
PHYSICAL REVIEW B 68, 155117 ~2003!
Properties of Gutzwiller wave functions for multiband models
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We analyze the Mott transition in multiband Hubbard models with the inclusion of multiplet exchange
splittings as it arises in infinite dimensions by using the generalized Gutzwiller wave function introduced by
Bünemann, Weber, and Gebhard@Phys. Rev. B57, 6896~1998!#. We also present an extension of that varia-
tional wave function to account for broken-symmetry solutions, which still allows an exact analytical treat-
ment. Our analysis reveals some drawbacks of the variational wave function, which, in our opinion, imply that
Gutzwiller-type wave functions do not properly characterize quasiparticles close to a Mott transition even in
the limit of infinite dimensions.
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I. INTRODUCTION

After so many years since its proposal,1 the Mott transi-
tion maintains intact its scientific interest, continually ke
alive by the growing number of materials which, on the tra
of becoming Mott insulators, show rich and fascinati
physical properties, among which high-Tc superconductivity
is likely the most spectacular example.

Much of the theoretical effort till now has been devot
towards cuprate-inspired mainly single-band models, like
standard Hubbard model or its strongly correlated coun
part, the t-J model. Although unsolved questions still re
main, a lot has been unveiled about the Mott transition in
single-band Hubbard model, especially after the devel
ment of the so-called dynamical mean-field theory~DMFT!.2

DMFT, which is exact in the limit of infinite coordination
lattices, represents a quite reliable approach to investigate
on-site dynamical behavior across the Mott transition. Yet
its original version, DMFT is not able to yield accurate r
sults concerning intersite correlations, which are treated
mean-field-like fashion, although several extensions h
been proposed.3 For that reason, other approaches have b
often adopted to investigate the possible occurrence
d-wave superconductivity in proximity to the Mott insulatin
phase of single-band Hubbard andt-J models, most of which
are more or less explicitly related to the Gutzwiller var
tional technique.4 That amounts to studying a variation
wave function consisting of a simple Slater determin
where doubly occupied sites are partially or completely p
jected out. The Gutzwiller wave function can be rigorous
handled only numerically in finite dimensions, although
approximate analytical scheme to evaluate average va
was proposed by Gutzwiller himself,4 thereafter called the
Gutzwiller approximation formula~GAF!. Later on, it was
realized that the GAF gives an exact account of
Gutzwiller wave function in the case of infinite coordinatio
lattices,5 and that it provides similar results to the slav
boson method within the saddle-point approximation5,6

Moreover, the GAF seems to be accurate enough when
the Gutzwiller wave function yields a faithful description
the ground state,6,7 which usually happens when already t
unprojected trial wave function gives qualitatively corre
0163-1829/2003/68~15!/155117~14!/$20.00 68 1551
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ground state properties. In spite of the interesting devel
ments achieved by means of the Gutzwiller variational wa
function in single-band Hamiltonians, especially for what
concernsd-wave superconductivity in thet-J model,8–10

there have been not many attempts to apply the same t
nique to multiband models, even though there are many
teresting strongly correlated materials where orbital degr
of freedom play an important role. Indeed there exist seve
analyses based on multiband extensions of the GAF~Refs.
11–13! and of slave-boson technique,14 but a direct compari-
son with more exact results to test the quality of t
Gutzwiller wave function is still missing, even thoug
DMFT results for multiband Hubbard models are by no
available.15–19

In this paper, we review the multiband extension of t
Gutzwiller wave function~GWF! proposed in Ref. 11 which
has the big advantage of being analytically treatable in
limit of infinite dimensions. Moreover, we propose a furth
extension to broken-symmetry phases, which maintains
same property of being analytically accessible in infinite
mensions without losing any variational freedom. In th
limit, we single out some peculiar properties of the GW
close to the Mott transition. The comparison with exa
DMFT results reveals some drawbacks of the GWF wh
may lead to even qualitatively incorrect results. This may
come as quite a surprise. In fact, it is well known that t
simplest Gutzwiller wave function, obtained by partly pr
jecting out double occupancies from a paramagnetic Fe
sea, does not provide a very accurate description of
single-band Hubbard model at half-filling in finite dimen
sions because it does not properly account for relevant
tial correlations.20–23 Just for that reason, the paramagne
Gutzwiller wave function does not show any Mott transitio
in finite dimensions, while it does in infinite dimension
where spatial correlations are not so crucial. Indeed, a c
parison with exact DMFT results for the single-band Hu
bard model seems to show that, at least in infinite dim
sions, the Gutzwiller wave function does properly captu
quasiparticle behavior across the Mott transition.2 Moreover,
since the driving mechanism leading to the Mott transition
local correlations, it is reasonable to assume that the g
quasiparticle features across the metal-to-insulator trans
©2003 The American Physical Society17-1
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are not very dependent upon dimensionality, one dimens
being a rather exceptional case. All together, this may lea
the conclusion that the infinite-dimensional picture of t
Mott transition provided by the Gutzwiller wave function
also qualitatively correct in finite dimensions. Our resu
show that this belief is not justified, even when spatial c
relations are negligible as in infinite dimensions.

The plan of the paper is as follows. In Sec. II we pres
the generalized GWF introduced in Ref. 11 for multiba
models and calculate the general expression of the va
tional energy in infinite dimensions. In Sec. III we study t
infinite-dimension Mott transition both in the absence and
the presence of multiplet exchange splittings, which we d
cuss more in detail in Sec. IV. In Sec. V we present
extension of the GWF to symmetry broken phases which
use for a specific two-band model in Sec. VI. Finally, in S
VII we draw some conclusions.

II. MODEL

We consider a multiband lattice model where, on ea
lattice site,N valence orbitals are available for being occ
pied by the conduction electrons. Since our purpose is
discuss some general features of the Gutzwiller wave fu
tion, we will assume the most simple form of tight-bindin
energy with nearest neighbor hopping matrix elements d
onal in the orbital index, namely,

Ĥ052
t

Az
(̂
i j &

(
a51

N

(
s

ci ,as
† cj ,as1H.c., ~1!

wherez is the lattice coordination,ci ,as andci ,as
† are, respec-

tively, the annihilation and creation operators for an elect
at site i with orbital index a51, . . . ,N and spins5↑,↓.
The correlation among the electrons is introduced via t
local interaction terms: an on-site Hubbard repulsion

ĤU5
U

2 (
i

ni
2 , ~2!

whereni5(a51
N (sci ,as

† ci ,as is the electron occupation num
ber at sitei, as well as an exchange splitting term

ĤJ5(
i

(
n50

2N

(
Gn

JGn
u i ,n,Gn&^ i ,n,Gnu. ~3!

Here u i ,n,Gn& denotes a multiplet ofn-electron states at sit
i. Gn has a multiplicitygGn

24 such that

(
Gn

gGn
[gn5S 2N

n D ,

the binomial on the right hand side being the total numbergn
of available on-siten-electron states. Without loss of gene
ality, we assume thatĤJ only splits multiplets at fixedn
without affecting their center-of-gravity energy, implyin
(Gn

gGn
JGn

50.
15511
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In the absence of interaction, the ground stateuF0& of Eq.
~1! with an average electron number per siten0 consists ofN
degenerate bands each one at fillingn0/2N, namely,

uF0&5 )
a51

N

)
ukW u,kF

ck,a↑
† c2k,a↓

† u0&, ~4!

where

2

V (
ukW u,kF

5
n0

N
.

