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Nonlinear regimes of coherent optical phonon generation in quantum wells
under electric current pumping
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We present an analysis of nonlinear regimes of the coherent optical phonon generation under the electron
drift in quantum wells. The phonon and electron subsystems are treated self-consistently. This allows us to find
the steady-state generation regimes with macroscopic populations of optical phonon modes and the electron
transport controlled in part by the generated phonons. The generation regimes demonstrate a pronounced
threshold character. At high electric fields above the threshold, practically single-mode generation occurs and
the current-voltage characteristic is considerably changed. We demonstrate high efficiency generation of the
coherent optical phonons by the electric current. The coherent macroscopic optical displacements and the
amplitudes of oscillating electrostatic fields are evaluated. The proposed model based on the electron nonlin-
earities predicts a range of the pumping electric fields under which the steady state phonon generation is
realized. Our results suggest that the phonon avalanche occurs beyond this field range.
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I. INTRODUCTION

Recent progress in the methods of excitation and de
tion of coherent high-frequency lattice vibrations~see Refs. 1
and 2 for a recent review! sparks an interest in the physics
coherent phonons and different applications of coherent p
non waves. High-frequency coherent acoustic and opt
phonons have been observed for a number of semicondu
materials and heterostructures. These studies provide in
mation on the excitation mechanisms, coherent phonon
namics, electron-phonon interactions, and other impor
phenomena including the effects of interference of cohe
lattice vibrations, phonon control of ionic motion,3 etc. Po-
tential applications of coherent phonons include the utili
tion of phonons to improve the general performance of
toelectronic and microelectronic devices, as well
particular applications such as terahertz modulation of lig4

generation of high-frequency electric oscillations, manipu
tion with x rays,5 etc. Usually, high-frequency cohere
phonons are excited optically by ultrafast laser pulses.1,2 For
both fundamental phonon physics and practical applicatio
it is of importance to develop electrical methods of coher
phonon generation in semiconductor materials and het
structures.

Amplification and generation of optical phonons by dri
ing electrons via the Cherenkov effect were proposed in
1960’s,6–8 but they were never realized for bulklike mate
als. This is because the Cherenkov amplification effec
possible only under the following stringent requiremen
high electron drift velocities, large electron densities, a
strong electron-optical phonon coupling. In bulk materials
is practically impossible to meet these requirements an
compete with the high rate of phonon loss. However,
0163-1829/2003/68~15!/155308~8!/$20.00 68 1553
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outlook can be substantially different in short-channel
low-dimensional transport.

Very recently, direct observation of the optical phon
instability due to the electron drift was reported.9 The experi-
ments were performed in short GaAs and InAsp-i -n struc-
tures. Ultrahigh drift velocities ('63107 cm/s) and high
electron concentrations (.1017 cm23) were achieved unde
the transient velocity-overshoot transport.

The situation is more favorable in two-dimensional, co
fined structures. For example, it is well known that t
modulation doped heterostructures can achieve the first
conditions~i.e., high electron drift velocities and large ele
tron densities!. Moreover, simultaneous confinement of ele
trons and optical phonons within the same quantum w
~QW! provides the necessary strong coupling. Incidenta
our recent theoretical analysis10 illustrated that the Cheren
kov effect can provide a large increment ofconfinedoptical
phonon modes in high-quality modulation doped QW hete
structures with drift velocities11 exceeding 1.53107cm/s for
GaAs/AlAs and 23107 cm/s for InAs/AlGaSb QW’s. The
increment is controlled by the electron drift velocity an
thus, by the applied electric field. As soon as the increm
becomes larger than the inverse phonon lifetime for so
phonon modes, the populations of these modes increase
ponentially in time and the phonon subsystem becomes
stable. The instability is of a threshold effect and occurs
the electric fields above a critical magnitude.

