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Quantum pumping in closed systems is considered. We explain that the Kubo formula contains all the
physically relevant ingredients for the calculation of the pumped ché@gevithin the framework of linear
response theory. The relation to the common formulations of adiabatic transport and “geometric magnetism”
is clarified. We distinguish between adiabatic and dissipative contributio®s @n the one hand we observe
that adiabatic pumping does not have to be quantized. On the other hand we define circumstances in which
guantized adiabatic pumping holds as an approximation. The deviation from exact quantization is related to the
Thouless conductance. As an application we discuss the following examples: classical dissipative pumping by
conductance control, classical adiabdtiondissipative pumping by translation, and quantum pumping in the
double barrier model. In the latter context we analyg 3 site lattice Hamiltonian, which represents the
simplest pumping device. We remark on the connection with the pofutaatrix formalism which has been
used to calculate pumping in open systems.
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[. INTRODUCTION the quasimomentung is a constant of motion. It follows
that the mathematical treatment of a driven periodic structure
Linear response theaty® (LRT) is the leading formalism reduces to an analysis of a driven ring system with flux.

to deal with driven systems. Such systems are described by a
Hamiltonian H(x) where x(t) is a set of time dependent B. Classification of pumps
classical parametefrsfields” ). The Kubo formula is the cor-
ner stone of LRT. It allows the calculation of the response.
coefficients, and in particular tteonductance matrixG) of
the system. If we knovs, we can calculate the charg®)
which is transported through the system during one cycle o

a periodic driving. This is callegumping systems[such as in Fig. (e)], pumping in closed systems

_ Pumping of charge in mesoscobiand molecular size de- [such as in Fig. ()], and pumping in periodic systerfsuch
vices is regarded as a major issue in the realization of futurgg ;, Fig. 1f)].

guantum circuits or quantum gates, possibly for the purpose
of quantum computing.

“Pumping” means that net charger maybe better to say
net integrated probability curren)’is transported through
the ring per cycle of a periodic driving. Using the common
jargon of electrical engineering this can be described as
c-dc conversion. We distinguish between pumping in open

(@) (b)

A. Model system

In order to explain the motivation for the present work,
and its relation to the published literature, we have to give a
better definition of the problem. For presentation purpose we
focus on a model system with a ring geometifg. 1). The
shape of the ring is controlled by some parametgrandx..
These parameters can be gate voltages that determine tt
location of some boundaries, or the height of some barriers )
The third parameter is the flux through the ring: left lead right lead

Q

dot dot dot

(d) (O]

Xg=Dd=(hle) . (1)

We shall use units such that the elementary charge=i&.

Note that the HamiltoniarH[ x,(t),x,(t),x5(t)] has gauge @
invariance for¢g— ¢+ 2. Another system with a ring to- O Q Q O O Q Q

pology ',S pr_esents In F'?'(m?,’ and its abstraction is repre- FIG. 1. lllustration of a ring systert®). The shape of the ring is
sent(_ad in Fig. @). The “dot” can be_represented by & controlled by some parametergs andx,. The flux through the ring
matrix that depends o, andx,. In Fig. 1(d) also the flux 5y — . A system with equivalent topology, and abstraction of the
X3 is regarded as a parameter of the dot. If we cut the wire ifnodel are presented ib) and(c). The “dot” can be represented by
Fig. 1(d) we get the open two lead geometry of Fide)l  an S matrix that depends o, andx,. In (d) also the fluxx; is
Finally we can put many such units in seri@® flux), hence  regarded as a parameter of the dot. If we cut the wir@jrwe get
getting the periodic system of Fig(fL In the latter case the the open two lead geometry ¢&). If we put many such units in
Hamiltonian is invariant for unit translations, and thereforeseries we get the period system(fi.
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E, bias T - and to explain howdissipationemerges in the quantum me-
""""" chanical treatment. For one-parameter driving a unifying pic-
wire states . dot state ture that bridges between the quantum mechanical adiabatic

Y picture and LRT has been presented in Refs. 16—19. A pre-
. vious attemp® had ended in some confusion regarding the
identification of the linear response regime, while Ref. 15
avoided the analysis of the mechanism that leads to dissipa-
position tion in the quantum mechanical case.

The presentedkubo basegl formulation of the pumping
E (x(1) problem has a few advantages. It is not restricted to the adia-
batic regime; it allows a clear distinction betwedigsipative
and adiabatic contributions to the pumping; the classical
limit is manifest in the formulation; it gives a level by level
w— understanding of the pumping process; it allows the consid-
. s — eration of any type of occupatiamot necessarily Fermi oc-
cupation); it allows future incorporation of external environ-
mental influences such as that of noise; and it regards the
time voltage over the pump as electromotive force, rather than
adopting the conceptually more complicated iefhaving

.. dot level

FIG. 2. Schematic illustration of quantum pumping in a closeda chemical potential difference
wire-dot system. The net charge via the third leftbick solid line of " pl int tis th ) ibility t i
on the righj is vanishingly small: As the dot potential is lowered an . particufar interest Is the possibiiity 1o realize a pump-

electron is taken from the left sidérst avoided crossingand then N9 cycle that g{zgsfgreﬂxactly_one_un,i’t of charge per cycle.
emitted back to the left sidesecond avoided crossingdssuming M OPen systents” this “quantization” holds only approxi-

that the bias is inverted before the dot potential is raised back, onijately, and it has been arngtdat the deviation from exact
the second level carry a net char@e= O(1). quantization is due to the dissipative effect. Furthermore it

has been claimédhat exact quantization would hold in the

For a reason that was explained at the end of the previouTict adiabatic limit, if the system wexdosed In this paper
subsection we regard the last catefoag mathematically We would like to show that the correct plct_urg is quite dif-
equivalent to the second category. We also regard the firdgreént. We shall demonstrate that the deviation from exact
categorj~° as a specialsubtlg limit of the second category: duantization is in fact of adiabatic nature. This deviation is
in a follow up pape® we demonstrate that in the limit of related to the so-called “Thouless conductance” of the de-
open geometry the Kubo formula reduces to ®atrix  VICE-
formula of Blitiker, Prare, and Thoma$.

There are works in the literature regarding “rectification” D. Examples

“ Al 1
and "ratchets.™ These can be regarded as studies of pump- v give several examples for the application of the Kubo

ing in periodic systems with the connotation of having ¢4 to the calculation of the pumped cha@eclassical
dampednon-Hamiltonian dynamics. These type of SYSIemsdissipative pumping, classical adiabatic pumpibg trans-
are beyond the scope of the present paper. There is also|&jor) and quantum pumping in the double barrier model.

recent interest in Hamiltonian ratchétsyhich is again a The last example is the main one. In the context of open
synonym for pumping in periodic systems, but with the con-eqmetry it is known as “pumping around a resonante.”
notation of having aonlinearpumping mechanism. We are \ye explain that this is in fact an diabatic transfer scheme,
going to clarify what are the conditions for havindieear o4 \ve analyze a particular version of this model which is
pumping mechanism. Only in case of Im_ear pumping me_chafepresented by a three site lattice Hamiltonian. This is defi-
nism the Kubo formula can be used, which should be distinyjie\y the simplest pump circuit possible, and we believe that
guished from the nonlinear mechanism of Ref. 12. it can be realized as a molecular size device. It also can be
regarded as an approximation for the closed geometry ver-

C. Objectives sion of the two delta potential punfig. 2.2
The purpose of this paper is to explain and demonstrate _
that the Kubo formula contains all the physically relevant E. Outline
ingredients for the calculation of the char¢®) which is In Sec. Il we define the main object of the study, which is

pumped during one cycle of a periodic driving. In the limit the conductance matri@ of Eq. (5). The conductance ma-
of a very slow time variatiotismallx), the emerging picture trix can be written as the sum of a symmetrig) (and an
coincides with the adiabatic picture of Refs. 5,13—15. In thisantisymmetric B) matrices, which are later identified as the
limit the response of the system is commonly described as dissipative and the adiabatic contributions respectively. In
nondissipative “geometric magnetisi? effect or as adia- the first part of the papefSecs. II-VIl) we analyze the
batic transport. adiabatic equatioriSec. Il)), and illuminate the distinction

A major objective of this paper is to bridge between thebetween its zero order solutidi$ec. 1V) its stationary first
adiabatic picture and the more general LRT/Kubo pictureprder solution(Sec. j, and its nonstationary solutioisec.
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VI). The outcome of the analysis in Sec. V is E2p) for the G Im[ x*(w)] ©
conductance matriG. This expression is purely adiabatic, GY=Im—= fo ad(7)7dT. (4)
and does not give any dissipation. In order to get dissipation ©—0

we have to look for a nonstationary solution.

