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An electromagneti€EM) Bloch wave propagating in a photonic crystBC) is characterized by the immit-
tance(impedance and admittancef the wave. The immittance is used to investigate transmission and reflec-
tion at a surface or an interface of the PC. In particular, the general properties of immittance are useful for
clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch
waves on a plane in infinite one- and two-dimensidi2&)) PCs is real when the plane is a reflection plane of
the PC and the Bloch wave vector is perpendicular to the plane. We also show that the pure-real feature of
immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the
numerical calculations. The analytical proof indicates that the method used for immittance matching is ex-
tremely simplified since only the real part of the immittance function is needed for analysis without numerical
verification. As an application of the proof, we describe a method based on immittance matching for qualita-
tively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite
slab waveguidéWG) and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite
channel WG and a semi-infinite 2D PC slab line-defect WG.
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[. INTRODUCTION 1D PC with an arbitrary unit cell has been defined using the
EM wave immittance for Bloch waved.However, there is
Photonic crystal§PC9 are artificial materials whose di- still difficulty in designing multidimensional open-system
electric functions periodically vary.® The primary charac- PCs. This is because the number of EM wave immittances
teristics of PCs are photonic band gaps and peculiar dispethat should be considered at a point on an arbitrarily shaped
sion relations, both of which enable the propagation ofboundary increases with the number of structural dimen-
electromagneti€EM) waves in PCs to be controlled. Recent sions. Specifically, the immittance of an EM wave with a
interest in PCs has focused on “open-system PT3” given polarization is expressed as one parameter for a 1D
which are connected to other structures at their boundarie®C, two parameters for a 2D PC, and six parameters for a 3D
Typically investigated are a finite PC contacting another mePC. Moreover, each parameter of an EM wave immittance is
dium and finite PC line-defect waveguidé&/Gs). In open-  complex in general. Therefore, an excessive computational
system PCs, the energy of propagating EM waves is transzost would be needed to match every immittance parameter
ferred into or out of the PCs through the boundaries. This idbetween two multidimensional subsystems.
in contrast to closed-system PCs, which are infinite in size One way to simplify the matching problem is to reduce
and therefore contain all the energy at any time. the number of parameters by considering structural symme-
An open-system PC can be divided into a set of subiry. Also, simplifying the parameters themselves is helpful,
systems — the PC and the attached structures. Therefore,ds has been suggested by Boscel@l!® They pointed out
should greatly facilitate designing open-system PCs if eaclthat a propagating wave in a PC line-defect WG has a pure-
subsystem is independently designed and then all the sulbeal immittance on periodic symmetry planes normal to the
systems are assembled. Such a method has become well é#ection of propagation. Similar findings have been obtained
tablished for electrical circuit design. The behaviors of thethrough an analytical calculation of the impedance of 1D
electrical energy flows are predicted based on electrical imPCs**®and through a numerical calculation for 2D PCs.
mittance (impedance and admittancE Two electrical cir-  In this paper, we take another approach to simplifying the
cuits can be assembled without energy reflection at their inmatching problems — qualitative optimization of individual
terface if the electrical immittances of both circuits match. Asubsystems.
complete electrical circuit system can thus be designed after This paper is organized as follows. In Sec. Il, we first
designing each subsystem independently. prove that pure-real immittance is a common property of EM
EM wave media including open-system PCs can be reBloch waves in 1D and 2D PCs; hence it can be used for any
garded as EM wave circuits, for which an analogous figurelD or 2D open-system PC. We also prove that the pure-real
of merit, EM wave immittance, is similarly definéditis a  property of the immittance is true for 3D periodic structures,
ratio of the electric field to the magnetic field of a propagat-but under a limiting condition. Then, in Sec. lll, we present
ing or decaying wave in a single medium. In practice, it hashree examples of designing multidimensional open-system
been possible to design one-dimensiofidDd) open-system PCs. This analysis can be made because the immittance de-
PCs by using the EM wave immittance. Particularly notablefined by using eigenmodes on the boundary of two semi-
is that the renormalized Fresnel coefficient for a semi-infiniteinfinite regions(a PC and its external structirean be de-
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termined from the eigenmodes of an infinite PC and its (a) y (b) y

