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Perturbative approach to the nonequilibrium Kondo effect in a quantum dot
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The theory of quantum transport through a dot under a finite bias voltage is developed using perturbation
theory in the Keldysh formalism. It is found that the Kondo resonance splits into double peaks when the
voltage exceeds the Kondo temperatue®/>kgTx, which leads to the appearance of a second peak in
conductance, in addition to the zero-bias peak. The possible relevance of the new peak to the 0.7 conductance
anomaly observed in quantum point contact is discussed.
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[. INTRODUCTION structure, if it is present, would appear in the differential
conductance. Recently, a proposal was made to measure the
Ten years after the theoretical predictions of the Kondosplitting of the DOS by using three-terminal quantum
effect in a quantum ddt? the zero-bias peak of the differen- dots!***As a matter of fact, the splitting of the Kondo peak
tial conductance was identified as the Kondo resonafice. was successfully observed by introducing a potential differ-
The observation that the peak value reached the unitary lim@nce in the source lediThis result is most likely due to the
of 2e?/h with decreasing temperature established unambigusplitting of the Kondo resonance, although the precise geom-
ously that the Kondo effect is relevant to the transport prop£try is different from the present case where a finite voltage
erties of the quantum ddtClearly the new feature of Kondo IS applied between the source and drain. It is clearly neces-
transport compared with the usual Kondo effect of magnetiary to study nonequilibrium Kondo effects by a better the-
impurities is the nonequilibrium nature, since the current isoretical approach.
measured with a finite bias voltage. Only in the limit of In this paper we analyze the Kondo effect in a quantum
zero-bias voltage is the equilibrium condition recovered. ~ dot with a finite voltage by using perturbation theory up to
This theoretical study of the nonequilibrium Kondo effect fourth order inU based on the Keldysh formalism. We show
is based on the Keldysh formalisiin order to treat the that with increasing bias voltage a single Kondo peak splits
correlation effect various methods have been used: one igto double peaks aV~kgTy . As a result, an anomalous
perturbation theory with respect to the Coulomb interactiorP€ak of the differential conductance appears whev
U in the dot and another often used method is the noncross=KkgTk - At the end of this paper, we will also discuss the
ing approximation(NCA) where an infiniteU is assumed.  possible relevance to the experiments referred to as the 0.7
Concerning the equilibrium Kondo problem, it is well known conductance anomaly in quantum point contacts
that second order perturbation theory gives remarkably goonF’CS)-ly’_l7
results’ For example, the density of states with the Kondo
resonance in the middle of the side peaks corresponding to Il. MODEL AND CALCULATIONS
the energy levels in the atomic limit is well described by the
theory. However, it is not clear whether second order pertur- We consider a single-level quantum dot attached to two
bation theory works well in nonequilibrium conditions. On leads. This system is described by the Anderson impurity
the other hand, concerning the NCA, it is well known thatmodel,
the analyticity is broken in the low temperature limit. Thus

one cannot discuss the conductance in the unitary limit using . t
the NCA. H= é, EkaCl o Ckao 2 €N, +Unn,
One important theoretical issue is that the above men-
tioned theories predict contradictory results for the density of +
, L . + +H.c.
stategDOY) in the nonequilibrium case. The NCA predicts a %, (VkaoCkaodoH-C), @

splitting of the Kondo resonance under a finite bias voltage.

On the other hand, in second order perturbation theory, th&herea=L andR, andcy,,, (ckg,) annihilates an electron
Kondo resonance peak is simply suppressed and does nistthe left(right) lead,d, annihilates an electron with spin
show any particular structure in the nonequilibrium situation.in the dot, anch,= df,d,,. The coupling constantg,,, de-
Since the Kondo resonance is a manifestation of singlet forscribe the tunneling matrix elements between the dot and
mation between the localized state and the leads, it seenisads. The nonequilibrium situation is driven by a finite dif-
that the double peak structure at chemical potentials of botference betweem, and ug which are the chemical poten-
leads is reasonable. Indeed, the double peaks are also dimls of the leads in both sides.