The principal criterion of the Cherenkov effect isVdr
.vLO /q whereVdr is the electron drift velocity andvLO and
q are the longitudinal optical~LO! phonon frequency and
wave vector, respectively. This criterion reflects the form
tion of a population inversion of electron states resonan
interacting with the phonons~see, for example, Ref. 10!.
©2003 The American Physical Society08-1
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Thus, a positive phonon increment corresponds tostimulated
emissionof the optical phonons. This allows one to suppo
that the phonon instability could follow a scenario similar
that for lasers. Indeed, the population of the modes wit
larger increment grows faster, resulting in the progress
narrowing of the phonon distribution function. However, t
whole process cannot continue indefinitely and must be
bilized by some nonlinear mechanisms triggered by the p
ence of high phonon populations.

Motivated by the experimental observation of the L
phonon instability,9 this paper investigates thenonlinear re-
gimes of confined optical phonon generation in QW hete
structures under electric current pumping. By expanding
earlier work whose analysis was primarily limited to the li
ear, nondegenerate regime,10 the focus of the present work i
to consider the influence of nonlinear processes, specific
the changes in the electron kinetics caused by the hig
nonequilibrium optical phonons themselves under the rea
tic degenerate conditions. Stimulated optical phonon em
sion proportional to the phonon population affects both
electron drift velocity and the electron temperature. In p
ticular, an additional dissipation of the electron moment
and energy induced by the nonequilibrium phonons s
presses both the drift velocity and the electron temperat
These changes lead to areductionin the increment. As soon
as the maximum value of the increment approaches the
verse phonon lifetime, a competition between the grow
modes occurs and the steady state regime is reached
generation of only a few phonon modes. It is demonstra
that the electron parameters such as the drift velocity, a
age energy, etc., change appreciably in the generation
gime.

The rest of this paper is organized as follows. In Sec.
we introduce the main definitions and formulate the ba
equations. In Secs. III and IV, the nonlinear regimes are a
lyzed and discussed. The main conclusions are summar
in Sec. V.

II. BASIC EQUATIONS

The confined LO phonons in a QW can be characteri
by two-dimensional phonon wave vectorsqW and discrete
~transverse! numbersm. For the population of the$qW ,m%
mode, we introduce the kinetic equation

dNqW ,m

dt
5gqW ,m

(1)
~11NqW ,m!2gqW ,m

(2)
NqW ,m2bqW ,mNqW ,m , ~1!

whereNqW ,m is the phonon population calculated per unit ar
of the QW layer andgqW ,m

(6) are the parameters which dete
mine the evolution ofNqW ,m in time due to the interaction with
two-dimensional electrons;gqW ,m

(6) are strongly dependent o
the electron distribution function. The parameterbqW ,m de-
scribes the phonon loss, which includes phonon scatterin
phonon absorption due to nonelectronic mechanisms, pho
decay due to the lattice anharmonicity, etc. Equation~1! con-
tains the terms corresponding to spontaneous and stimu
15530
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processes. The latter terms can be represented asgqW ,mNqW ,m

5(gqW ,m
(1)

2gqW ,m
(2))NqW ,m with the phonon incremen

~decrement!10

gqW ,m5
4avLOAQGm

2

ukelu2
J (1)~Q,V,Q!2J (2)~Q,V,Q!

LQFQ21S pm

L D 2G .

~2!

Here, we introduce the Fro¨hlich electron-phonon coupling
constant

a5
e2

\
A m*

2\vLO
S 1

k`
2

1

k0
D ,

where k0 and k` are the low-frequency and the high
frequency dielectric permittivities, respectively,e is the el-
ementary charge,m* is the effective mass of the electron
kel is the electron permittivity calculated at the optical ph
non frequency,n is the electron concentration, andGm
5(21)m8/@pm(m224)# with m51,3,5, . . . ~for the QW
with infinitely high barriers!.

