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Perturbative approach to the nonequilibrium Kondo effect in a quantum dot
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The theory of quantum transport through a dot under a finite bias voltage is developed using perturbation
theory in the Keldysh formalism. It is found that the Kondo resonance splits into double peaks when the
voltage exceeds the Kondo temperature,eV.kBTK , which leads to the appearance of a second peak in
conductance, in addition to the zero-bias peak. The possible relevance of the new peak to the 0.7 conductance
anomaly observed in quantum point contact is discussed.

DOI: 10.1103/PhysRevB.68.155310 PACS number~s!: 73.63.Kv, 72.15.Qm
d
-
e.
im
ig
op

et
t i
of

ct

e
io
s

n
oo
do
g
he
tu
n
a

us
in

en
o
a
ge
th

n
fo
e
o

a

ial
e the
m
k
er-

om-
ge
es-
e-

um
to
w
lits
s

e
0.7

cts

wo
rity

and
if-
-

on
ds
an
I. INTRODUCTION

Ten years after the theoretical predictions of the Kon
effect in a quantum dot,1,2 the zero-bias peak of the differen
tial conductance was identified as the Kondo resonanc3,4

The observation that the peak value reached the unitary l
of 2e2/h with decreasing temperature established unamb
ously that the Kondo effect is relevant to the transport pr
erties of the quantum dot.5 Clearly the new feature of Kondo
transport compared with the usual Kondo effect of magn
impurities is the nonequilibrium nature, since the curren
measured with a finite bias voltage. Only in the limit
zero-bias voltage is the equilibrium condition recovered.

This theoretical study of the nonequilibrium Kondo effe
is based on the Keldysh formalism.6 In order to treat the
correlation effect various methods have been used: on
perturbation theory with respect to the Coulomb interact
U in the dot,7 and another often used method is the noncro
ing approximation~NCA! where an infiniteU is assumed.8

Concerning the equilibrium Kondo problem, it is well know
that second order perturbation theory gives remarkably g
results.9 For example, the density of states with the Kon
resonance in the middle of the side peaks correspondin
the energy levels in the atomic limit is well described by t
theory. However, it is not clear whether second order per
bation theory works well in nonequilibrium conditions. O
the other hand, concerning the NCA, it is well known th
the analyticity is broken in the low temperature limit. Th
one cannot discuss the conductance in the unitary limit us
the NCA.

One important theoretical issue is that the above m
tioned theories predict contradictory results for the density
states~DOS! in the nonequilibrium case. The NCA predicts
splitting of the Kondo resonance under a finite bias volta
On the other hand, in second order perturbation theory,
Kondo resonance peak is simply suppressed and does
show any particular structure in the nonequilibrium situatio
Since the Kondo resonance is a manifestation of singlet
mation between the localized state and the leads, it se
that the double peak structure at chemical potentials of b
leads is reasonable. Indeed, the double peaks are also
tained by other approaches: equations of motion,8,9 a real-
time diagrammatic formulation,10 and scaling methods.11

Moreover, it is not clear how the effects of the double pe
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structure, if it is present, would appear in the different
conductance. Recently, a proposal was made to measur
splitting of the DOS by using three-terminal quantu
dots.12,13As a matter of fact, the splitting of the Kondo pea
was successfully observed by introducing a potential diff
ence in the source lead.14 This result is most likely due to the
splitting of the Kondo resonance, although the precise ge
etry is different from the present case where a finite volta
is applied between the source and drain. It is clearly nec
sary to study nonequilibrium Kondo effects by a better th
oretical approach.

In this paper we analyze the Kondo effect in a quant
dot with a finite voltage by using perturbation theory up
fourth order inU based on the Keldysh formalism. We sho
that with increasing bias voltage a single Kondo peak sp
into double peaks ateV;kBTK . As a result, an anomalou
peak of the differential conductance appears wheneV
.kBTK . At the end of this paper, we will also discuss th
possible relevance to the experiments referred to as the
conductance anomaly in quantum point conta
~QPCs!.15–17

II. MODEL AND CALCULATIONS

We consider a single-level quantum dot attached to t
leads. This system is described by the Anderson impu
model,

H5 (
kas

«kackas
† ckas1 (

s
edns1Un↑n↓

1 (
kas

~Vkasckas
† ds1H.c.!, ~1!

wherea5L andR, andckLs (ckRs) annihilates an electron
in the left ~right! lead,ds annihilates an electron with spins
in the dot, andns5ds

†ds . The coupling constantsVkas de-
scribe the tunneling matrix elements between the dot
leads. The nonequilibrium situation is driven by a finite d
ference betweenmL and mR which are the chemical poten
tials of the leads in both sides.

