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Adjusting the coherent transport in finite periodic superlattices
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The coherent transmission function and the tunneling time of one-dimensional arbitrary finite periodic
structures are adjusted without changing the resonance energies and therefore the band positions. The method
is based on modifications of the single period which are reflected in a similarity transformation of the corre-
sponding transfer matrix. Applied to semiconductor superlattices a strong tuneable increase of the average
miniband transmission is obtained. The maximum of the average miniband transmission is reached if the single
period is built by a double barrier resonant tunneling diode. The fundamentally different transmission behavior
compared to a standard superlattice is analyzed. Calculations of the phase tunneling time show that the increase
of the transmission comes along with a faster tunneling process through the transmission resonances. All
results are valid for any number of periods.
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I. INTRODUCTION

In the past scattering and propagation of electromagn
and quantum waves have been extensively studied. In s
state physics the envelope function approximation~EFA!1–5

made it possible to describe the periodic lattice potentia
each layer by a material dependent effective electron m
m* and a material dependent constant potentialV. This pow-
erful method together with the transfer matrix formalism6,7

made the study of coherent transmission behavior of het
structures very simple.

Finite periodic structures, in which each period consists
a barrier/well pair, called superlattices8 ~SL’s! have been ex-
tensively examined9–12,14using the transfer matrix approac
The finiteness and periodicity are fully incorporated witho
any need for Bloch functions. The periodicity of a finite S
leads to resonances in the transmission function, wher
reaches the maximum value of unity. Recently a compreh
sive presentation, studying also multichannel systems,
given by Pereyra.13

In the present paper the effects of modifications of
unit cell of one-dimensional periodic structures, which a
reflected in a similarity transformation of their transfer m
trix, are studied. It is shown that the coherent transmiss
function and the tunneling time of arbitrary finite period
structures can be adjusted without changing the reson
energies and therefore the band positions.

The paper is organized as follows. In Sec. II the est
lished theory of transfer matrices, including the resona
conditions for finite periodic potentials, is briefly reviewe
Section III introduces the transformation of finite period
potentials yielding an increase of the average transmis
while keeping the resonance energies invariant. This tra
formation is applied to a SL in Sec. IV. We give analytic
expressions for the transfer matrix and the transmission
the transformed SL’s and show how the invariance of
resonance energies can be used to tune and optimize
transmission between the resonances in the minibands
Sec. V the dependence of the integrated miniband trans
sion on the barrier width is studied for the modified SL
Analytical approximations for the SL miniband widthD and
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for the integrated transmission through the minibands of
modified SL’s are given. Finally the phase tunneling times
the analyzed structures are calculated and discussed in
VI. Numerical calculations for GaAs/AlGaAs SLs demo
strating the results complement Secs. IV to VI.

II. FINITE PERIODIC POTENTIALS

Here we will summarize mainly known results o
one-channel transfer matrices for periodic potenti
which we will use in the later sections. If we deno
the one-dimensional wave functionC(x)5A1exp(ikx)
1A2exp(2ikx) of a region of constant potential asC
5(A1,A2)T, the wave functions at the left and right inte
face of a certain region,CL and CR , respectively, are re-
lated by the transfer matrixM through15 (AL

1,AL
2)T

5M (AR
1,AR

2)T. Neglecting spin, the time reversal invarian
and the conservation of the probability density current le
to the structure17 of M

M5S a b

b* a* D , ~1!

where

detM5uau22ubu251, ~2!

Tr~M !5a1a* 52 Re$a% ~3!

holds.17 In terms of the transmission and reflection coef
cientst and r, the transfer matrix can be written as12

M5S 1/t r * /t*

r /t 1/t* D . ~4!

Since by construction the transfer matrix of a sequence
layers is the product of the transfer matrices of each la
the transfer matrix of a potential consisting ofn periods is
the nth power of the transfer matrix of one period:

Mn5S a(n) b(n)

b(n)* a(n)* D . ~5!
©2003 The American Physical Society19-1
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For n>2, a(n) andb(n) can be expanded to18

a(n)5aUn21~Re$a%!2Un22~Re$a%!, ~6!

b(n)5bUn21~Re$a%!, ~7!

whereUn(x) denote the Chebyshev polynomials of the s
ond kind. Using the recurrence relationUn(x)52xUn21(x)
2Un22(x) and the relationTn(x)5Un(x)2xUn21(x),19

whereTn(x) denote the Chebyshev polynomials of the fi
kind, we separate the real and the imaginary part ofa(n),
which correspond to the inphase and out of phase compo
of the inverse transmission coefficient, respectively:

Re$a(n)%5Tn~Re$a%!, ~8!

