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The distribution functions of electrons and phonons interacting with electrons in semiconductors and semi-
metals in high electri& and classically high and quantizing magnefidields as a result of the solution of the
coupled system of equations for the density matrices of electrons and phonons is obtained. The effects of
heating of electrons and phonons and their arbitrary mutual drag are taken into account. In the aliSéhee of
dispersion relation of electrons is assumed to be arbitrarily spherically symmetric. The spectrum of phonons is
assumed to be isotropic. The distribution functions of electrons and phonons, the amplification coefficient of
phonons, and the dependence of chemical potentidt,0H, electron concentration, and effective electron
temperature are obtained. The nonstationary distribution function of phonons is obtained for arbitrary phonon
drift velocities which enables us to consider the spontaneous and stimulated emission of phonons by hot
electrons.
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[. INTRODUCTION lowest Landau level is fully occupied whereas other levels
contain an exponentially lower number of carriers if the en-
It is well known that a high electric field leads to some ergy of carriers is much smaller than the cyclotron energy,
different processes in solids. It causes new qualitativé.e,7Q>T, (hereQ is the cyclotron frequency ant, is the
changes of the quantum states of current carriers and thegffective carrier temperatureln such a situation the colli-
energy spectrum, which leads to the dependence of macr&ion frequency between the carriers which belong to different

scopic behavior of solids on the applied external electric field-andau levels becomes exponentially small. The collisions
E. Among examples of such a process may beBfdepen- between the carriers in the lowest Landau level are elastic as

a result of the one-dimensional character of motion and do
connected with the possibility of intrinsic absorption of pho- not contribute to intercarrier relaxation. On the other hand,

tons with energies less than the band gap in semiconductofd€ collision frequency of carriers with phonong, and

(the Frantz-Keldish effegtthe tunneling current in degener- phonons with eIectrorzmze grows W't.h Increasing magnetic
ate p-n junctions(the Esaki effedt and so on. field strength(H) asH<.® Therefore in quantizing magnetic

By assistance of high electric field, it is possible to takeflelds’ in contrast to the classical case, we have
the semiconductors to the states far from the thermodynami-

dence of the imaginary part of the dielectric permeability,

cal equilibrium state. Such a state takes place in piezoelectric Vee E) Zexp( _ @) )

or other types of semiconductors and in Bi under the condi- vy |AhQ Te )

tions of amplification or generation of sound by drifted con-

duction carriers:? Therefore, the decrease of interelectronic collisions in quan-

Another nonequilibrium state is realized in the existencetizing magnetic fields leads to a sharp decrease in the effi-
of so-called “hot electrons” in semiconductors. The heatingciency of redistribution of electron energy in quantum states,
of electrons leads to changes in many physical behaviors &nd essentially changes the form of the carrier distribution
semiconductors and semimet&fsThe behavior of the cold function. In connection with these facts, it seems that it may
and hot electrons in semiconductors and semimetals in thiee necessary to consider the collisions between carriers in
presence of high magnetic field is another important field oflifferent Landau levels, such as the lowest and the next level,
study. High magnetic field leads to the quantization of thei.,e., N=0 and N=1. This situation was considered by
orbital motion of carriers and, as a result, to the quantizatiorCalecki who notes that: “Asv, is proportional to the oc-
of their energy spectrumMoreover, the high magnetic field cupancy of the two levels, we are not surprised by the ap-
leads to the change in the rate of relaxation processes ipearance of the exponential factor in its expression. In con-
electron and phonon subsystems in semiconductors arglusion, the apriori use of an equilibrium distribution
semimetals. This enables the investigators to manage tHfanction with an effective electron temperature is rather
characteristic frequencies of relaxation processes in the sysguestionable and this is well reflected in the literature on hot
tem. carriers in a quantizing magnetic field.” Therefore, the prob-

In a quantizing magnetic field, the ratio of interelectroniclem of the possibility for introducing the concept of “effec-
collision frequencyv.e to electron-phonon collision fre- tive electron temperature” in high electric and quantizing
quencyv, decreases sharply. This takes place because of theagnetic fields arises. The papers on this subject may be
nondegenerate statistics of carriers in ultraguantum limit, thelassified into three groups.
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(1) Papers which use, without any proof, the simple con-proximation at quantizing magnetic fields. It seems that in
cept of electron temperature as a starting poirit. the extreme quantum limit, the binary interelectronic colli-

