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Hall coefficient in an interacting electron gas
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The Hall conductivity in a weak homogeneous magnetic field;<1, is calculated. We have shown that to
leading order in M7 the Hall coefficientR, is not renormalized by the electron-electron interaction. Our
result explains the experimentally observed stability of the Hall coefficient in a dilute electron gas not too close
to the metal-insulator transition. We avoid the currently used procedure that introduces an artificial spatial
modulation of the magnetic field. The problem of the Hall effect is reformulated in a way such that the
magnetic flux associated with the scattering process becomes the central element of the calculation.
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I. INTRODUCTION A(q) can be avoided.
In this paper, we show that the Hall coefficient for elec-
In recent experiments on the two-dimensional dilute electrons with the quadratic spectrur(p) = p2/2m, in the lead-
tron gases the renormalization of the Fermi-liquid parameterthg order inr, , is not renormalized by the-e interaction,
is found to be significant-* These strong renormalizations i.e., Ry=1/nec [In fact, the cancellation of the-e renor-
are natural for a dilute gas with a large value of the ratio ofmalization in the Hall coefficient holds for any spherically
the Coulomb energy to the Fermi energy. It was shown, howsymmetric dispersione(|p|); see Appendix B for com-
ever, that in a high mobility MOSFETSmetal-oxide-  ments] This result explains the stability of the Hall coeffi-
semiconductor field-effect transisjorThe density of elec- oy R | 1o thee-e interaction demonstrated in Refs. 5 and

trons ny found from the Hall coefficientR,=1/nyec 3(b). Nofi :
S . . ; . Notice that the Altshuler-Aronov corrections and
coincides with that obtained from the Shubnikov—de Haas( ) a9y

measurements o within a few percentsee Fig. 41n Ref. 5y SE0% 8 E8 LR FERE T8 A R0 FEOCE I
and the inset in Fig. 4 in Ref.(B)]. This remarkable fact '

iatb
raises a question about the electron-electeg)(interaction LO R 0:) the or:der 16 T‘ﬁ d_o ex:Ft. Thereforelz_ the_: fact_sta’;}ed
renormalizations of the Hall conductivity,, in a small ~ere about the cancellation ere renormalizations in the

magnetic field,w,7<1, wherew, is a cyclotron frequency €2ding term ok, should be proved specifically.
and 7 is the free path time. Notice that while tieee inter- The renormalization o#r, can be also studied within the
action is very strong, in other aspects this system is rathdrermi-liquid theory following the line given in Ref. 7. The
simple, because the effect of the crystalline lattice can bé&hagnetic fieldB comes into a transport equation in a com-
safely studied in the effective-mass approximation. Apartination with the velocity of a charge carrier asg[y,
from impurities, one may consider the electron liquid as if it X B]d/dp) on,, where én, is the departure of the distribu-
is in a translational invariant background. Therefore the intion function from equilibrium due to the applied electric
fluence of the interaction on the Hall coefficient should notfield (see, e.g., Ref. )8 In the presence of the electron-
be masked by unnecessary complications. The issue of thelectron interaction one may expect in addition terms like
Hall coefficient renormalization has not been discussed mucle[ v, X B]d/dp)(fp, ony),  or  (fyo (e[vy XBlaldp”)
in the literature despite its obvious importance. We have inx(f,,.én,.)), where(---) means the average over the
mind the renormalization of the leading i, terms in the  Fermi surface. Heref ., 6n,/) is the response of the Fermi
conductivity tensor, i.e., of the Hall conductivity,, liquid to the departure of the distribution function from
ocBthr, and the diagonal ternr,,=ne?r, /m*. Herer, is  equilibrium’ This approach gives,, renormalized by the
the transport relaxation time, arglis a magnetic field; no- e-e interaction which when combined withr,, yields the
tice thatRHEBflaxy/(axx)z. Hall coefficient Ry with no renormalization factors. It is,
In this paper we examine the effect of thee interaction  however, not clear that the derivation of the Hall conductiv-
on the Hall coefficient within the microscopical theory. We ity in a weak magnetic field via the transport equation within
avoid the currently used procedure that introduces an artifthe Fermi-liquid theory is accurate enough. For instance,
cial spatial modulation of the magnetic field. Based on arconsider the following process: the electric field leads to the
idea of the flux of a loop in a diagrammatic technique, wedeparture of the distribution function from equilibrium; the
obtain a gauge invariant procedure for the calculations in thelectron liquid responds to thién via the electron interac-
presence of a homogeneous magnetic field which makes iton; the magnetic field acts on the result of this response and
possible to conduct the analysis @f, in a general manner. transforms it into the Hall current involving again tieee
In particular, in the course of the calculations the translainteraction. The nonfactorized part of such two time interac-
tional invariance of the problem is maintained, and the usualion process({(e[V, X B]d/dp")fn,(p;p’;p") dnyr)) corre-
rather involved procedure of extracting a cons®ftom the  sponds to nonpair correlations, and is beyond the scope of
g—0 limit of a singular expression for the vector potential the Fermi-liquid theory(Some doubts about the derivation
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via the kinetic equation were expressed in the literature, e.g\When inserted directly into diagrams the expression for
Ref. 8, Sec. 7.12.We will see, however, that this contribu- A,(q) being highly singular leads to complications. In order
tion is small by the parameterelr;, . Therefore the present to circumvent this difficulty it was proposed in Ref. 10 to
microscopical derivation justifies the applicability of the introduce a magnetic field modulated in space at some wave
Fermi-liquid treatment of this problem. vectorq in addition to a homogeneous electric field at finite

In Sec. Il the technicalities of the calculation @f, in a  frequencyw, and to study theq,w) response of the current.
constant magnetic field are given. In Sec. lll the Hall con-It has been argued in Ref. 10 that in the calculatiorrgf
ductivity of the noninteracting electrons is considered, and irone should perform the limiting procedure as follows: first
particular a nontrivial problem of the Hall conductivity in a extract theg-linear contributions related to the vector poten-
system with an arbitrarygnonshort rangeimpurity potential  tial and arrange them into the gauge invariant combination
is studied. By studying this case we make the needed prep®&(q) =igxA(q); next letq—0 keepingB(q) to be finite;
rations for the analysis of the effects of thee interactionto  and, finally, perform the dc limit for the current response.
the Hall conductivity[see Eqs(23)—(25)]. The problem of The first step in this procedure requires combining different
the Hall effect in a weak magnetic field is reformulated in apieces into the gauge invariant combination, and this in-
way such that the magnetic flux associated with the scatteiolves nontrivial cancellations amongst different diagrams.
ing process becomes the central element of the calculatioThe outlined procedure is effective when a specific process is
In Sec. IV the role of thee-e interaction is analyzed. There, needed to be calculatddee, e.g., Refs. 6 and,%ut unfor-
the main contribution taer,, is given by Eq.(35). The latter  tunately it is unsuitable for a general analysis.
expression contains a product of two terms; one describes the The method proposed below treats the magnetic field at
scattering of the quasiparticles by impurities, while the othelg=0 ab initio, and at no stage of the calculation does the
corresponds to the decoration of the current vertices by theector potential appear explicitly. In addition to the apparent
e-e interaction. The derivatives over the momentum in Eq.gauge invariance the developed technique shows clearly that
(35) correspond to the vector product of the two coordinatealthough the Hamiltonian in the magnetic field is not trans-
differences, see Eq23), in the representation of the flux lational invariant, any measured quantity like conductivity
which leads to the skew action of the magnetic field. can be calculated in an explicitly transitional invariant man-

In the concluding section for completeness we dis&ss ner. The calculation is based on the fact that the Green’s
using the Fermi-liquid theoryIn Appendix C we reproduce function in a constant magnetic field can be represented in
the known answe(Ref. 9 for the weak localization correc- the formt*~13
tions to oy, as an instructive example of the calculation
within the new procedure. G(ry. 1.7 =exd(iele)® (11,10 —1.7),  (4)
II. DIAMAGNETIC AND FLUX CONTRIBUTIONS where the phasé is equal to

IN A HOMOGENEOUS MAGNETIC FIELD

1_'0 describe eleqtrons moving in a magnetic field the mag D(ry,rp)=(ry— rz)A( ) (5)
netic vector potential can be introduced through the exten- 2

sion of the momentum in the kinetic energy teri( ~ ) ) , ,
— ¢(p—(e/c)A). Although the analysis preser?ti)d inri(hriz pa- andg is the core Green’s function which contains the infor-
per is valid for any spectrum with a spherical symmesge  Mmation about the Landau-level quantization. The funcﬁo_n
Appendix B, the consideration in the main text will be lim- is translational and rotational invariant and is also invariant
ited to the electron gas with a quadratic spectrum with respect to different gauge representations of the mag-
netic fieldB (see Appendix A Notice that in the presence of
e-e interaction the representatigd) and(5) is still valid.