For simplicity we concentrate on the symmetric Anders
model, where the dot is symmetrically coupled with the lea
and the energy level of the dot, including the Hartree me
©2003 The American Physical Society10-1
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field Un̄s , coincides with the center of the potential dro
eV5mL2mR . Then the symmetric conditions are stated
GLs5GRs[G, mL52mR5eV/2, and 2ed5ed1U. Here
GL,Rs represents the resonance width at the chemical po
tials, GL,Rs(v)52p (k uVkL,Rsu2d(v2«kL,R). In this paper
we restrict ourselves to the ground state,T50.

Our first aim is to calculate the density of states in the d

rs~v!52
1

p
ImGs

r ~v!, ~2!

whereGs
r (v) is the retarded Green function. Then the c

rent through the dot is expressed by

I 5
e

\ (
s

E
2`

`

dv
GLsGRs

GLs1GRs
rs~v!@ f L~v!2 f R~v!#,

~3!

where f L,R(v)5u(mL,R2v). The differential conductance
is obtained from the current by

G~V!5
]I

]V
. ~4!

III. KELDYSH FORMALISM

A. Perturbation theory

Now we briefly sketch the perturbation theory based
the Keldysh formalism.6 Each of the terms generated by th
expansion of theS matrix includes integrals along th
Keldysh contour, which starts att52`, passes throught
5`, and returns tot52`. The branch fromt52` (t
5`) to t5` (t52`) is denoted by the index2(1). Thus
we need to introduce four types of Green functions w
these additional indicesGab wherea andb are2 or 1.

The interaction terms in theSmatrix are given by the sum
of the Coulomb interactionU at the dot and the hybridiza
tions VkL,Rs between the leads and the dot. We employ
perturbation theory inU based on the Keldysh formalism
where the Green functions in each order ofU are renormal-
ized byVkL,Rs .

The Green functions of zeroth order inU can be explicitly
evaluated as

gs
021~v!52 i ugs

0r~v!u2 (
p5L,R

Gps~v! f p~v!, ~5!

gs
012~v!51 i ugs

0r~v!u2 (
p5L,R

Gps~v!@12 f p~v!# ~6!

by solving the Dyson equations concerningVkL,Rs , where
gs

0r(v)5(v2ed1 i /2•@GLs(v)1GRs(v)#)21. In order to
estimate the diagonal components, it is more convenien
find the Fourier transform of

gs
0aa~ t !5u~2at !gs

012~ t !1u~at !gs
021~ t !, ~7!

rather than to solvegs
0aa directly.

In the expansion inU there are diagrams in which Hartre
type self-energies are inserted. Their contributions are
15531
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tirely taken into account by substitutinged→ed1Un̄2s in
gs

0ab in the diagrams where the Hartree type of self-energ

are omitted. Usinged1Un̄2s50 for the symmetric case, th
new Green functionsgs

ab are

gs
21~v!52 i2 Imgs

r ~v! f eff~v!, ~8!

gs
12~v!51 i2 Imgs

r ~v!@12 f eff~v!#, ~9!

gs
22~v!5

12 f eff~v!

v1 iG
1

f eff~v!

v2 iG
, ~10!

gs
11~v!52gs

22~v!* , ~11!

where GL,Rs(v) approximated the values at the chemic
potentials, f eff(v)5(GLs f L(v)1GRs f R(v))/(GLs1GRs)
andgs

r (v)5(v1 iG)21.
Then the Dyson equations forU may be written in matrix

form,

Gs
ab~v!5gs

ab~v!1gs
ag~v!Ss

gd~v!Gs
db~v!. ~12!

Here in each order ofSs
g1g2 it is sufficient to exclude Hartree

type self-energies.
Let us evaluate the self-energies by using perturba

theory up to the fourth order ofU. It is known that the
perturbative expansion for the Anderson model9 is effective
and well behaved in the equilibrium case, since the ex
solution shows a rapid convergence of the perturbat
series.18 However, in the nonequilibrium situation, the anal
sis of perturbation theory has been limited to second low
order. To proceed to higher order calculations, the four-po
vertex, which is obtained by extending the method used
Keldysh for the electron-phonon vertex,6 is very convenient.
This procedure is to insert vertices,

G (0)a1a2 ,a3a45U~ga1a2

2 ga3a4

2 2ga1a2

1 ga3a4

1 !, ~13!

in each of diagrams, which may be calledthe Keldysh verti-
ces. Herega1a2

a3 5da1a2
sa2a3

z , wheresa2a3

z is the third Pauli

matrix. All diagrams up to fourth order are shown in Fig.
for the symmetric case, where the third-order terms vanis
the same way as the equilibrium case. Figure 1~a! is the
second order diagram in which directions of particle line
spins, and Keldysh vertices are depicted. In this case,
second order correction of the self-energies is

Ss
(2)g7g2~v!