The standard textbook derivation of the Kubo formula
[Eq. (29)] for the conductance matri@ implicitly assumes a
nonstationary solution. We show how to get from it E80)
for 5 and Eq.(31) for B. The latter is shown to be identical <|:k>: —2 Gkikj i (5)
with the adiabatic resuftEq. (26)]. In Sec. VII we further ]

simplify the expression fory leading to the fluctuation- - .
dissipation relatioEq. (33)]. As an example for the applicability of this formula note the

The disadvantages of the standard textbook derivation Otpllowmg stanFjard e>famples for one parameter drlylng. Let
Kubo formula make it is essential to introduce a differentx= Wwall or piston displacement, thex= wall or piston
route toward Eq(33) for %. This route, which is discusssed velocity, G= friction coefficient, andF=—Gx is the fric-
in Sec. VIII, explicitly distinguishes the dissipative effect tion force. Another standard examplexs- magnetic flux,
from the adiabatic effect, and allows to determine the condi-—x= electromotive forceG= electrical conductance, and
tions for the validity of either the adiabatic picture or LRT. In hanceF = — G is the Ohm law.

particular it is explained that LRT is based, as strange as it ¢ js convenient to write the conductance matrix @Y
sounds, on perturbation theory to infinite order. =7+ BX, where X=X is the symmetric part of the
In Sec. IX we clarify the general scheme of the pumpinge.,y,ctance matrix, whil8*/= — B/ is the antisymmetric
gﬂgflggg?gﬁgé@?y' Sseics'xﬁ %\r/]g iﬂrg'\f{i t\évigcsulgnspleu(zzz rTPart. In case of having three parameters we can arrange the
X y ements o e antisymmetric part as a vectBr
P d glements of the ant t t B

pumping, where the cycle is around a chain of degeneracies.” _>2' 3, ~) : .
The general discussion is followed by presentation of the_ (B™B™.B ). Consequently E¢5) can be written in ab-

double barrier mode(Sec. XIll). In order to get a quantita- Stact notation as
tive estimate for the pumped charge we consider a three site . ,
lattice Hamiltonian(Sec. XIV). (F)=—n-x—BAX, (6)
The summanySec. XV) gives some larger perspective on , )
the subject, pointing out the relation to tBenatrix formal-  Where the dot product should be interpreted as matrix-vector

ism, and to the Born-Oppenheimer picture. In the Appen_multiplication, which involves summation over the index
dixes we give some more details regarding the derivations! '€ Wedge-product also can be regarded as a matrix-vector
so as to have a self-contained presentation. multiplication. It reduces to the more familiar cross product

in the case where we consider three parameters. The dissipa-

tion, which is defined as the rate in which energy is absorbed
II. THE CONDUCTANCE MATRIX into the System, is given by

Consequently, as explained further in Appendix B, the re-
sponse in the “dc limit” (w—0) can be written as

Consider the Hamiltoniaf[ x(t) ], wherex(t) is a set of
time dependent_paramete(rSfieIds” ). For presentation, as W= i(H)=—(F>-k=E 7% 7
well as for practical reasons, we assume later a set of three dt K] )
time dependent parametergt) =[x4(t),X,(t),x3(t)]. We
define generalized forces in the conventional way as Only the symmetric part contributes to the dissipation. The
contribution of the antisymmetric part is identically zero.

oH

Fk=— —— )
X Ill. THE ADIABATIC EQUATION

The adiabatic equation is conventionally obtained from

Note that ifx, is the location of a wall element, thEFF]l IS the Schrodinger equation by expanding the wave function in
the force in the Newtonian sense.X¥f is an electric field, ihe x-dependent adiabatic basis:

thenF? is the polarization. Ii; is the magnetic field or the

flux through a ring, therF® is the magnetization or the cur- d i

rent through the ring. alglz): - %H[x(t)]| by, 8
In linear response theorf.RT) the response of the sys-

tem is described by a causal response kernel, namely,

) [#)= 2 an(Onlx(v)]), 9
<Fk>t:2_ f ak](t_t/)xj(t/)dtr, (3)
J — 00
da, i i .

. . o _ — Al
wherea®)(7)=0 for 7<0. The Fourier transform a&*!(7) dt 7 Entnt 7 % ; XjAnm@m: (10
is the generalized susceptibility"!(w). The conductance
matrix is defined as where following Ref. 13 we define
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AL (0 =i (0|~ m(x) a (F= (00— 2 In(x) 22
nm (9X] ’ 07Xk

Differentiation by parts ofd;(n(x)|m(x))=0 leads to the

conclusion that\,, is a hermitian matrix. Note that the ef- 9
fect of gauge transformation is B axk<n(x)|H(x)|n(x)>. 23
—i[An(X)/ .
In(x))—>e~ A n(x)), 12 In the case of the standard examples that were mentioned
j (Ane A YA A previously this corresponds to conservative force or to per-
Anpt—> €100 TEAL - (9)A 1) Snm- (13 sistent current. From now on we ignore this trivial contribu-

form asAli—>Al+g;A,.

Associated withAn(x) is the gauge invariant two form, V. THE STATIONARY ADIABATIC SOLUTION:
which is defined as ADIABATIC TRANSPORT OR “GEOMETRIC
S i MAGNETISM”
Bl =a,Al— A, (14)

For linear driving(unlike the case of a cycldhe A,(X)
=—2h Im<ain|ajn> (150  field can be gauged away. Assuming further that the adiabatic
equation can be treated as parameter indeperitieitmeans
2 i A disregarding the parametric dependencdégfand W on x)
- ﬁ'm% AnmAmn- (16 one realizes that Eq20) possesses stationary solutions. To

_ . . _ first order these are
This can be written in an abstract notation Bss V/AA.

Using standard manipulations, namely, via differentiation by W
parts ofg;(n(x)|H|m(x))=0, we get forn#m the expres- )=+ >, T |m). (24)
sions m(7n En~Em
J. ih IH inFL Note that in afixed-basis representatidhe above stationary
Anm(X)= En— En<”|%|m == En—E, (17) solution is, in fact, time dependent. Hence the notations
! In[x(t)1), |m[x(t)]), and|(t)) are possibly more appro-
and hence priate.
_— With the above solution we can writF*) as a sum of
ij_ IMLF il zero order and first order contributions. From now on we
Bl=2s > — ", (18 ° Ot . .
mzn  (Ep—Eq)? ignore the zero order contribution, and go on with the first

order contribution

IV. THE STRICTLY ADIABATIC SOLUTION, AND THE
BERRY PHASE oo S Winn
(F)=~ =
m(#n) En Em

Jd
(n| §|m)+c.c.
We define the perturbation matrix as k

- . = i k J + N L= — kJ . .
Wom= — S kAL fornm 19 2 |§m: A AL +e.cx; EJ: BEX;. (25
J
andW} =0 for n=m. Then the adiabatic equation can be For a generaktationary preparation, either pure or mixed,
rewritten as follows: one obtains Eq(5) with
da, i . i . _
G- 7B XA)a 5 2 Wandn. (20 cH-3 f(E8Y, 26)
If we neglect the perturbatiow, then we get the strict adia-
batic solution where f(E,) are weighting factors, with the normalization
>.f(E))=1. For a pure state preparatidi{E,) distin-
efi/ﬁ{fBEn[x(t’)]dt’7f§§8)An(x)~dx}|n(x(t))>' (21)  9Quishes only one stata, while for canonical preparation

f(E,)<exp(—E,/T), whereT is the temperature. For a many-
Due toAn(x), we have the so called geometric phase. Thisyody system of non-interacting FermiofiéE,,) can be rein-
can be gauged away unless we consider a closed cycle. Fokérpreted as the Fermi occupation function, so thatt(E,,)
closed cycle, the gauge invariant phaséij$A- dx is called s the total number of particles.

