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Supersymmetry in carbon nanotubes in a transverse magnetic field
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Electron properties of carbon nanotubes in a transverse magnetic field are studied using a model of a
massless Dirac particle on a cylinder. The problem possesses supersymmetry which protects low-energy states
and ensures stability of the metallic behavior in arbitrarily large fields. In metallic tubes we find suppression of
the Fermi velocity at half-filling and enhancement of the density of states. In semiconducting tubes the energy
gap is suppressed. These features qualitatively péasibbugh to a smaller degreim the presence of electron
interactions. The possibilities of experimental observation of these effects are discussed.
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I. INTRODUCTION vary along the tube. For a uniform transverse field, in par-
ticular, the Fermi velocity in metallic tubes is suppressed by
The electronic properties of single-walled carbon nanothe uniform transverse field as
tubes(NT) vary for tubes with different structure. Depending
on the angle between the tube axis and graphite lattice, called
the NT chiral angle, the tube electron spectrum can be me-
tallic or semiconducting.The semiconducting band gap of a
single-walled NT(SWNT) is of the order of 1 eV and scales wherev is the Fermi velocity forB=0 andly(x) is the
inversely with the NT radiuRR. Also, in many nominally modified Bessel function. The density of states near the band
metallic tubes a minigap appears at the band center due tenter is enhanced by the same fadfx). We also calcu-
the intrinsic tube curvature.” These gaps, recently observed late the suppression of the gap in semiconducting tubes.
experimentally® have the size of a few tens of millivolts for The typical field strength required to make these effects
SWNT’s and scale as BRf with the NT radius. pronounced is quite high. The fields necessary to signifi-
Ajiki and Ando have made a remarkable observdtitiat ~ cantly alter the electron dispersion can be estimated from
in nanotubes the metallic behavior is fragile: a metallic NT7R?B=®,=hc/e, which gives many tens of tesla even for
can be easily turned into a semiconducting one by applying ¢he tubes of the largest available radii. These fields are not
relatively weak parallel magnetic field. Such a field, by in- hopelessly strong—they are available, for example, in pulsed
ducing backscattering between right and left electron modesnagnetic field sourcéwhich allow one to reach fields up
opens a minigap at the band center. This gap, linear in theo 100 T (Ref. 16. Because of that and also because of the
field, is given by the magnetic flux scaled by the flux quan-novel features arising from the supersymmetry and Dirac
tum, mR?B/®,, times the semiconducting gap size. Br character of low-energy states, we believe that this problem
=10 T the gap is of the order of 10 meV for typical SWNT is sufficiently interesting.
radii. Effects of parallel field on multiwalled NT's have been  The paper is organized as follows. We first review the
reported in Ref. 8. Electronic properties are also sensitive tbasics of the carbonr-electron tight-binding band and its
mechanical distortion, such as twisting, bending, orrelation with the massless Dirac equation, paying particular
squashing; ! as well as to external electric fields!® attention to coupling to external fields. Then we present a
Another interesting observation made in Ref. 7 is that aheory of a massless Dirac particle on a cylinder in a trans-
transverse magnetic field affects electron states in a wayerse magnetic field and calculate the spectrum and density
completely opposite to the parallel field effect. In metallic of states. We analyze both the metallic and semiconducting
tubes the Fermi velocity is suppressed by a transverse fieldiibes. Then we briefly discuss the behavior in extremely high
while the density of states near the band center is enhancefields, where a connection can be drawn with the Landau
At the same time, in semiconducting tubes the band gap ikevels and snake statésonsidered previously in the context
suppressed. The goal of the present work is to rationalizef the quantum Hall effect.
these properties using the conceptsopersymmetrd# Su- After that we discuss the effects beyond the Dirac ap-
persymmetry has a profound effect on the low-energy propproximation arising from the next order in the gradient ex-
erties by protecting the states at the band center. We derivepansion of the tight-binding problem. These effects are small
supersymmetric Hamiltonian for and present a simple anabut interesting, because they violate supersymmetry and lead
lytic theory of the above effects. We find that the metallicto minigaps appearing at the band center. The effects beyond
behavior is protected by the supersymmetry for any magnetithe Dirac model are controlled by the so-called trigonal
field that is applied perpendicularly to the NT and does notvarping interaction. We consider it in the presence of a mag-

v(B)=vlly(x), x=47R?B/D, (1)
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netic field and show that its effect depends on the chiral . ®_ ®_
angle and, in particular, is absent for truly metallic armchair
nanotubes. These effects have been discussed in Refs. 18 a |
19, using a combination of numerical and analytic methods, ¢
for zigzag and armchair tubes. We extend the results of Refs
18 and 19 by considering nanotubes with arbitrary chiral @,
angle and also in the presence of minigaps of other origin.
We also discuss the experimental implications of this g
work. The gap suppression in semiconducting NT's wins ¢
over the Zeeman splitting at reasonable fields. We conside
the possibility to observe the gap suppression in the tunnel-
ing density of states and in the thermally activated transport FIG. 1. Shown are two plane-wave basis stat@9 andv(r) of
regime. the problem(2) with e=0. Bothu(r) anduv(r) take the values 1,
Finally, we consider the competition between supersymw=e?™ and w=e{"2") on one sublattice and vanish on the
metry and electron-electron interactions. We find that al-other sublattice of the honeycomb lattice. The statg9 andv(r)
though the effect of supersymmetry is reduced by strong inhave the same quasimomentum and form a basis of the Dirac prob-
teractions, the qualitative features of the spectrunem (9) atthe point<. The independent basis states at the pkint
(suppression of the plasmon velocity and of the semimetalli@reu(r) andv(r).
gap are similar to those of the noninteracting case.

