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Properties of Gutzwiller wave functions for multiband models
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We analyze the Mott transition in multiband Hubbard models with the inclusion of multiplet exchange
splittings as it arises in infinite dimensions by using the generalized Gutzwiller wave function introduced by
Bunemann, Weber, and Gebhdiehys. Rev. B57, 6896(1998]. We also present an extension of that varia-
tional wave function to account for broken-symmetry solutions, which still allows an exact analytical treat-
ment. Our analysis reveals some drawbacks of the variational wave function, which, in our opinion, imply that
Gutzwiller-type wave functions do not properly characterize quasiparticles close to a Mott transition even in
the limit of infinite dimensions.
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[. INTRODUCTION ground state properties. In spite of the interesting develop-
ments achieved by means of the Gutzwiller variational wave
After so many years since its proposahe Mott transi-  function in single-band Hamiltonians, especially for what it
tion maintains intact its scientific interest, continually keptconcernsd-wave superconductivity in thé-J model-1°
alive by the growing number of materials which, on the trackthere have been not many attempts to apply the same tech-
of becoming Mott insulators, show rich and fascinatingnique to multiband models, even though there are many in-
physical properties, among which high-superconductivity teresting strongly correlated materials where orbital degrees
is likely the most spectacular example. of freedom play an important role. Indeed there exist several
Much of the theoretical effort till now has been devotedanalyses based on multiband extensions of the GAETs.
towards cuprate-inspired mainly single-band models, like thd1—13 and of slave-boson technigifébut a direct compari-
standard Hubbard model or its strongly correlated counterson with more exact results to test the quality of the
part, thet-J model. Although unsolved questions still re- Gutzwiller wave function is still missing, even though
main, a lot has been unveiled about the Mott transition in theDMFT results for multiband Hubbard models are by now
single-band Hubbard model, especially after the developavailable!®~°
ment of the so-called dynamical mean-field the@@WFT).? In this paper, we review the multiband extension of the
DMFT, which is exact in the limit of infinite coordination Gutzwiller wave functiof GWF) proposed in Ref. 11 which
lattices, represents a quite reliable approach to investigate theas the big advantage of being analytically treatable in the
on-site dynamical behavior across the Mott transition. Yet, inimit of infinite dimensions. Moreover, we propose a further
its original version, DMFT is not able to yield accurate re- extension to broken-symmetry phases, which maintains the
sults concerning intersite correlations, which are treated in aame property of being analytically accessible in infinite di-
mean-field-like fashion, although several extensions havenensions without losing any variational freedom. In this
been proposetiFor that reason, other approaches have beehimit, we single out some peculiar properties of the GWF
often adopted to investigate the possible occurrence aoflose to the Mott transition. The comparison with exact
d-wave superconductivity in proximity to the Mott insulating DMFT results reveals some drawbacks of the GWF which
phase of single-band Hubbard and models, most of which may lead to even qualitatively incorrect results. This may not
are more or less explicitly related to the Gutzwiller varia- come as quite a surprise. In fact, it is well known that the
tional techniqué. That amounts to studying a variational simplest Gutzwiller wave function, obtained by partly pro-
wave function consisting of a simple Slater determinantecting out double occupancies from a paramagnetic Fermi
where doubly occupied sites are partially or completely prosea, does not provide a very accurate description of the
jected out. The Gutzwiller wave function can be rigorouslysingle-band Hubbard model at half-filling in finite dimen-
handled only numerically in finite dimensions, although ansions because it does not properly account for relevant spa-
approximate analytical scheme to evaluate average valugil correlations®~2% Just for that reason, the paramagnetic
was proposed by Gutzwiller himsélfihereafter called the Gutzwiller wave function does not show any Mott transition
Gutzwiller approximation formuldGAF). Later on, it was in finite dimensions, while it does in infinite dimensions,
realized that the GAF gives an exact account of thewhere spatial correlations are not so crucial. Indeed, a com-
Gutzwiller wave function in the case of infinite coordination parison with exact DMFT results for the single-band Hub-
lattices® and that it provides similar results to the slave-bard model seems to show that, at least in infinite dimen-
boson method within the saddle-point approximafin. sions, the Gutzwiller wave function does properly capture
Moreover, the GAF seems to be accurate enough wheneveuasiparticle behavior across the Mott transitidvioreover,
the Gutzwiller wave function yields a faithful description of since the driving mechanism leading to the Mott transition is
the ground stat®/ which usually happens when already the local correlations, it is reasonable to assume that the gross
unprojected trial wave function gives qualitatively correct quasiparticle features across the metal-to-insulator transition
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are not very dependent upon dimensionality, one dimension In the absence of interaction, the ground stdtg) of Eq.
being a rather exceptional case. All together, this may lead t¢l) with an average electron number per siteconsists oiN
the conclusion that the infinite-dimensional picture of thedegenerate bands each one at fillmg2N, namely,

Mott transition provided by the Gutzwiller wave function is

also qualitatively correct in finite dimensions. Our results N

show that this belief is not justified, even when spatial cor- [D)=11 II ciaclialo), 4

relations are negligible as in infinite dimensions. A= |k <ke

The plan of the paper is as follows. In Sec. Il we presentypere
the generalized GWF introduced in Ref. 11 for multiband
models and calculate the general expression of the varia- 2 Ny
tional energy in infinite dimensions. In Sec. Il we study the v 2 N
infinite-dimension Mott transition both in the absence and in k| <ke

the presence of mu_l'u_plet exchange splittings, which we dIS_If 0<ny<2N is an integer, we expect that, for sufficiently
cuss more in detail in Sec. IV. In Sec. V we present an

extension of the GWF to symmetry broken phases which wérgeV, the correlated ground state lif=Ho+Hy+H, de-
use for a specific two-band model in Sec. VI. Finally, in sec.Scribes a Mott insulator. Analogously to what has been done
VIl we draw some conclusions. for the single-band Hubbard model, we would like to have a

system which allows us to study a metal-to-insuladtdiT)
transition to an idegbaramagnetidviott insulator, in contrast
Il. MODEL to a more conventional metal-to-band-insulator transition.

