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Dynamics of electrons in quantum Hall bubble phases
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In Landau levelsN>1, the ground state of the two-dimensional electron @EG) in a perpendicular
magnetic field evolves from a Wigner crystal for small filling of the partially filled Landau level, into a
succession of bubble states with increasing number of guiding centers per bubbte iasreases, to a
modulated stripe state neaf =0.5. In this work, we show that these first-order phase transitions between the
bubble states lead to measurable discontinuities in several physical quantities such as the density of states and
the magnetization of the 2DEG. We discuss in detail the behavior of the collective excitations of the bubble
states and show that their spectra have higher-energy modes besides the pinned phonon mode. The frequencies
of these modes, at small wave vectarhave a discontinuous evolution as a function of filling factor that
should be measurable in, for example, microwave absorption experiments.
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I. INTRODUCTION a=3.3R; whereR;= 2N+ 1¢ is the cyclotron radius and

¢ =hcleB is the magnetic length. This sequence of phase
It is now well established both theoreticdilyand transitions in higher Landau levels has been verified by a
experimentally;® that the two-dimensional electron gas number of authors. By comparing the energy of the Laughlin
(2DEG) ground state near half filling in the higher Landau |iquid at »* =% and»* =% with that of the bubble states in
levels (N>1) is the quantum Hall stripe state. Transportseyeral Landau levels, Fogler and Koulakstiowed, within
experiments have shown that this stripe state has an highly,e HEA that the bubble states are lower in energy than the
anisotropic longitudinal conductivity, i.€xy,> o (Wherek | o,qpiin liquid at filling factors* = & for N=2 and at filling
is the direction perpendicular to the stripesmid a Hall con- factor v* =L for N=3. Rezayiet al” used exact diagonal-

ductivity Txy that is not ggannzed. Away frorg half filling, ization studies on finite size systems to show the absence of
m*ore prgusely apartial filling fact_ors aroundv® ~1/4 _and_ fractional quantum Hall statd&HQS in higher Landau lev-
v* ~3/4 in Landau leveN= 2, the isotropy of the longitudi- els and a tendancy to charge density wé@BW) ordering,

nal conductivity is restored and a minima appears in th t calculati bv Yoshiok d ShiBatsing the d
diagonal resistance. Concomitantly, the Hall conductivity is ecent cajculations by Yoshioka an iataing the den-
ty matrix renormalization group methd@MRG) basically

guantized, but at a value equal to that of the nearest integ , S :
quantum Hall effect plateaus. These other ground stateeonfirm the Hartree-Fock scenario with some minor correc-

aroundv* ~ % andv* ~2 in N=2 have been called reentrant tions. ForN=2 andN=3, the DMRG gives a wider region
integer quantum Hall statéRIQHS).* Studies by Koulakov, of stability for the stripe phase than in the HFA. As a result,
Fog|er, and Shklovskii and by Moessnher and Ché”wg_ the last bubble statgéhat withM =N+ 1) is absent from the
gest that the RIQHS are due to the formation of bubblephase diagram. The transitions between different bubble
states. These states can be described as triangular Wigrgiates occur at slightly different filling factors in the two
crystals of electron clusters. Each cluster “bubble”) con-  approaches. Both calculations, however, give first-order
tains a fixed numbeM of electrons such that, within them, phase transitions between the bubble states and between the
the local filling factor is equal to one. The bubble statesbubble and stripe states. The possibility of a continuous
being pinned by disorder, should be insulating in contrast tgphase transition involving the deformation of the bubbles
the stripe states. A review of these novel ground states ifrom a isotropic shape to a more elliptical shape as the stripe
higher Landau level is given in Ref. 5. state is approached was investigateith a negative result
The ground state of the 2DEG changes discontinuously asy Renet al® within the HFA. These authors also claint&d
the partial filling factorv* is changed. In the Hartree-Fock that the v* =% composite fermion state has lower energy
approximation(HFA), the ground state is a Wigner crystal at than the corresponding bubble stateNr=2 and that this
small filling »* or, equivalently, a bubble state with one liquid state could be an intermediate state between the
guiding center per bubble. As the partial filling is increased,Wigner crystal and thél =2 bubble state(See, however,
bubble states with increasing numbkr of electrons per Ref. 8) In any case, the difference in the cohesive energy of
bubble are stabilized so that the 2DEG evolves from thehe various possible ground states at any given filling factor
Wigner crystal, through a succession of bubble states, intes usually quite small and the possibility that quantum fluc-
finally the stripe state near half-filling. In Landau lewlit  tuations, disorder, finite extension of the wave function in the
can be shown thdin the HFA) the last bubble state had third dimension, screening corrections, etc., modify the
=N+ 1. The optimal number of guiding centers in a bubbleabove scenario cannot be ruled out.
is well approximated by the formulll =3»* N correspond- The existence of the bubble state near filling factots