tained by other approaches: equations of mofid, real- For simplicity we concentrate on the symmetric Anderson
time diagrammatic formulatiot, and scaling methods.  model, where the dot is symmetrically coupled with the leads
Moreover, it is not clear how the effects of the double peakand the energy level of the dot, including the Hartree mean
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field UFU, coincides with the center of the potential drop,

eV=pu, —ur. Then the symmetric conditions are stated asg

I' ,=Tre=T", p=—pur=eVi2, and —eg=€4+U. Here

I’ r, represents the resonance width at the chemical poteisew Green functiong

tials, ' ry(®) =27 2y Vi rol*8(@— £ r). In this paper
we restrict ourselves to the ground stafes 0.
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tirely taken into account by substituting;— e4+Un_, in
%% in the diagrams where the Hartree type of self-energies

(o8

are omitted. Usingy+ UW,(,: 0 for the symmetric case, the

Our first aim is to calculate the density of states in the dot,

1
po(w)=——IMG(w), 2

a
whereG! () is the retarded Green function. Then the cur-
rent through the dot is expressed by

e o)
|=ffl§ f_wdw

r Lu’r Ro

FL0'+ FRO.pU(w)[fL(w)_ fR(w)]!

©)

where f| g(w)=0(u_ g— w). The differential conductance
is obtained from the current by

al

(V)= @

lll. KELDYSH FORMALISM

A. Perturbation theory

*F are
s (@)==i21mg)(o)fe(w), (8
gy (@)=+i2Imgl(w)[1-fer(w)], 9
o . 1_feff(w) feff(w)
9, (@)=— 5 Tooir (10
g, (w)=—g, (o)*, (11

whereI' | r,(w) approximated the values at the chemical
potentials, fer(w)=(I' ;f (@) +'r,fr(®))/(I'Ls+TRry)
andg (w)=(o+il) "1

Then the Dyson equations faf may be written in matrix
form,

G (w)=g%(0)+ g2 ()2 (0)GP(w). (12

Here in each order 6f *2 it is sufficient to exclude Hartree
type self-energies.

Let us evaluate the self-energies by using perturbation
theory up to the fourth order of). It is known that the
perturbative expansion for the Anderson mddsleffective

Now we briefly sketch the perturbation theory based orgng well behaved in the equilibrium case, since the exact

the Keldysh formalisni.Each of the terms generated by the
expansion of theS matrix includes integrals along the
Keldysh contour, which starts at= —, passes through
=, and returns tat=—o0. The branch fromt= —o (t
=x) tot=0c0 (t=—0) is denoted by the index (+). Thus

solution shows a rapid convergence of the perturbation
seriest® However, in the nonequilibrium situation, the analy-

sis of perturbation theory has been limited to second lowest
order. To proceed to higher order calculations, the four-point
vertex, which is obtained by extending the method used by

we need to introduce four types of Green functions withkeldysh for the electron-phonon vertgis very convenient.

these additional indice&*? wherea andg are — or +.
The interaction terms in thB matrix are given by the sum
of the Coulomb interactiotJ at the dot and the hybridiza-

This procedure is to insert vertices,

(13

0)aqas,azay - — .t +
[0z s U (Vo Yaga, ™ Yaga, Yagay):

tions Vi, r, between the leads and the dot. We employ a

perturbation theory inJ based on the Keldysh formalism
where the Green functions in each orderbfre renormal-
ized by Vi ro-

The Green functions of zeroth orderlihcan be explicitly
evaluated as

92**<w>=—i|gfi'(w>|2p§m Too(@)fy(@), (5

g?ﬁ*<w>=+i|g9,’<w>|2p:2m Ipo(@)[1—fp(@)] ()

by solving the Dyson equations concerni¥g_g,, where
0% (w)=(w—eg+i/2-[T (0)+Tr,(w)]) . In order to

estimate the diagonal components, it is more convenient to

find the Fourier transform of

g2 ()= 6(—at)g%" () +6(at)g? (1), (7

Oaa

rather than to solveg_““ directly.
In the expansion itJ there are diagrams in which Hartree

in each of diagrams, which may be callgg: Keldysh verti-
ces HereyZiaf ) wpay Whereo?, . is the third Pauli

ayay9 ayay:
matrix. All diagrams up to fourth order are shown in Fig. 1
for the symmetric case, where the third-order terms vanish in
the same way as the equilibrium case. Figufe) 1s the
second order diagram in which directions of particle lines,
spins, and Keldysh vertices are depicted. In this case, the
second order correction of the self-energies is

a

2(2)7772(w)