We consider a multiband lattice model where, on eact0r that reason, we further assume that the multiplet ex-
lattice site,N valence orbitals are available for being occu- ¢hange splitting3) is such that, within a perturbation expan-
pied by the conduction electrons. Since our purpose is t§ion upon the uncorrelated ground stabe), all self-energy
discuss some general features of the Gutzwiller wave funcdiagrams are diagonal in spin and orbital indices and inde-
tion, we will assume the most simple form of tight-binding Pendent of them. Formally this assumption implies that the
energy with nearest neighbor hopping matrix elements diagproje_ction on any given multiplet of the local single-particle
onal in the orbital index, namely, density matrix is simply

) . N [i,0,To)(i,0, Tl 4, Ci o [1,1, T (iun, T
Ho=— N <.E> agl > € aCiast HC, (1) 0

: ’ = 5 Pab0o0r [N Ta)(i.n. T (5)
wherezis the lattice coordinatiorg; ,,, andc/ ,, are, respec- . ) )
tively, the annihilation and creation operators for an electronl his does not exclude that spin and/or orbital symmetry may

at sitei with orbital indexa=1,... N and spinc=1,].  Pe spontaneously broken especially close to the Mott transi-
The correlation among the electrons is introduced via twdion, as it is known to occur for the half-filled single band
local interaction terms: an on-site Hubbard repulsion Hubbard model on a bipartite hypercubic lattice in dimen-

sions greater than 1. Rigorously speaking in that case there is
U not even a MIT, since, due to nesting, the ground state de-
HU=§ E niz, (2 scribes an antiferromagnetic insulator for aby~0 (see,

: e.g., Ref. 25 for two dimensiondn most general cases with
un-nested noninteracting Fermi surfaces, e.g., for nonbipar-
tite lattices, longer range hopping matrix elements or non-
half-filled bands,ng#N, we do expect a finitdJ MIT, al-

N though it might be accompanied by some spin and/or orbital
~ . . ordering. Yet, in what follows, we will discard such a possi-
HJ_Ei 20 rEn Jrnll,n,l“n><|,n,l“n|. ®) bility and just discuss an idealized MIT at finité, where
neither the metal nor the Mott insulator break any of the
Herel|i,n,T",) denotes a multiplet ofi-electron states at site Symmetries of the Hamiltonian. We postpone the analysis of

wheren; =E';: lEUc?‘agci'ag is the electron occupation num-
ber at sitel, as well as an exchange splitting term

i. ', has a multiplicityg; 2* such that spontaneous symmetry breaking nearby the Mott transition
! to Sec. V.
N Having this in mind, we start analyzing the role of the
> or Egn:( ) interaction by a Gutzwiller variational approach. That is, we
Ty " n search for the best variational wave function of the form

the binomial on the right hand side being the total nuntyer .
of available on-siten-electron states. Without loss of gener- |‘1’G>:H Pi,G|<Do>a (6)
~ 1
ality, we assume thal; only splits multiplets at fixech
without affecting their center-of-gravity energy, implying where the uncorrelated wave-function is the Slater determi-
Sr gr Jr, =0. nant of Eq.(4) and the on-site Gutzwiller correlatbr!®
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R . ) 1 o
Pi,G:; FE Nar, [10, o) (i Ty (@) Ec=y(YelHotHutHyl¥e)
n
. . . - - u
tends to go along with the local interaction terhig andH =ZTo+ = > > (n—ng)?P(n,I'})
in modifying the relative weights of on-site electronic con- 25T

figurations. As shown in Refs. 6 and 11, there is a certain
arbitrariness in the choice of the variational paramekess +> > I P(nT,). (13
related to the fact that any transformation acting @g) and noTp "

involving operators of which®o) is an eigenstate amounts T is the average value per site of the noninteracting tight-
simply to a multiplicative factor. In our case, that arbitrari- yinging Hamiltonian
ness allows one to impose, without losing generality, the nor-

malization condition

1 -
To= lim & (P o|Ho|®o),
A~ Z— 0
(@ PPl P, L ,
which is reduced by a factdt through the Gutzwiller pro-
as well as an additional constraint on the single-particle denl€ction, and we have introduced a chemical potential term
sity matrix, which makes the Hubbard interaction minimum at the aver-
agen=n,. Our choice ofA; leads to the following expres-
2 2 sion:
(Do|Pi 6 26Ci b0 Pi.c| Do) = (Dol 46 Ci o [ Do)
2N n-1 2N-n
Ny n grngrnl( no) ( no)
= — , Z= - | — 1— —
2N Oabdso C) ‘/— nZl Fn;n—l 2N g,-1 \2N 2N

where the last equality derives from our choicd ®f) [Eq. XN X B § S n 9r9r,_,
4)]. nCyMn—1r,_; = \V no(2N—nyo)

. : Co n=1Tp'Th 1 9n-1
A formal solution of Egs.(8) and (9) is obtained® by

writing X JP(n,T)P(n—1T,_,). (14)
P(n,T,) Whenl3|3=0, namely, if nothing in the Hamiltonian splits
ﬁr = 0—’”, (10) the degeneracy among states at fixedhere should exist a

" POy variational solution in which all configurations at fixadare

equally probable, a property owned by the Slater determinant
where P©(n,I";) and P(n,I';) represent the occupation |®,). In that case, a multiplet with degeneragy occurs
probabilities of then-electron multipletl’,, in the uncorre- \yith probability
lated,|®,), and correlated,¥ ), wave functions. Upon in-
serting Eq.(10) into Eqgs.(8) and(9), one obtains ar
P(n,rn):g—“P(n), (15
n

> 2 P(nIy)=1, (1) P(n) being the probability of a site to be occupied hy
n I . . . . .

" electrons irrespective of the configuration. Equatidb) in-
serted into Eq(14) leads to the following simple expression

the correct normalization foP(n,I",)), as well as _ A
of Z valid for H;=0:

2N
2 2 nP(n.Iy)=ng, (12 _ |9 =
" V=2 o Ve, . PP D). (19

namely, the condition that the average number of electrons

per site coincides with the uncorrelated valng In this lIl. MOTT TRANSITION WITHIN THE GUTZWILLER

representation, the correlated probability distribution is the APPROACH

variational quantity which has to be optimized.
Equations(8) and (9) imply that, within a perturbation

expansion in the parameters €A ,r )’s, only more than

The search for the optim#&(n,I")’s with arbitrary values
of the interaction parameters is not straightforward. How-
- ever, it is still possible to obtain simple analytical results
two fermionic lines can exit from any verteRﬁG at sitei, close to the Mott transition, which is signaled by a vanishing
see Ref. 11. This property simplifies considerably the calcuhopping energy reduction fact@; which is also thequasi-
lations in the limit of infinite coordination latticeg,— in particle residueas obtained by the Fermi surface jump of the
Eqg. (1), where one can show the average variational energgnomentum  distribution.  Indeed, whenZ<1, one
per site!! realizest>?® by inspection of Eq(13), that
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P(n,I',)~z/"ndl, (17)

It is therefore justified to assunmi®(n,I",))=0 for all n’s but

n=ngy and n=ny=1, which simplifies all calculations re-

markably.

