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Supersymmetry in carbon nanotubes in a transverse magnetic field
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Electron properties of carbon nanotubes in a transverse magnetic field are studied using a model of a
massless Dirac particle on a cylinder. The problem possesses supersymmetry which protects low-energy states
and ensures stability of the metallic behavior in arbitrarily large fields. In metallic tubes we find suppression of
the Fermi velocity at half-filling and enhancement of the density of states. In semiconducting tubes the energy
gap is suppressed. These features qualitatively persist~although to a smaller degree! in the presence of electron
interactions. The possibilities of experimental observation of these effects are discussed.
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I. INTRODUCTION

The electronic properties of single-walled carbon na
tubes~NT! vary for tubes with different structure. Dependin
on the angle between the tube axis and graphite lattice, ca
the NT chiral angle, the tube electron spectrum can be
tallic or semiconducting.1 The semiconducting band gap of
single-walled NT~SWNT! is of the order of 1 eV and scale
inversely with the NT radiusR. Also, in many nominally
metallic tubes a minigap appears at the band center du
the intrinsic tube curvature.2–4 These gaps, recently observe
experimentally,5,6 have the size of a few tens of millivolts fo
SWNT’s and scale as 1/R2 with the NT radius.

Ajiki and Ando have made a remarkable observation7 that
in nanotubes the metallic behavior is fragile: a metallic N
can be easily turned into a semiconducting one by applyin
relatively weak parallel magnetic field. Such a field, by
ducing backscattering between right and left electron mod
opens a minigap at the band center. This gap, linear in
field, is given by the magnetic flux scaled by the flux qua
tum, pR2B/F0, times the semiconducting gap size. ForB
.10 T the gap is of the order of 10 meV for typical SWN
radii. Effects of parallel field on multiwalled NT’s have bee
reported in Ref. 8. Electronic properties are also sensitiv
mechanical distortion, such as twisting, bending,
squashing,9–11 as well as to external electric fields.12,13

Another interesting observation made in Ref. 7 is tha
transverse magnetic field affects electron states in a
completely opposite to the parallel field effect. In metal
tubes the Fermi velocity is suppressed by a transverse fi
while the density of states near the band center is enhan
At the same time, in semiconducting tubes the band ga
suppressed. The goal of the present work is to rationa
these properties using the concept ofsupersymmetry.14 Su-
persymmetry has a profound effect on the low-energy pr
erties by protecting the states at the band center. We der
supersymmetric Hamiltonian for and present a simple a
lytic theory of the above effects. We find that the metal
behavior is protected by the supersymmetry for any magn
field that is applied perpendicularly to the NT and does
0163-1829/2003/68~15!/155402~11!/$20.00 68 1554
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vary along the tube. For a uniform transverse field, in p
ticular, the Fermi velocity in metallic tubes is suppressed
the uniform transverse field as

v~B!5v/I 0~x!, x54pR2B/F0 , ~1!

where v is the Fermi velocity forB50 and I 0(x) is the
modified Bessel function. The density of states near the b
center is enhanced by the same factorI 0(x). We also calcu-
late the suppression of the gap in semiconducting tubes.

The typical field strength required to make these effe
pronounced is quite high. The fields necessary to sign
cantly alter the electron dispersion can be estimated fr
pR2B.F05hc/e, which gives many tens of tesla even fo
the tubes of the largest available radii. These fields are
hopelessly strong—they are available, for example, in pul
magnetic field sources15 which allow one to reach fields up
to 100 T ~Ref. 16!. Because of that and also because of
novel features arising from the supersymmetry and Di
character of low-energy states, we believe that this prob
is sufficiently interesting.

The paper is organized as follows. We first review t
basics of the carbonp-electron tight-binding band and it
relation with the massless Dirac equation, paying particu
attention to coupling to external fields. Then we presen
theory of a massless Dirac particle on a cylinder in a tra
verse magnetic field and calculate the spectrum and den
of states. We analyze both the metallic and semiconduc
tubes. Then we briefly discuss the behavior in extremely h
fields, where a connection can be drawn with the Land
levels and snake states17 considered previously in the contex
of the quantum Hall effect.

After that we discuss the effects beyond the Dirac a
proximation arising from the next order in the gradient e
pansion of the tight-binding problem. These effects are sm
but interesting, because they violate supersymmetry and
to minigaps appearing at the band center. The effects bey
the Dirac model are controlled by the so-called trigon
warping interaction. We consider it in the presence of a m
©2003 The American Physical Society02-1
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netic field and show that its effect depends on the ch
angle and, in particular, is absent for truly metallic armch
nanotubes. These effects have been discussed in Refs. 1
19, using a combination of numerical and analytic metho
for zigzag and armchair tubes. We extend the results of R
18 and 19 by considering nanotubes with arbitrary ch
angle and also in the presence of minigaps of other orig

We also discuss the experimental implications of t
work. The gap suppression in semiconducting NT’s w
over the Zeeman splitting at reasonable fields. We cons
the possibility to observe the gap suppression in the tun
ing density of states and in the thermally activated transp
regime.

Finally, we consider the competition between supersy
metry and electron-electron interactions. We find that
though the effect of supersymmetry is reduced by strong
teractions, the qualitative features of the spectr
~suppression of the plasmon velocity and of the semimeta
gap! are similar to those of the noninteracting case.

II. DIRAC MODEL FOR THE CARBON p BAND
AND NANOTUBES IN EXTERNAL FIELDS

Here we review the basics of the theory of electron sta
of the two-dimensional~2D! carbon monolayer, making
connection with the 2D Dirac equation. This will provide
good starting point for the following discussion of nanotub
in external fields. We shall start with the tight-binding d
scription of the carbonp band, following the approach o
Ref. 20, recall how the Dirac equation arises in this syste
and then consider electron coupling to external electrom
netic fields.