complex-lalued_conjugate pairs which we denoteufs),

Il. DIRAC MODEL FOR THE CARBON # BAND v(r) andu(r), v(r). Itis convenient to choose the states
AND NANOTUBES IN EXTERNAL FIELDS andv to be zero on one of the two sublattices of the honey-

. ) comb lattice. On the other sublattice each state takes the
Here we review the basics of the theory of electron State%alues 1,0=e?™ and o=e @™ (see Fig. 1 The

of the t\_/vo-d|men5|ona[2D_) carbon _monola_lyer,_ mak'ng a statesu(r) andv(r) have the same quasimomentum of a
connection with the 2D Dirac equation. This will provide a

: . : X . value
good starting point for the following discussion of nanotubes
in external fields. We shall start with the tight-binding de-

S , 4
scription of the carbonr band, following the approach of Ka= 7 3
. . S1e appit 0 ' ()
Ref. 20, recall how the Dirac equation arises in this system, 3\/§acc
and then consider electron coupling to external electromag- ) — — .
netic fields. opposite to that of the statagr) andv(r). Each pair of

The tight-binding Hamiltonian on a honeycomb lattice of statesu(r), v(r) andU(r), v(r) forms a basis at the points
carbon atoms with hopping amplitudebetween adjacent K andK’, respectively.
sites has the form Projecting the wave functiott(r) onu(r) andv(r) and,
respectively, oru(r) anduv(r) defines Dirac spinor compo-
_ , nents for each of the two points andK’. We focus on the
ey(r)= t\r’—r2|:a v, @ u, v pair and write the states near the pokatwith small
°° energied €| <t as linear combinations
wherer’ are the nearest neighbors of the giteanda. is
interatomic  spacing. In carbon,t=3 eV and a. P(r)=a(N)u(r) + go(rjo(r), (4)
=0.1437 nm. For simplicity and because the electron speqGyjith the envelope functions, ,(r) varying on the scale
trum is e— — e symmetric, from now on we shall ignore the mych larger than the interatomic spaciag. By substitut-
minus sign in Eq(2). o . ing the wave function(4) in the tight-binding Hamiltonian
The zero chemical potential in E(R) describes the half- (2) we have
filled 7r band, i.e., the density of one electron per site. For an

infinite system, the states of the problé¢2h are plane waves ey (1) =t{ho(r — 2) + W ho(T — wA) + W o1 — wA)

and the spectrum is given by(k)= *=t|2;e'*"|, wherer; V1 w2 Ve V2 I (5)
are the nearest-neighbor bond vectors. This is a spectrum of

a semimetal with the conductiope(k)>0] and valence el (1) =t (r+a)+ I+ wa)+ ol (r+oa

[ (k) <0] subbands touching each other at two pokitand Po(N)=t{gr(r+a)+ oy (r+ wa)+ wiy(r + wa)j, ©

K’ in the Brillouin zone. ) ]

The tight-binding bandwidth =18 eV is much larger wherea is a shorthand notation far,.. Here the productsa
than the energies of the states close to the band center cowith unimodular complex numbers=1,0w,w in the argu-
sidered below. Because of that, it is useful to project thements ofi, , are understood in terms of 2D rotations of the
problem(2) onto the subspace of states wj#}<t and de-  vectorax by argz.
rive an effective low-energy Hamiltonian for such states. To  Expanding slowly varyingl, Ar), we obtain
carry out the projection, we note that there are only four
independent states witke=0. These states form two €Pi(r)=—hv(d—idy) (1),

155402-2



SUPERSYMMETRY IN CARBON NANOTUBES INA.. .. PHYSICAL REVIEW B58, 155402 (2003

ep(r)=hv(dy+idy) Py(r), (7) The NT electror) propertiesl, deper)ding pn_the nanotube
s T ] structure, can be either metal like or dielectric like. Which of
where v =3tac./h. The Hamiltonian(7) defines massless {hege sjtuations takes place depends on the manner the cyl-
Dirac fermions with the Ime:;\r spectrua(k)=*#iv[k|. I inder is obtained from the carbon monolayer. In the Dirac
carbon, the velocity =8X 10" cm/s. Similar relations hold  approach, the condition for metallic behavior can be formu-

for the pointK'. . _ _ lated directly in terms of the functions(r) anduv(r): The
Equations(7) can be cast in the conventional Dirac form panotube is metalliif and only ifone can define on the NT
ep="Hy with cylinder the two functionsi(r) andv(r) according to Fig. 1
without running into a mismatch of the function values upon
H=va-p=v(aips+azpz) ®)  the cylinder closure.
for the two-component wave functiofr= (i ,4,)", with To demonstrate this, let us suppose that the functigny
aj , given by the Pauli matrices: andv(r) on the cylinder exist. Without loss of generality we
choose the axis along the cylinder and theaxis along the
@1=03, Q=—071. 9 circumference. The probleifY) has periodic boundary con-

ditions in they direction, and thus the wave functions can be
factorized as i A1) =gy X)€Y, where k,=2mn/L
=n/R. Then the dispersion relation for the 1D problems
describing motion along the axis with fixedk,, is

