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Polarization of an exciton in a ZnO layer using a split gate potential

P. A. Sundqvist,* Q. X. Zhao, and M. Willander
Physical Electronics and Photonics, Department of Physics, Fysikgra¨nd 3, University of Go¨teborg

and Chalmers University of Technology, S-412 96 Go¨teborg, Sweden
~Received 27 February 2003; revised manuscript received 9 June 2003; published 31 October 2003!

In this paper we focus on structural and optical transitions of an exciton in a Zinc Oxide~ZnO! layer, which
could be widely controlled by a split gate potential. We have solved the exciton problem by a self-consistent
Schrödinger-Poisson technique, where the Hamiltonian includes the boundary conditions for the split gate
structure. The gate voltage creates a paraboliclike potential, which at a typical threshold voltage separates or
polarizes the exciton strongly. This sharp structural transition brings the exciton from being strongly correlated
with a large overlap to a regime where the correlation is very small~with small overlap!. The resulting
structure for the exciton at negative gate voltages is a structure where the hole is located like a ring around a
dotlike electron. For positive values of the gate voltage the situation is opposite. We have especially studied the
ground-state binding energy and the optical transitions of the exciton. We found that the ground-state energy
for ZnO could be tuned and the decrease of the ground-state energy can be as large as the double of the bulk
exciton energy~60 meV for ZnO! with a gate voltage of25 V. The ground-state energy is almost constant for
small values of the gate voltage but at a typical threshold voltage~approximately22 V) the energy suddenly
changes and becomes linear with the gate voltage. We also analyze the lifetime for the exciton, which is shown
to increase from nanoseconds to beyond milliseconds. This was shown to be an effect of the small overlap
between the hole and the electron when the gate voltage increased above the threshold voltage. Stimulated by
the long lifetime of the ground state of the exciton we also calculated the optical transition frequency and the
corresponding oscillator strength for the transition between the ground state and the dominating excited~self-
consistent! exciton states. The transition frequency was found to occur in the THz region and the oscillator
strength in the range of 0.3–0.4 for gate voltages between22 V and 25 V. In addition, we have also
analytically described polarization and especially total charge densities for excitons in small linear electric
fields.

DOI: 10.1103/PhysRevB.68.155334 PACS number~s!: 71.35.Lk, 73.20.Mf, 71.35.Cc
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I. INTRODUCTION

Excitons are rare objects in nature due to their short l
time but are ideal study objects from a theoretical point
view since their ground-state energy can be measured ex
mentally. This opportunity is possible since they are crea
from the vacuum state by laser light. Experimentally the
sorption peak of an exciton appears atEG2E0,1 whereEG is
the band gap of the material~corresponding to breaking
covalent bond! and E0 is the binding energy of the groun
state ~due to Coulomb attraction!. Since the band gap i
known, one could experimentally verify a theoretical qua
tum calculation for the ground state. This is normally not t
case for other types of quantum problems~such as few elec-
tron systems in a quantum dot!, where only transition ener
gies between different states could be experimentally
tected. A verification of these kinds of calculations must th
be performed indirectly by a measurement of the charge d
sity, normally using a tunneling tip.2

The excitons confined in low-dimensional semiconduc
heterostructures are particularly interesting, due to enha
ment of the exciton binding energy. The fast progress of
epitaxy growth such as molecular-beam epitaxy~MBE! have
made it possible to grow high quality quantum well, qua
tum wire, and quantum dot structures. The excitons confi
in two-dimensional~2D! heterostructures have been inves
gated extensively during the last three decades.3,4 The calcu-
lated exciton binding energies~for calculations see, for ex
0163-1829/2003/68~15!/155334~11!/$20.00 68 1553
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ample, Refs. 5–7! in various structures have been compar
with experimental observations~for experiments see, for ex
ample, Ref. 8! and they show a good agreement~compare,
for instance, Refs. 9,10!, resulting in a comprehensive unde
standing of the excitons in those low-dimensional structur
However, due to the small value of the exciton binding e
ergy, the experimental investigations have to be conducte
low temperatures. In addition, there are very limited inves
gations on the intralevel transitions of the excitons.11 Be-
cause the exciton lifetime is short and the transition energ
extremely small, such intralevel transitions have no pract
applications and are difficult to investigate experimentally

There have been several approaches to solve exc
problems, such as variational approaches,12 dynamical Cou-
lomb screening approaches,13 Hartree and Ritz approaches,15

and ladder diagram approaches.16

Special optical effects of excitons such as in Bos
Einstein condensation have been reported for exc
systems17 as well as structural transition phenomena in ex
tons when a magnetic field is applied.18 Also, the existence
of surface excitons have been analyzed.19 A good review of
excitons in heterostructures could be found in a book
Ivchenko and Pikus.20

In this study we choose the Zinc Oxide~ZnO! system.
One of the first calculations that was performed on ZnO w
made by Bu¨ttner and Pollman,13 who also treated the
exciton-phonon interaction. ZnO is a direct band g
wurtzite-type semiconductor with a band gap energy of 3
©2003 The American Physical Society34-1
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eV at room temperature. Furthermore, due to the extrem
large exciton binding energy~about 60 meV!, the excitons in
ZnO are thermally stable at room temperature. Thus, Z
has significant advantage in optoelectronic applications s
as the ultraviolet lasing media. In addition, due to the la
exciton binding energy, the specific device~the spilt gate
setup! can be used to tune the exciton lifetime, and this
well as the stable exciton at room temperature making us
the exciton intralevel transitions becomes possible.

