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Nonlinear regimes of coherent optical phonon generation in quantum wells
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We present an analysis of nonlinear regimes of the coherent optical phonon generation under the electron
drift in quantum wells. The phonon and electron subsystems are treated self-consistently. This allows us to find
the steady-state generation regimes with macroscopic populations of optical phonon modes and the electron
transport controlled in part by the generated phonons. The generation regimes demonstrate a pronounced
threshold character. At high electric fields above the threshold, practically single-mode generation occurs and
the current-voltage characteristic is considerably changed. We demonstrate high efficiency generation of the
coherent optical phonons by the electric current. The coherent macroscopic optical displacements and the
amplitudes of oscillating electrostatic fields are evaluated. The proposed model based on the electron nonlin-
earities predicts a range of the pumping electric fields under which the steady state phonon generation is
realized. Our results suggest that the phonon avalanche occurs beyond this field range.
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[. INTRODUCTION outlook can be substantially different in short-channel or
low-dimensional transport.

Recent progress in the methods of excitation and detec- Very recently, direct observation of the optical phonon
tion of coherent high-frequency lattice vibratiosee Refs. 1  instability due to the electron drift was reportedhe experi-
and 2 for a recent reviemsparks an interest in the physics of ments were performed in short GaAs and In&s-n struc-
coherent phonons and different applications of coherent phdures. Ultrahigh drift velocities £6x 10’ cm/s) and high
non waves. High-frequency coherent acoustic and opticatlectron concentrations<(10'” cm™ %) were achieved under
phonons have been observed for a number of semiconducttite transient velocity-overshoot transport.
materials and heterostructures. These studies provide infor- The situation is more favorable in two-dimensional, con-
mation on the excitation mechanisms, coherent phonon dyfined structures. For example, it is well known that the
namics, electron-phonon interactions, and other importanmodulation doped heterostructures can achieve the first two
phenomena including the effects of interference of coherentonditions(i.e., high electron drift velocities and large elec-
lattice vibrations, phonon control of ionic motidretc. Po-  tron densities Moreover, simultaneous confinement of elec-
tential applications of coherent phonons include the utilizatrons and optical phonons within the same quantum well
tion of phonons to improve the general performance of op{QW) provides the necessary strong coupling. Incidentally,
toelectronic and microelectronic devices, as well asour recent theoretical analy$isllustrated that the Cheren-
particular applications such as terahertz modulation of fight, kov effect can provide a large incrementafnfinedoptical
generation of high-frequency electric oscillations, manipulaphonon modes in high-quality modulation doped QW hetero-
tion with x rays® etc. Usually, high-frequency coherent structures with drift velociti€s exceeding 1.5 10’cm/s for
phonons are excited optically by ultrafast laser pulseBor ~ GaAs/AlAs and 10’ cm/s for InAs/AlGaSb QW’s. The
both fundamental phonon physics and practical applicationgpcrement is controlled by the electron drift velocity and,
it is of importance to develop electrical methods of coherenthus, by the applied electric field. As soon as the increment
phonon generation in semiconductor materials and heterdecomes larger than the inverse phonon lifetime for some
structures. phonon modes, the populations of these modes increase ex-

Amplification and generation of optical phonons by drift- ponentially in time and the phonon subsystem becomes un-
ing electrons via the Cherenkov effect were proposed in thstable. The instability is of a threshold effect and occurs for
1960’58 but they were never realized for bulklike materi- the electric fields above a critical magnitude.
als. This is because the Cherenkov amplification effect is The principal criterion of the Cherenkov effect \&;,
possible only under the following stringent requirements:>w, o/q whereVy, is the electron drift velocity ané, 5 and
high electron drift velocities, large electron densities, andg are the longitudinal opticalLO) phonon frequency and
strong electron-optical phonon coupling. In bulk materials, itwave vector, respectively. This criterion reflects the forma-
is practically impossible to meet these requirements and ttion of a population inversion of electron states resonantly
compete with the high rate of phonon loss. However, thanteracting with the phonongsee, for example, Ref. 10
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Thus, a positive phonon increment correspondstitoulated  processes. The latter terms can be representeg; adlg m
emissionof the optical phonons. This allows one to suppose:(y(fnz_ 7’(’_))Nd - with the phonon increment
that the phonon instability could follow a scenario similar to (dec?émer)%&q ’