The tight-binding Hamiltonian on a honeycomb lattice
carbon atoms with hopping amplitudet between adjacen
sites has the form

ec~r !52t (
ur 82r u5acc

c~r 8!, ~2!

where r 8 are the nearest neighbors of the siter, andacc is
interatomic spacing. In carbon,t'3 eV and acc
50.1437 nm. For simplicity and because the electron sp
trum is e→2e symmetric, from now on we shall ignore th
minus sign in Eq.~2!.

The zero chemical potential in Eq.~2! describes the half-
filled p band, i.e., the density of one electron per site. For
infinite system, the states of the problem~2! are plane waves
and the spectrum is given bye(k)56tu( ie

ik•r iu, wherer i
are the nearest-neighbor bond vectors. This is a spectru
a semimetal with the conduction@e(k).0# and valence
@e(k),0# subbands touching each other at two pointsK and
K8 in the Brillouin zone.

The tight-binding bandwidth 6t.18 eV is much larger
than the energies of the states close to the band center
sidered below. Because of that, it is useful to project
problem~2! onto the subspace of states withueu!t and de-
rive an effective low-energy Hamiltonian for such states.
carry out the projection, we note that there are only fo
independent states withe50. These states form two
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complex-valued conjugate pairs which we denote asu(r ),

v(r ) and ū(r ), v̄(r ). It is convenient to choose the statesu
andv to be zero on one of the two sublattices of the hon
comb lattice. On the other sublattice each state takes
values 1,v5e(2p/3)i and v̄5e2(2p/3)i ~see Fig. 1!. The
statesu(r ) and v(r ) have the same quasimomentum of
value

K05
4p

3A3acc

, ~3!

opposite to that of the statesū(r ) and v̄(r ). Each pair of
statesu(r ), v(r ) and ū(r ), v̄(r ) forms a basis at the point
K andK8, respectively.

Projecting the wave functionc(r ) on u(r ) andv(r ) and,
respectively, onū(r ) and v̄(r ) defines Dirac spinor compo
nents for each of the two pointsK andK8. We focus on the
u, v pair and write the states near the pointK with small
energiesueu!t as linear combinations

c~r !5c1~r !u~r !1c2~r !v~r !, ~4!

with the envelope functionsc1,2(r ) varying on the scale
much larger than the interatomic spacingacc. By substitut-
ing the wave function~4! in the tight-binding Hamiltonian
~2! we have

ec1~r !5t$c2~r 2a!1v̄c2~r 2va!1vc2~r 2v̄a!%,
~5!

ec2~r !5t$c1~r 1a!1vc1~r 1va!1v̄c1~r 1v̄a!%,
~6!

wherea is a shorthand notation foracc. Here the productsza

with unimodular complex numbersz51,v,v̄ in the argu-
ments ofc1,2 are understood in terms of 2D rotations of th
vectorax̂ by argz.

Expanding slowly varyingc1,2(r ), we obtain

ec1~r !52\v~]x2 i ]y!c2~r !,

FIG. 1. Shown are two plane-wave basis statesu(r ) andv(r ) of
the problem~2! with e50. Both u(r ) andv(r ) take the values 1,

v5e(2p/3)i and v̄5e(22p/3)i on one sublattice and vanish on th
other sublattice of the honeycomb lattice. The statesu(r ) andv(r )
have the same quasimomentum and form a basis of the Dirac p
lem ~9! at the pointK. The independent basis states at the pointK8

are ū(r ) and v̄(r ).
2-2
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SUPERSYMMETRY IN CARBON NANOTUBES IN A . . . PHYSICAL REVIEW B68, 155402 ~2003!
ec2~r !5\v~]x1 i ]y!c1~r !, ~7!

where v5 3
2 tacc/\. The Hamiltonian~7! defines massles

Dirac fermions with the linear spectrume(k)56\vuku. In
carbon, the velocityv583107 cm/s. Similar relations hold
for the pointK8.

Equations~7! can be cast in the conventional Dirac for
ec5Hc with

H5va•p5v~a1p11a2p2! ~8!

for the two-component wave functionc5(c1 ,c2)T, with
a1,2 given by the Pauli matrices:

a15s2 , a252s1 . ~9!

The Hamiltonian near theK8 point can be derived in a simi
lar way. The result has the form~8! with a sign change in the
second term:a15s2 , a25s1.

Below we shall consider electrons in the presence of
ternal electromagnetic fields. The minimal form of the co
pling to external fields follows from the gauge invariance

H5va•S p2
e

c
AD1ew, ~10!

where w and A are the scalar and vector electromagne
potentials. The effect of electron spin, ignored here for s
plicity, can be included in Eq.~10! via a Zeeman term.

Equation~10! describes the lowest-order approximation
the gradients ofc1,2 and the potentialsw and A. Here we
consider the exact tight-binding equations in the presenc
external fields:

ec1~r !5tS (
z51,v,v̄

z̄eigr ,r 2zac2~r 2za!D , ~11!

ec2~r !5tS (
z51,v,v̄

zeigr ,r 1zac1~r 1za!D , ~12!

where the phasesg r ,r 8 are the integrals of the vector pote
tial along the nearest-neighbor bonds,

g r ,r 85
2p

F0
E

r 8

r

A~x!•dl. ~13!

Equations~11! and ~12! can be used to obtain the gradie
terms of higher order along with the coupling to extern
fields. One can check that expanding the exponents in
~11! and ~12! and keeping the lowest nonvanishing term
gives the Dirac Hamiltonian~10!. In Sec. VI we shall use
Eqs. ~11! and ~12! to obtain higher-order corrections to E
~10!.

