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Adjusting the coherent transport in finite periodic superlattices
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The coherent transmission function and the tunneling time of one-dimensional arbitrary finite periodic
structures are adjusted without changing the resonance energies and therefore the band positions. The method
is based on modifications of the single period which are reflected in a similarity transformation of the corre-
sponding transfer matrix. Applied to semiconductor superlattices a strong tuneable increase of the average
miniband transmission is obtained. The maximum of the average miniband transmission is reached if the single
period is built by a double barrier resonant tunneling diode. The fundamentally different transmission behavior
compared to a standard superlattice is analyzed. Calculations of the phase tunneling time show that the increase
of the transmission comes along with a faster tunneling process through the transmission resonances. All
results are valid for any number of periods.
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[. INTRODUCTION for the integrated transmission through the minibands of the
modified SL's are given. Finally the phase tunneling times of
In the past scattering and propagation of electromagnetithe analyzed structures are calculated and discussed in Sec.
and quantum waves have been extensively studied. In solidl. Numerical calculations for GaAs/AlGaAs SLs demon-
state physics the envelope function approximatieRA)}—>  strating the results complement Secs. IV to VI.
made it possible to describe the periodic lattice potential of
each layer by a material dependent effective electron mass [l. FINITE PERIODIC POTENTIALS
m* and a material dependent constant poteMialhis pow-
erful method together with the transfer matrix formalfsm
made the study of coherent transmission behavior of heter
structures very simple.
Finite periodic structures, in which each period consists 0
a barrier/well pair, called superlattiéeSL's) have been ex- LN T _ o
tensively examinet'24using the transfer matrix approach. — (A ,A")", the wave functions at the left and right inter-
The finiteness and periodicity are fully incorporated withoutf@ce Of a certain regior¥’, and Vg, respec;tlvel)ﬁ are re-
any need for Bloch functions. The periodicity of a finite SL lated by the transfer matrix throught® (A’ A[)
leads to resonances in the transmission function, where it M(Ag.Ag)". Neglecting spin, the time reversal invariance
reaches the maximum value of unity. Recently a compreher@nd the conservation of the probability density current lead
sive presentation, studying also multichannel systems, wd® the structurt of M
given by Pereyrd®
In the present paper the effects of modifications of the M:( a b) 1)
unit cell of one-dimensional periodic structures, which are b* a*)’
reflected in a similarity transformation of their transfer ma-

Here we will summarize mainly known results of
é)_ne—channel transfer matrices for periodic potentials
which we will use in the later sections. If we denote
]the one-dimensional wave function (x) =A*exp(kx)
+A"exp(—ikx) of a region of constant potential a¥

trix, are studied. It is shown that the coherent transmissiorxf"here

function and the tunneling time of arbitrary finite periodic detM = |a|?— |b[2=1 )
structures can be adjusted without changing the resonance ’

energies and therefore the band positions. Tr(M)=a+a* =2 Rea} 3)

The paper is organized as follows. In Sec. Il the estab-
lished theory of transfer matrices, including the resonancéolds!’ In terms of the transmission and reflection coeffi-
conditions for finite periodic potentials, is briefly reviewed. cientst andr, the transfer matrix can be written'as
Section Il introduces the transformation of finite periodic
potentials yielding an increase of the average transmission B e rei
while keeping the resonance energies invariant. This trans- r/t  1k*
formation is applied to a SL in Sec. IV. We give analytical . )
expressions for the transfer matrix and the transmission opince by construction the transfer matrix of a sequence of
the transformed SL's and show how the invariance of thdayers is the product of the transfer matrices of each layer,
resonance energies can be used to tune and optimize tHee transfer matrix of a potential consisting wfperiods is
transmission between the resonances in the minibands. fRe nth power of the transfer matrix of one period:

Sec. V the dependence of the integrated miniband transmis-
sion on the barrier width is studied for the modified SL'’s. M
Analytical approximations for the SL miniband width and

(4)

a™  pm

. (5

b(n)* a(n)*
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Forn=2, a™ andb(™ can be expanded 1 of periodic structures without changing the miniband posi-
tions and even the individual resonance energies inside the
aM=aU,_i(Rela})~U,_,(Refa}), (®)  minibands. Since the envelope of the maximagf , (x) for
x|<1 is given by 1/(+ x?), from Eq.(10) follows that the
b™=bU,_y(Re(a}), @) |er|1velopegof the %ini(ma o")f(”) is giv?a-n by

whereU ,(x) denote the Chebyshev polynomials of the sec- o

ond kind. Using the recurrence relatith,(x) =2xU,,_1(X) _ |b|?