The rotational invariance of the core functigris respon-
wherem is the conduction band magse., m is not renor- sible for the fact that the Hall current originates either from
. ST the diamagnetic part of the current operator, or with the par-
malized yet by the electron-electron interacjicend we use . . ~ S
ticipation of the phase termé&. No contribution tooy,

the fact that for low concentrations of the electrons only the . o
. . : comes out from the core functions alone. This is because the
quadratic term ine(p) is relevant.

Notice that the homogeneous magnetic field demands Spgglculatlon Ofryy in the Kubo formula involves the averag-

cial care as the Fourier components of the vector potentia“qg over the momenta of the r?onglagonal CL:Irrent'—currfant cor
A(q)=fd%re "IA(r), are singular in this important case. relator(J,J,). Since the functiong are rotational invariant,

2

: D

Let us take the vector potential in the Landau gauge, the angular integration of the tygey- - - py) makes the core
function’s contribution tao,, zero if the scattering by impu-
B=Bz, A.=0, A,=BxX. 2 rities is simple enough and does not itself produce the skew
] effect on average. Then only the interference of the phase
Then the Fourier components A(r) are factor & or the diamagnetic current make it possible to
P achieve the skew action of the magnetic field to avoid the
Ay(a)=iB-—5%a). (3  Vvanishing of the(J,J,) current correlator after the angular
J0x integration.(Notice in this connection that the Lorentz force
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can be interpreted as a consequence of the phase accumula-

tion in the magnetic field, Ref. 14. D(ry,rp)=(ro—rpA
The diamagnetic part of the current operator,

—(e®/mc)A, being nongauge invariant has to be completedrhen collecting the phase factors from all Green’s functions

into a gauge invariant contribution in any calculation of aof a given loop of a diagram one will obtain the so-called

measurable quantity. This completion comes out naturallyflux of a loop” of a diagram.[The phase factors that appear

here due to the differentiation of the phase factors in theyn the right-hand side of Eqg7) and (8) after passing

—+ r
r12r2>=Jrle(r)dr. (10)

Green’s functions in the current operator, through the differentiation operator join other such factors
from the rest of the Green’s functionst follows from Eg.
J,(r)=(el2mi) lim (VL =V (r) w(r!) (10) that the phase associated with each loop in a diagram is
’ Mo ‘ proportional to the flux
— (M) A"(r)) ' (r)) ih(ry). (6)
Consider the current vertex at the pomtconnected to the Pio0p= § A(r)dr, 1D

rest of a diagrange.g., for a current-current correlatdsy a

pair of Green’s functiongj(r;,r;) and G(r;,r,). Then the With the integral taken along the closed polygon correspond-
diamagnetic part results in ing to the loop(The importance of the flux in the calculation

of the Hall effect in the insulating state was emphasized in
5 Refs. 15 and 16.Notice that the polygon is oriented along
(eMOA(r)G(ry,r)g(ri.ra), the loop in the direction of the arrows of the Green’s func-
whereas the first term yields tion. The ma.gneti.c flux t.hrough the polygon is gauge and
translational invariant. It is equal S, whereS is the ori-
) ) ented area of a polygon. Depending on the situation one can
(el20M)[G(ry,1) (= 1)V, G(ri 1) +iV, G(r1,1)G(r1,12)]. decompose the polygon into the sum of different pieces. The
) , ) L (iiecomposition can be done in a variety of ways, and a con-
To treat the phase factors in the Green's functions it is usefuanient choice may simplify the calculation. This is an ad-
to split the A term into two half pieces and introduce the \aniage of this method. With the purpose of a general analy-
following relations: sis of the Hall conductivity we will decompose the loop
polygon in a diagram for the current-current correlator into

[—iV,. —(elc)A(r))]G(r{ ,ry;7) the sum of triangles, and then use the fact that the flux
' through a triangle r(;,r»,r3) is equal to (1/2B-[(r,—rq)
=exg (ie/c)P(r;,ry)] X (rz—r,)]. The details of the decomposition procedure will

_ - be postponed to the next secti@ee Eqs(20)—(23)], where
X[=iV, +(e/2c)(ri—ra) XB]G(ri=r2;7),  (7) it will be shown how the flux contribution can be analyzed
for the calculation of the Hall conductivity in a system with

and an arbitrary(nonshort rangeimpurity potential.
Let us summarize. It follows from the symmetry of the
[iV, — (elc)A(r)]G(ry,ri;7) problem that the Hall current may appear either from the
: diamagnetic part of the current operator, or through the phase
=exd (ie/c)D(rq,r;)] factors of the Green’s functions. Partially we have used the

_ phase factors to extend the diamagnetic term in EQs(9).
x[—inl—(e/ZC)(rl—ri)x BlG(ri—r;;7). (8) The rest of the phase factors contributions can be organized
in the form of the fluxes of the loops. The main consequence
The terms on the right-hand side that cont&irexplicitly  of this structure is that if one is interesteddty linear in the
yield the diamagnetic contribution extended to gauge invariexternal magnetic field onlyy,,«B, then it is enough for

ant combinations. Combining Eqg&/) and(8) we obtain the calculations o, that the core Green’s functions will be
taken in the limitB—0, wheng coincide with the Green’s
Jgif}?nded:(ewc/4)[(ri— r,)XB—(r,—r;)xB] functions in the absence of the magnetic fields_.,

=(0g-o- The latter fact enables us to reduce the calculation
XG(ri—r)G(ri—r)R(ri—re,ro—r¢), (9 of oy, in a small magnetic field to a diagrammatic problem
that uses the Green’s functions in the absence of the mag-
whereR(r,—r,r,—r¢) is the remaining part of a correlator petic field.
ending at a point;. Notice thatJ32™ s also translation
invariant. In Eq.(9) the cyclotron frequency has been intro-
duced in such way that its sign is that of the carriess:
=eB/mc.
The phase factob(r,r,) appearing in the Green’s func-
tion G(ry,ro,7) may be rewritten as the integral over the  We first illustrate the use of E¢9) by deriving the Drude
straight line: Hall conductivity for the simplest case of short-range impu-

IIl. HALL CONDUCTIVITY FOR NONINTERACTING
ELECTRONS IN THE PRESENCE OF A FINITE
RANGE DISORDER
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rities. The conductivity will be calculated in the framework the upper complex half plane to the real axes yields the re-
of the Kubo linear-response theory. The current-current cortarded correlatoﬂsﬁ(w). This correlator is directly related
relator on the Matsubara frequencies is defined as to the conductivity,

i
I p(iwn)=— Joﬁei‘”nT(TTJa(r)JB(O)>. (12) Taplw)= ;HEﬁ(q= 0.w). (13

In the case of a short-range disorder the correlétayin the
The analytic continuation from the discrete frequencies orDrude approximation is equal to

Iy (ri,r ;T)=(e2/4m2)( lim { =iV}, — (elc)AX(r{)} +ini—(e/c)AX(ri)) ( —iVY. —(elc)AV(ry)