In the simple casd?-lj=0, which we denote hereafter as

J=0, this approximation leads through E46) to

no gno
Z= \/ VP P(no—1
Vz *nO(ZN—nO) Ong1 (ng)P(ng—1)

n0+1 gn0+1

+ m On, VP(ng+1)P(ng).

The distribution probabilities have to satisfy

(18)

P(no_l)z P(n0+ 1)Ed,
and consequently
P(ng)=1-2d.

By inserting those expressions into E@8), one obtains

d(1—2d)
Z= m[\/no(ZN—noJr 1)+ (no+1)(2N—ng)]?
=y(N,ng)d(1—2d); (19
hence
Ec=v(N,ng)d(1—2d)T,+ Ud. (20)

The optimald which minimizes Eq(20) is readily found:

_ Toy(N,ng)+U  U,(J=0)—-U

4Toy(N,ng) 4U,(J=0) ' (21

where

Ue(3=0)=—%(N,no) To=~ 5

;_no[\/no(ZN—noJr 1)

+(ng+ 1)(2N—no)]ZE
No

(22

is the value of the interaction at the Mott transitignyhen
the optimald=0. The variational energy is therefore
1[U(J=0)—U]?

— — 2 _
EG(J—O)—ZTo’y(N,no)d = ) UC(J:O)

(23

Let us now consider the cas;#0. We assume that the

exchange splitting favors at any givara particular multiplet
of states, which we denote d%; . The Mott insulator de-
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Let us start by considering an hypothetical metallic solu-
tion able to smoothly transform into the Mott insulator, in
which therefore only the multiplet; favored byH; are
occupied close to the MIT. Since onlyy=1 andng are
relevant, one obtains an expressionZagimilar to Eq.(19),
with the only difference that

¥(N,Ng)— Yett(N,Ng)

1 Or*  Orx
=~ | Jng2N—ng+ 1) lo 2 _To
no(2N—ng) | *° ° ny-1 On,

+(ng+1)(2N—ny)

2
or: _, 17,
Ony+1 Yng
<y(N,ng).

The variational energy now reads
Ec(J#0)=yes(N,ng)d(1—-2d)Ty+Ud
+(JF:O_1+ JF:O+1—2JF;D)d+JF:O_1.
Provided we substitute— y.¢; and
U—Uer=U+ s +rs  =23rs),

which is the actual Hubbard repulsion measured with respect
to the energies of the lowest multiplets and not from the
centers of gravity, the formal solution has the same expres-
sion as before. In particular the critical interaction at which
that metallic phase becomes unstable is now

Uc(J#0)=—7er(N.:No) To—(JIpx  +JIpx  —2Jp+)
0 0 0

_ Yett(N,Ng)

U (J=0)— +Irx —23+).
'y(N,no) C( ) (Fno—l Fn0+1 Fno)

(24)

For very smalll’s, U.(J#0) is shifted down with respect to
U.(J=0) by terms of ordefT,|, which already suggests
that the above solution is not the most energetically favor-
able, although it has the merit to merge smoothly into the
insulator.

Indeed, the best variational solution is actually different
from the above one. If th@'s are very small compared with
To, We rather expect in the metallic phase that the probability
distributions of the multiplets at anp are only slightly
modified with respect to thé=0 case. If this were true, we
could still search for a variational solution of the same form
as forJ=0, which has an energy given by EG1) with d as
in Eq. (23). This solution, however, does not converge into
the insulating one, which has an enegy= JF: . The two

0

scribed by the Gutzwiller wave function is therefore charac-€nergies indeed cross when

terized byP(no,F;‘o)=1 and has energiins=Jrx <0. In
0

order to better understand how the Mott transition occurs 3
whenJ#0, it is convenient to consider separately two ex-

1[U(J=0)-UP?

:J *
U.(J=0) Fho

treme cases which do not require any numerical calculatiomamely, whertU=U,_,
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U, =U.(J=0)— \/_8UC(J:0)JF*_ (25)  uncorrelated wave function is metallic, e.g., the paramag-
Mo netic Fermi sea.

This problem should not be so severe in infinite dimen-
sions, where the GWF does indeed show a MIT. In fact the
GWEF reproduces quite accurately exact DMFT results con-
cerning quasiparticle properties across the KilWhich
'moreover one expects do not strongly depend upon dimen-

in the optimal metal at smal, the probability distributions  gjqnity one dimension being an exception. This suggests
are indeed only slightly modified with respect to the0 5 the infinite-dimensional Landau-Fermi liquid picture

case by terms of ordey|J/Tol; hence that the Mott transi- provided by the GWF is qualitatively correct even in finite
tion becomes first order as soon as a fiditis introduced.  gimensions, thus justifying the use of the Gutzwiller approxi-
~ In conclusion, if the multiplet exchange splitting tefdl  mation even in cases where a rigorous numerical treatment
is much smaller than the uncorrelated bandwMiththen the  of the GWF would yield completely different results. In Sec.
Gutzwiller variational approach leads to a first order phas§) we identified the qualitative behavior across the Mott
transition from a metal, slightly modified with respect to the yransition of the GWF for multiband Hubbard models in in-
J=0 case, into a Mott insulator instead dominatedlbyhis finite dimensions. In the same limit, exact results can be
fcransition is predicted to occur when the quasiparticle residugptained by DMF® which allows a direct comparison hence
IS a test on the accuracy of the GWF in infinite dimensions.
Let us start by comparing the probabilities of a site to be
/ J occupied byn electrons,P(n). This probability distribution
Z~\/ ¥(N,no) T_o ' (26) has been calculated within DMFT for a three band model in
Ref. 15. It was also conjectured that, before the MIT,
and arises because the metallic solution has to pay too much
hopping energy to modify the relative weights of the multi- P(n)=(1=2Z)Pjns(n) +ZPqu(n), (27)

plets, a cost which overcomes the exchange splitting energy . . . .
gain. where the quasiparticle residdecan be evaluated indepen-

A first order phase transition has indeed been found irfl€ntly from the single-particle Green’s function, afgls(n)
Ref. 11 by an explicit numerical minimization of the varia- 'S the occupation probability |n_the insulating phase just after
tional energy in a two-band model, and agrees withth® MIT, which is also accessible by DMFT. Thus Eg7)
linearized-DMFT results obtained in Ref. 16 on a similar d€fines the unknowi®q,(n), which was claimed to repre-
model. Moreover, in the same Ref. 16 it is shown that thesent_the quasiparticle (_)ccupatlon p_robablllty. Thls clalr_n was
first order character reinforces with increasing exchang&onfirmed by comparingP,,(n) with the noninteracting
splitting strengthl from J=0, while it weakens with further Fermi gas dlstr|but|on,. giving exce[lent agreement; see Figs.
increasing) above some intermediate value. This also agreeSA —3C” compared with Fig. 3D” in Ref. 15. The agree-
with our above results. Indeed, whémets so large to make ment was the more remarkable since the quasiparticle con-