that for lasers. Indeed, the population of the modes with a

larger increment grows faster, resulting in the progressive 4 0G2 7(+) _ ()
narrowing of the phonon distribution function. However, the ;= @wi0V0Gh 77O V.~ T (?’V’Q)
whole process cannot continue indefinitely and must be sta- | kel £0Q| Q2+ Tr_m) }
bilized by some nonlinear mechanisms triggered by the pres- L

ence of high phonon populations.
MOt'V‘T"ted bY the_experlm_ental _observatlon .Of the 1LO- Here, we introduce the Finlich electron-phonon coupling
phonon instability, this paper investigates thenlinearre-
) . . e constant
gimes of confined optical phonon generation in QW hetero-

structures under electric current pumping. By expanding the o2 w1 1
earlier work whose analysis was primarily limited to the lin- a= —A\ /_<_ — _) ,
ear, nondegenerate regiftfehe focus of the present work is A N2hoo\ ke Ko

to consider the influence of nonlinear processes, specificallyqre xo and k., are the low-frequency and the high-

the changes in the electron kinetics caused by the highlygeq,ency dielectric permittivities, respectivelys the el-

nonequilibrium optical phonons themselves under the realisémentary chargen* is the effective mass of the electrons
tic degenerate conditions. Stimulated optical phonon emis- '

sion bronortional to the Bhonon booulation affects both the™® is the electron permittivity calculated at the optical pho-
prop P Pop on frequency,n is the electron concentration, ar@,,

electron drift velocity and the electron temperature. In par'z(—l)m8/[7-rm(m2—4)] with m=1,3.5 (for the QW

ticular, an additional dissipation of the electron momentum, ;
and energy induced by the nonequilibrium phonons sup-

presses both the drift velocity and the electron temperature, . +-on distribution. Following Ref. 10, we suppose that

Thiﬁe changes Ieadl tcredfutchtlomn the mtt:rement. '?‘15 sotrc])n . only the lower subband is populated by the two-dimensional
as the maximum value of the increment approacnes e 1Ny o c4rons Under the actual conditions of high electron con-

verze phonon I|fegn:ﬁ, a tcorc?pettltlfn between the gr:o;vm_ entrations, when the electron-electron scattering dominates
modes occurs an € steady state regime IS reached Witye other collision mechanisms, this distribution can be

tgher;et:]atlorll OI only a fewtphononhmod;ahs. :; !;‘St de:”no.rgstrate ought of in the form of the shifted Maxwellian or Fermi-
at the electron parameters such as the arift vEIocity, avels; o - fnctions. In Ref. 10, the factotg(*)(q) have been

age energy, efc., change appreciably in the generation re . ted for the nondegenerate electrons with the use of a
gime. shifted Maxwellian function. In this paper, we generalize

The rest of this paper is organized as follows. In Sec. I.I'these calculations assuming the electron distribution in the

we introduce the main definitions and formulate the basig, "ot 4 sifted Fermi-Dirac functiotF with two param-
equations. In Secs. Il and IV, the nonlinear regimes are ana:

. . ; ._eters, the electron temperaturg and the drift velocit :
lyzed and discussed. The main conclusions are summarlzec} P & War

in Sec. V. Lt ex m*(v_vdr)Z ~ EF -1
2kgTe kgTe '

th infinitely high barriers.
The electron population factog™ are determined by the

FV)=

Il. BASIC EQUATIONS . . . .
Q where the quasi-Fermi levél; is found from the normaliza-

The confined LO phonons in a QW can be characterizedion condition at a given electron concentrationThus E¢
by two-dimensional phonon wave vectogs and discrete depends om, T, andV,. Now for the factors7(*)(q) we