The electron population factorsJ 6 are determined by the
electron distribution. Following Ref. 10, we suppose th
only the lower subband is populated by the two-dimensio
electrons. Under the actual conditions of high electron c
centrations, when the electron-electron scattering domin
over other collision mechanisms, this distribution can
thought of in the form of the shifted Maxwellian or Ferm
Dirac functions. In Ref. 10, the factorsJ (6)(q) have been
calculated for the nondegenerate electrons with the use
shifted Maxwellian function. In this paper, we generali
these calculations assuming the electron distribution in
form of a shifted Fermi-Dirac functionF with two param-
eters, the electron temperatureTe and the drift velocityVdr :

F~V!5S 11expFm* ~V2Vdr!
2

2kBTe
2

EF

kBTe
G D 21

,

where the quasi-Fermi levelEF is found from the normaliza-
tion condition at a given electron concentrationn. ThusEF
depends onn, Te , andVdr . Now for the factorsJ (6)(q) we
obtain

J (6)~Q,V,Q!5E
0

` dy

Ay@11D (6)exp~y!#
, ~3!

D (6)5expF 1

4Q S 1

Q
6Q22VD 2

2
zF1V 2

Q G .
In Eqs. ~2! and ~3!, we introduce the dimensionless param
eters

Q5
kBTe

\v
, V5

Vdr

VO
, Q5

q

kO
,

L5LkO , zF5
EF2m* Vdr

2 /2

\v
8-2
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NONLINEAR REGIMES OF COHERENT OPTICAL . . . PHYSICAL REVIEW B 68, 155308 ~2003!
with the QW width L. Throughout the paper, we use th
characteristic velocity, momentum, and electric field

VO5A2\vLO

m*
, kO5

A2m* \vLO

\
, FO5

4pa\vLO

eL
.

It is worth noting thatgq of Eq. ~2! is defined for the wave
vector directed along the electron drift. For the general c
of q5$qx ,qy%, thegq dependence can be obtained from E
~2! by the substitutionVdr→Vdr3Aq22qy

2/q.
The parametersTe andVdr should be found from the en

ergy and momentum balance equations

d^E&
dt

5eFVdr2QE~Te ,Vdr!, ~4!

d^m* V&
dt

5eF2QM~Te ,Vdr!. ~5!

HereQE(Te ,Vdr) andQM(Te ,Vdr) designate the dissipatio
rates of average electron energy^E& and momentum̂m* V&
per electron, respectively. For the steady state case, the
derivatives equal zero.

Optical phonon generation can be achieved when a h
electric field is applied. Under this condition, scattering
the confined optical phonons is typically the domina
mechanism for the energy and momentum dissipation of
two-dimensional electrons. Now the dissipation rates in E
~4! and ~5! can be presented as

QE5QE
eq~Te ,Vdr!1(

q,m
\vLOgqW ,m

Nq,m2Neq

n
, ~6!

QM5QM
eq~Te ,Vdr!1(

q,m
\qgqW ,m

Nq,m2Neq

n
. ~7!

The first terms represent the dissipation through equilibri
optical phonons and the second terms are the contribution
excess~generated! phonons to the dissipation;Neq is the
Planck function with the lattice temperatureTl . QE

eq andQM
eq

can be expressed via the dimensionless functionsE eq(Q,V)
andM eq(Q,V):

QE
eq5

eFOVOk0
2

4p2n
E eq, QM

eq5
eFOk0

2

4p2n
M eq. ~8!

Particular expressions for these functions will be provid
elsewhere.

In a generation regime, the population of some mo
considerably exceeds the equilibrium valueN. The steady
state population can be found from Eq.~1!:

NqW ,m5
gqW ,m

(1)

bqW ,m2gqW ,m

. ~9!