ing to an average separation between the bubbles equal te7 and v* ~2 in N=2 was first shown by transport mea-
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surements revealing its insulating beha%fband its nonlin-  trated on the pinning mode of either the stripe or bubble
ear |-V properties! In more recent experiments, Lewis phases or, more recently, on the Wigner crystal phase near
et al’ and Yeet al’? measured the diagonal conductivity integer filling factor*

oy Of the 2DEG in the microwave regime and found sharp The outline of the paper is as follows. In Sec. II, we
resonances in Rey,] at some frequency. These resonancedriefly describe the Hartree-Fock procedure to compute the
are strongest near* ~% and v*~2 in level N=2. They order parameters of the charge density wave states as well as

appear for a range of partial filling factors arousit~+ and the orbital magn_etization and _the one-particle density of
»*~2 and only for temperatures below 0.1 K. It is believed states. We then introduce the time-dependent Hartree-Fock

4 . . . . .
that these resonances are due to the excitation of the pinnirgPProximation and describe how we get the dispersion rela-
mode of the bubble states realized at these filling factors. ThiOn of the collective excitations in these ordered states. In
experiments show no hint of discontinuous transitions amon%ec- IIl, we discuss our numerical results for these quantities.
the different bubble states. It is possible that thermal or disYV& conclude in Sec. IV, by discussing how our results could
order effects may smear out any sharp effects on the pinning€ refated to the experiments of Leveisal. and Yeet al.
mode.
In light of these microwave experiments, it is natural to ll. HARTREE-FOCK FORMALISM
ask how one could observe a transition between bubble
states, and also how one could distinguish between bubble
states of differentM numbers. In this paper, we Study how The bubble phase is a Crystal state that can be described
the behavior of several measurable physical properties of they the set of average valu¢én(G))}, where(n(G)) is the
bubble states evolve as the filling facter is increased from ground-state average of the density operator &ds a
the Wigner crystal state at low filling to the stripe state atreciprocal-lattice vector of the crystal. It is convenient, in the
half-filling. We show that the series of transitions betweenlLandau gauge, to define a related density operator by the
bubble states lead to oscillations and discontinuities in th&Xpression
orbital magnetization and susceptibility. These effects are
sizable so that the transitions between bubble states should _ = —iGX+iGyGyI2 21
be observable in a measurement of the magnetization or of ©) N(,,; © TN XEN X6y T @
the magnetic susceptibility. Such measurements have re- + , . )
cently been performed on the 2DEG in the integer quantuni'Nerecy x creates an electron in Landau lewekith guid-
Hall regime using an ultrasensitive torque magnetom@ter. INg center quantum numbet and N, is the Landau level
The sensitivity was sufficient to reveal the sawtooth patterrflegeneracy. This new density operator is related to the real
of oscillation of the magnetization, i.e., the de Haas—varflensity by the expression
Alphen effect, as well as the magnetization jumps occuring
atpodd filling factors from the occupation of different spin N(G)=N,Fnyn(G)p(G), 2
states of the same Landau level. where Fy (G) is a form factor for theNth Landau level,
Our analysis also shows that the density of states has fegshich is given by
tures that are directly related to the number of electrons per
bubble. More precisely, we find that the number of low- 202 o] G%7
energy subbands is equal to the numieof electrons in the Fann(G)=e Lnl—— ) ()
bubbles. If this density of state structure is not blurred by
tunneling processes involving phonon excitations, then and Lﬁ (x) is a generalized Laguerre polynomial. At a semi-
double-well tunneling experiment or photoluminescenceclassical level, the averagp(G)) can be viewed as a Fourier
measurement could serve to determimeand to follow the  transform of a “guiding center density” of cyclotron orbits.
phase transitions between bubble states. In this paper, we make the usual approximations of ne-
Working in the time-dependent Hartree-Fock approxima-glecting any Landau level mixing and consider that the filled
tion (TDHFA), we also compute the dispersion relation of Landau levels are inert. It follows that the filled levels do not
the phonon as well as those of other higher-energy modesnter in our calculation and we will, whenever possible, drop
that correspond to excitations localized on the bubblesthe level indexN from now on to simplify the notation.
These localized excitations are interesting becdirseon-  Moreover, we assume that the partially filled level is com-
trast to the phonon modgi¢hey are gapped and probably less pletely spin polarized.
sensitive to the disordering potential. Their dispersion can be The average valug®(G)) are obtained by computing the
computed, in a first approximation, by neglecting disordersingle-particle Green’s function
which is difficult to take into account in these charge density
wave states. We thus apply the TDHFA to show that the G(X, X", 7)=—(Tcx( r)c;r(,(O)), 4
first-order transitions between the bubble states can be _ i
tracked by looking at the discontinuous behavior of the firstvhose Fourier transform we define as
few high-energy modes as a function of partial filling factor.
In our analysis, We'find that the freqqency of the first excited (G,7)= i 2 ef(iIZ)GX(X+X’)5X w6 2GX, X, 1),
energy modes are in a range accessible experimentally. Up to b XX ' vl
now, however, all conductivity measurements have concen- (5)

