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Dynamics of electrons in quantum Hall bubble phases
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In Landau levelsN.1, the ground state of the two-dimensional electron gas~2DEG! in a perpendicular
magnetic field evolves from a Wigner crystal for small fillingn* of the partially filled Landau level, into a
succession of bubble states with increasing number of guiding centers per bubble asn* increases, to a
modulated stripe state nearn* 50.5. In this work, we show that these first-order phase transitions between the
bubble states lead to measurable discontinuities in several physical quantities such as the density of states and
the magnetization of the 2DEG. We discuss in detail the behavior of the collective excitations of the bubble
states and show that their spectra have higher-energy modes besides the pinned phonon mode. The frequencies
of these modes, at small wave vectork, have a discontinuous evolution as a function of filling factor that
should be measurable in, for example, microwave absorption experiments.
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I. INTRODUCTION

It is now well established both theoretically1 and
experimentally,2,3 that the two-dimensional electron ga
~2DEG! ground state near half filling in the higher Landa
levels (N.1) is the quantum Hall stripe state. Transpo
experiments have shown that this stripe state has an hi
anisotropic longitudinal conductivity, i.e.,syy@sxx ~wherex̂
is the direction perpendicular to the stripes! and a Hall con-
ductivity sxy that is not quantized. Away from half filling
more precisely atpartial filling factors aroundn* '1/4 and
n* '3/4 in Landau levelN52, the isotropy of the longitudi-
nal conductivity is restored and a minima appears in
diagonal resistance. Concomitantly, the Hall conductivity
quantized, but at a value equal to that of the nearest inte
quantum Hall effect plateaus. These other ground st
aroundn* ' 1

4 andn* ' 3
4 in N52 have been called reentra

integer quantum Hall states~RIQHS!.4 Studies by Koulakov,
Fogler, and Shklovskii and by Moessner and Chalker1 sug-
gest that the RIQHS are due to the formation of bub
states. These states can be described as triangular W
crystals of electron clusters. Each cluster~or ‘‘bubble’’ ! con-
tains a fixed numberM of electrons such that, within them
the local filling factor is equal to one. The bubble stat
being pinned by disorder, should be insulating in contras
the stripe states. A review of these novel ground state
higher Landau level is given in Ref. 5.

The ground state of the 2DEG changes discontinuousl
the partial filling factorn* is changed. In the Hartree-Foc
approximation~HFA!, the ground state is a Wigner crystal
small filling n* or, equivalently, a bubble state with on
guiding center per bubble. As the partial filling is increas
bubble states with increasing numberM of electrons per
bubble are stabilized so that the 2DEG evolves from
Wigner crystal, through a succession of bubble states,
finally the stripe state near half-filling. In Landau levelN, it
can be shown that~in the HFA! the last bubble state hasM
5N11. The optimal number of guiding centers in a bubb
is well approximated by the formulaM53n* N correspond-
ing to an average separation between the bubbles equ
0163-1829/2003/68~15!/155327~10!/$20.00 68 1553
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a53.3Rc whereRc5A2N11, is the cyclotron radius and
,5A\c/eB is the magnetic length. This sequence of pha
transitions in higher Landau levels has been verified b
number of authors. By comparing the energy of the Laugh
liquid at n* 5 1

3 andn* 5 1
5 with that of the bubble states in

several Landau levels, Fogler and Koulakov6 showed, within
the HFA, that the bubble states are lower in energy than
Laughlin liquid at filling factorn* 5 1

3 for N>2 and at filling
factor n* 5 1

5 for N>3. Rezayiet al.7 used exact diagonal
ization studies on finite size systems to show the absenc
fractional quantum Hall states~FHQS! in higher Landau lev-
els and a tendancy to charge density wave~CDW! ordering.
Recent calculations by Yoshioka and Shibata8 using the den-
sity matrix renormalization group method~DMRG! basically
confirm the Hartree-Fock scenario with some minor corr
tions. ForN52 andN53, the DMRG gives a wider region
of stability for the stripe phase than in the HFA. As a resu
the last bubble state~that withM5N11) is absent from the
phase diagram. The transitions between different bub
states occur at slightly different filling factors in the tw
approaches. Both calculations, however, give first-or
phase transitions between the bubble states and betwee
bubble and stripe states. The possibility of a continuo
phase transition involving the deformation of the bubb
from a isotropic shape to a more elliptical shape as the st
state is approached was investigated~with a negative result!
by Renet al.9 within the HFA. These authors also claimed10

that then* 5 1
6 composite fermion state has lower ener

than the corresponding bubble state inN52 and that this
liquid state could be an intermediate state between
Wigner crystal and theM52 bubble state.~See, however,
Ref. 8.! In any case, the difference in the cohesive energy
the various possible ground states at any given filling fac
is usually quite small and the possibility that quantum flu
tuations, disorder, finite extension of the wave function in
third dimension, screening corrections, etc., modify t
above scenario cannot be ruled out.