Im$a(n)%5Im$a%Un21~Re$a%!. ~9!

It is interesting to note that the real part of the inverse tra
mission coefficient through any periodic structure is a fu
tion of the real part of one period only. The transmissionT(n)

of any ~field-free! n-fold periodic structure is given by10–13

T(n)5ua(n)u225@11ubu2Un21
2 ~Re$a%!#21. ~10!

Resonances withT(n)51 occur if and only if b(n)

5bUn21(Re$a%)50. BecauseUn21(x) hasn21 zeros in
(21,1) it can easily be seen that anyn-fold periodic struc-
ture exhibits at leastn21 energy resonances where t
transmission reaches exactly 1. SinceUk(x)52k) i 51

k @x
2cosip/(k11)# this yields13,16

T(n)51⇐Re$a%5cos~ ip/n!, i 51, . . . ,n21. ~11!

Yuh and Wang20 showed that the position of the min
bands ofany infiniteperiodic potential is given by the rea
solutions forq of the equation1

2 (M111M22)5cosqd, where
q is the Bloch wave vector andd is the length of one period
In our notation this reads

Re$a%5cosqd. ~12!

Equations~11! and ~12! show directly the strong relation
between energy resonances in finite periodic potentials
band positions in infinite periodic potentials. Identifying bo
cos arguments one finds the corresponding wave numb10

and wavelengths for the finite potential16

T(n)51⇐qi5 i
p

L
⇔l i5

2p

qi
5

2L

i
, ~13!

where L5nd is the length of the structure. This formula
show that the Bloch waves build standing waves across
entire periodic structure. The corresponding transmiss
resonances are Fabry-Pe´rot resonances.16 Inserting the reso-
nance condition Eq.~11! into Eq. ~8! one easily verifies tha
a(n)561, indicating a 0 orp phase shift at resonance.

III. INVARIANCE OF RESONANCE ENERGIES-
INCREASE OF TRANSMISSION

In this section we show the first important result of th
paper: a method which increases the coherent transmis
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of periodic structures without changing the miniband po
tions and even the individual resonance energies inside
minibands. Since the envelope of the maxima ofUn21

2 (x) for
uxu<1 is given by 1/(12x2), from Eq.~10! follows that the
envelope of the minima ofT(n) is given by

Tmin5F11
ubu2

12Re2$a%
G21

. ~14!

The transmissionT(n) is bounded below byTmin and above
by unity for any arbitrary numbern of periods. Therefore our
results are valid for arbitrary number of periods, even in
limit n→`. Equation~14! together with~11! yields that for
a fixed Re$a% a change ofubu would only change the trans
mission between the resonance peaks but not their posi
To achieve this we apply a similarity transformation to t
transfer matrixM of a single cell of the periodic potential

M 85M1
21MM1 . ~15!

Since the trace of a matrix is invariant under a similar
transformation, i.e., Tr$M 8%5Tr$M %, this yields the desired
result

Re$a8%5Re$a%, ~16!

while in generalub8uÞubu. If the transfer matrixM is written
as the product of two matrices it is easy to see how t
similarity transformation can be performed:

M5M1M2⇒M 85M1
21MM15M2M1 . ~17!

In terms of the corresponding potentialsV(x),V8(x), V1(x),
andV2(x), which belong to the transfer matricesM ,M 8,M1,
andM2, respectively, this reads

V~x!5$V1~x!;V2~x!%,

V8~x!5$V2~x!;V1~x!%, ~18!

where $•••;•••% denotes the concatenation of two pote
tials.V8(x) is the potential which results fromV(x) by shift-
ing a part, namely,V1(x), from the left to the right side.
Different partitions ofV(x) into V1(x) and V2(x) lead to
differentV8(x), and therefore in general to differentub8u and
consequently to different transmission values between
fixed resonance positions. Thus for an optimization of
transmission between the energy resonances one has to
the optimal partition ofV(x) or, in other words, the optima
dividing point of the unit cell.

From the power of the transfer matrixM 8

M 8n5~M1
21MM1!n5M1

21MnM1 ~19!

it can be seen that the similarity transformation given in E
~15! also belongs to finite periodic sequences ofV(x) and
V8(x), i.e., to$V(x)%n and$V8(x)%n. Writing Eq. ~19! in the
form M 8n5M2Mn21M1, we see that only the interfaces t
the environment are changed. Inside the structuren21 peri-
ods remain unchanged.