A. Order parameters
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so that C. Density of states

In our iterative approach, the single-particle Green’s func-
tion is computed by first finding the eigenvalues and eigen-
vectors of the interaction matrix

(p(G))=G(G,7=0"). (6)

We compute the single-particle Green’s function of Eq.
5) by solving numerically the Hartree-Fock equation of mo- . ,
t(io)n g ’ g q Fo.c=U(G—G')e'®*® er, (14
This matrix is Hermitian and can be diagonalized with the
[iw,+1]G(Giw,)— 2, U(G—G’)eiGXG'fz’ZG(G’,iwn) unitary transformation
G!

F=VvVDV"
= 5G 0 (7)
(w, is a fermionic Matsubara frequency and we use the two-
dimensional cross product as a short form dot G=q,G
G,), which follows from the mean-field Hamiltonian

where V is the matrix of the eigenvectors & and D; |
=d;d; j is the diagonal matrix of the eigenvaluesfafThe
Greens function is then readily given by

Ve,V 60
G(Gw,)=2 ——————7. 15
Hie=Nyen(p(G=0)+N, S Un(G)p(G),  (® (Goom =2 1 a7 19
whereey ,=(N+1/2)w,— ag* ugB/2 is the noninteracting ~ The density of states is defined as
energy on an electron of spia in Landau leveIN. The 1
sE(zIIf—((;?r;:iztisg:] I;;\rtree-Fock potentld(q) that appears in g(w)=— ;J dr Im[GR(r,1, )], (16)

U(a)=[Hn.n(a) = Xn (D p(— ). 9) where GR is the retarded single-particle Green’s function,
’ ‘ which can be computed from the eigenvalues and eigenvec-
In Eq. (9), the Hartree-Fock interactions are given by tors found above. We then have
e2 1 - q2€2 2 N |V B '|2
—q%¢?/2| | 0 __ ¢ G=0j
Fnn(a)= ( )qé’e - ( 2 ” - 10 9(w)=—-—"Im 2 a)-i—ié—dj/ﬁ}' (17)
2
Xn,n(a) = (7)‘/_j dxe* [LN(XZ)]ZJO(\/_XM) D. Collective modes
(11) As shown in Refs. 15, the order parametg£G))} can

also be used to compute the density-density response func-
wherek is the dielectric constant of the host semiconductortion x¢ ¢ (k,7) defined by
andJy(x) is the Bessel function of order zero.
The electronic density in real space is obtained by the Xc.c (K, 7)=—N(Tp(k+G,7)p(—k—G",0)), (18

relation - .
wherep=p—{p). The collective modes of the bubble state

1 _ are found from the poles of this response function. By fol-
(n(n)=5_72 > eMCTE NG (p(G)). (12 lowing the poles with nonvanishing weight as the wave vec-
¢ tor k is varied in the Brillouin zone of the reciprocal lattice,
we get the dispersion relation of the phonon and higher-
B. Hartree-Fock energy energy collective modes.
To find the equation of motion, in the TDHFA, for this
two-particle Green’s function, we first use the Hartree-Fock

We solve the Hartree-Fock equation of motidfqg. (7)]
numerically by using an iterative approach that was de-
scribed |nyde¥ail in gRefs 15. Oncep'?he order parametergam"ton'an of Eq(8) to get the equation of motion for the

{(p(G))} are found the Hartree- Fock energy per particle in artree Fock apprOX|mat|on tQG c'(k,7), which we call
as weII as spin mixing

Epe 1
= 5o 2 [Hun(G) (1= 86,0 =Xy n(G)][(p(G)[?, k+G)X (k+G")€?
N 20% G NN eon TN QS o (K, Qy)—2i X sir{( GallSace i
(13) ’ c" 2
wherev* is the filling factor of Landau levell andN; is the XU(G"— G)XOG” o (K, Q)
number of electrons in the partially filled level. The total (k+G) ’(k ') e?
filling factor of the two-dimensional electron gasis=2N . +G) X (k+G’ ,
+V*9. 9 =—2i sin 3 }(p(G—G )y (19
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(Q,, is a Matsubara bosonic frequencyrhe Hartree-Fock thus produce an animation of the motion of the density

(k,7) corresponds to a single polarization bubble withmodulation with the frequendyy and wave vectok by com-