(transversp numbersm. For the population of thdg,m} ~ °Ptain

mode, we introduce the kinetic equation q
y

jo Wi1+D®expy)]’

JH(6.v,Q)= 3
dNgm (4 -)

B U N: Y=y NG = B NG 1

dt yq,m( q,m) 7q,m q,m IBq,m q,m: () 5 §F+V2

D(+):ex;{i(i+Q— zv)

. . . 40\Q (C)
whereNg ., is the phonon population calculated per unit area

of the QW layer andyffnl are the parameters which deter- In Egs.(2) and(3), we introduce the dimensionless param-
mine the evolution oNj , in time due to the interaction with ~ €ters

two-dimensional electronsygf% are strongly dependent on kT Vv q
the electron distribution function. The paramejgy, de- ®=2, Vz—dr, Q=—,
scribes the phonon loss, which includes phonon scattering or hw Vo Ko
phonon absorption due to nonelectronic mechanisms, phonon
decay due to the lattice anharmonicity, etc. Equatibrcon-

tains the terms corresponding to spontaneous and stimulated

Er—m*V3/2

EZLkOa gF: o
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with the QW width L. Throughout the paper, we use the 2.0
characteristic velocity, momentum, and electric field

2hw o V2m* hw o drahw o 1.5
Vo= 5 ko= f P ToT Tl
m

It is worth noting thaty, of Eq. (2) is defined for the wave <« ,

vector directed along the electron drift. For the general case®

of g={ax.q,}, the y, dependence can be obtained from Eq.

(2) by the substitutionVg— Vg X \/qz—qyzlq. 0.5-
The parameter$, andVy, should be found from the en- '

ergy and momentum balance equations

d(E) 0.0 _ 4
TzeFVdr— Qe(Te, Vg, (4) 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Q
d(m*V) —eF—Qu(T.,Vy) 5) FIG. 1. Incrementy versus wavevecto as a function of di-
dt MA Ter Tdr mensionless electric fielfl in a 100 A GaAs QW withg=2.7

] o x 10" s71, Curves 1 and 2 show the results of the linear and non-
Here Qg(Te, V) andQu(Te,Vq,) designate the dissipation jinear analyses, respectively, &0.09 that is above the threshold

rates of average electron enerdy) and momentundm*V)  field. Curve 3 is at the threshold of generatibn 0.047.
per electron, respectively. For the steady state case, the time

derivatives equal zero.

Optical phonon generation can be achieved when a high Il ANALYSIS OF NONLINEAR REGIMES
electric field is applied. Under this condition, scattering by  We start with a brief discussion of the effect of the Fermi-
the confined optical phonons is typically the dominantDirac statistics on the sign and the magnitude of the decre-
mechanism for the energy and momentum dissipation of thenenty,. From Egs(2) and(3), one can see that the sign of
two-dimensional electrons. Now the dissipation rates in Egsy, is determined by
(4) and(5) can be presented as

_ 2 _O_ 2
Ng.m— Neg sg e(lR+Q-21)7_ o(110-Q-21)?]

Qe=Q&(Te V) + 2 hwio¥om— - (©)

and does not depend on the electron degeneracy level. Then
Ngm—N find that atn>10"2 cm 2 and V4> 1.7x10" cm/s, th
e _ Ngm™Neg we find that atn cm < and Vy>1. cm/s, the
QM_QMG(TE’Vdquzm hQyam——— @) magnitude ofy, exceeds 18 s™* as in the case of the non-
i o ~ degenerate electrodIn the absence of the generatitire.,
The first terms represent the dissipation through equilibriunnear analysi the typicaly(Q) dependence is as illustrated
optical phonons and the second terms are the contributions ¢f Fig. 1 by curve 1. Note that the screening due to the
excess(generatefl phonons to the d|SS|pat|0|12qu IS tr;e degenerate electrons is small at the optical phonon fre-
Planck function with the lattice temperatufe. Qe*andQy'  quency; its contribution toy is estimated to be approxi-
can be expressed via the dimensionless functi®fi#®,V)  mately 2—5 %.