The existence of the bubble state near filling factorsn*
' 1

4 and n* ' 3
4 in N52 was first shown by transport mea
©2003 The American Physical Society27-1
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surements revealing its insulating behavior2,3 and its nonlin-
ear I -V properties.4 In more recent experiments, Lew
et al.11 and Ye et al.12 measured the diagonal conductivi
sxx of the 2DEG in the microwave regime and found sha
resonances in Re@sxx# at some frequency. These resonanc
are strongest nearn* ' 1

4 and n* ' 3
4 in level N52. They

appear for a range of partial filling factors aroundn* ' 1
4 and

n* ' 3
4 and only for temperatures below 0.1 K. It is believ

that these resonances are due to the excitation of the pin
mode of the bubble states realized at these filling factors.
experiments show no hint of discontinuous transitions am
the different bubble states. It is possible that thermal or d
order effects may smear out any sharp effects on the pin
mode.

In light of these microwave experiments, it is natural
ask how one could observe a transition between bub
states, and also how one could distinguish between bu
states of differentM numbers. In this paper, we study ho
the behavior of several measurable physical properties o
bubble states evolve as the filling factorn* is increased from
the Wigner crystal state at low filling to the stripe state
half-filling. We show that the series of transitions betwe
bubble states lead to oscillations and discontinuities in
orbital magnetization and susceptibility. These effects
sizable so that the transitions between bubble states sh
be observable in a measurement of the magnetization o
the magnetic susceptibility. Such measurements have
cently been performed on the 2DEG in the integer quan
Hall regime using an ultrasensitive torque magnetomete13

The sensitivity was sufficient to reveal the sawtooth patt
of oscillation of the magnetization, i.e., the de Haas–v
Alphen effect, as well as the magnetization jumps occur
at odd filling factors from the occupation of different sp
states of the same Landau level.

Our analysis also shows that the density of states has
tures that are directly related to the number of electrons
bubble. More precisely, we find that the number of lo
energy subbands is equal to the numberM of electrons in the
bubbles. If this density of state structure is not blurred
tunneling processes involving phonon excitations, then
double-well tunneling experiment or photoluminescen
measurement could serve to determineM and to follow the
phase transitions between bubble states.

Working in the time-dependent Hartree-Fock approxim
tion ~TDHFA!, we also compute the dispersion relation
the phonon as well as those of other higher-energy mo
that correspond to excitations localized on the bubb
These localized excitations are interesting because~in con-
trast to the phonon mode! they are gapped and probably le
sensitive to the disordering potential. Their dispersion can
computed, in a first approximation, by neglecting disord
which is difficult to take into account in these charge dens
wave states. We thus apply the TDHFA to show that
first-order transitions between the bubble states can
tracked by looking at the discontinuous behavior of the fi
few high-energy modes as a function of partial filling fact
In our analysis, we find that the frequency of the first exci
energy modes are in a range accessible experimentally. U
now, however, all conductivity measurements have conc
15532
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trated on the pinning mode of either the stripe or bub
phases or, more recently, on the Wigner crystal phase
integer filling factor.14

The outline of the paper is as follows. In Sec. II, w
briefly describe the Hartree-Fock procedure to compute
order parameters of the charge density wave states as we
the orbital magnetization and the one-particle density
states. We then introduce the time-dependent Hartree-F
approximation and describe how we get the dispersion r
tion of the collective excitations in these ordered states
Sec. III, we discuss our numerical results for these quantit
We conclude in Sec. IV, by discussing how our results co
be related to the experiments of Lewiset al. and Yeet al.

II. HARTREE-FOCK FORMALISM

A. Order parameters

The bubble phase is a crystal state that can be descr
by the set of average values$^n(G)&%, where^n(G)& is the
ground-state average of the density operator andG is a
reciprocal-lattice vector of the crystal. It is convenient, in t
Landau gauge, to define a related density operator by
expression

r~G!5
1

Nw
(
X

e2 iGxX1 iGxGyl'
2 /2cN,X

† cN,X2Gyl
'
2 , ~1!

wherecN,X
† creates an electron in Landau levelN with guid-

ing center quantum numberX and Nw is the Landau level
degeneracy. This new density operator is related to the
density by the expression

n~G!5NwFN,N~G!r~G!, ~2!

whereFN,N(G) is a form factor for theNth Landau level,
which is given by

FN,N~G!5e2G2,2/4LN
0 S G2,2

2 D , ~3!

andLN
0 ~x! is a generalized Laguerre polynomial. At a sem

classical level, the average^r~G!& can be viewed as a Fourie
transform of a ‘‘guiding center density’’ of cyclotron orbits

In this paper, we make the usual approximations of
glecting any Landau level mixing and consider that the fill
Landau levels are inert. It follows that the filled levels do n
enter in our calculation and we will, whenever possible, dr
the level indexN from now on to simplify the notation.
Moreover, we assume that the partially filled level is co
pletely spin polarized.