external structure. In Sec. lll A, we present a method for 4 '
qualitatively evaluating the reflection at the surface of a ky ky
semi-infinite 2D PC; the approximate availability of the per- Gy P Gy B

fect antireflection coating method developed for a semi- DB - Brx
infinite 1D PC(Ref. 14 to a semi-infinite 2D PC is empha- @) )
sized. These semi-infinite 2D PCs can be used for analyzing 81 f . a’

various applications such as add/drop multiplexers, disper-
sion compensators, polarization filters, and image o ) o )
FIG. 1. Schematic illustration of typical infinite 2D PCs with

processoré®1% In Sec. Il B, we investigate a 2D line- _ _ _
defect WG that efficiently transmits EM energy to a channefflection symmetryr, (aty=0). (&) Square lattice(b) Triangular
lattice of circles with permittivitye, and lattice constard in me-

WG. The semi-infinite 2D PC line-defect WG is a promising ' .
platform for ultracompact photonic circu®€?In Sec. ¢,  dium with €;.
we investigate the interface between a semi-infinite chann
WG and a semi-infinite 2D PC slab line-defect WG as a
typical 3D problen?! All the applications of the proof are
presented using the concept of immittance matching. Sectio
IV is devoted to conclusions.

eEquat|ons(7) (9) express the time reversal degeneracy of
the spin 1 particlgphoton. Equations(7)—(9) will be used
ter.

lﬁ‘ Next, we consider a Poynting vector described using EM

Bloch waves under a reflection operation in infinite 2D PCs.

Figure 1 illustrates typical infinite 2D PCs with a reflection

Il. GENERAL PROOF FOR IMMITTANCE OF planec, . When the propagation direction of a Bloch wave is
ELECTROMAGNETIC BLOCH WAVES perpendicular to this plane, the electric Bloch wd(g) is

We begin our description of the proof with a general ex-{ransformed by reflection operation into
pression of EM Bloch waves. Assuming time harmonic EM

waves, the general expressions for an EM Bloch Ware Unk,
N B ik
E(r,1) = U (1) exp(ik-r —iypt), (1) O E()=1Coy| Unk,y | (X,—y,2)e”"Y, (10)
unky,z
H(r,t)=va(r)explik-r—iwyut), (2
wheren and k stand for the band index and Bloch wave u:ky X

vector, and functions,,(r) andv,,(r) have lattice period- | =y B Koy
icity. The immittance of a Bloch wave is closely related to B nky.y | (X, —y.2)e%, (11)
the energy flow conveyed by the wave; it is therefore useful u:ky,z

to define a complex Poynting vector

1 1 whereO(, , I, andC,, stand for theo, reflection operator,
S(r)= —E(r t) X H*(r,t)= Ukn(r)kan( ), (3) the |nver5|on operator, and tl®, rotation about the axis.

Note that the obvious factor exp-{wy,t) is omitted in Egs.

where the realimaginarypart of S is the density of the (10) and(11). Also note that this reflection operatiomr) is

time-averagedreactive power flow?? not the symmetry operation of tkegroup aikyéy, but of the
Here, we consider the time reversal state of Egsand  POint group in an infinite 2D PC. Similarly, the magnetic
(2), which is written as Bloch waveH(r) is transformed into

t,:_tv (4) U:ky,x

E(tr)(r,t’):E(r’_t)’ (5) olryH(r)z _U:ky,y (x,—y,z)e”‘vy. (12
*
v
H®(r t') = —H(r,~1), ©®) "o

In the derivation of Eqs(11) and(12), we use Eqgs(8) and
(9). The nonzero components of EM waves in the Cartesian
coordinate system are( ,H, ,E,) for TM and (E,,E,,H,)
for TE polarizatior?*
Accordingly, the Poynting vector described using the EM

due to the evelodd parity of electric(magnetig field under
tirge reversal operatioff. Equations(4)—(6) can be reduced
to