If 0 ,n0,2N is an integer, we expect that, for sufficient
largeU, the correlated ground state ofĤ5Ĥ01ĤU1ĤJ de-
scribes a Mott insulator. Analogously to what has been d
for the single-band Hubbard model, we would like to have
system which allows us to study a metal-to-insulator~MIT !
transition to an idealparamagneticMott insulator, in contrast
to a more conventional metal-to-band-insulator transiti
For that reason, we further assume that the multiplet
change splitting~3! is such that, within a perturbation expan
sion upon the uncorrelated ground stateuF0&, all self-energy
diagrams are diagonal in spin and orbital indices and in
pendent of them. Formally this assumption implies that
projection on any given multiplet of the local single-partic
density matrix is simply

u i ,n,Gn&^ i ,n,Gnuci ,as
† ci ,bs8u i ,n,Gn&^ i ,n,Gnu

5
n

2N
dabdss8u i ,n,Gn&^ i ,n,Gnu. ~5!

This does not exclude that spin and/or orbital symmetry m
be spontaneously broken especially close to the Mott tra
tion, as it is known to occur for the half-filled single ban
Hubbard model on a bipartite hypercubic lattice in dime
sions greater than 1. Rigorously speaking in that case the
not even a MIT, since, due to nesting, the ground state
scribes an antiferromagnetic insulator for anyU5” 0 ~see,
e.g., Ref. 25 for two dimensions!. In most general cases wit
un-nested noninteracting Fermi surfaces, e.g., for nonbi
tite lattices, longer range hopping matrix elements or n
half-filled bands,n05” N, we do expect a finiteU MIT, al-
though it might be accompanied by some spin and/or orb
ordering. Yet, in what follows, we will discard such a poss
bility and just discuss an idealized MIT at finiteU, where
neither the metal nor the Mott insulator break any of t
symmetries of the Hamiltonian. We postpone the analysis
spontaneous symmetry breaking nearby the Mott transi
to Sec. V.

Having this in mind, we start analyzing the role of th
interaction by a Gutzwiller variational approach. That is, w
search for the best variational wave function of the form

uCG&5)
i

P̂i ,GuF0&, ~6!

where the uncorrelated wave-function is the Slater deter
nant of Eq.~4! and the on-site Gutzwiller correlator,11,13
7-2
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P̂i ,G5(
n

(
Gn

lnGn
u i ,n,Gn&^ i ,n,Gnu, ~7!

tends to go along with the local interaction termsĤU andĤJ
in modifying the relative weights of on-site electronic co
figurations. As shown in Refs. 6 and 11, there is a cert
arbitrariness in the choice of the variational parametersl ’s,
related to the fact that any transformation acting onuF0& and
involving operators of whichuF0& is an eigenstate amoun
simply to a multiplicative factor. In our case, that arbitra
ness allows one to impose, without losing generality, the n
malization condition

^F0uP̂i ,G
2 uF0&, ~8!

as well as an additional constraint on the single-particle d
sity matrix,

^F0uP̂i ,Gci ,as
† ci ,bs8P̂i ,GuF0&5^F0uci ,as

† ci ,bs8uF0&

5
n0

2N
dabdss8 , ~9!

where the last equality derives from our choice ofuF0& @Eq.
~4!#.

A formal solution of Eqs.~8! and ~9! is obtained11 by
writing

lnGn

2 5
P~n,Gn!

P(0)~n,Gn!
, ~10!

where P(0)(n,Gn) and P(n,Gn) represent the occupatio
probabilities of then-electron multipletGn in the uncorre-
lated,uF0&, and correlated,uCG&, wave functions. Upon in-
serting Eq.~10! into Eqs.~8! and ~9!, one obtains

(
n

(
Gn

P~n,Gn!51, ~11!

the correct normalization forP(n,Gn), as well as

(
n

(
Gn

nP~n,Gn!5n0 , ~12!

namely, the condition that the average number of electr
per site coincides with the uncorrelated valuen0. In this
representation, the correlated probability distribution is
variational quantity which has to be optimized.

Equations~8! and ~9! imply that, within a perturbation
expansion in the parameters (12lnGn

)’s, only more than

two fermionic lines can exit from any vertexP̂i ,G
2 at site i,

see Ref. 11. This property simplifies considerably the ca
lations in the limit of infinite coordination lattices,z→` in
Eq. ~1!, where one can show the average variational ene
per site:11
15511
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EG5
1

V
^CGuĤ01ĤU1ĤJuCG&

5ZT01
U

2 (
n

(
Gn

~n2n0!2P~n,Gn!

1(
n

(
Gn

JGn
P~n,Gn!. ~13!

T0 is the average value per site of the noninteracting tig
binding Hamiltonian

T05 lim
z→`

1

V
^F0uĤ0uF0&,

which is reduced by a factorZ through the Gutzwiller pro-
jection, and we have introduced a chemical potential te
which makes the Hubbard interaction minimum at the av
agen5n0. Our choice ofĤJ leads to the following expres
sion:

AZ5 (
n51

2N

(
Gn ,Gn21

n

2N

gGn
gGn21

gn21
S n0

2ND n21S 12
n0

2ND 2N2n

3lnGn
ln21Gn21

5 (
n51

2N

(
Gn ,Gn21

n

gn21
A gGn

gGn21

n0~2N2n0!

3AP~n,Gn!P~n21,Gn21!. ~14!

WhenĤJ50, namely, if nothing in the Hamiltonian split
the degeneracy among states at fixedn, there should exist a
variational solution in which all configurations at fixedn are
equally probable, a property owned by the Slater determin
uF0&. In that case, a multiplet with degeneracygGn

occurs
with probability

P~n,Gn!5
gGn

gn
P~n!, ~15!

P(n) being the probability of a site to be occupied byn
electrons irrespective of the configuration. Equation~15! in-
serted into Eq.~14! leads to the following simple expressio
of Z valid for ĤJ50:

AZ5 (
n51

2N
n

An0~2N2n0!
A gn

gn21
AP~n!P~n21!. ~16!

III. MOTT TRANSITION WITHIN THE GUTZWILLER
APPROACH

The search for the optimalP(n,G)’s with arbitrary values
of the interaction parameters is not straightforward. Ho
ever, it is still possible to obtain simple analytical resu
close to the Mott transition, which is signaled by a vanishi
hopping energy reduction factorZ, which is also thequasi-
particle residueas obtained by the Fermi surface jump of t
momentum distribution. Indeed, whenZ!1, one
realizes,12,26 by inspection of Eq.~13!, that
7-3



-

s

e

ac

ur
x
io

lu-
in

ect
he
res-
ch

s
or-
the

nt

ility

rm

to
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P~n,Gn!;Zun2n0u. ~17!

It is therefore justified to assumeP(n,Gn)50 for all n’s but
n5n0 and n5n061, which simplifies all calculations re
markably.

In the simple caseĤJ50, which we denote hereafter a
J50, this approximation leads through Eq.~16! to

AZ.
n0

An0~2N2n0!
A gn0

gn021
AP~n0!P~n021!

1
n011

An0~2N2n0!
Agn011

gn0

AP~n011!P~n0!. ~18!

The distribution probabilities have to satisfy

P~n021!5P~n011![d,

and consequently

P~n0!5122d.