To apply the above results to nanotubes, we consider e
trons on a carbon sheet rolled into a cylinder. The trans
mation of the tight-binding problem~2! to the Dirac problem
~7! based on the representation~4! is valid provided that the
cylinder circumferenceL52pR is much larger than the in
teratomic spacingacc. Since for typical NT radii the ratio
L/acc can be between 10 and 20, the approximation~4! is
entirely adequate.
15540
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The NT electron properties, depending on the nanot
structure, can be either metal like or dielectric like. Which
these situations takes place depends on the manner the
inder is obtained from the carbon monolayer. In the Dir
approach, the condition for metallic behavior can be form
lated directly in terms of the functionsu(r ) and v(r ): The
nanotube is metallicif and only if one can define on the NT
cylinder the two functionsu(r ) andv(r ) according to Fig. 1
without running into a mismatch of the function values up
the cylinder closure.

To demonstrate this, let us suppose that the functionsu(r )
andv(r ) on the cylinder exist. Without loss of generality w
choose thex axis along the cylinder and they axis along the
circumference. The problem~7! has periodic boundary con
ditions in they direction, and thus the wave functions can
factorized as c1,2(r )5c1,2(x)eikny, where kn52pn/L
5n/R. Then the dispersion relation for the 1D problem
describing motion along thex axis with fixedkn is

en~kx!56\v~kx
21kn

2!1/2. ~14!

In this case the subband withn50 has metallic properties
and the subbands withnÞ0 are dielectric.

Now let us consider the other possibility when the cyli
der is constructed in such a way that the functionsu(r ) and
v(r ) cannot be defined without a value mismatch. In th
case, upon rolling the carbon sheet into a cylinder, the s
with different function values shown in Fig. 1 are glued t
gether. However, since all values of the functionsu(r ) and
v(r ) are powers ofv5e(2p/3)i , one notes that Eqs.~7! can
still be used here if they are augmented withquasiperiodic
boundary conditions,c1,2(x,y1L)5vc1,2(x,y) or c1,2(x,y
1L)5v̄c1,2(x,y), which, combined with the value mis
match ofu(r ) andv(r ), makec(r ) single valued. Factoring
the wave function as above, one obtains 1D subbands
the dispersion of the form~14!, in this case withkn5(n
6 1

3 )/R. Note that in this case all spectral branches ha
dielectric character.

Now we consider a nanotube in the presence of aparallel
external magnetic field. In this case, electron properties
described by the Dirac equation~10! with w50 and the vec-
tor potentialA with just they component,Ay5F/L, where
F5pR2B is the magnetic flux. The boundary conditions
the y direction are periodic for the metallic case and quas
eriodic for the dielectric case. In the presence of a para
magnetic field the problem remains separable and thus
wave function can be factorized in just the same way
above. One again finds 1D subbands with the spectrum~14!,
where

knR5H n1f i , metallic,

n6 1
3 1f i semiconducting,

~15!

for the metallic and semiconducting NT’s, respectively, w
f i5F/F0 andF05hc/e. Thus in the presence of a parall
field the gaplessn50 branch of the metallic nanotube spe
trum ~14! acquires a gap.7,19 Interestingly, there is no thresh
old for this effect, since the gap forms at arbitrarily we
field. The gap size is 2D52uf iu\v/R. One notes that the
2-3
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field-induced gap appears not at the Fermi level but at
center of the electron band. Thus it affects the metallic
properties only for electron density sufficiently close to ha
filling.

III. DIRAC EQUATION AND SUPERSYMMETRY

At the energies smaller than the total bandwidth 6t ~ca. 18
eV in carbon! electron states are described~separately nea
each of theK andK8 points! by the massless Dirac equatio
~10!. For a uniform transverse magnetic field, the field co
ponent normal to the NT surface isB'(u)5B sinu, where
u5y/R is the azimuthal angle. The corresponding vector
tential can be chosen along the tube axisx, A(r )5 x̂A(u),
where

eR

\c
A~u!52f cosu, f[

pR2B

F0
. ~16!

In this case the longitudinal momentum\k is conserved and
the states on the NT cylinder have a plane-wave formc(r )
5c(x,u)5c(u)eikx. The Dirac Hamiltonian forc(u) is

HD5D0$ is1]u1~kR22f cosu!s2%, ~17!

with s1,2 the Pauli matrices and

D05
\v
R

. ~18!

The equations near theK8 point have the form~17! with a
sign change in the first term,s1→2s1.

The eigenvalues of the operator~17! give the electron
dispersion relatione(k). We have chosen the dimensionle
transverse field parameterf in the form ~16!, which makes
contact with the parallel field problem,7,19 Eq. ~15!.

The NT states are described by quasiperiodic wave fu
tions on the cylinder (y5Ru),

c~y1L !5e2p idc~y!, L52pR, ~19!

with

d5H 0, metallic,

6 1
3 semiconducting.

~20!

We consider the problem~17! with an arbitrary phased in
the boundary conditions~19!. This will permit us to general-
ize the results to the cases of metallic NT’s with a minig
induced by curvature21 or in the presence of a parallel ma
netic field. These problems can be described using
boundary conditions~19! with d slightly shifted away from
the ideal values~20!.

The electron bandse(k) can be studied using the transf
matrix. We integrate the Dirac equation in the interval
,u,2p and write a formal solutionc(u) to the problem
HDc5ec asc(u)5S(u)c(0) with the 232 matrix

S~u!5T expE
0

u

$2 i ẽs11~2f cosu82kR!s3%du8,

~21!
15540
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where ẽ5e/D0. Here T stands for operator ordering wit
respect tou. The quasiperiodic boundary condition~19! re-
quires

tr Su52p52 cos~2pd!. ~22!

Different energy bandse5en(k) can be found numerically
as solutions of Eq.~22!. The bands obtained in this way ar
displayed in Fig. 2.

