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Quantum pumping in closed systems, adiabatic transport, and the Kubo formula
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Quantum pumping in closed systems is considered. We explain that the Kubo formula contains all the
physically relevant ingredients for the calculation of the pumped charge~Q! within the framework of linear
response theory. The relation to the common formulations of adiabatic transport and ‘‘geometric magnetism’’
is clarified. We distinguish between adiabatic and dissipative contributions toQ. On the one hand we observe
that adiabatic pumping does not have to be quantized. On the other hand we define circumstances in which
quantized adiabatic pumping holds as an approximation. The deviation from exact quantization is related to the
Thouless conductance. As an application we discuss the following examples: classical dissipative pumping by
conductance control, classical adiabatic~nondissipative! pumping by translation, and quantum pumping in the
double barrier model. In the latter context we analyze a 3 site lattice Hamiltonian, which represents the
simplest pumping device. We remark on the connection with the popularS matrix formalism which has been
used to calculate pumping in open systems.
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I. INTRODUCTION

Linear response theory1–3 ~LRT! is the leading formalism
to deal with driven systems. Such systems are described
Hamiltonian H(x) where x(t) is a set of time dependen
classical parameters~‘‘fields’’ !. The Kubo formula is the cor-
ner stone of LRT. It allows the calculation of the respon
coefficients, and in particular theconductance matrix(G) of
the system. If we knowG, we can calculate the charge~Q!
which is transported through the system during one cycle
a periodic driving. This is calledpumping.

Pumping of charge in mesoscopic4 and molecular size de
vices is regarded as a major issue in the realization of fu
quantum circuits or quantum gates, possibly for the purp
of quantum computing.

A. Model system

In order to explain the motivation for the present wor
and its relation to the published literature, we have to giv
better definition of the problem. For presentation purpose
focus on a model system with a ring geometry~Fig. 1!. The
shape of the ring is controlled by some parametersx1 andx2.
These parameters can be gate voltages that determine
location of some boundaries, or the height of some barri
The third parameter is the flux through the ring:

x35F[~\/e!f. ~1!

We shall use units such that the elementary charge ise51.
Note that the HamiltonianH@x1(t),x2(t),x3(t)# has gauge
invariance forf°f12p. Another system with a ring to
pology is presents in Fig. 1~b!, and its abstraction is repre
sented in Fig. 2~c!. The ‘‘dot’’ can be represented by anS
matrix that depends onx1 andx2. In Fig. 1~d! also the flux
x3 is regarded as a parameter of the dot. If we cut the wire
Fig. 1~d! we get the open two lead geometry of Fig. 1~e!.
Finally we can put many such units in series~no flux!, hence
getting the periodic system of Fig. 1~f!. In the latter case the
Hamiltonian is invariant for unit translations, and therefo
0163-1829/2003/68~15!/155303~15!/$20.00 68 1553
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the quasimomentumf is a constant of motion. It follows
that the mathematical treatment of a driven periodic struct
reduces to an analysis of a driven ring system with flux.

B. Classification of pumps

‘‘Pumping’’ means that net charge~or maybe better to say
‘‘net integrated probability current’’! is transported through
the ring per cycle of a periodic driving. Using the commo
jargon of electrical engineering this can be described
ac-dc conversion. We distinguish between pumping in op
systems@such as in Fig. 1~e!#, pumping in closed system
@such as in Fig. 1~d!#, and pumping in periodic systems@such
as in Fig. 1~f!#.

FIG. 1. Illustration of a ring system~a!. The shape of the ring is
controlled by some parametersx1 andx2. The flux through the ring
is x35F. A system with equivalent topology, and abstraction of t
model are presented in~b! and~c!. The ‘‘dot’’ can be represented by
an S matrix that depends onx1 and x2. In ~d! also the fluxx3 is
regarded as a parameter of the dot. If we cut the wire in~d! we get
the open two lead geometry of~e!. If we put many such units in
series we get the period system in~f!.
©2003 The American Physical Society03-1
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For a reason that was explained at the end of the prev
subsection we regard the last category5 as mathematically
equivalent to the second category. We also regard the
category6–9 as a special~subtle! limit of the second category
in a follow up paper10 we demonstrate that in the limit o
open geometry the Kubo formula reduces to theS-matrix
formula of Büttiker, Prétre, and Thomas.6

There are works in the literature regarding ‘‘rectificatio
and ‘‘ratchets.’’11 These can be regarded as studies of pum
ing in periodic systems with the connotation of havi
dampednon-Hamiltonian dynamics. These type of syste
are beyond the scope of the present paper. There is a
recent interest in Hamiltonian ratchets,12 which is again a
synonym for pumping in periodic systems, but with the co
notation of having anonlinearpumping mechanism. We ar
going to clarify what are the conditions for having alinear
pumping mechanism. Only in case of linear pumping mec
nism the Kubo formula can be used, which should be dis
guished from the nonlinear mechanism of Ref. 12.

C. Objectives

The purpose of this paper is to explain and demonst
that the Kubo formula contains all the physically releva
ingredients for the calculation of the charge~Q! which is
pumped during one cycle of a periodic driving. In the lim
of a very slow time variation~small ẋ), the emerging picture
coincides with the adiabatic picture of Refs. 5,13–15. In t
limit the response of the system is commonly described a
nondissipative ‘‘geometric magnetism’’15 effect or as adia-
batic transport.

A major objective of this paper is to bridge between t
adiabatic picture and the more general LRT/Kubo pictu

FIG. 2. Schematic illustration of quantum pumping in a clos
wire-dot system. The net charge via the third level~thick solid line
on the right! is vanishingly small: As the dot potential is lowered a
electron is taken from the left side~first avoided crossing!, and then
emitted back to the left side~second avoided crossing!. Assuming
that the bias is inverted before the dot potential is raised back,
the second level carry a net chargeQ5O(1).
15530
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and to explain howdissipationemerges in the quantum me
chanical treatment. For one-parameter driving a unifying p
ture that bridges between the quantum mechanical adiab
picture and LRT has been presented in Refs. 16–19. A
vious attempt20 had ended in some confusion regarding t
identification of the linear response regime, while Ref.
avoided the analysis of the mechanism that leads to diss
tion in the quantum mechanical case.

The presented~Kubo based! formulation of the pumping
problem has a few advantages. It is not restricted to the a
batic regime; it allows a clear distinction betweendissipative
and adiabatic contributions to the pumping; the classic
limit is manifest in the formulation; it gives a level by leve
understanding of the pumping process; it allows the con
eration of any type of occupation~not necessarily Fermi oc
cupation!; it allows future incorporation of external environ
mental influences such as that of noise; and it regards
voltage over the pump as electromotive force, rather th
adopting the conceptually more complicated view9 of having
a chemical potential difference.

Of particular interest is the possibility to realize a pum
ing cycle that transfersexactlyone unit of charge per cycle
In open systems7,8 this ‘‘quantization’’ holds only approxi-
mately, and it has been argued7 that the deviation from exac
quantization is due to the dissipative effect. Furthermore
has been claimed7 that exact quantization would hold in th
strict adiabatic limit, if the system wereclosed. In this paper
we would like to show that the correct picture is quite d
ferent. We shall demonstrate that the deviation from ex
quantization is in fact of adiabatic nature. This deviation
related to the so-called ‘‘Thouless conductance’’ of the d
vice.