—U,_,(x) and the relationT,(x)=U,(x)—xU,_;(x),* Tin=| 1+ 1-Re{al (14)

whereT,(x) denote the Chebyshev polynomials of the first )
kind, we separate the real and the imaginary para®,  The transmissiof™" is bounded below by, and above
which correspond to the inphase and out of phase componehy unity for any arbitrary numbenr of periods. Therefore our

of the inverse transmission coefficient, respective|y: results are valid for arbitrary number of periOdS, even in the
limit n—o. Equation(14) together with(11) yields that for
RelaM}=T,(Rea}), (8)  afixed Réa} a change ofb| would only change the trans-
mission between the resonance peaks but not their position.
Im{al}=Im{a}u,_(Refa}). (9  To achieve this we apply a similarity transformation to the

It is interesting to note that the real part of the inverse transtransfer matrixvi of a single cell of the periodic potential

mission coefficient through any periodic structure is a func- M’ =M>-IMM (15)
tion of the real part of one period only. The transmissiéf . o
of any (field-free) n-fold periodic structure is given BY™*®  Since the trace of a matrix is invariant under a similarity
transformation, i.e., TM'}=Tr{M}, this yields the desired
TMW=[a™"2=[1+[b]?U7_y(Refah]™*. (10  result

Resonances withT™M=1 occur if and only if b(”_) Re{a'}=Relal, (16)
=bU,_,(Refa})=0. BecausaJ,_1(x) hasn—1 zeros in

(—1,1) it can easily be seen that anyfold periodic struc- while in generalb’|#|b|. If the transfer matrixM is written
ture exhibits at leash—1 energy resonances where theas the product of two matrices it is easy to see how this
transmission reaches exact|y 1. Sinm((x)zzknik:l[x Slmllanty transformatlon can be performed:

_ . . . 3,16
cosi/(k+1)] this yields M =M My—M’ =M IMM ;= M,M, 17

TW=1<Rea}=cogia/n), i=1,...n=1 (1D |y emms of the corresponding potentiadéx),V’(x), Vi(x),

andV,(x), which belong to the transfer matrickgM',M 4,

Yuh and Wang showed that the position of the mini- . :
¢ P andM,, respectively, this reads

bands ofany infinite periodic potential is given by the real

solutions forq of the equatiors (M ;;+ M,,) = cosqd, where V(X) ={V1(X):Vo(X)}

g is the Bloch wave vector andlis the length of one period. AR

In our notation this reads V' (X) ={Vo(X);Va(X)}, (18)
Re{a}=cosqd. (120 where{---;---} denotes the concatenation of two poten-

. . . tials. V' (x) is the potential which results from(x) by shift-
Equations(11) and (12) show directly the strong relation ing a part, namelyV,(x), from the left to the right side.

between energy resonances in finite periodic potentials anBifferent partitions ofV(x) into Vi(x) and V,(x) lead to

band positions in infinite periodic potentials. Identifying both differentV’ (x), and therefore in general to differdit | and

cos arguments one finds the corresponding wave nuﬁ%ersconse uently to different transmission values between the
and wavelengths for the finite potentfal q y

fixed resonance positions. Thus for an optimization of the

- om 2L transmission between the energy resonances one has to find
T =1<=q;=i E@)\iz—_: T (13)  the optimal partition of/(x) or, in other words, the optimal
4 dividing point of the unit cell.

whereL=nd is the length of the structure. This formulas  From the power of the transfer matri’

show that the Bloch waves build standing waves across the ,

entire periodic structure. The corresponding transmission M'"=(M;*MM)"=M] M "M, (19
resonances are FabrysBeresonance¥ Inserting the reso-
nance condition Eq.11) into Eq. (8) one easily verifies that
aW==+1, indicatiy a 0 orm phase shift at resonance.

it can be seen that the similarity transformation given in Eq.
(15) also belongs to finite periodic sequencesMgk) and
V'(x), i.e., to{V(x)}" and{V'(x)}". Writing Eq.(19) in the
form M "=M,M" "M, we see that only the interfaces to
the environment are changed. Inside the struaturd peri-
ods remain unchanged.