Equations ~2!–~9! compose the system, which sel
consistently determines the phonon populationNqW ,m , the
drift velocity Vdr , and the electron temperatureTe at a given
electric fieldF under the steady state.
15530
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III. ANALYSIS OF NONLINEAR REGIMES

We start with a brief discussion of the effect of the Ferm
Dirac statistics on the sign and the magnitude of the de
mentgq . From Eqs.~2! and~3!, one can see that the sign o
gq is determined by

sgn@e(1/Q1Q22V)2
2e(1/Q2Q22V)2

#

and does not depend on the electron degeneracy level. T
we find that atn.1012 cm22 and Vdr.1.73107 cm/s, the
magnitude ofgq exceeds 1011 s21 as in the case of the non
degenerate electrons.10 In the absence of the generation~i.e.,
linear analysis!, the typicalg(Q) dependence is as illustrate
in Fig. 1 by curve 1. Note that the screening due to
degenerate electrons is small at the optical phonon
quency; its contribution tog is estimated to be approxi
mately 2–5 %.

For further nonlinear analysis, two conclusions made
the linear theory of phonon instability10 are important:~i! the
phonon incrementgqW ,m has a maximumgM at a certain wave
vectorqM and~ii ! only the modes with the lowest transver
indexm51 ~i.e., the largestgM) can be generated~below we
will drop this index!. Likewise, the contribution of othe
types of QW phonon modes such as the interface phon
can be ignored in relatively wide QW’s as they are dom
nated by the confined modes. This should result in a str
selectionof generated modes, as it holds in lasers,12 with
nearly identical wavevectors. Now we can use the so-ca
single-mode approximation well known from laser physic
Under this approximation, we can introduce the total num
of highly coherent generated phononsNcph5(qNqW(@N) and
adopt the steady-state condition of generation, namely,
gain-loss balancegM5b. Finally, for the dimensionless
electron temperatureQ, drift velocity V, and the density of
the generated phonons

FIG. 1. Incrementg versus wavevectorQ as a function of di-
mensionless electric fieldf in a 100 Å GaAs QW withb52.7
31011 s21. Curves 1 and 2 show the results of the linear and n
linear analyses, respectively, atf 50.09 that is above the threshol
field. Curve 3 is at the threshold of generationf 50.047.
8-3
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N5
Ncph

NO
, NO[

eFOVO

\vLOb
n, ~10!

we obtain the following nonlinearalgebraicequations:

b5gM@Q,V#, ~11!

fV5Eeq@Q,V#1N, ~12!

f 5Meq@Q,V#1QMN. ~13!

Here f 5F/FO is the dimensionless field. In general,gM de-
pends onN via Q and V, and has to be calculated atQ
5qM /kO . The latter should be found from the addition
equation

dg/dQ50. ~14!

These equations contain the three ‘‘controlling
parameters—electric fieldf, the phonon lossb, and the QW
width L. The advantage of the derived system of equation
that the dimensionless solutions can be used to evaluate
generation regimes for the three given parameters in
semiconductor materials to which the model of confined
lar optical phonons is applicable.

Having found the number of generated phononsNcph in
the single-mode approximation, one can estimate the ra
of generated phonon wave vectorsDq. For this we should
account for the phonons with nonzero wavevector projec
qy , which can also be generated. From Eq.~9! we have
Ncph5(qgq

(1)/(b2gq), where q5$qx ,qy%. Using the ex-
pansion in seriesgq5gM2@gq

x
29 (qx2qM)21gq

y
29 qy

2#/2, we

find the following estimation forDqx :

Dqx'AgM

gq
x
29
expF2

pNcphAgq
x
29 gq

y
29

gM
G . ~15!

The expression forDqy can be obtained from Eq.~15! by the
substitutiongq

x
29 →gq

y
29 5Vdr(]gM /]Vdr)/qM

2 in the preexpo-

nential factor. One can see that the range of generated
non wave vectors narrows exponentially as the phonon po
lation increases.