Berry phase. Thus we see that the assumption of a stationary first-order
With the above zero-order solution we can obtain the fol-solution leads to a nondissipatiantisymmetri¢ conduc-
lowing result: tance matrix. This is know as either adiabatic transp8rr
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“geometric magnetism . In the later sections we shall dis- ) ) 1 ImKi(w)]
cuss the limitations of the above result. 7=3(G+ G = Elim _— (30)
w—0 w
VI. THE NONSTATIONARY SOLUTION: THE KUBO
FORMULA Bij_l Gij_Gji - o d_a) Rq:RI](w)]
The Kubo formula is an expression for the linear response =zl )= — 27T w? :
of a driven system that goes beyond the stationary adiabatic
solution of the previous section. The Kubo formula has many.

type of derivations. One possibility is to use the same proce. he a:(tjliiyn:mte;rlc tpi\irtr:srlden;tlfgiéi(épg)e nfd?r(] 9 dais gotri'
dure as in Section V starting with espo g to the stationary solution E26) of the adiabatic

equation.
(1)) =e""E|n)

+ >

m(#n)

(31)

VII. THE EMERGENCE OF DISSIPATIVE RESPONSE,

t , )
_in“J e EnEmtgt’ |e 1Em|m) AND THE FLUCTUATION-DISSIPATION RELATION
0

S ] ] The Kubo formula for the symmetric part of the conduc-
For completeness we give in Appendix A the simplest Verance matrix 1) can be further simplified. If we take Eq.
sion of the standard derivation, which is based on a convenz jiterally, then'! =0 due to the simple fact that we have
tional fixed-basis first-order-treatment of the perturbation.ﬁnite spacing between energy levétee Ref. 21 for a sta-
The disadvantages are: The standard derivation does not istica) point of view. But if we assume that the energy

luminate the underlaying physical mechanisms of the reeyels have some finite width, then the smoothed version

sponse, the stationary adiabatic limit is not manifest, the ; ~ .
fluctuation-dissipation relation is vague, and the validity con-.Of K*(w) should be considered. In common textbooks the

ditions of the derivation are not clear: no identification of theln.troductmn ofF_ls ustified” by assuming some Weqk cou-

regimes For now we go on with the conventional approach,pllng to an environment, or by_takmg t_he I|r_n|t of '”f'F"t.e

but in a later section we refer to the more illuminating ap_volume. But we are dealing W!th a stm_:tly |sol_ated finite
system, and therefore the meanindofequires serious con-

proach of Refs. 20 and 16-19. Then we clarify what is thesideration. We postpone the discussion of this issue to the

regime (range of x) were the Kubo formula can be next section.
trusted'®!® and what is the subregime where the response i th thed ion i hould b din E
can be described as nondissipative adiabatic transport. € Smoothed version () should be used in Eq.

In order to express the Kubo formula one introduces thé?’_o)’ then it is possible to obtain'! from power spectrum
following definition: C"(w) of the fluctuations. This is called the fluctuation-

dissipation relation. The spectral functi@¥ (w) is defined

y i . . as the Fourier transform of the symmetrized correlation func-
K (n)= +([F'(7), FIO)]). @D on ’

We use the common interaction picture notati&(7) . _ _ , ,

=e/MFke= 1M whereH="H(x) with x=const. The expec- Cl(7)=(3[F'(n)F(0)+F(0)F'(n)]). (32)

tation value assumes that the system is preparedsiatan-

ary state(see previous sectignlt is also implicitly assumed We use again the interaction picture, as in the definition of

that the result is not sensitive to the exact valuexoNote  Kii(7). Also this function has a well defined classical limit.

that K" (7) has a well defined classical limit. Its Fourier — There are several versions for the fluctuation-dissipation

transform will be denote®' (w). relation. The microcanonical versibrhas been derived us-

The expectation valuéF¥) is related to the driving(t)  ing classical considerations, leading to

by the causal response kernél(t—t’). The Kubo expres-

sion for this response kernel, as derived in Appendix A, is _ 1 1 d .
Ne= — — Y(w— .

=@ (nKl(), o8 7e=5 557 gel9ECL =0 (@3

where the step functio®(r) cares for the upper i?utoﬁ of |n Appendix C we introduce its quantum mechanical deriva-
the integration in Eq(3). The I_:J_ourler transform o (7) IS {jon The subscript emphasizes that we assume a microca-
the generalized susceptibility’ (). The conductance ma- nonical state with energl, andg(E) is the density of states.

trix is defined as The traditional version of the fluctuation-dissipation relation
M ' ()] . assumes a canonical state. It can be obtained by canonical
Gl= lim &ZI Kil(r)rd7. (29)  averaging over the microcanonical version leading to
w—0 w 0
. P . . . _ B 1 _
This can be split into symmetric and antisymmetric compo 7ir===Cl(w—0). (34)

nents(see derivation in Appendix Cas follows:
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VIIl. THE VALIDITY OF LINEAR RESPONSE THEORY
AND BEYOND

The standard derivation of the dissipative part of the

Kubo formula, leading to the fluctuation-dissipation relation
(33), is not very illuminating physically. More troubling is
the realization that one cannot tell from the standard deriv
tion what are the conditions for its validity. An alternate,
physically appealing derivatiolf*°is based on the obser-

PHYSICAL REVIEW B68, 155303 (2003

The adiabaticity condition36) can be explained in a
more illuminating way as follows: Let us assume that we
prepare the system at tinte=0 at the leveln). Usingtime
dependenEOPT we find out that a stationarylike solution is
reached after the Heisenberg timg=27x#/A. This is of
course a valid description provided we do not have by then a

%reakdown of FOPT. The condition for this is easily found to

bext <X, wheredx.,=A/o. This leads again to the adia-

vation that energy absorption is related to having diffusion inPaticity condition(36).

energy spac& In Appendix E we outline the main ingredi-
ents of this approach.

It should be clear that the diffusion picture of Appendix E
holds only in case ofhaotic systemsdf this diffusion picture
does not hold, then also the Kubo formula fgt¥ does not

Another assumption in the derivation of Sec. V was that

we can ignore the parametric dependencg& pandW on x.

The adiabaticity conditioh, << &(C/k manifestly justify such
an assumption: We should think §f as the transient time
for getting a stationarylike state, and we should regidas

hold. Driven one-dimensional systems are the obvious exthe parametric correlation scale.
ample for the failure of linear response theory. As in the case As strange as it sounds, in order to have dissipation, it is

of the kicked rotator(standard map(Ref. 229 there is a

essential to have a breakdown of FOPT. In the language of

complicated route to chaos and stochasticity: By increasingerturbation theory this implies a required summation of dia-

the driving amplitude the phase space structure is changed.

