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Distribution function of electrons and phonons in semiconductors and semimetals
in high electric and quantizing magnetic fields

T. M. Gassym*
Institute of Physics, National Academy of Sciences of Azerbaijan Baku 370143, Azerbaijan,

and Turkish Atomic Energy Authority, 06530 Ankara, Turkey
~Received 4 June 2003; published 20 October 2003!

The distribution functions of electrons and phonons interacting with electrons in semiconductors and semi-
metals in high electricE and classically high and quantizing magneticH fields as a result of the solution of the
coupled system of equations for the density matrices of electrons and phonons is obtained. The effects of
heating of electrons and phonons and their arbitrary mutual drag are taken into account. In the absence ofE the
dispersion relation of electrons is assumed to be arbitrarily spherically symmetric. The spectrum of phonons is
assumed to be isotropic. The distribution functions of electrons and phonons, the amplification coefficient of
phonons, and the dependence of chemical potential onE, H, electron concentration, and effective electron
temperature are obtained. The nonstationary distribution function of phonons is obtained for arbitrary phonon
drift velocities which enables us to consider the spontaneous and stimulated emission of phonons by hot
electrons.
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I. INTRODUCTION

It is well known that a high electric field leads to som
different processes in solids. It causes new qualita
changes of the quantum states of current carriers and
energy spectrum, which leads to the dependence of ma
scopic behavior of solids on the applied external electric fi
E. Among examples of such a process may be theE depen-
dence of the imaginary part of the dielectric permeabil
connected with the possibility of intrinsic absorption of ph
tons with energies less than the band gap in semiconduc
~the Frantz-Keldish effect!, the tunneling current in degene
atep-n junctions~the Esaki effect!, and so on.

By assistance of high electric field, it is possible to ta
the semiconductors to the states far from the thermodyna
cal equilibrium state. Such a state takes place in piezoele
or other types of semiconductors and in Bi under the con
tions of amplification or generation of sound by drifted co
duction carriers.1,2

Another nonequilibrium state is realized in the existen
of so-called ‘‘hot electrons’’ in semiconductors. The heati
of electrons leads to changes in many physical behavior
semiconductors and semimetals.3,4 The behavior of the cold
and hot electrons in semiconductors and semimetals in
presence of high magnetic field is another important field
study. High magnetic field leads to the quantization of
orbital motion of carriers and, as a result, to the quantiza
of their energy spectrum.5 Moreover, the high magnetic field
leads to the change in the rate of relaxation processe
electron and phonon subsystems in semiconductors
semimetals. This enables the investigators to manage
characteristic frequencies of relaxation processes in the
tem.

In a quantizing magnetic field, the ratio of interelectron
collision frequencynee to electron-phonon collision fre
quencynp decreases sharply. This takes place because o
nondegenerate statistics of carriers in ultraquantum limit,
0163-1829/2003/68~15!/155205~11!/$20.00 68 1552
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lowest Landau level is fully occupied whereas other lev
contain an exponentially lower number of carriers if the e
ergy of carriers is much smaller than the cyclotron ener
i.e, \V@Te ~hereV is the cyclotron frequency andTe is the
effective carrier temperature!. In such a situation the colli-
sion frequency between the carriers which belong to differ
Landau levels becomes exponentially small. The collisio
between the carriers in the lowest Landau level are elasti
a result of the one-dimensional character of motion and
not contribute to intercarrier relaxation. On the other ha
the collision frequency of carriers with phononsnp , and
phonons with electronsbe grows with increasing magneti
field strength~H! as H2.6 Therefore in quantizing magneti
fields, in contrast to the classical case, we have

nee

np
;S Te

\V D 2

expS 2
\V

Te
D . ~1!

Therefore, the decrease of interelectronic collisions in qu
tizing magnetic fields leads to a sharp decrease in the
ciency of redistribution of electron energy in quantum stat
and essentially changes the form of the carrier distribut
function. In connection with these facts, it seems that it m
be necessary to consider the collisions between carrier
different Landau levels, such as the lowest and the next le
i.e., N50 and N51. This situation was considered b
Calecki7 who notes that: ‘‘Asnee is proportional to the oc-
cupancy of the two levels, we are not surprised by the
pearance of the exponential factor in its expression. In c
clusion, the apriori use of an equilibrium distributio
function with an effective electron temperature is rath
questionable and this is well reflected in the literature on
carriers in a quantizing magnetic field.’’ Therefore, the pro
lem of the possibility for introducing the concept of ‘‘effec
tive electron temperature’’ in high electric and quantizi
magnetic fields arises. The papers on this subject may
classified into three groups.
©2003 The American Physical Society05-1
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~1! Papers which use, without any proof, the simple co
cept of electron temperature as a starting point.8–16