* dw, d
=i2(—1) w3 Uwy

[(©7172.73747574
o

_w 2 27T

9" % (w1 + wy— w)T(0)7s76. 7778,

X (01)97%%(w,)g9”"
(14

We can proceed in the same way to the fourth order dia-
grams shown in Fig. (b). Four different representative dia-
grams are illustrated where directions and spin variable are

type self-energies are inserted. Their contributions are ermot specified. By specifying them, one can immediately ob-
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FIG. 1. (a) The second order diagram afio) the fourth order T h€ nonskeleton diagram does not give any contribution to
diagrams. In(b) all 12 diagrams are generated by including the the fourth order term of the coefficient ofo(I')%. Among
directions of particle lines and spins. Shaded squares represent tHee skeleton diagrams of the random phase approximately
Keldysh vertices. (RPA)-type diagrams, Fig.(b)-3, give (—3x3) for the co-

efficient of (U/#I")#, while those from the vertex-correction
tain all 12 diagrams. Note that Fig(9-1,2,3 and Fig. b)-4  type, Fig. 1b)-1 and 2, give X (#?—7), resulting in the
are skeleton and nonskeleton diagrams, respectively. It is tesmall number of-3x (10— 7?). The way that cancellation
dious but straightforward to evaluate the fourth order contri-occurs between the RPA-type diagrams and the vertex-
butions,Eff”m, in the same manner as the second order. correction-type diagrams changes under a finite bias voltage.

From the self-energy matrix, the imaginary partS is In the vicinirty of the equilibrium(fpr example ateV/IT .
defined by =0.5), —Im2 (w=0) becomes slightly larger but still

keeps the structure of the equilibrium case, which means that

1 damping of quasiparticles is simply enhanced by real transi-
Im3; (@)= E[izi_(w)—izf(w)]- (15  tions between the leads and the dot. Novel features are ob-
served with further increasing the voltage. The fourth order

Then the real part oE, is obtained by the Kramers-Kronig contribution to the coefficient of the«{T)? term changes

relation, sign. Even though the second order contribution remains
negative, the coefficient of{/T")2 becomes positive for suf-
1 (= ImS () ficiently largeU/«I". Therefore, the peak of IB], around
Re! (w)= —Pf ,—dw’. (16) w~0 becomes depressed. In this case the quasiparticles re-
TS 0 - main coherent around==*eV/2 as is shown foreV/T
The Dyson equation for the retarded component is derived_'z'O

Now we turn to R&! which is shown in Fig. 3. In the

from Eq.(12) as
case ofeV/II'=2.0 we see the development of new zero

Go(@)=0y(w) +g5(0) I (0)Gy(w). 7

1.5

B. Self-energies

In Fig. 2 the numerically calculated M} (w) is shown
for U/I'=6. In the equilibrium case ofeVIT
=0, ImX!|o\r—o is dominated by the second order contri-
bution as is well knowr,since the fourth order contributions
of skeleton diagrams shown in Fig(k}-1,2,3 and nonskel-
eton diagram in Fig. (b)-4 almost cancel each other except
in the low energy limit. In order to analyze~0, it should
first be noted that the present perturbation results correctly
reproduce the low-energy asymptotic form in the equilibrium  FIG. 3. The real part of the self-energy feViT'=0, 0.5,
limit: ® and 2.0, withU/T'=6.

ReX';(w) (D)

eViI[=20 —

-10 -5 0 5 10
o (D)
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FIG. 4. The density of states in units ofdll for variouseV/T’ FIG. 5. The differential conductance in units o&?2h for vari-
with U/T'=6. ous values ofu/T". The zero-bias peaks reach the unitary limit

2e’/h. For U/T'=6, the anomalous peak is developed eV

points of R&' at w==*eV/2 which are absent foeV/T =KsTy in addition to the zero-bias peak.