By inserting those expressions into Eq.~18!, one obtains

Z5
d~122d!

n0~2N2n0!
@An0~2N2n011!1A~n011!~2N2n0!#2

[g~N,n0!d~122d!; ~19!

hence

EG5g~N,n0!d~122d!T01Ud. ~20!

The optimald which minimizes Eq.~20! is readily found:

d5
T0g~N,n0!1U

4T0g~N,n0!
[

Uc~J50!2U

4Uc~J50!
, ~21!

where

Uc~J50!52g~N,n0!T052
1

2N2n0
@An0~2N2n011!

1A~n011!~2N2n0!#2
T0

n0
~22!

is the value of the interaction at the Mott transition,12 when
the optimald50. The variational energy is therefore

EG~J50!52T0g~N,n0!d252
1

8

@Uc~J50!2U#2

Uc~J50!
.

~23!

Let us now consider the caseHJ5” 0. We assume that th
exchange splitting favors at any givenn a particular multiplet
of states, which we denote asGn* . The Mott insulator de-
scribed by the Gutzwiller wave function is therefore char
terized byP(n0 ,Gn0

* )51 and has energyEins5JG
n0
* ,0. In

order to better understand how the Mott transition occ
when J5” 0, it is convenient to consider separately two e
treme cases which do not require any numerical calculat
15511
-

s
-
n.

Let us start by considering an hypothetical metallic so
tion able to smoothly transform into the Mott insulator,
which therefore only the multipletsGn* favored byHJ are
occupied close to the MIT. Since onlyn061 and n0 are
relevant, one obtains an expression ofZ similar to Eq.~19!,
with the only difference that

g~N,n0!→ge f f~N,n0!

[
1

n0~2N2n0!
FAn0~2N2n011!AgG

n021*

gn021

gG
n0
*

gn0

1A~n011!~2N2n0!AgG
n011*

gn011

gG
n0
*

gn0

G 2

,g~N,n0!.

The variational energy now reads

EG~JÞ0!5ge f f~N,n0!d~122d!T01Ud

1~JG
n021* 1JG

n011* 22JG
n0
* !d1JG

n021* .

Provided we substituteg→ge f f and

U→Ue f f[U1~JG
n021* 1JG

n011* 22JG
n0
* !,

which is the actual Hubbard repulsion measured with resp
to the energies of the lowest multiplets and not from t
centers of gravity, the formal solution has the same exp
sion as before. In particular the critical interaction at whi
that metallic phase becomes unstable is now

Uc~J5” 0!52ge f f~N,n0!T02~JG
n021* 1JG

n011* 22JG
n0
* !

5
ge f f~N,n0!

g~N,n0!
Uc~J50!2~JG

n021* 1JG
n011* 22JG

n0
* !.

~24!

For very smallJ’s, Uc(J5” 0) is shifted down with respect to
Uc(J50) by terms of orderuT0u, which already suggest
that the above solution is not the most energetically fav
able, although it has the merit to merge smoothly into
insulator.

Indeed, the best variational solution is actually differe
from the above one. If theJ’s are very small compared with
T0, we rather expect in the metallic phase that the probab
distributions of the multiplets at anyn are only slightly
modified with respect to theJ50 case. If this were true, we
could still search for a variational solution of the same fo
as forJ50, which has an energy given by Eq.~21! with d as
in Eq. ~23!. This solution, however, does not converge in
the insulating one, which has an energyEins5JG

n0
* . The two

energies indeed cross when

2
1

8

@Uc~J50!2U#2

Uc~J50!
5JG

n0
* ,

namely, whenU5U* ,
7-4
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U* 5Uc~J50!2A28Uc~J50!JG
n0
* . ~25!

For smallJ, U* is larger thanUc(J5” 0) given in Eq.~24!,
which suggests not only that theJ50 metallic solution has
lower energy but also that the Mott transition is first ord
The explicit solution of the variational equations shows th
in the optimal metal at smallJ, the probability distributions
are indeed only slightly modified with respect to theJ50
case by terms of orderAuJ/T0u; hence that the Mott transi
tion becomes first order as soon as a finiteJ is introduced.

In conclusion, if the multiplet exchange splitting termuJu
is much smaller than the uncorrelated bandwidthW, then the
Gutzwiller variational approach leads to a first order ph
transition from a metal, slightly modified with respect to t
J50 case, into a Mott insulator instead dominated byJ. This
transition is predicted to occur when the quasiparticle resi
is

Z;Ag~N,n0!U J

T0
U, ~26!

and arises because the metallic solution has to pay too m
hopping energy to modify the relative weights of the mu
plets, a cost which overcomes the exchange splitting en
gain.

A first order phase transition has indeed been found
Ref. 11 by an explicit numerical minimization of the vari
tional energy in a two-band model, and agrees w
linearized-DMFT results obtained in Ref. 16 on a simi
model. Moreover, in the same Ref. 16 it is shown that
first order character reinforces with increasing excha
splitting strengthJ from J50, while it weakens with further
increasingJ above some intermediate value. This also agr
with our above results. Indeed, whenJ gets so large to make
Uc(J5” 0) @Eq. ~24!# greater thanU* @Eq. ~25!# we expect
the Mott transition to turn again into a second order o
That requires a substantialuJu;uT0u.

IV. DRAWBACKS OF THE GUTZWILLER
WAVE FUNCTION

It is known that the simplest Gutzwiller wave function
not very accurate for the single band Hubbard model at h
filling in finite dimensions. The main reason is the inabili
to properly account for spatial correlations, either among
spins of singly occupied sites and among empty and dou
occupied sites.20,21,23 Indeed, one expects physically th
empty and doubly occupied sites should bind in the M
insulator, otherwise the system would remain metallic all
way up toU5`, where only single occupancy is allowe
Since the simplest GWF does not include such correlatio
it is unable to represent a Mott insulator in any finite dime
sion, unless the uncorrelated wave function is itself insu
ing, as it happens for an antiferromagnetic Slater deter
nant. Several attempts have been done to improve the G
~Refs. 20, 27, and 28! by including spatial correlations
among empty and doubly occupied sites, yet there are
numerical evidences of a MIT in finite dimensions when t
15511
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uncorrelated wave function is metallic, e.g., the param
netic Fermi sea.

This problem should not be so severe in infinite dime
sions, where the GWF does indeed show a MIT. In fact
GWF reproduces quite accurately exact DMFT results c
cerning quasiparticle properties across the MIT,2 which
moreover one expects do not strongly depend upon dim
sionality, one dimension being an exception. This sugge
that the infinite-dimensional Landau-Fermi liquid pictu
provided by the GWF is qualitatively correct even in fini
dimensions, thus justifying the use of the Gutzwiller appro
mation even in cases where a rigorous numerical treatm
of the GWF would yield completely different results. In Se
III we identified the qualitative behavior across the Mo
transition of the GWF for multiband Hubbard models in i
finite dimensions. In the same limit, exact results can
obtained by DMFT,2 which allows a direct comparison henc
a test on the accuracy of the GWF in infinite dimensions

Let us start by comparing the probabilities of a site to
occupied byn electrons,P(n). This probability distribution
has been calculated within DMFT for a three band mode
Ref. 15. It was also conjectured that, before the MIT,

P~n!5~12Z!Pins~n!1ZPqp~n!, ~27!

where the quasiparticle residueZ can be evaluated indepen
dently from the single-particle Green’s function, andPins(n)
is the occupation probability in the insulating phase just a
the MIT, which is also accessible by DMFT. Thus Eq.~27!
defines the unknownPqp(n), which was claimed to repre
sent the quasiparticle occupation probability. This claim w
confirmed by comparingPqp(n) with the noninteracting
Fermi gas distribution, giving excellent agreement; see F
3A’’–3C’’ compared with Fig. 3D’’ in Ref. 15. The agree
ment was the more remarkable since the quasiparticle c
tribution is only a small fraction}Z of the full P(n) and Eq.
~27! has no free parameter. Within the GWF, the Mott ins
lator is characterized byPins(n)5dnn0

, so that, through Eqs

~17! and ~27!, one concludes that, forn5” n0,

Pqp~n!;
Zun2n0u

Z
. ~28!