The Hamiltonian near thE' point can be derived in a simi-
lar way. The result has the for(8) with a sign change in the
second terma, =05, a,=07;.
Below we shall consider electrons in the presence of ex
ternal electromagnetic fields. The minimal form of the cou- _ 2. 1,2\1/2
pling to external%ields follows from the gauge invariance: en(lo) = Ao (It ko) ™ (14
In this case the subband witi=0 has metallic properties
(10) and the subbands with=+0 are dielectric.
Now let us consider the other possibility when the cylin-

where ¢ and A are the scalar and vector electromagneticder is constructed n such a way that the f“T‘C““('S) and .
v(r) cannot be defined without a value mismatch. In this

potentials. The effect of electron spin, ignored here for sim- i . . .
plicity, can be included in Eq(10) via a Zeeman term case, upon rolling the carbon sheet into a cylinder, the sites
Equation(10) describes the lowest-order approximation inW"[h different functl_on values shown in Fig. 1 are glued to-

the gradients ofjr, , and the potentials and A. Here we gether. However, since all values of the functiar{s) and

_ a(27/3)i
consider the exact tight-binding equations in the presence cﬂ‘(.r) are powers Of“’ € » one notes that Eq$7).ca.n
external fields: still be used here if they are augmented wadlasiperiodic

boundary conditionsy; A(X,y+L)=wiq AX,y) Or hy AX,y
— +L)=wi (X,y), which, combined with the value mis-
epa(=t| X _zelrzyy(r—za)|, (1) match ofu(r) andu(r), makey(r) single valued. Factoring
zmbow the wave function as above, one obtains 1D subbands with
the dispersion of the forng14), in this case withk,=(n
(12 +1)/R. Note that in this case all spectral branches have
dielectric character.

Now we consider a hanotube in the presence péiallel
external magnetic field. In this case, electron properties are
described by the Dirac equati@hO) with ¢=0 and the vec-

20 [t tor potentialA with just they componentA,=®/L, where
%'“ZCFJ A(x)-dl. (13)  ®==R?B is the magnetic flux. The boundary conditions in
oJr! they direction are periodic for the metallic case and quasip-
Equations(11) and (12) can be used to obtain the gradient eriodic for the dielectric case. In the presence of a parallel
terms of higher order along with the coupling to externalMagnetic field the problem remains separable and thus the
fields. One can check that expanding the exponents in Eq¥/ave function can be factorized in just the same way as
(11) and (12) and keeping the lowest nonvanishing termsabove. One again finds 1D subbands with the spectfi4n
gives the Dirac Hamiltoniari10). In Sec. VI we shall use Where

Egs.(11) and (12) to obtain higher-order corrections to Eq. )
(10) n+¢;, metallic,
y k,R= N . _ (15
n* 3+ ¢, semiconducting,

e
H=vea-|p— EA +eqp,

edzz(r)zt( > zdYrezay(r+za)

z=1lw,0

where the phaseg, ;. are the integrals of the vector poten-
tial along the nearest-neighbor bonds,

To apply the above results to hanotubes, we consider elec-
trons on a carbon sheet rolled into a cylinder. The transfor-
mation of the tight-binding problert®) to the Dirac problem for the metallic and semiconducting NT’s, respectively, with
(7) based on the representati@¥) is valid provided that the ¢ =®/®, and®,=hc/e. Thus in the presence of a parallel
cylinder circumferencdé =2#R is much larger than the in- field the gapless=0 branch of the metallic nanotube spec-
teratomic spacin@g.. Since for typical NT radii the ratio trum (14) acquires a gap?® Interestingly, there is no thresh-
L/a.. can be between 10 and 20, the approximatidnis  old for this effect, since the gap forms at arbitrarily weak
entirely adequate. field. The gap size is 2=2|¢||2v/R. One notes that the
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field-induced gap appears not at the Fermi level but at the
center of the electron band. Thus it affects the metallic NT 15
properties only for electron density sufficiently close to half-
filling.

0

-

Ill. DIRAC EQUATION AND SUPERSYMMETRY

-
3]

At the energies smaller than the total bandwidti@&. 18
eV in carbon electron states are describégkbparately near
each of theK andK' pointg by the massless Dirac equation
(10). For a uniform transverse magnetic field, the field com-
ponent normal to the NT surface B, (#) =B sin6, where
0=y/R is the azimuthal angle. The corresponding vector po-
tential can be chosen along the tube axisA(r)=XxA(6),
where

Energy ¢€(k) in the units of A
o
[ [=)

|
e

1
g
(3]

2

R AB) =26 cost, p="
In this case the longitudinal momentuik is conserved and
the states on the NT cylinder have a plane-wave fgi(n)
= (x,0) = y(#)e'**. The Dirac Hamiltonian fowy(6) is

(16)

-
(3}

0

-

<
k)
_ Z 05
Hp=Au{ig194+ (kR—2¢ cosh) o}, 17 E’
with o , the Pauli matrices and g 0
=
hu ®_05
Ag=—-. (18) 2
R 2
53]

1
-

The equations near th€' point have the form(17) with a
sign change in the first terna;;— — o5

The eigenvalues of the operat@t7) give the electron
dispersion relatiore(k). We have chosen the dimensionless
transverse field parameteér in the form (16), which makes

1
g
(3]

0
Wave vector kR

contact with the parallel field problefrt® Eq. (15). FIG. 2. Electron dispersioa(k) in the presence of a large uni-

The NT states are described by quasiperiodic wave funciorm transverse magnetic field= 0.5 (bold lineg and in the ab-

tions on the cylindery=R#), sence of the fielddashed lines Top: metallic NT (§=0). No gap

] opens due to supersymmetry, but the velocity is suppressed accord-
P(y+L)=e>"%(y), L=27R, (19 ing to Eq.(45). Bottom:semiconducting caseS& 1/3). The energy
with gap is suppressed by the facws(¢); see Eq(58) and Fig. 4.