=0 and 0.5. Since the slopes at the zero points are negativg,q expression of the conductanfgg. (4)] as
which leads to mass enhancement, the effect of damping due

to Im2! , is reduced. 2e? eVi2 gp (o)
G(V)=—mI| p(eVI2)+ f do
h —evi2 0eV

C. Density of states

The density of states is shown in Fig. 4 in units of I =Ga(V)+GaV). (18
In the equilibrium case, the sharp Kondo peak develops in  ag shown in Fig. 6, the first termG,(V), decreases
the middle of the two peaks at arourdU/2. With a finitt  monotonically a8/ is increased. Concerning the second term
voltage, the Kondo peak ab/I'=0 is suppressed but still G, (v) first we note that if the range of integration integrand
keeps asingle peak with broadening for smaiiV/T', in ac- s the entire frequency space, the integral should vanish due
cordance with the analysis based on the Ward identiies. 1 the sum rule of the spectral weight. FeW<kgTx the
When the voltage is further increased, the Kondo peak split§pectral weight shifts to higher frequencies, giving a negative
into doublepeaks atw~ *eV/2, which are located near the contribution. WheneV~kgT« a considerable part of posi-
chemical potentials of the two leads. This behavior is qualijye dp,(w)l3eV enters in the integrand, thus giving a less
tatively consistent with the results obtained by the NCA. negative contribution. Therefore we may conclude that the

This change occurs when the potential drel’ exceeds pew peak appears when the bias voltage exceeds the Kondo
kgTk, defined as the full width at half maximum of the gnergy.

Kondo peak. FolJ/T'=6, kgTk /T is estimated to be about

0.6. o i V. DISCUSSIONS AND SUMMARY
With higher bias theloubleKondo peaks located ab~
+eV/2 merge with the peaks at the atomic linait- = U/2 Finally we discuss the possible relevance of the present

and then the latter dominate whe>U. We have checked study to the 0.7 conductance anomaly in QPTS! It has

that this structure coincides with the result obtained by théeen suggested that the Kondo effect plays a significant role
second order perturbation theory. The origin of this phenomas the origin of the 0.7 structure in QPCs because the struc-
ena is that the higher order scatterings become unimportature is found when the unitary limit of €#/h (Ref. 17 is

in the high voltage regime due to the strong dissipative proapproached with decreasing temperature. In view of the uni-
cesses between the leads and the dot. This result is consisteersal nature of the Kondo phenomena, it may be interesting
with Ref. 11 in that the nonequilibrium decoherence destroys
the Kondo effect wherV>kgTy .

IV. CONDUCTANCE

In Fig. 5 the differential conductance defined by Et).is
shown in units of 22/h for various values ofU/I" as a
function of bias voltage. For all, the zero-bias peak starts
from the unitary limit. AsU is increased, the width of the -0.
zero-bias peak becomes narrower. Rdfl'=4 and 6, a
broad peak is seen at arous¥~U. This broad peak cor- &V (D
responds to tunneling processes through the energy levels in
the atomic limit. Between the zero-bias peak and the broad FIG. 6. The differential conductance fdd/T'=6.G(V), is
peak, a new peak appears for latg€¢U/I" =6 in the figure. given by the sum 06,(V) andG,(V). The new peak originates in

To understand the origin of the new peak, first we rewritethe behavior ofG,(V).

o O O O

G(V) (2¢%/h)

N © RN & O 0 B
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to consider experimental results of the QPCs in light of the In summary we have studied the Kondo transport through
present results. Figure 3 of Ref. 16 or Fig. 1 of Ref. 17 showa dot with a finite voltage by using perturbation theory in the
that at a gate voltage for which the zero-bias conductancEeldysh formalism. It is shown that the splitting of the
reaches the unitary limit the conductance first drops withKondo resonance occurs when the bias voltage exceeds the
increasing bias voltage and then starts to increase agaiKondo temperature. As a result, the new peak in the differ-
leading to a second peak at finite voltage. The envelopential conductance appears when the electron-electron corre-
made of these second peaks for different gate voltages formation U is sufficiently strong. Finally, we have suggested
the 0.8 plateau. As the temperature is increased the 0.8 pl#hat the present results are relevant also to the 0.7 conduc-
teau is extrapolated to the 0.7 structure in the zero-bias limitance anomaly. Clearly further studies are necessary to elu-
In fact, Fig. 3b) of Ref. 17 clearly demonstrates that a sec-cidate the relation between the present analysis and the 0.7
ond peak appears whe&V>kgT . This result seems to sup- anomaly in the QPCs.
port the new peak obtained in the present study.

However the peak-height ot_atair_1ed by t_he present study ACKNOWLEDGMENTS
does not reach to 0.8, as seen in Fig. 5. This problem may be
resolved in the future either by considering higher-order cor- The authors would like to thank K. Kobayashi and A.

rections or actual level schemes of the QPCs. Oguri for helpful discussions.
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