The average valueŝr~G!& are obtained by computing th
single-particle Green’s function

G~X,X8,t!52^TcX~t!cX8
†

~0!&, ~4!

whose Fourier transform we define as

G~G,t!5
1

Nf
(
X,X8

e2~ i /2!Gx~X1X8!dX,X82Gyl
'
2 G~X,X8,t!,

~5!
7-2
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so that

^r~G!&5G~G,t502!. ~6!

We compute the single-particle Green’s function of E
~5! by solving numerically the Hartree-Fock equation of m
tion

@ ivn1m#G~G,ivn!2(
G8

U~G2G8!eiG3G8,2/2G~G8,ivn!

5dG,0 ~7!

(vn is a fermionic Matsubara frequency and we use the tw
dimensional cross product as a short form forq3G[qxGy
2qyGx), which follows from the mean-field Hamiltonian

HHF5Nw«N,ar~G50!1Nw(
G

UN~G!r~G!, ~8!

where«N,a5(N11/2)vc2ag* mBB/2 is the noninteracting
energy on an electron of spina in Landau levelN. The
self-consistent Hartree-Fock potentialU(q) that appears in
Eq. ~7! is given by

U~q!5@HN,N~q!2XN,N~q!#^r~2q!&. ~9!

In Eq. ~9!, the Hartree-Fock interactions are given by

HN,N~q!5S e2

k, D 1

q,
e2q2,2/2FLN

0 S q2,2

2 D G2

, ~10!

XN,N~q!5S e2

k, D&E
0

`

dx e2x2
@LN

0 ~x2!#2J0~&xq, !,

~11!

wherek is the dielectric constant of the host semiconduc
andJ0(x) is the Bessel function of order zero.

The electronic density in real space is obtained by
relation

^n~r !&5
1

2p,2 (
G

e1 iG•rFN,N~G!^r~G!&. ~12!

B. Hartree-Fock energy

We solve the Hartree-Fock equation of motion@Eq. ~7!#
numerically by using an iterative approach that was
scribed in detail in Refs. 15. Once the order parame
$^r~G!&% are found, the Hartree-Fock energy per particle
the partially filled level can be written as

EHF

Ns
5

1

2n* (
G

@HN,N~G!~12dG,0!2XN,N~G!#u^r~G!&u2,

~13!

wheren* is the filling factor of Landau levelN andNs is the
number of electrons in the partially filled level. The tot
filling factor of the two-dimensional electron gas isn52N
1n* .
15532
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C. Density of states

In our iterative approach, the single-particle Green’s fun
tion is computed by first finding the eigenvalues and eig
vectors of the interaction matrix

FG,G8[U~G2G8!eiG3G8,2/2. ~14!

This matrix is Hermitian and can be diagonalized with t
unitary transformation

F5VDV†,

where V is the matrix of the eigenvectors ofF and Di , j
5djd i , j is the diagonal matrix of the eigenvalues ofF. The
Green’s function is then readily given by

G~G,vn!5(
j

VG, j@V†# j ,G50

ivn1~m2dj !/\
. ~15!

The density of states is defined as

g~v!52
1

p E dr Im@GR~r ,r ,v!#, ~16!

where GR is the retarded single-particle Green’s functio
which can be computed from the eigenvalues and eigen
tors found above. We then have

g~v!52
Nf

p
ImF(

j

uVG50, j u2

v1 id2dj /\G . ~17!

D. Collective modes

As shown in Refs. 15, the order parameters$^r~G!&% can
also be used to compute the density-density response f
tion xG,G8(k,t) defined by

xG,G8~k,t!52Nw^Tr̃~k1G,t!r̃~2k2G8,0!&, ~18!

wherer̃[r2^r&. The collective modes of the bubble sta
are found from the poles of this response function. By f
lowing the poles with nonvanishing weight as the wave v
tor k is varied in the Brillouin zone of the reciprocal lattice
we get the dispersion relation of the phonon and high
energy collective modes.

To find the equation of motion, in the TDHFA, for thi
two-particle Green’s function, we first use the Hartree-Fo
Hamiltonian of Eq.~8! to get the equation of motion for th
Hartree-Fock approximation toxG,G8(k,t), which we call
xG,G8

0 (k,t). We obtain~neglecting, as usual, all Landau lev
as well as spin mixing!

iVnxG,G8
0

~k,Vn!22i(
G9

sinF ~k1G!3~k1G9!,2

2 G
3U~G92G!xG9,G8

0
~k,Vn!