@—kn= Wkn s @) Bloch wave under reflection operation can be written as

U_ (1) =Uin(r), ®) URe 20k, /2 (for TM)
sn={ " 13

V(1) = = Vin(D). © Uiy aVnig /2 (for TE).
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On the reflection planey=0, Si"y)(x,o,z) is equal to (a) (b)
S,(x,0,2). Therefore, using Eqg¢3) and(13), we obtain 0} 06? < 3 L
el 4 w [ 1 3 i
(o) q.5'05-_ A = 2r N B4,"’ i
S,(x,02)=S,¥(x,02) (14 & b=—"17% et
S04 B | 2\ 4 7 -
u u * = 03l ANd S e sl
My [y (for TM) ? b < Bl g~
Unky,x Unky,x g 0.2- 7 g 1
(15 o1k A 1 s-1pk. Ve
unky,x unky,x * ® 0'1_ < ‘B4 B4/
— =— (for TE) =~ 0 =) EPL W T R B
Unk, 2 Unk, 2 T M E S05-025 0 025 05
Position [Units of a]
- IM(Z,) =0 (for T™) (16) FIG. 2. (a) Dispersion relation of TM wave in thEM direction
Im(Z,,)=0 (for TE), for an infinite 2D PC with a triangular lattice of air holeg,(

=1). The permittivitye, is 11.9025 and the hole radius is 0.4335

where Z..=u / and Z..= —u / at where a is the lattice constant. Index “A’(“B” ) indicates the

2x= Uk 2 Unky 0 Xz nky x/Unk, .z coupled(uncoupled mode. (Refs. 28—3D (b) Normalized imped-

(x.02). o . . ance of Bloch waves wittk,=2T'M/3 at y=0. We use indices
Equation(16) means that the immittance is real in infinite B1_B5 (band numberto label the modes in order of increasing

1D and 2D PCs on a plane when the plane is a reflectioftequency. Only Bloch waves coupled with an external plane wave
plane and the Bloch wave vector is perpendicular to theyre shown.

plane. It also means that the reactive power flow is zero for
the Bloch wave on the plane under consideration.

For the case of an infinite 3D PC, Ed.4) can be written
as

A. Semi-infinite 2D PC

The geometry of the first example is shown in Figibl
The parameters of the PC is summarized in the caption of
Fig. 2.
Unky,zvnky,x_Unky,xvnky,z:(Unky,zUnky,x_Unky,xvnky,z)*- Figure Za) illustrates the dispersion relation of the TM
(17 polarization wave for the infinite 2D PC in th&M
» ) ] ) direction?” Suppose that one considers the reflection at the
Therefore, an additional reflection plane is required for re—iface of a semi-infinite PC made from the infinite PC
moving the imaginary part of the impedance. When there icaved at the plang=0 shown in Fig. 2). The incident
reflection |c_)laneaZ at z=0, some components of the EM wave is a normal incident plane wave propagating in
waves vanish on the plane. They are called TM- or TE-likeyacyum. Then, one should calculate the immittance of the
based on the analogy to infinite 2D P&dn this case, the  pgjoch wave aty=0 by using the eigenmode of the infinite
impedance is real on the intersection line of $he0 andz  pc. The immittance of the Bloch wave is generally complex
=0 planes. and has lattice periodicity of the infinite 2D PC. The imped-
ance aty=0 calculated using propagating Bloch waves with
ky=2I'M/3 is shown in Fig. 20). The illustrated region is
indicated by the thick solid line in Fig.(ft). The impedance

is normalized by the impedance in vacuum. Note that only

As a typical application of the above proof, we present e impedance of Bloch waves able to couple with an inci-
method reducing a reflection loss at the surface of a semjggnt plane wave“coupled modes) indicated by “A” in

infinite 2D PC, a semi-infinite 2D PC line-defect WG, and agjg o4) is plotted. Since the spatial modulation of bands B1
semi-infinite 2D PC slab line-defect WG based on the cony 4 B2 is flatter than that of bands B4 and B5 and the im-

cept of the immittance matching. The method for the immit-peqance is near the value in vacu(ire., impedance normal-
tance matching is extremely simplified since only the real,qq by vacuum value is near opahe reflection loss of

part of immittance function for an infinite PC is needed for hands B1 and B2 at the frequency is lower than that of bands
the analysis. The reflection coefficient of a semi-infinite PCg4 and B5 for the normal incidence of a plane wave. In
should be determined via Bloch wave expansion in the semiyqgition, the flatness of the impedance enables us to reduce
infinite PC and the expansion should be described by all thg,s reflection loss by using an antireflection coatingRC)