In this section we show the first important result of this If we divide the finite periodic sequend®/(x)}" at an
paper: a method which increases the coherent transmissi@tbitrary position in a left and right part, namely, (x) and

IIl. INVARIANCE OF RESONANCE ENERGIES-
INCREASE OF TRANSMISSION
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TABLE |. Variables and functions used. A(Lb):|b(sll_)| =c,sinhxLy, (21)
Lb barrier thickness Lp) =Re{af)} = coshkL,coskL,,— c,sinhkL ysinkL,, .
Ly well thickness (22
m, effective electron mass

in the.barrlers(Ref. 23 B. (B1~7AB”)" superlattices
m,, effective electron mass ) .
in the wells(Ref. 23 We start from the unit celBA of a SL and define in the
Vi potential energy of barriers face of EQ.(18) V4(x) to be a part of the barrieB” and
E energy V,(x) to be the rest of the perioB'~?A. If we change the
k=Kk(E) = (2m, E) /% electron wave vector in order, according to Eq.18), to {V,(x),V4(x)}, we get the
the wells structureB;AB,=B'"YAB?” (0<vy=1). Now the period is

k= k(E)=[2my(V,—E)1¥¥%

decaying electron wave
vector in the barriers

built by an asymmetric resonant tunneling didéé&kTD), for
which the sum of the widths of the barrieBs~” and B”
equals the width of the original SL barrieBf L,;=(1—1)

t=cy(E)=1 (" m, +E”_‘w) Ly, Lyy=7Lp]. Since @1 7AB?)"=B' Y(AB)" 'AB’, a
KMy KMy periodic sequence of these ARTD’s, results again in a struc-

oyE)l km, &m, ture very similar to the normal S(Fig. 1), only the outmost

C=C(B)=3 xm, km barriers are modified. From Eq(16) we know that

Re{agiap} =Re(all}. Equations(11) and (12) show that
the real part ofa exclusively defines the resonance energies

VR(X), we can define the corresponding transfer matricegnd the miniband positions. Therefor®'( YAB?)"-SL's
M :=MPM,Mg:=M;*M""P (peN,0<p<n), wherep is
the number of complete periods M, (x) and M, corre-
sponds to the left part of the divided period. Sinkg'

possess all resonance energies of nornBA)(-SL's and
also the miniband positions are equal. The beneficial effect
of the modification from BA)" to (B~ YAB”)" can be seen

~M_Mg and M'"=MgM, this proves that the resonance in the transmission. We calculalie| of the structureB,;AB,
energies are invariant if we divide a finite periodic potential@"d then make use of EQLO). The calculation ob leads to

at an arbitrary position into two parts and reverse the order of baiame=2iA(Ly/2)P(Ly/2)— 2A(AL,/2)[ cosh kAL /2)

them??

Periodic sequences of the form{V(x);V,(x); —ic,sinh( kALy/2)]sinkL,,, (23

- n 1 H

,Vk(x)} sho_vv exactly the same behavior ugder CyC“CWhereALbzLbl—Lb2=(1—2y)Lb. To complete the trans-
permutations, SINCE(M;My: --M)(Myry---MI" trans- ¢ "o Im{ag apy} is given by Eq.(A5). The transmis-
forms to[ (M1 - -My) (MyM,- - -M))]", nasiam) B ey

sion through a B!~ YAB”)"-SL is given by

T ag2= {1+ be1ags|?U3_1[P(Lp) ]} % (24

In the following we apply the results of the previous sec-For energlesE* at which 3|rk*L =0 is fulfilled, bgiags
tion to the simplest case, a SL withperiods, alternatively does not depend oAL,. At these energies all structures
consisting of barriergB) and wells(A) and show that the behave as successive barriers. Equatid@2) reduces to
average transmission can be increased without changing th®(L ) = coshxlL,. Since coskL,>1 (coshkL,<1) for E
resonance positions. All variables and functions which are<\/, (E>V,), these energieEJ* are in the minigap$mini-
used from now on are summarized in Table I. band$ where|P(Ly)[>1 (|P(Lp)|<1). Applying Eq.(14)

IV. SUPERLATTICES

leads to
A. (BA)" superlattices L 11
For the sake of completeness we will very briefly derive Toin=| 1+ M (25)
the well known transmission for a normal SL withperiods. 1-P?(Ly)

For one period of a normal SL we get$)=MgM ,, where

Mg andM 4 are the transfer matrices for a barrier and a well,

respectively. Formulas favl,, Mg, andM{) are given by

Egs.(Al, (A2), and(A3) in the appendix. The transmission
T of the SL withn periods follows from Eq(10):10-