ZnO is a strong polar material with strong polaron effec
In this paper we ignore the exciton-phonon interaction~be-
sides the creation and destruction of the exciton in inter
tion with the photon field!. These effects are expected
significantly modify the exciton energy,13 especially in low-
dimensional structures. These effects are known to scree
Coulomb interaction between the electron and the hole.
use however a simple model with a pure static Coulo
interaction in which the rather complex polarization respo
of the crystal due to the electric fields generated by the e
tron and the hole is baked together into the dielectric c
stant«. Also the fact that the exciton has a very short lif
time results in that the crystal would respond~i.e., polarize!
to the excitonic electric fields for a very short time. Ther
fore, the choice of the static value of« is not totally satis-
factory. We believe however that our model, with a value
« fitted to give the correct experimental value of the groun
state energy~for the bulk exciton!, serves well to explain the
trends described in this paper. To the authors’ knowledge
perhaps unconventional method has never been used be
On the contrary, the use of the static value of« would give a
much more inaccurate result in comparison with the exp
mental values.

In this paper we demonstrate theoretically how split ga
could be used to strongly polarize an exciton and show a
how realistic calculations could be performed usi
boundary-condition dependent Hamiltonians, resulting
coupled Schro¨dinger-Poisson equations. In addition, we co
sidered the question of the lifetime of the exciton. A simi
Hartree calculation has been done by Janssenset al. on a
two-dimensional type II quantum dot, using a magne
field.14 In their paper they show that a variation of the p
tential barriers gives rise to a transition of the exciton str
ture. This effect is almost the same as we present here, b
our case we obtain the same effect by altering a split g
voltage, which at a certain threshold voltage breaks up
bulklike exciton structure to a strongly polarized excito
where the hole is located as a ring around a dotlike elect
The benefit with our model is of course that the voltage
easy to change, meanwhile a potential barrier must be va
by altering the material in the type II quantum dot. On t
other hand, the metal gate in our case would give rise
image charges~which are more difficult to treat! and this
problem does appear in a type II quantum dot.

In Sec. II we describe the split gate setup that defi
nonlinear potentials that could be created from it. In Sec.
we give the theory for the exciton lifetime, polarization, a
charge density for perturbational hydrogenlike excitons,
theory for boundary-condition dependent Hamiltonians
the Hartree model for the excitons and finally the opti
15533
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transition rules for optical excitations between intralevels
the excitons. The split gate structure details such as ge
etry, dimensions, and boundary conditions as well as the
merical results are given in Sec. IV. Section V is devoted
conclusions.

II. THE SPLIT GATE SETUP

The principal setup of the split gate is shown in Fig. 1.
is not necessary to etch out the outer cylindrical part of
structure for the device operation~It is shown in this way for
clarity!. The barrier material and the ZnO layer could
grown on the substrate using, for example, molecular-be
epitaxy~MBE!. The fabrication of the hole in the metal ga
could easily be done by E-beam lithography and lift-off tec
nique. Today’s contemporary E-beam machines can m
such spots with a diameter down to 15–20 nm. The bar
material could be a related material to ZnO, for examp
ZnMgO. It is assumed that the substrate is heavily doped
is a metal layer so that the potential would be constant h

We use a cylindrical coordinate system to describe
structure of the split gate. The coordinatez is zero at the
interface between the ZnO and the metal gate, and goes
tically upwards in the figure. The ZnO is then placed a
2L,z,0, whereL is the thickness of the ZnO layer. Th
radial coordinater goes outward from the center of the ho
in the metal gate. The diameter of the hole is 18.9 nm, wh
corresponds to 10 bohrs radii of the ZnO exciton~bulk!. The
distance from the metal gate down to the grounded subs
is 151 nm~corresponding to 291 atomic layers of ZnO!. The
thickness of the ZnO layerL varies in our calculation.

FIG. 1. A metal split gate on the top of a ZnO layer~not to
scale!. A voltage VG is applied between the metal gate and t
grounded substrate.
4-2
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POLARIZATION OF AN EXCITON IN A ZnO . . . PHYSICAL REVIEW B68, 155334 ~2003!
The potential for an electron or a hole could be estima
by solving the Laplace equation. In Fig. 2 we show how
potential becomes nonlinear, paraboliclike, close to the m
gate. For the electron, the potential is confined by a parab
potential in the radial (r) coordinate. Since the Laplacian
zero, the potential in thez direction must compensate for th
and is therefore an upside-down parabolic potential. T
electron would ‘‘roll down’’ toward the substrate, but
effectively stopped because of the barrier material~at
z52L). The hole is driven outwards in the radial directio
and up to the metal gate~without current flow into the
metal!. The hole will however be attracted to the electron
there would be an equilibrium for the exciton structure.

III. THEORY

In this section we first give the theory of the exciton lif
time. In Sec. III B we give the theory for the charge dens
when small external fields are applied. Section III C d
cusses the Coulomb interaction, including finite bound
conditions in the Hartree equations and the split gate po
tial in the split gate arrangement.