0
oo puting the time-dependent density

Hartree-Fock propagatofs(G,w,). The sum of the ladder
diagrams involve the Foclindirec interactionXy y(q) and

is given by 6n(r,t)~e*”it%: e O TR (k+G)Wg (k) (27)
}G’G,(k,Qn)zxoe G,(k,Qn)—E Xg (K, Q) at several values dfin one period of the motion and then
' [ superimposing this density to the ground-state density given

" by the Hartree-Fock calculatidiEq. (12)]. We thus compute
XXnyn(k+G » (K, Q 20
N Xere (ko). (20) n(r,t)=nye(r) + adn(r,t) where a is choosen sufficiently
The two-particle Green's functioryg /(k,{2,) contains  small to satisfy| Sn(r,t)|<nye(r).
only connected Feynman diagrams. The THDFA is achieved

by summing the various bubble diagrams and is given by E. Orbital magnetization and magnetic susceptibility

_ ~ The orbital magnetization and susceptibility can be ob-
X6 (K, Qn) =X 6 (K Qp) + E Xcr (K Q) tained from the dependence of the Hartree-Fock energy with
¢ filling factor. At T=0 K, the orbital magnetization per elec-
XHnn(K+G") xar o (K, Qp). (21)  tronis given by

Equations(19)—(21) can easily be combined into a single 1/(9E
equation that can be written, in obvious matrix form, as m= — N(&_B) (28
2 [iQn86.6—Mg.er(K) Ixer o (ki) =Bg g/ (K), while the orbital magnetic susceptibility per particle is
GH
22 am
2 = 7). @9

where the matriced g g andBg g are defined by

whereE is the ground-state energy of the 2DEG.

When all Landau levels are taken into account, the
Hartree-Fock energy per particle, excluding the Zeeman con-
tribution, is (for 0<v*=<1)

(GXG')2
2

02
Mg,/ (k)= _Zi(m)@(G_G'»Sin

X[Hyn(G—G') = Xyn(G—G')—Hyn(G')

, Etotal *
+Xnn(G')] (23 Eur 1 > > (M+Hhe +—(N+z)ﬁwc

NT VM<N «a

and
(6xG")¢2 L e—Z)E S S Xuw(G=0
Bg.o (K)=2i sin Tkp(G—G'», (24) 20\ k]G iy Y
respectively. Because we have neglected all Landau level as _ E e? 2 Xy y(G=0)p*
well as spin mixing, the Green’s functiopg ¢ (k,Q,) can vkl M.N
only give information on intra-Landau-level excitations in- )
volving no spin flip. A more complete calculation of e 2 [Hyn(G)(1—Sa0)
xc.cr(k,Q,) where inter-Landau-level and spin flip excita- o\ ke N.N G0
tions are considered is detailed in the second paper of Ref. )
16. —Xnn(G)I[(p(G))]%, (30)

To solve for xg c/(K,i€,), we diagonalize the matrix ,nare
Mg, (k) by the transformation

" 1 ~( min(M,N)! y?| IN-MI
M=WTW 1, (25 Xnm(@)= M)f dy<?>

where W is the matrix of the eigenvectors &fl and T;

. . . . . . 2\ 12
=t;; ; is the diagonal matrix of its eigenvalues. The analytic v212l | IN—M| y
continuation ofyg g/ (k,i€y) is given by xe L min(, M) Jo(atry) (3D
W j(K)[W(k) ™ l]J Bk c'(K) is the exchange interaction between electrons in Landau lev-
Xe,c'(K,w)= 2 0T To—1,(K) . (260 elsN andM, ande is the spin index. To derive this formula,

we have assumed that all levels bel®are occupied and
The jth eigenvector in the matrixV of the eigenvectors of that only the spin levekr=—1 in Landau leveN is partially
the matrix M gives the Fourier transform of the density occupied. Thaotal number of particle®Nt is assumed fixed.
modulation associated with thj¢h eigenvalue oM. We can With the definitions
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A0<N>=M§N (M+1), (32

Al(N>=M2N > Xuwm(G=0), (33
<N M’<N

Az(N>=M§N Xyu.n(G=0), (34)

1
F(N,v) =575 2 [Hun(G) (1= d60)

= Xnn(G)p(G))I, (39
Eq. (30) can be written as

E}_?,I:al_ o, N 1( e2)
N—T—ZAo(N) » +(N+§)7hw0_; T A1(N)
v* ( e2) v* ( ez) .
—7 W AZ(N)+7 E F(V ), (36)
where
1
F(v*)= 5.5 2 [Hun(G) (1= 850~ X n(G)I(p(G)) %,

(37

is the(dimensionlessHartree-Fock energy per particle in the

partially filled level, i.e., the energy given in EQL3).

