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Polarization of an exciton in a ZnO layer using a split gate potential
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In this paper we focus on structural and optical transitions of an exciton in a Zinc (Bad® layer, which
could be widely controlled by a split gate potential. We have solved the exciton problem by a self-consistent
Schralinger-Poisson technique, where the Hamiltonian includes the boundary conditions for the split gate
structure. The gate voltage creates a paraboliclike potential, which at a typical threshold voltage separates or
polarizes the exciton strongly. This sharp structural transition brings the exciton from being strongly correlated
with a large overlap to a regime where the correlation is very siwéth small overlap. The resulting
structure for the exciton at negative gate voltages is a structure where the hole is located like a ring around a
dotlike electron. For positive values of the gate voltage the situation is opposite. We have especially studied the
ground-state binding energy and the optical transitions of the exciton. We found that the ground-state energy
for ZnO could be tuned and the decrease of the ground-state energy can be as large as the double of the bulk
exciton energy60 meV for ZnQ with a gate voltage of-5 V. The ground-state energy is almost constant for
small values of the gate voltage but at a typical threshold voltagperoximately—2 V) the energy suddenly
changes and becomes linear with the gate voltage. We also analyze the lifetime for the exciton, which is shown
to increase from nanoseconds to beyond milliseconds. This was shown to be an effect of the small overlap
between the hole and the electron when the gate voltage increased above the threshold voltage. Stimulated by
the long lifetime of the ground state of the exciton we also calculated the optical transition frequency and the
corresponding oscillator strength for the transition between the ground state and the dominating(ssitited
consistent exciton states. The transition frequency was found to occur in the THz region and the oscillator
strength in the range of 0.3-0.4 for gate voltages betwe@nV and —5 V. In addition, we have also
analytically described polarization and especially total charge densities for excitons in small linear electric
fields.
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[. INTRODUCTION ample, Refs. 5-7in various structures have been compared
with experimental observatiorifor experiments see, for ex-
Excitons are rare objects in nature due to their short lifeample, Ref. 8 and they show a good agreeméobmpare,
time but are ideal study objects from a theoretical point offor instance, Refs. 9,10resulting in a comprehensive under-
view since their ground-state energy can be measured expestanding of the excitons in those low-dimensional structures.
mentally. This opportunity is possible since they are createdHowever, due to the small value of the exciton binding en-
from the vacuum state by laser light. Experimentally the abergy, the experimental investigations have to be conducted at
sorption peak of an exciton appearssat— Eq,* whereEg is  low temperatures. In addition, there are very limited investi-
the band gap of the materiétorresponding to breaking a gations on the intralevel transitions of the excitth®e-
covalent bongland E, is the binding energy of the ground cause the exciton lifetime is short and the transition energy is
state (due to Coulomb attraction Since the band gap is extremely small, such intralevel transitions have no practical
known, one could experimentally verify a theoretical quan-applications and are difficult to investigate experimentally.
tum calculation for the ground state. This is normally not the There have been several approaches to solve exciton
case for other types of quantum problefasch as few elec- problems, such as variational approactfesynamical Cou-
tron systems in a quantum dptvhere only transition ener- lomb screening approach&sHartree and Ritz approachés,
gies between different states could be experimentally deand ladder diagram approacH8s.
tected. A verification of these kinds of calculations must then Special optical effects of excitons such as in Bose-
be performed indirectly by a measurement of the charge derkinstein condensation have been reported for exciton
sity, normally using a tunneling tip. system&’ as well as structural transition phenomena in exci-
The excitons confined in low-dimensional semiconductortons when a magnetic field is appli&tiAlso, the existence
heterostructures are particularly interesting, due to enhancef surface excitons have been analyZ24 good review of
ment of the exciton binding energy. The fast progress of thexcitons in heterostructures could be found in a book by
epitaxy growth such as molecular-beam epitdBE) have  Ivchenko and Piku&®
made it possible to grow high quality quantum well, quan- In this study we choose the Zinc Oxid&@nO) system.
tum wire, and quantum dot structures. The excitons confine®ne of the first calculations that was performed on ZnO was
in two-dimensional2D) heterostructures have been investi-made by Bttner and Pollmaf® who also treated the
gated extensively during the last three decadeBhe calcu-  exciton-phonon interaction. ZnO is a direct band gap
lated exciton binding energid$or calculations see, for ex- wurtzite-type semiconductor with a band gap energy of 3.37
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eV at room temperature. Furthermore, due to the extremely
large exciton binding energiabout 60 meY, the excitons in
ZnO are thermally stable at room temperature. Thus, ZnO
has significant advantage in optoelectronic applications such
as the ultraviolet lasing media. In addition, due to the large
exciton binding energy, the specific devi¢the spilt gate
setup can be used to tune the exciton lifetime, and this as
well as the stable exciton at room temperature making use of
the exciton intralevel transitions becomes possible.

