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Immittance matching for multidimensional open-system photonic crystals
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An electromagnetic~EM! Bloch wave propagating in a photonic crystal~PC! is characterized by the immit-
tance~impedance and admittance! of the wave. The immittance is used to investigate transmission and reflec-
tion at a surface or an interface of the PC. In particular, the general properties of immittance are useful for
clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch
waves on a plane in infinite one- and two-dimensional~2D! PCs is real when the plane is a reflection plane of
the PC and the Bloch wave vector is perpendicular to the plane. We also show that the pure-real feature of
immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the
numerical calculations. The analytical proof indicates that the method used for immittance matching is ex-
tremely simplified since only the real part of the immittance function is needed for analysis without numerical
verification. As an application of the proof, we describe a method based on immittance matching for qualita-
tively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite
slab waveguide~WG! and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite
channel WG and a semi-infinite 2D PC slab line-defect WG.

DOI: 10.1103/PhysRevB.68.155115 PACS number~s!: 42.70.Qs, 42.79.Gn
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I. INTRODUCTION

Photonic crystals~PCs! are artificial materials whose di
electric functions periodically vary.1–6 The primary charac-
teristics of PCs are photonic band gaps and peculiar dis
sion relations, both of which enable the propagation
electromagnetic~EM! waves in PCs to be controlled. Rece
interest in PCs has focused on ‘‘open-system PCs,’’5–11

which are connected to other structures at their bounda
Typically investigated are a finite PC contacting another m
dium and finite PC line-defect waveguides~WGs!. In open-
system PCs, the energy of propagating EM waves is tra
ferred into or out of the PCs through the boundaries. Thi
in contrast to closed-system PCs, which are infinite in s
and therefore contain all the energy at any time.

An open-system PC can be divided into a set of s
systems — the PC and the attached structures. Therefo
should greatly facilitate designing open-system PCs if e
subsystem is independently designed and then all the
systems are assembled. Such a method has become we
tablished for electrical circuit design. The behaviors of t
electrical energy flows are predicted based on electrical
mittance~impedance and admittance!.12 Two electrical cir-
cuits can be assembled without energy reflection at their
terface if the electrical immittances of both circuits match
complete electrical circuit system can thus be designed a
designing each subsystem independently.

EM wave media including open-system PCs can be
garded as EM wave circuits, for which an analogous fig
of merit, EM wave immittance, is similarly defined.13 It is a
ratio of the electric field to the magnetic field of a propag
ing or decaying wave in a single medium. In practice, it h
been possible to design one-dimensional~1D! open-system
PCs by using the EM wave immittance. Particularly nota
is that the renormalized Fresnel coefficient for a semi-infin
0163-1829/2003/68~15!/155115~7!/$20.00 68 1551
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1D PC with an arbitrary unit cell has been defined using
EM wave immittance for Bloch waves.14 However, there is
still difficulty in designing multidimensional open-syste
PCs. This is because the number of EM wave immittan
that should be considered at a point on an arbitrarily sha
boundary increases with the number of structural dim
sions. Specifically, the immittance of an EM wave with
given polarization is expressed as one parameter for a
PC, two parameters for a 2D PC, and six parameters for a
PC. Moreover, each parameter of an EM wave immittanc
complex in general. Therefore, an excessive computatio
cost would be needed to match every immittance param
between two multidimensional subsystems.

One way to simplify the matching problem is to redu
the number of parameters by considering structural sym
try. Also, simplifying the parameters themselves is helpf
as has been suggested by Boscoloet al.15 They pointed out
that a propagating wave in a PC line-defect WG has a pu
real immittance on periodic symmetry planes normal to
direction of propagation. Similar findings have been obtain
through an analytical calculation of the impedance of
PCs,14,16 and through a numerical calculation for 2D PCs17

In this paper, we take another approach to simplifying
matching problems — qualitative optimization of individu
subsystems.