(2) Papers which entirely neglect intercarrier collisions.sions are ineffective and have no influence on the redistribu-
Either the carrier concentration is too small or only the ex-tion of electron energy. Nevertheless, an experiffent
treme quantum limit is treated. The problem of establishing ashowed that in InSb at temperatufe=4 K and a magnetic
master equation by the diagonal elements of density operatdield of 10* G (i.e, in the extreme quantum limiwith a
has been conveniently done by Bdddn crossed electric concentration of 18 cm™3, the distribution function of elec-
and magnetic fields configuration and by BafRén the lon-  trons is a Maxwellian onésee also Refs. 29—31In light of
gitudinal one. By solving the master equation, we can findhese experimental facts, there were several attempts to solve
the carrier distribution function. Then, it is necessary to dethis contradiction by taking into account the three-body scat-
termine for which conditions the concept of electron tem-tering processes: electron-electron-impdfity  or
perature is meaningful. Kazarinov and Skobth? were the  electron-electron-phonoti.But it is known that the probabil-
first to discuss this problem in the case of crossed electriity of three-body collisions is much less than that of the
and magnetic fields. They showed that the electron distribubinary collisions. On the basis of this fact Calecki makes the
tion function has a Fermi-Dirac form with effective electron following conclusion: “The interest of such studies lies in
temperature. In this work, it was assumed that the distributhe fact that apparently the only real system for which three-
tion function of phonons is the equilibrium one at lattice body scattering processes determine gas kinetics is the elec-
temperatureT, and the nonequilibrium effects related to tron gas in an ultra-quantizing magnetic field.” As is shown
phonons, such as the phonon heating, mutual drag of eleexperimentally*~3¢under these conditions it is necessary to
trons and phonons, and generation and amplification ofake into account the heating and mutual drag of electrons
phonons by heated electrons, were neglected. Moreover, ti@nd phonons, and the generation of phonons by hot electrons.
influence of high external electric and magnetic fields on the It is also well known that there are many other interesting
chemical potential of electrons was neglected. Later, Yaworks on quantizing magnetic fields: collision broadening
mashita and Inofé?> made an attempt to reduce the rangeeffect, influence of the electric field in the Kane band struc-
of the validity of Refs. 19-22. The situation considered inture, introduction of several valleys in a semiconductor, im-
Refs. 19—-22 can be realized at high lattice temperature, whepact of high electric field on the screening in electron inter-
the phonon-phonon collision frequengy, is much higher actions, the distribution function of photoexcited electrons,
than the collision frequency of phonons by electrghs and so on. But all these effects are ineffective in the extreme
However, for quantization of orbital motion it is necessary toquantum limit. Because in this limit all electrons have the
carry out the experiments at low lattice temperatutegiid same energys =% /2=const, for a given constant mag-
helium, or lowey when 8,—0. In the experimental condi- netic field and the scattering mechanism.
tions, the results of Refs. 19-22 are satisfied for drift veloci- In the present paper, we show that all the problems men-
ties V<s. Nevertheless, as follows from the result of Refs.tioned above in high external electric and quantizing mag-
19-22, whenv<s the heating of electrons is negligible. In netic fields may be solved by taking into account the heating
an entirely different spirit, Kurosawa and Yamati@' devel-  of electrons and phonons and their mutual drag. The possi-
oped a phenomenological model describing the energy exility of using the “effective electron temperature” concept
change process of electrons with electric field and phononis based on the analysis of the electron heating in high ex-
by a Brownian motion in energy space. However, their startternal electric field. This leads to the problem of finding the
ing point was not entirely rigorous, but the method wasconditions where the effective electron temperature approxi-
promising (see Ref. Y. It has been improved by including mation is fulfilled. It is well known that in Maxwell statistics
both electron-electron scattering and collision broadening byhe interelectronic collision frequency increases with increas-
Partl et al?® Caleckiet al?® used the Pauli master equation ing electron concentration. At high electron concentrations
derived by Budd’ and transformed it into a Fokker-Planck (n>ng,) the interelectronic collisions lead to a effective re-
equation and recovered the arguments of the random waldtistribution of the energy gained from the external electric
approach of Kurosawa and Yamada on a more rigoroufield and to the Maxwell-Boltzmann distribution function
ground and finally established the restrictive conditions unwith effective electron temperatuie, .
der which the electron temperature concept may be used. In a strong magnetic field the electron motion in the plane

(3) Papers devoted to the effect of electron-electron colli-perpendicular to the magnetic field direction is quantized and
sions. Zlobin and ZiryandV calculated a critical density for Landau levels are formed, as mentioned before. The energy
electronsn,, such that for>n., one can use a thermal equi- separation between two successive levels(s Hence, the
librium electron distribution function at temperatufe,. separation is determined by the external magnetic field
Their results are valid only in the case where no more thamstrength and effective electron mass. At sufficiently low tem-
two Landau levels are occupied. In the extreme quantunperatures(for example, for InSb at liquid helium tempera-
limit, where only the lowest Landau level is populated, theture), the energy separation can be larger than the thermal
binary electron-electron collisions do not contribute to theenergy, i.e.fQ>T. If AQ>T, all of the electrons are popu-
redistribution of the energy between electrons, and thermalated in the lowest Landau level and interelectronic collisions
ization of the electron distribution to the equilibrium one become ineffective in the energy redistribution process.
does not happen. As it seems from the foregoing discussion, In the low electron concentration limit, the interelectronic
the main problem is the use of the electron temperature agollisions may be neglected completely. In this case, the
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Maxwell-Boltzmann equilibrium distribution may be estab- of the cyclotron frequency)=eH/(mc)—Q*=eH/(Mc)
lished as a result of electron-phonon collisions. Actually, in=eHs%/(T.c) leads to violation of the initial condition of

crossed electric and magnetic fieldd€Hz, E=EX), the quantizatiomi()=eH/(mc)>T or T, and make a transition
stationary state of electrons is characterized by Hall drifto the classical magnetic field conditidf)*<T or T,. Be-
along they direction with velocityv=Vy=cE/H. In the cause AQ*/AQ=m/M~10"2910"*~10"° for T,
absence of scattering the average velocity of electrons along 10 erg, orT./kg~77 K and 10 for T./kg=~4 K for
thex direction is zero. The inclusion of scattering leads to thethe Ge or GaAs, ane=10"*—~10"2 for the InSh param-
appearance of the conduction current. The motion of eleceters.