A. Lifetime of the exciton

The Hamiltonian for the system assumes that an elec
and a hole have been created from the vacuum state by
light. The exciton is created locally, within a volume
atomic size. The energy corresponding to breaking a cova
bond in the ZnO is equal to its band gapEG53.37 eV at
room temperature. Very rapidly after this event the elect
and hole wave functions will redistribute~diffuse! and lower
the energy by the binding energy ofE0 due to the Coulomb
attraction. The observed absorption peak in experime
measurements would then correspond to the transition
ergy E as

E5EG2E0 . ~1!

FIG. 2. Split gate potential felt by a hole~to the left! and an
electron~to the right!. Note that the axes are rotated to show t
potential from the ‘‘best’’ view. The hole will be driven outwards i
the radial direction and up to the metal gate (z50). The electron
will be driven towardsr50 and will ‘‘roll down’’ to the substrate,
but will be stopped by a barrier~not shown in this picture!.
15533
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For ZnO the bulk binding energyE0560 meV and the
energy gapEG53.37 eV at room temperature. We effe
tively treat the problem as time independent. This is
course a crude approximation since it is known that the
citons have a very short lifetime, typical in the subnanos
ond regime. The exciton is then treated as a metastable
ject. The short lifetime of the exciton will as well affect th
polarization of the crystal and this is reflected in that t
dielectric constant« is taken to be an average, chosen he
such that the theoretical hydrogenlike ground-state ene
will give the correct experimental value. The ground-sta
energy is ideally given by

E05213.6
m

«2
~eV!, ~2!

wherem is the~dimensionless! effective mass and« is given
in units of the vacuum dielectric constant.

The exact physical mechanism for the annihilation p
cess is very complicated and involves real second quan
tion physics, and will not be considered here. This proc
and the strong polar effect of the ZnO material as well as
exciton-phonon interaction will also adjust the effective Co
lomb interaction between the electron and the hole. The
perimentally fitted value of« is therefore taking into accoun
phenomena of this kind as well. It is however clear that
annihilation takes place locally~just as it was created lo
cally!.

If we calculate the transition rate from the Fermi Gold
rule ~using the second quantization approach, involving
vacuum state and so on! we obtain the following expression
for the lifetime:

1

t
}U E F1~rW !F2~rW !d3rU2

. ~3!

Note that this expression is developed using the first-or
perturbation theory, this is why it is only approximate. W
observe from Eq.~3! that the lifetime could be increased
the hole and the electron wave functions are separated~po-
larized! by some external potential.

B. Charge density in linear polarization

For the completeness we here briefly describe the the
for weak perturbations of an exciton. The ground state
the hydrogenlike wave function is

F}eiKW •RW e2r /a0, ~4!

where KW 50 in the ground state,RW 5(m1rW11m2rW2)/(m1
1m2) is the center of mass,m1 andm2 are the masses of th
electron and the hole, respectively, andrW5rW12rW2 is the rela-
tive coordinate. However this wave function gives no info
mation of the charges which are involved, and cannot
used to determine the total charge density% (% could be
used to calculate different multipole expansions, for e
ample!. It is not possible to integrate one of the coordina
using Eq.~4!, since the resulting charge density would
totally smeared out over the whole space. This is in fac
4-3
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consequence of the Heisenberg uncertainty principle app
for the center of mass, since we in the ground state h
specified the momentumKW 50 with exact precision~and
henceDR5`). To obtain a useful definition of a real charg
density, we must therefor fix the center-of-mass coordin
~leading toDK5`). The charge density for particle 1 woul
then be defined as

uw1~rW1!u25E d~RW !uw~rW !u2d3r 2 , ~5!

wherew(rW) is any wave function in the relative coordinat
Using the definitions ofRW and rW we would obtain

uw1~rW !u25uw~1a1rW !u2, ~6!

uw2~rW !u25uw~2a2rW !u2, ~7!

where a15M /m2 , a25M /m1, and M5m11m2 ~the total
mass!. If we consider particle 1 to be the proton, the effecti
Bohr radius ~for particle 1! would be a0 /a15a0m2 /M
5a0/1837, which corresponds to 24 nuclear radii if we ta
the proton radius to be 0.2310215 m. Particle 2 would be
the electron and its effective Bohr radius would bea0 /a2
5a0m1 /M>a0, sincem1@m2. We define the total charg
density% to be

%~rW !5N1uw~a1rW !u22N2uw~2a2rW !u2, ~8!

where N1 and N2 are normalization constants~we define
particle 1 to have a positive charge and particle 2 to hav
negative charge!. As an example we next study an exciton
an external linear electric fieldE, with equal masses for th
electron and the hole~or it could be a positron!. The addi-
tional perturbation~the electric field is assumed to be sma
otherwise the exciton would be unstable and ionize! would
be H85eE(z12z2)5eEz5eEr cosQ. Performing a re-
stricted diagonalization of the total Hamiltonian, using on
the 1s and the 2p orbital, we would take the wave functio
to be

w~rW !5c1w1s~rW !1c2w2p~rW !, ~9!

where c1 and c2 are determined from the diagonalizatio
eigenvalue problem. Using Eq.~8!, Eq. ~9! together with
Eqs. ~6! and ~7! and using the antisymmetry rulew2p(2rW)
52w2p(rW) and also thatm15m25m, this would yield the
total charge density