This paper is organized as follows. In Sec. II, we fir
prove that pure-real immittance is a common property of E
Bloch waves in 1D and 2D PCs; hence it can be used for
1D or 2D open-system PC. We also prove that the pure-
property of the immittance is true for 3D periodic structure
but under a limiting condition. Then, in Sec. III, we prese
three examples of designing multidimensional open-sys
PCs. This analysis can be made because the immittance
fined by using eigenmodes on the boundary of two se
infinite regions~a PC and its external structure! can be de-
©2003 The American Physical Society15-1
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termined from the eigenmodes of an infinite PC and
external structure. In Sec. III A, we present a method
qualitatively evaluating the reflection at the surface of
semi-infinite 2D PC; the approximate availability of the pe
fect antireflection coating method developed for a se
infinite 1D PC~Ref. 14! to a semi-infinite 2D PC is empha
sized. These semi-infinite 2D PCs can be used for analy
various applications such as add/drop multiplexers, dis
sion compensators, polarization filters, and ima
processors.4,18,19 In Sec. III B, we investigate a 2D line
defect WG that efficiently transmits EM energy to a chan
WG. The semi-infinite 2D PC line-defect WG is a promisin
platform for ultracompact photonic circuits.9,20 In Sec. III C,
we investigate the interface between a semi-infinite chan
WG and a semi-infinite 2D PC slab line-defect WG as
typical 3D problem.21 All the applications of the proof are
presented using the concept of immittance matching. Sec
IV is devoted to conclusions.

II. GENERAL PROOF FOR IMMITTANCE OF
ELECTROMAGNETIC BLOCH WAVES

We begin our description of the proof with a general e
pression of EM Bloch waves. Assuming time harmonic E
waves, the general expressions for an EM Bloch wave6 are

E~r ,t !5ukn~r !exp~ ik•r2 ivknt !, ~1!

H~r ,t !5vkn~r !exp~ ik•r2 ivknt !, ~2!

where n and k stand for the band index and Bloch wav
vector, and functionsukn(r ) andvkn(r ) have lattice period-
icity. The immittance of a Bloch wave is closely related
the energy flow conveyed by the wave; it is therefore use
to define a complex Poynting vector

S~r !5
1

2
E~r ,t !3H* ~r ,t !5

1

2
ukn~r !3vkn* ~r !, ~3!

where the real~imaginary!part of S is the density of the
time-averaged~reactive! power flow.22

Here, we consider the time reversal state of Eqs.~1! and
~2!, which is written as

t852t, ~4!

E(tr)~r ,t8!5E~r ,2t !, ~5!

H(tr)~r ,t8!52H~r ,2t !, ~6!

due to the even~odd! parity of electric~magnetic! field under
time reversal operation.23 Equations~4!–~6! can be reduced
to6

v2kn5vkn , ~7!

u2kn~r !5ukn* ~r !, ~8!

v2kn~r !52vkn* ~r !. ~9!
15511
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Equations~7!–~9! express the time reversal degeneracy
the spin 1 particle~photon!. Equations~7!–~9! will be used
later.

Next, we consider a Poynting vector described using E
Bloch waves under a reflection operation in infinite 2D PC
Figure 1 illustrates typical infinite 2D PCs with a reflectio
planesy . When the propagation direction of a Bloch wave
perpendicular to this plane, the electric Bloch waveE(r ) is
transformed by reflection operation into

Ôsy
E~r !5IC2yF unky ,x

unky ,y

unky ,z

G ~x,2y,z!e2 ikyy, ~10!

5F unky ,x*

2unky ,y*

unky ,z*
G ~x,2y,z!eikyy, ~11!

whereÔsy
, I , andC2y stand for thesy reflection operator,

the inversion operator, and theC2 rotation about they axis.
Note that the obvious factor exp (2ivknt) is omitted in Eqs.
~10! and~11!. Also note that this reflection operation (sy) is
not the symmetry operation of thek group atkyêy , but of the
point group in an infinite 2D PC. Similarly, the magnet
Bloch waveH(r ) is transformed into

Ôsy
H~r !5F vnky ,x*

2vnky ,y*

vnky ,z*
G ~x,2y,z!eikyy. ~12!

In the derivation of Eqs.~11! and ~12!, we use Eqs.~8! and
~9!. The nonzero components of EM waves in the Cartes
coordinate system are (Hx ,Hy ,Ez) for TM and (Ex ,Ey ,Hz)
for TE polarization.24

Accordingly, the Poynting vector described using the E
Bloch wave under reflection operation can be written as

Sy
(sy)

~r !5H unky ,z* vnky ,x/2 ~ for TM!