~2! Papers which entirely neglect intercarrier collision
Either the carrier concentration is too small or only the e
treme quantum limit is treated. The problem of establishin
master equation by the diagonal elements of density oper
has been conveniently done by Budd17 in crossed electric
and magnetic fields configuration and by Barker18 in the lon-
gitudinal one. By solving the master equation, we can fi
the carrier distribution function. Then, it is necessary to
termine for which conditions the concept of electron te
perature is meaningful. Kazarinov and Skobov19,20 were the
first to discuss this problem in the case of crossed elec
and magnetic fields. They showed that the electron distr
tion function has a Fermi-Dirac form with effective electro
temperature. In this work, it was assumed that the distri
tion function of phonons is the equilibrium one at latti
temperatureT, and the nonequilibrium effects related
phonons, such as the phonon heating, mutual drag of e
trons and phonons, and generation and amplification
phonons by heated electrons, were neglected. Moreover
influence of high external electric and magnetic fields on
chemical potential of electrons was neglected. Later,
mashita and Inoue21,22 made an attempt to reduce the ran
of the validity of Refs. 19–22. The situation considered
Refs. 19–22 can be realized at high lattice temperature, w
the phonon-phonon collision frequencybp is much higher
than the collision frequency of phonons by electronsbe .
However, for quantization of orbital motion it is necessary
carry out the experiments at low lattice temperatures~liquid
helium, or lower! when bp→0. In the experimental condi
tions, the results of Refs. 19–22 are satisfied for drift velo
ties V!s. Nevertheless, as follows from the result of Re
19–22, whenV!s the heating of electrons is negligible. I
an entirely different spirit, Kurosawa and Yamada23,24 devel-
oped a phenomenological model describing the energy
change process of electrons with electric field and phon
by a Brownian motion in energy space. However, their st
ing point was not entirely rigorous, but the method w
promising ~see Ref. 7!. It has been improved by includin
both electron-electron scattering and collision broadening
Partl et al.25 Caleckiet al.26 used the Pauli master equatio
derived by Budd17 and transformed it into a Fokker-Planc
equation and recovered the arguments of the random w
approach of Kurosawa and Yamada on a more rigor
ground and finally established the restrictive conditions
der which the electron temperature concept may be use

~3! Papers devoted to the effect of electron-electron co
sions. Zlobin and Ziryanov27 calculated a critical density fo
electronsncr such that for.ncr one can use a thermal equ
librium electron distribution function at temperatureTe .
Their results are valid only in the case where no more t
two Landau levels are occupied. In the extreme quan
limit, where only the lowest Landau level is populated, t
binary electron-electron collisions do not contribute to t
redistribution of the energy between electrons, and therm
ization of the electron distribution to the equilibrium on
does not happen. As it seems from the foregoing discuss
the main problem is the use of the electron temperature
15520
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proximation at quantizing magnetic fields. It seems that
the extreme quantum limit, the binary interelectronic co
sions are ineffective and have no influence on the redistr
tion of electron energy. Nevertheless, an experimen28

showed that in InSb at temperatureT54 K and a magnetic
field of 104 G ~i.e, in the extreme quantum limit! with a
concentration of 1014 cm23, the distribution function of elec-
trons is a Maxwellian one~see also Refs. 29–31!. In light of
these experimental facts, there were several attempts to s
this contradiction by taking into account the three-body sc
tering processes: electron-electron-impurity32 or
electron-electron-phonon.33 But it is known that the probabil-
ity of three-body collisions is much less than that of t
binary collisions. On the basis of this fact Calecki makes
following conclusion: ‘‘The interest of such studies lies
the fact that apparently the only real system for which thr
body scattering processes determine gas kinetics is the
tron gas in an ultra-quantizing magnetic field.’’ As is show
experimentally,34–36under these conditions it is necessary
take into account the heating and mutual drag of electr
and phonons, and the generation of phonons by hot electr

It is also well known that there are many other interest
works on quantizing magnetic fields: collision broadeni
effect, influence of the electric field in the Kane band stru
ture, introduction of several valleys in a semiconductor, i
pact of high electric field on the screening in electron int
actions, the distribution function of photoexcited electro
and so on. But all these effects are ineffective in the extre
quantum limit. Because in this limit all electrons have t
same energy,«5\V/25const, for a given constant mag
netic field and the scattering mechanism.

In the present paper, we show that all the problems m
tioned above in high external electric and quantizing m
netic fields may be solved by taking into account the heat
of electrons and phonons and their mutual drag. The po
bility of using the ‘‘effective electron temperature’’ conce
is based on the analysis of the electron heating in high
ternal electric field. This leads to the problem of finding t
conditions where the effective electron temperature appr
mation is fulfilled. It is well known that in Maxwell statistics
the interelectronic collision frequency increases with incre
ing electron concentration. At high electron concentratio
(n.ncr) the interelectronic collisions lead to a effective r
distribution of the energy gained from the external elect
field and to the Maxwell-Boltzmann distribution functio
with effective electron temperatureTe .

In a strong magnetic field the electron motion in the pla
perpendicular to the magnetic field direction is quantized a
Landau levels are formed, as mentioned before. The en
separation between two successive levels is\V. Hence, the
separation is determined by the external magnetic fi
strength and effective electron mass. At sufficiently low te
peratures~for example, for InSb at liquid helium tempera
ture!, the energy separation can be larger than the ther
energy, i.e.,\V.T. If \V@T, all of the electrons are popu
lated in the lowest Landau level and interelectronic collisio
become ineffective in the energy redistribution process.

In the low electron concentration limit, the interelectron
collisions may be neglected completely. In this case,
5-2
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Maxwell-Boltzmann equilibrium distribution may be esta
lished as a result of electron-phonon collisions. Actually,
crossed electric and magnetic fields (H5Hẑ, E5Ex̂), the
stationary state of electrons is characterized by Hall d
along they direction with velocity y[VH5cE/H. In the
absence of scattering the average velocity of electrons a
thex direction is zero. The inclusion of scattering leads to
appearance of the conduction current. The motion of e
trons along thex direction changes the equilibrium positio
X0 of the center of oscillation and, sinceX052cpy /eH, it
changes thepy component of the electron momentum.