%~rW !5e
128V

A9164V2
w1s~2rW !w2p~2rW !, ~10!

whereV5eEa0 /E0 is the dimensionless potential drop ov
the Bohr radiusa0. The corresponding two energies are~in
units of the ground-state energy! given by E5(5
6A9164V2)/8, which givesE521 and E521/4 when
V→0. The charge density in Eq.~10! is evidently positive
for z.0 and negative forz,0 ~if not V50), just as we
intuitively expect it to be. Note also that the size of t
charge distribution is scaled with a factor 2~i.e., it becomes
15533
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a factor 2 times smaller than the original wave functions!. Of
course, this approximation is only valid forV!1 as we have
only expanded the wave function in two orbitals. It is al
clear from this analysis that the overlap will increase asV
increases@i.e., betweenw1 and w2 in Eqs. ~6! and ~7!#.
Therefore, the lifetime would also increase, as can be s
from Eq. ~3!.

C. Hartree theory for excitons with a boundary-condition
dependent Hamiltonian

We will now study strongly nonlinear polarization of th
exciton by using a real split gate arrangement, shown in F
1. In addition we will also study excited states and the os
lation strength for the internal optical transitions. In th
theory we ignore the Bloch functions and details from ba
theory, such as nonparabolic dispersion relations and s
ting of the valence band~light and heavy holes!.

The Hamiltonian~in scaled units! for the electron and the
hole within the split gate arrangement~which creates the
nonlinear potential! is generally given by

Ĥ52
m

m1
¹1

22
m

m2
¹2

21U~rW1 ,rW2!1Ec~rW1!1Ev~rW2!,

~11!

wherem1 and m2 are the effective masses for the electr
and the hole, respectively. The reduced mass is given bm
5m1m2 /(m11m2). The last two terms are heterostructu
barriers for the electron (Ec) and the hole (Ev). The Hamil-
tonian is expressed in dimensionless units using the sca
relation E85E0E for the energy andr 85a0r for the dis-
tances. The bulk ground-state energyE0 and the Bohr radius
a0 are expressed through the relationsE05\2/2ma0

2

5(e2/4pea0)/2 and a052(\2/2m)/(e2/4pe). For ZnO a0
51.89 nm andE0560 meV ~known from experiment!, e is
the dielectric constant. The potential part of the Hamilton
U(rW1 ,rW2) takes into account the mutual Coulomb interacti
as well as the boundary conditions given on the split g
structure and could be expressed through Greens relatio

“1•@ ẽ•“1U~rW1 ,rW2!#5234pd~rW12rW2!, ~12!

where the factor 2 stems from the scaling of the Hamiltoni
The ‘‘tilde’’ on the dielectric constant indicates that it cou
be a coordinate dependent tensor in general. The diele
constante for the bulk ZnO depends on the frequency
general. For stationary electric fieldse57.2 and for high
frequencies~optical! e53.7. Since the lifetime of the exciton
is very short~corresponding to high frequency!, the problem
should in principle be solved using dynamical screening,
for simplicity we treat the problem as a time-independe
problem. We therefore take an average of the dielectric c
stant ~in between the two limits ofe) to be e56.33, since
this would give the correct ground-state energyE0
5260 meV for a bulk exciton in ZnO.

With no confinement, special boundary conditions, a
using a constant isotropic dielectric constant~in scaled units
e51) the solution of Eq.~12! becomes
4-4
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U~rW1 ,rW2!52
2

urW12rW2u
. ~13!

With the common Coulomb potential given in Eq.~13!,
the solution of the Hamiltonian~11! ~now in real units! is
given by Eq.~2!. In the scaled units the ground-state ene
E0521. The effective mass for the hole in ZnO is anis
tropic with the valuesmp//50.45 andmp'50.59. We take
an averagem15(mp//12mp')/3. The effective mass for the
electron isme50.275 and is isotropic. This yields the re
duced massm50.177.

We now include confinement and boundary conditions
the potentialU(rW1 ,rW2). On the top of the ZnO surface~see
Fig. 1! the metal gate would provide a constant potentialVG
~gate potential! relative to the grounded substrate. We wou
hence have Dirichlet boundary conditions on these surfa
Depending on the sign of the charge, the electron and
hole will be driven towards the metal gate or the substrate
VG alters sign, the electric field will also be turned upsi
down ~see Fig. 2!.

The potential termU(rW1 ,rW2) will now be treated as fol-
lows. When we include the boundary conditions we co
formally write the solution as21

U~rW1 ,rW2!52
2

urW12rW2u
1F1~rW1!urW2

1F2~rW2!urW1
. ~14!