D. Examples

We give several examples for the application of the Ku
formula to the calculation of the pumped chargeQ: classical
dissipative pumping, classical adiabatic pumping~by trans-
lation!, and quantum pumping in the double barrier mod
The last example is the main one. In the context of op
geometry it is known as ‘‘pumping around a resonance8

We explain that this is in fact an diabatic transfer schem
and we analyze a particular version of this model which
represented by a three site lattice Hamiltonian. This is d
nitely the simplest pump circuit possible, and we believe t
it can be realized as a molecular size device. It also can
regarded as an approximation for the closed geometry
sion of the two delta potential pump~Fig. 2!.8

E. Outline

In Sec. II we define the main object of the study, which
the conductance matrixG of Eq. ~5!. The conductance ma
trix can be written as the sum of a symmetric (h) and an
antisymmetric (B) matrices, which are later identified as th
dissipative and the adiabatic contributions respectively.
the first part of the paper~Secs. II–VIII! we analyze the
adiabatic equation~Sec. III!, and illuminate the distinction
between its zero order solution~Sec. IV! its stationary first
order solution~Sec. V!, and its nonstationary solution~Sec.

ly
3-2
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QUANTUM PUMPING IN CLOSED SYSTEMS . . . PHYSICAL REVIEW B 68, 155303 ~2003!
VI !. The outcome of the analysis in Sec. V is Eq.~26! for the
conductance matrixG. This expression is purely adiabati
and does not give any dissipation. In order to get dissipa
we have to look for a nonstationary solution.

The standard textbook derivation of the Kubo formu
@Eq. ~29!# for the conductance matrixG implicitly assumes a
nonstationary solution. We show how to get from it Eq.~30!
for h and Eq.~31! for B. The latter is shown to be identica
with the adiabatic result@Eq. ~26!#. In Sec. VII we further
simplify the expression forh leading to the fluctuation-
dissipation relation@Eq. ~33!#.

The disadvantages of the standard textbook derivatio
Kubo formula make it is essential to introduce a differe
route toward Eq.~33! for h. This route, which is discussse
in Sec. VIII, explicitly distinguishes the dissipative effe
from the adiabatic effect, and allows to determine the con
tions for the validity of either the adiabatic picture or LRT.
particular it is explained that LRT is based, as strange a
sounds, on perturbation theory to infinite order.

In Sec. IX we clarify the general scheme of the pumpi
calculation@Eq. ~39!#. Secs. X and XI give two simple clas
sical examples. In Sec. XII we turn to discuss quant
pumping, where the cycle is around a chain of degenerac
The general discussion is followed by presentation of
double barrier model~Sec. XIII!. In order to get a quantita
tive estimate for the pumped charge we consider a three
lattice Hamiltonian~Sec. XIV!.

The summary~Sec. XV! gives some larger perspective o
the subject, pointing out the relation to theS-matrix formal-
ism, and to the Born-Oppenheimer picture. In the App
dixes we give some more details regarding the derivatio
so as to have a self-contained presentation.

II. THE CONDUCTANCE MATRIX

Consider the HamiltonianH@x(t)#, wherex(t) is a set of
time dependent parameters~‘‘fields’’ !. For presentation, a
well as for practical reasons, we assume later a set of t
time dependent parametersx(t)5@x1(t),x2(t),x3(t)#. We
define generalized forces in the conventional way as

Fk52
]H
]xk

. ~2!

Note that ifx1 is the location of a wall element, thenF1 is
the force in the Newtonian sense. Ifx2 is an electric field,
thenF2 is the polarization. Ifx3 is the magnetic field or the
flux through a ring, thenF3 is the magnetization or the cur
rent through the ring.

In linear response theory~LRT! the response of the sys
tem is described by a causal response kernel, namely,

^Fk& t5(
j
E

2`

`

ak j~ t2t8!xj~ t8!dt8, ~3!

whereak j(t)50 for t,0. The Fourier transform ofak j(t)
is the generalized susceptibilityxk j(v). The conductance
matrix is defined as
15530
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Gk j5 lim
v→0

Im@xk j~v!#

v
5E

0

`

ak j~t!tdt. ~4!

Consequently, as explained further in Appendix B, the
sponse in the ‘‘dc limit’’ (v→0) can be written as

^Fk&52(
j

Gk jẋ j . ~5!

As an example for the applicability of this formula note th
following standard examples for one parameter driving: L
x5 wall or piston displacement, thenẋ5 wall or piston
velocity, G5 friction coefficient, andF52Gẋ is the fric-
tion force. Another standard example isx5 magnetic flux,
2 ẋ5 electromotive force,G5 electrical conductance, an
henceF52Gẋ is the Ohm law.

It is convenient to write the conductance matrix asGk j

[hk j1Bk j, where hk j5h jk is the symmetric part of the
conductance matrix, whileBk j52Bjk is the antisymmetric
part. In case of having three parameters we can arrange
elements of the antisymmetric part as a vectorB¢
5(B23,B31,B12). Consequently Eq.~5! can be written in ab-
stract notation as

^F&52h• ẋ2B` ẋ, ~6!

where the dot product should be interpreted as matrix-ve
multiplication, which involves summation over the indexj.
The wedge-product also can be regarded as a matrix-ve
multiplication. It reduces to the more familiar cross produ
in the case where we consider three parameters. The dis
tion, which is defined as the rate in which energy is absor
into the system, is given by

Ẇ5
d

dt
^H&52^F&• ẋ5(

k j
hk jẋkẋ j . ~7!

Only the symmetric part contributes to the dissipation. T
contribution of the antisymmetric part is identically zero.

III. THE ADIABATIC EQUATION

The adiabatic equation is conventionally obtained fro
the Schrodinger equation by expanding the wave function
the x-dependent adiabatic basis:

d

dt
uc&52

i

\
H@x~ t !#uc&, ~8!

uc&5(
n

an~ t !un@x~ t !#&, ~9!

dan

dt
52

i

\
Enan1

i

\ (
m

(
j

ẋ jAnm
j am , ~10!

where following Ref. 13 we define
3-3
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DORON COHEN PHYSICAL REVIEW B68, 155303 ~2003!
‘ Anm
j ~x!5 i\ K n~x!U ]

]xj
m~x!L . ~11!

Differentiation by parts of] j^n(x)um(x)&50 leads to the
conclusion thatAnm

j is a hermitian matrix. Note that the e
fect of gauge transformation is

un~x!&°e2 i [Ln(x)/\] un~x!&, ~12!

Anm
j °ei [(Ln2Lm)/\]Anm

j 1~] jLn!dnm . ~13!

Note that the diagonal elementsAn
j [Ann

j are real, and trans
form asAn

j °An
j 1] jLn .

Associated withAn(x) is the gauge invariant two form
which is defined as

Bn
i j 5] iAn

j 2] jAn
i ~14!

522\ Im^] inu] jn& ~15!

52
2

\
Im(

m
Anm

i Amn
j . ~16!

This can be written in an abstract notation asB5¹`A.
Using standard manipulations, namely, via differentiation
parts of] j^n(x)uHum(x)&50, we get fornÞm the expres-
sions

Anm
j ~x!5

i\

Em2En
^nu

]H
]xj

um&[2
i\Fnm

j

Em2En
~17!

and hence

Bn
i j 52\ (

m(Þn)

Im@Fnm
i Fmn

j #

~Em2En!2
. ~18!

IV. THE STRICTLY ADIABATIC SOLUTION, AND THE
BERRY PHASE

We define the perturbation matrix as

Wnm52(
j

ẋ jAnm
j for nÞm ~19!

and Wnm
j 50 for n5m. Then the adiabatic equation can b

rewritten as follows:

dan

dt
52

i

\
~En2 ẋAn!an2

i

\ (
m

Wnmam . ~20!

If we neglect the perturbationW, then we get the strict adia
batic solution

e2 i /\{ *0
t En[x(t8)]dt82*x(0)

x(t) An(x)•dx} un„x~ t !…&. ~21!

Due toAn(x), we have the so called geometric phase. T
can be gauged away unless we consider a closed cycle. F
closed cycle, the gauge invariant phase (1/\)rA•dx¢ is called
Berry phase.

With the above zero-order solution we can obtain the f
lowing result:
15530
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^Fk&5^n~x!u2
]H
]xk

un~x!& ~22!

52
]

]xk
^n~x!uH~x!un~x!&. ~23!

In the case of the standard examples that were mentio
previously this corresponds to conservative force or to p
sistent current. From now on we ignore this trivial contrib
tion to ^Fk&, and look for the a first order contribution.