As was also shown by Kazarinov and Skobov19,20 the ef-
fective electron temperature may be introduced if\V@Te .
They entirely neglected interelectronic collisions and solv
the equation for the diagonal elements of density matrix
electrons directly and showed that the solution is a Maxw
Boltzmann distribution function with effective electron tem
perature. In this work, it was assumed that the distribut
function of phonons is the equilibrium one at lattice tempe
ture T. Such a situation can be realized at high lattice te
perature, when the phonon-phonon collision frequencybp is
much higher than the collision frequency of phonons by el
tronsbe . For the quantization of orbital motion it is nece
sary to carry out the experiments at low temperatures of
tice ~liquid helium, or lower! when bp→0. As is shown
experimentally,34–36under the conditions of ineffective inter
electronic collisions in contrast to Refs. 19–22 it is necess
to take into account the heating and mutual drag of electr
and phonons, and the generation of phonons by hot electr
In the experimental conditions, the results of Refs. 19–22
satisfied for drift velocitiesV!s. Nevertheless, as follow
from the result of Refs. 19–22, whenV!s the heating of
electrons is negligible. Because, in the absence of pho
heating, the heating of electrons starts from the drift velo
tiesV.s. The heating of phonons interacting with electro
was considered by Gurevich and Gassymov in sev
works.37–42In Ref. 37 at high external electric field, in Ref
38 and 39 at high external electric and arbitrary nonqu
tized magnetic fields, in Refs. 38, 42, and by Zlobin a
Zyrianov43 at high external electric and quantizing magne
fields are considered. In Refs. 37–42, it was shown that
effect of phonon heating leads to liquidation of the ‘‘runaw
effect,’’42 and to the explanation of some experimental
sults such as negative differential conductivityN- andS-type
I -V characteristic in semiconductors and semimetal41

Moreover, it was also shown that in quantizing magne
field the ‘‘effective electron temperature’’ concept may
used as a result of electron-phonon collisions.40,46

As is shown in the present paper the problem of ine
ciency of interelectronic collisions in quantizing magne
fields may be solved by taking into account the mutual d
of electrons and phonons. Actually, as was shown in
earlier investigations,44–50the mutual drag leads to renorma
ization of the cyclotron frequency of carriers as a result
the renormalization of the mass of carriers dressed by
phonons. In other words, the mutual drag leads to the for
tion of new quasiparticles ‘‘electron dressed by phonons’
‘‘hole dressed by phonons,’’ which have the carrier cha
(6e) and the phonon mass (M'T/s2). The renormalization
15520
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of the cyclotron frequencyV5eH/(mc)→V!5eH/(Mc)
5eHs2/(Tec) leads to violation of the initial condition o
quantization\V[eH/(mc)@T or Te and make a transition
to the classical magnetic field condition\V!,T or Te . Be-
cause \V!/\V5m/M'10228/10225'1023 for Te
'10214 erg, orTe /kB'77 K and 1022 for Te /kB'4 K for
the Ge or GaAs, and'1024–'1023 for the InSb param-
eters.

As is discussed above, since the initially ineffective int
electronic collisions become effective as a result of the m
tual drag of electrons and phonons, it is possible to use
effective electron temperature approximation if the elect
concentration is high. For low electron concentrations
solving the coupled system of equations for diagonal e
ments of electron and phonon density matrices at high e
tric and arbitrary magnetic fields~classically high and quan
tizing! we show that the distribution function of carriers
the Fermi one with an effective electron temperature a
result of the electron-phonon interaction and the mutual d
of electrons by phonons. Since at high electric fields
heating of electrons begins at drift velocitiesV.s, we can-
not use the diffusion approximation for the phonon distrib
tion function and we can solve the general equation for
phonon distribution function in the nondiffusion approxim
tion at nonequilibrium and nonstationary conditions.

The mutual drag also leads to the renormalization of
energy of phonons interacting with electrons as

\vq→\vq
![\vq2Vqy[\~sq2Vqy!.

It is a result of the fact that the initial equilibrium Planc
distribution function of phonons becomes the drifted Plan
distribution function in the mutual drag conditions. The tra
sition vq→vq

![vq2Vqy /\ is the well-known Doppler
shift of the phonon frequency. This renormalization effect
phonon energy leads to the following situations.

~a! For drift velocities 0,V,s, \vq
!.0, and tends to

zero by the growing ofV. In this region of drift velocities the
absorption of phonons by electrons prevails.

~b! For drift velocitiesV5VH5s, we have the case whe
the electron-phonon collisions are exactly elastic (\vq

!

50), and dissipation is absent. At this point the spontane
emission of phonons begins and current saturates. All
energy gained from external electric field is emitted
phonons.

~c! For drift velocitiesV.s, the \vq
! becomes negative

and the absorption of phonons in the region 0,V,s is re-
placed by the emission. This region of drift velocity is th
region of stimulated emission of phonons, i.e., the region
phonon generation or amplification at high external fields

In the present paper, the behavior of semiconductors
semimetals in crossed high external electric (E5Ex̂) and
magnetic fields (H5Hẑ) is considered. The magnetic field
assumed to be high such that the cyclotron frequencyV is
much greater than the momentum relaxation frequency
electronsn. It is known that an electron has stationary sta
at high electric and magnetic fields. In Landau represen
tion, the stationary states of electrons are characterized
5-3
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T. M. GASSYM PHYSICAL REVIEW B68, 155205 ~2003!
the magnetic quantum numberN, the projection of momen-
tum on the magnetic field directionpz , and the rotation cen
ter of electronsX.

If the spectrum of electrons in the absence of electric fi
assumed to be isotropic and quadratic, then the energy ei
values in crossed electric and magnetic fields have the fo5

«a5«N,pz ,X5\VS N1
1

2D1
pza

2

2mn
2eEXa1

mnyya
2

2
. ~2!