+ lim {iv,f,—(e/c)Ay(rf')})E(rf—ri ,—r)exp (ielc)®(r¢,r)]G(r! —r} ,r)ex (ie/lc)®(r! ,ri)].
rf—rs

(14
Using Eqgs.(7) and(8), Eq. (14) can be rewritten as

Ty (ri,r ;r)=(e2/4m2)( lim {—i V¥, +(ef2c)[(r{ —r{) X Bl } +i Vi — (e/2c) [(r¢—r;) X B]x) ( —ivy,

+(el2c)[(r¢—r;) X Bly+ lim {iVy,—(e/2c)[(r{ —r{)X B]y})a(rf—ri —1)G(r! —rh, 7). (15

Notice that when in Eq(15) the gradients from thé, vertex d’p
act on the coordinate dependent terms in &epart the H&’y(q=0,iwn)=i(e2wcl4m)T2 3
corresponding contributions cancel out. The part lineaB in I€n (2m)
arising from theJ, vertex is equal to x[gA(p)&/apng(p)

» , . —GR(p)alop,GA(p)Ipy, (19
ny(rhrf;T):(e od/Am)[(ri—r) X By .
and correspondingly

X{[=iVYG(r—ri, = D]G(ri—r¢,7)

o d’p
+a(rf_ri1_7)[iv¥fa(ri_rf17)]}1 Hf({,)(qzo,mn):|(e2wcl4m)T§ (27T)dpx
(16) X[GA(p)dl dpxGR(p)
and the other term from th&, vertex is 9N PAIRG )] 49

The summation over the frequencies and momentum in Egs.
(18) and (19) leads to the standard answery,= w.70yy.
This part of the calculation is close to the one presented in
Ref. 13.
Next we consider a nontrivial problem of the calculation
~ X~ of the Drude Hall conductivity for noninteracting electrons
+G(r=ri, = DL=IVEG(ri—re, 1)} in the presence of a finite rar):ge disorder, i.e., f%r nonshort-
(17) range impurities. To the leading order ine}4 the conduc-
tivity in this case are given by a set of ladder diagrams. To
) get oy, that is linear in the external magnetic field we con-
[Notice that Eqs(16) and(17) reproduce the structure of Eq. sider separately the diamagnefixtended contribution, and
(9).] Now the transitionGg_.o=Gg-o can be performed in the flux contribution that comes out from the phase factors
these expressions, and as all terms are translational invariaatcumulated by the Green’s functions in a diagram. In the
one may use the Fourier transformation. Then the coordinatease of a finite range disorder the fermion loop does not
difference ¢;—r;) leads to the differentiation of the Green’s degenerate to two retraced paths and the flux term becomes
function with respect to momentum: absolutely essential.(Naturally, we have to expand

IQ)(rir¢;7)= (2w /4m)[ (ri—1;) X B],

XALVEG(re—ri, = 11G(r =1y, 7)
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%py Yap Yop, %py
B
Yop,
Hop,
a) a) b)
Yo, Yo,
eB e e .eB
II %e " %e " lz_c %e%e-i- %eEye
Yop, Yap, Yo, Yop,
b c) d)
FIG. 1. The diamagnetic contribution&@) from the J, vertex, FIG. 3. Flux contributions with no vertex differentiation in-
(b) from the J, vertex. volved andd/dpy is closer top, vertex thand/dpy .

exqd (ie/c)®yq0p] and keep the linear term only as we are in-
terested ino,, that is linear inB.) 0=-B-(Fy—rp g+ g — - —Tatta—r)X(r1—rp).
The diamagnetic contribution is represented in Fig. 1. The 2
cross means differentiation with respect to momentum. Only (22
the Green'’s functions adjacent to the current vertex are dif-
ferentiated. This contribution is obtained using the relation
(7), (8), and(9) similar to the case of the short-range impu-
rities.
To analyze the flux contribution to the Hall conductivity
we decompose the loop polygon in a diagram for the current-
current correlator into the sum of triangles. The decomposi- 1
tion will be done as follows: one of the vertexes ai-gertex Do0p=> Z’ (£)B-(rip1— )X (rj =), (23
polygon is chosen as a reference pdlat us call itry), and 2 7
thenr, is connected to all other vertexes. In result the poly-
gon is decomposed into oriented triangles all having the ref- _ . o o
erence point as their vertesds an example consider a loop Where prime means that each paijj, or (j,i) which is the
presented in Fig. 2.The flux through the polygon is there- Same, enters the sum only once, and the pair is oriented with

fore equal to the sum of the fluxes through each triangle; FeéSpectto the reference point in such a manner that its sign is
“+”if we do not pass the reference point moving along the

Now we are ready to state the general rule. After some ref-
erence point has been chosen the flux of the oriented polygon
is given by

1 loop fromr; to r; in the arrow direction. The sign is—="
Proop=5B-[(ra=r) X (r3=ra) +(r3=ry) X (rs—rs) otherwise.
After the flux contribution has been decomposed in pairs
+-0, (20 each pair supplies the diagram with a vector product of the

two coordinate differences. When Fourier transformed these
coordinate factors lead to the differentiation of the corre-
sponding Green’s function with respect to the momentum

which in turn is equal to

1
®|Oop=§B-[(r2—r1)><(r3—r2)+(r3—r2)><(r4—r3) componentsp, andp, . There are also situations when one
or two of (r;,.,—r;) are adjacent to the current vertexes.
+(rp—r) X (rg—rg)+---1. (21)  Then the Fourier transformation leads, in addition to the dif-

ferentiation of the vertex-attached Green’s functions, also to
Here we rewrote the vector differences;{ry) as [(r;  the differentiation of the vertex momentum.
—rj—1) +(rj—1—---)+(rp—ry)]. Finally we add to®,4,p Let the left-end current vertex be tipe vertex, and let the
a zero flux expression that does not change its value, p, vertex be on the right end. The left-end located vertex will
be chosen as the reference point with respect to which the
orientation in Eq(23) has been performed. First consider the
terms represented in Figs. 3 and 4 when the vertices have not
been differentiated. The difference between the two terms is
that in Fig. 3 the differentiatiod/ dp, is closer to the lefp,
vertex, whereas in Fig. 4 it i8/dp, that is closer to the,
vertex. The ambiguous terms witthdp, andd/dp, standing
on equal distance, i.e., when they stand opposite to each
other, are canceled out. Figure 5 represents schematically the
FIG. 2. Flux contribution. flux contribution involving the differentiation of thp, ver-
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%py %p}' Yop, %Px
.eB | ps e Py e
i=—= e = — e =
i% %e %e + %e %e 4c | M m m m
%px

%
P a) b)
a) b)
Yop FIG. 6. Compensation of the false contributions of Fig. 5.
_i¢B | p, Bio 4 B Dy In addition, Figs. 4a) and(b) on one hand and Figs(e) and
Ze | m mom m (d) on the other yield a similar combination,
% Yop, % .
" R 113 = —i(wme2)[GA(p) 3l dp,GR(p)
c) )

-G R( p) &/ﬁpygA( p)]‘]xa/apx‘]y . (25)
FIG. 4. Flux contributions with no vertex differentiation in- ) ] ) ]
volved anda/dp, is closer top, vertex thand/ap, . Notice that finally we get a very simple rule: start with the

derivative that stands at the left, and organize all the rest on
the right as a derivative of th&, current; arrange the signs
eddepending on whether the derivative is on the left-to-right or

however, that the momentum of the vertex originates frornth:]3 rri]ght?tc_)-left/ segmen/ts ofdth_e I(_)op, handhdepeno][inr? on
the gradients of the two Green’s functions that are attachely"€ther it is as/dp; or d/dp, derivative[the change of the

: : is i d with the orientation rules for pairs formu-
to the vertex/see, e.g., Eq(14)]. Therefore the differentia- S'9" 1S I accor . .
tions in Fig. 5 contain false nonflux contributions when lated for Eq.(23)]. Remarkably, the diamagnetic and flux