The above result contradicts the finding of Ref. 15, wh
rather supports aPqp(n);O(1), namely a quasiparticle con
tribution to P(n) of orderZ; see Eq.~27!. The origin of this
disagreement can be easily traced back.

In fact, spatial correlations among unfavorable cha
configurations are not fully suppressed even in infinite
mensions, and are responsible for the finite average valu
the double occupancŷn↑n↓& in the insulating phase found
by DMFT.2 In particular^n↑n↓& as function ofU displays a
discontinuity in the slope across the Mott transition in in
nite dimensions.2 The singular part, which vanishes at th
MIT, is attributed to the quasiparticles, and is qualitative
reproduced by the behavior of the double occupancy as
tained through the Gutzwiller wave function: a support to t
belief that this wave function does correctly capture qua
particle properties.
7-5
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In a multiband Hubbard model the situation is different.
we just consider the occupation probabilityP(n061) of
(n061) charge configurations, across the MIT we expec
behavior similar to the double occupancy in the single-ba
Hubbard model, still compatible with the GWF. Let us i
stead consider the occupation probabilityP(n062). In the
GWF close to the Mott transition, those configurations
suppressed likeZ2. In reality, virtual processes from th
more advantageousn0 and (n061) charge configurations
imply, first of all, that P(n062) is finite in the insulating
phase too, and, second, that the singular (n062) quasiparti-
cle contribution still linearly vanishes across the MIT, unli
what is found by the GWF. That disagreement is more p
found than what it would seem to be. A quasiparticle pro
ability distribution of the Gutzwiller type, namelyPqp(n)
;Zun2n0u/Z @see Eqs.~27! and ~28!# suggests that quasipa
ticles remain more strongly interacting than implied by t
true behaviorPqp(n);O(1), even after the Hubbard sid
bands are well formed. This indicates that, unlike what h
pens in the single-band Hubbard model, the multiband G
is not fully adequate to capture quasiparticle properties.

The second failure of the Gutzwiller variational approa
regards the onset of the first order phase transition, whic
predicted to occur whenZ;AuJu, for uJu!uT0u. It also origi-
nates from the lack of spatial correlations. IfJ50, the
Gutzwiller wave function leads to a Mott insulator with
finite entropy, related to the finite number of degenerate
site electronic configurations withn0 electrons. This state ha
an infinite susceptibility to a termĤJ which splits that de-
generacy, with an energy gain linear inJ. This result is ob-
viously wrong. The superexchange terms generated by
tual processes into unfavorable charge configurations lea
finite susceptibilities even in the Mott insulator. This impli
that the actual energy gain is quadratic inJ so that the Mott
transition is either second order or weakly first order, in t
case occurring whenZ;uJu.

Indeed, this aspect is not peculiar to a multiband mo
but also occurs in a single band model in the presence
magnetic fieldB which splits spin-up singly occupied site
from spin-down ones. Also in that case the Gutzwiller a
proach would predict a first order transition whenZ;AB,
while in reality, being the magnetic susceptibility finite,2 the
transition occurs at smallerZ ~see Ref. 29!, likely when Z
;B.

Yet those defects of the Gutzwiller wave function mig
not qualitatively affect the physical behavior in the mo
common situations where the multiplet exchange splitt
term leads to the conventional Hund’s rules, i.e., favors h
spin and angular momentum configurations. When magn
ordering occurs, so that the on-site magnetic moments
oriented along some easy axis, the ground state is usu
well described by a Slater determinant, and hence is ac
sible by a mean-field approach which can be improved
the Gutzwiller correlator. However, there may be less c
ventional but still interesting cases where the multiplet
change splitting favors low degeneracy states, which are
Slater determinants and hence unaccessible to mean
theories. Here the Gutzwiller wave function might be ina
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equate to describe the Mott transition mainly because i
unable to access the interesting region where the met
kinetic energy gain;ZuT0u competes with the exchang
splitting ;J. In conclusion, we believe by the above discu
sion that an improvement of the GWF towards includi
spatial correlations is necessary, even in infin
dimensions.30

V. GUTZWILLER WAVE FUNCTIONS
FOR SYMMETRY-BROKEN PHASES

In spite of its appealing features, anideal Mott insulator
at zero temperature is unlikely to exist, especially if it h
huge degeneracy. Commonly one expects a symme
broken phase to occur at low temperature, at least in m
than one dimension. For instance, in a single-band mode
half-filling, the ideal Mott insulator has an infinite spin de
generacy which is likely reduced at low temperature by so
magnetic ordering. Therefore, even though any mean fi
type of approach~including more sophisticated ones bas
on density functional theory! can only stabilize correlated
insulators in broken-symmetry phases, namely can only
scribe band-insulators thus hiding the basic phenomena l
ing to a Mott insulator, yet they often provide a faithful d
scription of the low temperature physics.

In this situation, the Gutzwiller variational approac
should still be useful to improve the Hartree-Fock appro
mation. That would amount to searching for the best wa
function of the form

uCG~D!&5 P̂GuF~D0!&5)
i

P̂i ,GuF~D0!&, ~29!

with P̂i ,G still given by Eq. ~7!, and whereuF(D0)& is a
symmetry-broken uncorrelated trial wave function with
single-particle order parameterD0. In general, after
Gutzwiller projection, the correlated wave function will hav
a different order parameterD. This implies that the averag
values of the single-particle density matrix overuCG(D)&
and uF(D0)& do not coincide. This does not obviously re
resent a problem for a numerical treatment, whereas it wo
seem to prevent the use of the method developed in Ref
for analytically evaluating the average values in infinite
mensions. In fact that method relies on the possibility
constructing a GWF with the same average value of
single-particle density matrix as the uncorrelated wave fu
tion. We could still impose that condition for the wave fun
tion defined by Eq.~29!, but that would reduce the varia
tional freedom.

In this section we present a simple extension of the GW
to account for symmetry-broken phases while leaving
property of being analytically treatable in infinite dimensio
without any variational loss. We start by noticing that the
always exists a nonunitary operatorÛ5) i Û i such that its
action

Û21uF~D0!&5uF~D!& ~30!

leads to a trial wave functionuF(D)& of the same form as
uF(D0)& but with the same average value of the sing
7-6
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particle density matrix as the Gutzwiller projecteduCG(D)&,
and hence the same order parameterD. Therefore,

uCG~D!&5 P̂GuF~D0!&5 P̂GÛuF~D!&[P̂GuF~D!&, ~31!

which implies that, provided we substitute

P̂G→P̂G5 P̂GÛ, ~32!

we can still search without loss of generality for a variation
wave function

uCG~D!&5P̂GuF~D!&,

where the average single-particle density matrix stays
changed after Gutzwiller projection. The cost is that we m
work with a Gutzwiller correlator as given by Eq.~32!,
which is in general neither diagonal in the multiplets whi
appears inĤJ @Eq. ~3!#, nor Hermitian.