This equation evidently satisfies

¹2U~rW1 ,rW2!58pd~rW12rW2!, ~15!

if F1 and F2 are homogeneous solutions to Eq.~15!. The
subscripts onF1 and F2 indicate that these variables a
partially kept constant, so that, for example,F1 is a function
only of the rW1 coordinate. This would actually be the ca
when we try to solve Newton’s time-dependent equatio
~i.e., we derive the force on particle 1 fromF1 and the
Coulomb term, and must hold the coordinate of particle
fixed!. For further simplification we define two po
tentials U1(rW1 ,rW2)522/urW12rW2u1F1(rW1)urW2

and U2(rW1 ,rW2)

522/urW12rW2u1F2(rW2)urW1
. We now impose the boundar

conditions on eitherU1 or U2 separately. With the Hamil-
tonian written in this form, we could easily derive the effe
tive Hartree equation with the total wave functio
C(rW1 ,rW2)5F1(rW1)F2(rW2), which gives

2
m

m1
¹2F11F E U1~rW1 ,rW2!uF2~rW2!u2d3r 2GF11EcF1

5l1F1 , ~16!

2
m

m2
¹2F21F E U2~rW1 ,rW2!uF1~rW1!u2d3r 1GF21EvF2

5l2F2 . ~17!

The effective potentials in Eqs.~16! and ~17! should
hence incorporate the true boundary conditions. This wo
15533
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be difficult to ensure, using straightforward integration, sin
we do not know explicitly the expressions forF1 and F2
~which also include the boundary conditions!. We could
hence derive the Poisson equation for the effective poten
in the integrals, denoted byV1 andV2. We give the deriva-
tion for V1 here as

¹1
2V1~rW !5¹1

2E U1~rW1 ,rW2!uF2~rW2!u2d3r 2

58pE d~rW12rW2!uF2~rW2!u2d3r 258puF2~rW !u2,

~18!

where we have used Eq.~15!. The equation forV2 is similar.
Finally the boundary condition is taken onV1 ~or V2) as a
whole. In this way we have got around the difficult proble
of first solving the exact~boundary-condition dependen!
Hamiltonian and we do not need to care about explicitly
information inF1 and F2. Using this picture, the boundar
condition for the hole (V1) is set toVG at the gate and for the
electron we shall set2VG at the gate~since it has opposite
charge!. It is instructive to study two limits of this potentia
formalism. First we note that we work with energy potentia
~and not electric potentials!. In the ‘‘limit’’ when we turn off
the Coulomb interaction~i.e., whenuF2(rW)u2→0) we would
obtain the two separate potentials. For a negative gate po
tial 2VG , the electric field would be oriented from the su
strate to the metal gate. The hole would then be driven
wards the metal gate. The electron~with opposite charge!
would hence be driven towards the substrate with the sa
applied gate voltage~that is why we apply the boundar
condition at the gate with opposite sign for the electron!. In
the other limit, when we turn off the gate voltage and exte
the gate boundary to infinity, the resulting potential wou
simply be the pure Coulomb interaction. Note that th
theory does not take into account, for image charges, th
why its result will be only approximate. However, the theo
is good enough to give the right trends. The physical con
quence of the image charges is that the positive cha
~hole!, located close to the metal gate will be screened by
image charge. Therefore, the Coulomb interaction will
reduced, leading to another balance between the gate vo
and the Coulomb interaction. Effectively, this screening c
then be compensated with a larger value of the gate volta
and would hence not affect the major trend of the polari
tion phenomenon.

We use cylindrical symmetry for obtaining a ground sta
and a few excited states. The total wave function is given

C~rW1 ,rW2!5w1~r1 ,z1!eiM 1a1w2~r2 ,z2!eiM 2a2, ~19!

where M1 and M2 are ~integer! quantum numbers for the
electron and hole, respectively. Thus, for examp
uF1(rW1)u25uw1(r1 ,z1)u2. For the case that we want to stud
the excited states, the quantum numbersM1 andM2 should
be included in the Schro¨dinger equations as
4-5
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2
m

m1
F ]

]r S r
]w1

]r D1r
]2w1

]z2 G1Fr~V11Ec~z!!1
mM1

2

m1r Gw1

5l1rw1 , ~20!

2
m

m2
F ]

]r S r
]w2

]r D1r
]2w2

]z2 G1Fr~V21Ev~z!!1
mM2

2

m2r Gw2

5l2rw2 , ~21!

whereV1 is defined from Eq.~18! ~also in cylindrical coor-
dinates!, and similarly forV2. The total dimensionless en
ergy E0 ~binding energy! for the exciton must be calculate
as follows. If we just addl1 andl2, we would have double
counted the Coulomb term 2/r 12, so we must therefore sub
tract one of them. Hence the total energy would be given

E05l11l212E uF1~rW1!u2F E uF2~rW2!u2

urW12rW2u
d3r 2Gd3r 1 .

~22!

We calculate the Coulomb integral by solving Poisso
equation@in principle the same equation as Eq.~18!# and
then integrating the well behaved potential. For this case
transfer the solutions from the Schro¨dinger equations to a
new geometry, without the split gate boundary~a huge ge-
ometry relative to the typical size of the exciton structure!.