If we divide the finite periodic sequence$V(x)%n at an
arbitrary position in a left and right part, namely,VL(x) and
9-2
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ADJUSTING THE COHERENT TRANSPORT IN FINITE . . . PHYSICAL REVIEW B 68, 155319 ~2003!
VR(x), we can define the corresponding transfer matri
MLªM pM1 ,MRªM1

21Mn2p (pPN,0<p,n), wherep is
the number of complete periods inVL(x) and M1 corre-
sponds to the left part of the divided period. SinceMn

5MLMR and M 8n5MRML this proves that the resonanc
energies are invariant if we divide a finite periodic potent
at an arbitrary position into two parts and reverse the orde
them.22

Periodic sequences of the form$V1(x);V2(x);
•••;Vk(x)%n show exactly the same behavior under cyc
permutations, since@(M1M2•••Ml)(Ml 11•••Mk)#n trans-
forms to @(Ml 11•••Mk)(M1M2•••Ml)#n.

IV. SUPERLATTICES

In the following we apply the results of the previous se
tion to the simplest case, a SL withn periods, alternatively
consisting of barriers~B! and wells~A! and show that the
average transmission can be increased without changing
resonance positions. All variables and functions which
used from now on are summarized in Table I.

A. „BA…

n superlattices

For the sake of completeness we will very briefly deri
the well known transmission for a normal SL withn periods.
For one period of a normal SL we getMSL

(1)5MBMA , where
MB andMA are the transfer matrices for a barrier and a w
respectively. Formulas forMA , MB , andMSL

(1) are given by
Eqs.~A1, ~A2!, and~A3! in the appendix. The transmissio
TSL

(n) of the SL withn periods follows from Eq.~10!:10–13

TSL
(n)5@11ubSL

(1)u2Un21
2 ~Re$aSL

(1)%!#21

5
1

11$A~Lb!Un21@P~Lb!#%2
, ~20!

where we introduced

TABLE I. Variables and functions used.

Lb barrier thickness
Lw well thickness
mb effective electron mass

in the barriers~Ref. 23!
mw effective electron mass

in the wells~Ref. 23!
Vb potential energy of barriers

energyE
k5k(E)5(2mwE)1/2/\ electron wave vector in

the wells
k5k(E)5@2mb(Vb2E)#1/2/\ decaying electron wave

vector in the barriers

c15c1~E!5 1
2Sk

k

mb

mw
1

k

k

mw

mb
D

c25c2~E!5 1
2Sk

k

mb

mw
2

k

k

mw

mb
D
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A~Lb!5ubSL
(1)u5c1sinhkLb , ~21!

P~Lb!5Re$aSL
(1)%5coshkLbcoskLw2c2sinhkLbsinkLw .

~22!

B. „B1ÀgABg
…

n superlattices

We start from the unit cellBA of a SL and define in the
face of Eq.~18! V1(x) to be a part of the barrierBg and
V2(x) to be the rest of the periodB12gA. If we change the
order, according to Eq.~18!, to $V2(x),V1(x)%, we get the
structureB1AB25B12gABg (0<g<1). Now the period is
built by an asymmetric resonant tunneling diode~ARTD!, for
which the sum of the widths of the barriersB12g and Bg

equals the width of the original SL barriersB@Lb15~12g!
Lb , Lb25gLb]. Since (B12gABg)n5B12g(AB)n21ABg, a
periodic sequence of these ARTD’s, results again in a str
ture very similar to the normal SL~Fig. 1!, only the outmost
barriers are modified. From Eq.~16! we know that
Re$aB1AB2%5Re$aSL

(1)%. Equations~11! and ~12! show that
the real part ofa exclusively defines the resonance energ
and the miniband positions. Therefore (B12gABg)n-SL’s
possess all resonance energies of normal (BA)n-SL’s and
also the miniband positions are equal. The beneficial ef
of the modification from (BA)n to (B12gABg)n can be seen
in the transmission. We calculateubu of the structureB1AB2
and then make use of Eq.~10!. The calculation ofb leads to

bB1AB252iA~Lb/2!P~Lb/2!22A~DLb/2!@cosh~kDLb/2!

2 ic2sinh~kDLb/2!#sinkLw , ~23!

whereDLb5Lb12Lb25(122g)Lb . To complete the trans
fer matrix, Im$aB1AB2% is given by Eq.~A5!. The transmis-
sion through a (B12gABg)n-SL is given by

TB1AB2
(n) 5$11ubB1AB2u2Un21

2 @P~Lb!#%21. ~24!