Actually we can identify two distinct situations whic
may occur, one of them being already included in the f
malism developed by Ref. 11. If the exchange splittingJ
favors a degenerate atomic configuration, then we reason
expect that in the true ground state of the lattice only one
the degenerate states will be occupied on a given site, e
tually changing from site to site. There the order parame
corresponds locally to a conserved quantity of the ato
Hamiltonian, for instance thez component of the on-site
spin, which leads to a generalized Pˆ

G still Hermitian and
diagonal. Let us consider as a simple example a one-b
model. The local Gutzwiller correlator is, in general,

P̂i ,G5l0u i ,0&^ i ,0u1l2u i ,2&^ i ,2u1l1@ u i ,↑&^ i ,↑u1u i ,↓&

3^ i ,↓u#,

where u i ,0(2)& denote the empty or doubly occupied sitei,
while u i ,s& the singly occupied site with spins. We assume
that the uncorrelated wave function is magnetically order
Then Eq.~30! may be constructed by local operators

Û i5e2a i Ŝi
z
,

whereŜi
z is thez component of the spin operator at sitei. We

find that

P̂i ,G5 P̂i ,GÛi5l0u i ,0&^ i ,0u1l2u i ,2&^ i ,2u

1l1ea iu i ,↑&^ i ,↑u1l1e2a iu i ,↓&^ i ,↓u.

Indeed, the modified Gutzwiller correlator is still diagon
and Hermitian, although there appear different variatio
parameters for spin-up and -down components. This a
tional degree of freedom gets fixed once we require that
order parameters of the correlated and uncorrelated w
functions coincide. The above type of GWF is actually
particular case of the generalized GWFs introduced
Ref. 11.

We can, however, envisage a different situation where
uncorrelated wave functionuF0& has an order paramete
which does not correspond locally to a conserved quan
There a modified Pˆ

G is unavoidably off-diagonal and non
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Hermitian. Let us discuss an oversimplified example. We
sume that the exchange term leads to a local Gutzwiller c
relator of the form~we drop the site label!

P̂G5laua&^au1lbub&^bu,

and moreover that the uncorrelated wave-function has an
der parameter identified by nonzero matrix elements

^F0ua&^buF0&5^F0ub&^auF0&.

The transformationÛ can be now taken of the form

Û5a~ ua&^au1ub&^bu!1b~ ua&^bu1ub&^au!.

We readily find that

P̂G5 P̂GÛ5alaua&^au1albub&^bu1blaua&^bu

1blbub&^au,

indeed containing off-diagonal terms and evidently no
Hermitian. This is a novel situation which we are going
discuss more in detail in a particular example.

We conclude this section by pointing out that the no
Hermitian character plays a crucial role only if the orderi
involves just the quasiparticles, while it is essentially irre
evant when both the quasiparticles and the Mott-Hubb
side bands contribute to the order parameter. In Sec. VI
analyze a two-band model where both cases may appea

VI. A TWO-BAND MODEL STUDY

We consider a two-band Hubbard model described
Hamiltonians~1! and ~2! where the orbital indexa51,2.
Besides the local spin-density operators

SW i5
1

2 (
a51

2

(
ab

ci ,aa
† sW abci ,ab ,

whereŝx , ŝy , and ŝz are the Pauli matrices, we introduc
orbital pseudospin operators

TW i5
1

2 (
a,b51

2

(
s

ci ,as
† tWabci ,bs , ~33!

where the Pauli matricest̂ ’s act on the orbital indices. The
hopping and Hubbard terms@Eqs. ~1! and ~2!# have a very
large SU~4! symmetry. Having in mind common physica
realizations, like, e.g.,d orbitals ofeg symmetry, we assume
that SU~4! is lowered down to a spin SU~2! times an orbital
O~2! by the exchange term, which can therefore be written

ĤJ5(
i

JSSW i•SW i1JTTW i•TW i23~JS1JT!~Ti
z!2. ~34!
7-7
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The aboveĤJ just splits the on-site configurations with tw
electrons. There are six of those states on a given sitei, a
spin triplet orbital singletu i ,n52;S51,Sz ;T50&, which we
denote hereafter asu i ,2,t&, and a spin-singlet orbital triplet
for which we use the short notationsu i ,n52;S50;T51,Tz
50&[u i ,2,0& and u i ,n52;S50;T51,Tz561&[u i ,2,6&.
In this subspace,ĤJ has the form

ĤJ5(
i

2JSu i ,2,t&^ i ,2,tu12JTu i ,2,0&

3^ i ,2,0u2~3JS1JT!u i ,2,6&^ i ,2,6u. ~35!

The standard Hund’s rules correspond to2JT,JS
,25JT/6,0, when the spin-triplet orbital-singlet configu
ration has the lowest energy, followed by the spin-sing
orbital doublet withTz561. In this case the ideal Mot
insulator at half-filling,n052, represents localized spin-
moments which should order at low enough temperature
freeze out the spin entropy. On general grounds one exp
that the magnetic ordering in the insulator should conta
nate the nearby metallic phase so that, asU increases from
weak coupling, first a transition from a paramagnetic into
magnetic metal should occur, followed by a Mott transiti
into a magnetically ordered insulator. Even a mean field
proach is in principle able to reproduce the above scena
In this situation, as we discussed before, the Gutzwil
projected Hartree-Fock wave function does improve
mean-field solution, providing a better physical descripti
In Appendix A we analyze in detail the case in which
bipartite lattice stabilizes an antiferromagnetic ordering.

Less conventional is the situationJT,2uJSu, where the
nondegenerate spin singlet withTz50, namely,

u i ,2;S50;T51,Tz50&5
1

A2
~ci ,1↑

† ci ,2↓
† 1ci ,2↑

† ci ,1↓
† !u0&,

~36!

is the lowest energy configuration. That would be for
stance the case of two Hubbard models~two-chains, two-
planes, etc.!, coupled by an antiferromagnetic exchang
Here the largeU Mott insulator withn052 describes a col-
lection of on-site singlets, a local version of a valence-bo
~VB! insulator. Since it is not degenerate and fully gapp
we expect the VB insulator to be stable at largeU against
any spin and/or orbital order. Just to avoid unessential c
plications, we assume that the lattice is sufficiently frustra
to prevent any spin/orbital ordering at anyU. This situation
is far less trivial than the previous one. In fact, being t
Mott insulator not describable by a single Slater determina
it is inherently unreachable by any mean-field approa
which necessarily leads to some kind of ordered state.
cording to our previous discussion, we expect in this c
that also the GWF is unable to provide a faithful descript
of the Mott transition.

As we showed in Sec. III, the GWF without any symm
try breaking would undergo a first order metal-insulator tra
sition when the quasiparticle residue
15511
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namely, whenU5U* , being

U* 526T024A6T0JT.