ZnO is a strong polar material with strong polaron effects.
In this paper we ignore the exciton-phonon interactibe-
sides the creation and destruction of the exciton in interac-
tion with the photon fiell These effects are expected to
significantly modify the exciton enerdy,especially in low-
dimensional structures. These effects are known to screen the
Coulomb interaction between the electron and the hole. We
use however a simple model with a pure static Coulomb
interaction in which the rather complex polarization response
of the crystal due to the electric fields generated by the elec-
tron and the hole is baked together into the dielectric con-
stante. Also the fact that the exciton has a very short life-
time results in that the crystal would respofi@., polarize
to the excitonic electric fields for a very short time. There-
fore, the choice of the static value efis not totally satis- FG. 1 A | spli h fazno |l
factory. We believe however that our model, with a value of - 1. A metal split gate on the top of a Zn ay@ot to

. . . scalg. A voltage Vg is applied between the metal gate and the
¢ fitted to give the correct experimental value of the ground-

. ; grounded substrate.

state energyfor the bulk exciton, serves well to explain the

trends described in this paper. To the authors’ knowledge this

perhaps unconventional method has never been used befolkansition rules for optical excitations between intralevels of
On the contrary, the use of the static valuesafould give a the excitons. The split gate structure details such as geom-

much more inaccurate result in comparison with the experi€!TY: dimensions, and boundary conditions as well as the nu-

mental values. merical _results are given in Sec. IV. Section V is devoted to
In this paper we demonstrate theoretically how split gategonclusmns.
could be used to strongly polarize an exciton and show also
how realistic _galculatlons could pe performed using Il THE SPLIT GATE SETUP
boundary-condition dependent Hamiltonians, resulting in
coupled Schrdinger-Poisson equations. In addition, we con-  The principal setup of the split gate is shown in Fig. 1. It
sidered the question of the lifetime of the exciton. A similaris not necessary to etch out the outer cylindrical part of the
Hartree calculation has been done by Jansstrad. on a  structure for the device operatigh is shown in this way for
two-dimensional type Il quantum dot, using a magneticclarity). The barrier material and the ZnO layer could be
field.2* In their paper they show that a variation of the po-grown on the substrate using, for example, molecular-beam
tential barriers gives rise to a transition of the exciton struc-epitaxy (MBE). The fabrication of the hole in the metal gate
ture. This effect is almost the same as we present here, but oould easily be done by E-beam lithography and lift-off tech-
our case we obtain the same effect by altering a split gateique. Today’s contemporary E-beam machines can make
voltage, which at a certain threshold voltage breaks up theuch spots with a diameter down to 15—-20 nm. The barrier
bulklike exciton structure to a strongly polarized exciton, material could be a related material to ZnO, for example,
where the hole is located as a ring around a dotlike electrorznMgO. It is assumed that the substrate is heavily doped or
The benefit with our model is of course that the voltage isis a metal layer so that the potential would be constant here.
easy to change, meanwhile a potential barrier must be varied We use a cylindrical coordinate system to describe the
by altering the material in the type Il quantum dot. On thestructure of the split gate. The coordinatds zero at the
other hand, the metal gate in our case would give rise tinterface between the ZnO and the metal gate, and goes ver-
image chargeswhich are more difficult to treatand this tically upwards in the figure. The ZnO is then placed at
problem does appear in a type Il quantum dot. —L<z<0, whereL is the thickness of the ZnO layer. The
In Sec. Il we describe the split gate setup that definesadial coordinatep goes outward from the center of the hole
nonlinear potentials that could be created from it. In Sec. lllin the metal gate. The diameter of the hole is 18.9 nm, which
we give the theory for the exciton lifetime, polarization, and corresponds to 10 bohrs radii of the ZnO excitbnlk). The
charge density for perturbational hydrogenlike excitons, thelistance from the metal gate down to the grounded substrate
theory for boundary-condition dependent Hamiltonians inis 151 nm(corresponding to 291 atomic layers of ZnQhe
the Hartree model for the excitons and finally the opticalthickness of the ZnO laydr varies in our calculation.
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For ZnO the bulk binding energf,=60 meV and the
energy gapEg=3.37 eV at room temperature. We effec-
tively treat the problem as time independent. This is of
course a crude approximation since it is known that the ex-
citons have a very short lifetime, typical in the subnanosec-
ond regime. The exciton is then treated as a metastable ob-
ject. The short lifetime of the exciton will as well affect the
polarization of the crystal and this is reflected in that the
dielectric constant is taken to be an average, chosen here
A 0 : such that the theoretical hydrogenlike ground-state energy

4" '\-2 _ 8 will give the correct experimental value. The ground-state
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FIG. 2. Split gate potential felt by a holgo the lef) and an Eo=— 13.6£ (eV), 2)
electron(to the righy. Note that the axes are rotated to show the g2

potential from the “best” view. The hole will be driven outwards in . . . . L

the radial direction and up to the metal gate=0). The electron yvhergﬂ IS the(dlmenS|onIes)seffect|ve mass ane is given

will be driven towardsp=0 and will “roll down” to the substrate, in units of the Vac‘j'um d'elecmf: constant. o

but will be stopped by a barrignot shown in this picture The exact physical mechanism for the annihilation pro-
cess is very complicated and involves real second quantiza-
éion physics, and will not be considered here. This process

The potential for an electron or a hole could be estimate and the strong polar effect of the ZnO material as well as the
by solving the Laplace equation. In Fig. 2 we show how the 9p

potential becomes nonlinear, paraboliclike, close to the met qxcnon-phonon interaction will also adjust the effective Cou-