U.(J#0) [Eq. (24)] greater tharlJ, [Eq. (25)] we expect tribution is only a small fractiorxZ of the full P(n) and Eq.
the Mott transition to turn again into a second order one(27) has no free parameter. Within the GWF, the Mott insu-

That requires a substantill| ~|To). lator is characterized bl;,s(n) = Onnyr SO that, through Egs.
(17) and(27), one concludes that, far# n,,

For smallJ, U, is larger thanU (J#0) given in Eq.(24),
which suggests not only that thle=0 metallic solution has
lower energy but also that the Mott transition is first order.
The explicit solution of the variational equations shows that

IV. DRAWBACKS OF THE GUTZWILLER ZIn=nq

WAVE FUNCTION Pap(n)~ ——

(28)

It is known that the simplest Gutzwiller wave function is
not very accurate for the single band Hubbard model at halfThe above result contradicts the finding of Ref. 15, which
filling in finite dimensions. The main reason is the inability rather supports B,,(n)~0O(1), namely a quasiparticle con-
to properly account for spatial correlations, either among théribution to P(n) of orderZ; see Eq(27). The origin of this
spins of singly occupied sites and among empty and doublgisagreement can be easily traced back.
occupied site$%212® Indeed, one expects physically that In fact, spatial correlations among unfavorable charge
empty and doubly occupied sites should bind in the Mottconfigurations are not fully suppressed even in infinite di-
insulator, otherwise the system would remain metallic all themensions, and are responsible for the finite average value of
way up toU=o, where only single occupancy is allowed. the double occupanc{n;n) in the insulating phase found
Since the simplest GWF does not include such correlationdgy DMFT2 In particular(n;n,) as function ofU displays a
it is unable to represent a Mott insulator in any finite dimen-discontinuity in the slope across the Mott transition in infi-
sion, unless the uncorrelated wave function is itself insulatnite dimensiong. The singular part, which vanishes at the
ing, as it happens for an antiferromagnetic Slater determiMIT, is attributed to the quasiparticles, and is qualitatively
nant. Several attempts have been done to improve the GWieproduced by the behavior of the double occupancy as ob-
(Refs. 20, 27, and 28by including spatial correlations tained through the Gutzwiller wave function: a support to the
among empty and doubly occupied sites, yet there are nbelief that this wave function does correctly capture quasi-
numerical evidences of a MIT in finite dimensions when theparticle properties.
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In a multiband Hubbard model the situation is different. If equate to describe the Mott transition mainly because it is
we just consider the occupation probabiliB(n,+1) of unable to access the interesting region where the metallic
(no=1) charge configurations, across the MIT we expect &inetic energy gain~Z|T,| competes with the exchange
behavior similar to the double occupancy in the single-bangplitting ~J. In conclusion, we believe by the above discus-
Hubbard model, still compatible with the GWF. Let us in- Sion that an improvement of the GWF towards including
stead consider the occupation probabiRyny=2). In the ~ SPatial ~correlations is  necessary, even in infinite
GWEF close to the Mott transition, those configurations geldlmensmné.
suppressed likez2. In reality, virtual processes from the
more advantageous, and (o*1) charge configurations V. GUTZWILLER WAVE FUNCTIONS
imply, first of all, thatP(ny*+2) is finite in the insulating FOR SYMMETRY-BROKEN PHASES

phase too, and, second, that the singufgi+(2) quasiparti- In spite of its appealing features, @eal Mott insulator
cle contribution still linearly vanishes across the MIT, unlike at zero temperature is unlikely to exist, especially if it has
what is found by the GWF. That disagreement is more prohuge degeneracy. Commonly one expects a Symmetry-
found than what it would seem to be. A quasiparticle prob-broken phase to occur at low temperature, at least in more
ability distribution of the Gutzwiller type, nameli,,(n) than one dimension. For instance, in a single-band model at
~zIn=nd/7 [see Eqgs(27) and (28)] suggests that quasipar- half-filling, the ideal Mott insulator has an infinite spin de-
ticles remain more strongly interacting than implied by thegeneracy which is likely reduced at low temperature by some
true behaviorP,,(n)~0O(1), even after the Hubbard side magnetic ordering. Therefore, even though any mean field
bands are well formed. This indicates that, unlike what haptype of approachincluding more sophisticated ones based
pens in the single-band Hubbard model, the multiband Gwn density functional theojycan only stabilize correlated
is not fully adequate to capture quasiparticle properties.  insulators in broken-symmetry phases, namely can only de-
The second failure of the Gutzwiller variational approachscribe band-insulators thus hiding the basic phenomena lead-
regards the onset of the first order phase transition, which i§19 to a Mott insulator, yet they often provide a faithful de-
predicted to occur wheB~ /[J[, for |J|<|T,|. It also origi- ~ Scription of the low temperature physics.
nates from the lack of spatial correlations. J&0, the In this situation, the Gutzwiller variational approach
Gutzwiller wave function leads to a Mott insulator with a Should still be useful to improve the Hartree-Fock approxi-
finite entropy, related to the finite number of degenerate ontMation. That would amount to searching for the best wave
site electronic configurations with, electrons. This state has function of the form

an infinite susceptibility to a terrfl ; which splits that de- R R
generacy, with an energy gain linearJdnThis result is ob- |Ts(A))= PG|(IJ(A0)):H Pi cl®(Ap)), (29
viously wrong. The superexchange terms generated by vir- :
tual processes into unfavorable charge configurations lead {gi, p. o still given by Eq.(7), and where|®(Ap)) is a
finite susceptibilities even in the Mott insulator. This implies symméiry—broken uncorrelatea trial wave function with a
that the actual energy gain is quadraticJiso that the Mott single-particle order parameted,. In general, after
transition is .either second order or weakly first order, in thisg - willer projection, the correlated wave function will have
case occurring wheﬁ~]J|. . . different order parametey. This implies that the average
Indeed, this gspect_ is not peculiar to_a multiband mOdeEalues of the single-particle density matrix ovelr s(A))
but also occurs in a single band model in the presence of gnd|(1>(Ao)) do not coincide. This does not obviously rep-
magneti_c fieldB which splits_spin-up singly occupie(_j SIteS rasent a problem for a numerical treatment, whereas it would
from spin-down ones. Also in that case the Guizwiller ap-geem 1o prevent the use of the method developed in Ref. 11
proach would predict a first order transition when-\B, o analytically evaluating the average values in infinite di-
while in reality, being the magnetic susceptibility finftéhe 1 ansions. In fact that method relies on the possibility of
transition occurs at smallef (see Ref. 2§ likely whenZ  ongirycting a GWF with the same average value of the
~B. . . . single-particle density matrix as the uncorrelated wave func-
Yet those defects of the Gutzwiller wave function might ion \We could still impose that condition for the wave func-
not qualitatively affect the physical behavior in the mostiiq defined by Eq(29), but that would reduce the varia-
common situations where the multiplet exchange splittingiqna1 freedom.
term leads to the conventional Hund's rules, i.e., favors high |, this section we present a simple extension of the GWF
spin gnd angular momentum conf_igurations..When magnetiey account for symmetry-broken phases while leaving the
ordering occurs, so that the on-site magnetic moments gel§operty of being analytically treatable in infinite dimensions