522i sinF ~k1G!3~k1G8!,2

2 G^r~G2G8!& ~19!
7-3
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(Vn is a Matsubara bosonic frequency!. The Hartree-Fock
xG,G8

0 (k,t) corresponds to a single polarization bubble w
Hartree-Fock propagatorsG(G,vn). The sum of the ladde
diagrams involve the Fock~indirect! interactionXN,N(q) and
is given by

x̃G,G8~k,Vn!5xG,G8
0

~k,Vn!2(
G9

xG,G9
0

~k,Vn!

3XN,N~k1G9!x̃G9,G8~k,Vn!. ~20!

The two-particle Green’s functionx̃G,G8(k,Vn) contains
only connected Feynman diagrams. The THDFA is achie
by summing the various bubble diagrams and is given b

xG,G8~k,Vn!5x̃G,G8~k,Vn!1(
G9

x̃G9,G8~k,Vn!

3HN,N~k1G9!xG9,G8~k,Vn!. ~21!

Equations~19!–~21! can easily be combined into a sing
equation that can be written, in obvious matrix form, as

(
G9

@ iVndG,G82MG,G9~k!#xG9,G8~k,iVn!5BG,G8~k!,

~22!

where the matricesMG,G andBG,G8 are defined by

MG,G8~k!522i S e2

\k, D ^r~G2G8!&sinF ~G3G8!,2

2 G
3@HN,N~G2G8!2XN,N~G2G8!2HN,N~G8!

1XN,N~G8!# ~23!

and

BG,G8~k!52i sinF ~G3G8!,2

2 G^r~G2G8!&, ~24!

respectively. Because we have neglected all Landau leve
well as spin mixing, the Green’s functionxG,G8(k,Vn) can
only give information on intra-Landau-level excitations i
volving no spin flip. A more complete calculation o
xG,G8(k,Vn) where inter-Landau-level and spin flip excit
tions are considered is detailed in the second paper of
16.

To solve for xG,G8(k,iVn), we diagonalize the matrix
MG,G9(k) by the transformation

M5WTW21, ~25!

where W is the matrix of the eigenvectors ofM and Ti , j
5t jd i , j is the diagonal matrix of its eigenvalues. The analy
continuation ofxG,G8(k,iVn) is given by

xG,G8~k,v!5(
j ,k

WG, j~k!@W~k!21# j ,kBk,G8~k!

v1 id2t j~k!
. ~26!

The j th eigenvector in the matrixW of the eigenvectors o
the matrix M gives the Fourier transform of the densi
modulation associated with thej th eigenvalue ofM. We can
15532
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thus produce an animation of the motion of the dens
modulation with the frequencyt j and wave vectork by com-
puting the time-dependent density

dn~r ,t !;e2 i t j t(
G

ei ~k1G!•rFN,N~k1G!WG, j~k! ~27!

at several values oft in one period of the motion and the
superimposing this density to the ground-state density gi
by the Hartree-Fock calculation@Eq. ~12!#. We thus compute
n(r ,t)5nHF(r )1adn(r ,t) where a is choosen sufficiently
small to satisfyudn(r ,t)u,nHF(r ).

E. Orbital magnetization and magnetic susceptibility

The orbital magnetization and susceptibility can be o
tained from the dependence of the Hartree-Fock energy w
filling factor. At T50 K, the orbital magnetization per elec
tron is given by

m52
1

N S ]E

]BD , ~28!

while the orbital magnetic susceptibility per particle is

x5S ]m

]B D , ~29!

whereE is the ground-state energy of the 2DEG.
When all Landau levels are taken into account, t

Hartree-Fock energy per particle, excluding the Zeeman c
tribution, is ~for 0<n* <1)

EHF
total

NT
5

1

n (
M,N

(
a

~M1 1
2 !\vc1

n*

n
~N1 1

2 !\vc

2
1

2n S e2

k, D(
a

(
M,N

(
M8,N

XM ,M8~G50!

2
1

n S e2

k, D (
M,N

XM ,N~G50!n*

1
1

2n S e2

k, D(
G

@HN,N~G!~12dG,0!

2XN,N~G!#u^r~G!&u2, ~30!

where

XN,M~q!5S min~M ,N!!

max~M ,N!! D E0

1`

dyS y2

2 D uN2M u

3e2y2/2FLmin~N,M !
uN2M u S y2

2 D G2

J0~q,'y! ~31!

is the exchange interaction between electrons in Landau
elsN andM, anda is the spin index. To derive this formula
we have assumed that all levels belowN are occupied and
that only the spin levela521 in Landau levelN is partially
occupied. Thetotal number of particlesNT is assumed fixed.

With the definitions
7-4
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L0~N!5 (
M,N

~M1 1
2 !, ~32!