and M ®40,V): For further nonlinear analysis, two conclusions made in
5 5 the linear theory of phonon instabilifare important(i) the
eq_ eFOVOkOEeq oo eFokoM eq ® phonon incremeny/g m has a maximunyy at a certain wave
E 4720 COEMT 2 ' vectorqy, and(ii) only the modes with the lowest transverse

indexm=1 (i.e., the largesy,,) can be generatgthelow we
Particular expressions for these functions will be providedwill drop this index. Likewise, the contribution of other
elsewhere. types of QW phonon modes such as the interface phonons
In a generation regime, the population of some modegan be ignored in relatively wide QW’s as they are domi-
considerably exceeds the equilibrium valle The steady nated by the confined modes. This should result in a strong

state population can be found from Ha): selectionof generated modes, as it holds in lasgrsyith
) nearly identical wavevectors. Now we can use the so-called
Yq,m single-mode approximation well known from laser physics.
Ngm= ' ©) Under this approximation, we can introduce the total number
' Bd,m_ Ya.m ’

of highly coherent generated phondig,,= =,Ng(>N) and
Equations (2)—(9) compose the system, which self- adopt the steady-state condition of generation, namely, the
consistently determines the phonon populatg,, the gain-loss balanceyy=p. Finally, for the dimensionless
drift velocity V., and the electron temperatufg at a given  electron temperatur®, drift velocity V, and the density of
electric fieldF under the steady state. the generated phonons
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~ Nepn _eFoVo 0.8
NN Mo Fuop™ 1o 1@
we obtain the following nonlineaalgebraic equations: 0.77
V= £,0,V]+ 1 7 2
0.5 3
f=Mc{0O,V]+QuN. (13 4
Heref=F/Fg is the dimensionless field. In general, de- 0.4
pends on\ via ® andV, and has to be calculated &
=(qum/Ko. The latter should be found from the additional 0.34 v y r T v T r
equation 0.4 0.8 1.2 1.6 2.0
0
dy/dQ=0. (14
2.0

These equations contain the three “controlling”

parameters—electric fielf] the phonon los®, and the QW

width £. The advantage of the derived system of equations is

that the dimensionless solutions can be used to evaluate th

generation regimes for the three given parameters in any

semiconductor materials to which the model of confined po-

lar optical phonons is applicable. s
Having found the number of generated phondhgy, in

the single-mode approximation, one can estimate the rang: 1.2

of generated phonon wave vectakg|. For this we should

account for the phonons with nonzero wavevector projection

dy, which can also be generated. From E8) we have

Nepn=Zq7y (B~ vq), whereq={q,,q,}. Using the ex- 0.8
pansion in serieSyq=yM—[ygz(qx—qM)2+ ygzqf,]/Z, we
X y

1.6

FIG. 2. (a) Dimensionless drift velocity(®) and (b) quasi-
Fermi level {c(f). Curve 1 represents the linear analysis, while

(15 curves 2, 3, and 4 correspond to the results of nonlinear analyses

find the following estimation foAq,:
4 "
A~ [ exp[ a1
X"" I - | .
ng ™ with B=3.4x 10" s71, 2.7x 10 s %, and 1.<10' s, respec-
tively. The star denotes the result fbr=0.15 (F=4.7 kV/cm) and