Since for E#E} the term|bgyagz|? depends strongly on
AL, it is possible to tune the transmission between the en-
ergy resonances in a wide range by choosing a prajey.
Since the number of periods only influences the transmission
aboveT i, this general behavior also persists when .
T =[1+|b§|2UZ_(Refa§’})] 1
st =[1+[bsUn-s(Refas;})] C. Superlattices with antireflection coating(BY?ABY?)"
1 Following the statement in Sec. lll, we have to find the
- 2! (20 optimal partition of the single SL cell, i.e., the optimal value
1+{A(Lp)Un-1s[P(Lp) ]} . = P T
of AL, to get the optimal miniband transmission. From the
calculation of the derivative dbg;ag,|? With respect taA L,

where we introduced
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FIG. 1. Schematic potential ¢&) normal SL of the form BA)",
(b) SL of the form @1 YABY)" with 0<y=<1/2, and(c) SL of the (c)
form (BY2ABY?)", also called an SL with antireflection coating = 197 s | SL with ARC
(ARC). The number of periods is chosen to be 6. The shaded m v d - b (B AB
regions mark one period of each potential. All three structures have = 081 X \',' i T (gmﬁgﬂ)s
the samen—1=5 Fabry-Peot energy resonances in each mini- < i o :BmABua;s
band, indicated by thin solid horizontal lines. The structure E 067 7 2 normal SL
(BY?ABY)" possesses one additional resonance per miniband, g 0.4 '/ orss ; (BAY®
marked by thin dashed lines. 2 - ’ Ea\ iy
s ;o2 ',lﬁ‘
- 1 ¥ Ve
(explicitly done in Appendix Band Eq.(24), we see that for °21 0751 ;;5 /
E<V, the transmission Eq(24) is strictly monotonic in- 0.0 "5-40“0 Il b v
creasing with decreasingL, and reaches a maximum for 0.35 0.40 0.45 0.50 0.55
AL,=0. In this special case the basis of the periodic poten- energy E (eV)
tial is built by a symmetric resonant tunneling dio@gm- o !
metric RTD) with a barrier width ofL,/2. FIG. 2. Calculated transmissidhick lineg of the first three

Therefore a SL of the formE{lleB”Z)” has the maxi- minibands, Eq.24), of GaAs/Al ;Ga, ;As SL structuregbarrier

S width L,=2.5 nm, well widthL ,= 6.5 nm, further material param-
mum average transmission and a normal SL of the formyicrs are given in the textof the form @' ?ABY)® for y

(BA)" has the minimum average transmission of all struc-_ {0,1/8, 1/4, 3/8,1/2 The positions of the transmission reso-
tures of the form Bli_yABy)n for energies below the barrier ances in all minibands do not depend pn(a) and (b) Demon-
heightVy,. In Appendix B we show that this strict monotony syrate that a monotone behavior for all energies is observed for the
does not persist for energies above the barfiesscan be first and the second miniband which are in the bandgap of the
seen in Fig. &) for the third miniband, i.e., that there are AlGaAs barriers.(c) Shows that the monotone behavior does not
energy intervals where the antireflection coating reduces thgersist for minibands above the barriers. The envelopes of the trans-
transmission. mission minima(thin lines are additionally plotted for theRA)®

The (BY2ABY)" structure can be seen as a normal SLand B¥?ABY?® structures(shown for all structures in Fig.)3

between an anti reflection coatif@dRC).'® Equation(23) g, &,, andE, mark the additional resonances in tH€ABY2)5

then reduces to structure E¥ mark the energy at which the transmission is indepen-
. dent fromy.
Per2ap2= 21A(Lp/2) P(Ly/2), (26) A
and the transmission is given By sion resonanceg; W|.th|.n each miniband. These resonanpes at
E; are the transmission resonances of the symmetric RTD
1 BY2ABY2, which of course appear in a periodic sequence.
T8 re= (270 ComparingP(L/2)=0 with P(L,/2)=cosgd), we find that

2° N
1H{2A(Ly/2)P(Lp/2)Un—s[ P(Lo) ]} this happens aj= 7/2d, which leads tad=\/4. At E; the
The additional ternP(L,/2) in the denominator of Eq27) half width barriers act as a/4 layer similar to ax/4-anti
compared to Eq(20) gives rise to one additional transmis- reflection layer in optic$®
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D. Calculation for GaAs/ Al ;Gay 7/AS superlattices A. Numerical integration