219p, and 9l dp,, act on the same Green’s function attachedt®ms match each other to produce a rather simple f¢Fhe

to the vertex. The compensation of the false terms is given i eierls substitution fo_r the hppping matri>_< elements i_n the
Fig. 6 where only the Green's functions closest to fie presence of a magnetic field is useful to discuss the diamag-

vertex are differentiated. Finally, in Fig. 7 the contribution ?hetlc cotr_1tr|but|o|n qpbar;he?ual foot.m_g Vr't? the ?#X te;]?ﬁm f
involving the p, vertex differentiation is represented. Here € confinuous imit both terms originate from the phase tac-

after cancellations amongst various terms combined into ¥r —ie/c/TA in the path-integral formulation of the motion
full derivative only the two terms with the derivatives that Of the electron in the presence of the vector potenfial.
act only on the Green’s function closest to the vertex The Onsager relationg,,(B)=o,(—B), follows di-
survive. The apparent asymmetry between Figs. 5 and #ectly from the rule formulated above. To gef,(—B) from
compared to Fig. 7 is due to the fact that it was pevertex @ given contribution ter,,(B) one has to interchange deriva-
that was chosen here as a reference point for the orientatidiyes d/dpy and d/dp, and reverseB to compensate the
of the pairs, rather than thg, vertex. change of the sign.

The total contribution Let us collect all the terms to- ~ Now we use a usual tricK, and interchange in thEL{})
gether. Notice the cancellations of Fig. 6 with Figb)l and  integration variablep, andp, . This leads to a convenient
Fig. 7 with Fig. Xa). Then Figs. 8), 3(b), and %a) on one  expression fodl, :
hand an_d Figs. _(3),_3(d), and %b) on the _other can b(_a o2 p P
packed in Comblr}atlons such that e-ver.ythlng on the right ny:iwcm_(gA(p)_gR(p)_gR(p) —GA(p)
from thep, derivative becomes ja, derivative of the current 2 JPx JPx
operator:

tex at the right end. In Figs.(8 and(b) the d/dp, differen-
tiation acts on each place in the loop. It should be notic

J
Xa—py\]y—\]y&—py\]x) .
The scattering by long-ranged impurities results in the renor-
—GR(p)al apyGA(p)13xl dpydy . (24 malization of the current vertex by the ratio of the transport
time 7, to the single-particle scattering time

x| J (26)

EO=i(wme2)[GA(P)dldp,GR(p)

(In the last expression we have omitted for brevity

T3, [[d’p/(2m)], as well as in Eqs(25) and(26) below) Ja:Llpl) % 27)
Yop, Yop,
Yon, %on
a) b a) b)
FIG. 5. Flux contributions withp, vertex differentiation in- FIG. 7. Flux contributions withp,-vertex differentiation in-

volved. volved.
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FIG. 8. Cancellation of the singular terms.

FIG. 10. Examples of th&'; andI', amplitudes.
Fortunately, in the combinationd{d/dp,J,— Jyd/ Ip,Jy) the
terms of the type)/dpy 7 (|p|) cancel each other out. Then combined formd/dp,J, . The observation about the impor-
the standard integrations I, lead us to a natural conclu- tance of keeping combined expressions in the calculation of
sion that the answer for the finite-range impurities differso,, is of general character. Separate terms can be more in-
from that one for the short-range case by the substitutiowolved than their total contribution, see, e.g., the discussion
T— Ty related tog?3/9&? following Eq. (36).
To conclude this section we notice that E@6) repro-
Oxy™ @cTtrOxx- (280 duces the structure of the iterative solution of the transport

Correspondingly, it follows from this conclusion that the equation foro,,. Let us compare Eq(26) with the term
Hall coefficient is independent on the impurity ranfidere  (€[VpXB]d/dp) on, that appears in the transport equation as
one point remains to be cleared up. In the presence of disof result of the action of the Lorentz force and describes the
der the Green's functions acquire a self-energy part whos&Irn of the current. In the first bracket of EQ6) the deriva-
imaginary part is 1. Its real part shifts the chemical poten- tive d/dpy yields the velocity,, while 4/dp, in the second
tial and hence is of no interest, but its dependence on thBracket corresponds to the momentum derivative acting on
momentum near the Fermi energy may influence the result dhe distribution functionénp. The derivation in this section
the integration over momentum in E@6). However, in the Was limited to the leading order in &fr,. To get further,
absence of a special structure of the scatterers, like in liqui@ne has to study the dependence ofi1bn the flux. The
metals, the sensitivity to the energy of the electron state i¢¢ading term of that kind arises due to the Cooperton correc-
very small whenez7,5>1, and this effect can be ignoréd. tions and is discussed in Appendix C.

A comment may be in place here. It was important in the
above derivation to keep thg derivatives in the form of IV. ELECTRON-ELECTRON INTERACTION

combined expressions of the typp,J, rather than to con- We are interested in the current-current correlator, and

sider separate terms. Separately these terms are larger L refore th basic or 0 b nsidered | ntial

even more singular than their sum. Let us see how it Workéregc?it?e?in eofaZI(e:cl?rgr(:-er;sosleo a?rsco Dsia erzaemmsa;‘cZﬁqu'[er\isa

in a somewhat pathological but instructive example of short- Ing - pairs. 9 Y
rocess is described by the particle-hole ladder sections al-

range impurities. In this case the dressing of the vector ve Fernating with the irreducible amplitudes of thee interac
x by the impurity lin not give any eff _ ; S . i
tex by the impurity lines does not give any effect because Ot|on I'y andT',. AmplitudesI’; andI’, differ in spin struc-

the momentum averaging. Tigg derivative makes the vec- i it h ticall ted in Fig. 9. E I f
tor averaging noneffective as it is illustrated in Fig. 8. Each uré as it1s schematically represented in Fig. 9. Examples 0
u%_uch amplitudes are given in Fig. 10.

of the three diagrams presented in Fig. 8 contains the sing A typical diagram for the Hall current correlatd,, in-
Xy

lar propagator of the diffusion ladder diagrarf@iffusion) .
that does not vanish after the averaging. This does not IeadaEJUdeS thel,-current vertex, severdl amplitudes connected

any complications, however, as the sum of these singula?y e R—R, A_'AI" or R-A SiCtIOI’]S ?21% finally, bthe
terms vanishes identically. Indeed, the expression correly-Current vertex. In essence, the correlaldg, may be

sponding to the ending blodke., separated by the last ver- evaluated following the same line as in the case of the long-
tical impurity line) when summed over the three diagrams'@N9e impurity scattering. There is, however, a complication

L~ ~ . related tol’; insertions. In the case of noninteracting elec-
turns out to be a d(_arlvgtl\{e/&py_(g%ygA), wherep is the — yng e h;ve dealt with a flux of a single loop ex’?ending
Lnomentum circulating inside this block. The integration overgom theJ, to theJ, vertex. An insertion of', in a diagram
p forces the whole contribution to be zero. As a result onlyjeayes the number of loops to be the same, while the
the diagram that does not contain vertical impurity lines SUramplitude splits the loop into pieces and breaks the single
vives in the case of the short-range impurities as it is 0bviougyop structure. We restore the construction with the main flux
when one considers these terms not separately but in thgop having in mind to use the basic results of the previous

o p o« “ Nl SN RN e

B e, j i j i j

k prooomioi ] kLocaooo 1 | 9 1
o 8 8 8 / \\ / \\ / \\
) b )
FIG. 9. The irreducible amplitudes of the-e interaction ‘ ¢
I'y andls,. FIG. 11. The phase factors of thhg amplitude.
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|

fb/fapx ,b/fapy

) b
5 B &) I FIG. 13. A contribution tao, that involves nonpair-correlation

- T o amplitudes.