eigenmodes of an infinite. Pdi.e., including decaying method developed for semi-infinite 1D P&sIn this case,
waves.”” However, here we investigate only the impedancegj,ce the plang/=0 is a reflection plane, thicknessand

of propagation modes. This is another merit of our method, g active indexn,, of the ARC can be estimated using
that is, it is not necessary to know all the eigenmodes in our

method for immittance matching problem. The information
on the impedance of propagation modes can be used for
qualitatively investigating the reflection in various types of
open system PCs.

IIl. APPLICATIONS OF PURE-REAL PROPERTY OF
IMMITTANCE

d
D=—7—7+—=135...

T Noldn, (18)

and
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FIG. 3. Dispersion relation of the infinite slab waveguii¢G)
and the infinite PC WG. The PC has a triangular lattice of air holes,

with a radiusr =a/3 in medium withe,=7.6176. The everfodd) FIG. 4. Dependence of spatial distribution of impedance on the
mode under reflection operatiar bisecting WGs is shown by the ' \ave vector and on the surface of a semi-infinite PC WG. The
solid (broken line. Circles show points equivalent t0=-0.30, gifference between ) and(b) is the position of the surface of the
—0.35, and-0.40, which are used to calculate impedances showrsemj-infinite PC line-defect WG connected with the semi-infinite
in Figs. 4a) and 4b). slab WG, shown as dotted line in the diagréRef. 37 above each
graph. The wave vector dependence is shown by dolamal-
nzz\/m at x,y=0, (19 ized wave vectorK=—0.30), dashed K=—0.35), and dotted

(K=-0.40) lines. The rectangular impedance distribution is the

whereD is the normalized thickness of the ARG, is a  impedance for a slab WG with widthi3a—2r.

wavelength in vacuumm, is the refractive index of a semi- ] . o
infinite medium, andY,,=1/Z,, for TM polarization. Ac- the reflection from the joint of a distributed Bragg reflector

cordingly, the reflection loss is easily removed by using EqsWG and a 2D PC WG with square lattice of rods. On the
(18) and(19). If a spatially flat impedance appears in the TE Other hand, the exactly derived renormalized Fresnel coeffi-

Y,,=1/Z,, to reduce the reflection loss of the TE polariza-Wave vector explicitly:* The analytical investigation of a
tion waves. relation between immittance matching akdnatching will