The stationary state of electrons with energy given by Eq.~2!
is characterized by Hall drift along they direction with ve-
locity yy[VH5cE/H. In the absence of scattering, the a
erage velocity of electrons along thex direction is equal to
zero. The inclusion of scattering leads to the appearanc
the conductance current. The motion of electrons along thx
direction changes the equilibrium position of the center
oscillationX0 and, as a result, changes thepy component of
the electron momentum connected with themX0
52cpy /eH. The scattering of electrons by phonons is co
nected with the transfer of they component of the momen
tum of electronpy to phonons, and leads to the stream
electrons along thex axis, which leads to the mutual drag o
electrons and phonons. During the motion along thex axis,
the electron gains energy from the fieldeE(Xa2Xb)
5eEXab[eER2qy /\, and makes a transition from statea
to stateb. Hereafter,R5(c\/eH)1/2 is the magnetic length
If this energy is greater than the emitted phonon ene
\vq , electrons and phonons are heated. Thus, the pres
of external electric field first leads to the mutual drag
electrons and phonons, and second if the electric field
high, we have the heating of electrons and phonons.

At high E'H fields, in general in the absence of the m
tual drag, the ‘‘effective electron temperature’’ approxim
tion is not satisfied. That is a reason of why for the definiti
of distribution functions of electrons and phonons it is ne
essary to solve the coupled system of equations for the
sity matrix of electrons and phonons directly.

The present paper is devoted to solving the coupled
tem of equations for diagonal parts of electrons and phon
density matrices at high external crossedE andH fields with
taking into account the heating of electrons and phonons,
their mutual drag. The problem is solved under the assu
tion that the spectrum of electrons in the absence of elec
field is arbitrary spherically symmetric, and the spectrum
phonons is assumed to be isotropic.

The phonon generation at high external electric and m
netic fields is a nonstationary effect, i.e., it is a result of
increase in the number of phonons or their distribution fu
tion in time. Thus, for the consideration of the phonon ge
eration, it is necessary to solve the nonstationary and n
equilibrium equation for the density matrix of phono
interacting with electrons.

II. THE SPECTRUM OF ELECTRONS IN HIGH
ELECTRIC AND QUANTIZING MAGNETIC FIELDS

Let us assume that in the absence of electric field,
dispersion relation of electrons is given by
15520
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B~«a0!5
pz

2

2mn
1«N , «N5\VS N1

1

2D . ~3!

The energy of electrons«a in E'H case may also be written
as

«a5«a02eEXa1
m~«a!yya

2

2

5«a02eEXa1
m~«a!

mn

mnc2

2

E2

H2
, ~4!

wheremn is the effective mass of electrons at the bottom
the conduction band andm(«a)5mn@]B(«a)/]«a# is the
effective electron mass.B(«a)5«a for the parabolic and
B(«a)5«a@11«a /«g# for the two-band Kane spectrum
cases. In the absence of the electric field,

Xa52
pya

mnV
. ~5!

For the determination of the dispersion relation of ele
trons in theE'H case, we make a transition to the referen
frame which drifts together with electrons with a velocity
V5cE/H. It is obvious that in such a reference frame, t
dispersion relation of electrons must have the form of E
~3!, and all properties of the system must be preserved if
substitute

pya8 5pya1m~«a!V. ~6!

Then, by using Eq.~6! in Eq. ~5!, we may obtainXa as

Xa52
pya

mnV
2

m~«a!V

mnV
52

pya

mnV
2

eE

mnV2 S ]B~«a!

]«a
D .

~7!

If we define«a0 as in Eq.~4! and substitute it into Eq.~3!,
we may obtain the dispersion relation of electrons in
E'H case as

B~«a
! ![BS «a1eEXa2

m~«a!

mn

mnc2

2

E2

H2D
5

pza
2

2mn
1\VS N1

1

2D ~8!

or

pza
2

2mn
5B~«a

! !2«N . ~9!

The Xa in Eq. ~7! is determined from Eq.~5! by taking into
account Eq.~6!.

If the increasing of energy of electrons in electric field

S eEXa2
m~«a!c2

2

E2

H2D

5-4
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is much less than«a , by expandingB(«a
!) into series around

this small parameter, we find

pza
2

2mn
5B~«a!2«N1FeEXa2

mnc2

2 S ]B~«a!

]«a
D G S ]B~«a!

]«a
D

~10!

or

pza
2

2mn
5B~«a!2«N1

m~«a!

mn
eEXa2

m~«a!

mn

mnc2

2

E2

H2
.

~11!

When V5cE/H!ycr5s, Eq. ~10! reduces to the relation
obtained earlier in Refs. 51 and 52 as a result of the solu
of Schrödinger’s equation for the Kane spectrum of ele
trons. In the present paper, Eq.~8! is obtained for arbitrary
magnitude of the external electric field. This is why this e
pression describes a more general case than the expres
given in Refs. 51 and 52.

The linear in electric field termeEXa in the dispersion
law is usually neglected.19–22 This leads to a loss of som
effects. As we showed above, taking into account this term
equivalent to the replacement of\vq in the argument of
delta function by\vq

!5\vq2Vqy5\vq2(cE/H)qy .

III. THE MAIN EQUATIONS AND THEIR SOLUTIONS

At high magnetic field (V@n) in the Landau representa
tion, the diagonal elements of the density matrix of electro
f a is larger than the nondiagonal elements by (V/n) times,
and that is why it is enough to write and solve the equat
for the diagonal elements of the density matrix of electro
Since in the present paper we consider the space unif
case when temperature and concentration gradients are
sent, it is enough to write the equations for the diago
elements of density matrixN(q,t) for the phonon system a
well.