D. Optical transitions in the exciton

Here we consider optical transitions from the ground st
to some excited states, particularly the one with the larg
oscillator strength. We use the dipole transition approxim
tion here. The optical~two-body! perturbation of the Hamil-
tonian is considered as the light comes in to the ZnO surf
in the z direction. The electromagnetic field components
then oriented in thex-y plane. The perturbationH8 is then
taken to be

H85
eAx

2m1
p̂1x2

eAx

2m2
p̂2x , ~23!

whereAx is the magnetic vector potential in thex direction.
From this perturbation we obtain the oscillator strengthf i j
between the statei to the statej as

f i j 5
2mv i j

\
u^ i ux12x2u j &u25Ei j8 u^ i ux182x28u j &u

2, ~24!

where Ei j 5Ei2Ej , v i j 5Ei j /\, E85E0E, E05\2/2ma0
2,

and x85a0x, wherea0 is the Bohr radius. Note thatf i j is
dimensionless. Here the primes indicate only that the co
sponding properties are dimensionless. The wave funct
are given from Eq.~19!. Simplifying this a bit further leads
us to the final result~now omitting the primes for a simple
notation!:
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f i j 5
Ei j

4
@d uM1i2M1 j u,1

dM2i ,M2 j
^w1i uruw1 j&^w2i uw2 j&

2d uM2i2M2 j u,1
dM1i ,M1 j

^w2i uruw2 j&^w1i uw1 j&#2,

~25!

where it is understood that the volume element in all
integrations in Eq.~25! should be taken as 2prdrdz ~the
angular integration overa has already resulted in the facto
1/4 whenDM561). We can see from Eq.~25! what the
transition rules are. If, for example, the holes have an exc
state withM2 j51 ~and in the ground stateM2i50), then we
must setM1i5M1 j (50 for the ground state!. Indeed, one of
the two terms in Eq.~25! will always be zero. The overlap
integral^w1i uw1 j& for the hole is roughly equal to 1 for sma
values of the gate voltage~and also for large values!. In the
intermediate case, the overlap could be very small in so
cases.

IV. RESULTS

A. Parameters and boundary conditions for the system

The radius of the circular gate hole on the ZnO layer~see
Fig. 1! has a value of 5a059.45 nm in all calculations. The
distance from the metal gate to the grounded substrate
80a05151 nm~corresponding to 291 atomic layers of ZnO!.
The total radius for the whole geometry was set to 120a0 and
we also included the volume above the split gate with
distance 80a0 ~to get rid of image charge effects at the c
cular opening in the metal gate at the ZnO surface!. Then the
split gate metal represents a cut in our geometry with a c
stant potentialVG ~or 2VG , depending on which charge w
solve the Poisson equation for! set as the boundary cond
tion. The mesh is set to be very fine in the regions 0,r
,5 and 25,z,0, and a fine mesh in the regions 5,r
,20 and25,z,0. The rest of the structure has a roug
mesh~we use totally;3000 grid points!.

At r5120 we apply Neumann boundary conditions f
the Poisson equation, since this results in a linear poten
drop from the metal gate to the substrate for large radii.
r50, we also apply Neumann boundary conditions for bo
Poisson’s and Schro¨dinger’s equations. Strictly speaking th
is not a physical boundary condition and must be introdu
artificially because of the cylindrical coordinate weight fun
tion r. At z5280 we have the substrate, where we app
Dirichlet boundary conditions. We also set the potential to
zero atz5180.

For the Scho¨dinger equations we apply hard walls ever
where, except forr50 ~described previously!. Just above
the metal we set the potential barrier to 3 eV for the bou
ary purpose~which could correspond to an oxide layer
vacuum!. The metal thickness was set to 5a0. In general, we
therefore expect the electron~or the hole! to penetrate
through this barrier a little bit~i.e., for z.0).

B. Numerical results

The self-consistent Hartree calculations of the exciton
the split gate arrangement have been performed for th
4-6
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different cases. The first case is when the ZnO layer ha
thickness of 5a059.45 nm and the potential barrier is set
1 eV for both the electron and the hole. The second cas
when the barrier is reduced to 0.2 eV and the ZnO thickn
is 5a0. Finally the third case is when the ZnO thickness
reduced to 4.5a0 and the barrier is 1 eV. All properties suc
as the ground-state energyE0, the lifetimet, the overlap, the
excitation energiesEi j , and the oscillator strengthf i j are
investigated as functions of the split gate voltageVG , which
runs in the range 0 V to24.8 V (24.8 V corresponds to the
dimensionless valueeVG /E05280). In this section we
have chosen to present the figures using the absolute val
VG on the positivex axis, which is indicated with~negative!
in the figure captions. A use of both positive and negat
values ofVG would have given~almost! symmetric curves
aroundVG50. In addition, we also study how the groun
state energyE0 and the lifetimet depend on the ZnO laye
thickness L, for the fixed gate voltageeVG /E05280
(uE0u560 meV).

The probability density for the electron and the hole
shown in a 3D view in Fig. 3 forVG524.8 V when L
55a0 and the heterostructure barrierUb51 eV. The hole
forms a ring around the electron, which is displaced dow
wards relative to the ring~the image is tilted, this is why the
electron seems to be displaced from the center!. With oppo-
site polarity of the gate voltage the electron would form
ring around the hole.

In Fig. 4 the total charge density is shown in more de
than in the previous figure, foreVG /E05280, 240, and 0.
The axes are given in units of the Bohr radiusa0. Note that
the overlap between the hole and the electron wave funct
is very small foreVG /E05280 and240. With no applied
voltage, the exciton is close to a bulk exciton. Because of
different effective masses, the charge density% @compare
with Eq. ~8!# is not zero. The probability densities for th
electron and the hole are slightly more broader than the c
tours in this figure@compare with the factor 2 in Eq.~8!#.
Since the hole is very close to the metal surface, a polar
tion in the metal could adjust the potential for the hole~i.e.,
this effect is commonly referred to as the effect of ima
charges!. However, the effect of image charges is not
cluded in the present paper. Because of the closeness o
metal gate to the hole, the Coulomb interaction will
screened appreciably, leading to a reduction of the exc
binding energy.