be published elsewher&.
o ) ) Here, we investigate the direct connection between a
B. Semi-infinite 2D line-defect PC waveguide semi-infinite slab WG and a semi-infinite PC WG based on
The second example is related to the interconnection beghe immittance matching. Figure 4 illustrates the dependence
tween a semi-infinite slab waveguide and a semi-infinite 2Dof the spatial distribution of the impedance on the wave vec-
PC line-defect WG, or “PC WG.” The connection between tor and on the surface of the semi-infinite PC WG. The dif-
different WGs is important to realize the ultraminute photo-ference between Figs.(@ and 4b) is the position of the
nic circuits. Although some numerical investigation weresurface[shown as a dotted line in the diagram above each
made for similar structured;?°31-3%we investigate it based graph in Figs. 4) and 4b)] of the semi-infinite PC WG
on the concept of immittance matching. The semi-infinite PGconnected with the semi-infinite slab WG. For the semi-
WG is made by removing a row of air holes in th& infinite slab WG, the impedance is homogeneous inside and
direction from a semi-infinite 2D triangular lattice of air outside the slab region, which shows a rectangular spatial
holes with radiusr =a/3 and e,=1 in a medium withe;  distribution. In addition, the impedance at a surface is inde-
=7.6176. The slab WG has a Widt}‘§a—2r and a permit- pendent of the cleaved position of the infinite slab WG. For
tivity e=7.6176(the same as the, of the PQ. The disper- the semi-infinite PC WG, the impedance depends strongly on
sion relation of the propagation modes of the infinite slabthe position of the surface of the semi-infinite PC WG due to
WG and infinite PC WG are shown in Fig.?8The polar- the spatial periodicity of the impedance in the infinite PC
ization is TE; that is, the magnetic wave is parallel to the slaBVG. Moreover, the impedance on a surface has a complex
and to the axis of air holes in the infinite 2D BtSince the  spatial distribution on the surface. Divergence appears where
both of the slab WG and the PC WG have reflection p|anéhe magnetic wave vanishes. Divergence in a differential im-
bisecting these WGs, the propagation mode has éweken ~ pedance appears at normalized posits 2x/\/3a= +2
line) or odd(solid line) parity under reflection operation, as +2/33, +4+2/33 ... for Fig. 4 (3, and at *1
shown in Fig. 3. The shaded region indicates the projection-2/3\/3, +3+2/3,/3 ... for Fig. 4b). The divergence is
band structure. Whek = 0.6~0.9, the dispersion relation of due to the discontinuity of the electric wave perpendicular to
the infinite slab WG is similar to that of the infinite PC WG. the air holes at the surface of the semi-infinite PC WG. From
Such situation was callekl matching(wave vector match- the Poynting vector calculation, we can confirm that the EM
ing) by Mekis and co-workeré°as a mechanism to reduce energy of these propagation modes concentrates around the
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] ) ] ) FIG. 6. (Color onling Dependence of the spatial distribution of
~ FIG. 5. Dispersion relation of TE-like modes of a 2D PC slab jmpedance on the wave vector and on the surface of a semi-infinite
line-defect WG. The slab consists of the triangular lattice of airop pc slap line-defect WG. The difference betwee@nd(b) is
holes (radius r=0.2%, thicknessh=0.6a, refractive indexn  the position of the surface of the semi-infinite PC slab line-defect
=3.4, wherea is the lattice constantThe line defect is introduced  \wG connected with the semi-infinite channel W&+ 0). (c)—(f)
by filling up a row of air holes. These parameters are the same as ifiop and side views of refractive index distributidig)—(I) Depen-
Ref. 38. The 3D calculations are needed for this strudtRed. 27. dence of the impedance R&,,] (in units of 1k,c) on the cutting

The symmetry of the nonleaky guided modes is indicatedr@s  syrface and Bloch wave vector. The dotted lines indicate the width
even or odd, wherer, indicates the symmetry plane gt=0 in of the channel WG.

Figs. 6a) and 8b). Squares stand for points executing impedance
calculations shown in Figs.(& and Gb). infinitely long 2D PC line-defect WG. The fundamental EM
mode propagating in the channel WG can be coupled only
normalized positionX=0.1®> Therefore, regionX=—1  with the “odd” modes of 2D PC slab WG in the ideal case
+2/3/3~1-2/3/3 (~the width of the slab W&Bis quite  [mode symmetry is defined by the symmetry operation asso-
important for analyzing the immittance matching betweenciated with the symmetry planer( at y=0) bisecting the
the semi-infinite slab WG and semi-infinite PC WG modes.2D PC slab WG and the channel J{ G herefore, we con-
In this region, the impedance matching between the semisider the odd mode only hereafter.
infinite slab WG and the semi-infinite PC WG modes of Fig. Even if the structures of the 2D PC slab WG and the
4(b) is better than that of Fig.(d). Hence, the geometry of channel WG were fixed, there would still be ambiguity in
Fig. 4(b) is better for reducing reflection loss. In addition, determining the structure of the connection — the position
when the wavevector approaches the 1st Brillouin zonef the cutting surface in a unit cell of a 2D PC slab WG.
boundary, the difference in the impedance between the slabhis situation is the same as the 2D problem in Sec. Il B. If
WG and the PC WG modes becomes noticeable. Thereforeye select a reflection plane as the cutting surface, there are
in a direct interconnection between the semi-infinite slab WGwo possible choices, as illustrated in Figéa)eand &b) (at
and the semi-infinite PC WG, the reflection loss of modesz=+0). To illustrate their difference more precisely, we
with K= —0.4 is higher than that withk= —0.3. show the top viewsX=0 plane and the side viewsz=0
plane of the refractive index distribution in the unit cell used
for the supercell calculatiofSin Figs. 6c)—6(f); black in-
dicates the regions with refractive index= 3.4, and white
indicates the region with vacuum. The size of the supercell
In this section, we investigate the connection between aised in our calculation can be obtained from these figures.
semi-infinite 2D PC slab line-defect WG and a semi-infinite  When a 2D PC slab WG is terminated and connected with
channel WG based on the concept of immittance matchinga semi-infinite channel WG at=0, the immittance distribu-
Schematic illustrations of two kinds of connections aretion should be calculated at=+0. The analytical results
shown in Figs. @) and Gb). The structures are sandwiched presented in Sec. Il show that the pure-real feature of immit-
by two semi-infinite vacuum regions in the vertical directiontance on a symmetry plane for a 3D structure is preserved
(x-axis direction, hence they are 3D in nature. The 2D PC along a particular line only. However, our numerical results
slab consists of a triangular lattice of air holes. The lineindicate that the imaginary part of the immittance on a sym-
defect WG is introduced into the slab by filling the air holes metry plane is much smaller than the real part. In this situa-
in a row. The detailed parameters of these structures amgon, the imaginary part of the immittance on a symmetry
given in the caption of Fig. 5. The width and thickness of theplane is negligible in qualitative immittance matching analy-
channel WG arg/3a—2r and 0.@, wherer is the radius of  sis. Moreover, additional components of the immittance ap-
the air holes andé is the lattice constant. Figure 5 illustrates pear in the 3D problem. This is because all components of an
the energy dispersion relation of the TE-like modes of anEM field cannot be treated separately. The two possible com-