0, metallic, where'e=¢e/A,. Here 7 stands for operator ordering with

o= (200 respect tod. The quasiperiodic boundary conditioh9) re-

+ 1 i i ;i
+ 3 semiconducting. quires

We consider the probler(l7) with an arbitrary phase in

the boundary condition€l9). This will permit us to general- tr Sy_,,=2 cog2mo). (22

ize the results to the cases of metallic NT's with a minigap

induced by curvaturé or in the presence of a parallel mag- Different energy bandg = €,(k) can be found numerically

netic field. These problems can be described using thgs solutions of Eq(22). The bands obtained in this way are

boundary conditiong19) with & slightly shifted away from displayed in Fig. 2.

the ideal value$20). In the present section we show that supersymmetry allows
The electron bands(k) can be studied using the transfer one to make rather general statements about the low-energy

matrix. We integrate the Dirac equation in the interval ONT spectrum. Originally, supersymmetry was suggetad

< <27 and write a formal solutions(6) to the problem g special symmetry between the bosonic and fermionic sec-

Hpy= ey asy(6) =S(0) 4(0) with the 2<2 matrix tors of relativistic field theories that protects the zero-energy
eigenstate. Later, the concept of supersymmetry was brought
4 . . z H i
S( 0):Texpf (- o+ (26 coso’ —kR) o5l to single-particle quantum mechanfcsThis has yielded the
0 ' ’ classification of exactly solvable potentials using factoriza-

(21)  tion of the Schrdinger equatior{see Ref. 14 for a review
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Below we apply the arguments of supersymmetry to aransform fermionic and bosonic degrees of freedom into

problem of NT electrons in a generic magnetic fi&@dr)
that(i) is perpendicular to the NT axis arfiil) does not vary

each other. Although we deal with a single-electron NT spec-
trum, one couldormally interpret the upper and lower com-

along the NT. In this case the field component normal to thgponents of the wave functiogh as fermionic and bosonic

NT surface is a function only of=R#, B, =B(y). Simi-
larly to Eq. (16), we choose the following gauge:

A=Ay)= 2ol ) g 23
X= (y)_ﬂd_yv y Y ( )
where
do_ 27, 24
O D, (y). (24

The functione(y) is uniquely defined by demanding period-
icity

e(y+tL)=o(y) (25)
and zero average
L
f dye=0. (26)
0
The corresponding Dirac Hamiltonian reads
~ ] de
Hp=hvyiody+| k= d_y oo, (27

which reduces to Eq17) whenB(y) =B sin(y/R). It is use-
ful to decomposé,, into two pieces,

Hp=Q+Q", (28)
where
(% o @lo o)
=l4 o) =lo o (29
and
A=hvi{idy+i k—(;—";)],
. . de
ATEﬁv(Iﬁy—l(k—d—y)]. (30)

sectors of the supersymmetric Hamiltoniafy sy .

One interesting implication of the algebf&2) is that
Hsusy can be expressed as sums of the square of Hermitian
superchargesQ; andQ,,

Hsusy= Qi*’ Q% , (33
where
Q =i(Q+QT) Q =i—(Q—QT) (34)
1= \/5 ) 2= \/E .

From Eq.(29), one verifiesQ?= Q3 and

Hsusy=2Qi=H3. (35

Thus the energy spectra Bfssy andHp, are closely related.
Let us now show how supersymmetry protects zero-

energy states of{gysy andﬂD . For that, we construct zero-

energy states df(g sy that are compatible with the boundary

condition (19). Due to Eq.(33), any such states satisfies
Q14=Q2¢=0 (36)

or, equivalently,

Qy=Q'y=0. (37)

The latter equation has two independent solutions

=g kyte() ! = gky—e(y) 0 . 38
¥ o] ¥ 1 (38)

Note that sincek is real ande(y) is periodic iny, the zero-
energy solution$38) are compatible with the boundary con-
dition (19) if and only if 5=0 andk=0. For the latter case

the exact zero-energy eigenstates-f can be written as

(y)
‘ _e<P (1) Py =
0

(0)
JLgg

where normalization requires

0

e @(y)
JLg® ( 1) ’ 39

The connection with the supersymmetric quantum mechanics

(see Chap. 2 in the Ref. 14 established by constructing a
supersymmetric Hamiltonian

ATA
0

0

AAT ) ' @)

Hsusy= (

which, together withQ and Q, satisfies the superalgebra

si(1/1),
[Hsusy,Ql=[Hsusv.Q'1=0,
{Q.Q"}=Hsusy, {Q.Q}={Q".Q"=0. (32

Here{A,B}=AB+BA stands for anticommutator of opera-
tors. In relativistic field theories, theupercharges @QndQ"

L L
ngl):fo dyesy), L g@= fo dye2¢0). (40)

In the case of a uniform perpendicular field

¢=2¢sing, 0O=YyIR, (41

the normalization factors are given by the modified Bessel
function:

(42

The state$39) are degenerate at any field strength.
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FIG. 3. Density of stateg=dN/de in metallic NT's per one
fermion flavor as a function of energy in the units df=%v/R.
The peak value/(0) at the band center is given by Eg6).

Let us stress here that the zero-energy eigenstagof

Hp exist* at =0, k=0 for a generic magnetic field per-
pendicular to the NT and not varying along the tube. An
example is a field of a current flowing along the wire paralle

PHYSICAL REVIEW B 68, 155402 (2003

consequence of a supersymmetry. Indeed, in the generic field
case described above the velocity is reduced by a factor
VotPgi?=1. Bothg{V,g{?’=1 [see Eq(40)] since the av-
erage of an exponential is greater than or equal to an expo-
nential of the average.