We also argued that this result is wrong since a meta
phase is able to enter the regime in whichZ;uJT /T0u. Let us
now check whether there exists a better broken-symm
metallic solution. Indeed, even if lattice frustration preven
spin/orbital order, there is still a broken-symmetry GW
which might in principle compete with the above metal
solution.

Superconducting Gutzwiller wave function

When U50, the multiplet exchange term~35! favors a
BCS Hartree-Fock wave-function with thes-wave order pa-
rameter

^FBCS~D0!uci ,1↑
† ci ,2↓

† uFBCS~D0!&

5^FBCS~D0!uci ,2↑
† ci ,1↓

† uFBCS~D0!&[D0<
1

2
. ~37!

WhenD0→1/2, the doubly occupied sites in the spin triple
u2,t&, or in the doublet of spin singlets,u2,6&, configurations
are suppressed by a factor (122D0)2 with respect to the
Tz50 spin singlet,u2,0&. Similarly, the probability of singly,
u1&, or triply occupied,u3&, sites vanish like (122D0). This
suggests that by Gutzwiller projecting out sites with zero a
four electrons,u0& and u4&, respectively, through the varia
tional wave function

uCG~D!&5 P̂GuFBCS~D0!&, ~38!

one might indeed smoothly connect to the VB insulati
state, with (122D0) playing the role ofZ. However, even
though the uncorrelated BCS wave function has a large o
parameterD0;1/2, the correlateduCG& should have a much
smaller one,D;ZD0, since only quasiparticles are involve
in superconductivity. In such a case we are therefore obli
to implement the non-Hermitian Gutzwiller correlator in o
der to get analytical results for large coordination lattices.
other words, we shall work with a Gutzwiller wave functio
of the same form as Eq.~38! and impose thatuCG& and
uFBCS& have the same order parameterD through a non-
Hermitian P̂G ; see Eq.~32!. Since this is a novel situation in
the Gutzwiller variational approach, we prefer to describe
in detail.

In order to simplify the analysis at half-filling, we assum
that the Hamiltonian has particle-hole symmetry and sea
for solutions which do not break it. This guarantees that th
are still two conditions we can impose without losing var
tional freedom: an overall normalization@Eq. ~8!#, and a
particle-hole symmetry constraint.

To accomplish this job, it is convenient to work not in th
original electron basis but in thenatural basis where the
7-8
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on-site single-particle density matrix is diagonal. This
done by the following unitary transformation, which is val
at half-filling n052:

S ci ,1(2)↑
ci ,2(1)↓

† D 5
1

A2
S 1 21

1 1 D S ai ,1(2)↑
ai ,2(1)↓

† D .

In the natural basis the only nonzero on-site average is

^FBCS~D!uai ,as
† ai ,asuFBCS~D!&5

1

2
2D.

In order to distinguish the local configurations in the natu
from the original basis we will denote the former ones
un̄,G n̄&. The most general local Gutzwiller correlator is,
this case,

P̂i ,G5(
n̄

(
G n̄

l n̄G n̄
u i ,n̄,G n̄&^ i ,n̄,G n̄u1l 0̄4̄u i ,0̄&

3^ i ,4̄u1l 4̄0̄u i ,4̄&^ i ,0̄u. ~39!

The last two terms are the only possible off-diagonal e
ments at half-filling when particle-hole symmetry holds. T
normalization condition and the conservation of the sing
particle density matrix lead to the following parametrizati
of the l ’s for n̄5” 0,4:

l n̄G n̄

2
5

P~ n̄,G n̄!

P(0)~ n̄,G n̄!
,

whereP(n̄,G n̄) andP(0)(n̄,G n̄) are the correlated and unco
related occupation probabilities in the natural basis. Fon̄
50,4 we have instead

l 0̄
2
P(0)~ 0̄!1l 0̄4̄

2
P(0)~ 4̄!5P~ 0̄!, ~40!

l 4̄0̄
2

P(0)~ 0̄!1l 4̄
2
P(0)~ 4̄!5P~ 4̄!, ~41!

l 0̄l 4̄0̄P(0)~ 0̄!1l 0̄4̄l 4̄P(0)~ 4̄!5A~ 0̄;4̄!5A~ 4̄;0̄!, ~42!

where we introduce the transition amplitudes

A~ n̄,G n̄ ;m̄,Gm̄!5^CGu i ,n̄,G n̄&^ i ,m̄,Gm̄uCG&.

The occupation probabilities in the natural basis are
lated to those in the original one through
15511
l
s

-

-

-

P~ 0̄!5
1

2
@P~0!1P~2,0!1A~0;4!#1A2A~0;2,0!,

P~ 1̄!5P~1!1A~1;3!,

P~ 2̄,0!5P~0!2A~0;4!,

P~ 2̄,6 !5P~2,6 !,

P~ 2̄,t !5P~2,t !,

P~ 3̄!5P~1!2A~1;3!,

P~ 4̄!5
1

2
@P~0!1P~2,0!1A~0;4!#2A2A~0;2,0!,

A~ 0̄;4̄!5
1

2
@P~0!2P~2,0!1A~0;4!#,

~43!

where we have used the fact that, by particle-hole symme
P(1)5P(3) and P(0)5P(4). The order parameterD is
given by

2D52A2A~021 !1A~13!,

and the following inequalities should be verified:

2A~0;2,0!2<P~2,0!@P~0!1A~0;4!#,

A~0;4!<P~0!,

A~1;3!<P~1!.

The big advantage in working with natural orbitals is th
theZ reduction factor has the same expression as in Eq.~14!,
namely,

AZ~D!5 (
n̄51

4

(
G n̄ ,G n̄21

n̄

4

gG n̄
gG n̄21

gn̄21
S 1

2
2D D n̄21

3S 1

2
1D D 42n̄

l n̄G n̄
l n̄21G n̄21

. ~44!

Once we know how to relate the parametersl ’s andZ to the
variational occupation probabilities defining the correlat
and uncorrelated wave functions, we can solve the most g
eral variational problem by minimizing the energy function

EG~D!5Z~D!T0~D!1U@4P~0!1P~1!#12JSP~2,t !

12JTP~2,0!2~3JS1JT!P~2,6 !, ~45!

where

^FBCS~D!uĤ0uFBCS~D!&5T0~D!.

For the sake of clarity, here we present an analysis ba
on the following parametrization of thel ’s in Eq. ~39!, al-
though it has less variational freedom:
7-9
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l 0̄5
1

2
~l01l20!APD0

(0)~ 0̄!

PD
(0)~ 0̄!

,

l 4̄5
1

2
~l01l20!APD0

(0)~ 4̄!

PD
(0)~ 4̄!

,

l 0̄4̄5
1

2
~l02l20!APD0

(0)~ 4̄!

PD
(0)~ 4̄!

,

l 4̄0̄5
1

2
~l02l20!APD0

(0)~ 0̄!

PD
(0)~ 0̄!

,

l 1̄5l1APD0

(0)~ 1̄!

PD
(0)~ 1̄!

,

l 3̄5l1APD0

(0)~ 3̄!

PD
(0)~ 3̄!

,

l 2̄05l0APD0

(0)~ 2̄,0!

PD
(0)~ 2̄,0!

,

l 2̄t5l2tAPD0

(0)~ 2̄,t !

PD
(0)~ 2̄,t !

,

l 2̄65l26APD0

(0)~ 2̄,6 !

PD
(0)~ 2̄,6 !

.

~46!