After averaging over the electron states with fixed en
gies, the system of equations for the diagonal elements o
density matrices of electronsf a5 f («a ,t), and phonons
Nq(t)[N(q,t) have the form6

] f ~«,t !

]t
5

2p

\ (
a,b,q

uCqu2u^auexp~2 iq•r !ub&u2$d~«b2«a

2\vq
!!@~ f b2 f a!N~q,t !1 f b~12 f a!#

2d~«b2«a1\vq
!!@~ f a2 f b!N~q,t !

1 f a~12 f b!#%d~«a2«!1I ee@ f #1I ed@ f #, ~12!

]N~q,t !

]t
5

4p

\ (
a,b,q

uCqu2u^auexp~2 iq•r !ub&u2

3d~«b2«a2\vq
!!@~ f b2 f a!N~q,t !

1 f b~12 f a!#1I pp@N~q!#1I pb@N~q!#,

~13!
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where f («,t)5(a f («a ,t)d(«a2«) is the average numbe
of carriers with energy«, i.e., their distribution function,
\vq

!5\vq2eE(Xb2Xa), I ee@ f # and I ed@ f # are the inter-
electronic and electron-defects collision integrals, resp
tively,

I pp@Nq#5b~q!@N~q,t !2N~q,Tp!#,

I pb@Nq#5bb@N~q,t !2N~q,T!#, ~14!

are the phonon-phonon and phonon-crystal boundaries c
sion integrals,Tp is the temperature of the heated phono
andT is the lattice temperature. Both phonon collision int
grals are considered in the relaxation time approximat
bp

215tp(q), bb
215tb .40 Since as a result of the mutua

drag electrons and phonons scatters by each other and f
the coupled system with the same temperatureTe and drift
velocity u; then their momentum and energy are transmit
to the surrounding media~e.g., liquid helium! by the colli-
sions with the crystal boundaries. The frequencies of bou
ary collisions connected with momentumbb and energyb«

transmission were calculated for the first time by Gurev
and Gassymov37 ~see also Ref. 53!.

We now consider the low electron concentration casen
,ncr when I ee!I ep , whereI ep is the collisions integral of
electrons with phonons. For simplicity we neglect the con
bution due to the electron-defect collisions. Since within t
Born approximation under quantizing magnetic field the c
lision frequencies of electrons with neutral and ionized d
fects do not depend on the electron energy, the role of
scattering of electrons by defects may be easily taken
account in the final expressions.

Exchanginga andb in the second component of the e
pression under the sum in Eq.~11!, we find

] f ~«,t !

]t
5

2p

\ (
a,b,q

uCqu2u^auexp~2 iq•r !ub&u2

3$d~«b2«a2\vq
!!@~ f b2 f a!N~q,t !

1 f b~12 f a!#%$d~«a2«!2d~«b2«!%.

~15!

We now consider the case when the scattering of electr
by phonons is quasielastic and, therefore, changing of
energy of electrons («a2«b5\vq2Vqy5\vq

!) is less than
the energy scale of the changing electrons distribution fu
tion. Then, expanding (f b2 f a) and @d(«a2«)2d(«b
2«)# into series, we find

f b2 f a5 f ~«a1\vq
!!2 f ~«a!'\vq

!S ] f ~«a!

]«a
D1•••,

~16!

$d~«a2«!2d~«b2«!%5d~«a2«!2d~«a2«1\vq
!!

'2\vq
!

]

]«a
d~«a2«!1•••.

~17!
5-5
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By using the identity (]/]«a)d(«a2«)[(]/]«)d(«a
2«), we obtain

] f ~«,t !

]t
52

]

]« H A~«!
] f ~«,t !

]«
1D~«! f ~«,t !@12 f ~«,t !#J ,

~18!

where

A~«!5
2p

\ (
a,b,q

uCqu2uI abu2~\vq
!!2

3d~«b2«a2\vq
!!N~q,t !d~«a2«!, ~19!

D~«!5
2p

\ (
a,b,q

uCqu2uI abu2\vq
!

3d~«a2«b2\vq
!!d~«a2«!.

The stationary solution of Eq.~18! satisfying boundary con
dition lim«→` f («)→0 is

f ~«!5H const21expS E« d«8

Te~«8!
D 11J 21

, ~20!

where Te(«)5A(«)/D(«) is the effective temperature o
electrons which occupies the level with energy«.

The solution of Eq.~13! is

N~q,t !5$N~q,0!1bgq
21Ñ~q!%exp~gqt !2bgq

21Ñ~q!,
~21!

wheregq5b(u•q/\vq21) is the increment of the genera
tion of phonons,b5be1bp1bb is the total collision fre-
quency of phonons by the scatterers and

be5
2p

\ (
a,b

uCqu2uI a,bu2~ f b2 f a!d~«b2«a2\vq
!!

'
2p

\ (
a,b,q

uCqu2uI abu2~«b2«a!S ] f ~«a!

]«a
D

3d~«b2«a2\vq
!!. ~22!

N(q,0)[N(q,T) is the initial distribution function of
phonons att50 in the absence of external fields

u5S 12
bp

b DV[
be

b
V, uI abu25u^auexp~2 iq•r !ub&u2.

~23!

As it follows from Eq.~21! in the gq.0 case, i.e., when
the drift velocity of phononsu is larger than the sound ve
locity s, the distribution function of phononsN(q,t) in-
creases exponentially with time, whereas in thegq,0 case
the solution,~21! is stationary,

N~q!5 lim
t→`

N~q,t !52bgq
21Ñ~q!,

Ñ~q!5geN~q,Te!1gpN~q,Tp!, ~24!
15520
wherege5be /b, gp5bp /b,

N~q,Te!5

(
a,b

uI abu2Te~«!@] f ~«a!/]«a#d~«b2«a2\vq
!!