trons along thex direction changes the equilibrium position ~ As is discussed above, since the initially ineffective inter-
X, of the center of oscillation and, sinég=—cpy/eH, it  electronic collisions become effective as a result of the mu-

changes the, component of the electron momentum. tual drag of electrons and phonons, it is possible to use the
As was also shown by Kazarinov and Skobt#fthe ef-  effective electron temperature approximation if the electron
fective electron temperature may be introducefl Gi>T,. concentration is high. For low electron concentrations by

They entirely neglected interelectronic collisions and solvedsolving the coupled system of equations for diagonal ele-
the equation for the diagonal elements of density matrix foments of electron and phonon density matrices at high elec-
electrons directly and showed that the solution is a Maxwelliric and arbitrary magnetic fieldglassically high and quan-
Boltzmann distribution function with effective electron tem- tizing) we show that the distribution function of carriers is
perature. In this work, it was assumed that the distributiorihe Fermi one with an effective electron temperature as a
function of phonons is the equilibrium one at lattice temperatesult of the electron-phonon interaction and the mutual drag
ture T. Such a situation can be realized at high lattice tem©f electrons by phonons. Since at high electric fields the
perature, when the phonon-phonon collision frequegigys heating of electrons begins at drift velocitigs>s, we can-
much higher than the collision frequency of phonons by elechot use the diffusion approximation for the phonon distribu-
trons B,. For the quantization of orbital motion it is neces- tion function and we can solve the general equation for the
sary to carry out the experiments at low temperatures of latPhonon distribution function in the nondiffusion approxima-
tice (liquid helium, or lowey when 8,—0. As is shown tion at nonequilibrium and nonstationary conditions.
experimentally*~*®under the conditions of ineffective inter- ~ The mutual drag also leads to the renormalization of the
electronic collisions in contrast to Refs. 19—22 it is necessargnergy of phonons interacting with electrons as

to take into account the heating and mutual drag of electrons

and phonons, and the generation of phonons by hot electrons. ﬁwqeﬁwazﬁwq—quzﬁ(sq—qu)_

In the experimental conditions, the results of Refs. 19-22 are

satisfied for drift velocitiesV<s. Nevertheless, as follows |t js a result of the fact that the initial equilibrium Planck
from the result of Refs. 19-22, whet<s the heating of distribution function of phonons becomes the drifted Planck
electrons is negligible. Because, in the absence of phonogistribution function in the mutual drag conditions. The tran-

heating, the heating of electrons starts from the drift velociition wq— wi=w,—Va, /% is the well-known Doppler

tiesV>s. The heating of phonons interacting with electronsghjft of the phonon frequency. This renormalization effect of
was considered by Gurevich and Gassymov in severghhonon energy leads to the following situations.
works®~*?In Ref. 37 at high external electric field, in Refs. () For drift velocities 0<V<s, fw’>0, and tends to
38 and 39 at high external electric and arbitrary nonquanserq by the growing of. In this region of drift velocities the
tized magnetic fields, in Refs. 38, 42, and by Zlobin andabsorption of phonons by electrons prevails.

ZyrianoV* at high external electric and quantizing magnetic (b) For drift velocitiesV'=V,, s, we have the case when
fields are considered. In Refs. 37-42, it was shown that thg, electron-phonon collisioHns 'are exactly elasticof

gggg: ﬂngsdnotg Tﬁ:tg? Ili?g\?'ct)?\ Iié’qfuistjoa;igneof tgfr;gjr?@’v?y: 0), and dissipation is absent. At this point the spontaneous
' P ' xper ® emission of phonons begins and current saturates. All the

Is_u\l/ts s#;ragtseggggtl\i/: dslz(rer:irg)té?jluccczg?suCg\ri}éyasne(jr:rtr{g‘t?als energy gained from external electric field is emitted as
: ) L . phonons.
Moreover, it was also shown that in quantizing magnetic () For drift velocitiesV>s, thew* becomes negative
field the “effective electron temperature” concept may be : T a = =9
and the absorption of phonons in the region\9<s is re-

used as a result of electron-phonon collisi6h laced by th <sion. Thi o of drift velogity s th
As is shown in the present paper the problem of ineffi-P.2¢ y the emission. This region ot dnift velocily 1s the
region of stimulated emission of phonons, i.e., the region of

c_iency of interelectronic cqllisiqns in quantizing magnetic honon generation or amplification at high external fields
fields may be solved by taking into account the mutual drad) In the present paper, the behavior of semiconductors énd

of electrons and phonons. Actually, as was shown in our ) _ -

earlier investigation&!~>°the mutual drag leads to renormal- S€mimetals in crossed high external electiie<Ex) and
ization of the cyclotron frequency of carriers as a result ofmagnetic fields i = Hz) is considered. The magnetic field is
the renormalization of the mass of carriers dressed by thessumed to be high such that the cyclotron frequeiicis
phonons. In other words, the mutual drag leads to the formamuch greater than the momentum relaxation frequency of
tion of new quasiparticles “electron dressed by phonons” orelectronsy. It is known that an electron has stationary states
“hole dressed by phonons,” which have the carrier chargeat high electric and magnetic fields. In Landau representa-
(+e) and the phonon mas$A~T/s?). The renormalization tion, the stationary states of electrons are characterized by
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the magnetic quantum numbkl the projection of momen- pg
tum on the magnetic field directigm,, and the rotation cen- B(e.0)= om. Tens en=n
ter of electronsX. n