In the single-particle approximation, the tunneling density
of states coincides with the thermodynamic density of states
(46). The peak in the tunneling density of states at the band
center is a distinct manifestation of supersymmetry. Re-
cently, a scanning tunneling probe has been Usedtudy
curvature-induced minigaps in nominally metallic tubes
placed on a metallic substrate. In this setup, the electron
interactions that could have modified the single-particle be-
havior are screened by substrate, and the measured density of
states is unaffected by Luttinger liquid effects. In a similar
system in a high transverse field, an enhancement of tunnel-
ing at the band center, E46), and a peak in the density of
states(Fig. 3) are the experimental signatures to look for.

IV. GAP SUPPRESSION

In the present section we consider nanotubes that have a
gap A at the band center. We characterize them by the pa-
rameter| 8| =A/A, that enters the boundary conditigh9).

|There are two kinds of such tubes: semiconducting NT’s

to the nanotube axis. Moreover, the above arguments stiffith 6==1/3 and nominally metallic NT's in which a mini-
apply if the NT does not have a circular cross section, agaP appears due to curvature or external field, yielding a
long as the minigap due to the curvaftfef the graphene SMall|5[<1. The Dirac problen17) and(19) is not super-
sheet is not open. In what follows we confine ourselves tg®Ymmetric for6#0. However, since the supersymmetry is
the case of a cylindrical NT in a homogeneous perpendicula®n €xact property ai=0, one can still expect it to manifest
magnetic field for simplicity, bearing in mind the generaliza- itself in a problem with a relatively smadl. Below we show

tions mentioned above.

that a gap at the band centersigppresseth the presence of

Using the state39) one can study how the linear disper- @n external transverse field:

sion relation changes near the band ceatef. For that we
project the Hamiltoniari17) onto the basis

Y1 Ax, 0)=e"yf%(0). (43)
The projected Hamiltonian

Holy. =fikvoy, v=—0 44
D|\I’1'2_ UO-ZY _IO(4¢)! ( )

yields the dispersion relation

v

k)==*#%k . 45
< ('0(4¢)> 9

This describes @eductionof the Fermi velocityz ~*de/dk
neare=0 by a factorl o(4¢). Sincel o(4¢)>1, the density
of states at the band center,

4
VIdN/dE:ﬂ_—hv|0(4¢), (46)

» 9s(h)>1, (47

A
9s5(¢)
where the gap suppression factpy(¢) diverges asp— .
This means that supersymmetry is restored in the limit of a
strong field. The suppression of the gap in semiconducting
NT's is illustrated in Fig. 2(lower panel.

We shall first consider a simpler case of a hominally me-
tallic tube with §<1. The gap in this case can be found
using perturbation theory iA. For that, we perform a gauge
transformation(6)—e' %%y’ (6) and for ¢'(6) obtain a
problem with theperiodic boundary condition. The new
Hamiltonian differs from Eq(17) by a term linear ins:

A(g)=

H,:HD_(SA()O']_. (48)
It is convenient to rewrite this Hamiltonian as
H =HO+AykRo,— S ay), (49)

is enhanced(The factor of 4 accounts for the spin and valley where §? is the Hamiltoniar(17) with k=0. We note that
degeneracy neglecting the Zeeman splitting; see Sec. IV bé+ E,O) is a supersymmetric Hamiltonian with eigenstates).
low.) Due to the exponential behavior of the Bessel functionThe spectrum of the Hamiltonigi’ at smallkR and & can
in Eqg. (45) at large¢, this enhancement becomes dramatic atbe found by projecting the second term E49) on the basis
high fields(Fig. 3). The reduction of the Fermi velocity and (43) of plane-wave states constructed out of E2p). This
the corresponding density-of-states enhancement is a genesaélds the dispersion relation
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— Metallic NT: g=lo(4¢)
1

10 1 --- Semiconducting NT: Numerics
— Semiconducting NT: ¢ << 1

— + AO
“==1 a4

Thus we find that in this case the gap is suppressed by the o5
same factor42),

[(kR)2+ 82]Y2, (50)

go(@)=10(4¢)>1, (51

as the Fermi velocity in metallic NT's. The gap suppression
is described by Eq51) in the limit of small § for any mag-
netic field ¢.

One can also study the gap suppression analytically for
genericé using perturbation theory in the field. The en-
ergy e(k=0) that gives the gap is defined by the condition
(22) for the transfer matrix. We calculate the trace of the ;40 . ‘ ] ; ;

i = ina i i i 0 0.2 0.4 0.6 0.8
t(;a:ifer matrix21) atk=0 by expanding it perturbatively in Field B, in the units of ¢ = R B/®,

Gap suppression factor

FIG. 4. Gap suppression factof47) for nominally metallic
NT’s, §=0 (solid ling), and semiconducting NT'sJ=1/3 (dashed
line), as a function of fields. The fine solid line is the result of the
expansiorn(58) in powers of¢. (Note the logarithmic scale fay.)

trSy_,, =2 COS 2re+ 8\, p2+ 32 ,d*+ O(¢°), (52)

wheree= €(0)/A, and the coefficients , , are given by

_ 2mesin2me (53 ~=—wnoB with u=eh/2mc. The gap suppression at weak

1—4€? fields, <1, with the Zeeman effect included, is described
by

)\1:

_2me(1—4€?)cos 2me+ (L +6€?)sin2me
W - 4~2(; . A($)=A—asd®A— B, (59
— &€
( ) (54) with a5 given by Eq.(56). The Zeeman effect, linear iB,
dominates at weak fields. However, the orbital effect