To demonstrate the studied behavior we show in Fig. 2 the Since it is not possible to analytically integrate the trans-
transmission T{),z, of SL's (n=6) consisting of mission of any SL structure presented here, we started with a
Al Ga 7As barriers withL,=2.5 nm and GaAs wells with numerical integration of the transmission of the first mini-
L,,=6.5 nm. We plot the transmission for five different val- Pand
ues ofy (or AL}) as a function of energy for the first, sec-
ond, and third miniband. The calculations are performed for TL = fE%‘a"T(E)dE
theT valley of the conduction band for a temperature of 4 K int 1 '
using the following material parametefs; band edge effec-
tive masses as a function of Al contextt m(x)=(0.067 E-.. andE}. denote the upper and the lower edge of the
+0.083&) My, (ii) nonparabolicity of the conduction bands: first miniband, given byP(Lp,)=%1. The transmission
m,=m(0,E), my=m(x,E) with m(x,E)=my(x)[1+(E  T(E) is given by Eq.(24). We note that the integrated trans-
—V)/0.7E4(x)], where Eq(x)=(1.512+ 1.45%) eV is the mission T, does not essentially depend on the number of
band gap, andiii) conduction band offset/,=0.64 E4(x) periodsn provided thain>1. In our case the relative differ-
—E,4(0)]=288.09 meV. A schematic of the conduction ence between 6 and 7 periods fgy=2 nmis 6<10 *. The
band is drawn in Fig. 1. In Figs(® and 2b) one can see the Parameters for the SL's are the same that we used for Figs. 2
monotone relation between (or AL,) and the transmission 0 4 except that the width of the barridrg is varied between
for the first and the second miniband, which are both belowt @nd 8 nm. Comparing SL'd =8 nm, L,,=6.5 nm) with
the potential of the barriers. This behavior has already beei=0 andy=1/2, the integrated transmission is enhanced by
discussed in the previous section and proved in Appendix Bt factor of more than 100. For expfly)<1, Fig. 5 shows
in Egs. (B2) and (B5). In Fig. 2c) the transmission for the a" exponential relation betweé'rfht ano_l t_he barn_er W|_oltﬂl_,J _
third miniband, which is above the barriers, is shown. Thefor all values ofy. The calculated miniband width is addi-

transmission resonances again do not depeng,dout be- tionally plotted and its relation to the integrated miniband

low an energy ofE% ~409 meV we observe a completely transmission is discussed at the end of this section. The

inverted behavior compared to the minibands below the barr_’nodulus of the negative exponent has its maximrB557

. Lo e . for the case of the normal SLyE0) and decreases with
riers: the transmission increases monotonic with decreasi

n . . . ..
. : Bcreasin , reaching its minimum(0.6789 for y=1/2.
v, and reaches its maximum for the normal SL structure. At-l-he ratioggf the magimum and rr::(inimun? expgnent is 2

E3 the transmission does not depend pnand aboveE;  _ 1 9x 1074, To gain more insight into this interesting be-

(but only inside the third minibandhe same monotone be- havior we approximate the transmission expression in order
havior as for the first and second miniband is observed.  to perform analytical integration.

Figure 3 shows the envelope of the transmission minima
Tmin for ve{0,1/8,1/4,3/8,1/2 for the first three minibands.
As already pointed out, the transmission is bounded below

min

B. Analytic approximations for (BA)" superlattices

by T.in and above by unity for any arbitrary numberof From the transmission for a periodic structure, given by
periods. Therefore our results are valid for arbitrary numbeEd- (10) and for the SL case by ER0), we calculate the full
of periods, even in the limin—c. width at half maximum(FWHM) of the single resonances.

To make sure that we have at least one resonance we assume
that the number of periodsis at least 2. FolT(W=1/2, the

V. INTEGRATED MINIBAND TRANSMISSION condition

In this section the influence of the ratip on the trans- |IbU,_1[P(Ly)]|=1 (28
mission of the SL minibands is studied while varying addi-
tionally the barrier widthL,,. To motivate this study Fig. 4 has to be fulfilled. Expanding,_1[P(Ly)] around theith
shows the calculated transmission of the first miniband on &sonance energy, wheR§L ,) = cosiz/n, into its Taylor se-
logarithmic scale for a constant well width &f,=6.5 nm  ries of first order, leads to
and three different values df, (2.5, 6, and 8 nm The
increasing effect of the modificationg ¢ 0) of the SL's can
be seen by considering the values of the transmission func-  |Un—1[P(Ly)+AP(Ly) ]|~ e
tion between the resonances. For the thickest bar@ensn) Sin? —
the difference between the standard SL and the SL with ARC n
is by a factor of about ¥0 Further it is interesting to note
that the transmission shape for the SL with ARC is not For xL,>1 we can replace the hyperbolic functions in
changed at all. The only difference between the thred=q. (22) by exponential functions. Further we will approxi-
(BY?ABY?)6 structures with different.,’s is the change of mate f(E):=coskL,,—c,sinkL,, in the energy range where
the miniband width. This shows that the transmission behaviP(Lp)|<1 (inside thejth miniband by its Taylor series of
ior can be fundamentally changed by the modification introirst order around the center energy of the jth miniband,
duced in Sec. Ill. leading to