If the spectrum of electrons in the absence of electric fieldrhe energy of electrons, in EL H case may also be written
assumed to be isotropic and quadratic, then the energy eigeas
values in crossed electric and magnetic fields have the*form

1
N+§ . 3)

m(sa)via
1) Pl Ma22, Ea=Ea0 " €EX t ———
SaZSN,pZ,X:ﬁQ N+§ +2m _eEXa+ 2 . (2)
" m(e,) m,c? E?
The stationary state of electrons with energy given by(Ey. =g,0  €EX, T m 2 e (4)

is characterized by Hall drift along thedirection with ve-

locity vy=Vy=cE/H. In the absence of scattering, the av- wherem, is the effective mass of electrons at the bottom of
erage velocity of electrons along thedirection is equal to  the conduction band anth(e,)=m,[B(e,)/ds,] is the

zero. The inclusion of scattering leads to the appearance gfffective electron masB(s,)=¢, for the parabolic and
the conductance current. The motion of electrons alongthe B(ea)=e4[1+e,/eq4] for the two-band Kane spectrum

direction changes the equilibrium position of the center ofcases. In the absence of the electric field,
oscillation X, and, as a result, changes thgcomponent of

the electron momentum connected with therX, Pya

= —cpy/eH. The scattering of electrons by phonons is con- Xo=— mQ’ )
nected with the transfer of thge component of the momen-

tum of electronp, to phonons, and leads to the stream of  For the determination of the dispersion relation of elec-
electrons along th axis, which leads to the mutual drag of trons in theEL H case, we make a transition to the reference
electrons and phonons. During the motion alongxtexis,  frame which drifts together with electrons with a velocity of
the electron gains energy from the fieldE(X,~Xg)  v=cE/H. It is obvious that in such a reference frame, the
=eEX,;=eERq, /%, and makes a transition from state ispersion relation of electrons must have the form of Eq.

to stateB. HereafterR=(c/eH)"?is the magnetic length. (3), and all properties of the system must be preserved if we
If this energy is greater than the emitted phonon energyypstitute

fiwg, electrons and phonons are heated. Thus, the presence

of external electric field first leads to the mutual drag of p§a=pya+ m(e,)V. (6)
electrons and phonons, and second if the electric field is
high, we have the heating of electrons and phonons. Then, by using Eq(6) in Eg. (5), we may obtainX, as
At high EL H fields, in general in the absence of the mu-
tual drag, the “effective electron temperature” approxima-  Pya M)V Py, eE (dB(e,)
tion is not satisfied. That is a reason of why for the definiton "¢~ "m0 mQ  mQ moo2| de,
of distribution functions of electrons and phonons it is nec- " 7)
essary to solve the coupled system of equations for the den-
sity matrix of electrons and phonons directly. If we definee . as in Eq.(4) and substitute it into Eq(3),

The present paper is devoted to solving the coupled sysye may obtain the dispersion relation of electrons in the
tem of equations for diagonal parts of electrons and phonong | H case as

density matrices at high external crosgedndH fields with

taking into account the heating of electrons and phonons, and

their mutual drag. The problem is solved under the assump- B(e;)=B

tion that the spectrum of electrons in the absence of electric

field is arbitrary spherically symmetric, and the spectrum of 02 1

phonons is assumed to be isotropic. = ﬂ+ﬁg( N+ =
The phonon generation at high external electric and mag- 2m, 2

netic fields is a nonstationary effect, i.e., it is a result of the

increase in the number of phonons or their distribution func-

tion in time. Thus, for the consideration of the phonon gen- 2

eration, it is necessary to solve the nonstationary and non- Pza

equilibrium equation for the density matrix of phonons 2m,

Interacting with electrons. The X, in Eq. (7) is determined from Eq5) by taking into
account Eq(6).
[l. THE SPECTRUM OF ELECTRONS IN HIGH If the increasing of energy of electrons in electric field
ELECTRIC AND QUANTIZING MAGNETIC FIELDS

e, TeEX,—

m(e,) myc? E?
m, 2 Q2

®

:B(g‘;)_SN. (9)

. L m(e,)c? E?
Let us assume that in the absence of electric field, the eEX — — ¥~ —_
dispersion relation of electrons is given by 2 H2
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is much less than,,, by expanding3(s}) into series around
this small parameter, we find

2 2
pZa _ mnc aB(Sa) ((98(8“)
2mn_B(8a)_8N+ CEX,~ 2 ( de, de,
(10
or
2 2 2
Pz« _ m(e,) m(e,) m,c® E
Zmn_B(s”‘)_sN+ - eEX,— m 5 m
(11

When V=cE/H<v,=s, Eq. (10) reduces to the relation
obtained earlier in Refs. 51 and 52 as a result of the solutio
of Schralinger’s equation for the Kane spectrum of elec-
trons. In the present paper, E@) is obtained for arbitrary
magnitude of the external electric field. This is why this ex-
pression describes a more general case than the expressi
given in Refs. 51 and 52.

The linear in electric field terneEX, in the dispersion
law is usually neglectetf=22 This leads to a loss of some
effects. As we showed above, taking into account this term i
equivalent to the replacement éfw, in the argument of
delta function byh wg="wy—Va,=hw,—(CE/H)q,.

IIl. THE MAIN EQUATIONS AND THEIR SOLUTIONS

At high magnetic field (1> v) in the Landau representa-

f, is larger than the nondiagonal elements )/ {) times,

and that is why it is enough to write and solve the equation

S{%ression under the sum in E4.1), we find

for the diagonal elements of the density matrix of electron
Since in the present paper we consider the space unifor

case when temperature and concentration gradients are ab-
sent, it is enough to write the equations for the diagonal

elements of density matrix(q,t) for the phonon system as
well.