5 i 2~21! E
2`

` dv1

2p

dv2

2p
G (0)g1g2 ,g3g4gs

g5g4

3~v1!g2s
g6g3~v2!g2s

g1g8~v11v22v!G (0)g5g6 ,g7g8.

~14!

We can proceed in the same way to the fourth order d
grams shown in Fig. 1~b!. Four different representative dia
grams are illustrated where directions and spin variable
not specified. By specifying them, one can immediately o
0-2
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tain all 12 diagrams. Note that Fig. 1~b!-1,2,3 and Fig. 1~b!-4
are skeleton and nonskeleton diagrams, respectively. It is
dious but straightforward to evaluate the fourth order con
butions,Ss

(4)g1g2 , in the same manner as the second ord
From the self-energy matrix, the imaginary part ofSs

r is
defined by

ImSs
r ~v!5

1

2
@ iSs

12~v!2 iSs
21~v!#. ~15!

Then the real part ofSs
r is obtained by the Kramers-Kroni

relation,

ReSs
r ~v!5

1

p
P E

2`

` ImSs
r ~v8!

v82v
dv8. ~16!

The Dyson equation for the retarded component is deri
from Eq. ~12! as

Gs
r ~v!5gs

r ~v!1gs
r ~v!Ss

r ~v!Gs
r ~v!. ~17!

B. Self-energies

In Fig. 2 the numerically calculated ImSs
r (v) is shown

for U/G56. In the equilibrium case of eV/G
50, ImSs

r ueV/G50 is dominated by the second order cont
bution as is well known,9 since the fourth order contribution
of skeleton diagrams shown in Fig. 1~b!-1,2,3 and nonskel-
eton diagram in Fig. 1~b!-4 almost cancel each other exce
in the low energy limit. In order to analyzev;0, it should
first be noted that the present perturbation results corre
reproduce the low-energy asymptotic form in the equilibriu
limit: 9

FIG. 1. ~a! The second order diagram and~b! the fourth order
diagrams. In~b! all 12 diagrams are generated by including t
directions of particle lines and spins. Shaded squares represen
Keldysh vertices.
15531
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ImSs
r ~v!ueV/G50.

G

2 H 2S U

pG D 2

23~102p2!S U

pG D 4J
3S v

G D 2

.

The nonskeleton diagram does not give any contribution
the fourth order term of the coefficient of (v/G)2. Among
the skeleton diagrams of the random phase approxima
~RPA!-type diagrams, Fig. 1~b!-3, give (2333) for the co-
efficient of (U/pG)4, while those from the vertex-correctio
type, Fig. 1~b!-1 and 2, give 33(p227), resulting in the
small number of233(102p2). The way that cancellation
occurs between the RPA-type diagrams and the ver
correction-type diagrams changes under a finite bias volta

In the vicinity of the equilibrium~for example ateV/G
50.5), 2ImSs

r (v50) becomes slightly larger but stil
keeps the structure of the equilibrium case, which means
damping of quasiparticles is simply enhanced by real tra
tions between the leads and the dot. Novel features are
served with further increasing the voltage. The fourth ord
contribution to the coefficient of the (v/G)2 term changes
sign. Even though the second order contribution rema
negative, the coefficient of (v/G)2 becomes positive for suf
ficiently largeU/pG. Therefore, the peak of ImSs

r around
v;0 becomes depressed. In this case the quasiparticle
main coherent aroundv56eV/2 as is shown foreV/G
52.0

Now we turn to ReSs
r which is shown in Fig. 3. In the

case ofeV/G52.0 we see the development of new ze

the

FIG. 2. The numerically calculated ImSs
r as a function ofv for

eV/G50, 0.5, and 2.0. In this example,U/G is 6.

FIG. 3. The real part of the self-energy foreV/G50, 0.5,
and 2.0, withU/G56.
0-3
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TATSUYA FUJII AND KAZUO UEDA PHYSICAL REVIEW B 68, 155310 ~2003!
points of ReSs
r at v56eV/2 which are absent foreV/G

50 and 0.5. Since the slopes at the zero points are nega
which leads to mass enhancement, the effect of damping
to ImSs

r , is reduced.