L1~N!5 (
M,N

(
M8,N

XM ,M8~G50!, ~33!

L2~N!5 (
M,N

XM ,N~G50!, ~34!

F~N,n* !5
1

2n* (
G

@HN,N~G!~12dG,0!

2XN,N~G!#u^r~G!&u2, ~35!

Eq. ~30! can be written as

EHF
total

NT
52L0~N!

\vc

n
1~N1 1

2 !
n*

n
\vc2

1

n S e2

k, DL1~N!

2
n*

n S e2

k, DL2~N!1
n*

n S e2

k, DF~n* !, ~36!

where

F~n* !5
1

2n* (
G

@HN,N~G!~12dG,0!2XN,N~G!#u^r~G!&u2,

~37!

is the~dimensionless! Hartree-Fock energy per particle in th
partially filled level, i.e., the energy given in Eq.~13!.

Differentiating Eq.~36! once ~twice! with respect to the
magnetic field at constant density and adding the spin c
tribution, we get the total magnetization~total spin suscepti-
bility !. We write

m5mBS m

m* D ~m11m21m31m4!, ~38!

wheremB5e\/2mc is the Bohr magneton. The four contr
butions to the magnetization are defined~for 0<n* <1) by

m1528L0

1

n
22~N1 1

2 !S 12
4N

n D ,

m25
1

2
g* S m*

m D S 12
4N

n D ,

m35
3

&
r sL1~N!

1

An
2&r sL2~N!@2 1

2 n13N#
1

An
,

m45&r sAn~n22N!
]F~n* !

]n*

1&r s@2 1
2 n13N#

1

An
F~n* !. ~39!

Similarly, we write ~for 0<n* <1) the total magnetic sus
ceptibility as the sum of the four contributions
15532
n-

x5
e2

4pnm* c2 ~x11x21x31x4!, ~40!

where

x1528L0~N!18N~N1 1
2 !,

x2522Ng* S m*

m D ,

~41!

x35
3r s

2&
L1~N!An2

1

&
r sL2~N!Fn3/2

2
13NAnG ,

x45&r sF 1
4 ~n16N!AnF~n* !2~n12N!n3/2

]F~n* !

]n*

2~n22N!n5/2
]2F~n* !

]n* 2 G .
The four contributions to the magnetization and suscepti
ity come, respectively, from the kinetic energy (m1 ,x1), the
Zeeman energy (m2 ,x2), the exchange energy between ele
trons in the filled levels or between electrons in the fill
levels and those in levelN (m3 ,x3), and the Hartree-Fock
energy of electrons in levelN (m4 ,x4). In Eq. ~41!, we have
introduced the gas parameterr s51/ApnaB

2, where aB

5\2k/m* e2 is the effective Bohr radius, and the effectiveg
factorg* . We remark that our units for the susceptibility ca
also be written ase2/4pnm* c25mB* /Bn51 , where mB*
5e\/2m* c andBn51 is the magnetic field required to get
filling factor of n51 for a total density ofn.

III. NUMERICAL RESULTS

We now discuss our numerical results for the physi
quantities introduced above.

A. Hartree-Fock energy

Figures 1~a!–1~c! shows the Hartree-Fock energy p
electron as a function of filling factor for the bubble an
stripe phases in Landau levelsN52, 3, and 5. The filling
factors at which the transitions between states occur are
dicated in an inset in each figure. In all cases, the transiti
are of first order and the transition scenario is that descri
in the Introduction: the ground state evolves from the Wign
crystal at low filling, through a succession of bubble sta
with increasing values of guiding centers per bubble, a
finally into the stripe state near half-filling. The number
possible bubble states increases with Landau level indeN.
Our results forN52, 3 are in agreement with previousl
obtained Hartree-Fock energies for the bubble states.8 Ener-
gies forN55 have not been computed before. As shown
Ref. 8, the Hartree-Fock results are similar to those obtai
by a DMRG calculation except that the region where t
stripe phase is stable is wider in the DMRG calculation a
consequently, the bubble state withN11 electrons per
bubble disappears. Oscillations in the Laguerre polynom
entering the form factor in Eq.~3! make it difficult to com-
7-5
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pute a numerically accurate phase diagram for hig
Landau-level indices using our equation of motion tec
nique.

B. Density pattern

Figure 2 shows how the density pattern given by Eq.~12!
evolves as the filling factor increases in Landau levelN
53. When the bubbles are relatively far apart, the den
pattern on each crystal site is well approximated by the t
wave function of Fogler and Koulakov.6 For a bubble ofM
electrons in Landau levelN, that wave function is the Slate
determinant

CN~r1 ,r2 ,...,r M !

5U wN,0~r1! wN,0~r1! ¯ wN,0~r M !

wN,1~r2! wN,1~r2! ¯ wN,1~r M !