In the present section we show that supersymmetry allo
one to make rather general statements about the low-en
NT spectrum. Originally, supersymmetry was suggested22 as
a special symmetry between the bosonic and fermionic s
tors of relativistic field theories that protects the zero-ene
eigenstate. Later, the concept of supersymmetry was bro
to single-particle quantum mechanics.23 This has yielded the
classification of exactly solvable potentials using factoriz
tion of the Schro¨dinger equation~see Ref. 14 for a review!.

FIG. 2. Electron dispersione(k) in the presence of a large un
form transverse magnetic fieldf50.5 ~bold lines! and in the ab-
sence of the field~dashed lines!. Top: metallic NT (d50). No gap
opens due to supersymmetry, but the velocity is suppressed ac
ing to Eq.~45!. Bottom:semiconducting case (d51/3). The energy
gap is suppressed by the factorg1/3(f); see Eq.~58! and Fig. 4.
2-4
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Below we apply the arguments of supersymmetry to
problem of NT electrons in a generic magnetic fieldB(r )
that ~i! is perpendicular to the NT axis and~ii ! does not vary
along the NT. In this case the field component normal to
NT surface is a function only ofy5Ru, B'[B(y). Simi-
larly to Eq. ~16!, we choose the following gauge:

Ax[A~y!5
F0

2p

dw

dy
, Ay50, ~23!

where

d2w

dy2 52
2p

F0
B~y!. ~24!

The functionw(y) is uniquely defined by demanding perio
icity

w~y1L !5w~y! ~25!

and zero average

E
0

L

dyw50. ~26!

The corresponding Dirac Hamiltonian reads

H̃D5\vH is1]y1S k2
dw

dyDs2J , ~27!

which reduces to Eq.~17! whenB(y)5B sin(y/R). It is use-
ful to decomposeH̃D into two pieces,

H̃D5Q1Q†, ~28!

where

Q[S 0 0

A 0D , Q†[S 0 A †

0 0 D ~29!

and

A[\vH i ]y1 i S k2
dw

dyD J ,

A †[\vH i ]y2 i S k2
dw

dyD J . ~30!

The connection with the supersymmetric quantum mecha
~see Chap. 2 in the Ref. 14! is established by constructing
supersymmetric Hamiltonian

HSUSY[S A †A 0

0 AA †D , ~31!

which, together withQ and Q†, satisfies the superalgebr
sl~1/1!,

@HSUSY,Q#5@HSUSY,Q†#50,

$Q,Q†%5HSUSY, $Q,Q%5$Q†,Q†%50. ~32!

Here $A,B%5AB1BA stands for anticommutator of opera
tors. In relativistic field theories, thesupercharges QandQ†
15540
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transform fermionic and bosonic degrees of freedom i
each other. Although we deal with a single-electron NT sp
trum, one couldformally interpret the upper and lower com
ponents of the wave functionc as fermionic and bosonic
sectors of the supersymmetric HamiltonianHSUSY.

One interesting implication of the algebra~32! is that
HSUSY can be expressed as sums of the square of Herm
supercharges,Q1 andQ2,

HSUSY5Q1
21Q2

2 , ~33!

where

Q1[
1

A2
~Q1Q†!, Q2[

i

A2
~Q2Q†!. ~34!

From Eq.~29!, one verifiesQ1
25Q2

2 and

HSUSY52Q1
25H̃D

2 . ~35!

Thus the energy spectra ofHSUSY andH̃D are closely related.
Let us now show how supersymmetry protects ze

energy states ofHSUSY andH̃D . For that, we construct zero
energy states ofHSUSY that are compatible with the boundar
condition ~19!. Due to Eq.~33!, any such statec satisfies

Q1c5Q2c50 ~36!

or, equivalently,

Qc5Q†c50. ~37!

The latter equation has two independent solutions

c15e2ky1w(y)S 1

0D , c25eky2w(y)S 0

1D . ~38!

Note that sincek is real andw(y) is periodic iny, the zero-
energy solutions~38! are compatible with the boundary con
dition ~19! if and only if d50 andk50. For the latter case
the exact zero-energy eigenstates ofH̃D can be written as

c1
(0)5

ew(y)

ALg0
(1) S 1

0D , c2
(0)5

e2w(y)

ALg0
(2) S 0

1D , ~39!

where normalization requires

Lg0
(1)5E

0

L

dye2w(y), Lg0
(2)5E

0

L

dye22w(y). ~40!

In the case of a uniform perpendicular field

w52f sinu, u5y/R, ~41!

the normalization factors are given by the modified Bes
function:

g0
(1)5g0

(2)5
1

2p R e4f sin udu5I 0~4f!. ~42!

The states~39! are degenerate at any field strength.
2-5
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H.-W. LEE AND DMITRY S. NOVIKOV PHYSICAL REVIEW B 68, 155402 ~2003!
Let us stress here that the zero-energy eigenstates~39! of
H̃D exist24 at d50, k50 for a generic magnetic field per
pendicular to the NT and not varying along the tube.
example is a field of a current flowing along the wire para
to the nanotube axis. Moreover, the above arguments
apply if the NT does not have a circular cross section,
long as the minigap due to the curvature2,3 of the graphene
sheet is not open. In what follows we confine ourselves
the case of a cylindrical NT in a homogeneous perpendic
magnetic field for simplicity, bearing in mind the generaliz
tions mentioned above.

Using the states~39! one can study how the linear dispe
sion relation changes near the band centere50. For that we
project the Hamiltonian~17! onto the basis

c1,2~x,u!5eikxc1,2
(0)~u!. ~43!

The projected Hamiltonian

HDuC1,2
5\kv̄s2 , v̄5

v
I 0~4f!

, ~44!

yields the dispersion relation

e~k!56\kS v
I 0~4f! D . ~45!