After averaging over the electron states with fixed ener-
gies, the system of equations for the diagonal elements of the

density matrices of electron$,=f(e,,t), and phonons
Nq(t)=N(q,t) have the forrf

df(e,t) B 2

=7 2 |C*alexp—igq-n|B)H{d(ep—e,

@,,9
—hog)[(fa—fIN(QD+fa(1—1,)]
—8(eg—e,thaog)[(f,—fg)N(q,t)

i (1-fg)li(e—e) Tled fl+led fl, (12

IN(q,t)
at

4
“TS |C?elexp—ig-n)| B2
h B

X 8(eg—e,—hwg)[(fg—T,)N(q,t)

(1= 1)1+ 1ppN(a) ]+ 1ps[N(a) ],
13

S
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where f(e,t)=2 ,f(e,,t)6(e,—¢) is the average number
of carriers with energy, i.e., their distribution function,
hog=hoq—eE(Xz—X,), lodf] and I {f] are the inter-
electronic and electron-defects collision integrals, respec-
tively,

Ippl Ngl=B(a)[N(q,t) —N(q,Ty) ],

lpb[Nq]:ﬁb[N(qvt)_ N(qu)]!

are the phonon-phonon and phonon-crystal boundaries colli-
sion integrals,T, is the temperature of the heated phonons,
andT is the lattice temperature. Both phonon collision inte-
grals are considered in the relaxation time approximation
g;lzrp(q), By '=7,.%° Since as a result of the mutual

rag electrons and phonons scatters by each other and forms
the coupled system with the same temperaftyeand drift
velocity u; then their momentum and energy are transmitted
to the surrounding mediée.qg., liquid helium by the colli-

(14

YiSns with the crystal boundaries. The frequencies of bound-

ary collisions connected with momentuéy and energygs,
transmission were calculated for the first time by Gurevich
and GassymoV (see also Ref. 53

We now consider the low electron concentration case
<ng whenlge<lgp,, wherelg, is the collisions integral of
electrons with phonons. For simplicity we neglect the contri-
bution due to the electron-defect collisions. Since within the
Born approximation under quantizing magnetic field the col-
lision frequencies of electrons with neutral and ionized de-
fects do not depend on the electron energy, the role of the

%cattering of electrons by defects may be easily taken into

account in the final expressions.
Exchanginga and B in the second component of the ex-

df(e,t) 2 i
HeD TS (cglielex-ianal

xX{d(epg—e,~fiwg)[(fg—T,)N(q,1)

+fﬁ(l_fa)]}{5(8a_8)_ 5(8B_8)}
(15

We now consider the case when the scattering of electrons
by phonons is quasielastic and, therefore, changing of the
energy of electronse(,—eg=fiw,—Va,= hwa) is less than
the energy scale of the changing electrons distribution func-
tion. Then, expanding f;—f,) and [&(e,—&)— (&g
—¢)] into series, we find

) i

(16)

9t(e,)

de,

fﬁ—fa=f(8a+ﬁwa)—f(8a)%ﬁwa(

{8(e—8)—d(eg—e)}=08(e,—&)— (e, —e+hwg)

d
— (e~

+...
de,, 2

*
~ ﬁwq

17
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By using the identity §/de,)d(e,—&)=(dlde)d(e,  Whereye=Be!B, vo=PBp!B:
—¢g), we obtain

At o ot (et) 2 agl*Te(8)[0f(82)/ 0841 8(e p— 80— Tiog)
Frar (e) P +D(8)f(8,t)[l—f(8,t)]}, N(q,Te):a’ﬁ ,
(18) aZB gl ?hiwg[0f(e,)l0e,)8(e p— &~ hw})
where (25)
AE)= T S |Gyl apl2(hg)? ORIPE e —ha]
h oty |Cal Mgl (g 2, [lapl*Te(e)[ 91 ()1 08,1825~ 0~ heo})

e )
2, gl 9ol 8]0 =00~ hiwg)

2w (26)
D(e)=— > |Cql?|l 42w
7 aﬁ’ql o [ apl P g

><5(8B—8a—ﬁwa)N(q,t)é(sa—e), (19

whereT, is the effective temperature of electrons.
In case whenfwg=0 if y,—0, then u-g/hwy
=Vq,/hiwg=1 and from Eq.(18) we havedf(e,t)/ot=0.
The stationary solution of Eq18) satisfying boundary con- At this point f(&,t) =constf(e,T,), wheref(e,T,) is the
dition lim,_,..f(¢)—0 is distribution function of electrons at=s with a constant
] . temperaturdl,. Because, in Eq18) A(8)~(ﬁwa)2=0 and
¢ de’ D(e)~(hw;)=0 or f(e,t)=const, i.e., it does not depend
f(s)={consr1exp< f T (8,)) +1} .+ 20 41 time. since the regiofi*>0 is the region of phonon
¢ absorption, electrons make the transition to the ground state
where T(e)=A(¢g)/D(e) is the effective temperature of as a result of “dressing by phonons,”i.e., we have cooling of

X 8(e,—eg—hwy)d(e,—¢€).