] ] ] ]

wN,M~r1! wN,M~r2! ¯ wN,M~r M !

U , ~42!

where

wN,m~r !5CN,mS r

, D um2Nu

e2r 2/4,2

3ei ~N2m!uL ~N1m2um2Nu!/2
um2Nu S r 2

2,2D

FIG. 1. Hartree-Fock energy per particle as a function of
filling factor n* of the partially filled level for the bubble and strip
phases in higher Landau level. The inset in each figure indicate
critical filling factor n i , j of the partially filled level at which the
transition between bubble states or between the last bubble stat
the stripe state occurs.
15532
r
-

y
l

is the normalized wave function of an electron in the sy
metric gaugeA5(2B0y/2,B0x/2,0) with Landau levelN
and angular momentumm. The one-particle density

nN~r !5F )
i 52

i 5M E dr i G uCN~r ,r2 ,...,r M !u2 ~43!

is just

nN~r !5 (
m51

m5M

uwN,m~r !u2. ~44!

As the filling factor increases in theM th bubble state, the
outer ring from each bubble gets closer to its neighbors
the density pattern given by Eq.~44! is strongly modified.
When rings from two adjacent bubbles start to overlap, th
is a transition to the (M11)th bubble state. In Landau leve
N, the last bubble state before the transition to the str
phase hasM5N11. We note that the stripe state obtained
our Hartree-Fock approximation is not the quantum H
smectic state. It has density modulations along the stri
and can be described as a highly anisotropic Wigner crys
However, it is likely that this state is unstable due to qua
tum fluctuations to the smectic state.16

C. Density of states

Figure 2 shows the behavior of the single-particle dens

e

he

and

FIG. 2. Single-particle density of states and density pattern
bubble state withM51, 2, 3, 4 electrons per bubble and for th
stripe states in Landau levelN53. The filling factors are~a! n*
50.113; ~b! n* 50.173; ~c! n* 50.320; ~d! n* 50.406; ~e! n*
50.430.
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of statesg(E) defined in Eq.~17! for Landau levelN53 and
for filling factors corresponding to bubble states withM
51, 2, 3, and 4 electrons per bubble. In Landau levelN
50 where the Wigner crystal state withM51 is the ground
state for all filling factors, our calculation forg(E) repro-
duces the well-known Hofstadter butterfly structure. Forn*
5q/p, the density of states consists ofp subbands of which
q low-energy bands are filled and separated by a gap f
the remainingp2q subbands. In Fig. 2, we see that th
density of states in the bubble state has a different struct
The number of low-energy subbands that can be resolve
our numerical calculation clearly corresponds to the num
M of electrons per bubble. A measurement of the density
states, by a double-well tunneling experiment or photolu
nescence, could serve to determineM. In computing the tun-
neling current, one would have to take into account ot
processes involved, particularly phonon shake-up. This
however, beyond the scope of our paper and is left for fut
research. We note for now, however, that the typical pho
bandwidth~discussed below! is not larger than the splitting
among the occupied bands in the density of states, so tha
multiplicities of peaks associated with different bubble sta
are likely to survive such effects.

D. Magnetic susceptibility

The Hartree-Fock energy shown in Fig. 1 has a disc
tinuous change of slope and curvature at the transitions
tween bubble states with different numberM of electrons per
bubble. This, in turn, gives rise to discontinuities in the b
havior of the magnetic susceptibility with filling factor. T
show this, we compute the susceptibility in Landau leveN
53 by numerically evaluating the first and second deri
tives of the functionF(n* ) defined in Eq.~37!. We use the
parametersL0(3)59/2, L1(3)56.29, andL2(3)51.32 ap-
propriate toN53 and assume a typical total electronic de
sity of n5331011e/cm2 so that the gas parameter isr s
51.011. The other parameters areg* 50.45 and the effective
massm* 50.067m.

Figures 3~a! and 3~b! show the behavior of the four con
tributions to the magnetic moment and magnetic suscept
ity defined in Eq.~39! and Eq.~41!. The singular behavior
~contributionsm4 and x4) comes, in both cases, from th
Coulomb interaction between electrons in the partially fill
level. The magnetic moment and susceptibility change
continuously at the transition between bubble states and
tween the bubble and the stripe state. In both cases the e
is sizable. Consequently, the transitions between bub
states should, in theory, be observable in a measureme
the magnetization or magnetic susceptibility.13

E. Collective excitations

We now discuss the collective excitations of the bub
states. We compute the density-density response functio
Eq. ~26! and follow its poles when the wave vectork is
varied along the edges of the irreducible Brillouin zone
the triangular lattice of the crystal. Figures 4~a!–4~f! show
examples of the dispersion relation we obtain. In these
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ures, the dispersion is plotted along the pathG-J-X-G, cor-
responding to the wave vectors (kx ,ky)5(0,0), (2p/a)
3(1/),1/3), (2p/a)(1/),0), ~0,0! where a is the lattice
constant. The wave vectork represents the total distance,
reciprocal space and in units of 2p/a wherea is the lattice
constant, along the pathG-J-X-G from the originG. For a
given value ofk, Eq. ~36! provides us with a way to image
the motion of the density in a particular mode.