2unky ,x* vnky ,z/2 ~ for TE!.
~13!

FIG. 1. Schematic illustration of typical infinite 2D PCs wit
reflection symmetrysy ~at y50). ~a! Square lattice.~b! Triangular
lattice of circles with permittivitye2 and lattice constanta in me-
dium with e1.
5-2
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IMMITTANCE MATCHING FOR MULTIDIMENSIONAL . . . PHYSICAL REVIEW B 68, 155115 ~2003!
On the reflection planey50, Sy
(sy)(x,0,z) is equal to

Sy(x,0,z). Therefore, using Eqs.~3! and ~13!, we obtain

Sy~x,0,z!5Sy
(sy)

~x,0,z! ~14!

⇔5
unky ,z

vnky ,x
5S unky ,z

vnky ,x
D *

~ for TM!

2
unky ,x

vnky ,z
52S unky ,x

vnky ,z
D *

~ for TE!

~15!

⇔H Im~Zzx!50 ~ for TM!

Im~Zxz!50 ~ for TE!,
~16!

where Zzx[unky ,z /vnky ,x , and Zxz[2unky ,x /vnky ,z at

(x,0,z).
Equation~16! means that the immittance is real in infini

1D and 2D PCs on a plane when the plane is a reflec
plane and the Bloch wave vector is perpendicular to
plane. It also means that the reactive power flow is zero
the Bloch wave on the plane under consideration.

For the case of an infinite 3D PC, Eq.~14! can be written
as

unky ,zvnky ,x2unky ,xvnky ,z5~unky ,zvnky ,x2unky ,xvnky ,z!* .
~17!

Therefore, an additional reflection plane is required for
moving the imaginary part of the impedance. When there
reflection planesz at z50, some components of the EM
waves vanish on the plane. They are called TM- or TE-l
based on the analogy to infinite 2D PCs.25 In this case, the
impedance is real on the intersection line of they50 andz
50 planes.

III. APPLICATIONS OF PURE-REAL PROPERTY OF
IMMITTANCE

As a typical application of the above proof, we presen
method reducing a reflection loss at the surface of a se
infinite 2D PC, a semi-infinite 2D PC line-defect WG, and
semi-infinite 2D PC slab line-defect WG based on the c
cept of the immittance matching. The method for the imm
tance matching is extremely simplified since only the r
part of immittance function for an infinite PC is needed f
the analysis. The reflection coefficient of a semi-infinite P
should be determined via Bloch wave expansion in the se
infinite PC and the expansion should be described by all
eigenmodes of an infinite PC~i.e., including decaying
waves!.26 However, here we investigate only the impedan
of propagation modes. This is another merit of our meth
that is, it is not necessary to know all the eigenmodes in
method for immittance matching problem. The informati
on the impedance of propagation modes can be used
qualitatively investigating the reflection in various types
open system PCs.
15511
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A. Semi-infinite 2D PC

The geometry of the first example is shown in Fig. 1~b!.
The parameters of the PC is summarized in the caption
Fig. 2.

Figure 2~a! illustrates the dispersion relation of the TM
polarization wave for the infinite 2D PC in theGM
direction.27 Suppose that one considers the reflection at
surface of a semi-infinite PC made from the infinite P
cleaved at the planey50 shown in Fig. 2~b!. The incident
wave is a normal incident plane wave propagating
vacuum. Then, one should calculate the immittance of
Bloch wave aty50 by using the eigenmode of the infinit
PC. The immittance of the Bloch wave is generally comp
and has lattice periodicity of the infinite 2D PC. The impe
ance aty50 calculated using propagating Bloch waves w
ky52GM/3 is shown in Fig. 2~b!. The illustrated region is
indicated by the thick solid line in Fig. 1~b!. The impedance
is normalized by the impedance in vacuum. Note that o
the impedance of Bloch waves able to couple with an in
dent plane wave~‘‘coupled modes’’! indicated by ‘‘A’’ in
Fig. 2~a! is plotted. Since the spatial modulation of bands
and B2 is flatter than that of bands B4 and B5 and the
pedance is near the value in vacuum~i.e., impedance normal
ized by vacuum value is near one!, the reflection loss of
bands B1 and B2 at the frequency is lower than that of ba
B4 and B5 for the normal incidence of a plane wave.
addition, the flatness of the impedance enables us to red
the reflection loss by using an antireflection coating~ARC!
method developed for semi-infinite 1D PCs.14 In this case,
since the planey50 is a reflection plane, thicknessd and
refractive indexn2 of the ARC can be estimated using