The expression foA g, can be obtained from E@15) by the ~ g=2.7x10"s™%
substitution ’y:;z—> ygz=vdr(ay,v| 1V g)/qy in the preexpo-
X y

nential factor. One can see that the range of generated phte Cherenkov condition is met. Thus, for the generation
non wave vectors narrows exponentially as the phonon popuegime (V>0), we find the inequality £(0,))
lation increases. -V M(0,Y)>0. The latter means that the electron param-
Prior to presenting the numerical results, some generadters under the generation fall into the part of te ®
conclusions can be drawn from the qualitative comparison oplane restricted from the above by the cuidg,(®). The
the electron parameters in the absence of generdtien  crossings of the curveBy{©) andVj,(®) determine the
linear analysisand those under a generation regime. In thecritical (threshold points of generation regimes.
former case, as it follows from Eq&}), (5), and(8), the drift We solved Eq(12) for different parameters. In Figs. 1-5,
velocity V and the electron temperatuBeare related via the we show the results obtained for the 100 A GaAs QW with
expression independent of the fieldV=&(®,V)/  three values of phonon log8. From these figures, the fol-
M(O,)). It gives us a dependendq;,(®) determined by lowing conclusions can be made concerning the general be-
the total rates of energy and momentum dissipation. In Fighavior of the electron-phonon system under the generation
2(a), we present thig/);,(®) dependence by curve 1. In the regime. The phonon density-electric field dependence dem-
generation regime/ and® are related via Eq11), whichis  onstrates a pronounced threshold charact€e0 at f
determined by the gain-loss balance of the coherent phonons:f,,, while A rapidly increases fof >f,,. The threshold
The correspondinyy.{®) dependences are curves 2, 3, andfield satisfies the conditioryy(fy)=8 at N=0. Accord-
4 in Fig. Aa) for different 8. Excludingf from Egs.(12) and  ingly, the larger the phonon loss is, the higher the threshold
(13), we obtainN=[Eeq— VMgl/[2QuV—1]. It is easy to  field becomes. Below the threshold, the maximum of the
check that the denominator in this formula is positive whenphonon increment increases with the field. Once the thresh-
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FIG. 3. Nonequilibrium phonon population versus applied field. FIG. 5. Electron temperature versus applied field. Curve 1 rep-

Curves 1, 2, and 3 are fgg=1.9x 10" s, 2.7x10""s™, and resents the linear analysis while curves 2, 3, and 4 correspond to the
4x 10t st ; : i i indi- i 49
3.4x10° s, respectively. The critical point\c, fo] are indi results of nonlinear analyses with8=3.4x10%s™?!, 2.7

cated by the black squares. The unstable branches are shown by the1011 s, and 1.<104 s, respectively. The critical points

(iaos qesd(F“QiS% lf\\? /clr?1) Falgd ,6‘2; Zth;( 15(?{ S(j(lenotes the result ffor [Ne,f] are indicated by the black squares. The unstable branches

are shown by the dashed lines. As in Fig. 2, the star denotes the

. . . . . result forf=0.15 F=4.7 kV/cm) andg=2.7x 10" s 1.
old is reached, further increase in the increment is suppressedS ¢ ) ands

and its maximumwhich equals exactly to the phonon loss _ . _

) occurs at a smaller Q as illustrated in Fig. 1. In this figure Phonon densityV with different phonon losses. Th&({f)
curves 3 and 2 are obtained for the threshold field and a fieldePendence calculated for a given phonon |Gsbehaves

of the developed generation, respectively, while the phonoAIMost linearly in a range of the electric field above the
loss is kept the same. For comparison, we also provide thireshold. As the field increases, however, fiigf) curve
increment(curve 1 calculated without taking the nonlinear tUrNS up reaching a critical valut’, at a field (). No
process into account as for curve 1 of Fig. 2. In laser physicsitationary solution exists dt>f,, for the proposed model.
the light gain is analogous to the phonon increment studied’stead, we obtain a secodppe) branch of the\(f) de-

in this paper. The behavior predicted for the increment igendence af<f. _

typical for the gain under laser generation. Typically such a “branching” may lead to unstable solu-

In Fig. 3, we present the results obtained for the generateons. We can check the stability of these solutions as fol-
lows. Let V, ®, V, andqy be solutions of the nonlinear