Differentiating Eq.(36) once (twice) with respect to the

PHYSICAL REVIEW B 68, 155327 (2003

e2

X=W(X1+X2+X3+X4), (40)

where

x1= —8Ag(N)+8N(N+3),

m*
X2=—2Ng* (F) ,
(41)
302

3rg 1 v
Al(N)\/;—ErsAz(N){T"':N\'\/;

Y

X3

IF(v*
Xa=V2rs %(V+6N)\/;F(v*)—(v+2N)v3/2—aiZ )

PPFE(v*)
_(V_ZN)VS/ZW

The four contributions to the magnetization and susceptibil-
ity come, respectively, from the kinetic energy 4, x1), the
Zeeman energyi,,x»), the exchange energy between elec-
trons in the filled levels or between electrons in the filled
levels and those in leveNl (u3,x3), and the Hartree-Fock
energy of electrons in levéN (u4,x4). In EqQ.(41), we have
introduced the gas parameter= 1/\/7Tna23, where ag
=#h2kIm*e? is the effective Bohr radius, and the effectiye
factorg* . We remark that our units for the susceptibility can
also be written ase?4mnm*c?=uf/B,_;, where uj
=efi/2m*c andB,_ is the magnetic field required to get a

magnetic field at constant density and adding the spin confilling factor of »=1 for a total density oh.

tribution, we get the total magnetizatidtotal spin suscepti-

bility). We write

m

M:MB(W (1t pot ust pma), (39

where ug=ef/2mc is the Bohr magneton. The four contri-

butions to the magnetization are defingor 0<v*<1) by

4N)
1-— ’
14

retel o)

1
m1=—8Ag —2(N+ 7)

3 1 1
=—r1A(N)—=—V2rA>(N)[—2v+3N]—,
M3 3 sAa( )\/; AN —zv ]\/;

IF(v*)
pa=V2r\¥(v=2N) — 5

1
+v2r — 2v+3N]—=F(v*). (39
v

N

Similarly, we write (for 0<v*<1) the total magnetic sus-

ceptibility as the sum of the four contributions

IIl. NUMERICAL RESULTS

We now discuss our numerical results for the physical
quantities introduced above.

A. Hartree-Fock energy

Figures 1a)—1(c) shows the Hartree-Fock energy per
electron as a function of filling factor for the bubble and
stripe phases in Landau levels=2, 3, and 5. The filling
factors at which the transitions between states occur are in-
dicated in an inset in each figure. In all cases, the transitions
are of first order and the transition scenario is that described
in the Introduction: the ground state evolves from the Wigner
crystal at low filling, through a succession of bubble states
with increasing values of guiding centers per bubble, and
finally into the stripe state near half-filling. The number of
possible bubble states increases with Landau level imtex
Our results forN=2, 3 are in agreement with previously
obtained Hartree-Fock energies for the bubble stateser-
gies forN=5 have not been computed before. As shown in
Ref. 8, the Hartree-Fock results are similar to those obtained
by a DMRG calculation except that the region where the
stripe phase is stable is wider in the DMRG calculation and,
consequently, the bubble state witki+1 electrons per
bubble disappears. Oscillations in the Laguerre polynomial
entering the form factor in Eq3) make it difficult to com-
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FIG. 1. Hartree-Fock energy per particle as a function of the ele’d)

filling factor v* of the partially filled level for the bubble and stripe

phases in higher Landau level. The inset in each figure indicates tl“%e tl):bllG 2t tS'ngltm)irzdg d; nj'tyl oftstates ang db(;r;s'ty ;()ja;terrt'lhfor
critical filling factor v; ; of the partially filled level at which the ubble state witi=_, <, 3, 4 €lectrons per bubble and for the

i ipe states in Landau levél=3. The filling factors arga) »*
transition between bubble states or between the last bubble state ait&o?ll& (b) 1*—0.173: () »*—0.320; (d) gV* :O.406;E((e)) -

the stri tat .
e stripe state occurs =0.430.

pute a numerically accurate phase diagram for higher

Landau-level indi N . ion of motion hs thg normalized wave function of an electron in the sym-
nﬁqudeau evel indices using our equation of motion tec metric gaugeA=(—Bgy/2,Byx/2,0) with Landau levelN

and angular momentum. The one-particle density

B. Density pattern
W N, w)|? (43

iiﬁ: Jdri

Figure 2 shows how the density pattern given by @®) n(r)=
evolves as the filling factor increases in Landau leMel
=3. When the bubbles are relatively far apart, the densitys just
pattern on each crystal site is well approximated by the trial
wave function of Fogler and KoulakévEor a bubble oM
electrons in Landau leve, that wave function is the Slater (= 2 lenm(n]2 (44)
determinant m=1

m=M

As the filling factor increases in thklth bubble state, the

WN(rLr2,eiv) outer ring from each bubble gets closer to its neighbors and
the density pattern given by E¢4) is strongly modified.
enolf1)  enore) - enolfm) When rings from two adjacent bubbles start to overlap, there
ena(r2)  ena(ra) - ena(rm) is a transition to theN1 + 1)th bubble state. In Landau level