Prior to presenting the numerical results, some gen
conclusions can be drawn from the qualitative comparison
the electron parameters in the absence of generation~i.e.,
linear analysis! and those under a generation regime. In
former case, as it follows from Eqs.~4!, ~5!, and~8!, the drift
velocity V and the electron temperatureQ are related via the
expression independent of the field:V5Eeq(Q,V)/
M(Q,V). It gives us a dependenceVkin(Q) determined by
the total rates of energy and momentum dissipation. In F
2~a!, we present thisVkin(Q) dependence by curve 1. In th
generation regime,V andQ are related via Eq.~11!, which is
determined by the gain-loss balance of the coherent phon
The correspondingVgen(Q) dependences are curves 2, 3, a
4 in Fig. 2~a! for differentb. Excludingf from Eqs.~12! and
~13!, we obtainN5@Eeq2VMeq#/@2QMV21#. It is easy to
check that the denominator in this formula is positive wh
15530
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the Cherenkov condition is met. Thus, for the generat
regime (N.0), we find the inequality E(Q,V)
2V M(Q,V).0. The latter means that the electron para
eters under the generation fall into the part of theV2Q
plane restricted from the above by the curveVkin(Q). The
crossings of the curvesVgen(Q) and Vkin(Q) determine the
critical ~threshold! points of generation regimes.

We solved Eq.~12! for different parameters. In Figs. 1–5
we show the results obtained for the 100 Å GaAs QW w
three values of phonon lossb. From these figures, the fol
lowing conclusions can be made concerning the general
havior of the electron-phonon system under the genera
regime. The phonon density-electric field dependence d
onstrates a pronounced threshold character:N50 at f
, f th , while N rapidly increases forf . f th . The threshold
field satisfies the conditiongM( f th)5b at N50. Accord-
ingly, the larger the phonon loss is, the higher the thresh
field becomes. Below the threshold, the maximum of
phonon increment increases with the field. Once the thre

FIG. 2. ~a! Dimensionless drift velocityn(Q) and ~b! quasi-
Fermi level zF( f ). Curve 1 represents the linear analysis, wh
curves 2, 3, and 4 correspond to the results of nonlinear anal
with b53.431011 s21, 2.731011 s21, and 1.931011 s21, respec-
tively. The star denotes the result forf 50.15 (F54.7 kV/cm) and
b52.731011 s21.
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old is reached, further increase in the increment is suppre
and its maximum~which equals exactly to the phonon lo
b) occurs at a smaller Q as illustrated in Fig. 1. In this figu
curves 3 and 2 are obtained for the threshold field and a fi
of the developed generation, respectively, while the pho
loss is kept the same. For comparison, we also provide
increment~curve 1! calculated without taking the nonlinea
process into account as for curve 1 of Fig. 2. In laser phys
the light gain is analogous to the phonon increment stud
in this paper. The behavior predicted for the incremen
typical for the gain under laser generation.

In Fig. 3, we present the results obtained for the genera

FIG. 3. Nonequilibrium phonon population versus applied fie
Curves 1, 2, and 3 are forb51.931011 s21, 2.731011 s21, and
3.431011 s21, respectively. The critical points@Ncr , f cr# are indi-
cated by the black squares. The unstable branches are shown b
dashed lines. As in Fig. 2, the star denotes the result fof
50.15 (F54.7 kV/cm) andb52.731011 s21.

FIG. 4. Electron drift velocity versus applied field. Curve
represents the linear analysis while curves 2, 3, and 4 correspo
the results of nonlinear analyses withb53.431011 s21, 2.7
31011 s21, and 1.931011 s21, respectively. The critical points
@Ncr , f cr# are indicated by the black squares. The unstable bran
are shown by the dashed lines. As in Fig. 2, the star denotes
result for f 50.15 (F54.7 kV/cm) andb52.731011 s21.
15530
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phonon densityN with different phonon losses. TheN( f )
dependence calculated for a given phonon lossb behaves
almost linearly in a range of the electric field above t
threshold. As the field increases, however, theN( f ) curve
turns up reaching a critical valueNcr at a field f cr(b). No
stationary solution exists atf . f cr for the proposed model
Instead, we obtain a second~upper! branch of theN( f ) de-
pendence atf , f cr .