f f L I f

//1,/2 /2/ ! J /1/2/ Next, ®yasneq CAN be rearranged agB-[(r,—ry) X (ry
- - - - -- —rg)+(ra—ry) X(rg—r3)], and for any structure of thE,

3 I3 amplitude one obtains
FIG. 12. The treatment of the dashed lines in Eheamplitude; 1

the left standing derivative acts on a particle-hole section. (I)dashed:EB' [(ro=ry)X(rg—rj+rj—---—rs)
section, i.e., Eqs(24) and (25). +(ro—ryX(rg=ritri—---—rgz)]. (30

Consider an insertion df; that splits a loop at the points
i,j,k,I. To restore the construction with the main flux loop
we attach the phase factiqe/c)(rj—r;)A((ri+r;)/2) to the
segmentr;—r; in Fig. 11(a). The analogous operation will
be done with the segmenf{—r,. Simultaneously the com-

pe”Sf"‘“”g ph_ase factors with the opposit.e sign are attachedt e conclusion that the dashed lines do not spoil the general
t_h)er Ilnlens Igiomglllnaﬁhteh eoszpzzltemgggt;g&;eﬁo; r:jd t:l th structure of the discussed contributions, and every Green's
o 9 9 Y MSunction on the “vertical” lines, likerg—rg andrs—ry, is

dashed lines with arrows. These dashed lines carry phases differentiated on the same footing as any other Green’s

but do not represent any Green’s functions. Now we regroup ¥ . . ) ST
: . : unction. Thus in the considered case thederivative in-
the phase factors. It is possible because we are interested n

oyy that is linear inB, and therefore we have to expand and eed acts on everything on the right to fhederivative, as it

. . should be expected.
keep only linear terms in the phase factors. The phases of the Now we continue with the analysis of the case of the left

two dashed lines;;—r; andr,—r,, are used to obtain the ; L ,
) | . standingp derivative that acts on one of the Green’s func-

flux of the main loop extending from thg to theJ, vertex . . . : )

. X C X o tions in the particle-hole section. The sectidRs R or A
[a fragment of this loop is presented in Fig(lilwhere it is . .
- NN, —A need not to be considered as each of them yields two
indicated by the thick linds The other two phase factors . .

expressions that cancel each other out. ByRheA section

attached to the segments—r; andr|—ry are used to form " o0 e o et of the impurity scattering ladder diagrams

a new flux loop encircling the brick of thE; amplitude in . -
the direction opposite to the main flux loop. In Fig.(djall that modify a current verted by a factorr, /7. In the limit
I(vvhen the external frequenay—0 only oneR— A section

the parts of the corresponding loop are given by the thic Should be kept in the current-current correlaibys(w), be-

lines. : : o
cause each such section yields an additional poweds.of

To get the contribution tdl,, from the main flux loop we . o 4 . in tl .
shall follow the derivation given in the previous section. leferent|at|on of the Green's fl.mCt'onS !nt A sgctlon
splits the set of the ladder diagrams into two pieces that

Consider first the situation when the left standing derivative ; .

acts on a Green’s function in a particle-hole section rathanOd'fy b.Oth vertices, and J, by = /7. As_a resu“ the
than on thd™ amplitudes. Let this left standing derivative be contribution analogous to that represented in F|gs..3 gnd 5
the p, derivative. Then, the, derivative is supposed to act reduces to Eq(_24) . and in the same way the contribution
on everything on the right of the, derivative. The new analogous to Fig. 4 reduces to EgJ5). Altogether we come

element here is that the dashed lines added to restore the fl )%rlcckt'gons?j.(rig)sggtt\:v 't?h:f _(;]ltjérrearg;_\c/)ﬁrtlces and the Green's
structure do not carry any Green’s functions, but only the' Thl i th thy b : i : .d il determi
phase factors. Let us study the situation when the additiona%l1 Ie d‘?rms a’t'bat\'/e (taen o(lsgus.Tte un|| now 'I(Ie (ke)rmme
phase factors arise from one of the amplitudes with the € leading contribution tary,ecm, . IS analysis will be
dashed segments—r, andrs—rg, as shown in Fig. 12. completed in the end of this section, but first we turn to the
After the decomposition procedure the corresponding flu2ther case when the left standing derivative, let it bepihe
contribution is equal to derivative, is inside one of the interaction amplitudés
while the p, derivative acts on everything to the right from
this amplitude[an example is presented in Fig.(2g. As a
1 candidate for a contribution of the ordef, to o, in the
—_R. _ _ _ _ y
Paasned=5 B-L(12711) X (Fa=rg) +(r=ry) X(re=rs) . discussed process consider the case whepfluerivative is
(29 applied to theR— A section standing on the right froinA.

It follows as a result of this rearrangement that after the
Fourier transformation the operation of the differentiation
will move all along the Green’s functions in the segments
r3—rg andrs—ry.

Since Eq.(30) is valid for anyl'; amplitude, we come to
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p+q/2 p+q/2 p+q/2 We define the Fourier representationIof(rq,r,,rz,rs) as
follows [see Fig. 1&)]:

ddp ddpr ddq
/ F1(r1:"2:"3af4):J

2m (2m) (2m)°
p-q/2 p-q/2 p-a/2 X expli[(p+a/2)r,—(p' +a/2)r,

) > (P~ Q2= (p— DT (PP’ ).
39

Comparing Eq(32) with Eq. (33) we obtain that the product
This  differentiation ~ produces the singular termsI';®r when Fourier transformed yields the following com-
(9/apy,GRYGH and GR(aldp,G*) that separately yield the pination that enters the correlatbl,, :
contributions« thr but in the leading order they cancel each
other out. The latter fact is obvious because we may take the .
integration ovep, by parts and then the— A section yields I'1®p —B- % X F - %
a contribution that is onlyc 7, . A similar contribution ap- P
pears when th&®—A section is located on the left from the As the amplitudd’; is taken in the limitB=0 it is a scalar

amplitudel” that is marked by the differentiation. Arranging function of its momenta, and therefore the expressig4)
both the terms in a way that tiR— A section becomes free vanishes.

FIG. 14. The definition of the Fourier components of the current
vertexes] and the interaction amplitude.

Ii(p,p";a). (39

from the differentiation the contribution te,, in the dis- Summarizing the analysis presented in this section we
cussed case can be presented as conclude that the leading contribution ¢q, is determined
by the following expression:
T xy™ ¢ T dy( L?QX|_>&py_ aQy|_)apx)Jy . (31 2

e? [ 1,\? d d
- ny:ieBz—CH) <9A<p)a—gR(p)—gR(p>a—9A(p>
Here the current verticey, , are dressed by the-e interac- Px Px
tion, but unlikeJ they do not contain the factar, /7. The
symbol|— [as well as the right-directed bar in Fig. (b X
indicates that the derivatives are ordered and the derivative
over p acts on the right to the derivative whereq is an  The derivatives over the momentum in E85) correspond
infinitesimal momentum in the current vertéxas shown in  to the vector product of the two coordinate differences in the
Fig. 14@). The momentung has been introduced to get op- representation of the flux in Eq23). The current vertexes

posite signs for the derivatives acting on oppositely directed, = are not sensitive to the renormalizations by impurities

lines in the current vertex. Since the parameters of the elegye to 14-7<1, and are determined by the Ward identfy:
tron liquid change on the scale of the Fermi momentum this
. 02(&6))

contribution is small compared to the leading one by the ~ Py
parameter ¥g 7, . The reason of this smallness is that in the J;FE €
discussed process the skew action of the magnetic field may P
develop only on an electron wavelength, while for the leadwhereX (p,¢) is a self-energy of the Green’s function in the
ing term the skew effect develops on a free path lengthpresence of the-e interaction. Equation&35) and(36) cor-
Notice that the processes just discussed involve the derivaespond to the solution of the transport equationdgy for
tives of thel' amplitudes that generate terms with the non-the interacting electronsee the discussion of E¢R6) con-
pair electron correlation,, that were mentioned in the In- cluding Sec. Il]. Due to the specific structure of the last
troduction. The discussed term may become significant ibracket in Eq(35) the second derivative®S. /3£, which is
apart from the wavelength and the mean free path there igot conventional in the Fermi-liquid theory, does not enter
another length scale in the problem. For example, near ththe final answer. Altogether we get the factdnl
superconducting transition the fluctuations of the order pa-+ 9% (p,0)/d¢,] three times: two from the vertexes and one
rameter may contribute significantly and change the Hall cofrom thep, derivatives of the Green’s functions in the square
efficient. brackets. The integration over momentuniip, can be per-