This describes areductionof the Fermi velocity\21de/dk
neare50 by a factorI 0(4f). SinceI 0(4f).1, the density
of states at the band center,

n5dN/de5
4

p\v
I 0~4f!, ~46!

is enhanced. ~The factor of 4 accounts for the spin and vall
degeneracy neglecting the Zeeman splitting; see Sec. IV
low.! Due to the exponential behavior of the Bessel funct
in Eq. ~45! at largef, this enhancement becomes dramatic
high fields~Fig. 3!. The reduction of the Fermi velocity an
the corresponding density-of-states enhancement is a ge

FIG. 3. Density of statesn5dN/de in metallic NT’s per one
fermion flavor as a function of energy in the units ofD05\v/R.
The peak valuen(0) at the band center is given by Eq.~46!.
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consequence of a supersymmetry. Indeed, in the generic
case described above the velocity is reduced by a fa
Ag0

(1)g0
(2)>1. Bothg0

(1) ,g0
(2)>1 @see Eq.~40!# since the av-

erage of an exponential is greater than or equal to an ex
nential of the average.

In the single-particle approximation, the tunneling dens
of states coincides with the thermodynamic density of sta
~46!. The peak in the tunneling density of states at the ba
center is a distinct manifestation of supersymmetry. R
cently, a scanning tunneling probe has been used6 to study
curvature-induced minigaps in nominally metallic tub
placed on a metallic substrate. In this setup, the elec
interactions that could have modified the single-particle
havior are screened by substrate, and the measured dens
states is unaffected by Luttinger liquid effects. In a simi
system in a high transverse field, an enhancement of tun
ing at the band center, Eq.~46!, and a peak in the density o
states~Fig. 3! are the experimental signatures to look for.

IV. GAP SUPPRESSION

In the present section we consider nanotubes that ha
gap D at the band center. We characterize them by the
rameterudu5D/D0 that enters the boundary condition~19!.
There are two kinds of such tubes: semiconducting N
with d561/3 and nominally metallic NT’s in which a mini
gap appears due to curvature or external field, yieldin
small udu!1. The Dirac problem~17! and~19! is not super-
symmetric fordÞ0. However, since the supersymmetry
an exact property atd50, one can still expect it to manifes
itself in a problem with a relatively smalld. Below we show
that a gap at the band center issuppressedin the presence of
an external transverse field:

D~f!5
D

gd~f!
, gd~f!.1, ~47!

where the gap suppression factorgd(f) diverges asf→`.
This means that supersymmetry is restored in the limit o
strong field. The suppression of the gap in semiconduc
NT’s is illustrated in Fig. 2~lower panel!.

We shall first consider a simpler case of a nominally m
tallic tube with d!1. The gap in this case can be foun
using perturbation theory ind. For that, we perform a gaug
transformationc(u)→eiduc8(u) and for c8(u) obtain a
problem with theperiodic boundary condition. The new
Hamiltonian differs from Eq.~17! by a term linear ind:

H85HD2d D0s1 . ~48!

It is convenient to rewrite this Hamiltonian as

H85H D
(0)1D0~kRs22d s1!, ~49!

whereH D
(0) is the Hamiltonian~17! with k50. We note that

H D
(0) is a supersymmetric Hamiltonian with eigenstates~39!.

The spectrum of the HamiltonianH8 at smallkR andd can
be found by projecting the second term Eq.~49! on the basis
~43! of plane-wave states constructed out of Eq.~39!. This
yields the dispersion relation
2-6
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e~k!56
D0

I 0~4f!
@~kR!21d2#1/2. ~50!

Thus we find that in this case the gap is suppressed by
same factor~42!,

g0~f!5I 0~4f!.1, ~51!

as the Fermi velocity in metallic NT’s. The gap suppress
is described by Eq.~51! in the limit of smalld for any mag-
netic fieldf.

One can also study the gap suppression analytically
genericd using perturbation theory in the fieldf. The en-
ergy e(k50) that gives the gap is defined by the conditi
~22! for the transfer matrix. We calculate the trace of t
transfer matrix~21! at k50 by expanding it perturbatively in
f!1:

tr Su52p52 cos 2pē18l1f2132l2f41O~f6!, ~52!

whereẽ5e(0)/D0 and the coefficientsl1,2 are given by

l152
2pẽ sin 2pẽ

124ẽ2
, ~53!

l252pẽ
2pẽ~124ẽ2!cos 2pẽ1~ 1

2 16ẽ2!sin 2pẽ

~124ẽ2!3
.

~54!

The condition~22! on the energy along with the definition o
the suppression factor~47! gives

gd511adf21bdf41O~f6!, ~55!

ad5
4

124d2 , bd54
1220d2

~124d2!2
. ~56!

Substituting, in Eq.~56!, d50 andd51/3 we obtain

g0~f!5114f214f41O~f6! ~metallic!, ~57!

g1/3~f!511
36

5
f22

396

25
f41O~f6! ~semiconducting!.

~58!

The expression~57! coincides with the Taylor expansion o
I 0(4f).

These analytical results can be compared with the
suppression factors obtained numerically~Fig. 4!. For nomi-
nally metallic NT’s with small minigap we find that atd
!1 the valuegd→0 is accurately given by Eq.~51!. The
analytical expression~51! coincides with the numerics in th
entire field range. In the semiconducting case ofd51/3 the
expansion~58! works reasonably well atf<1/4. At larger
fields f.1/4 the gap is suppressed exponentially,g1/3(f)
}e4f ~see Fig. 4!.

Let us discuss the possibilities to observe the suppres
of the gap. A competing effect due to the magnetic field t
leads to a gap suppression is the Zeeman spin couplingHZ
15540
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52msB with m5e\/2mc. The gap suppression at wea
fields, f!1, with the Zeeman effect included, is describ
by

D~f!5D2adf2D2mB, ~59!

with ad given by Eq.~56!. The Zeeman effect, linear inB,
dominates at weak fields. However, the orbital effe
adf2D, quadratic inB, overcomes the Zeeman effect at rel
tively moderate fieldsf!1.