D[
d

l0/4n2
51,3,5, . . . ~18!

and

FIG. 2. ~a! Dispersion relation of TM wave in theGM direction
for an infinite 2D PC with a triangular lattice of air holes (e2

51). The permittivitye1 is 11.9025 and the hole radius is 0.4335a,
where a is the lattice constant. Index ‘‘A’’~‘‘B’’ ! indicates the
coupled~uncoupled! mode.~Refs. 28–30! ~b! Normalized imped-
ance of Bloch waves withky52GM/3 at y50. We use indices
B1–B5 ~band number! to label the modes in order of increasin
frequency. Only Bloch waves coupled with an external plane w
are shown.
5-3
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n2.An1Re~Yzx!/e0c at x,y50, ~19!

where D is the normalized thickness of the ARC,l0 is a
wavelength in vacuum,n1 is the refractive index of a semi
infinite medium, andYzx[1/Zzx for TM polarization. Ac-
cordingly, the reflection loss is easily removed by using E
~18! and~19!. If a spatially flat impedance appears in the T
polarization case, Eq.~19! can be used by replacingYzx with
Yxz[1/Zxz to reduce the reflection loss of the TE polariz
tion waves.

B. Semi-infinite 2D line-defect PC waveguide

The second example is related to the interconnection
tween a semi-infinite slab waveguide and a semi-infinite
PC line-defect WG, or ‘‘PC WG.’’ The connection betwee
different WGs is important to realize the ultraminute pho
nic circuits. Although some numerical investigation we
made for similar structures,21,20,31–35we investigate it based
on the concept of immittance matching. The semi-infinite
WG is made by removing a row of air holes in theGK
direction from a semi-infinite 2D triangular lattice of a
holes with radiusr 5a/3 and e251 in a medium withe1

57.6176. The slab WG has a widthA3a22r and a permit-
tivity e57.6176~the same as thee1 of the PC!. The disper-
sion relation of the propagation modes of the infinite s
WG and infinite PC WG are shown in Fig. 3.27 The polar-
ization is TE; that is, the magnetic wave is parallel to the s
and to the axis of air holes in the infinite 2D PC.24 Since the
both of the slab WG and the PC WG have reflection pla
bisecting these WGs, the propagation mode has even~broken
line! or odd ~solid line! parity under reflection operation, a
shown in Fig. 3. The shaded region indicates the projec
band structure. WhenK50.6;0.9, the dispersion relation o
the infinite slab WG is similar to that of the infinite PC WG
Such situation was calledk matching~wave vector match-
ing! by Mekis and co-workers34,35 as a mechanism to reduc

FIG. 3. Dispersion relation of the infinite slab waveguide~WG!
and the infinite PC WG. The PC has a triangular lattice of air ho
with a radiusr 5a/3 in medium withe257.6176. The even~odd!
mode under reflection operationsx bisecting WGs is shown by the
solid ~broken! line. Circles show points equivalent toK520.30,
20.35, and20.40, which are used to calculate impedances sho
in Figs. 4~a! and 4~b!.
15511
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the reflection from the joint of a distributed Bragg reflect
WG and a 2D PC WG with square lattice of rods. On t
other hand, the exactly derived renormalized Fresnel coe
cients of a semi-infinite 1D PC did not include the Bloc
wave vector explicitly.14 The analytical investigation of a
relation between immittance matching andk matching will
be published elsewhere.36