@frams toinfinite order, leading to an effective broadening of

the amplitude is smaller than a threshold value, then the difthe energy levels. By iterating FOPT, neglecting interference

fusion is blocked by Kolmogorov-Arnold-Moser curves, and

terms, we get aMarkovian approximationfor the energy

consequently there is not dissipation. Therefore the Kubspreading process. This leads to the diffusion equation of

formula is not applicable in such cases.
The following discussion oflissipative responsassumes

Appendix E. This diffusion can be regarded as arising from
Fermi-golden-rule transitions between energy levels. A

that we deal with a quantized chaotic system. We would likesimple ad-hoc way to determine the energy level broadening
to discuss the reason and the consequences of having &nto introducel” as a lower cutoff in the energy distribution
energy scald’. In the standard derivation the assumption ofwhich is implied by Eq.24):

having level broadening as if comes out of the blue. As we

already noted it is customary in textbooks to argue that either
a continuum limit, or some small coupling to an environment

is essential in order to provide. But this is of course just a
way to avoid confrontation with the physical problem of hav-
ing a drivenisolated finite mesoscopic system fact the

energy scald is related to the ratex) of the driving:

(39

|7 XF |2
(En—Em)*+(I)*

[(nlg)|?= (37)

This constitutes a generalization of the well known proce-
dure used by Wigner in order to obtain the local density of
states-®1” However, in the present context we do not get a
Lorentzian. The width parametel is determined self-
consistently from normalization, leading to E®5) (disre-
garding numerical prefactpr

We can summarize the above reasoning by saying that

where for simplicity of presentation we assume one paramthere is aperturbative regimethat includes an adiabatic
eter driving. We usé\ to denote the mean level spacing, and (FOPT) subregime. Outside of the adiabatic subregime we

o is the root mean square value of the matrix elenfent

need all orders of perturbation theory leading to Fermi-

between neighboring levels. In order to derive the above exgolden-rule transitions, diffusion in energy space, and hence

pression forl' we have used the result of Ref. {Sec. 17
for the “core width” at the breaktime:=t, of perturbation

dissipation. Thus the dissipative part of Kubo formula
emerges only in the regime>A, which is just the opposite

theory. The purpose of the present section is to give an opef the adiabaticity condition. The next obvious step is to

tional “pedestrian derivation” forl’, and to discuss the
physical consequences.

Looking at the first order solution E24) of Sec. V one
realizes that it makes sense provid®d,,|<A. This leads
to the adiabaticity condition

2

|>'<|<%.

(36)

determine the boundary of the perturbative regime. Follow-
ing Refs. 18,19 we argue that the required conditiod’is
<A, . The bandwidthAy= 7 is defined as the energy width
|E,— En| were the matrix elements,, are not vanishingly
small. If the conditiod”< A is violated we find ourselves in
the nonperturbative regime where the Kubo formula cannot
be trusted®*°

We still have to illuminate why we can get in the pertur-
bative regime a dissipativBnear response in spite of the

If this condition is not satisfied one should go beyond firstbreakdown of FOPT. The reason is having a separation of

order perturbation theorfFOPT), in a sense to be explained

scales A<I'<A,). The nonperturbative mixing on the

below. Note that this adiabaticity condition can be written assmall energy scalé' does not affect the rate of first-order

I'<A.

transitions between distant levelsI'€|E,—E.|<Ay).
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Therefore Fermi golden rule picture applies to the descripThe integration should be taken over a cylinder of vertical
tion of the coarse grained energy spreading, and we get theeight 277, and whose basis is determined by the projection
linear response. of the pumping cycle onto thex(,x,) plane.

The existence of the adiabatic regime is obviously a quan- We already pointed out that the Berry phase
tum mechanical effect. If we take the formal linfit-0 the  (1/4) § A,,- dx is gauge invariant. Therefore from Stokes law
adiabaticity conditio”<A breaks down. In fact thproper it follows that (1£) [ /B - dx/\dx is independent of the sur-
c_IassicaI limit isnonperturbgtivebecause_th_e weaker condi- face, and therefore (AJ§B-dx/\dx with closed surface
tion I'<A;, does not survive thé—0 limit. For further  ghoyid be 2rxinteger. Integrating over a cylinder, as in Eq.
details see Refs._16—19_. In the nonperturbatm_a reg|me.th@0)1 is effectively similar to integrating over a closed sur-
quantum mechanical derivation of Kubo formula is not valid.tace (because of the 2 periodicity in the vertical direction
Indeed we have demonstratéthe failure of Kubo formula  This means that the flux averagédof Eq. (40) has to be an
in case of random-matrix models. But if the system has anteger.
classical limit, then Kubo formula still holds in the nonper-  The common interest is in pumping cycles in tibe=0
turbative regime due teemiclassicalrather than quantum- plane. This means that the zero order conservative contribu-
mechanical reasons. tion to Q, due to a persistent current, does not exist. Further-

The discussiqn oflissipationassumes a generic situation more, from the reciprocity relatiorisee Appendix Bit fol-
such that the Schdinger equation does not have a stationaryjows that G31= — G13 and G32=—G2 which should be

solution. This means that driven one-dimensional systemgontrasted withG'?=G?. This means that a pumping cycle
are automatically excluded. Another nongeneric possibility isn the =0 plane is purely adiabatic: there is no dissipative
to consider a special driving scheme, such as tranSIat'OQ:ontribution t0Q. Only theB field [second term in Eq39)]

. . . 3 .
rHOtat'.?tn’ or 7(_1[|Iat|torﬁ In such caset tt.he time Id?_pendent is relevant to the calculation of the pumped charge, and its
amiltonian 7[x(t)] possesses a stationary sOlUtigITO- e rtical componenB!2 vanishes due to the time reversal

vided the “velocity” x is kept constant Consequently we do symmetry.

not have a dissipation effect. In Sec. XI we discuss the sim- The absence of dissipative contribution for a cycle in the
plest example of pumping by translation, where the stationg = plane, does not imply that dissipation is not an issue.
ary adiabatic solution of Sec. V is in fact exact, and no dis-The symmetric part of the conductance matyix is in gen-

sipation arises. eral nonzero, leading to an energy absorption rate which is
proportional tox?. This implies that the energy absorption
IX. APPLICATION TO PUMPING per cycle is proportional tgx|. Therefore we are able to

. ... minimize the dissipation effect by making the pumping cycle
So far Wle have discussed the r]:esponse for driving _|rr: "i‘/ery slow. Furthermore, if we get into the quantum-
very general way. From now on we focus on a system with &, . vical adiabatic regime, thejy! becomes extremely
ring geometry as described in the Introduction, and illus- ’

trated in Fig. 1. The shape of the ring is controlled by Somesmall, and then we can neglect the dissipation effect as long

arameters. andx.. andx. is the maanetic flux. The gen- &5 guantum-mechanical adiabaticity can be trusted.
para 105 12 08 9 o 9 Whenever the dissipation effect cannot be neglected, one
eralized forcd== which is conjugate to the flux is the current.

oo . should specify whether or how stationary operationis
The time integral over the current is the transported Chargeachieved. In case of pumping in open system the stationary
operation is implicitly guaranteed by having equilibrated res-
ervoirs, where the extra energy is dissipated to infinity. In
case of pumping in closed system the issue of stationary
operation is more subtle: In the adiabatic regime, to the ex-
In fact a less misleading terminology is to talk about “prob- tend that adiabaticity can be trusted, we have a stationary
ability current” and “integrated probability current.” From a solution to the transport problem, as defined in Sec. V. But
purely mathematical point of view it is not important outside of the adiabatic regime we have diffusion in energy
whether the transported particle has an electrical charge. space(Appendix B leading to a slow energy absorpticutis-
Disregarding a possible persistent current contributiongipation). Thus a driven system is heated up gradually
the expression for the pumped charge is (though possibly very slowly Strictly speaking a stationary
operation is not achieved, unless the system igweak
thermal contact with some large bath. Another way to reach
(390  astationary operation, that does not involve an external bath,
k=3 is by having an effectively bounded phase space. This is the
case with the mixed phase space example which is discussed

If we neglect the first term, which is associated with thein Ref. 12. There the stochasticlike motion takes place in a
dISSIpatlon effect, and average the Secomlabatlcﬂ) term bounded chaotic region in phase space.