(
ab

uI abu2\vq
!@] f ~«a!/]«a#d~«b2«a2\vq

!!

,

~25!

Te5

(
a,b

uI abu2Te~«!@] f ~«a!/]«a#d~«b2«a2\vq
!!

(
ab

uI abu2@] f ~«a!/]«a#d~«b2«a2\vq
!!

,

~26!

whereTe is the effective temperature of electrons.
In case when \vq

!50 if gp→0, then u•q/\vq

5Vqy /\vq51 and from Eq.~18! we have] f («,t)/]t50.
At this point f («,t)5const5 f («,Te), where f («,Te) is the
distribution function of electrons atu5s with a constant
temperatureTe . Because, in Eq.~18! A(«);(\vq

!)250 and
D(«);(\vq

!)50 or f («,t)5const, i.e., it does not depen
on time. Since the region\v!.0 is the region of phonon
absorption, electrons make the transition to the ground s
as a result of ‘‘dressing by phonons,’’ i.e., we have cooling
electrons. At this point the distribution function of phono
is nonstationary and grows by time linearly,N(q,t)
5N(q,T)1btN(q,Te). Indeed, u5V5s5const and
dN(q,t)/dt5bN(q,Te), does not depend on time. Namel
P(Te)5(q\vq

!(dN(q,t)/dt)50, whereP(Te) is the power
transferred by electrons to phonons. The pointu5s is the
acoustical instability threshold~AIT !. At this point, the
stimulated emission of phonons is equal to the stimula
absorption of phonons, and we have only spontaneous e
sion of phonons at high external electric and magnetic fie
At this point collisions of electrons with phonons are exac
elastic, i.e., the state is nondissipative and dynamically
tionary because of the power received from the electric fi
emitted as phonons by the process of the stimulated e
sion.

Substituting]N(q,t)/]t50 in Eq. ~13!, we may directly
solve this equation under the boundary conditions

N~q,t !u t505N~q,0![N~q,T!5$exp~\vq /T!21%21,
~27!

and we obtain Eq.~24!. Under the considered condition
\vq

!!Te ,T from Eq. ~24!, we find

Ñ~q!5
geTe1gpTp

\vq
5

T̃

\vq
.Ñ~q,T̃!, T̃5geTe1gpTp ,

~28!

where T̃ is the temperature of the electron-phonon syst
coupled by the mutual drag. Therefore, the stationary so
tion of Eq. ~13! has the form (u•q/\vq,1)

N~q!5
Ñ~q!

12u•q/\vq
52bgq

21Ñ~q!'
T̃

\vq
!

. ~29!
5-6
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Let us substitute Eq.~29! in Eq. ~19! and take into accoun
the relations

uI abu25uI NN8u
2dpyb ,py1qy

dpzb ,pz1qz
, ~30!

uI NN8u
25S N!

N8!
D 1/2

expS 2
q'

2

qH
2 D S 2

q'

qH
D N82N

LN
uN82NuS q'

2

qH
2 D .

Here qH5\R215(mn«N)1/2, q'
2 5qx

21qy
2 , LN

umu is the La-
guerre’s polynomial normalized to unity, andumu5uN
2N8u. Choosing the cylindrical coordinate system with t
axis along the magnetic fieldH

dq5q'dq'dqzdw, qy5q'sinw. ~31!

As a result of the integration, we have

A~«!5T̃F~u/s!D~«!,

F~u/s!5w22
V

u
~w21!2S V

u D 2

~w21!,

D~«!5
sV

\~2p\!5 (
N,N8

qH
3 W~qH!

3E
0

`

dx
x2uI NN8u

2m2~«!

@B~«1\vq
!!2«N8#

1/2@B~«2\vq
!!2«N#1/2

,

~32!

where x5q' /qH , and W(qH) is the constant part of the
electron-phonon mutual interaction potential. Thus, in g
eral, under the arbitrary degree of quantization the ra
A(«)/D(«)5T̃F(u/s) does not depend on the energy
electrons and the potential of mutual interactions w
phonons. In other words, in the more general case of in
action of electrons with acoustic and optical phonons
expression

Teff5
A~«!

D~«!
5T̃F~u/s! ~33!

does not depend on the energy of electrons and it is
effective temperature of the interacting electron-phonon s
tem.

By substituting Eq.~33! into Eq. ~20!, we find

f ~«!5H 11expS «2z~E,H !

Teff
D J 21

. ~34!

In other words, at high classic or quantizing magnetic fie
the distribution function of electrons in general is a Fer
one, with effective temperature of carriers in accordan
with experiments.28,29,34–36In quantizing magnetic field

Teff5T̃H 11S V

u
21D 2

~w121!J , w15S 12
u2

s2 D 21/2

.

~35!

In the classical region of strong magnetic fields (V@n)
15520
-
o

r-
e

e
s-

s
i
e

F~u/s!5H 12S V

u
21D ~w221!1

1

3 S V

s D 2J ,

w25
s

2u
lnUs1u

s2uU. ~36!

As follows from Eq.~36! in this case the distribution func
tion of electrons is the Fermi one with effective temperatu

Teff5T̃H 12S V

u
21D ~w221!1

1

3 S V

s D 2J . ~37!

The fact that the distribution function of electrons in bo
classical and quantum regions of magnetic fields are Fe
ones with effective temperature is a result of the indep
dency of drift velocity of electronsV5cE/H on electron
energy«.