electrons which occupies the level with enekgy electrons. At this point the distribution function of phonons
The solution of Eq(13) is is nonstationary and grows by time linearly(q,t)
_ _ =N(q,T)+BtN(q,Te). Indeed, u=V=s=const and
N(a.t)={N(q.,0)+ B, ‘N(a)}exp( yqt) — Byq N(a), dN(q,t)/dt=8N(q,T.), does not depend on time. Namely,

1) P(Te)=Zqfiwy(dN(q,t)/dt)=0, whereP(T,) is the power
where y,=B(u- q/fiwg— 1) is the increment of the genera- transferred by electrons to phonons. The paints is the

tion of phonons,8=B.+ B,+ B, is the total collision fre- acoustical instability thresholdAIT). At this point, the
quency of phonons by thepscatterers and stimulated emission of phonons is equal to the stimulated

absorption of phonons, and we have only spontaneous emis-

2 sion of phonons at high external electric and magnetic fields.
Be=7~ 2 1C 2 plA(f =) 8(ep—e0—tiw]) At this point collisions of electrons with phonons are exactly
«p elastic, i.e., the state is nondissipative and dynamically sta-
2 of(e,) tionary because of the power received from the electric field
~ = Eﬁ:q |Cq|2|laﬁ|2(sﬁ—sa)( P ) emitted as phonons by the process of the stimulated emis-
“h @ sion.
X 8(85— &4~ Hiwl). (22) SubstitutingdN(q,t)/dt=0 in Eq. (13), we may directly
q solve this equation under the boundary conditions
N(g,0)=N(q,T) is the initial distribution function of
phonons at=0 in the absence of external fields N(Q,1)[i=0= N(q,O)EN(q,T)={exp(hwq/T)—1}’1&27)
u:(l_ﬁ)vz &V, 1 ogl2=|(alexp —ig-1)|B)[2 and we obtain Eq(24). Under the considered conditions
B B 23 hwg<Te,T from Eq.(24), we find
As it follows from Eq.(21) in the y,>0 case, i.e., when {(q)= Yele YpTp = T ~N(q,T), T=yeTet+ YT,
the drift velocity of phononsi is larger than the sound ve- haq haq
locity s, the distribution function of phononsli(q,t) in- (28)

creases exponentially with time, whereas in the<0 case

: , . whereT is the temperature of the electron-phonon system
the solution,(21) is stationary,

coupled by the mutual drag. Therefore, the stationary solu-
) 1 tion of Eq. (13) has the form §- g/ w,<1)
N(@)=IlimN(q,t)=—Bv4 "N(q),

t—o

N(a) ;e
N N(a)=7———"—=—Bys 'N(@)=~—. (29
N(Q)=veN(d,Te)+ ¥,N(a,Tp), (24) 1-u-d/fhw, q hop
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Let us substitute Eq29) in Eqg. (19) and take into account Vv 1/V\?2
the relations d(uls)= 1_(3_1)(¢2_1)+§ E) ,
|Iaﬁ|2:||NN’|25pyﬁ,py+qy5pzﬁ,pz+qza (30)
s | s+u
AR AT AL L ST ERTY %
lan =] —| ex - (—— L',L“ NI — |
N"! ah AH Oh

As follows from Eq.(36) in this case the distribution func-
Here gy=AR = (muen)*2 0°=q2+ qs, L\hrln\ is the La- tion of electrons is the Fermi one with effective temperature

guerre’s polynomial normalized to unity, anfin|=|N

—N’|. Choosing the cylindrical coordinate system with the = 1(V\?
axis along the magnetic field Ter=T) 1= U_l (‘p2_1)+§ s| [ (37)
dg=q,dq, dg,de, qgy=q,sine. (3D The fact that the distribution function of electrons in both
As a result of the integration, we have classical and quantum regions of magnetic fields are Fermi
ones with effective temperature is a result of the indepen-
A(e)=Td(u/s)D(e), dency of drift velocity of electrond/=cE/H on electron
energye.
Vv 2 At small values of the drift velocity of electrong<s
Puls)=¢—2-(e—1)—| | (¢—1), from Eq. (35) for the quantizing magnetic field, we have
sQ S ¢ . ,r{1+1 V)Z w| _=f 1)(CE)2]
D(e)=—— Wi = Sl=Z] ——= (= Yoo = =1 |-
(e) h(2mh)° NN G W) ) 2\s s* P 2]\sH
(38)
Xfmd X[ Iy [2mP(e)
X , : =
0 [Ble+hwy) —en]"B(e—hw)) —ey]? If Be> By, i-€.,y7,—0, thenTeg=T{1- 3(cE/sH)?} and

if Be<<Bp. vp—1, thenTe=T{1+3(cE/sH)?}. As s seen
(32 Py Apt

from this expression in the strong mutual drag cage:0 at
wherex=q, /qy, and W(qy) is the constant part of the quantizing magnetic field, we have cooling of electrons by
electron-phonon mutual interaction potential. Thus, in genthe increasing of their drift velocityor E).
eral, under the arbitrary degree of quantization the ratio In the classic region of magnetic field, we must consider
A(g)/D(g):"qu(u/s) does not depend on the energy of two cases: In a strong mutual drag case wkienu and vy,
electrons and the potential of mutual interactions with—0 we have
phonons. In other words, in the more general case of inter-

action of electrons with acoustic and optical phonons the 1/V\?
expression Ter~Te 1+ 3|5 |- (39
A(e) -~ .
o= = = Td(u/s) (33 On the other hand, in a weak mutual drag case wign
D(e) —1, s>Vsu (¢,— 1~—1/2), we have

does not depend on the energy of electrons and it is the

effective temperature of the interacting electron-phonon sys- 1V 1(/V\?
tem. Ter=Tpi 1+ 50+ 3l 5
By substituting Eq(33) into Eq. (20), we find
1 T 1+1(V)] T[1+1CE]
e—{(E\H)\ |~ ~ S\ T Soal-
f(e)= 1+exp(—§T( ))J . (34) PLU2luj) P 2uH
eff