For energiesEj* at which sinkj*Lw50 is fulfilled, bB1AB2

does not depend onDLb . At these energies all structure
behave asn successive barriers. Equation~22! reduces to
P(Lb)5coshkLb . Since coshkLb.1 (coshkLb,1) for E
,Vb (E.Vb), these energiesEj* are in the minigaps~mini-
bands! where uP(Lb)u.1 (uP(Lb)u,1). Applying Eq.~14!
leads to

Tmin5F11
ubB1AB2u2

12P2~Lb!
G21

. ~25!

Since for EÞEj* the term ubB1AB2u2 depends strongly on
DLb it is possible to tune the transmission between the
ergy resonances in a wide range by choosing a properDLb .
Since the number of periods only influences the transmiss
aboveTmin , this general behavior also persists whenn→`.

C. Superlattices with antireflection coating„B1Õ2AB1Õ2
…

n

Following the statement in Sec. III, we have to find t
optimal partition of the single SL cell, i.e., the optimal valu
of DLb , to get the optimal miniband transmission. From t
calculation of the derivative ofubB1AB2u2 with respect toDLb
9-3
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C. PACHER AND E. GORNIK PHYSICAL REVIEW B68, 155319 ~2003!
~explicitly done in Appendix B! and Eq.~24!, we see that for
E,Vb the transmission Eq.~24! is strictly monotonic in-
creasing with decreasingDLb and reaches a maximum fo
DLb50. In this special case the basis of the periodic pot
tial is built by a symmetric resonant tunneling diode~sym-
metric RTD! with a barrier width ofLb/2.

Therefore a SL of the form (B1/2AB1/2)n has the maxi-
mum average transmission and a normal SL of the fo
(BA)n has the minimum average transmission of all str
tures of the form (B12gABg)n for energies below the barrie
heightVb . In Appendix B we show that this strict monoton
does not persist for energies above the barriers@as can be
seen in Fig. 2~c! for the third miniband#, i.e., that there are
energy intervals where the antireflection coating reduces
transmission.

The (B1/2AB1/2)n structure can be seen as a normal
between an anti reflection coating~ARC!.16 Equation ~23!
then reduces to

bB/2AB/252iA~Lb/2!P~Lb/2!, ~26!

and the transmission is given by16

TSLARC
(n) 5

1

11$2A~Lb/2!P~Lb/2!Un21@P~Lb!#%2
. ~27!

The additional termP(Lb/2) in the denominator of Eq.~27!
compared to Eq.~20! gives rise to one additional transmi

FIG. 1. Schematic potential of~a! normal SL of the form (BA)n,
~b! SL of the form (B12gABg)n with 0<g<1/2, and~c! SL of the
form (B1/2AB1/2)n, also called an SL with antireflection coatin
~ARC!. The number of periodsn is chosen to be 6. The shade
regions mark one period of each potential. All three structures h
the samen2155 Fabry-Pe´rot energy resonances in each min
band, indicated by thin solid horizontal lines. The structu
(B1/2AB1/2)n possesses one additional resonance per minib
marked by thin dashed lines.
15531
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sion resonanceÊi within each miniband. These resonances
Êi are the transmission resonances of the symmetric R
B1/2AB1/2, which of course appear in a periodic sequen
ComparingP(Lb/2)50 with P(Lb/2)5cos(qd), we find that
this happens atq5p/2d, which leads tod5l/4. At Êi the
half width barriers act as al/4 layer similar to al/4-anti
reflection layer in optics.16

e

d,

FIG. 2. Calculated transmission~thick lines! of the first three
minibands, Eq.~24!, of GaAs/Al0.3Ga0.7As SL structures~barrier
width Lb52.5 nm, well widthLw56.5 nm, further material param
eters are given in the text! of the form (B12gABg)6 for g
P$0,1/8, 1/4, 3/8,1/2%. The positions of the transmission res
nances in all minibands do not depend ong. ~a! and ~b! Demon-
strate that a monotone behavior for all energies is observed for
first and the second miniband which are in the bandgap of
AlGaAs barriers.~c! Shows that the monotone behavior does n
persist for minibands above the barriers. The envelopes of the tr
mission minima~thin lines! are additionally plotted for the (BA)6

and (B1/2AB1/2)6 structures~shown for all structures in Fig. 3!.