V. THE STATIONARY ADIABATIC SOLUTION:
ADIABATIC TRANSPORT OR ‘‘GEOMETRIC

MAGNETISM’’

For linear driving~unlike the case of a cycle! the An(x)
field can be gauged away. Assuming further that the adiab
equation can be treated as parameter independent~that means
disregarding the parametric dependence ofEn andW on x)
one realizes that Eq.~20! possesses stationary solutions.
first order these are

uc&5un&1 (
m(Þn)

Wmn

En2Em
um&. ~24!

Note that in afixed-basis representationthe above stationary
solution is, in fact, time dependent. Hence the notatio
un@x(t)#&, um@x(t)#&, and uc(t)& are possibly more appro
priate.

With the above solution we can writêFk& as a sum of
zero order and first order contributions. From now on
ignore the zero order contribution, and go on with the fi
order contribution

^Fk&52 (
m(Þn)

Wmn

En2Em
^nu

]H
]xk

um&1c.c.

5(
j

S i(
m

Anm
k Amn

j 1c.c.D ẋ j52(
j

Bn
k jẋ j . ~25!

For a generalstationarypreparation, either pure or mixed
one obtains Eq.~5! with

Gk j5(
n

f ~En!Bn
k j , ~26!

where f (En) are weighting factors, with the normalizatio
(nf (En)51. For a pure state preparationf (En) distin-
guishes only one staten, while for canonical preparation
f (En)}exp(2En /T), whereT is the temperature. For a many
body system of non-interacting Fermionsf (En) can be rein-
terpreted as the Fermi occupation function, so that(nf (En)
is the total number of particles.

Thus we see that the assumption of a stationary first-o
solution leads to a nondissipative~antisymmetric! conduc-
tance matrix. This is know as either adiabatic transport5,14 or
3-4
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QUANTUM PUMPING IN CLOSED SYSTEMS . . . PHYSICAL REVIEW B 68, 155303 ~2003!
‘‘geometric magnetism.’’13 In the later sections we shall dis
cuss the limitations of the above result.

VI. THE NONSTATIONARY SOLUTION: THE KUBO
FORMULA

The Kubo formula is an expression for the linear respo
of a driven system that goes beyond the stationary adiab
solution of the previous section. The Kubo formula has ma
type of derivations. One possibility is to use the same pro
dure as in Section V starting with

uc~ t !&5e2 iEntun&

1 (
m~Þn!

F2 iWmnE
0

t

ei ~En2Em!t8dt8Ge2 iEmtum&

For completeness we give in Appendix A the simplest v
sion of the standard derivation, which is based on a conv
tional fixed-basis first-order-treatment of the perturbati
The disadvantages are: The standard derivation does n
luminate the underlaying physical mechanisms of the
sponse, the stationary adiabatic limit is not manifest,
fluctuation-dissipation relation is vague, and the validity co
ditions of the derivation are not clear: no identification of t
regimes. For now we go on with the conventional approac
but in a later section we refer to the more illuminating a
proach of Refs. 20 and 16–19. Then we clarify what is
regime ~range of ẋ) were the Kubo formula can b
trusted,18,19 and what is the subregime where the respo
can be described as nondissipative adiabatic transport.

In order to express the Kubo formula one introduces
following definition:

Ki j ~t!5
i

\
^@Fi~t!,F j~0!#&. ~27!

We use the common interaction picture notationFk(t)
5eiHtFke2 iHt, whereH5H(x) with x5const. The expec-
tation value assumes that the system is prepared in astation-
ary state~see previous section!. It is also implicitly assumed
that the result is not sensitive to the exact value ofx. Note
that Ki j (t) has a well defined classical limit. Its Fourie
transform will be denotedK̃ i j (v).

The expectation valuêFk& is related to the drivingx(t)
by the causal response kernela i j (t2t8). The Kubo expres-
sion for this response kernel, as derived in Appendix A,

a i j ~t!5Q~t!Ki j ~t!, ~28!

where the step functionQ(t) cares for the upper cutoff o
the integration in Eq.~3!. The Fourier transform ofa i j (t) is
the generalized susceptibilityx i j (v). The conductance ma
trix is defined as

Gi j 5 lim
v→0

Im@x i j ~v!#

v
5E

0

`

Ki j ~t!tdt. ~29!

This can be split into symmetric and antisymmetric comp
nents~see derivation in Appendix C! as follows:
15530
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h i j 5 1
2 ~Gi j 1Gji !5

1

2
lim
v→0

Im@K̃ i j ~v!#

v
, ~30!

Bi j 5 1
2 ~Gi j 2Gji !52E

2`

` dv

2p

Re@K̃ i j ~v!#

v2
. ~31!

The antisymmetric part is identified15 ~Appendix C! as cor-
responding to the stationary solution Eq.~26! of the adiabatic
equation.

VII. THE EMERGENCE OF DISSIPATIVE RESPONSE,
AND THE FLUCTUATION-DISSIPATION RELATION

The Kubo formula for the symmetric part of the condu
tance matrix (h i j ) can be further simplified. If we take Eq
~30! literally, thenh i j 50 due to the simple fact that we hav
finite spacing between energy levels~see Ref. 21 for a sta
tistical point of view!. But if we assume that the energ
levels have some finite widthG, then the smoothed versio
of K̃ i j (v) should be considered. In common textbooks t
introduction ofG is ‘‘justified’’ by assuming some weak cou
pling to an environment, or by taking the limit of infinit
volume. But we are dealing with a strictly isolated fini
system, and therefore the meaning ofG requires serious con
sideration. We postpone the discussion of this issue to
next section.

If the smoothed version ofK̃ i j (v) should be used in Eq
~30!, then it is possible to obtainh i j from power spectrum
C̃i j (v) of the fluctuations. This is called the fluctuation
dissipation relation. The spectral functionC̃i j (v) is defined
as the Fourier transform of the symmetrized correlation fu
tion

Ci j ~t!5^ 1
2 @Fi~t!F j~0!1F j~0!Fi~t!#&. ~32!

We use again the interaction picture, as in the definition
Ki j (t). Also this function has a well defined classical lim

There are several versions for the fluctuation-dissipat
relation. The microcanonical version15 has been derived us
ing classical considerations, leading to

h i j uE5
1

2

1

g~E!

d

dE
@g~E!C̃E

i j ~v→0!#. ~33!

In Appendix C we introduce its quantum mechanical deriv
tion. The subscript emphasizes that we assume a micr
nonical state with energyE, andg(E) is the density of states
The traditional version of the fluctuation-dissipation relati
assumes a canonical state. It can be obtained by cano
averaging over the microcanonical version leading to

h i j uT5
1

2T
C̃T

i j ~v→0!. ~34!
3-5
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VIII. THE VALIDITY OF LINEAR RESPONSE THEORY
AND BEYOND

The standard derivation of the dissipative part of t
Kubo formula, leading to the fluctuation-dissipation relati
~33!, is not very illuminating physically. More troubling i
the realization that one cannot tell from the standard der
tion what are the conditions for its validity. An alternat
physically appealing derivation,16–19 is based on the obser
vation that energy absorption is related to having diffusion
energy space.20 In Appendix E we outline the main ingred
ents of this approach.

It should be clear that the diffusion picture of Appendix
holds only in case ofchaotic systems. If this diffusion picture
does not hold, then also the Kubo formula forh i j does not
hold. Driven one-dimensional systems are the obvious
ample for the failure of linear response theory. As in the c
of the kicked rotator~standard map! ~Ref. 22! there is a
complicated route to chaos and stochasticity: By increas
the driving amplitude the phase space structure is change
the amplitude is smaller than a threshold value, then the
fusion is blocked by Kolmogorov-Arnold-Moser curves, a
consequently there is not dissipation. Therefore the Ku
formula is not applicable in such cases.