Here, we investigate the direct connection between
semi-infinite slab WG and a semi-infinite PC WG based
the immittance matching. Figure 4 illustrates the depende
of the spatial distribution of the impedance on the wave v
tor and on the surface of the semi-infinite PC WG. The d
ference between Figs. 4~a! and 4~b! is the position of the
surface@shown as a dotted line in the diagram above ea
graph in Figs. 4~a! and 4~b!# of the semi-infinite PC WG
connected with the semi-infinite slab WG. For the sem
infinite slab WG, the impedance is homogeneous inside
outside the slab region, which shows a rectangular spa
distribution. In addition, the impedance at a surface is in
pendent of the cleaved position of the infinite slab WG. F
the semi-infinite PC WG, the impedance depends strongly
the position of the surface of the semi-infinite PC WG due
the spatial periodicity of the impedance in the infinite P
WG. Moreover, the impedance on a surface has a com
spatial distribution on the surface. Divergence appears wh
the magnetic wave vanishes. Divergence in a differential
pedance appears at normalized positionX[2x/A3a562
62/3A3, 6462/3A3 . . . for Fig. 4 ~a!, and at 61
62/3A3, 6362/3A3 . . . for Fig. 4~b!. The divergence is
due to the discontinuity of the electric wave perpendicular
the air holes at the surface of the semi-infinite PC WG. Fr
the Poynting vector calculation, we can confirm that the E
energy of these propagation modes concentrates around

s,

n

FIG. 4. Dependence of spatial distribution of impedance on
wave vector and on the surface of a semi-infinite PC WG. T
difference between 4~a! and~b! is the position of the surface of th
semi-infinite PC line-defect WG connected with the semi-infin
slab WG, shown as dotted line in the diagram~Ref. 37! above each
graph. The wave vector dependence is shown by solid~normal-
ized wave vectorK520.30), dashed (K520.35), and dotted
(K520.40) lines. The rectangular impedance distribution is
impedance for a slab WG with widthA3a22r .
5-4



e
es
m
ig
f
n,
n

sl
fo

G
e

n
ite
in
re
d

on
C
ne
es
a

he

s
a

M
nly
e
so-

he
in
ion

.
. If
are

e

d

cell
s.
ith

it-
ved
lts
m-
ua-
try
ly-
ap-
f an
om-

ab
ai

as

c

f
nite

ect

idth
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normalized position X50.15 Therefore, regionX521
12/3A3;122/3A3 (;the width of the slab WG! is quite
important for analyzing the immittance matching betwe
the semi-infinite slab WG and semi-infinite PC WG mod
In this region, the impedance matching between the se
infinite slab WG and the semi-infinite PC WG modes of F
4~b! is better than that of Fig. 4~a!. Hence, the geometry o
Fig. 4~b! is better for reducing reflection loss. In additio
when the wavevector approaches the 1st Brillouin zo
boundary, the difference in the impedance between the
WG and the PC WG modes becomes noticeable. There
in a direct interconnection between the semi-infinite slab W
and the semi-infinite PC WG, the reflection loss of mod
with K520.4 is higher than that withK520.3.

C. Application to 3D structures —semi-infinite 2D PC slab
line-defect WG

In this section, we investigate the connection betwee
semi-infinite 2D PC slab line-defect WG and a semi-infin
channel WG based on the concept of immittance match
Schematic illustrations of two kinds of connections a
shown in Figs. 6~a! and 6~b!. The structures are sandwiche
by two semi-infinite vacuum regions in the vertical directi
(x-axis direction!, hence they are 3D in nature. The 2D P
slab consists of a triangular lattice of air holes. The li
defect WG is introduced into the slab by filling the air hol
in a row. The detailed parameters of these structures
given in the caption of Fig. 5. The width and thickness of t
channel WG areA3a22r and 0.6a, wherer is the radius of
the air holes anda is the lattice constant. Figure 5 illustrate
the energy dispersion relation of the TE-like modes of

FIG. 5. Dispersion relation of TE-like modes of a 2D PC sl
line-defect WG. The slab consists of the triangular lattice of
holes ~radius r 50.29a, thickness h50.6a, refractive index n
53.4, wherea is the lattice constant!. The line defect is introduced
by filling up a row of air holes. These parameters are the same
Ref. 38. The 3D calculations are needed for this structure~Ref. 27!.
The symmetry of the nonleaky guided modes is indicated assy

even or odd, wheresy indicates the symmetry plane aty50 in
Figs. 6~a! and 6~b!. Squares stand for points executing impedan
calculations shown in Figs. 6~a! and 6~b!.
15511
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infinitely long 2D PC line-defect WG. The fundamental E
mode propagating in the channel WG can be coupled o
with the ‘‘odd’’ modes of 2D PC slab WG in the ideal cas
@mode symmetry is defined by the symmetry operation as
ciated with the symmetry plane (sy at y50) bisecting the
2D PC slab WG and the channel WG#. Therefore, we con-
sider the odd mode only hereafter.