Ê1 , Ê2, andÊ3 mark the additional resonances in the (B1/2AB1/2)6

structure.E3* mark the energy at which the transmission is indep
dent fromg.
9-4
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D. Calculation for GaAsÕAl0.3Ga0.7As superlattices

To demonstrate the studied behavior we show in Fig. 2
transmission TB1AB2

(n) of SL’s (n56) consisting of
Al0.3Ga0.7As barriers withLb52.5 nm and GaAs wells with
Lw56.5 nm. We plot the transmission for five different va
ues ofg ~or DLb) as a function of energy for the first, se
ond, and third miniband. The calculations are performed
theG valley of the conduction band for a temperature of 4
using the following material parameters:~i! band edge effec-
tive masses as a function of Al contentx: me(x)5(0.067
10.0838x)m0, ~ii ! nonparabolicity of the conduction band
mw5m(0,E), mb5m(x,E) with m(x,E)5me(x)@11(E
2V)/0.7Eg(x)#, where Eg(x)5(1.51211.455x) eV is the
band gap, and~iii ! conduction band offset:Vb50.66@Eg(x)
2Eg(0)#5288.09 meV. A schematic of the conductio
band is drawn in Fig. 1. In Figs. 2~a! and 2~b! one can see the
monotone relation betweeng ~or DLb) and the transmission
for the first and the second miniband, which are both be
the potential of the barriers. This behavior has already b
discussed in the previous section and proved in Appendi
in Eqs. ~B2! and ~B5!. In Fig. 2~c! the transmission for the
third miniband, which is above the barriers, is shown. T
transmission resonances again do not depend ong, but be-
low an energy ofE3* '409 meV we observe a complete
inverted behavior compared to the minibands below the b
riers: the transmission increases monotonic with decrea
g, and reaches its maximum for the normal SL structure.
E3* the transmission does not depend ong, and aboveE3*
~but only inside the third miniband! the same monotone be
havior as for the first and second miniband is observed.

Figure 3 shows the envelope of the transmission min
Tmin for gP$0,1/8,1/4,3/8,1/2% for the first three minibands
As already pointed out, the transmission is bounded be
by Tmin and above by unity for any arbitrary numbern of
periods. Therefore our results are valid for arbitrary num
of periods, even in the limitn→`.

V. INTEGRATED MINIBAND TRANSMISSION

In this section the influence of the ratiog on the trans-
mission of the SL minibands is studied while varying ad
tionally the barrier widthLb . To motivate this study Fig. 4
shows the calculated transmission of the first miniband o
logarithmic scale for a constant well width ofLw56.5 nm
and three different values ofLb ~2.5, 6, and 8 nm!. The
increasing effect of the modifications (gÞ0) of the SL’s can
be seen by considering the values of the transmission fu
tion between the resonances. For the thickest barriers~8 nm!
the difference between the standard SL and the SL with A
is by a factor of about 104. Further it is interesting to note
that the transmission shape for the SL with ARC is n
changed at all. The only difference between the th
(B1/2AB1/2)6 structures with differentLb’s is the change of
the miniband width. This shows that the transmission beh
ior can be fundamentally changed by the modification int
duced in Sec. III.
15531
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A. Numerical integration

Since it is not possible to analytically integrate the tran
mission of any SL structure presented here, we started wi
numerical integration of the transmission of the first min
band

Tint
1 5E

Emin
1

Emax
1

T~E!dE.

Emax
1 and Emin

1 denote the upper and the lower edge of t
first miniband, given byP(Lb)571. The transmission
T(E) is given by Eq.~24!. We note that the integrated tran
mission Tint

1 does not essentially depend on the number
periodsn provided thatn@1. In our case the relative differ
ence between 6 and 7 periods forLb52 nm is 631024. The
parameters for the SL’s are the same that we used for Fig
to 4 except that the width of the barriersLb is varied between
1 and 8 nm. Comparing SL’s (Lb58 nm, Lw56.5 nm) with
g50 andg51/2, the integrated transmission is enhanced
a factor of more than 100. For exp(2kLb)!1, Fig. 5 shows
an exponential relation betweenTint

1 and the barrier widthLb

for all values ofg. The calculated miniband width is add
tionally plotted and its relation to the integrated miniba
transmission is discussed at the end of this section.
modulus of the negative exponent has its maximum~1.3557!
for the case of the normal SL (g50) and decreases with
increasingg, reaching its minimum~0.6785! for g51/2.
The ratio of the maximum and minimum exponent is
21.931024. To gain more insight into this interesting be
havior we approximate the transmission expression in or
to perform analytical integration.