[AP(Lp)[. (29)

155319-5
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FIG. 3. Calculated envelope of the transmission minima by Eq
(25), corresponding to the transmission functions plotted in Fig. 2

!

fi .
P(Ly)~~ (E-Eb)expxly,

fj’

at(E) EL). (30
T 0)- (30
Eg) is given by thejth solution of the equatiof(E)=0 and
is also the solution of thgth bound state of an isolated
quantum well of thickness,,. Changing the energy from
the ith resonance in thgth minibandE| to the valueE]

+ AE!/2, where the transmissioH™ has dropped to 1/2, the
corresponding change (L) is given by

l

1
AP(Ly)~ —f eprLb (31

Substituting Eq.(31) into Eq. (29), together with Eq.(28)
yields

4S|r12i—77
exp(— «Lp).

| O

(32
n|f;][bl

Up to this point all results in this section are only restricted

to structures with well separated resonances, but no further
restrictions are necessary. Now we concentrate on

(BA)"-SLs. Using|b$| = c;sinhkLy~(c,/2) expkLy,, where
c, is evaluated at the cent& of the miniband, this gives
the FWHM for theith resonance in thgth miniband:

i
X~ 2xLy).

AEl~
ncy| j|

(33

In the framework of the above Taylor series expansion of
U, 1[P(Lp)] the SL transmission resonances are Lorentz

curves of the form

j27l
i

AE{'/z

TQE) = (34)

Integrating and summing over ailresonances of the mini-

PHYSICAL REVIEW B68, 155319 (2003

2
—exp(—2«kLp).
o j|

Tin
SL
jthres b

n—-1
=] B
TSL int™— z

i=1

(E)dE=

(35

In agreement with our comment from section VI, ;.
does not depend on the number of periodsf one applies
above calculations to the case=2, where the potential
forms a symmetric RTD, Eq29) holds exact and one ends
again with

= _
TRTD int™ f
jth

This shows that the integrated transmission throughjthe

2
—exp(—2«Ly,). (36)

THAdE=
be Cqlfi|

res

.miniband of a SL with an arbitrary number of periodss

equal to the integrated transmission through e reso-
nance of a symmetric RTD with the same barrier and well

(a)
T
= 011
E o
Z 0.01 g SL with ARC
o - (B"IEAB”E)G
g 1E-34 Fi —— (BS"BABara)a
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2 1E-adfy) (B7*AB'®) .
o normal SL Y b,
— 1E-5 ;' (BA)S g=e- nm \\\3_;‘}::.
(b) 0.05 0.06 0.07 ol
1_
= o0
w
F 0014
|
o i
B3] j7
E
0 i
C 1E-44/
d
1E5-1=
(c)
1-
= 014
w
= 0.014
[
°
B 1E3df
E :
@ .
C 1E-44
@
1E-54+ . ; |
0.0596 0.0598 0.0600 0.0602

energy (eV)

FIG. 4. Transmission of the first miniband oBY YAB?)®

band finally leads to the approximated integrated transmisstructures for a barrier width, of (&) 2.5 nm,(b) 6 nm, and(c) 8

sion of thejth miniband

15531

nm. The well widthL,, is 6.5 nm for all three structures.
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- _e-- (BTIBAB1IB)6
P o normal SL (B'A)s . ' . . 1E-6 Therefore the integrated miniband transmission @&lawith
1 2 3 4 5 6 7 8 ARC is of the same order as the miniband widife.,

barrier width L, (nm)

S 0. 0.1 TABLE Il. Dependency of important miniband parameters as a
& function of the barrier width_, .

0014 4{0.01 BA)" Bl2ABY2n
< (BA) ( )
= —o— miniband -

@ 1E-3 width A 11E3 FWHM AE, Eq (33 exp(—2«Ly) —

= ] 3 integrated miniband exp(2«Ly) exp(—«Ly)
% {--#-- SL with ARC - - . T(n) =2
c 1E-4- (BWZABVZ)S . | 1E-4 tl’anSmISSIon int ,n/

g R (leaABafB)e ~ A Egs.(35), (39
..8 {E.5 Ja (B AB"Y ~ lies miniband widthA, Eq. (37) exp(—«Ly) exp(—«Ly)
o
o
2
£

1

Tl .