oriented along some easy axis, the ground state is usualfyjithout any variational loss. We start by noticing that there
well described by a Slater determinant, and hence is acces; ; . ~ N .

. ' : : always exists a nonunitary operatdr=1II;U; such that its
sible by a mean-field approach which can be improved b%ction
the Gutzwiller correlator. However, there may be less con-
ventional but still interesting cases where the multiplet ex- N1

o . D(Ag))=|P(A

change splitting favors low degeneracy states, which are not U@ (80))=[®(4)) (30)

Slater determinants and hence unaccessible to mean fieleads to a trial wave functiop®(A)) of the same form as

theories. Here the Gutzwiller wave function might be inad-|®(Ap)) but with the same average value of the single-
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particle density matrix as the Gutzwiller projecteig(A)), Hermitian. Let us discuss an oversimplified example. We as-
and hence the same order paramétefTherefore, sume that the exchange term leads to a local Gutzwiller cor-

R o R relator of the form(we drop the site labgl
|Wa(A))=Pg|®(Ag))=PgU|P(A))=Ps|P(A)),  (31)

which implies that, provided we substitute Ps=\aa)(al+\p|b)(b],

Pc—Pc=PgU, 32 and moreover that the uncorrelated wave-function has an or-
we can still search without loss of generality for a variationalder parameter identified by nonzero matrix elements
wave function

[We(A))=Pg|®(A)), (Dola)(b|Pg)=(Po|b)(aldo).

where the average single-particle density matrix stays unfhe transformatiord can be now taken of the form
changed after Gutzwiller projection. The cost is that we must
work with a Gutzwiller correlator as given by E¢32), .
which is in general neither diagonal in the multiplets which U=a(|a)(al+[b)(b|)+ B(|a)(b[+|b)(al).
appears i [Eq. (3)], nor Hermitian. o

Actually we can identify two distinct situations which We readily find that
may occur, one of them being already included in the for-

malism developed by Ref. 11. If the exchange splittihg p—p. 0= n 4
favors a degenerate atomic configuration, then we reasonably 6=PoU=akala)(al +aky|b)(b]+ AXala)(b]
expect that in the true ground state of the lattice only one of + BAp|b){(al,

the degenerate states will be occupied on a given site, even- N ) )

tually changing from site to site. There the order parametefndeed containing off-diagonal terms and evidently non-
corresponds locally to a conserved quantity of the atomid¢iermitian. This is a novel situation which we are going to
Hamiltonian, for instance the component of the on-site discuss more in detail in a particular example.

spin, which leads to a generalizé@ Btill Hermitian and We conclude this section by pointing out that the non-

lagoral. Lot us consider s a simple example @ cne-barf 121 I Pl .10 e o e g
model. The local Gutzwiller correlator is, in general, J q P ’ y

evant when both the quasiparticles and the Mott-Hubbard

2 CAN C o\ : ; ; side bands contribute to the order parameter. In Sec. VI we
ic= + + +

Pi6= Mol OX1L01 Rali 200,21+ Ml [1, 1L T[T L) analyze a two-band model where both cases may appear.

x(i, L1,
where|i,0(2)) denote the empty or doubly occupied site
while |i,o) the singly occupied site with spim. We assume V1. ATWO-BAND MODEL STUDY

that the uncorrelated wave function is magnetically ordered. e consider a two-band Hubbard model described by
Then Eq.(30) may be constructed by local operators Hamiltonians(1) and (2) where the orbital indexa=1,2.
Besides the local spin-density operators

Oi :ezaiAsiz,
where&’ is thez component of the spin operator at sitéVe gzl > CiTaa‘;aBCi ap
find that 2a=17ap " ‘
B =P, cU=Noli,0)(i,0+\,]i, 2,2 whereo,, o,, ando, are the Pauli matrices, we introduce
’ ’ _ _ _ _ orbital pseudospin operators
+ N[ T T+ N e i, L L ,
o . . A 1

Indeed, the modified Gutzwiller correlator is still diagonal T.== oz 33
and Hermitian, although there appear different variational b2 a,b2:1 g h.ag Tab-i.bo 33

parameters for spin-up and -down components. This addi- ~
tional degree of freedom gets fixed once we require that thehere the Pauli matrices's act on the orbital indices. The
order parameters of the correlated and uncorrelated wavéwopping and Hubbard ternj&gs. (1) and (2)] have a very
functions coincide. The above type of GWF is actually alarge SU4) symmetry. Having in mind common physical
particular case of the generalized GWFs introduced irrealizations, like, e.gd orbitals ofe; symmetry, we assume
Ref. 11. that SU4) is lowered down to a spin S@) times an orbital
We can, however, envisage a different situation where th®(2) by the exchange term, which can therefore be written as
uncorrelated wave functiofd,) has an order parameter
which does not correspond locally to a conserved quantity.

A Hy;=> JS-S+3.T;-Ti—3(Js+I1)(THZ. (34
There a modified g is unavoidably off-diagonal and non- ’ 2 sS ST T30 (T 34
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The aboveI:|J just splits the on-site configurations with two Jr

electrons. There are six of those states on a givenisie L= 6_T0’

spin triplet orbital singleti,n=2;S=1,S,; T=0), which we

denote hereafter d$,2t), and a spin-singlet orbital triplet, namely, wherlJ=U, , being

for which we use the short notatiofisn=2;S=0;T=1T,

=0)=li,2,00 and |i,n=2;S=0;T=1T,=*+1)=|i,2,=). U,=—6Ty—4/6ToJr.