The following discussion ofdissipative responseassumes
that we deal with a quantized chaotic system. We would l
to discuss the reason and the consequences of havin
energy scaleG. In the standard derivation the assumption
having level broadening as if comes out of the blue. As
already noted it is customary in textbooks to argue that ei
a continuum limit, or some small coupling to an environme
is essential in order to provideG. But this is of course just a
way to avoid confrontation with the physical problem of ha
ing a driven isolated finite mesoscopic system. In fact the
energy scaleG is related to the rate (ẋ) of the driving:

G5S \s

D2
uẋu D 2/3

3D, ~35!

where for simplicity of presentation we assume one para
eter driving. We useD to denote the mean level spacing, a
s is the root mean square value of the matrix elementFnm
between neighboring levels. In order to derive the above
pression forG we have used the result of Ref. 19~Sec. 17!
for the ‘‘core width’’ at the breaktimet5tprt of perturbation
theory. The purpose of the present section is to give an
tional ‘‘pedestrian derivation’’ forG, and to discuss the
physical consequences.

Looking at the first order solution Eq.~24! of Sec. V one
realizes that it makes sense provideduWmnu!D. This leads
to the adiabaticity condition

uẋu!
D2

\s
. ~36!

If this condition is not satisfied one should go beyond fi
order perturbation theory~FOPT!, in a sense to be explaine
below. Note that this adiabaticity condition can be written
G!D.
15530
-

n

x-
e

g
. If
if-

o

e
an

f
e
er
t

-

x-

p-

t

s

The adiabaticity condition~36! can be explained in a
more illuminating way as follows: Let us assume that w
prepare the system at timet50 at the levelun&. Using time
dependentFOPT we find out that a stationarylike solution
reached after the Heisenberg timetH52p\/D. This is of
course a valid description provided we do not have by the
breakdown of FOPT. The condition for this is easily found
be ẋtH!dxc , wheredxc5D/s. This leads again to the adia
baticity condition~36!.

Another assumption in the derivation of Sec. V was th
we can ignore the parametric dependence ofEn andW on x.
The adiabaticity conditiontH!dxc / ẋ manifestly justify such
an assumption: We should think oftH as the transient time
for getting a stationarylike state, and we should regarddxc as
the parametric correlation scale.

As strange as it sounds, in order to have dissipation,
essential to have a breakdown of FOPT. In the languag
perturbation theory this implies a required summation of d
grams toinfinite order, leading to an effective broadening o
the energy levels. By iterating FOPT, neglecting interferen
terms, we get aMarkovian approximationfor the energy
spreading process. This leads to the diffusion equation
Appendix E. This diffusion can be regarded as arising fro
Fermi-golden-rule transitions between energy levels.
simple ad-hoc way to determine the energy level broaden
is to introduceG as a lower cutoff in the energy distributio
which is implied by Eq.~24!:

u^nuc&u25
u\ ẋFmnu2

~En2Em!41~G!4
. ~37!

This constitutes a generalization of the well known proc
dure used by Wigner in order to obtain the local density
states.16,17 However, in the present context we do not ge
Lorentzian. The width parameterG is determined self-
consistently from normalization, leading to Eq.~35! ~disre-
garding numerical prefactor!.

We can summarize the above reasoning by saying
there is aperturbative regimethat includes an adiabati
~FOPT! subregime. Outside of the adiabatic subregime
need all orders of perturbation theory leading to Ferm
golden-rule transitions, diffusion in energy space, and he
dissipation. Thus the dissipative part of Kubo formu
emerges only in the regimeG.D, which is just the opposite
of the adiabaticity condition. The next obvious step is
determine the boundary of the perturbative regime. Follo
ing Refs. 18,19 we argue that the required condition isG
!Db . The bandwidthDb}\ is defined as the energy widt
uEn2Emu were the matrix elementsFnm are not vanishingly
small. If the conditionG!Db is violated we find ourselves in
the nonperturbative regime where the Kubo formula can
be trusted.18,19

We still have to illuminate why we can get in the pertu
bative regime a dissipativelinear response in spite of the
breakdown of FOPT. The reason is having a separation
scales (D!G!Db). The nonperturbative mixing on th
small energy scaleG does not affect the rate of first-orde
transitions between distant levels (G!uEn2Emu!Db).
3-6
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Therefore Fermi golden rule picture applies to the desc
tion of the coarse grained energy spreading, and we ge
linear response.

The existence of the adiabatic regime is obviously a qu
tum mechanical effect. If we take the formal limit\→0 the
adiabaticity conditionG!D breaks down. In fact theproper
classical limit isnonperturbative, because the weaker cond
tion G!Db does not survive the\→0 limit. For further
details see Refs. 16–19. In the nonperturbative regime
quantum mechanical derivation of Kubo formula is not val
Indeed we have demonstrated18 the failure of Kubo formula
in case of random-matrix models. But if the system ha
classical limit, then Kubo formula still holds in the nonpe
turbative regime due tosemiclassical~rather than quantum
mechanical! reasons.

The discussion ofdissipationassumes a generic situatio
such that the Schro¨dinger equation does not have a stationa
solution. This means that driven one-dimensional syste
are automatically excluded. Another nongeneric possibilit
to consider a special driving scheme, such as transla
rotation, or dilation.23 In such case the time depende
Hamiltonian H@x(t)# possesses a stationary solution~pro-
vided the ‘‘velocity’’ ẋ is kept constant!. Consequently we do
not have a dissipation effect. In Sec. XI we discuss the s
plest example of pumping by translation, where the stati
ary adiabatic solution of Sec. V is in fact exact, and no d
sipation arises.

IX. APPLICATION TO PUMPING

So far we have discussed the response for driving i
very general way. From now on we focus on a system wit
ring geometry as described in the Introduction, and illu
trated in Fig. 1. The shape of the ring is controlled by so
parametersx1 andx2, andx3 is the magnetic flux. The gen
eralized forceF3 which is conjugate to the flux is the curren
The time integral over the current is the transported cha

Q5 R ^F3&dt. ~38!

In fact a less misleading terminology is to talk about ‘‘pro
ability current’’ and ‘‘integrated probability current.’’ From a
purely mathematical point of view it is not importan
whether the transported particle has an electrical charge

Disregarding a possible persistent current contributi
the expression for the pumped charge is

Q52F R G•dx1 R B`dxG
k53

. ~39!

If we neglect the first term, which is associated with t
dissipation effect, and average the second~‘‘adiabatic’’! term
over the flux, then we get

Quadiabatic52
1

2p\E E B•dx¢`dx¢. ~40!
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The integration should be taken over a cylinder of verti
height 2p\, and whose basis is determined by the project
of the pumping cycle onto the (x1 ,x2) plane.

We already pointed out that the Berry pha
(1/\) r An•dx¢ is gauge invariant. Therefore from Stokes la
it follows that (1/\)**B•dx¢`dx¢ is independent of the sur
face, and therefore (1/\)tB•dx¢`dx¢ with closed surface
should be 2p3 integer. Integrating over a cylinder, as in E
~40!, is effectively similar to integrating over a closed su
face~because of the 2p periodicity in the vertical direction!.
This means that the flux averagedQ of Eq. ~40! has to be an
integer.

The common interest is in pumping cycles in theF50
plane. This means that the zero order conservative contr
tion to Q, due to a persistent current, does not exist. Furth
more, from the reciprocity relations~see Appendix B! it fol-
lows that G3152G13 and G3252G23, which should be
contrasted withG125G21. This means that a pumping cycl
in theF50 plane is purely adiabatic: there is no dissipati
contribution toQ. Only theB¢ field @second term in Eq.~39!#
is relevant to the calculation of the pumped charge, and
vertical componentB12 vanishes due to the time revers
symmetry.

The absence of dissipative contribution for a cycle in t
F50 plane, does not imply that dissipation is not an iss
The symmetric part of the conductance matrixh i j is in gen-
eral nonzero, leading to an energy absorption rate whic
proportional toẋ2. This implies that the energy absorptio
per cycle is proportional touẋu. Therefore we are able to
minimize the dissipation effect by making the pumping cyc
very slow. Furthermore, if we get into the quantum
mechanical adiabatic regime, thenh i j becomes extremely
small, and then we can neglect the dissipation effect as l
as quantum-mechanical adiabaticity can be trusted.

