2,...q, whereq is the coordi- , , .

nation number of the tregFor the anisotropic model in- 20(aq)=[ W11 Wilog,00) [T 20(ay),
volved here, the interaction constants for different bonds are 7 I"(#1) (Ad)
assumed differentWith the spin at the central node denoted

by o7, the partition function of the spin system on a givenin which w{), can be regarded as the coefficients of the

Cayley tree can be written as follows: recurrent relationships fom):
. i (1) (i ("
2y=3 W(ao) [ oiP(o0). (A1) IN=WRLy 1(1 G (A5)
o0 i= i"(#]
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The free energy of the Cayley tree is described by thevhere the quantitieZ!)(o) satisfy, in terms of relations
expression (A4) and(Al11), the system of equations

q
CayleyT_1n7 _ ' :
-Fg® ey/T—InZN—J_E::l In¢P+Ind, (AB) 70 (o) E W,(0g,01) H 3W0(ay).  (AL3)
i"(#0)

where . .
Since the second of expressio12) and (A13) respec-

q " tively coincide with Egs.(Al) and (A2) provided that
‘D:;O W(‘TO)]Hl zV(a0). (A7) 50)(gp)=gP (o) and D=2, one can formally consider
o _ _ ~ Eq. (A2) as a usual system of equations in the variables
On SUbSﬂtUUng Eq(A5) into Eq (AG) and repeatlng thIS g(l)(o-o)_ The quantityg(J)(o-o) thus defined enables calcu-
recurrent procedur®! times, we are led to the following [ation of the analog of the partition functich and the cor-

relation for the free energy of the Cayley tree: responding analog of the free energy. The latter coincides
accurate to the factor (2q)/2 with the correct expression
FSY'®Y=(q— HMFS2S+Fun, for the free energy of the Bethe lattice per lattice site. This
(A8) technique significantly simplifies the calculations, which is
M q illustrated well by the analysis of the model given in Sec. Ill.
—Fun/T= E (q—1)% 12 nw{) The efficiency of the above-developed technique is also
exemplified by a brief deduction of the free energy for the
—[(g—1)M—1]In . anisotropic Ising model on the Bethe lattice. The Boltzmann

o weights W(o() and Wj(oq,04) for the anisotropic Ising
The central part of the Cayley tree consistingwishells can  model withs=1/2 appear as

be imaged, aN—«, by the Bethe lattice which includes the

following number of sites: W(ao)=expthag), W;(aq,01)=expKjoeoy+hay).
(A14)

2 -1HM-1
NSite:aNBondzz(qq_—z (A9)  substituting them into the system of equatidAg), we im-
mediately arrive at the solution
Thus, we arrive at the expression for the free energy of the
Bethe lattice per lattice site:

—fgethe/ T= lim (—Fyn/Ngitel)

N— 0

_ 1_t2X-_2 1/2
9(1)(1/2):(—1—tj eKi+h7) , (A15)
where

12 . q-2

—2 an(J)—qucp, (A10)

N

q t2 72 1/212/2-q)
H ( eXj +h)
:1 !

q
N =[1 g"(1/2)=
whereW () is the limiting value of¥{}) ; at N—o. For an =1

isotropic system, the above expression reduces to that re-

ported in Ref. 27. g (—1/2) q
It is noteworthy that relatiofA10) is invariant under the = t=
transformation g Ao % D(1/2) JH (A16)
Z0(a) =72 ()7, andx; obeys the equation
! X, —tx; = (1-t)e 2, (A7)

v =g Oz~ ZH 7N,
= The notation specified in E§A16) enables relatiortAl) to
q be written in the form
=[] 0. (A11)
=1 Z=(1+t)e"r, (A18)
The quantities?) can therefore be always chosen so that
v =1 for all j=1,...0. As a result, relatio{A10) is ex-
pressible in a very simple form convenient for calculations:

which affords, with regard to EqA16), the known expres-
sion for the free energisee Eq.(4.9.6 from Ref. 10:

q_2 ~ ~ 4 1 a t2X*2
foeme=—5T®, d=2 W(UOH Do), —fBehte/T=h+§j21 Kj+In(1+t)+ 5 E g -
ag = -
(A12) (A19)
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