In other words, at high classic or quantizing magnetic fields If g,>gB., y,—1, phonons are not heatedi=T, and
the distribution function of electrons in general is a FermiV<s. Under these conditions from Eq&8) and (39 we
one, with effective temperature of carriers in accordancean obtain the results of Refs. 19-22.

with experiment$®2°34=38n quantizing magnetic field

vV 2 u2 -12 IV. THE STATISTICS OF ELECTRONS AT HIGH
Ter=111+ U_l> (‘Pl_l))a <P1:(1__2) MAGNETIC FIELDS
S
In the EL H case, the chemical potential of electrons may
(35 ; e o >0
be obtained from the normalization condition of the distribu-
In the classical region of strong magnetic field$x v) tion function as
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2m,(eH/c)

e | degu(e)f(e), gate) - -

% p, X(e).
(40)

For arbitrary spherical symmetric spectrum of electrons

2(2my) "m0 =

nfw% L;ds [B(s")—en]"?
* ek -1
X 1+exy{ﬂ)] , (41)
Teff
. m(e)c? [ E?
(E,H)=¢(E,H)+eEXe)— 5 2/ (42
The e} is determined as a solution
B(e*)—en=0. (43

By partial integration of Eq(41), we find

4(2my)m, 0 jw
Ng=—"—" de*[B(e*) —ep]Y?
P > 0o [B(e) —en]
of(e*
x( Bk )>. (44)
de*
For the case of parabolic spectrum of electrons
1
e1=en=1Q N+§ , (45

and for the Kane spectrum of electrons

e 4gy\ 12
81:——9[1—(1+—N) .
&g

(46)

PHYSICAL REVIEW B68, 155205 (2003

4(2mn)1/2 é/* 1/2
=—— > || 1+ | -RQ| N+ =
h(2mR)? N &g 2
(50)
For ultraquantum limitsl=N’"=0), we have
4(2m”)1/2[8(§*) mr’Z
n —_ _——
© h(2wR)? 2
. hQ] A%(27R)*n]
=|B({ )—7 = Tazm) (51)

From this relation for the parabolic spectrum of electrons we
obtain the chemical potential as follows:

PN 0 7*h*ng -
{(E\H)= -t Tﬁﬂz (52
This expression is the same as E@2) and(22) in Ref. 54.

In the case of Kane spectrum of electrons

2nQ0  27*h?R*n2\ 12
+ .
gg Mhegy

2ol
S(EH)=-) 1|1+
(53

In the case of nondegenerate electrons by taKiB¢e*)
—ey] out of the integral wher*=¢](N)+T,, we find

3ol -0

-1
X[B(si(N)ﬂLTe)—sN]“Z] . (54

p(g**(E,H)) (27R)%An,
X =
© Te 4(2m,)*?

As beforee] is obtained from Eqgs(45) and (46). If the
conditione}>T, is satisfied, then by expandir@(e] + T,)
into series in Eq(54) and by taking into account E@43),
we have

Let us now consider the case of degenerate and non- )
degenerate statistics of electrons separately. For strong de- [{é’"(E,H)> (27R)hiNe __ 1)
ex T =
e

generate electrons

(_ dfo(e™)

- )=6<s—§*>. (47)
de

With the help of this expression, we can integrate the Eq.

(44) and get

1/2

4(2m,)Y? 1
=——— > |B({)-AQ| N+ = 48
“hanRr? % B 5 (48)

For the parabolic spectrum of electrons
4(2mn)1/2 1 1/2
= *—h QN+ o 49
* h(2mR)? % ¢ 2 “9)

For the Kane spectrum of electrons

42 ¢
* N -1
D exp(—@)mm(s;)} ,

X
N e
(55
where
. IB(e™)
m(ey)=m, " : (56)
de N
1
Dividing Eq. (54) by itself for E=0, we get
* K _ Te ne FN(T)
g (E,H)—{(H)?+Teln n_o +Teln m}, (57)

where
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m m,c? E?

(B =LEH) - -

(58

1(N
Fa(Te) =2 exp(— SlT( )){B(sz(NHTe)—sN}W-
N e

(59
Fn(T) may be obtained from Eq59) by replacingT, with
T.

For the case of parabolic spectrum of electrefjs- ey
=hQ(N+1/2) and we have

ol B
g (E,H)—{(H)?+Teln n_o —7“'1 ?

SiNNAQ/2T,)

SinM#Q/2T) | (60

e
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by the expressiog(H)(T./T), i.e., in high external electric
field the chemical potential of electrons in common case in-
creases linearly by /T.