0.8 algebraic equation$Eqgs. (11)—(14)] discussed previously.
We introduce small time-dependent deviations for these vari-
1 ablesoN, 60, 8V, and gy, which are governed by the
0.7 \ linearized time-dependent differential equatidi&ys. (1),
o \ (4), and(5)] and the algebraic equatidkqg. (14)]. The solu-
0.6- ! \ tions of these linear equations have the functional form
. ' .
> 3 AN SN, 60, 8V, sqyo=e” (16)
0.5+
4 with 7= Bt. The system of differential equations of the third
order gives us three values for the decremepi\,,A3. If
0.4 N1,N2,A3<0, the deviations decrease with time and the ini-
J tial state characterized by parametéfs ®, V, and qy is
0.3 . ' . . . stable. If at least one 0f;,\5,\ is positive, then the initial

005 010 015 020 025 030 State is unstable. Applying this analysis, we found that the
second branch is always kinetically unstable.
f Interestingly, the abovementioned system of differential

FIG. 4. Electron drift velocity versus applied field. Curve 1 equations.[Eqs. 1), §4)' and (5)] is characterized by two .
represents the linear analysis while curves 2, 3, and 4 correspond fjfferent time scales: the momentum and energy relaxation is

the results of nonlinear analyses with=3.4x10's 2, 2,7  determined by the transport time., while the time evolu-
Xx10" s, and 1. 10s !, respectively. The critical points tion of the phonons is of the order of the inverted increment

[Ner.for] are indicated by the black squares. The unstable branche¥/y. It is easy to see that,/y<1. This implies that the
are shown by the dashed lines. As in Fig. 2, the star denotes th@bsolute value of one of the lambdas, ¢ 5) which is asso-
result forf=0.15 F=4.7 kV/icm) and8=2.7x 101 s 1, ciated with the phonon kinetic equation of Eda), is always
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smaller than the absolute values of the other two, |38y  x 10’ cm/s), temperature®=0.39 (T,=130 K), qu/ko
<[\, 4. At f="fg, just this smallesh, changes its sign. It =165 and the phonon density\'=0.069 No=4
means that the instability d&f, is led mainly by the pho- % 10" cm™2, Neph= 1.86X 103 cm™?).
non equation. This allows one to suggest thafatf ., the For the larger phonon losses used in Figs. 2—5, we obtain
optical phonon avalanche takes place. fi,=0.047 F=1.4 kv/icm), Vin=0.4 Vg=1.7

The generation of optical phonons affects appreciably the< 10" cm/s), ©4,=0.47 (T,=200 K) at 3=2.7x10'! s !

electron parameters, as seen from Figs. 4 and 5. At a givesnd fn=0.06 F=1.9 kV/cm), Vip=0.47 Vg=2
field above the threshold, both the electron drift velocity x 10" cm/s), ®,=0.61 (T,=260 K) at3=3.4x 10 s 1.

(Fig. 4) and the electron temperatufféig. 5 decrease while  As an example of the developed generation regime, we
the quasi-Fermi levelFig. 2(b)] increases, in comparison to first consider the moderate pumping fielt=0.15 (F
the case when the generation is suppresged curve 1. =4.7 kV/cm) supposing the phonon loss3=2.7

Apparently, these effects—deceleration and cooling of thex 10!t s=1, which is marked by the star in Figs. 2—5. We
electrons—are due to the energy and momentum transf@f,d the area phonon density\N'=0.024 (Np=2.7
from the electrons to the generated phonons. At a given phog 1014 cm~2, N = 6.8X 102 cm™2) and the electron pa-
non loss, the stationary solutions () and)(f) existin  rameters ®=1.03 (T,=430 K), and V=0.47 (V4=2

a finite range of the electric fields. There are also unstable 17 cmy/s). Parametes, , 5, which determine the stability
branches, as presented in Figs. 4 and 5. In polar materialgs the solution according to Eq16), are —1, —3.5, and
high fields can induce the so-called electron runaway_3g Then, the maximum of the phonon populations occurs
effect;”® namely, the rapid increase in the electron temperay g /k,=1.8. Equation(15) predicts a width of the gener-
ture and the drift velocity. In Figs. 4 and 5, the beginning of 314 wave vector rangeAq,=4.7X10° cm™ L, Aq,=7