over the flux, then we get

Q= #% (F3)dt. (38

Q=—[ é G-dx+ é BAdx

X. CLASSICAL DISSIPATIVE PUMPING

o —___1 AT Bef di th t hanical ing, it i
—_ TG efore we discuss the quantum mechanical pumping, it is
Qlagiabaie 277f'J f B dx/Adx @0 instructive to bring simple examples fotassical pumping.
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In the following we consider one particler)(in a two-  This can be verified by calculation via E.8). The singu-
dimensional ring as in Fig.(&). larity along thexs axis is not of quantum-mechanical origin:
The first example is for classicdlssipativepumping. The It is not due to degeneracies, but rather due to the diverging
conductanceG =G can be calculated for this systéfn current operator {H/dx; 1/\}C+x2).
leading to a mesoscopic variation of the Drude formula. The
current is given by Ohm law=—-GX ®, where—® is the XIl. QUANTUM PUMPING
electromotive force. _ _
Consider now the following pumping cycle: Change the We turn now to the quantum-mechanical case. Consider
flux from @, to ®,, hence pumping charg®=—G(1) an adiabatic cycle that involves a particular energy level
X (®,—d,). Change the conductance froB(1) to G(2) This level is assumed to have a degeneracy point at
by modifying the shape of the ring. Change the flux fram  (x{”,x{”,®(©)_ It follows that in fact there is a vertical
back to ®;, hence pumping charg®(2)=—-G(2)x(®, chain of degeneracy points:
—®,). Consequently the net pumping is
chain= (x{2 ,x{?, &©)+ 277 X integey. (46)

Q=[G(2)~G(1)]X (P~ D). (41) . _ |
Thus we have used the dissipative part of the conductanc-(l;;hese degeneracy points are important for the geometrical

matrix [first term in Eq.(39)] in order to pump charge. In the Understanding of thé field, as implied by Eq(18). Every
quantum mechanical version of this example extra cardegeneracy point is similar to a monopole charge. The total

should be taken with respect to the zero order contribution ofUX that emerges from each monopole must be#2

the persistent current. Xinteger for a reason that was explained after 8@). Thus
the monopoles are quantized in units 7of2. The B field
X|. CLASSICAL ADIABATIC PUMPING which is createdso to say by a vertical chain of monopoles

may have a differemear fieldandfar field behavior, which

The second example is for classi@iabatic pumping.  we discuss below.
The idea is to trap the particle inside the ring by a potential The far field region exists if the chains are well isolated.
well, and then to make a translation of the trap along a circleL ater we explain that “far” meangr<1, wheregr is the
The result of such a cycle is evidenty=1. We would like  Thouless conductance. The far field is obtained by regarding
to see how this trivial result emerges form the Kubo formulathe chain as a smooth line. This leagsalitatively to the

Let (r,p) be the canonical coordinate of the particle in thesame field as in Eq45). Consequently, for a “large radius”
ring, while (x,,x,) are the center coordinate of a trapping pumping cycle in theb=0 plane, we getQ|~1. In the
potential. The Hamiltonian is following we are interested in the deviation from exact quan-
tization: If ¢©=0 we expect to havéQ|=1, while if

1 1 ¢@=7 we expect|Q|<1. Only for the ¢ averagedQ of
. _ 2 -
HIPx(D]= 5 pNL( Py o X2+X2(I)(t)> 1 Eq. (40) we getexact quantization
e The deviation fromQ|~1 is extremely large if we con-
F Urad 1= X1(1),r2=Xa(0) ], (42 sider a tight pumping cycle around 4% =0 degeneracy.

After linear transformation of the shape parameters, the en-
ergy splitting A=E,—E,, of the energy leveln from its
neighboring(nearly degeneratg¢devel m can be written as

wherep; andp, are the components of the momentum along
the ring and in the perpendiculéransversgdirections. The
pumping is done simply by cycling the position of the trap.
The translation of the trap is assumed to be along an inside
circle of radiusR,

x(t) =[R cog Ot),Rsin(Qt),d = consi. 43) wherec is a constant. The monopole field is accordingly

A=[(x1—x(10))2+(XZ_X(ZO))2+Cz((/)_ 62112 (47)

. . . . 0 0 0
In this problem the stationary solution of Sec. V is an (X=X %=X x5 —xE)

. B =+ E
exact solution. Namely 2

2 321
Cc
(X2 =X{)2+ (o= xE) 2+ | =] (xg—xE7)?

(D) =™ n[x(D)]), (44) 49

where [n(x))— " (r—x) are the eigenfunctions of a par-
ticle in the trap. Equatiorn44) is just Galilei transformation
from the moving(trap frame to the laboratory frame.

It is a priori clear that in this problem the pumped charge
per cycle isQ=1, irrespective ofb. Therefore theB field
must be

where the prefactor is determined by the requirement of hav-
ing a single /2) monopole charge. Assuming a pumping
cycle of radiusR in the =0 plane we get from the second
term of Eq.(39)

=31 gT, (49)
3

o | foros

- X1,X5,0)
B=— % (45
2m(X7+X3) where
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1 2A 2 and then from right to left. As long as the bias is positive
NPT il (500  (x;>0) the net charge being pumped is very smaf|(
2 <1). Only the lowest wire level that participate in the

is a practical definition for the Thouless conductance in thiUmPing cycle carrieQ=0O(1) net charge: It takes an elec-
context. It is used here simply as a measure for the sensitiyfon from the left side, and after the bias reversal it emits it

ity of an energy level to the magnetic fluk. into the right side. Thus the_ pumping process in t_his model
What we want to do in the next sections is to interpolatec@" Pe regarded as a particular exartfplef an adiabatic

between the near field result, which@= O( @), and the ]'Eransfetr tsc:]emte':[ The elt()actrons are a:j|abe.1t|cia1ll)r/] tr ansferr%d
far field result, which isQ=0O(1). For this purpose it is o Stt€ 1o stal€, one by one, as n musical chair game.

convenient to consider a particular model that can be solveg For a single occupied level the netis th_e sum of charge
exactly. ransfer events that take place in four avoided crossivgs

avoided crossings in case of the lowest I@vélor many
particle occupation the tot& is the sum over the ned’s
XIll. THE DOUBLE BARRIER MODEL which are carried by individual levels. For a dense zero tem-

A simple example for quantum pumping is the doublePerature Fermi occupation the summation over all the net
barrier model. An open geometry version of this model ha{?' i & telescopic sum, leaving noncanceling contributions
been analyzed in Ref. 8 using timatrix approach. The only from the first and the last adiabatic crossings. The latter
analogous closed geometry version is obtained by considefovolve the last occupied level at the Fermi energy.
ing a one-dimensional ring with two delta barriers. As we are
going to explain below, the pumping process in this model  X|v. THE THREE SITE LATTICE HAMILTONIAN
can be regarded as a particular example of an adiabatic trans- i ) )
fer scheme: The electrons are adiabatically transferred from Rather than analyzing the two-delta-barriers version of
state to state one by one as in “musical chair game.” the double barrier model, we consider below a simplified

The two delta barriers version of the double barrier modelMersion that still contains theameessential ingredients. This
is illustrated in Fig. 2. The length of the ring Is, with is obtained by considering a three site lattice Hamiltonian.

periodic boundary conditions or (L/2)<r<(L/2). A dot The a(_jvantage is obviously the pqssibility to make an exact
region|Q|<a/2 is defined by the potential analytlcall treatrr}enF that does nqt |nvol've apprqmmgﬂons.
The middle site in the three site lattice Hamiltonian sup-
a 1 a ports a single dot state, while the two other sites support two
r+ —) + C—5< r— —>- (51)  wire states. The Hamiltonian is

1
U(r;cl,c2)=c—lé

2 2 2
It is assumed that,; andc, are small enough so one can 0 ¢ e
classify the ring eigenstates into two categories: wire states H—| ¢ u ¢ |. (52)
and dot states. The latter are those states that are localized in 4 o 0
2

the dot region Q|<a/2 in the limit of infinitely high barri-

ers. We define the Fermi energy as the energy of the la

occupied wire level in the limit of infinitely high barriers.
The three parameters that we can control are the xlux

e e e, T e OIS couplng by the paramete o1
dot L2 9YEdot The eigenstates ak€,. Disregarding the interaction with
spond to the dot state which is closest to the Fermi enErgy he dot £=0) we have two wire states withi=+1. This
from above. We assume that the other dot levels are much . . S -
implies degeneracies far,=u= ¥ 1. Once we switch on the

further away from the Fermi energy, and can be Ignore(.j'coupling €>0), the only possible degeneracies are between