We remark that our calculation does not include disor
so that the lowest-energy mode in Fig. 4 is a gapless pho
mode. For small wave vector, this phonon mode has the t
cal v;k3/2 dispersion of a Wigner crystal. In the presence
disorder, this phonon mode would be gapped.

Upon entering a state withM electrons per bubble, the
dispersion and maximal frequency of the phonon mode fi
increases with the filling fraction. Near the critical fillin
factors nM→M11* computed above in the HFA, the phono
mode starts to soften at a finite wave vectork. This indicates
that the bubble states become locally unstable when the o

FIG. 3. ~a! Change in the magnetic moment and~b! magnetic
susceptibility with partial filling factorn* in Landau levelN53.
The four contributionsi 51 ~solid!, 2 ~dashed!, 3 ~dashed dot!, and
4 ~squares! to m or x are defined in Eqs.~39! and ~41!.
7-7
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rings of adjacent bubbles start to touch. For the caseN
52, 3, 5 that we have studied, we find that the phonon m
frequency vanishes at this wave vector forn* .nM→M11* so
that a second-order transition is preempted by a first-o
one. This is also the case for the transition between theM
5N11 bubble state and the stripe state as we show in
5, where we plot the dispersion relation of phonon mode
the stripe state for wave vectork along the direction of the
stripes. The dispersion is shown for several values of
filling factor from n* 50.42 ton* 50.50 in Landau levelN
52. It is clear that the dispersion of the phonon~and in
particular the region around the roton minimum! does not
change significantly nearn50.428, the filling factor at which
the Hartree-Fock calculation predicts a transition betw
the M53 bubble state and the stripe state.

For Landau-level indexN51, we find an interesting ex
ception in that the softening of the phonon mode occurs
n* ,n1→2* . This indicates the possible existence of so
new charge ordered state. We did not study this case fur
however, since our approximations do not include corre
tions responsible for the correlated liquid states that
present inN51.8,17

Another indication of the limitations of the HFA an
TDHFA is that the last bubble state (M5N11) is stable, in
contrast to the DMRG result.8 The DMRG method includes
correlations neglected in the HFA and is, in principle, mo
exact than the HFA.17 In any case, for values ofn where a

FIG. 4. Dispersion relations of the phonon and higher-ene
modes in Landau levelN53 along the edges~path G-J-X-G) of
the irreducible Brillouin zone of the triangular lattice. The fillin
factors and number of guiding centers per bubble are~a! n*
50.106,M51; ~b! n* 50.161,M51; ~c! n* 50.167,M52; ~d!
n* 50.206,M52; ~e! n* 50.264,M53; ~f! n* 50.380,M54.
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bubble state is stable, we expect the TDHFA to give a r
sonable approximation of the dispersion of its collective e
citations.

We see from Fig. 4 that, above the phonon mode and
the region where theM51 bubble state is stable, there is
series of higher-energy modes that are almost dispersion
except near filling factors where the transitions betwe
bubble states do occur. As we explained in Ref. 15, more
more of these modes appear in the response function w
we increase the size of the matrixMG,G(k) in the equation of
motion @Eq. ~22!# for the response functionxG,G8(k,v). As
more modes appear, the previous ones are not shifted in
ergy so that these modes are not numerical artifacts ass
ated with the truncation of the infinite dimensional matr
MG,G(k). For higher values ofM, a general trend of the
dispersion~except close to transition points! is that there are
M low-energy dispersive modes close in energy and a n
ber of higher-energy much less dispersive modes. For la
values ofM, each bubble has a complex pattern of dens
modulations, and a large number of reciprocal lattice vect
are needed to describe its structure adequately. It follows
our numerical procedure is less precise in this case as ca
seen from Fig. 4~f!.

The small dispersion of the higher-energy modes sugg
that they can be identified as local oscillations of the den
within a bubble. This is indeed what can be seen from
animation of these modes using Eq.~36!. Figure 6 shows
several snapshots of these modes representing the motio
the density in the second, third, and fourth modes forM
51 in Landau levelN52. From these snapshots, we see t
the higher-energy modes are density waves propaga
along the rings of the bubbles. These modes can be rea
identified by the number of wavelengths of these waves
closed in the perimeter of the rings. For example, the sec
mode corresponds to the case where the perimeter of

y

FIG. 5. Dispersion relation of the phonon mode of the mod
lated stripe state in Landau levelN52 for wave vectork along the
direction of the stripes (kx5p/j). Here, a is the period of the
modulations along the stripes andj is the interstripe distance.
7-8
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rings enclosed two wavelengths, the third mode to the c
where the perimeter enclosed three wavelengths, and so
When the separation between the bubbles decreases
given M bubble state, the density waves on each bubble
come more and more coupled and the dispersion of
higher-energy modes can be very pronounced.