In this subspaceH ; has the form _ _ . .
We also argued that this result is wrong since a metallic
phase is able to enter the regime in whith |J1/T,|. Let us

|3|J=2 2J4i,2)(i,2t|+23+]i,2,0) now check whether there exists a better broken-symmetry
[ metallic solution. Indeed, even if lattice frustration prevents
X (i.2,00— (3Jet 3)]i. 2.4 )i 2.+ 35 spin/orbital order, there is still a broken—symmetry GWF
(1,20~ (33537l A 39 which might in principle compete with the above metallic
solution.

The standard Hund's rules correspond teJ;<Jg
<—5J4/6<0, when the spin-triplet orbital-singlet configu-
ration has the lowest energy, followed by the spin-singlet Superconducting Gutzwiller wave function

orbital doublet withT,=x1. In this case the ideal Mott WhenU=0, the multiplet exchange teri85) favors a

insulator at half-filling,nozz, represents localized spin-1 g~g Hartree-Fock wave-function with tlewave order pa-
moments which should order at low enough temperature to, atar

freeze out the spin entropy. On general grounds one expects
that the magnetic ordering in the insulator should contami-
nate the nearby metallic phase so thatUascreases from
weak coupling, first a transition from a paramagnetic into a 1
magnetic metal should occur, followed by a Mott transition :<(DBCS(AO)|CiT,2TCiT,11|q)BCS(Ao»EAo\E. (37)
into a magnetically ordered insulator. Even a mean field ap-

proach is in principle able to reproduce the above scenariqyhena,— 1/2, the doubly occupied sites in the spin triplet,
In t_hls situation, as we discussed _before, the; Gutzwﬂler-lz,t), or in the doublet of spin singlet2,+ ), configurations
prOJectgd Hartre_e-Fock wave function dogs improve _theare suppressed by a factor {2A)? with respect to the
mean-field solution, providing a better physical Qescr[pt|on.Tz:0 spin singlet|2,0). Similarly, the probability of singly,

In Appendix A we analyze in detail the case in which a|1) or triply occupied|3), sites vanish like (& 2A,). This
bipartite lattice stabilizes an antiferromagnetic ordering. suggests that by Gutzwiller projecting out sites with zero and

Less conventional is the situatiay< —|Jg|, where the oy electrons|0) and|4), respectively, through the varia-
nondegenerate spin singlet with=0, namely, tional wave function

<(I)Bcs(Ao)|CiT,nCiT,zﬂq)Bcs(Ao))

1 _E
|i,2;szo;T=1,TZ:o>:E(c{ﬂcﬁzﬁc{ac{uﬂo% [¥6(2))=PalPacdAo)), (38)

(36) one might indeed smoothly connect to the VB insulating
state, with (+2A) playing the role ofZ. However, even
is the lowest energy configuration. That would be for in-though the uncorrelated BCS wave function has a large order

stance the case of two Hubbard modéiso-chains, two- ~Parameten,~1/2, the correlate@’ ) should have a much
planes, etd, coupled by an antiferromagnetic exchange.smaller oneA~ZA,, since only quasiparticles are involved
Here the largeJ Mott insulator withn,=2 describes a col- in superconductivity. In such acase we are therefore _obllged
lection of on-site singlets, a local version of a valence-bond© implement the non-Hermitian Gutzwiller correlator in or-
(VB) insulator. Since it is not degenerate and fully gapped,der to get analytical results fqr large Coor_dlnatlon Iatt|ce_s. In
we expect the VB insulator to be Stab'e at |atgeagainst other WordS, we shall work with a Gutzwiller wave function
any spin and/or orbital order. Just to avoid unessential comPf the same form as Eq38) and impose thaj¥s) and
plications, we assume that the lattice is sufficiently frustrated®scs have the same order parameterthrough a non-
to prevent any spin/orbital ordering at ably This situation  Hermitian R ; see Eq(32). Since this is a novel situation in
is far less trivial than the previous one. In fact, being thethe Gutzwiller variational approach, we prefer to describe it
Mott insulator not describable by a single Slater determinantin detail.
it is inherently unreachable by any mean-field approach, In order to simplify the analysis at half-filling, we assume
which necessarily leads to some kind of ordered state. Acthat the Hamiltonian has particle-hole symmetry and search
cording to our previous discussion, we expect in this caséor solutions which do not break it. This guarantees that there
that also the GWF is unable to provide a faithful descriptionare still two conditions we can impose without losing varia-
of the Mott transition. tional freedom: an overall normalizatigrEg. (8)], and a

As we showed in Sec. Ill, the GWF without any symme- particle-hole symmetry constraint.
try breaking would undergo a first order metal-insulator tran- To accomplish this job, it is convenient to work not in the
sition when the quasiparticle residue original electron basis but in theatural basis where the
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on-site single-particle density matrix is diagonal. This is _ 1
done by the following unitary transformation, which is valid P(0)=5[P(0)+P(2,0+A(0;4)]+ V2A(0;2,0,
at half-filling ng=2:

(Ci,l(Z)T)_ 1 (1 -1
Clay/ 211 1

In the natural basis the only nonzero on-site average is

P(1)=P(1)+A(1;3),
a 1(2)1 P(2,00=P(0)—A(0;4),
( ) P(2,%)=P(2,%), 43)
P(2,t)=P(2}),
P(3)=P(1)—A(1;3),

:
Qi 2(1),

— 1
(Pacd )18 o arlPacd )= 5 ~A. P3P0 PROTADD] 2A0:20.

1
A(0;4)=§[P(0)—P(2,0)+A(0;4)],
In order to distinguish the local configurations in the natural
from the original basis we will denote the former ones as

|F,Fﬁ). The most general local Gutzwiller correlator is, in

this case, where we have used the fact that, by particle-hole symmetry,

P(1)=P(3) and P(0)=P(4). The order parametel is

R o o o given by
Po=> FE_ Nar 1,0, T)(i 0, Tl + Ngali, 0)
noon 2A=2\2A(02+)+A(13),
X1, 4]+ ol 4)(1, 0], 39 and the following inequalities should be verified:
The last two terms are the only possible off-diagonal ele- 2A(0:2,0°<P(2,0[P(0)+A(0;4)],
ments at half-filling when particle-hole symmetry holds. The
normalization condition and the conservation of the single- A(0;4)<P(0),
particle density matrix lead to the following parametrization
of the\’s for n#0,4: A(1;3)<P(1).
_ The big advantage in working with natural orbitals is that
2 _ P(nTY) the Z reduction factor has the same expression as in( &,
"n pO(n T’ namely,
— — ‘ norgr-— . [1 n-1
whereP(n,T';;) andP(®(n,T';)) are the correlated and uncor- JZiay=> > - “_”1(_ —A)
related occupation probabilities in the natural basis. iFor nc1TaTnad gpg |2
=0,4 we have instead 1 a—n
X5+ A Mo Nn-ar, (44
NoP@(0) +5;PO(4)=P(0), (40)

Once we know how to relate the parameteisandZ to the

variational occupation probabilities defining the correlated
)\Lzl_OF,(O)(g)Jr )\%P(O)(Z): P(Z), (41) and unqor.related wave functlpr}s,.vye can solve the mo_st gen-

eral variational problem by minimizing the energy functional

Ec(A)=Z(A)To(A)+U[4P(0)+P(1)]+2J5P(2})
+2J3:P(2,00— (335t I1)P(2,%), (45)

Noh3oP©(0) + AgahzP©(4) = A(0;4)=A(4,0), (42

where we introduce the transition amplitudes where

AN Trim, T =(Wgli,n,Ta)(i,mIT 5 We). (PpcdA)|Ho|Pacg(A))=To(A).