For semiconducting NT’s the gapD5\v/3R, and Eq.
~56! gives a1/3536/5. In this case, the inequalitya1/3f

2D
.mB yields f.1.13aB /R with aB5\2/me2 the Bohr ra-
dius. Using carbon parameters we estimate that the magn
field has to exceed

B0578~R @nm# !23 T, ~60!

which can be low enough for tubes of large radius.
The energy gap can be studied experimentally by mea

ing transport in the thermally activated regime. The therm
activation energy will depend on the magnetic field acco
ing to Eq.~59!. The resistance

R~T!}exp@D~f!/kBT# ~61!

will be sensitive to magnetic field because the variation
the gap can exceedkBT even at the fields much smaller tha
Eq. ~60!. For example, consider a NT of radiusR51 nm, in
which caseD5\v/3R50.178 eV. For the magnetic fieldB
5B0 from Eq. ~60! we havef50.060 anda1/3f

250.026.
In this case the gap shifta1/3f

2D54.6 meV is larger than
kBT at T,53 K.

V. ELECTRON SPECTRUM
IN EXTREMELY LARGE FIELDS

Below we consider the qualitative features of the ene
bands in metallic NT’s in the limit of a large uniform exte

FIG. 4. Gap suppression factors~47! for nominally metallic
NT’s, d50 ~solid line!, and semiconducting NT’s,d51/3 ~dashed
line!, as a function of fieldf. The fine solid line is the result of the
expansion~58! in powers off. ~Note the logarithmic scale forgd .)
2-7
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nal field, corresponding tof>1. The behavior of the band
dispersion atukuR!f can be attributed to the Landau leve
of the problem~17!. Let us consider a square of the Ham
tonian~17! and the eigenvalue problemH D

2 c5e2c. It reads

H D
2 c5D0

2@2]u
21Uk~u!#c5e2~k!c, ~62!

Uk~u!5~2f cosu2kR!222fs3sinu, ~63!

with c(u) obeying the boundary conditions~19!. Note that
H D

2 is a diagonal 232 matrix in the space of spinorsc. In
what follows we takes3511.

Whenf@1, the kinetic energy of Eq.~62! is frozen since
Uk(u)}f2 is much greater than]u

2 . In this limit, the Hamil-
tonian is dominated by the potential energy termUk(u) and
the low-energy states are localized near the minima
Uk(u). At f@1 the potentialUk(u) has two slightly asym-
metric minima nearu656p/2, where it can be approxi
mated by a harmonic potentialUk(u)'72f14f2(u
2u6)2. The size of electronic wave function in the circum
ferential direction is

w. l B5R/A2f!R, ~64!

where l B5(\c/eB)1/2 is the magnetic length. Thus at larg
field the electrons are localized near the extrema of the m
netic field u6 . In these regions the field is approximate
constant:uB'(u)u'B.

The Landau level spectrumen
2(k) of Eq. ~62! obtained

within the harmonic approximation yields approximate
k-independent levels forHD :

en~kR!f!562D0Anufu, n50,1,2, . . . . ~65!

The lowest-energy level of Eq.~62! is e50 at k50. This
value, because of the supersymmetry, is not approximate
exact.

The behavior at large momentaukuR@f can be under-
stood semiclassically in terms of the so-calledsnake states.17

Snake states correspond to a classical particle moving a
zero-field lines. This motion is stable for a particle traveli
in one direction and is unstable for it traveling in the opp
site one. The snake states are located atu50 and u5p,
where the fieldB(u)5B sinu vanishes. This is consisten
with the high-field limit of the problem~62!, since atukuR
@f the minimum of Uk(u) is u0'0 for kB.0 and u0
'p for kB,0. The dispersion relation for such states is

e~k!56D0AUk~u0!'6\v~ uku22ufu/R!. ~66!

This linear dispersion relation with an offset 2ufu\v/R holds
even for small fields as long asukuR@max$f,1/f% ~see Fig.
2, largekR!.

Sinceu0 is different for positive and negativek, the left-
and right-moving snake states are spatially separated.
f.0, for instance, the left-~right-! moving snake states ar
localized nearu5p (u50). The characteristic width of the
snake-state wave function is

wsnake5 l B
1/2~R/k!1/4}u¹Bu21/4. ~67!
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The widthwsnake!R whenkR@1/ufu. In the Dirac problem
the wave function width~67! is different from that for the
Schrödinger problem discussed in Ref. 17, wherewsnake
}u¹Bu21/2.

VI. BEYOND THE DIRAC EQUATION:
SUPERSYMMETRY BREAKING

The two effects considered in Secs. III and IV—the de
sity of states enhancement ate50 in metallic NT’s and the
suppression of the energy gap in semiconducting NT’s—
manifestations of the supersymmetry of the low-ene
Dirac Hamiltonian ~17!. However, supersymmetry is no
present in the original tight-binding problem~2!. Below we
show that the terms correcting Eq.~17! in the next order of
the gradient expansion violate supersymmetry. Thus the
persymmetry in nanotubes is not exact but approximate:
nonsupersymmetric effects are small inacc/R.

To obtain the nonsupersymmetric terms of the effect
Hamiltonian we consider the low-energy subspace of sta
with ueu!t near the Dirac pointsK andK8. The basis states
at e50 are the functionsu(r ), v(r ) and ū(r ), v̄(r ) defined
in Sec. II ~see Fig. 1!. The wave function near the pointK
(K8) can be represented as a linear superposition~4! of u(r )
and v(r ) @respectively,ū(r ) and v̄(r )] multiplied by the
smooth envelope functionsc1,2(r ). We perform a gradient
expansion of the slowly varying envelope functions usi
Eq. ~11!. In the lowest nonvanishing order inacc]c1,2 we
retain the Hamiltonian~17! with v53tacc/2\.