T ; ﬁomb interaction between the electron and the hole. The ex-
gate. For the electron, the potential is confined by a parabo"Cerimentally fitted value of is therefore taking into account

potential in the radial ) coordinate. Since the Laplacian is L .
zero, the potential in thedirection must compensate for this phepqm(_ena of this kind as weII_. Itis hqwever clear that the
and is therefore an upside-down parabolic potential. Thgmmh'l"’ltlon takes place localljust as it was created lo-

electron would "roll down” toward the substrate, but is CaIII%/)\/.ve calculate the transition rate from the Fermi Golden
effectively stopped because of the barrier materiat

z=—L). The hole is driven outwards in the radial direction rule (using the second quantization approach, involving the

and up to the metal gatéwithout current flow into the }/(?rcfhté”;ifsett?;?efand S0 pwe obtain the following expression
meta). The hole will however be attracted to the electron so '

there would be an equilibrium for the exciton structure. 2

P : )

f<1>1(F><I>z<F>d3r

IIl. THEORY . . . .
Note that this expression is developed using the first-order

In this section we first give the theory of the exciton life- perturbation theory, this is why it is only approximate. We
time. In Sec. Il B we give the theory for the charge densityobserve from Eq(3) that the lifetime could be increased if
when small external fields are applied. Section IlIC dis-the hole and the electron wave functions are separgted
cusses the Coulomb interaction, including finite boundanjarized by some external potential.
conditions in the Hartree equations and the split gate poten-

tial in the split gate arrangement. B. Charge density in linear polarization
For the completeness we here briefly describe the theory
A. Lifetime of the exciton for weak perturbations of an exciton. The ground state for

The Hamiltonian for the system assumes that an eIectroHﬁe hydrogenlike wave function is

and a hole have been created from the vacuum state by laser K R—
- g . av (I)oce'K Re rlag (4)
light. The exciton is created locally, within a volume of ’

atomic size. The energy corresponding to breaking a covaleffhere K=0 in the ground stateR= (ml;lJr mZFZ)/(ml

bond in the ZnO is equal fo its band g&=3.37 €V at | 1) is the center of mass), andm, are the masses of the
room temperature. Very rapidly after this event the electron

and hole wave functions will redistributeiffuse) and lower glectron apd the hole, respe.ctlvely, andrli— M2 1S the rel.a—

the energy by the binding energy Bf due to the Coulomb tlve_coordlnate. However thls wave function gives no infor-

attraction. The observed absorption peak in experimenta sa;:jort]ooget?e ?r:i?zrgtﬁz :Z)?;Thcr?a:re émégxe%’( angosanggt be

measurements would then correspond to the transition en: . 9 ane

ergy E as used to c_:alculate dllfferent' multipole expansions, fc_)r ex-
ample. It is not possible to integrate one of the coordinates

using Eq.(4), since the resulting charge density would be

E=Eg—E,. (1)  totally smeared out over the whole space. This is in fact a
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consequence of the Heisenberg uncertainty principle applied factor 2 times smaller than the original wave functjo@f

for the center of mass, since we in the ground state haveourse, this approximation is only valid fo<1 as we have
specified the momenturiK=0 with exact precisionand Only expanded the wave function in two orbitals. It is also
henceAR=). To obtain a useful definition of a real charge clear from this analysis that the overlap will increaseVas

density, we must therefor fix the center-of-mass coordinatécreasesli.e., betweene; and ¢, in Egs. (6) and (7)].
(leading toAK = ). The charge density for particle 1 would Therefore, the lifetime would also increase, as can be seen

then be defined as from Eq. (3).
|<P1(F1)|2: f S( §)|¢(F)|2d3r2, (5) C. Hartree theory for excitons with a boundary-condition
dependent Hamiltonian
Wherego(F) is any wave function in the relative coordinate. ~ We will now study strongly nonlinear polarization of the
Using the definitions oR andr we would obtain exciton by using a real split gate arrangement, shown in Fig.
1. In addition we will also study excited states and the oscil-
le1(N)]2=]e(+ayr)|?, (6) lation strength for the internal optical transitions. In this
theory we ignore the Bloch functions and details from band
|¢2(;)|2:|(P(_a2;)|2, (7) theory, such as nonpara}bolic dispersion relations and split-
ting of the valence bandight and heavy holes
wherea;=M/m,, a,=M/m;, andM=m;+m, (the total The Hamiltonian(in scaled unitsfor the electron and the

mas3. If we consider particle 1 to be the proton, the effectivehole within the split gate arrangemetwhich creates the
Bohr radius (for particle 3 would be ag/a;=am,/M  nonlinear potentialis generally given by

=a/1837, which corresponds to 24 nuclear radii if we take

the proton radius to be 0210 ** m. Particle 2 would be By - . .