In Fig. 5 the binding energyE0 is plotted for the exciton
in the ZnO layer. We compare in this figure three differe

FIG. 3. The ring exciton shown forVG524.8 V. The ring is
thin and is located close to the metal gate surface. The elec
‘‘dot’’ is located close to the barrier material.
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cases when the ZnO thickness and the barrier height are
ied. As can be seen, a decrease of the barrier potential w
also decrease the energy. As the ZnO thickness is decre
the energy will increase~this is a typical quantum well phe
nomena!. The energy changes drastically atVG522 V ~the
figure shows the absolute value ofVG). This threshold volt-
age is directly connected with the structural transition of
exciton, shown in Fig. 4. The reason for this threshold vo
age is that the nonlinear potential drop of the split gate
tential has to be increased~in magnitude! until it becomes of
the same order as the bulk ground-state energy~60 meV!.
When this critical potential drop has been reached, the b
like exciton configuration would not be stable any more. T
effect is indeed a type of a structural transition, which a
has been reported by Janssenset al.14 in a two-dimensional
type II quantum dot.

The typical potential drop that is required~or in other
words, the threshold voltage which is required! would de-
pend on the metal gate radius and the total distance betw

on

FIG. 4. The charge density for the exciton shown in the~scaled!
cylindrical coordinates, foreVG /E05280, 240, and 0, from top
to bottom.L55a0 ~ZnO thickness! for this figure.

FIG. 5. Binding energyE0 in ZnO ~quantum well like! as a
function of the gate voltageVG ~negative!. L55a0 andUb51 eV
~squares!, L55a0 and Ub50.2 eV ~circles!, and L54.5a0 and
Ub51 eV ~diamonds!.
4-7
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the substrate and the metal gate. An analysis of differ
sizes have not been made but we expect to see exactly
same phenomena and the sameE0-VG curve. The only dif-
ference would be that the threshold voltage would be diff
ent and that the slope in theE0-VG curve would be different.

A special separate calculation was made for the bulk
citon using the Hartree method~but now with a very large
geometry and without any metal gate!. The result shows tha
the Hartree energy isE0520.411 which should be com
pared with exact valueE0521 ~in dimensionless units!.
This example shows that the Hartree theory does not g
accurate results~60% error! when the electron and the ho
are extremely correlated. However, the strong correla
~defined as the difference between the exact energy and
Hartree energy! takes place only when the overlap betwe
the electron and the hole wave functions are large~around 1!,
i.e., this means that we can trust the Hartree calculation
when it is shown that the overlap is small. For the exciton
the ground state this is the case whenVG,22 V. A possible
way of solving this strongly correlated problem exac
could be by the use of the path integral Monte Carlo te
nique~see, for example, Ref. 22 and the references there!.
It is also interesting to note that type II quantum dots se
rate the electron and the hole, such that the overlap~nor-
mally! becomes small. For this case a Hartree calcula
would give a satisfactory result~see, for example, Jansse
et al.14!.

There is limit to how much the exciton can be polarize
It should not take longer time for the hole or the electron
move to their self-consistent positions than the typical li
time of the bulk exciton. An estimation, using Ehrenfe
theorem gives the timet'A2m2 /E0Dr for the hole to move
from the ‘‘creation center’’ of the exciton to its equilibrium
position ~see Fig. 4!. Using Dr514, E0560 meV, andm2
50.5me gives a time of 0.25 ps, which is much shorter th
a typical exciton lifetime of 1 ns.

In Fig. 6 the lifetimet @see Eq.~3!# is plotted as a func-
tion of the gate voltage~in units of the bulk lifetime!. In this

FIG. 6. Lifetimet as a function of the gate voltageVG ~nega-
tive! for the exciton ground state.L55a0 andUb51 eV ~squares!,
L55a0 and Ub50.2 eV ~circles!, and L54.5a0 and Ub51 eV
~diamonds!.
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figure it is also clear that there is a dramatic change a
typical threshold voltage ofVG522 V. The bulk exciton
lifetime is typical of the order 1 ns for ZnO. The transition
less sharper for the low barrierUb50.2 eV than for the other
cases with a large barrierUb51 eV. The long lifetime is a
consequence of the small overlap between the electron
the hole wave functions. Evidently, the dramatic change
the lifetime gives a fingerprint of the fact that a structu
transition has occurred~which is evident from Fig. 4!.

In Fig. 7 the overlap integral is plotted as a function of t
gate voltage. The overlap is roughly inversely proportiona
the lifetime. ForVG,22.2 V the overlap is very small, an
we therefore expect the Hartree calculation to be very ac
rate in this region, since the correlation between the elec
and the hole wave function is very small here. ForUb
50.2 eV~the dash-dotted line! we could observe an interme
diate point atVG521.8 V and^1u2&50.19. A charge den-
sity plot shows that this corresponds to the case when
hole is starting to diffuse into the central region of the ga
structure (r50), meanwhile it still has a ringlike shape.