Whenever the dissipation effect cannot be neglected,
should specify whether or how astationary operationis
achieved. In case of pumping in open system the station
operation is implicitly guaranteed by having equilibrated re
ervoirs, where the extra energy is dissipated to infinity.
case of pumping in closed system the issue of station
operation is more subtle: In the adiabatic regime, to the
tend that adiabaticity can be trusted, we have a station
solution to the transport problem, as defined in Sec. V. B
outside of the adiabatic regime we have diffusion in ene
space~Appendix E! leading to a slow energy absorption~dis-
sipation!. Thus a driven system is heated up gradua
~though possibly very slowly!. Strictly speaking a stationary
operation is not achieved, unless the system is in~weak!
thermal contact with some large bath. Another way to rea
a stationary operation, that does not involve an external b
is by having an effectively bounded phase space. This is
case with the mixed phase space example which is discu
in Ref. 12. There the stochasticlike motion takes place i
bounded chaotic region in phase space.

X. CLASSICAL DISSIPATIVE PUMPING

Before we discuss the quantum mechanical pumping,
instructive to bring simple examples forclassicalpumping.
3-7
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DORON COHEN PHYSICAL REVIEW B68, 155303 ~2003!
In the following we consider one particle (r) in a two-
dimensional ring as in Fig. 1~a!.

The first example is for classicaldissipativepumping. The
conductanceG5G33 can be calculated for this system24

leading to a mesoscopic variation of the Drude formula. T
current is given by Ohm lawI 52G3Ḟ, where2Ḟ is the
electromotive force.

Consider now the following pumping cycle: Change t
flux from F1 to F2, hence pumping chargeQ52G(1)
3(F22F1). Change the conductance fromG(1) to G(2)
by modifying the shape of the ring. Change the flux fromF2
back to F1, hence pumping chargeQ(2)52G(2)3(F1
2F2). Consequently the net pumping is

Q5@G~2!2G~1!#3~F22F1!. ~41!

Thus we have used the dissipative part of the conducta
matrix @first term in Eq.~39!# in order to pump charge. In th
quantum mechanical version of this example extra c
should be taken with respect to the zero order contribution
the persistent current.

XI. CLASSICAL ADIABATIC PUMPING

The second example is for classicaladiabatic pumping.
The idea is to trap the particle inside the ring by a poten
well, and then to make a translation of the trap along a cir
The result of such a cycle is evidentlyQ51. We would like
to see how this trivial result emerges form the Kubo formu

Let (r,p) be the canonical coordinate of the particle in t
ring, while (x1 ,x2) are the center coordinate of a trappin
potential. The Hamiltonian is

H@r,p;x~ t !#5
1

2m F p'
2 1S pi2

1

2pAx1
21x2

2
F~ t !D G

1U trap@r 12x1~ t !,r 22x2~ t !#, ~42!

wherepi andp' are the components of the momentum alo
the ring and in the perpendicular~transverse! directions. The
pumping is done simply by cycling the position of the tra
The translation of the trap is assumed to be along an in
circle of radiusR,

x~ t !5@R cos~Vt !,R sin~Vt !,F5const#. ~43!

In this problem the stationary solution of Sec. V is
exact solution. Namely

uc~ t !&5eimẋ•run@x~ t !#&, ~44!

where un(x)&°c (n)(r2x) are the eigenfunctions of a pa
ticle in the trap. Equation~44! is just Galilei transformation
from the moving~trap! frame to the laboratory frame.

It is a priori clear that in this problem the pumped char
per cycle isQ51, irrespective ofF. Therefore theB¢ field
must be

B¢ 52
~x1 ,x2,0!

2p~x1
21x2

2!
. ~45!
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This can be verified by calculation via Eq.~18!. The singu-
larity along thex3 axis is not of quantum-mechanical origin
It is not due to degeneracies, but rather due to the diverg
current operator (]H/]x3}1/Ax1

21x2
2).

XII. QUANTUM PUMPING

We turn now to the quantum-mechanical case. Cons
an adiabatic cycle that involves a particular energy leven.
This level is assumed to have a degeneracy point
(x1

(0) ,x2
(0) ,F (0)). It follows that in fact there is a vertica

chain of degeneracy points:

chain5~x1
(0) ,x2

(0) ,F (0)12p\3 integer!. ~46!

These degeneracy points are important for the geomet
understanding of theB¢ field, as implied by Eq.~18!. Every
degeneracy point is similar to a monopole charge. The t
flux that emerges from each monopole must be 2p\
3 integer for a reason that was explained after Eq.~40!. Thus
the monopoles are quantized in units of\/2. The B¢ field
which is created~so to say! by a vertical chain of monopole
may have a differentnear fieldand far field behavior, which
we discuss below.

The far field region exists if the chains are well isolate
Later we explain that ‘‘far’’ meansgT!1, wheregT is the
Thouless conductance. The far field is obtained by regard
the chain as a smooth line. This leadsqualitatively to the
same field as in Eq.~45!. Consequently, for a ‘‘large radius’
pumping cycle in theF50 plane, we getuQu'1. In the
following we are interested in the deviation from exact qua
tization: If f (0)50 we expect to haveuQu>1, while if
f (0)5p we expectuQu<1. Only for thef averagedQ of
Eq. ~40! we getexact quantization.

The deviation fromuQu'1 is extremely large if we con-
sider a tight pumping cycle around af (0)50 degeneracy.
After linear transformation of the shape parameters, the
ergy splitting D5En2Em of the energy leveln from its
neighboring~nearly degenerated! level m can be written as

D5@~x12x1
(0)!21~x22x2

(0)!21c2~f2f (0)!2#1/2 ~47!

wherec is a constant. The monopole field is accordingly

B¢ 56
c

2

~x12x1
(0) ,x22x2

(0) ,x32x3
(0)!

F ~x12x1
(0)!21~x22x2

(0)!21S c

\ D 2

~x32x3
(0)!2G3/2,

~48!

where the prefactor is determined by the requirement of h
ing a single (\/2) monopole charge. Assuming a pumpin
cycle of radiusR in the F50 plane we get from the secon
term of Eq.~39!

Q52F R B`dxG
3
57pAgT, ~49!

where
3-8
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gT5
1

D

]2D

]f2
5

c2

R2
~50!

is a practical definition for the Thouless conductance in t
context. It is used here simply as a measure for the sens
ity of an energy level to the magnetic fluxF.

What we want to do in the next sections is to interpol
between the near field result, which isQ5O(AgT), and the
far field result, which isQ5O(1). For this purpose it is
convenient to consider a particular model that can be so
exactly.

XIII. THE DOUBLE BARRIER MODEL

A simple example for quantum pumping is the doub
barrier model. An open geometry version of this model h
been analyzed in Ref. 8 using theS matrix approach. The
analogous closed geometry version is obtained by consi
ing a one-dimensional ring with two delta barriers. As we a
going to explain below, the pumping process in this mo
can be regarded as a particular example of an adiabatic tr
fer scheme: The electrons are adiabatically transferred f
state to state one by one as in ‘‘musical chair game.’’

The two delta barriers version of the double barrier mo
is illustrated in Fig. 2. The length of the ring isL, with
periodic boundary conditions on2(L/2),r ,(L/2). A dot
region uQu,a/2 is defined by the potential

U~r ;c1 ,c2!5
1

c1
dS r 1

a

2D1
1

c2
dS r 2

a

2D . ~51!

It is assumed thatc1 and c2 are small enough so one ca
classify the ring eigenstates into two categories: wire sta
and dot states. The latter are those states that are localiz
the dot regionuQu,a/2 in the limit of infinitely high barri-
ers. We define the Fermi energy as the energy of the
occupied wire level in the limit of infinitely high barriers.