the electron and its effective Bohr radius would &g/a, m—2V2+ U(ry,ra) +Ee(r) +Ey(ra),
=agm;/M=a,, sincem;>m,. We define the total charge (12)
densityp to be

s
Il
I
<
»—\lm

. . . wherem; andm, are the effective masses for the electron
e(r)=Nye(air)|>=Nyle(—a,r)|?, (8)  and the hole, respectively. The reduced mass is givep by
=mym,/(m;+m,). The last two terms are heterostructure
Qarriers for the electronH.) and the hole ). The Hamil-
tonian is expressed in dimensionless units using the scaling

where N; and N, are normalization constanisve define
particle 1 to have a positive charge and particle 2 to have
negative chargeAs an example we next study an exciton in : ) , _
angexternal Iir?gar electric fieﬁﬂ, with equal m{isses for the relationE'=E.E for the energy and’=ar for the d'_s'
electron and the holr it could be a positron The addi-  t@nces. The bulk ground-state enefgyand the Bof;r rad|2us
tional perturbatiorithe electric field is assumed to be small,  are expressed througzh the Zrelatlon‘sO:ﬁ I2pnaq
otherwise the exciton would be unstable and ionimeuld = (&7/4meag)/2 andag=2(A"/2p)/(e%/4me). For ZnOa,
be H'=eE(z,—z,)=eEz=eErcos®. Performing a re- =1.89 nm anch=60 meV(known_ from experlmer)te_ is
stricted diagonalization of the total Hamiltonian, using On|ytheﬁd|eﬁlectr|c constant. The potential part of the Hamiltonian
the 1s and the  orbital, we would take the wave function U(ry,r,) takes into account the mutual Coulomb interaction
to be as well as the boundary conditions given on the split gate
structure and could be expressed through Greens relation

@(1)=C1016(1)+ Copap(T), (9)

where c; and c, are determined from the diagonalization

eigenvalue problem. Using Eq8), Eq. (9) together Wlth where the factor 2 stems from the scaling of the Hamiltonian.

Egs.(6) and (7) and using the antisymmetry rulg;(—r)  The “tilde” on the dielectric constant indicates that it could
= —@,p(r) and also tham; =m,=m, this would yield the be a coordinate dependent tensor in general. The dielectric
total charge density constante for the bulk ZnO depends on the frequency in
general. For stationary electric fields=7.2 and for high
- 128v - - frequenciegoptical) e=3.7. Since the lifetime of the exciton
Q(r):em%s@r)%p(zr)v is very short(corresponding to high frequengyhe problem
should in principle be solved using dynamical screening, but
whereV=eEg/E, is the dimensionless potential drop over for simplicity we treat the problem as a time-independent
the Bohr radiusa,. The corresponding two energies die  problem. We therefore take an average of the dielectric con-
units of the ground-state enengygiven by E=(5 stant(in between the two limits ok) to be e=6.33, since
+/9+64v?)/8, which givesE=—1 andE=—1/4 when this would give the correct ground-state enerds
V—0. The charge density in Eq10) is evidently positive =—60 meV for a bulk exciton in ZnO.
for z>0 and negative foz<O0 (if not V=0), just as we With no confinement, special boundary conditions, and
intuitively expect it to be. Note also that the size of theusing a constant isotropic dielectric consténtscaled units
charge distribution is scaled with a factoliz., it becomes e=1) the solution of Eq(12) becomes

Vi [€ViU(ry,r)]=2x4m8(r,—r1,), (12

(10
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o 2 be difficult to ensure, using straightforward integration, since
U(rq,ro)=————. (13)  we do not know explicitly the expressions fér; and F,
Iri—ro (which also include the boundary conditiondVe could
hence derive the Poisson equation for the effective potentials

With the common C°.“'°”?b potential given in E(d.S‘), in the integrals, denoted by, andV,. We give the deriva-
the solution of the Hamiltoniaigll) (now in real unit$ is :
tion for V4 here as

given by Eq.(2). In the scaled units the ground-state energy
Eo=—1. The effective mass for the hole in ZnO is aniso-
tropic with the valuesn,;,=0.45 andm,, =0.59. We take
an averagen; = (my,+2m,, )/3. The effective mass for the
electron ism,=0.275 and is isotropic. This yields the re-

V%V1(F)=V§J Ul(FlaF2)|¢2(F2)|2d3r2

duced masg.=0.177. o =8wf 8(r1=15)|Pa(ra)[Pdr = 8ar| 012
We now include confinement and boundary conditions in
the potentialU(r,,r,). On the top of the ZnO surfadsee (18)

Fig. 1) the metal gate would provide a constant potentigl
(gate potentiglrelative to the grounded substrate. We wouldwhere we have used E(L5). The equation foW, is similar.
hence have Dirichlet boundary conditions on these surfaceginally the boundary condition is taken afy (or V,) as a
Depending on the sign of the charge, the electron and th@hole. In this way we have got around the difficult problem
hole will be driven towards the metal gate or the substrate. Ibf first solving the exact(boundary-condition dependént
Vg alters sign, the electric field will also be turned upsideHamiltonian and we do not need to care about explicitly the
down (see Fig. 2 information inF, andF,. Using this picture, the boundary
The potential termJ(Fl,Fz) will now be treated as fol- condition for the holeY,) is set toV at the gate and for the
lows. When we include the boundary conditions we couldelectron we shall set Vg at the gatgsince it has opposite
formally write the solution o charge. It is instructive to study two limits of this potential
formalism. First we note that we work with energy potentials