C. Application to 3D structures —semi-infinite 2D PC slab
line-defect WG
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bination of EM fields in the impedance calculation for Bloch planes is zero in infinite 1D and 2D PCs when the plane is a

waves propagating in thedirection are reflection plane and the Bloch wavevector is perpendicular to
the plane. The infinite 3D PC case was also analyzed. To
Ekz,y(xyy’ +0) show the usefulness of this proof, we presented a qualitative

Zyx(%y,+0)=— He (X,y,+0)’ (200 method for evaluating reflection logs) at the surface of

semi-infinite 2D PCs(b) at the interface between a semi-

Ex (X.y,+0) infinite slab WG and a semi-infinite PC line-defect WG, and
_ e (c) at the interface between a channel WG and a semi-infinite
Zyy(X,y,+0) . (21 | !
Hy, y(X,y,+0) 2D PC slab line-defect WG. The first example showed the

approximate applicability of the ARC method developed for
semi-infinite 1D PCs to semi-infinite multidimensional PCs.
The second example showed that the use of a connection
. A with the geometry shown in Fig.(d) reduces the reflection.
real part of impedance distributiafl,, at z=+0. The re- g third example showed that the pure-real feature of the

gions of these plots are the same as those in Figs.&d i, mittance is a good approximation on a symmetry plane of
6(f). The value of REZ,,] is colored linearly. Note that the > pc s1ap WGQ_] PP y yp

region|R€ Z,,]|>2 is colored red or blue. Also note that the — \ste that reflection of PCs is sometimes discussed in re-

energy dispersion relation of the odd mode shown in Fig. Q401 with the group velocity or the density of states in the
has a negative group velocity, so the impedance is calculat€fisinite PC. While this can provide good physical intuition,
by using time reversal states of EM fields. we need to remember that the reflectance strongly depends
The results presented in Sec. Il B clearly show that the,, the structure of the surface of a PC. The immittance of
structure in Fig. &) is more suitable for low-loss connec- gy gloch wave is essential for the discussion of the reflec-
tions than that in Fig. @). This is supported by 3D calcula- o phenomena for any “open-system” PCs. The general
tions of the impedance distribution around the WG region ¢qncept of immittance matching was used for this theoretical
[—(\_/§a—r)sys _\/§a_1—r_ (between dotted lines in Fig)B  prediction and is well suited for reflection and transmission
The impedance distribution shown in Figgbis flatter than analysis for a wide variety of “open-system” PCs.
that in Fig. &h) at this region; meaning that the structure in

Since we use TE-like mode only in this analysds, is much
smaller thanZ,, and this was confirmed by our numerical
calculations. Therefore, in Figs(d—6(I) we illustrate the
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