The condition(22) on the energy along with the definition of CY&(;/’ZAy quadratic inB, overcomes the Zeeman effect at rela-

the suppression fact@d7) gives tively moderate fieldsp<1.
B ) 4 6 For semiconducting NT's the gap=7%v/3R, and Eq.
95= 1+ asd™+ B4+ O(¢), (59) (56) gives aq3=36/5. In this case, the inequality;;p°A
> uB yields ¢>1.13g/R with ag=#%2%/me* the Bohr ra-
1-205° dius. Using carbon parameters we estimate that the magnetic
XoT 1 452" Bs= 4(1_452)2' (56 field has to exceed
Substituting, in Eq(56), =0 and = 1/3 we obtain Bo=78R [nm])~3 T, (60)

— 2 4 6 . which can be low enough for tubes of large radius.
Go(#)=1+4¢"+447+0(47)  (metallic,  (57) The energy gap can be studied experimentally by measur-

ing transport in the thermally activated regime. The thermal
36 396 _ ) o . L

Oua(d)=1+ —p?— ——*+O(4® (semiconducting activation energy will depend on the magnetic field accord-
S 25 (58 ing to Eq.(59). The resistance

The expressiort57) coincides with the Taylor expansion of R(T)xexd A(¢)/kgT] (61)

lo(4¢). will be sensitive to magnetic field because the variation of
These analytical results can be compared with the gaghe gap can excedd;T even at the fields much smaller than
suppression factors obtained numericafyg. 4). For nomi-  Eq. (60). For example, consider a NT of radis=1 nm, in
nally metallic NT's with small minigap we find that a  which caseA =#%v/3R=0.178 eV. For the magnetic fiell
<1 the valueg,_, is accurately given by Eq51). The =B, from Eq. (60) we have$=0.060 anda;;¢>=0.026.
analytical expressiofb1) coincides with the numerics in the |n this case the gap shiftys¢?A =4.6 meV is larger than
entire field range. In the semiconducting case’ef1/3 the | T at T<53 K.
expansion(58) works reasonably well ah<1/4. At larger
fields ¢>1/4 the gap is suppressed exponentiallys( )
«e* (see Fig. 4
Let us discuss the possibilities to observe the suppression
of the gap. A competing effect due to the magnetic field that Below we consider the qualitative features of the energy
leads to a gap suppression is the Zeeman spin coupling bands in metallic NT's in the limit of a large uniform exter-

V. ELECTRON SPECTRUM
IN EXTREMELY LARGE FIELDS
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nal field, corresponding t¢p=1. The behavior of the band The widthwg,,s&R whenkR>1/|¢|. In the Dirac problem
dispersion atk|R< ¢ can be attributed to the Landau levels the wave function width67) is different from that for the
of the problem(17). Let us consider a square of the Hamil- Schralinger problem discussed in Ref. 17, whemg, e
tonian(17) and the eigenvalue probleftd3 = ey. ltreads  «|VB| 2

HEY=A — 5+ Un(0) = e*(K)y, (62 VI. BEYOND THE DIRAC EQUATION:

SUPERSYMMETRY BREAKING
U(8)=(2¢ cosf—kR)?>—2¢passiné, (63 _ _
The two effects considered in Secs. Il and IV—the den-

with #(6) obeying the boundary conditiori49). Note that  sity of states enhancementeat 0 in metallic NT’s and the
H3 is a diagonal X 2 matrix in the space of spinos. In  suppression of the energy gap in semiconducting NT's—are
what follows we taker;= +1. manifestations of the supersymmetry of the low-energy

When¢>1, the kinetic energy of Eq62) is frozen since Dirac Hamiltonian (17). However, supersymmetry is not
Uy(6) = ¢? is much greater thaﬁ%. In this limit, the Hamil-  present in the original tight-binding proble(8). Below we
tonian is dominated by the potential energy tedg(#) and ~ show that the terms correcting E@.7) in the next order of
the low-energy states are localized near the minima othe gradient expansion violate supersymmetry. Thus the su-
U(6). At ¢>1 the potentiald,(6) has two slightly asym- persymmetry in nanotubes is not exact but approximate: the
metric minima nearg.. = + 77/2, where it can be approxi- nonsupersymmetric effects are smallag/R.

mated by a harmonic potential,(6)~F2¢+4¢2(0 To obtain the nonsupersymmetric terms of the effective
—6.)?. The size of electronic wave function in the circum- Hamiltonian we consider the low-energy subspace of states
ferential direction is with |€|<t near the Dirac point& andK’. The basis states
at e=0 are the functionsi(r), v(r) andu(r), v(r) defined
w=|g=R/J2¢<R, (64  in Sec. ll(see Fig. 1L The wave function near the poi#t

wherelg=(%c/eB)'? is the magnetic length. Thus at large (K') can be represented as a linear superpostpof u(r)

field the electrons are localized near the extrema of the magd v(r) [respectively,u(r) and v(r)] multiplied by the
netic field 6. . In these regions the field is approximately SMOOth envelope functiong, ,(r). We perform a gradient
constant|B, ()| ~B. expansion of the slowly varying envelope functions using

Eq. (11. In the lowest nonvanishing order @i, , we
retain the Hamiltoniar{17) with v =3ta.J2%.
The terms of second order in the gradieafgaiaj 12
give the required correctioftt,, to the Dirac Hamiltonian
en(KR<p)=*2A0\n[¢], n=012.... (65 Hp caII_ed the carbanigonal w_arping interactiqn. In this
case, since we are interested in the problem in an external
The lowest-energy level of Eq62) is e=0 atk=0. This field, the gradient expansion of E(.1) should be accompa-
value, because of the supersymmetry, is not approximate buied by an expansion of the phase fact(t8). After this
exact. expansion is carried out we choose the tube axis orientation
The behavior at large momentk|R> ¢ can be under- with respect to the carbon lattice by specifying the chiral
stood semiclassically in terms of the so-caltethke stateS’  angle®. The full Hamiltonian™,,, obtained in such a way
Snake states correspond to a classical particle moving alorfgr NT’s has the form
zero-field lines. This motion is stable for a particle traveling ) ) ) )
in one direction and is unstable for it traveling in the oppo- Hio= €' (02731 pe 101203+ e719737¢, 1973, (68)
site one. The snake states are locatedal) and 6=,
where the fieldB(#) =B sin# vanishes. This is consistent
with the high-field limit of the problen{62), since at/k|R
>¢ the minimum ofU,(0) is 6,~0 for kB>0 and 6, ag dk
~qr for kB<0. The dispersion relation for such states is How=— ﬁAO[(K2+ aé)ol+i(2m70+ da)2("