N 2 - - (and not electric potentialsin the “limit” when we turn off
Ulry,ra)=- IF =y TRAr)lr, Rl (14 the Coulomb interactiofi.e., when|®,(r)|>—0) we would
obtain the two separate potentials. For a negative gate poten-
This equation evidently satisfies tial —Vg, the electric field would be oriented from the sub-
o .. strate to the metal gate. The hole would then be driven to-
V2U(rq,r,)=8md(r—r,), (15  wards the metal gate. The electrénith opposite charge

would hence be driven towards the substrate with the same

if F; andF, are homogeneous solutions to H@5). The applied gate voltagdthat is why we apply the boundary

subscripts onF; and F, indicate that these variables are condition at the gate with opposite sign for the electron

partially kep»t constaht, S0 tha_t, for exampfg, is a function the other limit, when we turn off the gate voltage and extend
only of ther, coordinate. This would actually be the casehe gate boundary to infinity, the resulting potential would
when we try to solve Newton’s time-dependent equationsimply be the pure Coulomb interaction. Note that this
(iLe., we derive the force on particle 1 frof; and the theory does not take into account, for image charges, this is
Coulomb term, and must hold the coordinate of particle 2yhy its result will be only approximate. However, the theory
fixed. For further simplification we define two po- js good enough to give the right trends. The physical conse-
tentialsul(rl,rz):—2/|r1—r2|+F1(r1)|;2 and U,(rq,ry) quence of the image charges is that the positive charge
(hole), located close to the metal gate will be screened by the
image charge. Therefore, the Coulomb interaction will be
reduced, leading to another balance between the gate voltage
and the Coulomb interaction. Effectively, this screening can
then be compensated with a larger value of the gate voltage,

=—2/[r;—1,|+Fy(ry)|;,. We now impose the boundary

conditions on eithetJ, or U, separately. With the Hamil-
tonian written in this form, we could easily derive the effec-
tive Hartree equation with the total wave function

W(ry,rp)=®4(r)®,(r,), which gives and would hence not affect the major trend of the polariza-
tion phenomenon.

_ ﬂvzq)ﬁ f U1(F1,F2)|®2(F2)|2d3r2 O, +E.D; We use cyli.ndrical symmetry for obtaining a grqun(_j state

my and a few excited states. The total wave function is given by

=Ny, (16)
W(ry,rp)=@1(p1.21)€M1%py(py,2y)eM292, (19

o - - -
— —V2P,+ Ju (r1,ro)|®q(ry)|?d% ;| P, +E, P
m3 2 AT r2)[@a(ry)] o where M; and M, are (intege) quantum numbers for the
electron and hole, respectively. Thus, for example,

|®1(r)|2=|¢1(p1.21)|% For the case that we want to study,

The effective potentials in Eq916) and (17) should the excited states, the quantum numbdrsand M, should
hence incorporate the true boundary conditions. This woulde included in the Schdinger equations as

:)\2(1)2. (17)

155334-5



P. A. SUNDQVIST, Q. X. ZHAO, AND M. WILLANDER

PHYSICAL REVIEW B68, 155334 (2003

2 E..
m|d [ dey ey uM7 fo—
St B ——— S : : 1 0
m, &p<p p )+p 7 +|p(Vi+E(2)+ i Q1 =2 [ IMy; =Myl MZi,M2j<€01||P|€011><(P2||€021>
=\1p@1, (20) _5|M2i—sz\,15M1i,Mlj<<Pzi|P|<P2]>(€D1i|<Plj>]2,
(25
2 L .
R 9 e N P, | p(Vot E(2))+ uM3 where it is understood that the volume element in all the
m,| dp p ap p 972 piVaT =y m,p ®2 integrations in Eq(25) should be taken as72pdpdz (the
angular integration oved has already resulted in the factor
=N2p @2, (21)  1/4 whenAM=*1). We can see from Eq25) what the

whereV; is defined from Eq(18) (also in cylindrical coor-

transition rules are. If, for example, the holes have an excited
state withM ,; =1 (and in the ground staté ,;=0), then we

dinates, and similarly forV,. The total dimensionless en- must set ;=M ; (=0 for the ground stajeIndeed, one of
ergy Eq (binding energy for the exciton must be calculated the two terms in Eq(25) will always be zero. The overlap
as follows. If we just add.; and\,, we would have double integral(¢y;|¢4;) for the hole is roughly equal to 1 for small
counted the Coulomb termr2,, so we must therefore sub- values of the gate voltag@and also for large valugsin the
tract one of them. Hence the total energy would be given byntermediate case, the overlap could be very small in some

[Dy(ry)|2

———dq,
Iri—ryl

d3ry.

(22

Eo=x1+x2+2f |<I>1(r1>|2“

cases.

IV. RESULTS

A. Parameters and boundary conditions for the system
The radius of the circular gate hole on the ZnO lagese

We calculate the Coulomb integral by solving Poisson'srig, 1) has a value of &,=9.45 nm in all calculations. The

equation[in principle the same equation as Ed.8)] and
then integrating the well behaved potential. For this case w
transfer the solutions from the Scklinger equations to a
new geometry, without the split gate boundaayhuge ge-
ometry relative to the typical size of the exciton strucjure

D. Optical transitions in the exciton

Here we consider optical transitions from the ground stat

to some excited states, particularly the one with the Iargest

oscillator strength. We use the dipole transition approxima
tion here. The opticaltwo-body) perturbation of the Hamil-
tonian is considered as the light comes in to the ZnO surfac
in the z direction. The electromagnetic field components ar
then oriented in thex-y plane. The perturbatioRl’ is then
taken to be

_eA,(A eA .

H'= z_mlplx_ 2_n12p2’“ (23

whereA, is the magnetic vector potential in thxedirection.