the runaway effect appears as a sharp “turn-up”in the high- 165 cm~1, Setting the lateral dimensions of the QX\/N layer
field parts of®(f) andV(f) dependences. From our results, L,=L,=1 um, we obtain for this example that one longi-
it follows that the ru_naway_effect is canceled under the Op_ti'tudina)i and two transverse optical phonon modes are gener-
cal phonon generation regime. Instead, we obtain the opticaieq. It s instructive to compare these figures with the num-
phonon avalanche in the high field rangef atf;. ber of the phonon modes effectively interacting with

We conclude this brief analysis of the generation regime,actrons. The latter number is estimated to L. /4
by mentioning that the developed model is based on the so- 2% 10¢ ' qﬁ'ﬂhx s

called electron nonlinearity, i.e., the changes in the electron As another example, we consider the case of the maximal

charactenshcs@_ and V' due to the n_oneqUIllbrlum optical steady-state fiel@l., at the same phonon loss. The parameters
phonon population. The model predicts a stable steady-state

. ) L 123are 0,—0.3 and— 40, which correspond to the thresh-
generation regime for a finite field range after the thresholdoId of instability. The phonon density i/=0.047 Ny

We found that the stability is broken at high phonon popula-_ 1.3x 10" cm1). The maximum of the phonon population

tions. Under this condition, phonon nonlinearities can also at qy,/ko=1.5. The generated wave vector rangeq(

. : . ]
become of importance. These include the mechanisms thai ) T 1 . 4
lead to an increase in the optical phonon loss. The examples 1.5<10% cm Aqy—2><102 cm ") is  appreciably

are the self-stimulated optical phonon dethyhe Joule smaller than the intermode spacing /Ly, /L) in a re-

heating resulting in an increase f etc. These mechanisms alistic finite-size QW layer. Thus for this case, a one-mode
can stabilize the generation regime at high electric fields("e" highly coherentgeneration regime occufé the con-

) trast to multimode generation near the threshold
They will be analyzed elsewhere. o -
Now we analyze two other quantities characterizing the
generated optical phonons that can be of interest. Consider,
IV. NUMERICAL ESTIMATES AND DISCUSSION for example, the optical displacement of ions in the primitive

Now, we can apply the above results to specific heteroS:ell. According to Ref. 10, the displacement vector of the

structures. First we consider a selectivelydoped AlAs/ fg?ﬁgi&ja\l;gvngonojf h(??)}t\gr?dc&rg%?Q:Ptsgzr;%ifurﬁr%”el
GaAs/AIAs  QW.  Taking m*=0.06Mg, fw o 4=1a,Y perp

—36.3 meV (8.9 THZ) ko=12.4 andk,=10.6, wherem, ¢ QW laver:

is the free electron mass, we find the parameters0.069,

ko=2.53x10° cm !, V5=4.36x10" cm/s, and Fq , mz

231.3 kV/cm(for the Ir;tter three parameters, a QW of 100 \/mei(qxxwyywt) igicog -~
in width is considered We assume the lattice temperature ug = X

T,=100 K. Then the phonon loss due to the lattice anharmo- ! Mool g+ (m/L)? T sin

nicity is 8=1.9x10'* s~ *.2® For the electron concentration L

n=2x10%cm 2, we find the threshold field fy,

=0.033 Fy=1 kVicm), corresponding velocity Vi, Here,() is the volume of the primitive crystal cell arM is

=0.3 (Vq=1.4x10" cm/s) and temperatur®;,=0.39 (T,  the reduced mass of the ions. For the developed generation

=130 K). The maximumy occurs atqy /ko=2.46. The regime, the magnitude of theoherentoptical displacement

high-field boundary of the steady state regime is charactelin the middle of the QW layer is estimated to be 0.014% of

ized by the following critical parameter$.,=0.29 (F,,  the lattice constant of GaAs. Next, the alternative electric