C. Density of states

The density of states is shown in Fig. 4 in units of 1/pG.
In the equilibrium case, the sharp Kondo peak develops
the middle of the two peaks at around6U/2. With a finite
voltage, the Kondo peak atv/G50 is suppressed but sti
keeps asinglepeak with broadening for smalleV/G, in ac-
cordance with the analysis based on the Ward identitie19

When the voltage is further increased, the Kondo peak sp
into doublepeaks atv;6eV/2, which are located near th
chemical potentials of the two leads. This behavior is qu
tatively consistent with the results obtained by the NCA8

This change occurs when the potential dropeV exceeds
kBTK , defined as the full width at half maximum of th
Kondo peak. ForU/G56, kBTK /G is estimated to be abou
0.6.

With higher bias thedoubleKondo peaks located atv;
6eV/2 merge with the peaks at the atomic limitv;6U/2
and then the latter dominate wheneV.U. We have checked
that this structure coincides with the result obtained by
second order perturbation theory. The origin of this pheno
ena is that the higher order scatterings become unimpo
in the high voltage regime due to the strong dissipative p
cesses between the leads and the dot. This result is cons
with Ref. 11 in that the nonequilibrium decoherence destr
the Kondo effect wheneV@kBTK .

IV. CONDUCTANCE

In Fig. 5 the differential conductance defined by Eq.~4! is
shown in units of 2e2/h for various values ofU/G as a
function of bias voltage. For allU, the zero-bias peak start
from the unitary limit. AsU is increased, the width of the
zero-bias peak becomes narrower. ForU/G54 and 6, a
broad peak is seen at aroundeV;U. This broad peak cor-
responds to tunneling processes through the energy leve
the atomic limit. Between the zero-bias peak and the br
peak, a new peak appears for largeU (U/G56 in the figure!.

To understand the origin of the new peak, first we rewr

FIG. 4. The density of states in units of 1/pG for variouseV/G
with U/G56.
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the expression of the conductance,@Eq. ~4!# as

G~V!5
2e2

h
pGS rs~eV/2!1 E

2eV/2

eV/2 ]rs~v!

]eV
dv D

[G1~V!1G2~V!. ~18!

As shown in Fig. 6, the first term,G1(V), decreases
monotonically asV is increased. Concerning the second te
G2(V) first we note that if the range of integration integra
is the entire frequency space, the integral should vanish
to the sum rule of the spectral weight. ForeV,kBTK the
spectral weight shifts to higher frequencies, giving a nega
contribution. WheneV;kBTK a considerable part of posi
tive ]rs(v)/]eV enters in the integrand, thus giving a le
negative contribution. Therefore we may conclude that
new peak appears when the bias voltage exceeds the K
energy.

V. DISCUSSIONS AND SUMMARY

Finally we discuss the possible relevance of the pres
study to the 0.7 conductance anomaly in QPCs.15–17 It has
been suggested that the Kondo effect plays a significant
as the origin of the 0.7 structure in QPCs because the st
ture is found when the unitary limit of 2e2/h ~Ref. 17! is
approached with decreasing temperature. In view of the u
versal nature of the Kondo phenomena, it may be interes

FIG. 5. The differential conductance in units of 2e2/h for vari-
ous values ofU/G. The zero-bias peaks reach the unitary lim
2e2/h. For U/G56, the anomalous peak is developed ineV
.kBTK in addition to the zero-bias peak.

FIG. 6. The differential conductance forU/G56. G(V), is
given by the sum ofG1(V) andG2(V). The new peak originates in
the behavior ofG2(V).
0-4
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to consider experimental results of the QPCs in light of
present results. Figure 3 of Ref. 16 or Fig. 1 of Ref. 17 sh
that at a gate voltage for which the zero-bias conducta
reaches the unitary limit the conductance first drops w
increasing bias voltage and then starts to increase ag
leading to a second peak at finite voltage. The envel
made of these second peaks for different gate voltages fo
the 0.8 plateau. As the temperature is increased the 0.8
teau is extrapolated to the 0.7 structure in the zero-bias li
In fact, Fig. 3~b! of Ref. 17 clearly demonstrates that a se
ond peak appears wheneV.kBTK . This result seems to sup
port the new peak obtained in the present study.

However the peak-height obtained by the present st
does not reach to 0.8, as seen in Fig. 5. This problem ma
resolved in the future either by considering higher-order c
rections or actual level schemes of the QPCs.
h-

en

er
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In summary we have studied the Kondo transport throu
a dot with a finite voltage by using perturbation theory in t
Keldysh formalism. It is shown that the splitting of th
Kondo resonance occurs when the bias voltage exceeds
Kondo temperature. As a result, the new peak in the diff
ential conductance appears when the electron-electron c
lation U is sufficiently strong. Finally, we have suggest
that the present results are relevant also to the 0.7 con
tance anomaly. Clearly further studies are necessary to
cidate the relation between the present analysis and the
anomaly in the QPCs.
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