The last contribution tdl,, that remains to be analyzed is formed keeping the Green’s functions in the pole approxima-
related to the flux loops encircling tHe; amplitudes. Con- tion:
sider the loop encircling the amplitudg(rq,r,,r3,r4). The
flux through the polygon,r,,rs,r, may be written as the RA _[1-03(pe.e)/de]t

. _ G™"(e,p) : (37)

sum of the fluxes through the two triangles:

I p 3

. (39

1

(36)

_m g 4
e— M g 4+ I
m*gp 27

Qr =B-[(ry—ra)X(ry=ry) +(rzg=rqg) X(ry—rs)J. where 7 is the free path time of the quasiparticles that in-
(32 cludes the renormalization by tleee interaction, and
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m/m*:[1+&E(pio)/élgp]/[l_az(pi:16)/‘?6] (38) ;p(r):;_(e/C)A(r), ﬁp(r):np_(e/c)A(r), (41)

The latter relation is a standard one for the microscopicalyhere the vector potentia(r,t) represents both magnetic

theory of theilFerm| liquid® All three factors [1  and electric fields:B=VxA, E=—(1/c)dA/ot. In the

—9%(pg,€)/de] "~ created by the Green's functions in Eq. hpase spaceR(r) the flow of the quasiparticle densify(r)

(35) together with the three factofd + 9% (p,0)/d¢,] canbe  gatisfies the Liouville equation:

combined into the cube of the physical combinatiofm*.

After integration over, one power ofm/m* will be elimi- gn dn de on de

nated and ultimately we obtain = + P P lcoll - (42
Txy= OF Ty Oxx (39  To make the dependence on the external fields explicit it is

with w¥ =eB/m* ¢ ando,,=ne’r, /m*. This result implies convenient to reexpress EL2) in terms ofn(p,r,t):

that no Hall coefficient renormalization develops due to the — — —
. L . an  de dn de an an el de an
e-e interaction in the leading terms overegfr, . — - +eE —+-| —x
gt Ip, dr, I, IP, “op, c\dp 2P
V. DISCUSSION
=lcon- (43

. We have shown microscopically that the Hall coefficientneyt it is useful to introduce the deviations from the global
in a weak magnetic field is not renormalized by the in- 54 |ocal equilibrium defined as

teraction in the leading order inddr, . Although the terms
that_are not c_onventional in the Fermi-liquid theory appear in Sny(r)=ny(r)— n%( ), 5a)(r): no(r) — no(?p(r)),
the intermediate stages, they do not enter the final answer. (44)
This remarkable fact is a direct consequence of the skew ]
structure which arises in the Hall effect because of the magtespectively. The two are related as follows:
netic flux. an®

The result about the cancellation of the Fermi-liquid 5ﬁp(r)=5np(r)—— > o O (1), (45)
renormalization corrections in the Hall coefficient differs dey Y
from the one obtained previously in Refs. 10 and 19. It is,,, .
formidable to make a comparison with the analysis of thesstl\aN ith f[he_use of Eqs(44) and (45), Eq. (43) yields after

S : ; . inearization

papers because the distinction of the impurity scattering am-

plitudes from thee-e interaction amplitudes was not per- 0 — —

. . . aon an aon e aon
formed explicitly. These amplitudes have different structure ——+eE,— +v,— +-(VXB),— =l coi,
in exchange of the frequency, however. Therefore any treat- 9t IPa ore ¢ IPa

ment lacking clear distinction between these amplitudes is (46)
potentially dangerous. The analysis of the Fermi liquid inwherev,=p,/m*, and in the relaxation time approximation
Ref. 19 did not reproduce the well estab_llshed results of th coll=— 0Ny /7. The current density is also expressed
transport theory, pecaqse of the confu;mg tre_atment Qf thfhrough the deviation from the local equilibrium

frequency integrations induced by thee interaction ampli-

tudes. On the other hand, in Ref. 10 the authors were mainly D, —

concerned with the impurity scattering. One can check, in J,(0=> —dn,. (47)
fact, that their factof 1+ 93 '(p,0)/de(p)]? in Ry differs P m*

negligibly from unity in the case of noninteracting eIectronsTo study the Hall effect one should look for the stationary.
scattered by a random potential. '

The absence of the renormalization in the Hall coefficienf’omogeneous distributiodn,, . The static limit of Eqs(46)
corresponds to the result that can be obtained within th&nd(47) are identical to the corresponding equations for non-
phenomenological theory of the Fermi liquid. For complete-interacting electrons, im* —m and sn— én. Therefore the
ness we reproduce it here following Sec. 3.6 in Ref. 7. In thdransport coefficients are given by the free electron expres-
Fermi-liquid theory the excited states of the interacting elecsions with the substitutiom to m*, and oy, = w? 70y«
trons are described by the gas of quasiparticles with the ef- It is clear form this discussion that since the Fermi-liquid
fective Hamiltonian written via the distribution function of theory uses a local functional with the distribution function
the quasiparticles,(r,t): depending on the classical variablgsr() it does not contain

the nonpair-correlation contributid31). The latter describes
— the influence of the flux phase on the interaction amplitudes
ep(r)= €P+E, Fopr Np: (). (40 and, obviously, is beyond the scope of the Fermi-liquid
P theory. Fortunately, this term is small by the parameter

Here (p,r) are classical variables, and the interaction terml/eg, .

fopr=Jdr’ f(pr,p’r’) is assumed to be local. In the pres-  To summarize, we have proved that the Hall coefficient is

ence of the vector potenti@(r,t) one should make a tran- not renormalized by the-e interaction in the leading order
sition to the pair of the conjugate variableB,(): in 1/ex 7. The result holds for not too low temperatures when
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the logarithmic corrections from the Altshuler-Aronov effect e
can be ignored, i.e., where{/ho,,)In(1/T7)<1. Further- Sa=exp(—ia- Ptot)eXp(iEa' Atot)
more it follows from the analysis of Ref. 20 that while as we

show the leading term is robust, the temperature corrections ie ~ ~

to the Hall coefficient remain small up to the temperatures XeXF{_ 20 (AT AR
substantially lower than 2/ Combined with this observation

the present analysis gives an explanation of the stability ofvhere theP,., is the total momentum andi,,, is the sum of
the Hall coefficientRy to the e-e interaction observed in the conjugate vector potentials felt by all the particles in the
Refs. 5 and @) for the dilute electron gas in Si MOSFETs system. Then the transformed operagdrbecomes

not too close to the metal-insulator transition.

: (A4)

ie ~
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APPENDIX A: SYMMETRY PROPERTIES G(ri,ro;)=G(ri—ar,—a; r)exr{FaA(rl— r2)>.
In this appendix the symmetry properties of the core (AT)

Green's functionG are presented. A useful discussion of the|t follows then from the relatiorfA7) that the core Green’s
symmetry properties of the Green’s function in the presenceunction defined in Eq(4) is translation invariant. In the
of e-e interaction can be found in the classical papefd presence of disorder the statement is still valid for averaged
which study the quantum oscillations in a magnetic field. Green’s functions.(The average over disorder generates
translation invariant two-body “interaction” terms when one
1. Translation invariance introducesn—0 replicas of the system, or uses other stan-

A many-body system in a homogeneous magnetic field Jard tricks)

described by the Hamiltonian o
2. Gauge invariance

1 e 2 4 It has been shown in Ref. 21 that Green’s functions are
H=, ﬁ(pi—EA(ri) +§2 V([ri=r]). (A1)  transformed as
i i

In this case the vector potential depends linearly on the co- ex;{ i E[X(rl)_)((rz)] Ga(r1,12: ) =Gasrvy(r1,72:7)
ordinates, and we introduce a matAx” following the con- c

siderations of Ref. 12, (A8)
under the gauge transformatidh—A’'=A+Vy. Clearly,
AX(r)y=A*"r . (A2)  the integral (e/c)f:;Adr in the exponential prefactor in Eq.