The Landau level spectrumﬁ(k) of Eq. (62) obtained
within the harmonic approximation yields approximately
k-independent levels fokp :

where Hp is the Dirac Hamiltonian(17) and the trigonal
warping interactiorf,, is given by

e()=+ AU (Op) =~ = fiv (K| —2|4|/R).  (66) €9

This linear dispersion relation with an offset#7v/R holds

even for small fields as long 4k|R>maxX ¢,1/¢} (see Fig. eR

2, largekR). k(0)=kR— %A( 0). (70)
Since 6, is different for positive and negative the left-

and right-moving snake states are spatially separated. Fdte termH,, breaks the supersymmetry of the Hamiltonian

¢>0, for instance, the lefttright-) moving snake states are 7,,,. Thus we expect the zero-energy state to disappear.

localized nea= 7 (6=0). The characteristic width of the Note that#,, also breaks the rotational symmetry B,

where

snake-state wave function is since® cannot be removed frorf, via a unitary transfor-
" U4 ua mation. Thus the behavior of the energy gap in a transverse
Winake= g (RIK) ™4 [V B[ (67 field will in general depend o®. It can be verified that, in
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the absence of external fields, the energy spectrut,gfis ~ €lectrons on the NT spectrum in the presence of a perpen-
periodic in® with period /3, which is a manifestation of dicular magnetic field. As we have seen above in Secs. Il
the 60° rotation symmetry in the honeycomb lattice. and 1V, supersymmetry of the single-particle problem makes
It is explicit in Eq. (69) that the effects ofH,, are the nanotubes “more metallic”in a strong field by enhancing the
ordera,./R corrections toH, . Such effects are negligible density of states and suppressing the excitation gap at zero
for semiconducting NT’s because of a large ghg/3. In  €nergy in metallic and semiconducting tubes correspond-
metallic NT’s, however, the Hamiltoniaf,, plays an im-  ingly. Itis also known that the repulsive interaction between
portant role. In particular, the system described by theNT €lectrons opens a small gap in an otherwise metallic

Hamiltonian(68) develops a minigap tube®® as well as enhances the excitation gap in a semimetal-
lic tube?® making the tubes “less metallic.” Below we study

2a,,  ¢?|cos | the competition between supersymmetry and repulsive elec-

w= TR 20 Jo( @) (71) tron interactions, and find that strong interactions drastically

o ) ) ) reduce the effect of supersymmetry. This happens because
due to the magnetic fielg [defined in Eq(16)]. This result  sypersymmetry enhances electron interactions near half-
can be obtained by projecting the perturbatidp, taken at  fjlling as one would expect from the increase in the density

k=0 onto the supersymmetric bagi9): of states(46).
5 5 In what follows we consider the case of a very strong
Howlko= — iCCAO%ol. (720  magnetic fieldp>1. The latter condition corresponds to an
N R 9o

exponentially large effect of the field on the single-electron

Note that the minigagg71) depends explicitly on the chiral NT spectrum. For that reason we will neglect the Zeeman
angle ® as [cosP)|. Thus, for a given NT radiusp,,  €ect which is linear in field. o
reaches its maximum in zigzag NT'®(0) and vanishes in We consider the interacting probl_em whose Hamiltonian
armchair NT's @ = 7/2). The gap(71) is a manifestation of in the forward scattering approximatidireads

the broken supersymmetry. Minigaps of purely magnetic ori-

gin have been reported in Ref. 19 for zigzag and armchair Hiot=Ho+ Hint, (76)
NT's; however, the gap dependence on the chiral atyle

. where
was not discussed.
When the magnetic field is largéh~ 1, the minigapAy, 4 5

. | h ¥ e _ _ ,

is comparable to the curvature-induced minigap Ho=ﬁvf drazl ‘I’Z((Iﬁy— ﬁ) o1 (it @) oa | W,
a 7

A= 1gF°zA0|cos:E|, (73 77)
and

which is present irzero field.>2 In this situation, the two
mechanisms for minigaps may compete and should be con- 1

sidered simultaneously. Instead of imposing the quasiperi- Himzi E p_V(K)py.- (78
odic boundary conditior{19), we take the curvature effect K
into account in an alternative wayby introducing a

pseudovector potentid(© Here the Hamiltoniari77) describes four noninteracting fer-

mion flavors (4=24,i X 2,41ey) in @ Nanotube with the bare
gap A=%uv /R, subject to a perpendicular magnetic field,

— , (74 e(y)=2¢sin(/R), py=de/dy, where the dimensionless
2m 16R field strengthg is defined in Eq(16). The Dirac spinors?’,,

which should be added to the magnetic vector potentiaf'® Operators in the second-quantized representation. The
A(r). Surprisingly, the two gap opening mechanisms, Eqs_Coulomb interaction between electrons is described by the