Typically such a ‘‘branching’’ may lead to unstable sol
tions. We can check the stability of these solutions as
lows. Let N, Q, V, and qM be solutions of the nonlinea
algebraic equations@Eqs. ~11!–~14!# discussed previously
We introduce small time-dependent deviations for these v
ablesdN, dQ, dV, and dqM , which are governed by the
linearized time-dependent differential equations@Eqs. ~1!,
~4!, and~5!# and the algebraic equation@Eq. ~14!#. The solu-
tions of these linear equations have the functional form

dN, dQ, dV, dqM}elt ~16!

with t5bt. The system of differential equations of the thi
order gives us three values for the decrementl1 ,l2 ,l3. If
l1 ,l2 ,l3,0, the deviations decrease with time and the i
tial state characterized by parametersN, Q, V, and qM is
stable. If at least one ofl1 ,l2 ,l3 is positive, then the initial
state is unstable. Applying this analysis, we found that
second branch is always kinetically unstable.

Interestingly, the abovementioned system of differen
equations@Eqs. ~1!, ~4!, and ~5!# is characterized by two
different time scales: the momentum and energy relaxatio
determined by the transport timet tr , while the time evolu-
tion of the phonons is of the order of the inverted increm
1/g. It is easy to see thatt r /g!1. This implies that the
absolute value of one of the lambdas (l1,2,3) which is asso-
ciated with the phonon kinetic equation of Eq.~1!, is always

.

the
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FIG. 5. Electron temperature versus applied field. Curve 1 r
resents the linear analysis while curves 2, 3, and 4 correspond t
results of nonlinear analyses withb53.431011 s21, 2.7
31011 s21, and 1.931011 s21, respectively. The critical points
@Ncr , f cr# are indicated by the black squares. The unstable branc
are shown by the dashed lines. As in Fig. 2, the star denotes
result for f 50.15 (F54.7 kV/cm) andb52.731011 s21.
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smaller than the absolute values of the other two, sayul1u
!ul2,3u. At f 5 f cr , just this smallestl1 changes its sign. It
means that the instability atf > f cr is led mainly by the pho-
non equation. This allows one to suggest that atf > f cr the
optical phonon avalanche takes place.

The generation of optical phonons affects appreciably
electron parameters, as seen from Figs. 4 and 5. At a g
field above the threshold, both the electron drift veloc
~Fig. 4! and the electron temperature~Fig. 5! decrease while
the quasi-Fermi level@Fig. 2~b!# increases, in comparison t
the case when the generation is suppressed~i.e., curve 1!.
Apparently, these effects—deceleration and cooling of
electrons—are due to the energy and momentum tran
from the electrons to the generated phonons. At a given p
non loss, the stationary solutions forQ( f ) andV( f ) exist in
a finite range of the electric fields. There are also unsta
branches, as presented in Figs. 4 and 5. In polar mater
high fields can induce the so-called electron runaw
effect,13 namely, the rapid increase in the electron tempe
ture and the drift velocity. In Figs. 4 and 5, the beginning
the runaway effect appears as a sharp ‘‘turn-up’’ in the hi
field parts ofQ( f ) andV( f ) dependences. From our resul
it follows that the runaway effect is canceled under the o
cal phonon generation regime. Instead, we obtain the op
phonon avalanche in the high field range atf > f cr .

We conclude this brief analysis of the generation regi
by mentioning that the developed model is based on the
called electron nonlinearity, i.e., the changes in the elec
characteristicsQ and V due to the nonequilibrium optica
phonon population. The model predicts a stable steady-s
generation regime for a finite field range after the thresho
We found that the stability is broken at high phonon popu
tions. Under this condition, phonon nonlinearities can a
become of importance. These include the mechanisms
lead to an increase in the optical phonon loss. The exam
are the self-stimulated optical phonon decay,14 the Joule
heating resulting in an increase ofb, etc. These mechanism
can stabilize the generation regime at high electric fie
They will be analyzed elsewhere.