, (42 N, the last bubble state before the transition to the stripe
phase hal =N+ 1. We note that the stripe state obtained in
enm(ry)  enm(ra) - enmrm) our Hartree-Fock approximation is not the quantum Hall
smectic state. It has density modulations along the stripes
and can be described as a highly anisotropic Wigner crystal.
)m_N| . However, it is likely that this state is unstable due to quan-
—relae

where

QDN,m(r)ZCN,m(Z tum fluctuations to the smectic stafe.

r2 ) C. Density of states

@l (N=m)g| [m=N|
(N+m—|m-N])i2| 202 Figure 2 shows the behavior of the single-particle density
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of stategy(E) defined in Eq(17) for Landau leveN=3 and 1F .
for filling factors corresponding to bubble states with

Ep———TL
o n ¢

]
54
~

=1, 2, 3, and 4 electrons per bubble. In Landau leNel
=0 where the Wigner crystal state with=1 is the ground
state for all filling factors, our calculation fay(E) repro-
duces the well-known Hofstadter butterfly structure. Bor
=g/p, the density of states consistsmsubbands of which

g low-energy bands are filled and separated by a gap from
the remainingp—q subbands. In Fig. 2, we see that the
density of states in the bubble state has a different structure.
The number of low-energy subbands that can be resolved by
our numerical calculation clearly corresponds to the number
M of electrons per bubble. A measurement of the density of
states, by a double-well tunneling experiment or photolumi-
nescence, could serve to determMeln computing the tun-
neling current, one would have to take into account other
processes involved, particularly phonon shake-up. This is,
however, beyond the scope of our paper and is left for future
research. We note for now, however, that the typical phonon
bandwidth(discussed belowis not larger than the splittings
among the occupied bands in the density of states, so that the
multiplicities of peaks associated with different bubble states
are likely to survive such effects.

D. Magnetic susceptibility

The Hartree-Fock energy shown in Fig. 1 has a discon-
tinuous change of slope and curvature at the transitions be-
tween bubble states with different numtérof electrons per
bubble. This, in turn, gives rise to discontinuities in the be-
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havior of the magnetic susceptibility with filling factor. To
show this, we compute the susceptibility in Landau leMel
=3 by numerically evaluating the first and second deriva-
tives of the functionF(v*) defined in Eq.(37). We use the
parameters\ ((3)=9/2, A1(3)=6.29, andA ,(3)=1.32 ap-
propriate toN=3 and assume a typical total electronic den-
sity of n=3x10"/cn? so that the gas parameter iig
=1.011. The other parameters g'e=0.45 and the effective
massm* =0.067m.

Figures 3a) and 3b) show the behavior of the four con-
tributions to the magnetic moment and magnetic susceptibilures, the dispersion is plotted along the pEt3-X-T", cor-
ity defined in Eq.(39) and Eq.(41). The singular behavior responding to the wave vectork,(k,)=(0,0), (2n/a)
(contributions ., and x,) comes, in both cases, from the X(1#~3,1/3), (2m/a)(1#3,0), (0,00 wherea is the lattice
Coulomb interaction between electrons in the partially filledconstant. The wave vectérrepresents the total distance, in
level. The magnetic moment and susceptibility change disreciprocal space and in units ofi2a wherea is the lattice
continuously at the transition between bubble states and beonstant, along the pathi-J-X-I' from the originI'. For a
tween the bubble and the stripe state. In both cases the effegiven value ofk, Eq. (36) provides us with a way to image
is sizable. Consequently, the transitions between bubblthe motion of the density in a particular mode.
states should, in theory, be observable in a measurement of We remark that our calculation does not include disorder
the magnetization or magnetic susceptibitity. so that the lowest-energy mode in Fig. 4 is a gapless phonon
mode. For small wave vector, this phonon mode has the typi-
cal o~ k%2 dispersion of a Wigner crystal. In the presence of
disorder, this phonon mode would be gapped.

We now discuss the collective excitations of the bubble Upon entering a state witM electrons per bubble, the
states. We compute the density-density response function efispersion and maximal frequency of the phonon mode first
Eg. (26) and follow its poles when the wave vectkris  increases with the filling fraction. Near the critical filling
varied along the edges of the irreducible Brillouin zone offactors vy, 4+, computed above in the HFA, the phonon
the triangular lattice of the crystal. Figurega}-4(f) show  mode starts to soften at a finite wave vedtoiThis indicates
examples of the dispersion relation we obtain. In these figthat the bubble states become locally unstable when the outer

1501 0.2 0.3 0.4
(b) v

FIG. 3. (a) Change in the magnetic moment aflid magnetic
susceptibility with partial filling factorv* in Landau levelN=3.
The four contributions=1 (solid), 2 (dasheg, 3 (dashed d9t and
4 (squaresto u or y are defined in Eq939) and (41).