FIG. 5. Numerically integrated transmission of the first mini- 2<TSLARC im/AJ<1' (49
band of B~ YAB?)® structures as a function of the barrier width in contrast to the behavior of a normal SL, as stated in Eq.
Lb_._The open diamonds show as a comparison the width of theg38)_ This phenomenon can be seen in Fig. 5 and is the
miniband. second important result of this paper. Table Il summarizes

. o the results of this section.
width as the SL. The only condition is that the resonances are

well approximated by a Lorentzian. In terms of ballistic cur- VI. TUNNELING TIMES
rent both structures behave similar given that the 1D electron

e S o We proceed by showing that the increase of the off-
\c,i\;isdttrrl]butlon function is constant throughout the m|n|bandresonance transmission iBY_ YAB?)"-SLs, which we stud-

. . . - ied in the previous section, comes along with a decrease of
Makln? use of Eq.j(30), the boupdanes of theth M the in-resonance phase tunneling time. Recently the concept
Emar)d, Emax and Ep,, respectively, are given by of the phase tunneling time was successfully applied by
3| [ (Ehaxmin— E)expxLy=*1. The widthA; of the mini-  pereyra, who showed results in good agreement with optical-
band then reads pulse tunneling experiments in the gap of periodic
structure$? Given the transmission coefficientt,
_ =|ty|expl¢y) of any arbitrary potentiaV, the phase time is
Aj=Eha— Ehin= meXp(_ KkLp). (37)  defined to bery=d¢y/dw. If we use the inverse transmis-
i sion coefficienta\,zt\jl the phase time can be written in

If we compare Egs(35) and (37) we notice thatthe inte-  terms of the real and imaginary part @ :

grated miniband transmissionLT;., is not proportional to J Im{ay}

the miniband widthA | , i.e., the ratio V=T hpgarctang et (42)
~ iodi (n)
Tl A~ iy 38 For ann-fold periodic structure we replaas, by a'"’, use

stind A~ €XP(~ rcLp) (38) Egs.(8) and(9) and get after some algebra
decreases exponentially with increasing. Re{al
7M=4TM (n— > Uzn-1(Refa})
C. Analytic approximations for (BY?ABY?)" superlattices
Since the transmission resonances are not well separated Im{a} JRefal

for the SL with ARC, a different approach for the integration 7 E

is used. The integral of the transmission of the SL with ARC 1-Ref{a;

is mainly given by the integral of ,,;,, Egs.(25) and(26).

: . : : 1 Jdlm{a}
Since this curve is concave and reaches a point where — Z=Up_1(Rea}) (42)
= i 2 21 JE |
=1, the following inequality holds:

where T is the transmission probability of the periodic
A2 L structure given by Eq(10). This result is simpler than the
27 mexq KLp) one obtained in Ref. 21.
! Using Eqgs.(22) and(A5) we plot in Fig. 6 the tunneling
" times as a function of the energy for thB YAB")"-SL’s

<J_ _ TsiarcdE studied in Sec. IV D. The resonant behavior of the transmis-

Jih minband sion probabilityT(" is reproduced also in the tunneling time
characteristic: the maxima of the tunneling time are almost at
<—exp(—kLp)=A4;. (390  the energy positions of the transmission maxima. The tunnel-
|fj | ing time peak values depend strongly on the position of the

155319-7
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6- therefore the position of the minibands do not change. Ap-
] —— normal SL plied to superlatticeéSL’s) the modification of only two bar-

5] (BA)° rier layer thicknesses allows the tuning the transmission of

I (B¥*AB"° SL minibands in a wide range. The maximum increase of the

4 S SL with ARC transmission is reached for the case of a symmetric antire-
(B"AB"¥)° flection coating(ARC), consisting of one barrier with half

the width of the SL barriers on each side of the SL. The ratio
of the integrated transmission through normal SL minibands
and the miniband width drops exponentially with the barrier
width. For the SL with ARC this ratio is constant. Therefore
for thick barriers the application of the ARC results in a
A strong increase of the integrated transmissianfactor of
A Y more than 100, for the parameters which we studi€alcu-

T lations of the in-resonance phase tunneling time show a
0.06 faster tunneling process in the SL with ARC. All properties

phase tunneling time (10™"%s)

.. o

energy E (eV) were shown to be valid for any number of periads
FIG. 6. Calculated phase tunneling time through ACKNOWLEDGMENTS
GaAs/Al Ga, As SL structures of the formBA)®, (B¥ABY4)S,
and BY?ABY?)® in the range of the first miniband. C. Pacher is grateful to W. Boxleitner for fruitful discus-

sions. We acknowledge support by the Austrian Science
resonances in the miniband: the outmost resonances possésmds(FWF) Grant No. Z24.
the highest tunneling times, near the middle of the miniband
the in-resonance tunneling time reaches its minimum. Since APPENDIX A: DEFINITIONS AND IDENTITIES
the widths of the transmission resonance peaks show the in- . . S
verse behavior this is in complete agreement with the |N€ transfer matriM, of a well of widthL, is given by
energy-time uncertainty relation. — i i . ;