For the calculation of the statistical behavior of electrons
in external fields such as magnetic susceptibility, heat capac-
ity, etc., it is necessary to know the dependence of the chemi-
cal potential on the intensity of external electric and mag-
netic fields. The magnetic susceptibility of hot electrons in
the case of high concentration of electrons was investigated
earlier™®

V. DISCUSSIONS

In the present work, it is shown that under the conditions
of arbitrary degree of quantization and for the interaction of
electrons with both the acoustic and optical phonons, the
distribution function of electrons has the form of a Fermi
distribution function with effective electron temperature.
This result is obtained by taking into account the heating of

Therefore, in the case of parabolic spectrum of electrons Wejectron and phonons and their arbitrary mutual drag under

finally find the chemical potential

T
g(E,H)=§(H)$—eEX+

Te [Te
—7In(T)+TeIn

As follows from Eq.(61) in an external electric field if the
concentration of electrons is increased, ¥ n), then the
chemical potential of electrons must also increase.

2 g2
nc” E Ne
2 mﬁ-Te'n(n—o)
sSinh(# Q/2T,)

snnazn | 6D

If we have full ionization of small impurity centers, then

ne=nNg=const Thus, from Eq(61), we may obtain

Q) T.
Z(E,H)—TZ?

Te ( Te>
N A R L
1- exp(ﬁQ/ZTe)}

el e hQ/2T)

(62

In quantizing magnetic field&#Q)>T,,T and, for this

reason, the last term in Eq62) may be presented as

(Te/T)(RQ/2). In this case

hQ T. m.,c? E2 T, [Te
(EH) - =F[dH) -RQ]+ ( )

2 e 2T
(63)
For the weak electric field§,=T,
E,H)=¢(H A0 moc” B 64
(EH)={H) -5+ 2 (64)

As follows from Eq.(64), the expression fof(E,H) dif-

the conditions where the usual “effective temperature ap-
proximation” for electrons is not satisfied, i.evge<vep.
The distribution functions of electrons and phonons are ob-
tained as a result of the solution of coupled systems of equa-
tions for the density matrices of interacting electrons and
phonons for arbitrary heating and drift velocities of phonons.
It is shown that if the drift velocity of phonon®r the com-
mon drift velocity of the coupled system which is formed by
the mutual drag of electrons and phonpass smaller than
the sound velocitys, then the distribution function of
phonons is stationary and has the shifted Planck’s distribu-
tion function form with effective temperature of phonons. In
the region of drift velocitiesi=s the distribution function of
phonons is nonstationary. if>s, the distribution function
of phonons grows with time exponentially, i.e., we have gen-
eration or amplification of phonons in external electric field.
The amplification coefficient of phonons is given by,
=(BIs)[u-g/hwyq—1] and the generation coefficiefdr in-
crement of growis given byB[u-g/fiwg—1]. At theu=s
point the distribution function of phonons grows with time
linearly. This point is the point of the acoustical instability
threshold. At this point the spontaneous emission of phonons
takes place.

The region of drift velocities &u<s is the region of
absorption of phonons, the region of drift velocities s is
the region of stimulated emission of phonons, and the point
u=s is the point of spontaneous emission of phonons. In
generalu=(BJ/B)V<V and the point of AIT(u=s) do not
coincide with the point where the Cherenkov's emission of
phononsV=s starts. However, only in the case of strong
mutual drag8= B, (or 8,=0), these two threshold coincide,
i.e,u=V=S

As was mentioned above, the main problem of the theory
of hot electrons in high electric and quantizing magnetic
fields is the possibility of using the approximation of “effec-

fers from the expression given in Ref. 54 by the factortive temperature” of carriers. The main difficulty connected

(m,c?/2)(E?/H?), which is connected with the Hall drift of

with this problem is that for the nondegenerate statistics in

electrons. In the case of heating of electrons at external elethe quantum limit all electrons occupy only the lowest Lan-
tric field the main contribution to the free energy is obtaineddau level and interelectronic collisions become ineffective if
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nQ>T,T.. As is shown in this paper, under the condition of 22, in the present paper we consider the case of arbitrary
ultraquantum limit ¢ QQ>T), as a result of the renormaliza- heating of electrons and phonons and their arbitrary mutual
tion of the mass of “carriers dressed by phonongi-¢ M drag. Moreover, the region of drift velocities,or V, larger
=T/s? or T,/s?), the cyclotron frequency decreaseQ*(  or smaller than the sound velocityis considered. In Refs.
=eH$/Tc<), and the transition from ultraquantum limit 19—22, in the dispersion relation the term which is linear in
to the classic region of the magnetic field takes place. Thughe electric field intensity was neglected. It leads to a loss of
under the sameél andn electrons occupy many Landau lev- some effects. As is shown in the present paper, considering
els and the interelectronic collisions become effective andhis term is equivalent to renormalization of phonon energy
the “effective temperature” approximation may be used ifin the argument of thes function asfw*=%hw—Vg,
n>n.. Moreover, in the low electron concentration case=#%wy—CEq,/H. In other words, it leads to the change of
(n<ng,), the direct solution of the coupled system of equa-the initial Planck’s distribution function and consider the
tions for electrons and phonons density matrices shows thdoppler’s shift in the phonon frequency in the drifted refer-
in high external electric and classically high or quantizingence frame. Moreover, this term also considers the transition
magnetic fields the distribution function of electrons is thefrom the absorption to emission regime by increasing the
Fermi-Dirac or Maxwell-Boltzmann distribution function drift velocity of electronsv.

with  effective  electron temperature. In earlier
investigations>~22 this problem was considered by taking
into account only the heating of electrons, and was accept-
able only in the case of high lattice temperatures and drift This work was partially supported by the Scientific and
velocitiesV<s. However, under these conditions the heatingTechnical Research Council of TurkéJUBITAK). In the

of electrons is negligible because under these conditions tourse of this work, T. M. Gassym was supported by
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