0.5

E. Collective excitations

155327-7



R. CbeE, C. B. DOIRON, J. BOURASSA, AND H. A. FERTIG PHYSICAL REVIEW B8, 155327 (2003

0.08 ; ; 0.08
0.07 ; : 0.07 |
006 3 3 0.06 .

g 0.05F f = oosh B »

"i,,’ 0.04F oE 0.04

3 onsf | | 3 e |
002k e~ ok 0.050
T | . onf A

OF".- 5 j X‘i .l-if'i_ ok’ s T S a

(@ Ki(2n/a) (b) ki2n/a) o~
0.08 0.08 3
0.07 0.07 E. . \8
0.06 [ S — 0 025

I e e T oesp '

“‘; 0.04f “‘; 0

T omf T amspee \
0.02f P \ 0.02F T
0.08 fpruse= oorf

° ° o5 1 1"5 [

(¢) (d) ki2m/a) 0.000 — | IR R
008 048 0 0.1 0.2 0.3 0.4 0.5
0,07 F 7 s o o o s a1 007k
0.06F 0 k / (27'5/ a)

@ 0.05F =£ 0.05F ¥

S ol %G oo . . )

X ol X b FIG. 5. Dispersion relation of the phonon mode of the modu-
omf g 0nf . lated stripe state in Landau leviel=2 for wave vectok along the
oorp 0.1 direction of the stripes k= 7/¢). Here, a is the period of the

o 05 1 % 0 ; . . . .
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FIG. 4. Dispersion relations of the phonon and higher-energyhupple state is stable, we expect the TDHFA to give a rea-
modes in Landau leveN=3 along the edgefpathI'-J-X-T') of  gsonaple approximation of the dispersion of its collective ex-
the irreducible Brillouin zone of the triangular lattice. The filling itations.
factors and number of guiding centers per bubble @e v* We see from Fig. 4 that, above the phonon mode and in
=0.106,M=1; (b) »*=0.161,M=1; (¢) »*=0.167,M=2; (d)  ha region where thal =1 bubble state is stable, there is a
v*=0.206,M=2; (¢) v* =0.264,M =3; (/) »* =0.380,M =4. series of higher-energy modes that are almost dispersionless

except near filling factors where the transitions between
rings of adjacent bubbles start to touch. For the cddes bubble states do occur. As we explained in Ref. 15, more and
=2, 3, 5 that we have studied, we find that the phonon modeore of these modes appear in the response function when
frequency vanishes at this wave vector f6r> v}, ,,., so  We increase the size of the matig g(k) in the equation of
that a second-order transition is preempted by a first-ordeiotion [Eq. (22)] for the response functiogg ¢’ (k,®). As
one. This is also the case for the transition betweenMhe More modes appear, the previous ones are not shifted in en-

—N+1 bubble state and the stripe state as we show in Figt'9Y SO that these modes are not numerical artifacts associ-

5, where we plot the dispersion relation of phonon mode O161ted with the truncation of the infinite dimensional matrix

the stripe state for wave vectaralong the direction of the MGvG(k_)' For higher values OMf a ge_ngral trend of the
stripes. The dispersion is shown for several values of th ispersion(except close to transition pontis that there are

- . . . low-energy dispersive modes close in energy and a num-
fllhzngnfaiztc:;ﬁefgorrqhgt_tr?é4§i;g;rsi_o%5§ Itnhle;a;r?srllj();i\cljeli\ln ber of higher-energy much less dispersive modes. For large

. . - values ofM, each bubble has a complex pattern of density
particular the region around the roton minimueioes not  ,4,jations, and a large number of reciprocal lattice vectors
change significantly near=0.428, the filling factor at which 5.6 needed to describe its structure adequately. It follows that
the Hartree-Fock calculation predicts a transition between, s numerical procedure is less precise in this case as can be
the M =3 bubble state and the stripe state. seen from Fig. &).