The penetration of the electron wave function into t
barrier is shown in Fig. 8 atr50. It is clear from the figure
that the barrier potential is decreasing for large values ofuzu,
due to the electric field between the metal gate and the s
strate. Hence, this figure shows that the exciton is a m
stable object when it is polarized by a split gate potent
For excited states the effective tunneling barrier becom
even lower. To avoid tunneling of the electron to the su
strate we must introduce an artificial hard wall atz5213 for
the ground state and atz529 for excited states. From th
WKB theory we could estimate the tunneling tim
}\/E0utu2, whereutu2 is the usual tunneling probability. Fo
the ground state this time is in practice infinite, but for t
excited states the time could be much smaller.

The metastability of the exciton could however be inte
esting for a possible practical use. For excited states u
low barriers, the electron could in principle tunnel throu
the barrier if these levels are populated by a THz radiati
Such ‘‘splitting’’ of the exciton would result in an electrica

FIG. 7. Overlap̂ 1u2& between the electron and the hole wa
function as a function of the gate voltageVG ~negative! for the
exciton ground state.L55a0 and Ub50.2 eV ~circles! and L
54.5a0 andUb51 eV ~diamonds!.
4-8
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signal which could be detected. This will of course on
happen if the lifetime of the exciton is sufficiently long s
that an excited state could be populated. Alternatively
excited state could serve as the second level in a qubit~the
situation is similar to the metastable states in Joseph
junction washboard potential!.

In Figs. 9 and 10 the ground-state energy and the lifet
(t051 ns) are plotted as a function of the ZnO thicknessL,
when the gate voltage isVG524.8 V. For this voltage we
have the typical ring structure and Fig. 9 shows that
energy changes linearly with the ZnO thickness. In a th
ZnO layer it is possible for the electron to be located a
large distance from the hole than it would be for a thin lay
The lifetime changes exponentially with the layer thickne
~this is also a consequence of a large separation betwee
electron and the hole!.

In Figs. 11 and 12 the optical transition from the grou
state to an excited state with a dominating oscillator stren
is shown. Figure 11 shows the transition energy converte
frequency~in THz! and Fig. 12 shows how the correspon
ing oscillator strength is changing with the gate voltage.
classify the excited states with the set of quantum numb
N1 , M1 , N2, andM2 . N1 andN2 give the principal quan-

FIG. 8. Tunneling of the electronic wave function into the ba
rier for VG524.8 V for r50. L55a0 andUb51 eV.

FIG. 9. Binding energyE0 as a function of the thickness of th
ZnO layer forVG524.8 V andUb51 eV.
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tum numbers for the electron and the hole, respectiv
when the quantum numberM is fixed.N151 andM150 is
the ground state for the electron and so on. The quan
numbersM1 and M2 give rise to centrifugal potentials fo
the electron and the hole. The selected~allowed! excited
state in Figs. 11 and 12 correspond toN151 andM151 for
the electron, meanwhile the hole is in its ‘‘old ground stat
N251 andM150. The Schro¨dinger and Poisson equation
were solved self-consistently to obtain these excited stat

As a comparison we give the values of the first four
lowed excited states, labeled~i!, ~ii !, ~iii !, and ~iv!, for the
gate voltageVG524.8 V: ~i! For N151, M151, N251,
and M250, DE512.31 meV andf i j 50.322; ~ii ! For N1
52, M151, N251, andM250, DE527.71 meV andf i j
50.002; ~iii ! For N151, M150, N251, andM251, DE
50.04 meV andf i j 50.032; and~iv! For N151, M150,
N252, andM251, DE52.87 meV andf i j 50.099.

The first transition is dominating, first as the oscillat
strength is large for this transition and second as it co

FIG. 10. Lifetimet as a function of the thickness of the Zn
layer for VG524.8 V andUb51 eV.

FIG. 11. The optical transition frequency from the ground st
for the dominating peak, as a function of the gate voltageVG ~nega-
tive!. L55a0 and Ub50.2 eV ~circles! and L54.5a0 and Ub

51 eV ~diamonds!.
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sponds to an energy which is possible to detect in an op
experiment~too small energies could not be seen in opti
measurements!. The second transition has a large transiti
energy but has a small oscillator strength. The third transi
has both a small transition energy and oscillator stren
Finally, the fourth transition has an oscillator strength co
parable with the first dominating transition, but has mu
lower energy.

The different self-consistent~allowed! excited states are
finally shown in Fig. 13. The previously mentioned transiti
cases~i!, ~ii !, ~iii !, and~iv! are shown from top to bottom in
the figure. The top figure shows the dominating excited s
~i.e., the transition from the ground state to this excited s
is dominating since the oscillator strength is large!. In the
second figure~ii !, the electronic wave function has two di
ferent modes with opposite signs of the wave function~lo-
cated atr52 andr57). The oscillator strength for this cas
would therefore be very low.

V. CONCLUSIONS

In this paper we show that an exciton in a thin ZnO lay
could be strongly polarized using a split gate potential. D
to the large separation between the electron and the hole
also show that the lifetime for the exciton will increase fro
the nanosecond regime to the millisecond regime. The st
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