Npte that a”OtheF possible way to cgntrol the dot potential, he even dot state and the odd wire state of the mirror sym-
simply by changing a gate voltage: That means to assume

that there is a control over the potential floor in the regionmemc Hamiltonian %, =0). The flux ShOl.JId be either |nt<_a-
1Q|<a/2 ger (for degeneracy of the dot level with the lower wire

The pumping cycle is assumed to be in the=0 plane, level), or half integer(for degeneracy of the dot level with

X ; : . the upper wire level Thus we have two vertical chains of
so there is no issue of conservative persistent current contriz

bution. The pumping cycle is defined as follows: We Startdegenerames.
with a positive biasX,>0) and lower the dot potential from
a largex,>Eg value to a smalk,<Eg value. As a result,
one electron is transfered via theft barrier into the dot
region. Then we invert the biax{<0) and raise back,.
As a result the electron is transferred back into the wire via .
theright barrier. In order to calculate thB field and pumped chard@, we

A closer look at the above scenafieig. 2(b)] reveals the have to find the eigenvalues and the eigenvectors of the
following: As we lower the dot potential across a wire level, Hamiltonian matrix. The secular equation for the eigenvalues
an electron is adiabatically transferred once from left to rightis

Sthe three parameters are the bigs-c,— c,, the dot energy
X,=U, and the fluxx;=® =7 ¢. For presentation purpose
we assume that€c,,c,<1, and characterize the wire-dot

the negative chain (0,— 1+ c2,27# X intege),

the positive chair (0,+ 1—c?, 7+ 2fi X intege).
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ES—UE?—(1+c2+c3)E+u—2c,c,c08 ¢)=0.

Using the notations

1 1
Q=§u?+§(r+ﬁ+c@,
3 1 2 2 1
R= 2—7u + €(1+cl+ co)u— §u+clczcos ¢)cog )
R
/Q3
the roots of the above cubic equation are
1 1 27
En=§u+2@005<§6+n?), (53

wheren=0,+1. The corresponding eigenstates are

c,e'%+c,E,
Inx))y——| 1-E& |, (54)
cie”'+c,E,
whereS is the normalization, namely,
S=(1—-E2)?+(c1+CE,)?+(Cot+ciEn)2 (55

For the calculation of the pumped charge in the next para-

graph it is useful to notice that f&= + 1 the normalization
is S=2(c;*c,)?, while for E=0 the normalization isS
~1.

PHYSICAL REVIEW B68, 155303 (2003

-1

FIG. 3. The first component of thi field for a particle in the
middle level of the three site lattice model. It is plotted as a function
of the dot potentialk,=u. The other parameters aw=0, and
¢,=0.1, whilec,=0.04 for the thick line an@¢,=0.02 for the thin
line. In the limitc,—0, all the charge that is transferred from the
left side into the dot during the first avoided crossing, is emitted
back into the left side during the second avoided crossing. Inset:
The eigenenergieB,(x) for the c,=0.04 calculation.

A similar calculation of the pumped charge for a planar cycle
around the positive chain leads to

V1-297

with gr=2c;c,/(c;+¢,)2. In both cases we have approxi-
mate quantizatiorQ= =1+ O(gy) for gr<1, while for a

C1—C,
ci+tec,

Q=- (61)

tight cycle eitheilQ—o or Q— 0 depending on which line of
degeneracies is being encircled. If the pumping cycle en-
circles both chains then we g&t=4c,c,/(c5—c3). In the

After some algebra we find that the first component of the@tter caseQ=0(gr) for gr<1, with no indication for

B field in the® =0 plane is
Bl=-2] 7 — 56
= m aun(X) &(ﬁn(X) (56)
1 4S
_ 2 2
——(Cl—Cz)gﬁ, (57)

which is illustrated in Fig. 3. From here it follow that if we
keep constant bias, and change oxyy- u, then the pumped
charge is

final
o-- [ Blax--ct-cdg . @9
initial
For a planar ¢ =0) pumping cycle around the negative ver-
tical chain the main contribution tQ comes from the two
crossings of thex,~—1 line. Hence we get

c,+c¢c

o=Vt

C1—C

(59

quantization.

XV. SUMMARY AND DISCUSSION

We have shown how the Kubo formalism can be used in
order to derive both classical and quantum-mechanical re-
sults for the pumped charg® in a closed system. In this
formulation the distinction between dissipative and nondissi-
pative contributions is manifest.

Within the framework of the Kubo formalisrfdisregard-
ing nonlinear correctionswe have made a distinction be-
tween the following levels of treatment: strict adiabaticity
(outcome of zero order treatmgnadiabatic transporfout-
come of stationary first order treatmgrand dissipatiorithe
result of first order transitions

In the adiabatic regime one can assunsadionarysolu-
tion to the adiabatic equation, which implies no dissipation
effect. This leads to the picture of adiabatic transport, where
the Berry phase is the outcome of a zero order treatment,
while the “geometric magnetism” of Eq26) is the outcome
of a first order treatment of the interlevel couplings.

In some very special casésanslations, rotations and di-

where the Thouless conductance in this context refers to thi@tions this assumptioriof having a stationary solutigris in

avoided crossing, and is defined as

1A
TA 942
A,9¢ 40

2c.Cy

(Cl_Cz)zl

(60)

Or

fact exact, but in generic circumstance this assumption is an
approximation. Outside of the adiabatic regime the stationary
solution cannot be trusted.

Assuming quantizecthaotic dynamicsone argues that
Fermi-golden-rule transitions between levels leadsiow)
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diffusion in energy Eq. (E1)]. This leads to the emergence of is the study of diatomic molecules. In such a casare the
the dissipative part in the Kubo formula. We have obtainedocations of the nuclei. The total Hamiltonian is assumed to

an expressiofiEq. (35)] for the energy scal& «|x|? that  be of the general form

controls the dissipative effect. We have explained that the 1

dissipat.ive contribution to the .Kubo formula _is v.alid.only in A — pj2+H(X), (63)
the regimeA<I'<A,. Otherwise the dynamics is either of 2M 5

adiabatic naturel{<A) or nonperturbativel(>A4). whereH is the Hamiltonian of the “fast” degrees of freedom

In order to calculate the pumped chargewe have to (in the context of molecular physics these are the electrons

perform a closed line integral over the conductafhEg. ) : i
(39)]. This may have in general both adiabatic and diSSipaRather than using the standard basis, one can use the Born

tive contributions. For the common pumping cycle in theOppenheimer basis,n(x)) = |x)®|n(x)). Then the Hamil-

® =0 plane, only the adiabatic contribution exists. This fol- tonian can be written as
lows from the reciprocity relationéSec. IX. Still we have

1 .
emphasizedwithout any contradictionthat in the same cir- Htotalzm 2 [p; = AL _(X)1%4 SpmEn(X),
cumstances a dissipation effect typically accompanies the J
pumping process. where the interaction term is consistent with Etp). Thus it

The quantum adiabatic contribution to the pumping is dejs evident that the theory of driven systems is a special limit
termined by a line integral overtfield which is created by of this problem, which is obtained if we treat theas clas-
monopolesThe monopoles, which are related to the degensical variables.
eracies of the Hamiltonian, are located along vertical chains
in x spaceg Eq. (46)]. The three site model provides the sim- ACKNOWLEDGMENT

plest example for such vertical chains: By calculating he
field which is createdso to say by these chains, we were
able to determine the charge which is pumped during a cycl
[e.g., Eq.(59)].