AL +iAD =i Do 2 ai

(69) and (74), interferedestructivelyat both theK and K’ Hamiltonian(78), where the total density in the forward scat-
points and produce the gap tering approximation reads
T (75 S
“lao(e) T p(n)=2, VW, (79

in a moderate transverse magnetic fietb<(1). In particu-
lar, A4 vanishesat ¢ = (44/2)~* due to the destructive inter-
ference.

with the 2K, harmonics[ K, defined in Eq.(3)] neglected.
The electron-electron interaction potential in the presence of
a substrate with a dielectric constanis

VII. ELECTRON INTERACTIONS VS.SUSY

Electron interaction effects on NT's were addressed in Vixy)= 8+1V0(x,y), (80)

various theoretica?~2° and experimentd! studies. Below
we consider the effects of the repulsive interaction betweemwhere
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e2 X2, are localized on the opposite sides of the tube. Therefore
Vo(X,y)= =" h=2Rsin(y/2R). (81 strictly speaking the interaction between the same compo-

vhe+x nents of the spino(85) is cut off on the scale of magnetic

The problem(76) is SU4) invariant with respect to rotations '€ngth(64) rather than of the NT radius. _
in the space of the four fermion flavows,, . With the difference between the short-distance cutoffs in

Below we focus on the low-energy properties of the prob-the potential(87) neglected, the effective 1D Hamiltonian
lem (76). This allows us to utilize the projection on the su- (83) remains S4) invariant. It can be bosonized in the stan-

persymmetric basi&39): dard Way_z,7 Xox€®a. This procedure immediately yields the
renormalized plasmon velocity for a metallic nanotube,
W o(1) = x1aO0 V(W) + X2aOPE(Y),  (82) )
where the factorization of motion alongandy holds due to v=K"q¢) 90()’ (88)

the assumption that the magnetic field does not vary along
the tube. Using Eq(82) we will reduce the probleni76) to  where the charge stiffnegsr the dimensionless interaction
the one-dimensional one, bosonize it, and estimate the effestrength
of interactions on the plasmon velocity and on the semime- 4g4()
tallic gap. _ Jol®)~
Let us perform a projection of the problef#i6) onto the Ko(d)=1+ hv V(@ (89)

basis(82). This can be done by integrating out the circum-. - .
ferential degree of freedom using the following separation ofS enham_:ed)y the magnetic field(By the tilde we denote
tg]e physical quantities in the presence of 1D interactjons.

scales. The effects of magnetic field occur on the short scal _ _ ~
of the tube radiug, for which the relevant energy scale is Thus the plasmon velocity suppression factgp(¢)
~#v/R. The effect of the Coulomb interaction between =[v(¢)/v(0)] ! due to the magnetic field is given by

electrons accumulates over a length scale that is much
greater tharR, as described below. Therefore the effective
1D description of the interacting NT electrons can be ob-
tained by first integrating out the circumferential coordinate
y in Eq. (76) and then taking into account the Coulomb ef-
fects. Thus we obtain the effective one-dimensional Hamil
tonian

ko

1/2

K(0)
9o( ). (90)

K(#)

It is reducedcompared to the noninteracting valgg(¢)
because of the enhancement of the interaction strength due to
the perpendicular magnetic field. For a large interaction
strengthK>1, the effect of electron interactions on the su-

9o( ) :{

_ S persymmetry is dramatic:
Heﬁ=ﬁvfd><2 XZ(_iaxo'z_§0'1>Xa 5
‘ Jo($)=[go($) ] %€, (9D
1 . . .
+=> 5 VK e, 83 effectively reducing the field strengih>1 by a factor of 2
2 Ek PV (K)p ®3 in the exponential.

Consider now the semimetallic gap in the presence of a
magnetic field. In bosonized language, this gap is estimated
v as the energy of a composite soliton of the charge and flavor

=—— (84)  modes?®?8with its energy dominated by that of the charge

with the bare velocity reduced due to supersymmetry,

9o(4) mode atkK>1. The essential feature for the present analysis

similar to Eq.(44). Heregy is given by Eq.(51), is that the effect of the magnetic field on the Gaussian part of
H factorizes renormalizing the velocity, with the back-
X :(Xla) (85) scattering termb/R=A(¢)go(¢)/%iv inside the integral Eqg.
* \x2a)’ (83) independent of the fieldA straightforward calculation

shows that the perpendicular field reduces rér@ormalized

:irllﬁng;le-dlmensmnal electron densialculated from half- gap by the factor(90) obtained for the plasmon velocity:
4 ~ A0)
~ A(p)== ., A(0)=KY0)D¥A*30). (92
=S i, (86 (9)== . BO=K30) (0). (92
a=1
and the 1D interaction potential RR<1: HereA(0) is the(renormalizedl semimetallic gap in the ab-
sence of the field anD =#%v/R is the one-dimensional band-
- 2e? . width.
V(k)= e+1 In[1+(kR)~<]. (87) In Eq. (92) the value ofK is assumed to be taken @k,

N ~1, wherel >R is the size of the charged soliton in the
In writing Eq. (83) we dropped the terms of the order posonized descriptioff. The universal power law 4/5 in the
[e?/(e+1)]In ¢ that are small compared t¥(k) at KR  gap renormalizatior{92) is valid in the limitK>1. Equa-
<1. These terms appear since¢it-1 the statesy;, and  tions(88) and(92) show that the characteristic supersymme-
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try features of the velocity and minigap suppression persisfield-sensitive minigaps in the metallic NT spectrum. Finally,
in the presence of Coulomb interactions. However, the effecive have found that supersymmetry persists in the presence
of the perpendicular magnetic field is strongly reducedof electron interactions, but the reduction of both the renor-
by the electron interactions due to the density-of-statesnalized plasmon velocity and the excitation gap is weakened
increase(46). due to effectively increased interaction strength.
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