As beforeD0 is the order parameter of the uncorrelated B
wave function whileD is the true order parameter afte
Gutzwiller projection; see Eq.~38!. PD0

(0)(n̄,G n̄) and

PD
(0)(n̄,G n̄) are the distribution probabilities in the natur

basis for the BCS wave functions with order parametersD0
andD, respectively. They are explicitly written in Append
B, Eq. ~B4!.

The normalization condition as well as the conservat
of the single-particle density matrix imply that

lnGn

2 5
P~n,Gn!

PD0

(0)~n,Gn!
, ~47!

wherePD0

(0)(n,Gn)5^FD0
u i ;n,Gn&^ i ;n,GnuFD0

& is the occu-

pation probability for configurations in the original electron
basis within the uncorrelated BCS wave function with lar
order parameterD0 @see Eq.~B5!#, while P(n,Gn) is the
same quantity for the correlated wave function. Equat
~47! is the most natural generalization of Eq.~10! to a
15511
n

n

broken-symmetry phase, which is the reason why we h
chosen the above parametrization. The true order param
D is defined through

2D5PD
(0)~ 0̄!1

1

2
PD

(0)~ 1̄!2
1

2
PD

(0)~ 3̄!1PD
(0)~ 4̄!

5D0~114D0
2!A P~2,0!P~0!

PD0

(0)~2,0!PD0

(0)~0!

1D0~124D0
2!

P~1!

PD0

(0)~1!
, ~48!

which indeed is of orderZ when 1/22D0;Z, P(2,0);1,
P(1);Z, and P(0);Z2. The explicit evaluation of theZ
reduction factor is presented in Appendix B; see Eq.~B2!.

Let us now compare the variational energy as given
Eq. ~45! with Z of Eq. ~B6!, valid for 1/22D05d!1, to the
energy of a nonsuperconducting paramagnetic solution@Eq.
~45!# with D50, Z being given by Eq.~B3!. We find that the
Gutzwiller projected BCS wave function has always high
energy by terms roughly of orderZuT0u.

Therefore, even though the Gutzwiller correlator is qu
efficient to transform the huge Hartree-Fock energy co
namely,

^FBCS~D0!uĤuFBCS~D0!&2^FBCS~0!uĤuFBCS~0!&

5T0~D0!2T0~0!12UD0
214JTD0

2

.2T0~0!1
U

2
1JT ,

into a much smaller one of orderZuT0u;ZU close to the
Mott transition, yet it is not able to make superconductiv
favorable. That is, the best variational metallic solution
mains the one described in Sec. III, with all the drawbac
discussed in Sec. IV. In conclusion, as we anticipated,
Gutzwiller variational approach does not properly describ
mean-field-unlike Mott transition.

In reality we may expect a superconducting phase
before the VB Mott insulator. Recently a model has be
studied which shares many common features with
present one, namely, a three-band Hubbard model with
verted Hund’s rules,15 mimicking a strongly dynamical Jahn
Teller effect. For an average number of electrons per
n052, the inverted Hund’s rules favor, as in our example
nondegenerate singlet on-site configuration. By a DMFT c
culation, a superconducting instability was discovered j
before the singlet Mott insulator. However, that instabil
was found to appear when the quasiparticle residueZ;uJu
~see Ref. 15!. As we discussed at length previously, the si
plest metallic Gutzwiller wave function which we have so f
considered is unable to reachZ;J, since it becomes disad
vantageous with respect to the insulating one already aZ
;AJ. Therefore, we cannot exclude that superconductiv
may occur even in the two-band model we have conside
7-10
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VII. CONCLUSIONS

In this paper we have analyzed some peculiar feature
the Mott transition displayed by a multiband Gutzwill
variational wave function~GWF! in infinite dimensions. The
analysis has been carried out by using the generalized G
introduced in Ref. 11, which allows a simple analytical tre
ment in infinite dimensions. Moreover, we have extend
that wave function to account for broken-symmetry phas

It is usually assumed that the GWF in infinite dimensio
gives a faithful description of the quasiparticle behav
around the Mott metal-insulator transition. We have sho
that while this belief is partly true for single-band models
is incorrect for multiband models. In particular, we ha
identified at least two major failures of the GWF across
Mott transition. The first concerns the occupation probabi
P(n) of on-site charge configurations withn electrons differ-
ent from the integer average onen0, which is believed to
represent just the quasiparticle occupation probability n
malized to the quasiparticle residueZ.15 The GWF in infinite
dimensions predictsP(n);Zun2n0u, close to the Mott transi-
tion, while both physical arguments as well as dynami
mean-field theory results suggest aP(n5” n0);Z, even in
infinite dimensions. This apparently innocuous disagreem
is instead profound. In fact, the GWF results imply that t
quasiparticles remain much more strongly interacting th
what the correctP(n);Z behavior suggests.

Another drawback concerns the Mott transition in t
presence of a weak multiplet exchange splitting termJ.
Within the GWF, the Mott transition turns into a first ord
one and occurs when the quasiparticle residueZ;AuJu/W,
W being the bare bandwidth, much before the quasipart
gas has had the time to react againstJ. This happens becaus
the susceptibility to an infinitesimal exchange splittingJ di-
verges at the Mott transition for a GWF. In reality, that su
ceptibility is finite so that the Mott transition is either seco
order or weakly first order, in that case occurring whenZ
;uJu/W. The main consequence is that the interesting reg
where the metallic hopping-energy gain;ZW competes
against the exchangeJ is not even accessible by a Gutzwille
wave function. Both the above mentioned shortcomings h
the same origin: the inability of the GWF to account f
spatial correlations of unfavorable charge configurations.

We have then argued, on the basis of a two-band mo
study, that the GWF is still a good variational wave functi
in all cases which can be qualitatively described by a me
field theory, but it fails otherwise, as for instance in the ca
we have explicitly analyzed where the Mott insulator is
local version of a valence bond insulator. There an impro
ment of the GWF is necessary.
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APPENDIX A: ANTIFERROMAGNETIC GUTZWILLER
WAVE FUNCTION FOR A TWO-BAND MODEL

The best Hartree-Fock wave functionuF0(m)& on a bi-
partite lattice when the multiplet exchange term favors
spin-triplet configuration is the ground state of a Hamiltoni

ĤHF5Ĥ01m(
i

(
a51,2

~21! i~ni ,a↑2ni ,a↓!,

which describes an antiferromagnetic insulator with ord
parameter

^F0uni ,1↑2ni ,1↓uF0&5^F0uni ,2↑2ni ,2↓uF0&52~21! im.

We search for the optimal Gutzwiller wave function

uCG&5)
i

P̂i ,GuF0~m!&,

where for a given sublattice, and making use of particle-h
symmetry,

P̂i ,G5l0@ u i ,0&^ i ,0u1u i ,4&^ i ,4u#1l11@ u i ,1;Sz51/2&

3^ i ,1;Sz51/2u1u i ,3;Sz51/2&^ i ,3;Sz51/2u#

1l12@ u i ,1;Sz521/2&^ i ,1;Sz521/2u

1u i ,3;Sz521/2&^ i ,3;Sz521/2u#1l26u i ,2,6&

3^ i ,2,6u1l20u i ,2,0&^ i ,2,0u

1l2t1u i ,2;S51,Sz51&^ i ,2;S51,Sz51u

1l2t2u i ,2;S51,Sz521&^ i ,2;S51,Sz521u

1l2t0u i ,2;S51,Sz50&^ i ,2;S51,Sz50u,

while for the other sublattice1 and 2 interchange. In this
particular case the Gutzwiller correlator remains Hermit
since the nonunitary transformationÛ i is diagonal in the
above multiplet basis.