The terms of second order in the gradientsacc
2 ] i] jc1,2

give the required correctionHtw to the Dirac Hamiltonian
HD called the carbontrigonal warping interaction. In this
case, since we are interested in the problem in an exte
field, the gradient expansion of Eq.~11! should be accompa
nied by an expansion of the phase factors~13!. After this
expansion is carried out we choose the tube axis orienta
with respect to the carbon lattice by specifying the chi
angleQ. The full HamiltonianHtot obtained in such a way
for NT’s has the form

Htot5ei (Q/2)s3H De2 i (Q/2)s31e2 iQs3HtweiQs3, ~68!

where HD is the Dirac Hamiltonian~17! and the trigonal
warping interactionHtw is given by

Htw52
acc

4R
D0H ~k21]u

2!s11 i S 2k]u1
dk

du Ds2J ,

~69!

where

k~u![kR2
eR

\c
A~u!. ~70!

The termHtw breaks the supersymmetry of the Hamiltoni
Htot . Thus we expect the zero-energy state to disapp
Note thatHtw also breaks the rotational symmetry ofHtot
sinceQ cannot be removed fromHtot via a unitary transfor-
mation. Thus the behavior of the energy gap in a transve
field will in general depend onQ. It can be verified that, in
2-8
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the absence of external fields, the energy spectrum ofHtot is
periodic in Q with period p/3, which is a manifestation o
the 60° rotation symmetry in the honeycomb lattice.

It is explicit in Eq. ~69! that the effects ofHtw are the
order-acc/R corrections toHD . Such effects are negligible
for semiconducting NT’s because of a large gapD0/3. In
metallic NT’s, however, the HamiltonianHtw plays an im-
portant role. In particular, the system described by
Hamiltonian~68! develops a minigap

D tw5
2acc

R
D0

f2ucos 3Qu
g0~f!

~71!

due to the magnetic fieldf @defined in Eq.~16!#. This result
can be obtained by projecting the perturbationHtw taken at
k50 onto the supersymmetric basis~39!:

Htwuk5052
2acc

R
D0

f2

g0~f!
s1 . ~72!

Note that the minigap~71! depends explicitly on the chira
angle Q as ucos 3Qu. Thus, for a given NT radius,D tw
reaches its maximum in zigzag NT’s (Q50) and vanishes in
armchair NT’s (Q5p/2). The gap~71! is a manifestation of
the broken supersymmetry. Minigaps of purely magnetic o
gin have been reported in Ref. 19 for zigzag and armch
NT’s; however, the gap dependence on the chiral angleQ
was not discussed.

When the magnetic field is large,f;1, the minigapD tw
is comparable to the curvature-induced minigap

Dc5
acc

16R
D0ucos 3Qu, ~73!

which is present inzero field.2,3 In this situation, the two
mechanisms for minigaps may compete and should be
sidered simultaneously. Instead of imposing the quasip
odic boundary condition~19!, we take the curvature effec
into account in an alternative way3 by introducing a
pseudovector potentialA(c),

Ax
(c)1 iAy

(c)5 i
F0

2p
•

acc

16R2
e3iQ, ~74!

which should be added to the magnetic vector poten
A(r ). Surprisingly, the two gap opening mechanisms, E
~69! and ~74!, interferedestructivelyat both theK and K8
points and produce the gap

Df5U Dc

g0~f!
2D twU ~75!

in a moderate transverse magnetic field (f&1). In particu-
lar, Df vanishesat f5(4A2)21 due to the destructive inter
ference.

VII. ELECTRON INTERACTIONS VS.SUSY

Electron interaction effects on NT’s were addressed
various theoretical25–29 and experimental30 studies. Below
we consider the effects of the repulsive interaction betw
15540
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electrons on the NT spectrum in the presence of a perp
dicular magnetic field. As we have seen above in Secs
and IV, supersymmetry of the single-particle problem mak
nanotubes ‘‘more metallic’’ in a strong field by enhancing t
density of states and suppressing the excitation gap at
energy in metallic and semiconducting tubes correspo
ingly. It is also known that the repulsive interaction betwe
NT electrons opens a small gap in an otherwise meta
tube25 as well as enhances the excitation gap in a semime
lic tube,26 making the tubes ‘‘less metallic.’’ Below we stud
the competition between supersymmetry and repulsive e
tron interactions, and find that strong interactions drastica
reduce the effect of supersymmetry. This happens beca
supersymmetry enhances electron interactions near h
filling as one would expect from the increase in the dens
of states~46!.

In what follows we consider the case of a very stro
magnetic fieldf.1. The latter condition corresponds to a
exponentially large effect of the field on the single-electr
NT spectrum. For that reason we will neglect the Zeem
effect, which is linear in field.

We consider the interacting problem whose Hamilton
in the forward scattering approximation27 reads

Htot5H01Hint , ~76!

where

H05\vE dr (
a51

4

Ca
† H S i ]y2

d

RDs12~ i ]x1wy8!s2J Ca

~77!

and

Hint5
1

2 (
k

r2kV~k!rk . ~78!

Here the Hamiltonian~77! describes four noninteracting fer
mion flavors (452spin32valley) in a nanotube with the bare
gap D5\vd/R, subject to a perpendicular magnetic fiel
w(y)52f sin(y/R), wy8[dw/dy, where the dimensionles
field strengthf is defined in Eq.~16!. The Dirac spinorsCa
are operators in the second-quantized representation.
Coulomb interaction between electrons is described by
Hamiltonian~78!, where the total density in the forward sca
tering approximation reads

r~r !5 (
a51

4

Ca
†Ca , ~79!

with the 2K0 harmonics@K0 defined in Eq.~3!# neglected.
The electron-electron interaction potential in the presence
a substrate with a dielectric constant« is

V~x,y!5
2

«11
V0~x,y!, ~80!

where
2-9
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V0~x,y!5
e2

Ah21x2
, h52R sin~y/2R!. ~81!