For the sake of clarity, here we present an analysis based
The occupation probabilities in the natural basis are reen the following parametrization of the's in Eq. (39), al-
lated to those in the original one through though it has less variational freedom:
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1 P{)(0)
)\O_E()\0+)\20) P.(AO)(E)
A7 l(>\ +X20) P4
4 2 0 20 P(AO)(Z),

P(4)
Np=75(Ag—A —,
o 2( 0 20) P(AO)(4)

PHYSICAL REVIEW B 68, 155117 (2003

broken-symmetry phase, which is the reason why we have
chosen the above parametrization. The true order parameter
A is defined through

SN PR _
28=P(0)+ 5 P(1) - 5 PL(3)+ PL(4)

=Ao(1+4A)) _PEOPO
AN B0 2.0p00)
P(1)
+Ao(1—4AS)%, (48)

which indeed is of ordeZ when 1/2-Ay~Z, P(2,0)~1,
P(1)~Z, and P(0)~Z2. The explicit evaluation of th&
reduction factor is presented in Appendix B; see Bp).

(46) Let us now compare the variational energy as given by
Eq. (45) with Z of Eq. (B6), valid for 1/2— Ay= 6<1, to the

P(AOO)(E) energy of a nonsuperconducting paramagnetic solJtt
N3=N\1 0 (45)] with A=0, Z being given by Eq(B3). We find that the
Py (3) Gutzwiller projected BCS wave function has always higher
= energy by terms roughly of ordef{ T|.
B P, (2,0) Therefore, even though the Gutzwiller correlator is quite
A20=Ng m7 efficient to transform the huge Hartree-Fock energy cost,
A namely,
PO(2,1) ) ~
T VR e L (PacAo)[H|Ppcd Ao)) —(Ppcd 0)|HPacs0)
Pi’(2,t
220 =To(Ag)—To(0)+2UA2+4J7A2
PO(2,+) !
)\7+:A + A = -
2= 2 P(AO)(Z,i) Z—To(O)"‘E‘i‘JT,

into a much smaller one of ordét|To|~ZU close to the
Mott transition, yet it is not able to make superconductivity
favorable. That is, the best variational metallic solution re-

As beforeAQ IS the_order_ parameter of the uncorrelated BCSmains the one described in Sec. [, with all the drawbacks
wave function whileA is the true order parameter after

i discussed in Sec. IV. In conclusion, as we anticipated, the

Gutzwiller projection; see Eq.(38). P‘A"(}(n,Fﬁ) and  Gutzwiller variational approach does not properly describe a
PO(n,I';) are the distribution probabilities in the natural Mean-field-unlike Mott transition. _ .
basis for the BCS wave functions with order parameteys In reality we may expect a superconducting phase just
andA, respectively. They are explicitly written in Appendix Pefore the VB Mott insulator. Recently a model has been
B, Eq. (B4). studied which shares many common features WItI’_] the

The normalization condition as well as the conservatiorPf€Sent one, nameéy, a three-band Hubbard model with in-
of the single-particle density matrix imply that verted Hund’s rule$> mimicking a strongly dynamical Jahn-'
Teller effect. For an average number of electrons per site
ny=2, the inverted Hund’s rules favor, as in our example, a
nondegenerate singlet on-site configuration. By a DMFT cal-
culation, a superconducting instability was discovered just
before the singlet Mott insulator. However, that instability
was found to appear when the quasiparticle residugJ|
where P)(n, ') =(® [i;0,Tn)(i5n,To|®y ) is the occu-  (see Ref. 15 As we discussed at length previously, the sim-
pation probability for configurations in the original electronic plest metallic Gutzwiller wave function which we have so far
basis within the uncorrelated BCS wave function with largeconsidered is unable to reagh-J, since it becomes disad-
order parameted, [see Eq.(B5)], while P(n,I',) is the vantageous with respect to the insulating one already at
same quantity for the correlated wave function. Equation~+/J. Therefore, we cannot exclude that superconductivity
(47 is the most natural generalization of EQLO) to a  may occur even in the two-band model we have considered.

_ P(nTy)
» POy

2
nl’

(47)
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VII. CONCLUSIONS APPENDIX A: ANTIFERROMAGNETIC GUTZWILLER

) ) WAVE FUNCTION FOR A TWO-BAND MODEL
In this paper we have analyzed some peculiar features of

the Mott transition displayed by a multiband Gutzwiller ~ The best Hartree-Fock wave functi¢f®y(m)) on a bi-
variational wave functiodGWF) in infinite dimensions. The partite lattice when the multiplet exchange term favors the
analysis has been carried out by using the generalized GWspin-triplet configuration is the ground state of a Hamiltonian
introduced in Ref. 11, which allows a simple analytical treat-
ment in infinite_ dimensions. Moreover, we have extended |:|HF=|:|0+ME > (=)' 2= Ni.ay),
that wave function to account for broken-symmetry phases. ia=12

_Itis usually assumed that the GWF in infinite dimensions, hich describes an antiferromagnetic insulator with order
gives a faithful description of the quasiparticle behaV'Orparameter
around the Mott metal-insulator transition. We have shown
that while this belief is partly true for single-band models, it (®[n; 1;—n; 1 [Pg) =(DPg|n; 3 =N | Poy=2(—1)'m.
is incorrect for multiband models. In particular, we haveWe search for the optimal Gutzwiller wave function
identified at least two major failures of the GWF across the
Mott transition. The first concerns the occupation probability .
P(n) of on-site charge configurations withelectrons differ- [We)y=I1 Picl®o(m)),
ent from the integer average omg, which is believed to '
represent just the quasiparticle occupation probability norwhere for a given sublattice, and making use of particle-hole
malized to the quasiparticle residdg® The GWF in infinite  symmetry,
dimensions predict®(n)~Zz/"~"l, close to the Mott transi- A
tion, while both physical arguments as well as dynamical Pig=No[|i,0)(i,0/+|i,4)(i, 4]+ N..[|i,1;S,=1/2)
mean-field theory results suggestPdn+ng)~2Z, even in . . .
infinite dimensior)(s. This appggentﬁnnoccgous disagreement X(1,1:S,= 12 +i,3;S,= 1/2)(i,3;S,= 1/2]

is instead profound. In fact, the GWF results imply that the FA_[]i,1;8,=—1/2)(i,1;S,= - 1/2)
guasiparticles remain much more strongly interacting than . . .
what the correcP(n)~Z behavior suggests. +10,3;8,= = 1/2)(i,3;S,= — 1/ ]+ N, ]i,2,%)