Even if the structures of the 2D PC slab WG and t
channel WG were fixed, there would still be ambiguity
determining the structure of the connection — the posit
of the cutting surface in a unit cell of a 2D PC slab WG
This situation is the same as the 2D problem in Sec. III B
we select a reflection plane as the cutting surface, there
two possible choices, as illustrated in Figs. 6~a! and 6~b! ~at
z510). To illustrate their difference more precisely, w
show the top views (x50 plane! and the side views (z50
plane! of the refractive index distribution in the unit cell use
for the supercell calculations27 in Figs. 6~c!–6~f!; black in-
dicates the regions with refractive indexn53.4, and white
indicates the region with vacuum. The size of the super
used in our calculation can be obtained from these figure

When a 2D PC slab WG is terminated and connected w
a semi-infinite channel WG atz50, the immittance distribu-
tion should be calculated atz510. The analytical results
presented in Sec. II show that the pure-real feature of imm
tance on a symmetry plane for a 3D structure is preser
along a particular line only. However, our numerical resu
indicate that the imaginary part of the immittance on a sy
metry plane is much smaller than the real part. In this sit
tion, the imaginary part of the immittance on a symme
plane is negligible in qualitative immittance matching ana
sis. Moreover, additional components of the immittance
pear in the 3D problem. This is because all components o
EM field cannot be treated separately. The two possible c

r

in

e

FIG. 6. ~Color online! Dependence of the spatial distribution o
impedance on the wave vector and on the surface of a semi-infi
2D PC slab line-defect WG. The difference between 6~a! and~b! is
the position of the surface of the semi-infinite PC slab line-def
WG connected with the semi-infinite channel WG (z510). ~c!–~f!
Top and side views of refractive index distribution.~g!–~l! Depen-
dence of the impedance Re@Zyx# ~in units of 1/e0c) on the cutting
surface and Bloch wave vector. The dotted lines indicate the w
of the channel WG.
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bination of EM fields in the impedance calculation for Blo
waves propagating in thez direction are

Zyx~x,y,10!52
Ekz ,y~x,y,10!

Hkz ,x~x,y,10!
, ~20!

Zxy~x,y,10!5
Ekz ,x~x,y,10!

Hkz ,y~x,y,10!
. ~21!

Since we use TE-like mode only in this analysis,Zxy is much
smaller thanZyx , and this was confirmed by our numeric
calculations. Therefore, in Figs. 6~g!–6~l! we illustrate the
real part of impedance distributionZyx at z510. The re-
gions of these plots are the same as those in Figs. 6~e! and
6~f!. The value of Re@Zyx# is colored linearly. Note that the
regionuRe@Zyx#u>2 is colored red or blue. Also note that th
energy dispersion relation of the odd mode shown in Fig
has a negative group velocity, so the impedance is calcul
by using time reversal states of EM fields.

The results presented in Sec. III B clearly show that
structure in Fig. 6~a! is more suitable for low-loss connec
tions than that in Fig. 6~b!. This is supported by 3D calcula
tions of the impedance distribution around the WG regio
@2(A3a2r )<y<A3a2r ~between dotted lines in Fig. 6!#.
The impedance distribution shown in Fig. 6~g! is flatter than
that in Fig. 6~h! at this region; meaning that the structure
Fig. 6~a! has a lower reflection than that in Fig. 6~b!.

Next, we investigate their dependence on the Bloch w
vector, which is also shown in Figs. 6~g!–6~l!. When the
length of the Bloch wave vector increases, the regions
ored red and blue expand. This means that the regions
uRe@Zyz#u>2 expand, so the reflectance of EM waves
creases.

IV. CONCLUSION

In conclusion, we presented a qualitative method
evaluating the reflection of multidimensional semi-infin
PCs that is based on the concept of immittance match
Using the analytical investigation of Poynting vectors d
fined using Bloch waves, we presented a general proof
the imaginary part of the complex immittance on period
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