At small values of the drift velocity of electronsV!s
from Eq. ~35! for the quantizing magnetic field, we have

Teff'T̃H 11
1

2 S V

s D 2

2
uV

s2 J 5T̃H 11S gp2
1

2D S cE

sHD 2J .

~38!

If be@bp , i.e.,gp→0, thenTeff5T̃$12 1
2 (cE/sH)2% and

if be!bp , gp→1, thenTeff5T̃$11 1
2 (cE/sH)2%. As is seen

from this expression in the strong mutual drag casegp→0 at
quantizing magnetic field, we have cooling of electrons
the increasing of their drift velocity~or E).

In the classic region of magnetic field, we must consid
two cases: In a strong mutual drag case whenV5u andgp
→0 we have

Teff'TeH 11
1

3 S V

s D 2J . ~39!

On the other hand, in a weak mutual drag case whengp
→1, s@V@u (w221'21/2), we have

Teff5TpH 11
1

2

V

u
1

1

3 S V

s D 2J
'TpH 11

1

2 S V

u D J 'TpH 11
1

2

cE

uHJ .

If bp@be , gp→1, phonons are not heated,T̃5T, and
V!s. Under these conditions from Eqs.~38! and ~39! we
can obtain the results of Refs. 19–22.

IV. THE STATISTICS OF ELECTRONS AT HIGH
MAGNETIC FIELDS

In theE'H case, the chemical potential of electrons m
be obtained from the normalization condition of the distrib
tion function as
5-7
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ne5E`

d«gH~«! f ~«!, gH~«!5
2mn~eH/c!

~2p\!2 (
N

pz
21~«!.

~40!

For arbitrary spherical symmetric spectrum of electron

ne5
2~2mn!1/2mnV

~2p\!2 (
N

E
«1

!

`

d«!@B~«!!2«N#1/2

3H 11expS «!2z!~E,H !

Teff
D J 21

, ~41!

z!~E,H !5z~E,H !1eEX~«!2
m~«!c2

2 S E2

H2D . ~42!

The «1
! is determined as a solution

B~«!!2«N50. ~43!

By partial integration of Eq.~41!, we find

ne5
4~2mn!1/2mnV

~2p\!2 (
N

E
«1

!

`

d«!@B~«!!2«N#1/2

3S 2
] f ~«!!

]«! D . ~44!

For the case of parabolic spectrum of electrons

«1
!5«N5\VS N1

1

2D , ~45!

and for the Kane spectrum of electrons

«1
!52

«g

2 F12S 11
4«N

«g
D 1/2G . ~46!

Let us now consider the case of degenerate and n
degenerate statistics of electrons separately. For strong
generate electrons

S 2
] f 0~«!!

]«! D 5d~«2z!!. ~47!

With the help of this expression, we can integrate the
~44! and get

ne5
4~2mn!1/2

\~2pR!2 (
N

FB~z!!2\VS N1
1

2D G1/2

. ~48!

For the parabolic spectrum of electrons

ne5
4~2mn!1/2

\~2pR!2 (
N

Fz!2\VS N1
1

2D G1/2

. ~49!

For the Kane spectrum of electrons
15520
n-
e-

.

ne5
4~2mn!1/2

\~2pR!2 (
N

Fz!S 11
z!

«g
D2\VS N1

1

2D G1/2

.

~50!

For ultraquantum limits (N5N850), we have

ne5
4~2mn!1/2

\~2pR!2 FB~z!!2
\V

2 G1/2

⇒FB~z!!2
\V

2 G5
\2~2pR!4ne

2

16~2mn!
. ~51!

From this relation for the parabolic spectrum of electrons
obtain the chemical potential as follows:

z!~E,H !5
\V

2
1

p4\4ne
2

2mn
3V2

. ~52!

This expression is the same as Eqs.~32! and~22! in Ref. 54.
In the case of Kane spectrum of electrons

z!~E,H !52
«g

2 H 12S 11
2\V

«g
1

2p4\2R4ne
2

mn«g
D 1/2J .

~53!

In the case of nondegenerate electrons by taking@B(«!)
2«N# out of the integral when«!5«1

!(N)1Te , we find

expS z!!~E,H !

Te
D5

~2pR!2\ne

4~2mn!1/2 H(
N

expS 2
«1

!~N!

Te
D

3@B~«1
!~N!1Te!2«N#1/2J 21

. ~54!

As before«1
! is obtained from Eqs.~45! and ~46!. If the

condition«1
!@Te is satisfied, then by expandingB(«1

!1Te)
into series in Eq.~54! and by taking into account Eq.~43!,
we have

expS z!!~E,H !

Te
D.

~2pR!2\ne

4A2
Te

21/2

3F(
N

expS 2
«1

!~N!

Te
Dm1/2~«1

!!G21

,

~55!

where

m~«1
!!5mnS ]B~«!!

]«! D
«!5«

1
!

. ~56!

Dividing Eq. ~54! by itself for E50, we get

z!!~E,H !5z~H !
Te

T
1TelnS ne

n0
D1TelnF FN~T!

FN~Te!
G , ~57!

where
5-8
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z!!~E,H !5z~E,H !2
m

mn

mnc2

2

E2

H2
, ~58!

FN~Te!5(
N

expS 2
«1

!~N!

Te
D $B~«1

!~N!1Te!2«N%1/2.

~59!

FN(T) may be obtained from Eq.~59! by replacingTe with
T.