The frequency of the higher-energy collective mod
change discontinuously with the transition between
bubble states. A measurement of the frequency of th
modes could then provide yet another signature of the bu
states. It would be interesting if variations in the gapv(k
→0) of these higher-energy modes could be detected exp
mentally. Recently, Lewiset al.11 reported the observation o
an absorption peak in a measurement of the microwave
sorption of a ultrahigh mobility two-dimensional electro

FIG. 6. Snapshots of the motion of the density in the seco
third, and fourth higher-energy collective modes of theM51
bubble state in Landau levelN52. The filling factor is n*
50.113.
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system in Landau levelsN52 andN53. A peak of absorp-
tion occurs at a frequency that decreases as the centern*
50.5) of the Landau level is approached from either abo
or below. The resonances in the absorption are sharpes
filling factorsn* around1

4 and 3
4, corresponding to the value

where the RIQHS occur in transport experiments.2 At these
filling factors, the resonance frequency is approximatelyf
5500 MHz. It is natural to associate this resonance with
pinned phonon mode of the bubble states~of either electrons
or holes forn* ,0.5 orn* .0.5).

The higher-energy modes of the bubble states are gap
at v(k50)50. In Fig. 7, we plot the gapf (k50)5v(k
50)/2p in the first high-energy mode as a function of fillin
factor n* for Landau levelsN52, 3, 5. To convert our fre-
quencies~in units of e2/\k,) into GHz, we assumek
512.9 for the dielectric constant of the host semiconduc
~GaAs! and take a typical density of n53.2
31011 electrons/cm2 so thate2/\k,53827/An GHz, where
n is the total filling factor of the 2DEG. At filling factorn,
the magnetic field is given byB5nh/en513.2/n T. As Fig.
7 shows, the transitions between bubble states lead to ab
changes in the gap frequency when the filling factor is v
ied. The discontinuities are more pronounced for low
Landau-level indicesN. The frequency range of the firs
higher-energy mode is in a range of frequencies that can
obtained in a microwave absorption experiment; thus, s
experiments can in principle probe the transitions amo
bubble states. We remark that other effects not included
our calculation, particularly the modeling of a finite widt
for the electronic wave function in the quantum well, cou
lead to a reduction of the gap frequency. This would ma
behavior such as that seen in Fig. 7 easier to detect.

To complete our calculation, it would be necessary to fi
out whether these higher-energy collective excitations are
ally detectable by a measurement of the absorption pow
For this, one needs to compute the longitudinal conductiv
sxx in the presence of the disorder potential since otherw

,

FIG. 7. Frequencyf (k50) of the first higher-energy collective
mode of the bubble states versus filling factorn* in Landau levels
N52, 3, 5. We have assumed a density ofn53.231011e/cm2.
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~by Kohn’s theorem! only the cyclotron mode will show up
in sxx . This calculation is beyond the scope of this paper
is in progress and will be reported elsewhere.

IV. CONCLUSION

In this work, we have studied several physical propert
of the bubble states that form in higher Landau levels.
have computed the energy and density pattern of the 2D
ground state, in Landau levelsN52, 3, and 5, when the
filling factor of the partially filled level is gradually increase
from n* 50 to n* 50.5. In the Hartree-Fock approximation
the Wigner crystal at smalln* evolves into the modulated
stripe state nearn* 50.5 by passing through a succession
bubble states with increasing number of guiding centers
bubble. In all cases (N.1) that we have studied, the trans
tions are first order.

We have shown that several physical quantities such
the single-particle density of states, the magnetization,
magnetic susceptibility, and the dispersion of the collect
excitations change discontinuously at the transition betw
these different ground states. We believe that these ab
changes can be detected experimentally. In particular,
.

.

.

-

.

-

on
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noticed that the density of states structure in the bubble st
has features that allow one to determine, at least in princi
the number of guiding centers per bubble.

We have studied more closely the collective excitations
the bubble states and, in particular, the structure of
higher-energy modes~i.e., those modes above the phon
mode!. In light of the recent microwave experiments b
Lewis et al.,11 we think that some of these modes are like
to be accessible experimentally. More work is needed
compute the real weight of these modes in the absorption
these higher-energy modes can be detected in microw
absorption experiments, they will show a discontinuo
change of the frequency.f (k50) at each transition betwee
the bubble states.
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