From this perturbation we obtain the oscillator strength
between the stateto the statg as

2/,1,(1)”

fij=—=—Kilxa=xal D I*=EfjI(ilx;—x3l )%, (24
h

where E;;=E;—E;, w;j=E;;/h, E'=E¢E, Eq=1?/2uaf,
andx’=agx, wherea, is the Bohr radius. Note thdt; is

e

distance from the metal gate to the grounded substrate was
80a,=151 nm(corresponding to 291 atomic layers of ZnO
The total radius for the whole geometry was set toak2énd

we also included the volume above the split gate with a
distance 88, (to get rid of image charge effects at the cir-
cular opening in the metal gate at the ZnO surfagaen the
split gate metal represents a cut in our geometry with a con-
stant potentiaVg (or — Vg, depending on which charge we
olve the Poisson equation foset as the boundary condi-
on. The mesh is set to be very fine in the regions ©

<5 and —5<z<0, and a fine mesh in the regions<p
e<20 and—5<z<0. The rest of the structure has a rough
mesh(we use totally~ 3000 grid points

At p=120 we apply Neumann boundary conditions for
the Poisson equation, since this results in a linear potential
drop from the metal gate to the substrate for large radii. At
p=0, we also apply Neumann boundary conditions for both
Poisson’s and Schdinger’s equations. Strictly speaking this
is not a physical boundary condition and must be introduced
artificially because of the cylindrical coordinate weight func-
tion p. At z=—80 we have the substrate, where we apply
Dirichlet boundary conditions. We also set the potential to be
zero atz=+80.

For the Schdinger equations we apply hard walls every-
where, except fop=0 (described previousjy Just above
the metal we set the potential barrier to 3 eV for the bound-
ary purpose(which could correspond to an oxide layer or
vacuunm. The metal thickness was set tap In general, we
therefore expect the electrofor the hole to penetrate
through this barrier a little biti.e., forz>0).

dimensionless. Here the primes indicate only that the corre-

sponding properties are dimensionless. The wave functions

are given from Eq(19). Simplifying this a bit further leads
us to the final resulfnow omitting the primes for a simpler
notation:

B. Numerical results

The self-consistent Hartree calculations of the exciton in
the split gate arrangement have been performed for three
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°
N
FIG. 3. The ring exciton shown fovg=—4.8 V. The ring is -5
thin and is located close to the metal gate surface. The electron 0 3 10 15 20
“dot” is located close to the barrier material. 0

different cases. The first case is when the ZnO layer has a N
thickness of By=9.45 nm and the potential barrier is set to 5
1 eV for both the electron and the hole. The second case is
when the barrier is reduced to 0.2 eV and the ZnO thickness
is bay. Finally the third case is when the ZnO thickness is
reduced to 4.8, and the barrier is 1 eV. All properties such  FIG. 4. The charge density for the exciton shown in (ealed
as the ground-state enery, the lifetimer, the overlap, the cylindrical coordinates, foeVg/Eq=—80, —40, and 0, from top
excitation energie<€;;, and the oscillator strength; are  to bottom.L=>5a, (ZnO thicknessfor this figure.
investigated as functions of the split gate voltage, which
runs in the range 0 V te-4.8 V (— 4.8 V corresponds to the cases when the ZnO thickness and the barrier height are var-
dimensionless valueVg/Eq=—80). In this section we ied. As can be seen, a decrease of the barrier potential would
have chosen to present the figures using the absolute value afso decrease the energy. As the ZnO thickness is decreased
Vs on the positivex axis, which is indicated witlinegative  the energy will increaséhis is a typical quantum well phe-
in the figure captions. A use of both positive and negativenomena. The energy changes drastically\g=—2 V (the
values ofVg would have givenalmos) symmetric curves figure shows the absolute value\8§). This threshold volt-
aroundVg=0. In addition, we also study how the ground- age is directly connected with the structural transition of the
state energ¥, and the lifetimer depend on the ZnO layer exciton, shown in Fig. 4. The reason for this threshold volt-
thickness L, for the fixed gate voltageeVg/Eq=—80 age is that the nonlinear potential drop of the split gate po-
(|Eo| =60 meV). tential has to be increasé€h magnitude until it becomes of

The probability density for the electron and the hole isthe same order as the bulk ground-state ené6égy me\).
shown in a 3D view in Fig. 3 foMg=—4.8 V whenL When this critical potential drop has been reached, the bulk-
=ba, and the heterostructure barriel,=1 eV. The hole like exciton configuration would not be stable any more. This
forms a ring around the electron, which is displaced down-effect is indeed a type of a structural transition, which also
wards relative to the rin¢the image is tilted, this is why the has been reported by Janssensl* in a two-dimensional
electron seems to be displaced from the ceni&fith oppo-  type Il quantum dot.
site polarity of the gate voltage the electron would form a The typical potential drop that is requirgdr in other
ring around the hole. words, the threshold voltage which is requiresould de-

In Fig. 4 the total charge density is shown in more detailpend on the metal gate radius and the total distance between
than in the previous figure, f&Vg/Ey= —80, —40, and O.
The axes are given in units of the Bohr radags Note that
the overlap between the hole and the electron wave functions
is very small foreVg/Eq= —80 and—40. With no applied
voltage, the exciton is close to a bulk exciton. Because of the
different effective masses, the charge densgitycompare
with Eq. (8)] is not zero. The probability densities for the
electron and the hole are slightly more broader than the con-
tours in this figure[compare with the factor 2 in Ed8)].
Since the hole is very close to the metal surface, a polariza-
tion in the metal could adjust the potential for the h@le.,
this effect is commonly referred to as the effect of image
charges However, the effect of image charges is not in- ;
cluded in the present paper. Because of the closeness of the ) 1
metal gate to the hole, the Coulomb interaction will be
screened appreciably, leading to a reduction of the exciton F|G. 5. Binding energyE, in ZnO (quantum well like as a
binding energy. function of the gate voltag¥g (negativg. L=5a, andU,=1 eV