(4) changes exactly in a way as to cancel out the factor
appearing in the left-hand side of E¢\8). This cancellation
ensures the gauge invariance of the core Green’s function.

The conjugate vector potential is defined through its trans
poseA*(r)=A*"r , in such a way that the gauge invariant
relation A" — A*¥= Be,, holds. The generators of the mag-

netic translations are defined as 3. Rotational invariance

We consider the transformation properties under rotations

n the x—y plane in the circular gauge,
Tr=2, (p#—gA%ri)), (A3) niexTy panet reuiar gaug
where the sum is taken over all electrons. Consider the op- A= EBX r. (A9)
erator of a finite translatio®,=exp(—ia,T*). The Matsub-
ara Green’s functio§j(rq,r,; 7)=—(T (r{,7) wT(r2)> re- In this gauge the HamiltoniafA1) takes explicitly the form

mains unchanged under the canonical transformatjon which contains rotational invariant terms only. Similarly to
—>z/f’=S;11,/;Sa, as the generator3) commute with the S, the operatorsS,=exp(—i¢L,) can be introduced. AS,,
Hamiltonian(A1). Consider now this transformation explic- commute with the Hamiltonian, the Green’s function remains
ity. Using the Baker-Hausdorff identity exp¢-B) invariant under the action @&, which rotate the coordinates

=exp@)expB)exp(—[A,B]/2) theS, may be decomposed as r, andr, in G(rq,r,,7). The phase factorié/c)f:;Adr is

155114-11



M. KHODAS AND A. M. FINKEL'STEIN PHYSICAL REVIEW B 68, 155114 (2003

also unchanged in the course of rotation in the circular e

& IN=emn 2 (Chun) | =iV~ —A
gauge, and therefore the core Green’s functBbishould be © m.n< m+n "¢ o1
rotational invariant as well. Sincé is gauge invariant the (=

statement holds for any gauge. . € . €
v gaug .-.(—uv,l——A> G(rl—ri)<—|V,i——A>
P(1) € Jpasy
APPENDIX B: SPHERICALLY SYMMETRIC SPECTRUM . e
S el A G(ri—ry). (B4)
Transport properties in the case of a complicated band P(m+n)

structure are nonuniversal. For this reason we are not goingere for each permutation all terms with the projectioare
to extend the present analysis of the renormalizatiomgf | 5ried to get the currertt, ; correspondingly the surB’ is
by e-e interaction for an arbitrary spectrum. However, the 3y en over all with P[I]i w. In the absence of the vector
obtained result can be readily extendedRjoin the case of  tential the current operator yields/dp as expected. To
a general but spherically symmetric spectra(p|). (Such  gpiain the diamagnetic term in its extended fdisee Eq(9)
spectrum can naturally appear if the degrees of freedom iﬁbovd it is needed to apply Eq4) and to pass the terms

some energy shell are integrated out in the course of thF—iV—(e/c)A] through the phase factors using E€®.and
Renormalization Group treatmentn the presence of the (8). The result is

magnetic field the corresponding part of the Hamiltonian is
given by the gauge invariant extensionegfp|) with a sub-
sequent symmetrization required to make the Hamiltonian gmn—. ' 3" (o0 y~lexf(ie/c)[®(ry,r;)
Hermitian. The latter is needed since different components of  “ "% Z men g e
the velocity operator do not commute. To get a symmetrized

extension of the kinetic term we expaa({p|) in the Taylor +O(r, ,rz)]}( —iv, — i(rl—ri)x B
series, 1 2c PI-1)
. € ~
| TV T 5 () XB) o G )
P(1)
e(p)=2 €mnPPy- (BY) .
’ X| =iV, + ==(r;—r,)XB
©2c P(l+1)
The symmetrization procedure leads to o
...(—iV,iJrz(ri—rz)xB G(ri—ry).
P(m-+n)
e (B5)
e(lph=2, emn(Ch. )1t ( - —A)
(IpD %1 ma(Cmen ; P=¢c PIL] Here the gradients not acting on the Green’s functions are

canceled out due to the symmetrization procedure. At this
stage the analysis of the main text can be extended up to the
Eq. (35), where now

X

Al e
p—— e p—— s
¢ P[2] ¢ P[m+n]

~  de(p) ( &E(p,e))
(B2) Ju n, 1+ 9E, )" (B6)
. . . The result(39) still holds with
where the sum is taken over all inequivalent permutat®ns
in such a way that altogether there areand n factors[p ,
— (elc)Al, and[p—(e/c)A], respectively, an®[1]=x,y. o EP) [ 1H02(p0/dg, ) eB B7)
The current operator is determined by the variation of the ¢ p \1-02(pg,€)lde] ¢’

energy with respect to the vector potential: It follows from Eq.(B7) that the renormalization corrections

to Ry are canceled out.

Ju=—H)IA,,. (B3) APPENDIX C: WEAK LOCALIZATION CORRECTIONS
TO THE HALL COEFFICIENT

Now we follow the main text after Eq6). Consider the The weak localization corrections originate from the
diagrammatic element related to the current operator at thguantum interference, and diagrammatically are known to be
point r; after the contractions with the operatagér,;) and related to a set of the ladder diagrams in the particle-particle
#'(r,) have been performed. Using EqB2) and(B3) and  channel which is called “the cooperon.” As a doubly charged
integrating by parts we obtain for this element object the cooperon in the magnetic field acquires the form

155114-12
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Ca(ri,r)=exd(ize/c)®(r;,r1)1C(r;—r¢), (CI)

where® is given by Eq.(5) andC has the same symmetry
properties as the corresponding functiGnin Eq. (4). The

PHYSICAL REVIEW B68, 155114 (2003

but spherically symmetric spectruafp). Consider first the
diagram presented in Fig. @. With the use of Equatiofd)
the diamagnetic contribution from thk vertex can be writ-
ten as

latter fact can be seen from the Dyson equation for the coop-

eron in the magnetic field

S(ri—rg

27TV

XGAri,r)C(r'ry).

1
Cy(ri,re)= )+27wa dr'GR(ri,r’")
(C2

Using Egs.(4) and (C1) one gets from Eq(C2) an integral
equation forC,

S(ri—rg

27TV

5 1 - -
C(ri,re)= )+27Wf dr'GR(ri—r")GA(ri—r")

x exp(2ie/c)®(r;,r',r)]C(r 1), (C3

whered(r,r,,r3) is the magnetic flux through the triangle
with vertexes (,r,,r3):

1
q)(rlarZvrS):EB'[(rl_r3)X(rZ_rl)]- (C4
Equation(C3) contains invariant ingredients only, and this
ensures tha€ has the same symmetry propertiesGsOne
can readily derive the following equation fax.

B

As it has been already explained in the main text éqy
linear inB it is enough to kee andC in the limitB=0. At

the vanishing magnetic fiei@ turns into the singular propa-
gator

2
+|wn|

5(r)

) 2eB ~
—iV——Xr C(r,wn)=—2. (CH
27TV

2c

1 1
277 |w,| + DQ?