IV. NUMERICAL ESTIMATES AND DISCUSSION

Now, we can apply the above results to specific hete
structures. First we consider a selectivelyn-doped AlAs/
GaAs/AlAs QW. Taking m* 50.067m0 , \vLO
536.3 meV (8.9 THz),k0512.4 andk`510.6, wherem0
is the free electron mass, we find the parametersa50.069,
kO52.533106 cm21, VO54.363107 cm/s, and FO
531.3 kV/cm~for the latter three parameters, a QW of 1
Å in width is considered!. We assume the lattice temperatu
Tl5100 K. Then the phonon loss due to the lattice anharm
nicity is b51.931011 s21.15 For the electron concentratio
n5231012 cm22, we find the threshold field f th
50.033 (F th51 kV/cm), corresponding velocity Vth
50.3 (Vdr51.43107 cm/s) and temperatureQ th50.39 (Te
5130 K). The maximumg occurs atqM ,th/kO52.46. The
high-field boundary of the steady state regime is charac
ized by the following critical parametersf cr50.29 (Fcr
59 kV/cm), corresponding velocity V50.5 (Vdr52.2
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3107 cm/s), temperatureQ50.39 (Te5130 K), qM/kO
51.65 and the phonon densityN50.069 (NO54
31014 cm22, Ncph51.8631013 cm22).

For the larger phonon losses used in Figs. 2–5, we ob
f th50.047 (F51.4 kV/cm), Vth50.4 (Vdr51.7
3107 cm/s), Q th50.47 (Te5200 K) at b52.731011 s21

and f th50.06 (F51.9 kV/cm), Vth50.47 (Vdr52
3107 cm/s), Q th50.61 (Te5260 K) atb53.431011 s21.

As an example of the developed generation regime,
first consider the moderate pumping fieldf 50.15 (F
54.7 kV/cm) supposing the phonon lossb52.7
31011 s21, which is marked by the star in Figs. 2–5. W
find the area phonon densityN50.024 (NO52.7
31014 cm22, Ncph56.831012 cm22) and the electron pa
rameters Q51.03 (Te5430 K), and V50.47 (Vdr52
3107 cm/s). Parametersl1,2,3, which determine the stability
of the solution according to Eq.~16!, are 21, 23.5, and
236. Then, the maximum of the phonon populations occ
at qM/kO51.8. Equation~15! predicts a width of the gener
ated wave vector rangeDqx54.73105 cm21, Dqy57
3105 cm21. Setting the lateral dimensions of the QW lay
Lx5Ly51 mm, we obtain for this example that one long
tudinal and two transverse optical phonon modes are ge
ated. It is instructive to compare these figures with the nu
ber of the phonon modes effectively interacting wi
electrons. The latter number is estimated to beqM

2 LxLy/4p
'23104.

As another example, we consider the case of the maxi
steady-state fieldf cr at the same phonon loss. The paramet
l1,2,3 are 0,20.3 and240, which correspond to the thresh
old of instability. The phonon density isN50.047 (Ncph
51.331013 cm21). The maximum of the phonon populatio
is at qM/kO51.5. The generated wave vector range (Dqx
51.53102 cm21, Dqy523102 cm21) is appreciably
smaller than the intermode spacing ('p/Lx ,p/Ly) in a re-
alistic finite-size QW layer. Thus for this case, a one-mo
~i.e., highly coherent! generation regime occurs~in the con-
trast to multimode generation near the threshold!.

Now we analyze two other quantities characterizing
generated optical phonons that can be of interest. Cons
for example, the optical displacement of ions in the primiti
cell. According to Ref. 10, the displacement vector of t
confined LO phonons has two components—one is para
to the wave vectorq5$q,0,0% and the other perpendicular t
the QW layer:

uq,l5A\V0Ncph

MvLOL

ei (qxx1qyy2vt)

Aq21~p/L !2
3H iqicosFpz

L G , l 5x,

2p

L
sinFpz

L G , l 5z.