Another drawback concerns the Mott transition in the

presence of a weak multiplet exchange splitting teim X025+ o1, 2,0)(1,2,0

Within the GWF, the Mott transition turns into a first order N4 ]0,2;:5=1,8,=1)i,2;S=1,S,=1]
one and occurs when the quasiparticle residuey|J|/W, ) ]

W being the bare bandwidth, much before the quasiparticle + N [1,25=18,= —1)(i,2;S=1.8,= —1
gas has had the time to react agaihsthis happens because + N groli12:5=1,8,=0)(i,2:5=1,5,=0],

the susceptibility to an infinitesimal exchange splittihgi-

verges at the Mott transition for a GWF. In reality, that sus-while for the other sublattice- and — interchange. In this
ceptibility is finite so that the Mott transition is either second particular case the Gutzwiller correlator remains Hermitian
order or weakly first order, in that case occurring when  since the nonunitary transformatidy; is diagonal in the
~|J]/W. The main consequence is that the interesting regiogpove multiplet basis.

where the metallic hopping-energy gainZW competes As usual the variational parametexs can be expressed

against the exchangkis not even accessible by a Gutzwiller in terms of the correlated probability distribution, which we
wave function. Both the above mentioned shortcomings havgefine, for a given sublattice, as

the same origin: the inability of the GWF to account for

spatial correlations of unfavorable charge configurations. P(1,+)=P(1S,=1/2)=P(3,S,=1/2),
We have then argued, on the basis of a two-band model

study, that the GWF is still a good variational wave function P(1,-)=P(1S,=—-1/2=P(3,S,=—1/2),

in all cases which can be qualitatively described by a mean-

field theory, but it fails otherwise, as for instance in the case P(2t+)=P(2,S=1S,=1),

we have explicitly analyzed where the Mott insulator is a

local version of a valence bond insulator. There an improve- P(2t—)=P(2,S,=—-1),

ment of the GWF is necessary.
P(2t0)=P(2,S,=0),

while, for the other sublattices,«<» —S,. Through Eqs(8)
ACKNOWLEDGMENT and(9), they satisfy the normalization condition
We acknowledge helpful discussions with JoergeBu

emann, Sandro Sorella, and Federico Becca. We are particiP(0) +2P(1,+)+2P(1,—)+P(2,0+P(2,%)+P(210)

larly grateful to Claudio Castellani for his invaluable com- +P(2t+)+P(2t—)=1 (A1)
ments and suggestions. This work was partly supported by ' ' '
MIUR COFIN-2001. as well as the conservation of the order parameter
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P(1,+)+P(2t+)—P(1,—)—P(2t—)=2m.

The variational energy is then found to be

(A2)

Ec(m)=Z(m)To(m)+U[4P(0)+P(1,+)+P(1,—)]
+2J7P(2,00+ 23 P(2t+)+P(2t0)+P(2t—)]

where

To(m)=<(1)o(m)||:|0|<bo(m)>
and

2 P(1,+) P(1,—-)
T PO NG

1
+§NP(1,+)+JP(1.—)](JP(Z,i
+\/P(§,0)+\/P(22,t0))+\/P

P(2t—)P(1,—)
+Vf'

For any finiteU the optimal solution has always+ 0 due to
the nesting property. For very largewe expectm— 1/2. In
this limit we can neglect alP’s but P(1,+) and P(2t+)
hence, from Eqs(Al) and (A2),

(2t+)P(1,+)
2

(A4)

P(2t+)=4m—1, P(1+)=1-2m,

which implies that

m—1

Z(m)= 21+2m

In the same limit the uncorrelated hopping energy has the

expression

To(m):_2\1M2(2_4m),

where

M,= f dep(e)e?

is the second moment of the uncorrelated density of states

per spin and orbitalp(€). Therefore, the variational energy
as function of the order parameterfor Us>|T| is

\/ 2(2—=4m)+U(1—-2m)

+2Jg(4m—1),

Eg(m)=— l+2m

and it is optimized by

1 M,

2

PHYSICAL REVIEW B 68, 155117 (2003

leading to

2M,

EGZZJS— U_—4JS

(AB)

APPENDIX B: EVALUATION OF THE Z FACTOR
FOR THE TWO-BAND MODEL

The explicit expression of th& reduction factor in the
two-band model of Sec. VI allowing for a superconducting
order parameter is, through E@l4),

1 3 3 1 2/1
\/ZZ)\E)\l §+A +§)\I)\§t §+A E—A
(1 2 1. (1 21
+)\I)\2i §+A E—A +§)\T7\20 §+A E
3. 1 2 (1 1
—A +§)\§)\2t E+A —A +A3No §+A E
21 1
—-A +§)\_)\ +A - +)\_)\ ——A
(BY)

If we parametrize tha's according to Eq(46) and make
use of Eq.(47) we find
O 0ypO) 1)
2_|1o [P0)P)(1)
V1-4AZ | 4 PL0)PL(1)
\/P‘A?@P(A(’g(?) \/P‘fg@mpg"g@
+ +
PO(0)PY(1) PO(0)PY(1)

P(2,0PP(3)
+ \/AO—A(’ +% P(2,0P(1)

JZ=

P(0)P(1)

PO(0)PY(1)

(0)(0)p(0) (1) \/ (0)(4 (0)(3)
X_ 2 0 P(O) 1) P<°>(2 0 P(O)(l)‘
+|— P(2t)P(1)+— P(2,£)P(1)
P(1) 1) PY(3)
. PE)( 1) PO(1) (82

WhenA=A,=0, the above expression reduces toZHac-
tor for a paramagnetic nonsuperconducting solution, namely,

P(2t)+2P(1)P(2,*)
(B3)

VZ=2P(0)P(1)+3\P(1)
P(1)P(2,0.
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The uncorrelated probabilities distributions in the naturaltion probabilities in the original electronic basis are readily
basis with order parametey, (analogous expressions hold obtained by the latter upon inverting E@3):
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