For the case of parabolic spectrum of electrons«1
!5«N

5\V(N11/2) and we have

z!!~E,H !5z~H !
Te

T
1TelnS ne

n0
D2

Te

2
lnS Te

T D
1TelnFsinh~\V/2Te!

sinh~\V/2T! G . ~60!

Therefore, in the case of parabolic spectrum of electrons
finally find the chemical potential

z~E,H !5z~H !
Te

T
2eEX1

mnc2

2

E2

H2
1TelnS ne

n0
D

2
Te

2
lnS Te

T D1TelnFsinh~\V/2Te!

sinh~\V/2T! G . ~61!

As follows from Eq.~61! in an external electric field if the
concentration of electrons is increased (ne.n), then the
chemical potential of electrons must also increase.

If we have full ionization of small impurity centers, the
ne5n05const Thus, from Eq.~61!, we may obtain

z~E,H !2
\V

2
5

Te

T Fz~H !2
\V

2 G1
mnc2

2

E2

H2
2

Te

2
lnS Te

T D
1TelnF12exp~\V/2Te!

12exp~\V/2T! G . ~62!

In quantizing magnetic fields\V.Te ,T and, for this
reason, the last term in Eq.~62! may be presented a
(Te /T)(\V/2). In this case

z~E,H !2
\V

2
5

Te

T
@z~H !2\V#1

mnc2

2

E2

H2
2

Te

2
lnS Te

T D .

~63!

For the weak electric fieldsTe5T,

z~E,H !5z~H !2
\V

2
1

mnc2

2

E2

H2
. ~64!

As follows from Eq.~64!, the expression forz(E,H) dif-
fers from the expression given in Ref. 54 by the fac
(mnc2/2)(E2/H2), which is connected with the Hall drift o
electrons. In the case of heating of electrons at external e
tric field the main contribution to the free energy is obtain
15520
e

r

c-

by the expressionz(H)(Te /T), i.e., in high external electric
field the chemical potential of electrons in common case
creases linearly byTe /T.

For the calculation of the statistical behavior of electro
in external fields such as magnetic susceptibility, heat cap
ity, etc., it is necessary to know the dependence of the che
cal potential on the intensity of external electric and ma
netic fields. The magnetic susceptibility of hot electrons
the case of high concentration of electrons was investiga
earlier.55

V. DISCUSSIONS

In the present work, it is shown that under the conditio
of arbitrary degree of quantization and for the interaction
electrons with both the acoustic and optical phonons,
distribution function of electrons has the form of a Fer
distribution function with effective electron temperatur
This result is obtained by taking into account the heating
electron and phonons and their arbitrary mutual drag un
the conditions where the usual ‘‘effective temperature
proximation’’ for electrons is not satisfied, i.e.,nee!nep .
The distribution functions of electrons and phonons are
tained as a result of the solution of coupled systems of eq
tions for the density matrices of interacting electrons a
phonons for arbitrary heating and drift velocities of phono
It is shown that if the drift velocity of phonons~or the com-
mon drift velocity of the coupled system which is formed b
the mutual drag of electrons and phonons! u is smaller than
the sound velocitys, then the distribution function of
phonons is stationary and has the shifted Planck’s distr
tion function form with effective temperature of phonons.
the region of drift velocitiesu>s the distribution function of
phonons is nonstationary. Ifu.s, the distribution function
of phonons grows with time exponentially, i.e., we have ge
eration or amplification of phonons in external electric fie
The amplification coefficient of phonons is given byGq
5(b/s)@u•q/\vq21# and the generation coefficient~or in-
crement of grow! is given byb@u•q/\vq21#. At the u5s
point the distribution function of phonons grows with tim
linearly. This point is the point of the acoustical instabili
threshold. At this point the spontaneous emission of phon
takes place.

The region of drift velocities 0,u,s is the region of
absorption of phonons, the region of drift velocitiesu.s is
the region of stimulated emission of phonons, and the po
u5s is the point of spontaneous emission of phonons.
general,u5(be/b)V,V and the point of AIT~u5s! do not
coincide with the point where the Cherenkov’s emission
phononsV5s starts. However, only in the case of stron
mutual dragb5be ~or bp50!, these two threshold coincide
i.e., u5V5S.

As was mentioned above, the main problem of the the
of hot electrons in high electric and quantizing magne
fields is the possibility of using the approximation of ‘‘effec
tive temperature’’ of carriers. The main difficulty connecte
with this problem is that for the nondegenerate statistics
the quantum limit all electrons occupy only the lowest La
dau level and interelectronic collisions become ineffective
5-9
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\V@T,Te . As is shown in this paper, under the condition
ultraquantum limit (\V@T), as a result of the renormaliza
tion of the mass of ‘‘carriers dressed by phonons’’ (m→M
5T/s2 or Te /s2), the cyclotron frequency decreases (V!

5eHs2/Tc!V), and the transition from ultraquantum lim
to the classic region of the magnetic field takes place. Th
under the sameH andn electrons occupy many Landau le
els and the interelectronic collisions become effective a
the ‘‘effective temperature’’ approximation may be used
n.ncr . Moreover, in the low electron concentration ca
(n,ncr), the direct solution of the coupled system of equ
tions for electrons and phonons density matrices shows
in high external electric and classically high or quantizi
magnetic fields the distribution function of electrons is t
Fermi-Dirac or Maxwell-Boltzmann distribution functio
with effective electron temperature. In earli
investigations,19–22 this problem was considered by takin
into account only the heating of electrons, and was acc
able only in the case of high lattice temperatures and d
velocitiesV!s. However, under these conditions the heat
of electrons is negligible because under these condition
starts from the drift velocitiesV>s. In contrast to Refs. 19–
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