The (monopoles of thevertical chains havenear field
regions[Eq. (48)]. If the chains are well isolated ixspace,
then there are alsfar field regions. The far field regions are
defined as those where the Thouless conductance is ve
small (gr<<1). Pumping cycles that are contained in the far
field region of a given chain lead to an approximately quan-
tized pumpingQ=integer O(gy). It is important to realize APPENDIX A: THE KUBO FORMULA: STANDARD
that the existence of far field regionssxrspace is associated DERIVATION

with having a low dimensional system far away from the |, this appendix we present an elementary textbook-style
classical limit. In a quantlz_ed chaotic system it is unlikely t0 yeriyation of the Kubo formula. For notational simplicity we
havegr<1 along a pumping cycle. As we take the~0  \jte the Hamiltonian ag{=H,— f(t)V. It is assumed that
limit the vertical chains become very dense, and the far fielq,,o system, in the absence of driving, is prepared in a sta-
regions dlsappe{;\r.' . tionary statepy. In the presence of driving we look for a first

In the subtle limiting case of open geometry we expect to d luti D= ort (1), Th tion fon(t) i
get agreement with th&matrix formula of Bidtiker, Prare, order solutionp(t) = po +p(t). The equation fop(t) is
and ThomagBPT).® Using the notations of the present Paper
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ia), Shmuel FishmariTechnion, Tsampikos KottogGot-
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the BPT formula for the current that comes out(séy) the (9p_(t)~ —i[Hg,p(D)1+if(1)[V,po]. (A1)
right lead can be written as ot
This equation can be rewritten as

: (62) d - _ .
1 [Uo(D) () Uo(1) ] =i (1)[Uo(t) V- Uo(1), pol,

5 © aS "
G®=5—trace P—S
27i X

n/]heriP IS th% prole(t:to:honl_thedrlght I?ad CTan_?ﬁls'dﬁfﬁl whereUy(t) is the evolution operator which is generated by
€ above reduces 1o the Landauer formuia. The detays 1 1o. The solution of the latter equation is

garding the relation between the Kubo formula and the BP
formula will be published in a separate paffeHere we just _ t
note that the derivation is based on a generalization of the p(t)%J' i{V[—=(t—t")],po}f(t")dt’, (A2)
Fisher-Lee approact?®?2°

Finally it is important to remember that the theory of where we use the usual definition of the “interaction picture”
driven systems is the corner stone for the analysis of intereperatorV(7) = Uq(7) V- Uy(7).
action between “slow” and “fast” degrees of freedom. As-  Consider now the time dependence of the expectation
sume that the; are in fact dynamical variable, and that the value (F),=tr[Fp(t)] of an observable. Disregarding the
conjugate momenta ang . The standard textbook example zero order contribution, the first order expression is
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Gl (-B)=[£]G/(B), (B6)

where the plusminug applies if the signs of' and F

t
(P [ 1HFIV- (=), poll(tat

t transform(not) in the same way under time reversal. These
zf a(t—t")f(t")dt’, reciprocity relations follow from the Kubo formulgEg.
(29)], using K""(=7,—B)=—[*=]K"(7,B), together with
where the response kerne(r) is defined forr>0 as the trivial identity K''(— 7,B)= —KJ'(7,B). In Sec. IX we
discuss the implications of the reciprocity relations in the
a(7) =i t{F[V(=17),pol} =i tr{[F,V(—=7)]po} context of pumping.
=K[F.V(=n])=i([F(),V]). (A3)

APPENDIX C: EXPRESSIONS FOR B AND G
We have used above the cyclic property of the trace opera- . i i ,
tion; the stationarit}dopoUy 1= po of the unperturbed state;  1N€ functionsC”(7) andK(r) are the expectation val-
and the definitiorF(7) = Ug(7) ~LF- Ug(7). ues of hermitian operators. Therefore they are real functions.

It follows that the real part of their Fourier transform is a
symmetric function with respect t@, while the imaginary
part of their Fourier transform is anti symmetric with respect
to w. By definition they satisfyC"(7)=C!"(-17) and

In this appendix we would like to further illuminate the K'"(7)=—KI!'(=7). It is convenient to regard them as the
relation between the generalized susceptibility and the correal and imaginary parts of one complex funCt@ﬁJ(T)
ductance matrix. The generalized susceptlbwﬂ(w) is the Namely,

APPENDIX B: REMARKS REGARDING THE
GENERALIZED SUSCEPTIBILITY

Fourier transform of the causal response keradl(7). . i . o i
Therefore it is an analytic function in the upper half of the () =(F/(nF!(0))=C"(n)—i5KI(r), (CI
complexw plan, whose real and imaginary parts are related 1
by Hilbert transformgKramers-Kronig relations Cil(7)= z[q)ij(T)+q)ji(_ 71, (C2)
= Im[x"(w")] do’ -
Kj - [ -
X6 (@) =R x"(w)]= f I (B1) KI(7)= 2 [®Y (1) =@ (-7)]. (C3)

The imaginary part ofy/(w) is the sine transforms of | o possible to express the decompositiai=
a¥(7), and therefore it is proportional te for small fre-

quencies. Consequently it is convenient to write the Fourier” BY in terms ofK"(w). Using the definitior(29) we get
transformed version of Eq3) as e
G"=J K'(r)rdr
0

[(F],= Ex«w)[x]w pMo)xl,, (B2

B Jm REK(w)] dw+ 1 Im[K'i(w)] 4
where the dissipation coefficient is defined as o @? 27 |2 w0
_ M x¥(w)] = inwr) The first term is antisymmetric with respect to its indexes,
w(w)= T—f Ki(r) dr. (B3) andis identified a8'. The second term is symmetric with

respect to its indexes, and is identifieds@s The last step in
In th|s paper we |gn0re the f|rst term |n E(BZ) Wh|Ch the above derivation inVOlVeS the fO”OWing |dent|ty that hOld

signify the nondissipative in-phase response. Rather we pdier any real functionf(7)
the emphasis on the “dc limit” ¢ —0) of the second term. o ®

Thus the conductance mati®¥/= . (w—0) is just a syn- f f(r)rdr f —'f w)f lor
onym for the term “dissipation coefficient.” However, “con-
ductance” is a bettefless misleadingterminology: it does

not have thgwrong connotation of being specifically asso- [~ da, 1
ciated with dissipation, and consequently it is less confusing - f,mﬁf(“’) B ;—Hﬂ'& ()
to say that it contains @nondissipative adiabatic compo-
nent. = do( Rgf(w)] -
For systems where time reversal symmetry is broken due = fﬁwz PR Im[f(w)]6" (w)

to the presence of a magnetic fieRR] the response kernel,

and consequently the generalized susceptibility and the con- - DaF 7
ductance matrix satisfies the Onsager reciprocity relations =— M d_w }M .(C5)
—w @2 27w |2 1)
al(1,—B)=[+]a) (1,B), (B4) =0

B ) Note that Inif(w)] is the sine transform of(7), and there-
x'(w,—B)=[x]x"(w,B), (B5)  fore it is proportional tow is the limit of small frequencies.
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It is of practical value to rederive EqC4) by writing
®'l(7) using the energiek, and the matrix elements,, ..
Then we can get from it straightforward{using the defini-
tiong) all the other expressions. Namely,

(=2 f(E)X FLmFimnex%—i E”‘;E”t),

(Ce)
()= f(E) F‘anJ'mnzw(w— E”’;E”),
(€7
) —Fl R
Xl(w):;m f(En)(ﬁw—(Em—En)‘HO
FhnF mn
" et (E,—E)+i0)’ 8

pl=—2mh, f(E)) > REFLFL18 (En—Ey),
n m(#n)
(C9)
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, Im[F},,F
Bi=2%>, f(E,) 2, L nf oo (C10

mzn) (Em—En)?
One observes that the expression B coincides with the
adiabatic transport result E(R6). Alternatively this identifi-
cation can be obtained by expressing the sum in(E@0) as
an integral, getting form it the first term in E¢C4):

L2 (= Imd(w)] do
B._%f M (w)] do

—o 0)2 2

- o
o e MTH@I-GRARI@)] g,
- —

__fw RK!(@)] de

2m

(C11)

—® w2 277

APPENDIX D: EXPRESSING K (@) USING C(w)

We can use the following manipulation in order to relate
Kil(w) to Cl(w):

Ki(w)=2>, f(En)RE(w)z%ZwE f(EN[FhmFhnd( @0+ onm — FLFl 8(o— onm ]

i o o
= 7272, 1(En) ~ FonFhnd(@+ onm) + FhoFnad(o = onm)]

[ f(En)_f(Em)

2%277;“ 2
_ —iw’ﬂz f(En)_f(Em)

nm En_Em

where we use the notatian,,= (E,— E,,)/%. The third line

[FLmF"mn5<w+wnm>+FLmFLmam—wnm)]:—iwg f'(En)Cl(w),

[FLmF%né(w_l_ Wnm) — I:jr1m|:irnn5(“’_ onm) ]

(DY)

If we do not assume smadh, but instead assume canonical

differs from the second line by permutation of the dummystate, then a variation on the last steps in @), using the

summation indexes, while the fourth line is the sum of thefact

that  [f(En) —f(Em) /[ f(Eq) + f(Ep) ]=tanH (E,

second and the third lines divided by 2. In the last equality—E,)/(2T)] is an odd function, leads to the relation

we assume smalb. If the levels are very dense, then we can
replace the summation by integration, leading to the relation

f g(E)dEf(E)RE(w>=—iwf g(E)dEf' (E)Ci(w),
(D2)

where K{(») and Cl(w) are microcanonically smoothed

functions. Since this equality hold for any smoothiddt),
it follows that the following relation holdgin the limit
w—0):

o 1 d .
K'Ej(w)=iw@ gel9(E)CE(@)]. (D3)

hw 2T (D4)

~ii ) 1 hw .