The three parameters that we can control are the fluxx3
5F5\f, the biasx15c12c2, and the dot potentialx2
5Edot which is related toc11c2. The energyEdot corre-
spond to the dot state which is closest to the Fermi energyEF
from above. We assume that the other dot levels are m
further away from the Fermi energy, and can be ignor
Note that another possible way to control the dot potentia
simply by changing a gate voltage: That means to ass
that there is a control over the potential floor in the reg
uQu,a/2.

The pumping cycle is assumed to be in theF50 plane,
so there is no issue of conservative persistent current co
bution. The pumping cycle is defined as follows: We st
with a positive bias (x1.0) and lower the dot potential from
a largex2.EF value to a smallx2,EF value. As a result,
one electron is transfered via theleft barrier into the dot
region. Then we invert the bias (x1,0) and raise backx2.
As a result the electron is transferred back into the wire
the right barrier.

A closer look at the above scenario@Fig. 2~b!# reveals the
following: As we lower the dot potential across a wire lev
an electron is adiabatically transferred once from left to ri
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and then from right to left. As long as the bias is positi
(x1.0) the net charge being pumped is very small (uQu
!1). Only the lowest wire level that participate in th
pumping cycle carriesQ5O(1) net charge: It takes an elec
tron from the left side, and after the bias reversal it emits
into the right side. Thus the pumping process in this mo
can be regarded as a particular example14 of an adiabatic
transfer scheme: The electrons are adiabatically transfe
from state to state, one by one, as in ‘‘musical chair gam

For a single occupied level the netQ is the sum of charge
transfer events that take place in four avoided crossings~two
avoided crossings in case of the lowest level!. For many
particle occupation the totalQ is the sum over the netQ’s
which are carried by individual levels. For a dense zero te
perature Fermi occupation the summation over all the
Q’s is a telescopic sum, leaving noncanceling contributio
only from the first and the last adiabatic crossings. The la
involve the last occupied level at the Fermi energy.

XIV. THE THREE SITE LATTICE HAMILTONIAN

Rather than analyzing the two-delta-barriers version
the double barrier model, we consider below a simplifi
version that still contains thesameessential ingredients. Thi
is obtained by considering a three site lattice Hamiltoni
The advantage is obviously the possibility to make an ex
analytical treatment that does not involve approximations

The middle site in the three site lattice Hamiltonian su
ports a single dot state, while the two other sites support
wire states. The Hamiltonian is

H°S 0 c1 eif

c1 u c2

e2 if c2 0
D . ~52!

The three parameters are the biasx15c12c2, the dot energy
x25u, and the fluxx35F5\f. For presentation purpos
we assume that 0,c1 ,c2!1, and characterize the wire-do
coupling by the parameterc5Ac1c2.

The eigenstates areEn . Disregarding the interaction with
the dot (c50) we have two wire states withE561. This
implies degeneracies forx25u571. Once we switch on the
coupling (c.0), the only possible degeneracies are betwe
the even dot state and the odd wire state of the mirror s
metric Hamiltonian (x150). The flux should be either inte
ger ~for degeneracy of the dot level with the lower wir
level!, or half integer~for degeneracy of the dot level with
the upper wire level!. Thus we have two vertical chains o
degeneracies:

the negative chain5~0,211c2,2p\3 integer!,

the positive chain5~0,112c2,p12p\3 integer!.

In order to calculate theB¢ field and pumped chargeQ, we
have to find the eigenvalues and the eigenvectors of
Hamiltonian matrix. The secular equation for the eigenvalu
is
3-9
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DORON COHEN PHYSICAL REVIEW B68, 155303 ~2003!
E32uE22~11c1
21c2

2!E1u22c1c2cos~f!50.

Using the notations

Q5
1

9
u21

1

3
~11c1

21c2
2!,

R5
1

27
u31

1

6
~11c1

21c2
2!u2

1

2
u1c1c2cos~f!cos~u!

5
R

AQ 3

the roots of the above cubic equation are

En5
1

3
u12AQ cosS 1

3
u1n

2p

3 D , ~53!

wheren50,61. The corresponding eigenstates are

un~x!&°
1

ASS c2eif1c1En

12En
2

c1e2 if1c2En

D , ~54!

whereS is the normalization, namely,

S5~12En
2!21~c11c2En!21~c21c1En!2. ~55!

For the calculation of the pumped charge in the next pa
graph it is useful to notice that forE561 the normalization
is S52(c16c2)2, while for E50 the normalization isS
'1.

After some algebra we find that the first component of
B¢ field in theF50 plane is

B1522 ImK ]

]u
n~x!U ]

]f
n~x!L ~56!

52~c1
22c2

2!
1

S2

]S

]u
, ~57!

which is illustrated in Fig. 3. From here it follow that if w
keep constant bias, and change onlyx25u, then the pumped
charge is

Q52E B1dx252~c1
22c2

2!
1

SU
initial

final

. ~58!

For a planar (F50) pumping cycle around the negative ve
tical chain the main contribution toQ comes from the two
crossings of thex2'21 line. Hence we get

Q5
c11c2

c12c2
5A112gT, ~59!

where the Thouless conductance in this context refers to
avoided crossing, and is defined as

gT[
1

D

]2D

]f2U
f50

5
2c1c2

~c12c2!2
. ~60!
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A similar calculation of the pumped charge for a planar cy
around the positive chain leads to

Q52
c12c2

c11c2
52A122gT ~61!

with gT52c1c2 /(c11c2)2. In both cases we have approx
mate quantizationQ5611O(gT) for gT!1, while for a
tight cycle eitherQ→` or Q→0 depending on which line o
degeneracies is being encircled. If the pumping cycle
circles both chains then we getQ54c1c2 /(c1

22c2
2). In the

latter caseQ5O(gT) for gT!1, with no indication for
quantization.

XV. SUMMARY AND DISCUSSION

We have shown how the Kubo formalism can be used
order to derive both classical and quantum-mechanical
sults for the pumped chargeQ in a closed system. In this
formulation the distinction between dissipative and nondis
pative contributions is manifest.

Within the framework of the Kubo formalism~disregard-
ing nonlinear corrections! we have made a distinction be
tween the following levels of treatment: strict adiabatic
~outcome of zero order treatment!, adiabatic transport~out-
come of stationary first order treatment!, and dissipation~the
result of first order transitions!.

In the adiabatic regime one can assume astationarysolu-
tion to the adiabatic equation, which implies no dissipati
effect. This leads to the picture of adiabatic transport, wh
the Berry phase is the outcome of a zero order treatm
while the ‘‘geometric magnetism’’ of Eq.~26! is the outcome
of a first order treatment of the interlevel couplings.

In some very special cases~translations, rotations and di
lations! this assumption~of having a stationary solution! is in
fact exact, but in generic circumstance this assumption is
approximation. Outside of the adiabatic regime the station
solution cannot be trusted.

Assuming quantizedchaotic dynamicsone argues tha
Fermi-golden-rule transitions between levels lead to~slow!

FIG. 3. The first component of theB¢ field for a particle in the
middle level of the three site lattice model. It is plotted as a funct
of the dot potentialx25u. The other parameters aref50, and
c150.1, whilec250.04 for the thick line andc250.02 for the thin
line. In the limit c2→0, all the charge that is transferred from th
left side into the dot during the first avoided crossing, is emit
back into the left side during the second avoided crossing. In
The eigenenergiesEn(x) for the c250.04 calculation.
3-10
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QUANTUM PUMPING IN CLOSED SYSTEMS . . . PHYSICAL REVIEW B 68, 155303 ~2003!
diffusion in energy@Eq. ~E1!#. This leads to the emergence
the dissipative part in the Kubo formula. We have obtain
an expression@Eq. ~35!# for the energy scaleG}uẋu2/3 that
controls the dissipative effect. We have explained that
dissipative contribution to the Kubo formula is valid only
the regimeD,G!Db . Otherwise the dynamics is either o
adiabatic nature (G!D) or nonperturbative (G.D).