Here,V0 is the volume of the primitive crystal cell andM is
the reduced mass of the ions. For the developed genera
regime, the magnitude of thecoherentoptical displacement
in the middle of the QW layer is estimated to be 0.014%
the lattice constant of GaAs. Next, the alternative elec
field conveying the optical vibrations is
8-6
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F̃~ t !52
4pvLO

k`
A M

4pV0
S 1

k`
2

1

k0
Duq~ t !.

In the generation regime, the amplitude of this oscillati
macroscopicfield is of the order of 6 kV/cm.

Now, we shall briefly present the results for InAs Q
layers. Bulk InAs exhibits electron drift velocity twice tha
of GaAs. Thus the strained InAs QW’s sandwiched betwe
the AlGaSb barriers can demonstrate a large Cherenkov
fect for generation of coherent optical phonons.10 The fol-
lowing parameters can be taken to describe the 100 Å I
QW: \vLO529.5 meV (7 THz),a50.059,kO51.55
3106 cm21, VO55.883107 cm/s, FO521.6 kV/cm. By
applying the developed theory to the InAs QW, we obtain
results very similar to those discussed above for the G
QW’s. For example, withn51012 cm22 and b51011 s21,
we find that the threshold of generation occurs atf th
50.02 (F50.45 kV/cm), Vth50.31 (Vdr51.83107 cm/s),
Q50.52 (Te5180 K), qM/kO52.83. For the regime of de
veloped generation atf 50.06 (F51.2 kV/cm), we findV
50.35 (Vdr523107 cm/s) andQ50.84 (Te5290 K). The
generated phonon density is N50.006 (NO53.6
31014 cm22, Ncph52.131012 cm22). For Lx5Ly51 mm,
the number of generated longitudinal and transverse confi
modes are 7 and 14, respectively.

The approach developed in this paper allows one to ev
ate the efficiency of electric power transformation to the g
erated optical phonons. We can define this efficiency as
ratio of the power dissipated via the generated phonon
the total electric power dissipated in the crystal:

h5
b\vNcph

eFVn
5

N
f v

.

Theh-f dependence is presented in Fig. 6 for the exampl
GaAs/AlGaAs QW. It can be seen that the efficiency
creases withf reaching the magnitudes well above 30% u
der the developed phonon generation.

V. CONCLUSION

We analyzed the generation of confined optical phon
in QW’s under the electric pumping. To treat the phonon a
drifting electron subsystems self-consistently, we calcula
the phonon increment as a function of electron tempera
and drift velocity, while in the balance equations of the ele
tron energy and momentum we incorporated the terms
scribing the energy and momentum loss due to coherent
non emission. Fermi-Dirac statistics are assumed to desc
the electron distributions. By solving the coupled nonline
equations, we found steady-state generation regimes
macroscopic populations of the optical phonon modes
n.
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electron transport that is controlled significantly by the ge
erated phonons.

These generation regimes have a pronounced thres
character. Above the threshold electric field, fast narrow
of the range of the generated phonon wave vectors occ
Under high fields, this practically results in a single-mo
generation. The generated mode is highly populated, wh
leads tocoherent macroscopicoptical displacements of the
lattice and large oscillation amplitudes of the electrosta
fields conveying the optical vibrations.

The proposed model based on the electron nonlinear
predicts a range of the pumping electric fields for stea
state phonon generation. We suggest that beyond this ra
the phonon avalanche occurs and a new steady state ca
achieved when phonon nonlinearities come into the play

We established that the electron parameters, such as
temperature and drift velocity, are affected by the genera
phonons; their magnitudes are suppressed considerably
given electric field. Finally, we estimated the transformati
efficiency of the electric power to coherent optical vibr
tions. This analysis confirms that pumping by the elect
current can be an efficient method for coherent optical p
non generation in quantum heterostructures.
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FIG. 6. Efficiency of the energy conversion under the phon
generation as a function of the field for different values ofb.
Curves 1, 2, and 3 correspond tob53.431011 s21, 2.7
31011 s21, and 1.931011 s21, respectively.
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