In Fig. 5 the binding energiz, is plotted for the exciton (squarey L=>5a, and U,=0.2 eV (circles, and L=4.5a, and
in the ZnO layer. We compare in this figure three differentu,=1 eV (diamonds.
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FIG. 7. Overlap(1|2) between the electron and the hole wave
function as a function of the gate voltadk; (negative for the
exciton ground stateL=5a, and U,=0.2 eV (circles and L
=4.53, andU,=1 eV (diamonds.

FIG. 6. Lifetime 7 as a function of the gate voltagé; (nega-
tive) for the exciton ground staté.=5a, andU,=1 eV (squarey
L=5a, and U,=0.2 eV (circles, and L=4.5a; and U,=1 eV
(diamonds.

figure it is also clear that there is a dramatic change at a
the substrate and the metal gate. An analysis of differentypical threshold voltage o¥/s=—2 V. The bulk exciton
sizes have not been made but we expect to see exactly thigetime is typical of the order 1 ns for ZnO. The transition is
same phenomena and the salmgVg curve. The only dif-  less sharper for the low barriel,=0.2 eV than for the other
ference would be that the threshold voltage would be differcases with a large barriét,=1 eV. The long lifetime is a
ent and that the slope in tli&-Vg curve would be different. consequence of the small overlap between the electron and

A special separate calculation was made for the bulk exthe hole wave functions. Evidently, the dramatic change in
citon using the Hartree methaéhut now with a very large the lifetime gives a fingerprint of the fact that a structural
geometry and without any metal gat&he result shows that transition has occurre@vhich is evident from Fig. %
the Hartree energy i€,=—0.411 which should be com- In Fig. 7 the overlap integral is plotted as a function of the
pared with exact valu&y,=—1 (in dimensionless unils  gate voltage. The overlap is roughly inversely proportional to
This example shows that the Hartree theory does not givéhe lifetime. ForVg<—2.2 V the overlap is very small, and
accurate result§60% erroj when the electron and the hole we therefore expect the Hartree calculation to be very accu-
are extremely correlated. However, the strong correlatiomate in this region, since the correlation between the electron
(defined as the difference between the exact energy and thend the hole wave function is very small here. Rdy
Hartree energytakes place only when the overlap between=0.2 eV(the dash-dotted lineve could observe an interme-
the electron and the hole wave functions are ldegeund 3,  diate point atvg=—1.8 V and(1|2)=0.19. A charge den-
i.e., this means that we can trust the Hartree calculation firsdity plot shows that this corresponds to the case when the
when it is shown that the overlap is small. For the exciton inhole is starting to diffuse into the central region of the gate
the ground state this is the case whgp<—2 V. Apossible  structure p=0), meanwhile it still has a ringlike shape.
way of solving this strongly correlated problem exactly The penetration of the electron wave function into the
could be by the use of the path integral Monte Carlo techbarrier is shown in Fig. 8 gi=0. It is clear from the figure
nique (see, for example, Ref. 22 and the references thereinthat the barrier potential is decreasing for large valugg|of
It is also interesting to note that type Il quantum dots sepadue to the electric field between the metal gate and the sub-
rate the electron and the hole, such that the oveffep-  strate. Hence, this figure shows that the exciton is a meta-
mally) becomes small. For this case a Hartree calculatiostable object when it is polarized by a split gate potential.
would give a satisfactory resulsee, for example, Janssens For excited states the effective tunneling barrier becomes
et all¥). even lower. To avoid tunneling of the electron to the sub-

There is limit to how much the exciton can be polarized.strate we must introduce an artificial hard walkat— 13 for
It should not take longer time for the hole or the electron tothe ground state and at= —9 for excited states. From the
move to their self-consistent positions than the typical life-wKB theory we could estimate the tunneling time
time of the bulk exciton. An estimation, using Ehl’enfestxﬁ/Eo|t|2’ where|t|? is the usual tunneling probability. For
theorem gives the time~ y2m,/EqAp for the hole to move the ground state this time is in practice infinite, but for the
from the “creation center” of the exciton to its equilibrium excited states the time could be much smaller.

position (see Fig. 4. UsingAp= 14, E,=60 meV, andm, The metastability of the exciton could however be inter-
=0.5m, gives a time of 0.25 ps, which is much shorter thanesting for a possible practical use. For excited states using
a typical exciton lifetime of 1 ns. low barriers, the electron could in principle tunnel through

In Fig. 6 the lifetimer [see Eq(3)] is plotted as a func- the barrier if these levels are populated by a THz radiation.
tion of the gate voltagén units of the bulk lifetime. In this ~ Such “splitting” of the exciton would result in an electrical
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FIG. 8. Tunneling of the electronic wave function into the bar- o . .
rier for Vg=—4.8 V for p=0. L=5a, andU,=1 eV. FIG. 10. Lifetimer as a function of the thickness of the ZnO

layer forVg=—4.8 V andU,=1 eV.