B. Analytic approximations for „BA…

n superlattices

From the transmission for a periodic structure, given
Eq. ~10! and for the SL case by Eq.~20!, we calculate the full
width at half maximum~FWHM! of the single resonances
To make sure that we have at least one resonance we as
that the number of periodsn is at least 2. ForT(n)51/2, the
condition

ubUn21@P~Lb!#u51 ~28!

has to be fulfilled. ExpandingUn21@P(Lb)# around thei th
resonance energy, whereP(Lb)5cosip/n, into its Taylor se-
ries of first order, leads to

uUn21@P~Lb!1DP~Lb!#u'
n

sin2
ip

n

uDP~Lb!u. ~29!

For kLb@1 we can replace the hyperbolic functions
Eq. ~22! by exponential functions. Further we will approx
mate f (E)ªcoskLw2c2sinkLw in the energy range wher
uP(Lb)u<1 ~inside thej th miniband! by its Taylor series of
first order around the center energyE0

j of the j th miniband,
leading to
9-5
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P~Lb!'
f j8

2
~E2E0

j !expkLb , f j85
d f~E!

dE
~E0

j !. ~30!

E0
j is given by thej th solution of the equationf (E)50 and

is also the solution of thej th bound state of an isolate
quantum well of thicknessLw . Changing the energy from
the i th resonance in thej th minibandEi

j to the valueEi
j

1DEi
j /2, where the transmissionT(n) has dropped to 1/2, the

corresponding change inP(Lb) is given by

DP~Lb!'
1

2
f j8

DEi
j

2
expkLb . ~31!

Substituting Eq.~31! into Eq. ~29!, together with Eq.~28!
yields

DEi
j'

4 sin2
ip

n

nu f j8uubu
exp~2kLb!. ~32!

Up to this point all results in this section are only restrict
to structures with well separated resonances, but no fur
restrictions are necessary. Now we concentrate
(BA)n-SL’s. UsingubSL

(1)u5c1sinhkLb'(c1/2)expkLb , where
c1 is evaluated at the centerE0

j of the miniband, this gives
the FWHM for thei th resonance in thej th miniband:

DEi
j'

8 sin2
ip

n

nc1u f j8u
exp~22kLb!. ~33!

In the framework of the above Taylor series expansion
Un21@P(Lb)# the SL transmission resonances are Lore
curves of the form

T̃i ,SL
j (n)~E!5F11S E2Ei

j

DEi
j /2

D 2G21

. ~34!

Integrating and summing over alln resonances of the mini
band finally leads to the approximated integrated transm
sion of thej th miniband

FIG. 3. Calculated envelope of the transmission minima by
~25!, corresponding to the transmission functions plotted in Fig
15531
er
n

f
z

s-

T̃SL int
j 5 (

i 51

n21 E
j th res

T̃i ,SL
j (n)~E!dE5

2p

c1u f j8u
exp~22kLb!.

~35!

In agreement with our comment from section V-AT̃SL int
j

does not depend on the number of periodsn. If one applies
above calculations to the casen52, where the potentia
forms a symmetric RTD, Eq.~29! holds exact and one end
again with

T̃RTD int
j 5E

j th res
T1,SL

j (2)dE5
2p

c1u f j8u
exp~22kLb!. ~36!

This shows that the integrated transmission through thej th
miniband of a SL with an arbitrary number of periodsn is
equal to the integrated transmission through thej th reso-
nance of a symmetric RTD with the same barrier and w

FIG. 4. Transmission of the first miniband of (B12gABg)6

structures for a barrier widthLb of ~a! 2.5 nm,~b! 6 nm, and~c! 8
nm. The well widthLw is 6.5 nm for all three structures.

.
.
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width as the SL. The only condition is that the resonances
well approximated by a Lorentzian. In terms of ballistic cu
rent both structures behave similar given that the 1D elec
distribution function is constant throughout the miniba
width.

Making use of Eq.~30!, the boundaries of thej th mini-
band, Emax

j and Emin
j , respectively, are given by

1
2 u f j8u(Emax/min

j 2E0
j )expkLb561. The widthD j of the mini-

band then reads

D j5Emax
j 2Emin

j 5
4

u f j8u
exp~2kLb!. ~37!

If we compare Eqs.~35! and ~37! we notice thatthe inte-

grated miniband transmission T˜
SL int
j is not proportional to

the miniband widthD j , i.e., the ratio

T̃SL int
j /D j;exp~2kLb! ~38!

decreases exponentially with increasingLb .