=9 kV/cm), corresponding velocity V=0.5 (V4=2.2 field conveying the optical vibrations is
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- 47Tw|_o\/ M (1 1 ) 0.5
()= Koo 4700\ ke Ko Ug(1)-
In the generation regime, the amplitude of this oscillating 04 3
macroscopidield is of the order of 6 kV/cm. o
Now, we shall briefly present the results for InAs QW 0.31
layers. Bulk InAs exhibits electron drift velocity twice that < 1
of GaAs. Thus the strained InAs QW'’s sandwiched between 0.24
the AlGaSb barriers can demonstrate a large Cherenkov ef
fect for generation of coherent optical phondhghe fol-
lowing parameters can be taken to describe the 100 A InAs 0.14
QW: hw o=29.5 meV (7 THz),a=0.059,kpo=1.55
X10° em !, V=5.88x<10" cm/s, Fp=21.6 kv/cm. By 0.0 [ [/ .
applying the developed theory to the InNAs QW, we obtain the 0.00 0.03 0.06 0.09 0.12 0.15
results very similar to those discussed above for the GaAs f
QW's. For example, witm=10? cm 2 and =10t s 1,
we find that the threshold of generation occurs fat FIG. 6. Efficiency of the energy conversion under the phonon

=0.02 F=0.45 kV/cm), V;y=0.31 (V4,=1.8x10" cm/s), generation as a function of the field for different values f

©=0.52 (T,=180 K), qu/ko=2.83. For the regime of de- Curves 1, 2, and 3 correspond t@=3.4x10"s™", 2.7

veloped generation at=0.06 (F=1.2 kv/cm), we findy ~ *x10*'s™% and 1. 10" s™*, respectively.

=0.35 Vg=2x10" cm/s) and®=0.84 (T,=290 K). The

generated phonon density isN=0.006 (Wp,=3.6 electron transport that is controlled significantly by the gen-

X 10 cm™?, Ngpp=2.1x 102 cm™?). For Ly=L,=1 um,  erated phonons.

the number of generated longitudinal and transverse confined These generation regimes have a pronounced threshold

modes are 7 and 14, respectively. character. Above the threshold electric field, fast narrowing
The approach developed in this paper allows one to evalwsf the range of the generated phonon wave vectors occurs.

ate the efficiency of electric power transformation to the genUnder high fields, this practically results in a single-mode

erated optical phonons. We can define this efficiency as thgeneration. The generated mode is highly populated, which

ratio of the power dissipated via the generated phonons tteads tocoherent macroscopioptical displacements of the

the total electric power dissipated in the crystal: lattice and large oscillation amplitudes of the electrostatic
fields conveying the optical vibrations.

_ BhiwNegpn ﬁf The proposed model based on the electron nonlinearities

T=TeFVn  fu predicts a range of the pumping electric fields for steady-

. - tate phonon generation. We suggest that beyond this range,
The »-f dependence is presented in Fig. 6 for the example o
GaAs/AIGaAs QW. It can be seen that the efficiency in_fhe phonon avalanche occurs and a new steady state can be

i hing th tud I ab 300 achieved when phonon nonlinearities come into the play.
creases witft reaching the magnitudes well above oUN" We established that the electron parameters, such as the
der the developed phonon generation.

temperature and drift velocity, are affected by the generated
phonons; their magnitudes are suppressed considerably at a
V. CONCLUSION given electric field. Finally, we estimated the transformation

We analyzed the generation of confined optical phonongfficiency of the glectric_power to cohe_rent optical vibrq—
in QW’s under the electric pumping. To treat the phonon andions- This analysis confirms that pumping by the electric
drifting electron subsystems self-consistently, we calculate@U"Tent can be an efficient method for coherent optical pho-
the phonon increment as a function of electron temperaturB°N generation in quantum heterostructures.
and drift velocity, while in the balance equations of the elec-
tron energy and momentum we incorporated the terms de- ACKNOWLEDGMENTS
scribing the energy and momentum loss due to coherent pho-
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