For Landau-level indelN=1, we find an interesting ex-  The small dispersion of the higher-energy modes suggests
ception in that the softening of the phonon mode occurs fothat they can be identified as local oscillations of the density
v*<vi_,. This indicates the possible existence of somewithin a bubble. This is indeed what can be seen from an
new charge ordered state. We did not study this case furthesnimation of these modes using E®6). Figure 6 shows
however, since our approximations do not include correlaseveral snapshots of these modes representing the motion of
tions responsible for the correlated liquid states that arehe density in the second, third, and fourth modes Nbr
present inN= 1817 =1 in Landau leveN=2. From these snapshots, we see that

Another indication of the limitations of the HFA and the higher-energy modes are density waves propagating
TDHFA is that the last bubble statdi(=N+1) is stable, in along the rings of the bubbles. These modes can be readily
contrast to the DMRG resufftThe DMRG method includes identified by the number of wavelengths of these waves en-
correlations neglected in the HFA and is, in principle, moreclosed in the perimeter of the rings. For example, the second
exact than the HFA! In any case, for values of where a mode corresponds to the case where the perimeter of the
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FIG. 7. Frequency (k=0) of the first higher-energy collective
mode of the bubble states versus filling factdr in Landau levels
N=2, 3, 5. We have assumed a densitynef 3.2x 10'%e/cn?.

system in Landau leveld=2 andN=3. A peak of absorp-
tion occurs at a frequency that decreases as the center (
=0.5) of the Landau level is approached from either above
or below. The resonances in the absorption are sharpest for
filling factors v* around; and?, corresponding to the values
where the RIQHS occur in transport experimens. these
filing factors, the resonance frequency is approximately
=500 MHz. It is natural to associate this resonance with a
pinned phonon mode of the bubble statekeither electrons

or holes forv* <0.5 orv*>0.5).

The higher-energy modes of the bubble states are gapped
at w(k=0)=0. In Fig. 7, we plot the gag(k=0)=w(k
=0)/2 in the first high-energy mode as a function of filling
factor »* for Landau levelidN=2, 3, 5. To convert our fre-
quencies(in units of e®/Ak¢) into GHz, we assumex
=12.9 for the dielectric constant of the host semiconductor
(GaAs and take a typical density ofn=3.2
X 10 electrons/crh so thate?/A x¢ = 38274y GHz, where
v is thetotal filling factor of the 2DEG. At filling factory,
the magnetic field is given bB=nh/ev=13.2 T. As Fig.

7 shows, the transitions between bubble states lead to abrupt
changes in the gap frequency when the filling factor is var-
rings enclosed two wavelengths, the third mode to the cased. The discontinuities are more pronounced for lower-
where the perimeter enclosed three wavelengths, and so onandau-level indicesN. The frequency range of the first
When the separation between the bubbles decreases inhggher-energy mode is in a range of frequencies that can be
given M bubble state, the density waves on each bubble besbtained in a microwave absorption experiment; thus, such
come more and more coupled and the dispersion of thexperiments can in principle probe the transitions among
higher-energy modes can be very pronounced. bubble states. We remark that other effects not included in

The frequency of the higher-energy collective modesour calculation, particularly the modeling of a finite width
change discontinuously with the transition between thefor the electronic wave function in the quantum well, could
bubble states. A measurement of the frequency of theskead to a reduction of the gap frequency. This would make
modes could then provide yet another signature of the bubbleehavior such as that seen in Fig. 7 easier to detect.
states. It would be interesting if variations in the gafk To complete our calculation, it would be necessary to find
—0) of these higher-energy modes could be detected experbut whether these higher-energy collective excitations are re-
mentally. Recently, Lewist al! reported the observation of ally detectable by a measurement of the absorption power.
an absorption peak in a measurement of the microwave alf=or this, one needs to compute the longitudinal conductivity
sorption of a ultrahigh mobility two-dimensional electron oy in the presence of the disorder potential since otherwise

FIG. 6. Snapshots of the motion of the density in the second
third, and fourth higher-energy collective modes of thke=1
bubble state in Landau leveN=2. The filling factor is v*
=0.113.
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(by Kohn's theoremonly the cyclotron mode will show up noticed that the density of states structure in the bubble states
in o,,. This calculation is beyond the scope of this paper butas features that allow one to determine, at least in principle,
is in progress and will be reported elsewhere. the number of guiding centers per bubble.

We have studied more closely the collective excitations of
the bubble states and, in particular, the structure of the
) _ ) ~ higher-energy mode§.e., those modes above the phonon

In this work, we have studied several physical propertiesnodg. In light of the recent microwave experiments by
have computed the energy and density pattern of the 2DE, pe accessible experimentally. More work is needed to
ground state, in Landau leveN=2, 3, and 5, when the compute the real weight of these modes in the absorption. If
from »* =0 to »* =0.5. In the Hartree-Fock approximation, apsorption experiments, they will show a discontinuous
the Wigner crystal at smalt* evolves into the modulated change of the frequenc§i(k=0) at each transition between
stripe state neaw* =0.5 by passing through a succession ofthe bubble states.
bubble states with increasing number of guiding centers per
bubble. In all casesN>1) that we have studied, the transi-
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