C. Analytic approximations for „B1Õ2AB1Õ2
…

n superlattices

Since the transmission resonances are not well sepa
for the SL with ARC, a different approach for the integratio
is used. The integral of the transmission of the SL with AR
is mainly given by the integral ofTmin , Eqs.~25! and ~26!.
Since this curve is concave and reaches a point wherT
51, the following inequality holds:

D j

2
5

2

u f j8u
exp~2kLb!

,E
j th miniband

TSLARC
(n) dE

,
4

u f j8u
exp~2kLb!5D j . ~39!

FIG. 5. Numerically integrated transmission of the first min
band of (B12gABg)6 structures as a function of the barrier wid
Lb . The open diamonds show as a comparison the width of
miniband.
15531
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Therefore the integrated miniband transmission of aSL with
ARC is of the same order as the miniband width, i.e.,

1

2
,TSLARC int

j /D j,1, ~40!

in contrast to the behavior of a normal SL, as stated in
~38!. This phenomenon can be seen in Fig. 5 and is
second important result of this paper. Table II summari
the results of this section.

VI. TUNNELING TIMES

We proceed by showing that the increase of the o
resonance transmission in (B12gABg)n-SL’s, which we stud-
ied in the previous section, comes along with a decreas
the in-resonance phase tunneling time. Recently the con
of the phase tunneling time was successfully applied
Pereyra, who showed results in good agreement with opti
pulse tunneling experiments in the gap of period
structures.21 Given the transmission coefficienttV
5utVuexp(ifV) of any arbitrary potentialV, the phase time is
defined to betV5]fV /]v. If we use the inverse transmis
sion coefficientaV5tV

21 the phase time can be written i
terms of the real and imaginary part ofaV :

tV52\
]

]E
arctan

Im$aV%

Re$aV%
. ~41!

For ann-fold periodic structure we replaceaV by a(n), use
Eqs.~8! and ~9! and get after some algebra

t (n)5\T(n)F S n2
Re$a%

2
U2n21~Re$a%! D

3
Im$a%

12Re2$a%

]Re$a%

]E

2
1

2
U2n21~Re$a%!

]Im$a%

]E G , ~42!

where T(n) is the transmission probability of the period
structure given by Eq.~10!. This result is simpler than the
one obtained in Ref. 21.

Using Eqs.~22! and ~A5! we plot in Fig. 6 the tunneling
times as a function of the energy for the (B12gABg)n-SL’s
studied in Sec. IV D. The resonant behavior of the transm
sion probabilityT(n) is reproduced also in the tunneling tim
characteristic: the maxima of the tunneling time are almos
the energy positions of the transmission maxima. The tun
ing time peak values depend strongly on the position of

e

TABLE II. Dependency of important miniband parameters a
function of the barrier widthLb .

(BA)n (B1/2AB1/2)n

FWHM DE, Eq. ~33! exp(22kLb) —
integrated miniband exp(22kLb) exp(2kLb)
transmissionTint

(n) ,n>2
Eqs.~35!, ~39!

miniband widthD, Eq. ~37! exp(2kLb) exp(2kLb)
9-7



ss
n

nc
e
th

e

o

h
e

e

ll

uc
te
th

a

p-

of
the
tire-
f
tio
ds

ier
re
a

a
es

-
nce

-

gh
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resonances in the miniband: the outmost resonances po
the highest tunneling times, near the middle of the miniba
the in-resonance tunneling time reaches its minimum. Si
the widths of the transmission resonance peaks show th
verse behavior this is in complete agreement with
energy-time uncertainty relation.

If we compare (B12gABg)n-SL’s with increasing values
of g up to 1/2, we observe a strong, monotone decreas
the in-resonance tunneling time.~For clarity reasons only
three curves are drawn in Fig. 6.! Equation~42! allows us to
calculate the tunneling time at resonance analytically. Fr
the transmission resonance conditionT(n)51, Eq. ~11!, fol-
lows directlyU2n21(Re$a%)50, which reduces Eq.~42! to

t res
(n)5\n

Im$a%

12Re2$a%

]Re$a%

]E
. ~43!

This equation is universal for any periodic structure. T
number of periodsn enters only as a factor. Therefore th
following conclusions of Eq.~43! are again valid for alln.
Applied to (B12gABg)n-SL’s, the dependence of Im$a% on g
makes it possible to adjust the in-resonance tunneling tim
a certain range by choosing a proper value ofg. With Eq.
~A5! and the fact that sin(kLw) and] Re$a%/]E both change
their signs between the minibands we directly proof that

]t res
(n)

]DLb
.0⇐E,Vb . ~44!