signal which could be detected. This will of course only
happen if the lifetime of the exciton is sufficiently long so tum numbers for the electron and the hole, respectively,
that an excited state could be populated. Alternatively thevhen the quantum numbét is fixed.N;=1 andM ;=0 is
excited state could serve as the second level in a qtfiBt  the ground state for the electron and so on. The quantum
situation is similar to the metastable states in JosephsomumbersM; and M, give rise to centrifugal potentials for
junction washboard potential the electron and the hole. The selectedlowed excited

In Figs. 9 and 10 the ground-state energy and the lifetimgtate in Figs. 11 and 12 correspond\g=1 andM =1 for
(70=1 ns) are plotted as a function of the ZnO thicknkess the electron, meanwhile the hole is in its “old ground state”
when the gate voltage ¥;=—4.8 V. For this voltage we N,=1 andM,=0. The Schrdinger and Poisson equations
have the typical ring structure and Fig. 9 shows that thayvere solved self-consistently to obtain these excited states.
energy changes linearly with the ZnO thickness. In a thick As a comparison we give the values of the first four al-
ZnO layer it is possible for the electron to be located at gowed excited states, labeldd, (ii), (iii), and(iv), for the
large distance from the hole than it would be for a thin layer.gate voltageVg=—4.8 V: (i) For N;=1, M;=1, N,=1,
The lifetime changes exponentially with the layer thicknessand M,=0, AE=12.31 meV andf;; ;=0.322; (i) For N;
(this is also a consequence of a large separation between thep M,=1, N,=1, andM,=0, AE 27.71 meV and;

electron and the hole =0.002; (i) ForN;=1, M;=0, N,=1, andM,=1, AE
In Figs. 11 and 12 the optical transition from the ground=0.04 meVv andf;; ;=0.032; and(iv) For N,=1, M;=0,

state to an excited state with a dominating oscillator strengtiy, =2 andMm,= 1 AE=2.87 meV and;;=0.099.
is shown. Figure 11 shows the transition energy converted to The first transition is dominating, first as the oscillator

frequency(in THz) and Fig. 12 shows how the correspond- strength is large for this transition and second as it corre-
ing oscillator strength is changing with the gate voltage. We

classify the excited states with the set of quantum numbers
Ni, M4, N,, andM,. N; andN, give the principal quan-
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160 hs! 0 1 2 3 4 5
-180 gate voltage [V]
5 6 7 8 9 10 11 12
ZnO thickness [nm] FIG. 11. The optical transition frequency from the ground state
for the dominating peak, as a function of the gate voltdgenega-
FIG. 9. Binding energyg, as a function of the thickness of the tive). L=5a, and U,=0.2 eV (circles and L=4.5a, and U,
ZnO layer forVg=—4.8 V andU,=1 eV. =1 eV (diamonds.

transition frequency [THz]

energy [meV]
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FIG. 13. Different self-consistent excited states for the exciton
sponds to an energy which is possible to detect in an opticah the p-z plane. The first figure from top to bottom is classified by
experiment(too small energies could not be seen in opticalthe guantum numberdl;=1, M;=1, N,=1, andM,=0. The
measurements The second transition has a large transitionsecond figure has the quantum numbbiis=2, My =1, N,=1,
energy but has a small oscillator strength. The third transitio"d M2=0. The third figure has the quantum numbé¥s=1,
has both a small transition energy and oscillator strength1=0. N2=1, andM,=1. Finally the fourth figure has the quan-
Finally, the fourth transition has an oscillator strength com-{um numbersN; =1, M;=0, N>=2, andM,=1. eVs/Eo=80,

parable with the first dominating transition, but has much- =220 andUs=1 eV.

lower energy. tural transition of the exciton takes place at a certain thresh-
The different self-consister(ellowed excited states are old voltage. The exciton ground-state energy was calculated
finally shown in Fig. 13. The previously mentioned transitionusing a self-consistent Scliimger-Poisson technique and
caseqi), (i), (iii), and(iv) are shown from top to bottom in the results show that the energy could be varied to 120 meV
the figure. The top figure shows the dominating excited statéor an applied negative gate voltage ef5 V. Since the
(i.e., the transition from the ground state to this excited statdifetime is long for the polarized “phase” of the exciton
is dominating since the oscillator strength is large the  structure, above the threshold voltage, we also calculated the
second figurdii), the electronic wave function has two dif- optical transition energy/frequency and the oscillator strength
ferent modes with opposite signs of the wave functitn ~ for a self-consistent excited state which would be the most
cated ap=2 andp=7). The oscillator strength for this case dominating and sharp peak that would appear in experi-
would therefore be very low. ments. We discuss the metastable nature of the exciton in this
kind of heterostructure and conclude that especially excited
states may tunnel out from the heterostructure barrier. This
V. CONCLUSIONS effect could be used as a tunable THz detector. We hope that
In this paper we show that an exciton in a thin ZnO Iayerour calculations, made on a realistic structure would stimu-

could be strongly polarized using a split gate potential. Dudate future experimental research.
to the large separation between the electron and the hole we
also show that the lifetime for the exciton will increase from

the nanosecond regime to the millisecond regime. The struc- The work was funded by SSF-Quantum Devices.
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