As usual the variational parametersl ’s can be expressed
in terms of the correlated probability distribution, which w
define, for a given sublattice, as

P~1,1 !5P~1,Sz51/2!5P~3,Sz51/2!,

P~1,2 !5P~1,Sz521/2!5P~3,Sz521/2!,

P~2,t1 !5P~2,S51,Sz51!,

P~2,t2 !5P~2,Sz521!,

P~2,t0!5P~2,Sz50!,

while, for the other sublattice,Sz↔2Sz . Through Eqs.~8!
and ~9!, they satisfy the normalization condition

2P~0!12P~1,1 !12P~1,2 !1P~2,0!1P~2,6 !1P~2,t0!

1P~2,t1 !1P~2,t2 !51, ~A1!

as well as the conservation of the order parameter
7-11
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P~1,1 !1P~2,t1 !2P~1,2 !2P~2,t2 !52m. ~A2!

The variational energy is then found to be

EG~m!5Z~m!T0~m!1U@4P~0!1P~1,1 !1P~1,2 !#

12JTP~2,0!12JS@P~2,t1 !1P~2,t0!1P~2,t2 !#

2~3JS1JT!P~2,6 !, ~A3!

where

T0~m!5^F0~m!uĤ0uF0~m!&

and

AZ~m!5
2

A124m2 FAP~0!SAP~1,1 !

2
1AP~1,2 !

2 D
1

1

2
@AP~1,1 !1AP~1,2 !#SAP~2,6 !

1AP~2,0!

2
1AP~2,t0!

2 D 1AP~2,t1 !P~1,1 !

2

1AP~2,t2 !P~1,2 !

2 G . ~A4!

For any finiteU the optimal solution has alwaysm5” 0 due to
the nesting property. For very largeU we expectm→1/2. In
this limit we can neglect allP’s but P(1,1) and P(2,t1)
hence, from Eqs.~A1! and ~A2!,

P~2,t1 !54m21, P~1,1 !5122m,

which implies that

Z~m!.2
4m21

112m
.

In the same limit the uncorrelated hopping energy has
expression

T0~m!.22AM2~224m!,

where

M25E der~e!e2

is the second moment of the uncorrelated density of st
per spin and orbital,r(e). Therefore, the variational energ
as function of the order parameterm for U@uT0u is

EG~m!.24
4m21

112m
AM2~224m!1U~122m!

12JS~4m21!,

and it is optimized by

m.
1

2
2

M2

~U24JS!2
, ~A5!
15511
e

es

leading to

EG.2JS2
2M2

U24JS
. ~A6!

APPENDIX B: EVALUATION OF THE Z FACTOR
FOR THE TWO-BAND MODEL

The explicit expression of theZ reduction factor in the
two-band model of Sec. VI allowing for a superconducti
order parameter is, through Eq.~44!,

AZ5l 0̄l 1̄S 1

2
1D D 3

1
3

2
l 1̄l 2̄tS 1

2
1D D 2S 1

2
2D D

1l 1̄l 2̄6S 1

2
1D D 2S 1

2
2D D1

1

2
l 1̄l 2̄0S 1

2
1D D 2S 1

2

2D D1
3

2
l 3̄l 2̄tS 1

2
1D D S 1

2
2D D 2

1l 3̄l 2̄6S 1

2
1D D S 1

2

2D D 2

1
1

2
l 3̄l 2̄0S 1

2
1D D S 1

2
2D D 2

1l 3̄l 4̄S 1

2
2D D 3

.

~B1!

If we parametrize thel ’s according to Eq.~46! and make
use of Eq.~47! we find

AZ5
2

A124D2 H 1

4
AP~0!P~1!FAPD0

(0)~ 0̄!PD0

(0)~ 1̄!

PD0

(0)~0!PD0

(0)~1!

1APD0

(0)~ 4̄!PD0

(0)~ 3̄!

PD0

(0)~0!PD0

(0)~1!
1APD0

(0)~ 2̄,0!PD0

(0)~ 1̄!

PD0

(0)~0!PD0

(0)~1!

1APD0

(0)~ 2̄,0!PD0

(0)~ 3̄!

PD0

(0)~0!PD0

(0)~1!
G1

1

4
AP~2,0!P~1!

3FA PD0

(0)~ 0̄!PD0

(0)~ 1̄!

PD0

(0)~2,0!PD0

(0)~1!
1A PD0

(0)~ 4̄!PD0

(0)~ 3̄!

PD0

(0)~2,0!PD0

(0)~1!
G

1FA3

4
AP~2,t !P~1!1

A2

4
AP~2,6 !P~1!G

3FAPD0

(0)~ 1̄!

PD0

(0)~1!
1APD0

(0)~ 3̄!

PD0

(0)~1!
G J . ~B2!

WhenD5D050, the above expression reduces to theZ fac-
tor for a paramagnetic nonsuperconducting solution, nam

AZ52AP~0!P~1!1A3AP~1!P~2,t !1A2AP~1!P~2,6 !

1AP~1!P~2,0!. ~B3!
7-12
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The uncorrelated probabilities distributions in the natu
basis with order parameterD0 ~analogous expressions ho
for D) are

PD0

(0)~ 0̄!5S 1

2
1D0D 4

.124d16d2,

PD0

(0)~ 1̄!54S 1

2
1D0D 3S 1

2
2D0D.4d212d2,

PD0

(0)~ 2̄;0!5S 1

2
1D0D 2S 1

2
2D0D 2

.d2,

PD0

(0)~ 2̄;6 !52S 1

2
1D0D 2S 1

2
2D0D 2

.2d2,

PD0

(0)~ 2̄;t !53S 1

2
1D0D 2S 1

2
2D0D 2

.3d2,

PD0

(0)~ 3̄!54S 1

2
1D0D S 1

2
2D0D 3

.0,

PD0

(0)~ 4̄!5S 1

2
2D0D 4

.0,

~B4!

where the last expressions on the left hand side correspon
the limit D051/22d with d!1. The uncorrelated occupa
ev

ev

A

tti

v.

15511
l

to

tion probabilities in the original electronic basis are read
obtained by the latter upon inverting Eq.~43!:

PD0

(0)~0!5PD0

(0)~4!5S 1

4
1D0

2D 2

.
1

4
2d12d2,

PD0

(0)~1!5PD0

(0)~3!54S 1

16
2D0

4D.2d26d2,

PD0

(0)~2,0!5
1

16
1

3

2
D0

21D0
4.

1

2
22d13d2,

PD0

(0)~2,6 !52S 1

4
2D0

2D 2

.2d2,

PD0

(0)~2,t !53S 1

4
2D0

2D 2

.3d2.

~B5!

In the limit of smalld, by inserting Eqs.~B4! and~B5! into
Eq. ~B2! one finds, at leading order~recalling thatD;Z
!1),

AZ.A2AP~0!P~1!~11d!1AP~1!P~2,0!

1FA3

2
AP~1!P~2,t !AP~1!P~2,6 !G~11d!. ~B6!
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