In order to calculate the pumped chargeQ we have to
perform a closed line integral over the conductance@Eq.
~39!#. This may have in general both adiabatic and dissi
tive contributions. For the common pumping cycle in t
F50 plane, only the adiabatic contribution exists. This f
lows from the reciprocity relations~Sec. IX!. Still we have
emphasized~without any contradiction! that in the same cir-
cumstances a dissipation effect typically accompanies
pumping process.

The quantum adiabatic contribution to the pumping is
termined by a line integral over aB¢ field which is created by
monopoles. The monopoles, which are related to the deg
eracies of the Hamiltonian, are located along vertical cha
in x space@Eq. ~46!#. The three site model provides the sim
plest example for such vertical chains: By calculating theB¢
field which is created~so to say! by these chains, we wer
able to determine the charge which is pumped during a c
@e.g., Eq.~59!#.

The ~monopoles of the! vertical chains havenear field
regions@Eq. ~48!#. If the chains are well isolated inx space,
then there are alsofar field regions. The far field regions ar
defined as those where the Thouless conductance is
small (gT!1). Pumping cycles that are contained in the
field region of a given chain lead to an approximately qu
tized pumpingQ5 integer1O(gT). It is important to realize
that the existence of far field regions inx space is associate
with having a low dimensional system far away from t
classical limit. In a quantized chaotic system it is unlikely
have gT!1 along a pumping cycle. As we take the\→0
limit the vertical chains become very dense, and the far fi
regions disappear.

In the subtle limiting case of open geometry we expec
get agreement with theS-matrix formula of Büttiker, Prétre,
and Thomas~BPT!.6 Using the notations of the present Pap
the BPT formula for the current that comes out of~say! the
right lead can be written as

G3 j5
e

2p i
traceS P

]S

]xj
S†D , ~62!

whereP is the projector on the right lead channels. ForG33

the above reduces to the Landauer formula. The details
garding the relation between the Kubo formula and the B
formula will be published in a separate paper.10 Here we just
note that the derivation is based on a generalization of
Fisher-Lee approach.3,25,26

Finally it is important to remember that the theory
driven systems is the corner stone for the analysis of in
action between ‘‘slow’’ and ‘‘fast’’ degrees of freedom. As
sume that thexj are in fact dynamical variable, and that th
conjugate momenta arepj . The standard textbook examp
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is the study of diatomic molecules. In such a casexj are the
locations of the nuclei. The total Hamiltonian is assumed
be of the general form

Htotal5
1

2M (
j

pj
21H~x!, ~63!

whereH is the Hamiltonian of the ‘‘fast’’ degrees of freedom
~in the context of molecular physics these are the electro!.
Rather than using the standard basis, one can use the B
Oppenheimer basisux,n(x)&5ux& ^ un(x)&. Then the Hamil-
tonian can be written as

Htotal5
1

2M (
j

@pj2Anm
j ~x!#21dnmEn~x!,

where the interaction term is consistent with Eq.~19!. Thus it
is evident that the theory of driven systems is a special li
of this problem, which is obtained if we treat thexj as clas-
sical variables.
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APPENDIX A: THE KUBO FORMULA: STANDARD
DERIVATION

In this appendix we present an elementary textbook-s
derivation of the Kubo formula. For notational simplicity w
write the Hamiltonian asH5H02 f (t)V. It is assumed that
the system, in the absence of driving, is prepared in a
tionary stater0. In the presence of driving we look for a firs
order solutionr(t)5r01 r̃(t). The equation forr̃(t) is

]r̃~ t !

]t
'2 i @H0 ,r̃~ t !#1 i f ~ t !@V,r0#. ~A1!

This equation can be rewritten as

]

]t
@U0~ t !21r̃~ t !U0~ t !#' i f ~ t !@U0~ t !21V•U0~ t !,r0#,

whereU0(t) is the evolution operator which is generated
H0. The solution of the latter equation is

r̃~ t !'E t

i $V@2~ t2t8!#,r0% f ~ t8!dt8, ~A2!

where we use the usual definition of the ‘‘interaction pictur
operatorV(t)5U0(t)21V•U0(t).

Consider now the time dependence of the expecta
value ^F& t5tr@Fr(t)# of an observable. Disregarding th
zero order contribution, the first order expression is
3-11
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^F& t'E t

i tr$F@V„2~ t2t8!…,r0#% f ~ t8!dt8

5E t

a~ t2t8! f ~ t8!dt8,

where the response kernela(t) is defined fort.0 as

a~t!5 i tr$F@V~2t!,r0#%5 i tr$@F,V~2t!#r0%

5 i ^@F,V~2t!#&5 i ^@F~t!,V#&. ~A3!

We have used above the cyclic property of the trace op
tion; the stationarityU0r0U0

215r0 of the unperturbed state
and the definitionF(t)5U0(t)21F•U0(t).

APPENDIX B: REMARKS REGARDING THE
GENERALIZED SUSCEPTIBILITY

In this appendix we would like to further illuminate th
relation between the generalized susceptibility and the c
ductance matrix. The generalized susceptibilityxk j(v) is the
Fourier transform of the causal response kernelak j(t).
Therefore it is an analytic function in the upper half of t
complexv plan, whose real and imaginary parts are rela
by Hilbert transforms~Kramers-Kronig relations!

x0
k j~v![Re@xk j~v!#5E

2`

` Im@xk j~v8!#

v82v

dv8

p
. ~B1!

The imaginary part ofxk j(v) is the sine transforms o
ak j(t), and therefore it is proportional tov for small fre-
quencies. Consequently it is convenient to write the Fou
transformed version of Eq.~3! as

@^Fk&#v5(
j

x0
k j~v!@xj #v2mk j~v!@ ẋ j #v , ~B2!

where the dissipation coefficient is defined as

mk j~v!5
Im@xk j~v!#

v
5E

0

`

ak j~t!
sin~vt!

v
dt. ~B3!

In this paper we ignore the first term in Eq.~B2! which
signify the nondissipative in-phase response. Rather we
the emphasis on the ‘‘dc limit’’ (v→0) of the second term
Thus the conductance matrixGk j5mk j(v→0) is just a syn-
onym for the term ‘‘dissipation coefficient.’’ However, ‘‘con
ductance’’ is a better~less misleading! terminology: it does
not have the~wrong! connotation of being specifically asso
ciated with dissipation, and consequently it is less confus
to say that it contains a~nondissipative! adiabatic compo-
nent.

For systems where time reversal symmetry is broken
to the presence of a magnetic fieldB, the response kerne
and consequently the generalized susceptibility and the
ductance matrix satisfies the Onsager reciprocity relation

a i j ~t,2B!5@6#a j i ~t,B!, ~B4!

x i j ~v,2B!5@6#x j i ~v,B!, ~B5!
15530
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Gi j ~2B!5@6#Gji ~B!, ~B6!

where the plus~minus! applies if the signs ofFi and F j

transform~not! in the same way under time reversal. The
reciprocity relations follow from the Kubo formula@Eq.
~28!#, using Ki j (2t,2B)52@6#Ki j (t,B), together with
the trivial identity Ki j (2t,B)52K ji (t,B). In Sec. IX we
discuss the implications of the reciprocity relations in t
context of pumping.

APPENDIX C: EXPRESSIONS FOR B AND G

The functionsCi j (t) andKi j (t) are the expectation val
ues of hermitian operators. Therefore they are real functio
It follows that the real part of their Fourier transform is
symmetric function with respect tov, while the imaginary
part of their Fourier transform is anti symmetric with respe
to v. By definition they satisfyCi j (t)5Cji (2t) and
Ki j (t)52K ji (2t). It is convenient to regard them as th
real and imaginary parts of one complex functionF i j (t).
Namely,

F i j ~t!5^Fi~t!F j~0!&5Ci j ~t!2 i
\

2
Ki j ~t!, ~C1!

Ci j ~t!5
1

2
@F i j ~t!1F j i ~2t!#, ~C2!

Ki j ~t!5
i

\
@F i j ~t!2F j i ~2t!#. ~C3!