The problem~76! is SU~4! invariant with respect to rotation
in the space of the four fermion flavorsCa .

Below we focus on the low-energy properties of the pro
lem ~76!. This allows us to utilize the projection on the s
persymmetric basis~39!:

Ca~r !5x1a~x!c1
(0)~y!1x2a~x!c2

(0)~y!, ~82!

where the factorization of motion alongx andy holds due to
the assumption that the magnetic field does not vary al
the tube. Using Eq.~82! we will reduce the problem~76! to
the one-dimensional one, bosonize it, and estimate the e
of interactions on the plasmon velocity and on the semim
tallic gap.

Let us perform a projection of the problem~76! onto the
basis~82!. This can be done by integrating out the circum
ferential degree of freedom using the following separation
scales. The effects of magnetic field occur on the short s
of the tube radiusR, for which the relevant energy scale
;\v/R. The effect of the Coulomb interaction betwee
electrons accumulates over a length scale that is m
greater thanR, as described below. Therefore the effecti
1D description of the interacting NT electrons can be o
tained by first integrating out the circumferential coordina
y in Eq. ~76! and then taking into account the Coulomb e
fects. Thus we obtain the effective one-dimensional Ham
tonian

Heff5\ v̄E dx(
a

xa
† S 2 i ]xs22

d

R
s1Dxa

1
1

2 (
k

r̃2kṼ~k!r̃k , ~83!

with the bare velocity reduced due to supersymmetry,

v̄5
v

g0~f!
, ~84!

similar to Eq.~44!. Hereg0 is given by Eq.~51!,

xa5S x1a

x2a
D , ~85!

the one-dimensional electron density~calculated from half-
filling !

r̃5 (
a51

4

xa
†xa , ~86!

and the 1D interaction potential atkR!1:

Ṽ~k!.
2e2

«11
ln@11~kR!22#. ~87!

In writing Eq. ~83! we dropped the terms of the orde

@e2/(«11)# ln f that are small compared toṼ(k) at kR
!1. These terms appear since atf.1 the statesx1a and
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x2a are localized on the opposite sides of the tube. There
strictly speaking the interaction between the same com
nents of the spinor~85! is cut off on the scale of magneti
length ~64! rather than of the NT radius.

With the difference between the short-distance cutoffs
the potential~87! neglected, the effective 1D Hamiltonia
~83! remains SU~4! invariant. It can be bosonized in the sta
dard way,27 xa}eiFa. This procedure immediately yields th
renormalized plasmon velocity for a metallic nanotube,

ṽ5K1/2~f!
v

g0~f!
, ~88!

where the charge stiffness~or the dimensionless interactio
strength!

Kq~f!511
4g0~f!

p\v
Ṽ~q! ~89!

is enhancedby the magnetic field.~By the tilde we denote
the physical quantities in the presence of 1D interaction!

Thus the plasmon velocity suppression factorg̃0(f)
[@ ṽ(f)/ ṽ(0)#21 due to the magnetic field is given by

g̃0~f!5F K~0!

K~f!G
1/2

g0~f!. ~90!

It is reducedcompared to the noninteracting valueg0(f)
because of the enhancement of the interaction strength du
the perpendicular magnetic field. For a large interact
strengthK@1, the effect of electron interactions on the s
persymmetry is dramatic:

g̃0~f!.@g0~f!#1/2}e2f, ~91!

effectively reducing the field strengthf.1 by a factor of 2
in the exponential.

Consider now the semimetallic gap in the presence o
magnetic field. In bosonized language, this gap is estima
as the energy of a composite soliton of the charge and fla
modes,26,28 with its energy dominated by that of the charg
mode atK@1. The essential feature for the present analy
is that the effect of the magnetic field on the Gaussian par
Heff factorizes, renormalizing the velocityv̄, with the back-
scattering termd/R[D(f)g0(f)/\v inside the integral Eq.
~83! independent of the field. A straightforward calculation
shows that the perpendicular field reduces therenormalized
gap by the factor~90! obtained for the plasmon velocity:

D̃~f!5
D̃~0!

g̃0~f!
, D̃~0!.K1/2~0!D1/5D4/5~0!. ~92!

HereD̃(0) is the~renormalized! semimetallic gap in the ab
sence of the field andD.\v/R is the one-dimensional band
width.

In Eq. ~92! the value ofK is assumed to be taken atqlch
;1, wherel ch@R is the size of the charged soliton in th
bosonized description.26 The universal power law 4/5 in the
gap renormalization~92! is valid in the limit K@1. Equa-
tions ~88! and~92! show that the characteristic supersymm
2-10
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try features of the velocity and minigap suppression per
in the presence of Coulomb interactions. However, the ef
of the perpendicular magnetic field is strongly reduc
by the electron interactions due to the density-of-sta
increase~46!.

VIII. CONCLUSIONS

To conclude, we have shown that the interesting prop
ties of the nanotube electron spectrum in a perpendic
magnetic field found in Ref. 7 can be understood as a c
sequence of the supersymmetry of the low-energy
Hamiltonian. We have demonstrated that supersymmetry
sures stability of the zero-energy state in metallic NT’s a
yields a corresponding enhancement of the density of sta
In semiconducting NT’s, supersymmetry leads to an ene
gap suppression that can be observed in transport or tun
ing measurements. We also considered the effects due t
trigonal warping interaction arising from higher-order gra
ent expansion terms that violate supersymmetry and lea
,

c

e

ev

en

hy

N

M
.
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field-sensitive minigaps in the metallic NT spectrum. Final
we have found that supersymmetry persists in the prese
of electron interactions, but the reduction of both the ren
malized plasmon velocity and the excitation gap is weake
due to effectively increased interaction strength.
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