If we compare B~ YAB”)"-SL’s with increasing values M= diad exp( kL) exlikLu) . (A1)
of y up to 1/2, we observe a strong, monotone decrease of The elements of the transfer matfi#kg of a barrier are
the in-resonance tunneling timé-or clarity reasons only given by
three curves are drawn in Fig.)@&quation(42) allows us to

calculate the tunneling time at resonance analytically. From ag=coshkLy—ic,sinh«Ly,
the transmission resonance conditibf? =1, Eq.(11), fol- b o einhl v (AL (A2)
lows directlyU,, ,(Re{a})=0, which reduces Eq42) to p=iCiSinhkLy=IA(Lp).
The elements of the transfer matisl)=MgM , of one
- Im{a} JRe{a} : : - sk TREA
— (43) period of a superlattice are given by
res
1-Re{a} JE " ,
. L . . ag =P(Lp) +iS(Lp),
This equation is universal for any periodic structure. The (A3)
number of periodsh enters only as a factor. Therefore the b(le)=iA(Lb)expikLW,

following conclusions of Eq(43) are again valid for alh. h

Applied to B~ YAB”)"-SLs, the dependence of fa} on y where

makes it possible to adjust the in-resonance tunneling time i | ) = jm{a{)} = — coshkLysinkL,,— c,sinhxL,coskL,,
a certain range by choosing a proper valueyofWith Eq. (A4)
(A5) and the fact that sik(,,) and d Re{a}/dE both change !

their signs between the minibands we directly proof that ?gsfjpéél_i\%l;nd P(Ly) are defined by Eqgsi21) and (22),

Q) The imaginary part ofgiag, reads

res

>0=E<V,. (44)
dALp ’ Im{ag; agz} = IM{ag} + 2A(Lp1) A(Lp)SinkLy,
1/2 1/2yn D n D
Therefore B A_B An.Sl’s [(BA) —SL;] shoyv the short- =S(Lb)+cf(coshKLb—coshKALb)sinkLW,
est (longesj in-resonance tunneling times of all
(B~ 7ABY)"-SLs. (A5)
WhereALb:Lbl_Lbz.
VII. CONCLUSIONS

. . APPENDIX B: PROOF TO SEC. IVC
We have shown that coherent transport in periodic struc-

tures can be very easily optimized or tuned. The integrated To prove that|bg;ag,|?> decreases monotonic with de-
transmission through minibands below the potential of thecreasingAL,, we show thatd(|bgyags|?)/dAL,>0 for
barriers can be increased, while the resonance energies and ,>0 andd(|bg;ags|?)/dAL,=0 for AL,=0 (AL, is re-

155319-8
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stricted to positive valugs The following definition and
identity will be used:

Q(Ly):=sinhkL,coskL,,— c,coshkLsinkL,,,

2 2 ” (B1)
P?(Ly) —Q?(Ly)=1—cIsirPkL,, .

The calculation of the first derivative ¢bg;ag,|? With re-
spect toAL, yields

d(|bgiap2l?)/dALy=d(Im*{agiapz})/dAL,,
=2c2k sinhkAL[Q(Ly)cysinkL,,

+c2sirPkL,coshkAL). (B2)

The conditionP?(Ly)=<1 inside a miniband leads together

with Eq. (B1) to
Q(Lp)?=c?sirkL,<|Q(Ly)|<|cisinkL,|. (B3)

From Egs.(B3) and the identityc?—c5=1 we obtain

PHYSICAL REVIEW B 68, 155319(2003

Q(Lyp)c,sinkL,,+ c3sirPkL,,> 0. (B4)

If we consider only energids<V,,, the decaying wave vec-
tor k, defined in Table I, is a real positive number,
coshkALp)=1 and we therefore get

Q(Ly)cysinkLy,+ c?sirPkL,coshkAL,>0.  (B5)

Substituting Eq.(B5) into Eq. (B2) completes the proof.
Note that the transmission does not dependidn for en-
ergies where sikL,=0 is fulfilled.

It is important to notice that this proof fails for energies
E>V,, since k becomes imaginary, therefore coshy)
<1. Now Eq.(B5) cannot be deduced from E{B4) and
does not hold any longer. Indeed for energies above the bar-
riers the transmission through the normal superlattice can be
higher than the transmission through the superlattice with
ARC [Fig. 2(0)].
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