Ki(w)=iwXs—tanh == |C{(w).
Upon substitution of the above expressions in the Kubo for-
mula for %", one obtains the fluctuation-dissipation relation.

APPENDIX E: THE KUBO FORMULA AND THE
DIFFUSION IN ENERGY SPACE

The illuminating derivation of Eq(33) is based on the
observation that energy absorption is related to having diffu-
sion in energy space. Let us assume that the probability dis-
tribution p(E)=g(E)f(E) of the energy satisfies the diffu-
sion equation

155303-13
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ap 5D d 1
5t~ og| 9(B)DeE EWIE

The energy of the system igH)=[Ep(E)dE. It follows
that the rate of energy absorption is

(ED)

p(E)
Gi0=-[ae (E)DEaE(g(E)). (E2
For a microcanonical preparation we get

This diffusion-dissipatlon relation reduces immediately to

PHYSICAL REVIEW B68, 155303 (2003

Assuming (for presentation purpogehat the rate§<k are
constant numbers, it follows that energy changes are related
to the fluctuating=*(t) as

t

5E=<H)t—<H>0=—§k: Xy OF"(t’)dt’. (E6)

Squaring this expression, and performing microcanonical av-
eraging over initial conditions we obtain

.. t[rto
SE2(t)=>, xixjf fc‘g(t"—t’)dt’dt", (E7)
ij 0Jo

the fluctuation-dissipation relation if we assume that the dif-

fusion in energy space due to the driving is given by

De=> E Cl(w—0)xX; - (E4)

where C{L(t"—t")=(F'(t")FI(t")) is the correlation func-
tion. For very short times this equation implies “ballistic”
spreading §E%x=t?) while on intermediate time scaleg
leads to diffusive spreadingE?(t)=2Dgt, where

Thus it is clear that a theory for linear response should es-

tablish that there is a diffusion process in energy space due to
the driving, and that the diffusion coefficient is given by Eq.
(E4). More importantly, this approach also allows treating

cases where the expression g is nonperturbative, while
the diffusion-dissipation relation EGE3) still holds.
A full exposition (and further referengéor this route of

1a - 4
De=5 2 xX; | Ci(ndr. (E8)
ij —

The latter result assumes a short correlation time. This is also
the reason that the integration overcan be extended form

derivation can be found in Refs. 16—19. Here we shall give-« to +%. Hence we get Eq(E4). We note that for long

just the classical derivation of E§E4), which is extremely
simple. We start with the identity

<H>< > - 2 XFK(

(E9)

times the systems deviates significantly from the initial mi-
crocanonical preparation. Hence, for long times, one should
justify the use of the diffusion equatiofE1l). This leads

to the classical slowness condition which is discussed in
Ref. 19.

1L.D. Landau and E.M. LifshitzStatistical PhysicgButterworth
Heinemann, London, 2000

2Y. Imry, Introduction to Mesoscopic Physi¢®xford University
Press, Oxford, 1997 and references therein.

3S. Datta Electronic Transport in Mesoscopic Systef@ambridge
University Press, Cambridge, 1995

4L.P. Kouwenhoveret al, Proceedings of Advanced Study Insti-
tute on Mesoscopic Electron Transposdited by L.L. Sohn,
L.P. Kouwenhoven, and G. SchdKluwer, Dordrecht, 1991

5D.J. Thouless, Phys. Rev. B, 6083(1983.

M. Biittiker et al, Z. Phys. B: Condens. Matté&¥4, 133 (1994):
P.W. Brouwer, Phys. Rev. B8, R10135(1998; J.E. Avron
et al, ibid. 62, R10618(2000.

"T.A. Shutenko, I.L. Aleiner, and B.L. Altshuler, Phys. Rev6B,
10366(2000.

8Y. Levinson, O. Entin-Wohlman, and P. Wolfle,
cond-mat/0010494unpublisheg¢t M. Blaauboer and E.J. Heller,
Phys. Rev. B64, 241301R) (2001).

90. Entin-WohIiman, A. Aharony, and Y. Levinson, Phys. Rev. B

65, 195411(2002.
10D, Cohen, cond-mat/0304678npublished
11p, Reimann, Phys. Rep61, 57 (2002; Special issue, Appl. Phys.

A: Mater Sci. Procesg5 (2002. P. Reimann, M. Grifoni, and P.
Hanggi, Phys. Rev. LetZ9, 10 (1997).

124, Schanz, M.F. Otto, R. Ketzmerick, and T. Dittrich, Phys. Rev.
Lett. 87, 070601(2001).

3M.V. Berry, Proc. R. Soc. London, Ser.392, 45 (1984).

143.E. Avron and L. Sadun, Phys. Rev. Led2, 3082(1989; J.E.
Avron and L. Sadun, Ann. Phy$N.Y.) 206, 440 (1992); J.E.
Avron, A. Raveh, and B. Zur, Rev. Mod. Phy$§0, 873
(1988.

153.M. Robbins and M.V. Berry, J. Phys. 25, L961 (1992; M.V.
Berry and J.M. Robbins, Proc. R. Soc. London, Se#4R, 659
(1993; M.V. Berry and E.C. Sinclair, J. Phys. 80, 2853
(1997.

18D, Cohen inNew Directions in Quantum ChapBroceedings of
the International School of PhysicsEnrico Fermj” Course
CXLIIl, edited by G. Casati, |. Guarneri, and U. Smilangk®S
Press, Amsterdam 2000

17D, Cohen inDynamics of DissipationProceedings of the 38th
Karpacz Winter School of Theoretical Physieslited by P. Gar-
baczewski and R. OlkiewicgSpringer, Berlin, 200R

18D, Cohen, Phys. Rev. LetB2, 4951 (1999; D. Cohen and T.
Kottos, ibid. 85, 4839(2000.

155303-14



QUANTUM PUMPING IN CLOSED SYSTEM . .. PHYSICAL REVIEW B 68, 155303 (2003

19D, Cohen, Ann. PhysN.Y.) 283 175(2000. Casati, I. Guarneri, and U. Smilanskiorth Holland, Amster-
20M. Wilkinson, J. Phys. 21, 4021(1988; M. Wilkinson and E.J. dam, 1991

Austin, ibid. 28, 2277(1995. Z3A. Barnett, D. Cohen, and E.J. Heller, Phys. Rev. L&5.1412
2'0.M. Auslaender and S. Fishman, Phys. Rev. L8t, 1886 (2000.

(2000; O.M. Auslaender and S. Fishman, J. Phys33\ 1957 2Ap. Barnett, D. Cohen, and E.J. Heller, J. Phys.34, 413

(2000. (2002).

223. Fishman, irQuantum Chaos, Proceedings of the International 2°D.S. Fisher and P.A. Lee, Phys. Rev2B, 6851 (1981).
School of Physicé Enrico Fermi” Course CXIX, edited by G.  25H.U. Baranger and A.D. Stone, Phys. Rev4& 8169(1989.

155303-15