Therefore (B1/2AB1/2)n-SL’s @(BA)n-SL’s# show the short-
est ~longest! in-resonance tunneling times of a
(B12gABg)n-SL’s.

VII. CONCLUSIONS

We have shown that coherent transport in periodic str
tures can be very easily optimized or tuned. The integra
transmission through minibands below the potential of
barriers can be increased, while the resonance energies

FIG. 6. Calculated phase tunneling time throu
GaAs/Al0.3Ga0.7As SL structures of the form (BA)6,(B3/4AB1/4)6,
and (B1/2AB1/2)6 in the range of the first miniband.
15531
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therefore the position of the minibands do not change. A
plied to superlattices~SL’s! the modification of only two bar-
rier layer thicknesses allows the tuning the transmission
SL minibands in a wide range. The maximum increase of
transmission is reached for the case of a symmetric an
flection coating~ARC!, consisting of one barrier with hal
the width of the SL barriers on each side of the SL. The ra
of the integrated transmission through normal SL miniban
and the miniband width drops exponentially with the barr
width. For the SL with ARC this ratio is constant. Therefo
for thick barriers the application of the ARC results in
strong increase of the integrated transmission~a factor of
more than 100, for the parameters which we studied!. Calcu-
lations of the in-resonance phase tunneling time show
faster tunneling process in the SL with ARC. All properti
were shown to be valid for any number of periodsn.
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APPENDIX A: DEFINITIONS AND IDENTITIES

The transfer matrixMA of a well of widthLw is given by

MA5diag@exp~2 ikLw!;exp~ ikLw!#. ~A1!

The elements of the transfer matrixMB of a barrier are
given by

aB5coshkLb2 ic2sinhkLb ,
~A2!

bB5 ic1sinhkLb5 iA~Lb!.

The elements of the transfer matrixMSL
(1)5MBMA of one

period of a superlattice are given by

aSL
(1)5P~Lb!1 iS~Lb!,

~A3!
bSL

(1)5 iA~Lb!expikLw ,

where

S~Lb!5Im$aSL
(1)%52coshkLbsinkLw2c2sinhkLbcoskLw ,

~A4!

and A(Lb) and P(Lb) are defined by Eqs.~21! and ~22!,
respectively.

The imaginary part ofaB1AB2 reads

Im$aB1AB2%5Im$aSL
(1)%12A~Lb1!A~Lb2!sinkLw

5S~Lb!1c1
2~coshkLb2coshkDLb!sinkLw ,

~A5!

whereDLb5Lb12Lb2.

APPENDIX B: PROOF TO SEC. IV C

To prove thatubB1AB2u2 decreases monotonic with de
creasing DLb , we show thatd(ubB1AB2u2)/dDLb.0 for
DLb.0 andd(ubB1AB2u2)/dDLb50 for DLb50 (DLb is re-
9-8
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stricted to positive values!. The following definition and
identity will be used:

Q~Lb!ªsinhkLbcoskLw2c2coshkLbsinkLw ,
~B1!

P2~Lb!2Q2~Lb!512c1
2sin2kLw .

The calculation of the first derivative ofubB1AB2u2 with re-
spect toDLb yields

d~ ubB1AB2u2!/dDLb5d~ Im2$aB1AB2%!/dDLb

52c1
2k sinhkDLb@Q~Lb!c2sinkLw

1c1
2sin2kLwcoshkDLb#. ~B2!

The conditionP2(Lb)<1 inside a miniband leads togeth
with Eq. ~B1! to

Q~Lb!2<c1
2sin2kLw⇔uQ~Lb!u<uc1sinkLwu. ~B3!

From Eqs.~B3! and the identityc1
22c2

251 we obtain
i B

sf

15531
Q~Lb!c2sinkLw1c1
2sin2kLw.0. ~B4!

If we consider only energiesE,Vb , the decaying wave vec
tor k, defined in Table I, is a real positive numbe
cosh(kDLb)>1 and we therefore get

Q~Lb!c2sinkLw1c1
2sin2kLwcoshkDLb.0. ~B5!

Substituting Eq.~B5! into Eq. ~B2! completes the proof.
Note that the transmission does not depend onDLb for en-
ergies where sinkLw50 is fulfilled.

It is important to notice that this proof fails for energie
E.Vb , since k becomes imaginary, therefore cosh(kLb)
<1. Now Eq. ~B5! cannot be deduced from Eq.~B4! and
does not hold any longer. Indeed for energies above the
riers the transmission through the normal superlattice can
higher than the transmission through the superlattice w
ARC @Fig. 2~c!#.
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