C(Qiiwn)= (C6)

In this Appendix we will assume that the scattering poten- -
tial is short ranged and that the electrons have an arbitrarythere w = (eB/c)m

ry ry ry

ry I
rr I

ry ry
r3

b)

ry ry

a) c)

FIG. 15. Weak localization corrections tg,,. The wavy line

Hiy(q: Oiiwp)

J J
g“(p)a—ng(p)—gR(p)a—mgA(p)>

XC(Q)GR(—p+QGA—p+Quy(—p+Q),
(C7)

wherev ,(p) =del dp, is the velocity and?ze/(?pa(?pﬁ is the
inverse mass tensor. Together with thevertex contribution
a symmetric combination

. e’B

4c

dp
(2m)¢

d?Q e
(2m)¢ 8’”8px8p#

X

[(9%€l 9p3) (el Ipy)°— 2( %€l Ipypy) (Il Ipy) (el Ipy)
+ (%€l ap) (el py)?]

arises. Exactly the same combination appears also in the cal-
culation of oy, in the Drude’s approximation. In the spheri-
cally symmetric case this combination reduces to
(2/d)v2m~*t, wherem '=uv/pg. [The fact that the dis-
cussed combination contains the first derivatives(d) only

was important for the derivation &= 1/nec for the arbi-
trary spectrume(|p|), see Eq(B7).]

To evaluate the flux term, we split the phase of the coop-
eron into two equal parts indicated by the dashed lines in
Fig. 15a). Then the flux of this diagram becomes a sum of
the fluxes through the two triangles:

Da=D(ri,rq,rp) +P(re,rq,rp). (C8)

When the Fourier transformation is performed the coordinate
differences ind, lead to the differentiation with respect to
momentum. To get a nonvanishing contributiorutg one of

the differentiation should be applied to a current vertex. It
turns out that the diamagnetic and flux terms are identical.
Together they yield

(C9

60’3y=3wc7'50'><x,
1 and 6oy, is the weak localization
correction to the longitudinal conductivity.

For the terms presented in Figs.(hband(c) the diamag-
netic contributions are absent. The flux term of the diagram
15(b) may be represented most economically as

Dp=D(r;,ry,rz)+®(re,rp,r)) —2@(ry,ra,rp).
(C10

The advantage of this representation is that the first two

denotes the cooperon, the dashed wavy lines carry phases, tfieixes are similar to the diamagnetic terms and do not con-

dashed line denotes the scattering by impurities.

tribute to oy, . The remaining flux term leads to
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B[ 1 dlp  d%’ [ dQ sG"(—p+Ql)
i 2 ] 2] 0 2
wa=0on)==i=~| 5T omi) ) PGS e
A ’ R A(p ) ’
XC(Q)GA(|=p +QNG™(| - +Q|) ey vy(—=p'+Q). (C1y
y
The differentiated Green'’s functions are indicated by crosses in Figl) abd (c). Similarly, the flux term of the diagram
15(c) is
B[ 1 dlp  d%’ [ dQ 9G"(I-p+Ql)
e S 3 [ ] S 49 o S
a=0lwn) =i ==| 5T omi) ) PGS e
A R R(p ) ’
XCQ)GA|=p"+QDG"(|—p’ +Q|) Py vy(—=p'+Q). (C12
y
|
To proceed further, we rearrange the er;g/ Hb +1'[C to a d(vv?r ) 2 3
the following form: a) 9 g ¢(GrGn)
; i 2 -1
xy(d=0,iwp) :ﬂj PN e(p) zd(VT ) > 3
q | ¢ (v ) P2 v dé §°(GrUA)".
e’B/ 1 . dQ c
e\ 2mur ien (2m)d @ (C14
Unlike the expressions discussed above, the integrand in Eq.
dd’f) ) ~ 5~ _ (C14) depends on the specific form of the spectrum, i.e.,
XJ oad’ vGA(P)IGA(P) +GA(P)Gr(P)] not universal. Fore(p) =p?%/2m andd=2 the diagrams of
(2m) Then the

1
v GE(P)GA(P) — GA(P)Gr(P)].

(C13

Figs. 18b) and (c) yield 80{," 9= — w r50,y.
weak localization correction to the Hall coefficient,

SRy

)
Ry Oxy Oxx

O0yy

oo
_ 2 XX

(C15

vanishes as it was first shown by H. Fukuyahma.

itis

One should be cautious with the last integral ag%gA
—gf\gR):zig(gRgAﬁ is an odd function in£&. We have
therefore to perform an expansiongrto get a nonvanishing
result. This leads us to an integral

The possibility of an economic representation of the flux
is the essential advantage of the method. The expressions
(C7), (C11, and(C12 have been obtained without any in-
termediate steps here.

V.M. Pudalov, M.E. Gershenson, H. Kojima, N. Butch, E.M. Eksp. Teor. Fiz70, 48 (1999 [JETP Lett.70, 48 (1999].
Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 6B.L. Altshuler, D.E. Khmel'nitskii, A.l. Larkin, and P.A. Lee,
88, 196404(2002. Phys. Rev. B22, 5142(1980.

2M.P. Sarachik and S.A. Vitkalov, cond-mat/02091l3npub- ’D. Pines and P. NozieresThe Theory of Quantum Liquids
lished; S.A. Vitkalov, H. Zheng, K.M. Mertes, M.P. Sarachik, (Addison-Wesley Publishing Co., Inc., Reading, MA, 1889
and T.M. Klapwijk, Phys. Rev. Let87, 086401(2001. Vol. I.

3(a) S.V. Kravchenko, A.A. Shashkin, D.A. Bloore, and T.M. Klap- 8J.M. Ziman,Principles of the Theory of Solid€ambridge Uni-

wijk, Solid State Communl116, 495 (2000; (b) A.A. Shashkin,

S.V. Kravchenko, V.T. Dolgopolov, and T.M. Klapwijk, Phys.

Rev. Lett.87, 086801(2007).

40. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V.M. Pudalov,

Phys. Rev. B67, 205407(2003.

5V.M. Pudalov, G. Brunthaler, A. Prinz, and G. Bauer, Pis'ma Zh.

versity Press, Cambridge, Great Britain, 1965

9H. Fukuyama, J. Phys. Soc. Jpt9, 644 (1980.

104, Fukuyama, H. Ebisawa, and Y. Wada, Prog. Theor. P4$2s.
494 (1969. ]

11.B. Levinson, Zh. ksp. Teor. Fiz.57, 660 (1969 [Sov. Phys.
JETP30, 362 (1969]; I.B. Levinson, A.Yu. Matulis, and L.M.

155114-14



HALL COEFFICIENT IN AN INTERACTING ELECTRON GAS PHYSICAL REVIEW B68, 155114 (2003

Shcherbakovibid. 60, 859 (1971 [ibid. 33, 464 (1971)]. R.P. Feynman, A.R. HibbQuantum Mechanics and Path Inte-
2B, Laikhtman and E.L. Altshuler, Ann. Phy$N.Y.) 232 332 grals (McGraw-Hill, New York, 1965.

(1994. 18p Nozieres and J.M. Luttinger, Phys. R&27, 1423(1962); J.M.
13V.M. Edelstein, Pis'ma Zh. Eksp. Teor. Fi&7, 141(1998 [JETP Luttinger and P. Nozieretbid. 127, 1431(1962.

Lett. 67, 159(1998]. 19H. Kohno and K. Yamada, Prog. Theor. Phg6, 623(1988.

H“R.P. Feynman, R.B. Leighton, and M. San@ike Feynman Lec- 20G. zala, B.N. Narozhny, and I.L. Aleiner, Phys. Rev. @,
tures on PhysicgAddison-Wesley Publishing Co., Inc., Read- 201201(2001).

ing, MA, 1964, Vol. 2, Chap. 15. 213.M. Luttinger, Phys. Rev21, 1251(1961).
15T, Holstein, Phys. Revi24, 1329(1961). 22y A. Bychkov and L.P. Gor'kov, Zh. Esp. Teor. Fiz.41, 1592
18y Imry, Phys. Rev. Lett71, 1868(1993. (1961 [Sov. Phys. JETR4, 1132(1962)].

155114-15