It is possible to express the decompositionGi j 5h i j

1Bi j in terms ofK̃ i j (v). Using the definition~29! we get

Gi j 5E
0

`

Ki j ~t!tdt

52E
2`

` Re@K̃ i j ~v!#

v2

dv

2p
1F1

2

Im@K̃ i j ~v!#

v
G

v50

. ~C4!

The first term is antisymmetric with respect to its indexe
and is identified asBi j . The second term is symmetric wit
respect to its indexes, and is identified ash i j . The last step in
the above derivation involves the following identity that ho
for any real functionf (t)

E
0

`

f ~t!tdt5E
2`

` dv

2p
f̃ ~v!E

0

`

e2 ivttdt

5E
2`

` dv

2p
f̃ ~v!S 2

1

v2
1 ipd8~v!D

5E
2`

` dv

2p S 2
Re@ f̃ ~v!#

v2
2p Im@ f̃ ~v!#d8~v!D

52E
2`

` Re@ f̃ ~v!#

v2

dv

2p
1F1

2

Im@ f̃ ~v!#

v G
v50

. ~C5!

Note that Im@ f̃ (v)# is the sine transform off (t), and there-
fore it is proportional tov is the limit of small frequencies
3-12
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It is of practical value to rederive Eq.~C4! by writing
F i j (t) using the energiesEn and the matrix elementsFnm

i .
Then we can get from it straightforwardly~using the defini-
tions! all the other expressions. Namely,

F i j ~t!5(
n

f ~En!(
m

Fnm
i Fmn

j expS 2 i
Em2En

\
t D ,

~C6!

F̃ i j ~v!5(
n

f ~En!(
m

Fnm
i Fmn

j 2pdS v2
Em2En

\ D ,

~C7!

x i j ~v!5(
n,m

f ~En!S 2Fnm
i Fmn

j

\v2~Em2En!1 i0

1
Fnm

j Fmn
i

\v1~Em2En!1 i0D , ~C8!

h i j 522p\(
n

f ~En! (
m(Þn)

Re@Fnm
i Fmn

j #d8~Em2En!,

~C9!
y
h
lit
an
tio

d

15530
Bi j 52\(
n

f ~En! (
m(Þn)

Im@Fnm
i Fmn

j #

~Em2En!2
. ~C10!

One observes that the expression forBi j coincides with the
adiabatic transport result Eq.~26!. Alternatively this identifi-
cation can be obtained by expressing the sum in Eq.~C10! as
an integral, getting form it the first term in Eq.~C4!:

Bi j 5
2

\E2`

` Im@F̃ i j ~v!#

v2

dv

2p

5
2

\E2`

`
Im@C̃i j ~v!#2

\

2
Re@K̃ i j ~v!#

v2

dv

2p

52E
2`

` Re@K̃ i j ~v!#

v2

dv

2p
. ~C11!

APPENDIX D: EXPRESSING K̃„v… USING C̃„v…

We can use the following manipulation in order to rela
K̃ i j (v) to C̃i j (v):
K̃ i j ~v!5(
n

f ~En!K̃n
i j ~v!5

i

\
2p(

nm
f ~En!@Fnm

i Fmn
j d~v1vnm!2Fnm

j Fmn
i d~v2vnm!#

5
i

\
2p(

nm
f ~Em!@2Fnm

i Fmn
j d~v1vnm!1Fnm

j Fmn
i d~v2vnm!#

5
i

\
2p(

nm

f ~En!2 f ~Em!

2
@Fnm

i Fmn
j d~v1vnm!2Fnm

j Fmn
i d~v2vnm!#

52 ivp(
nm

f ~En!2 f ~Em!

En2Em
@Fnm

i Fmn
j d~v1vnm!1Fnm

j Fmn
i d~v2vnm!#52 iv(

n
f 8~En!Cn

i j ~v!, ~D1!
al

or-
n.

ffu-
dis-
-

where we use the notationvnm5(En2Em)/\. The third line
differs from the second line by permutation of the dumm
summation indexes, while the fourth line is the sum of t
second and the third lines divided by 2. In the last equa
we assume smallv. If the levels are very dense, then we c
replace the summation by integration, leading to the rela

E g~E!dE f~E!K̃E
i j ~v!52 ivE g~E!dE f8~E!C̃E

i j ~v!,

~D2!

where K̃E
i j (v) and C̃E

i j (v) are microcanonically smoothe
functions. Since this equality hold for any smoothedf (E),
it follows that the following relation holds~in the limit
v→0):

K̃E
i j ~v!5 iv

1

g~E!

d

dE
@g~E!CE

i j ~v!#. ~D3!
e
y

n

If we do not assume smallv, but instead assume canonic
state, then a variation on the last steps in Eq.~D1!, using the
fact that @ f (En)2 f (Em)#/@ f (En)1 f (Em)#5tanh@(En
2Em)/(2T)# is an odd function, leads to the relation

K̃T
i j ~v!5 iv3

1

\v
tanhS \v

2T DCT
i j ~v!. ~D4!

Upon substitution of the above expressions in the Kubo f
mula forh i j , one obtains the fluctuation-dissipation relatio

APPENDIX E: THE KUBO FORMULA AND THE
DIFFUSION IN ENERGY SPACE

The illuminating derivation of Eq.~33! is based on the
observation that energy absorption is related to having di
sion in energy space. Let us assume that the probability
tribution r(E)5g(E) f (E) of the energy satisfies the diffu
sion equation
3-13
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]r

]t
5

]

]E Fg~E!DE

]

]E S 1

g~E!
r D G . ~E1!

The energy of the system iŝH&5*Er(E)dE. It follows
that the rate of energy absorption is

d

dt
^H&52E

0

`

dEg~E!DE

]

]E S r~E!

g~E! D . ~E2!

For a microcanonical preparation we get

d

dt
^H&5

1

g~E!

d

dE
@g~E!DE#. ~E3!

This diffusion-dissipation relation reduces immediately
the fluctuation-dissipation relation if we assume that the
fusion in energy space due to the driving is given by

DE5
1

2 (
i j

C̃E
i j ~v→0!ẋi ẋ j . ~E4!

Thus it is clear that a theory for linear response should
tablish that there is a diffusion process in energy space du
the driving, and that the diffusion coefficient is given by E
~E4!. More importantly, this approach also allows treati
cases where the expression forDE is nonperturbative, while
the diffusion-dissipation relation Eq.~E3! still holds.

A full exposition ~and further reference! for this route of
derivation can be found in Refs. 16–19. Here we shall g
just the classical derivation of Eq.~E4!, which is extremely
simple. We start with the identity

d

dt
^H&5 K ]H

]t L 52(
k

ẋkF
k~ t !. ~E5!
ti-

,
,

B

.

15530
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Assuming ~for presentation purpose! that the ratesẋk are
constant numbers, it follows that energy changes are rel
to the fluctuatingFk(t) as

dE5^H& t2^H&052(
k

ẋkE
0

t

Fk~ t8!dt8. ~E6!

Squaring this expression, and performing microcanonical
eraging over initial conditions we obtain

dE2~ t !5(
i j

ẋi ẋ jE
0

tE
0

t

CE
i j ~ t92t8!dt8dt9, ~E7!

where CE
i j (t92t8)5^Fi(t8)F j (t9)& is the correlation func-

tion. For very short times this equation implies ‘‘ballistic
spreading (dE2}t2) while on intermediate time scalesit
leads to diffusive spreadingdE2(t)52DEt, where

DE5
1

2 (
i j

ẋi ẋ jE
2`

`

CE
i j ~t!dt. ~E8!

The latter result assumes a short correlation time. This is
the reason that the integration overt can be extended form
2` to 1`. Hence we get Eq.~E4!. We note that for long
times the systems deviates significantly from the initial m
crocanonical preparation. Hence, for long times, one sho
justify the use of the diffusion equation~E1!. This leads
to the classical slowness condition which is discussed
Ref. 19.
.
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