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Hall coefficient in an interacting electron gas

M. Khodas and A. M. Finkel’stein
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

~Received 5 December 2002; published 23 October 2003!

The Hall conductivity in a weak homogeneous magnetic field,vct!1, is calculated. We have shown that to
leading order in 1/eFt the Hall coefficientRH is not renormalized by the electron-electron interaction. Our
result explains the experimentally observed stability of the Hall coefficient in a dilute electron gas not too close
to the metal-insulator transition. We avoid the currently used procedure that introduces an artificial spatial
modulation of the magnetic field. The problem of the Hall effect is reformulated in a way such that the
magnetic flux associated with the scattering process becomes the central element of the calculation.
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I. INTRODUCTION

In recent experiments on the two-dimensional dilute el
tron gases the renormalization of the Fermi-liquid parame
is found to be significant.1–4 These strong renormalization
are natural for a dilute gas with a large value of the ratio
the Coulomb energy to the Fermi energy. It was shown, h
ever, that in a high mobility MOSFETs~metal-oxide-
semiconductor field-effect transistor!. The density of elec-
trons nH found from the Hall coefficientRH51/nHec
coincides with that obtained from the Shubnikov–de Ha
measurementsn to within a few percent@see Fig. 4 in Ref. 5
and the inset in Fig. 4 in Ref. 3~b!#. This remarkable fact
raises a question about the electron-electron (e-e) interaction
renormalizations of the Hall conductivitysxy in a small
magnetic field,vct!1, wherevc is a cyclotron frequency
and t is the free path time. Notice that while thee-e inter-
action is very strong, in other aspects this system is ra
simple, because the effect of the crystalline lattice can
safely studied in the effective-mass approximation. Ap
from impurities, one may consider the electron liquid as i
is in a translational invariant background. Therefore the
fluence of the interaction on the Hall coefficient should n
be masked by unnecessary complications. The issue o
Hall coefficient renormalization has not been discussed m
in the literature despite its obvious importance. We have
mind the renormalization of the leading int tr terms in the
conductivity tensor, i.e., of the Hall conductivitysxy

}Bt tr
2 , and the diagonal termsxx5ne2t tr /m* . Heret tr is

the transport relaxation time, andB is a magnetic field; no-
tice thatRH[B21sxy /(sxx)

2.
In this paper we examine the effect of thee-e interaction

on the Hall coefficient within the microscopical theory. W
avoid the currently used procedure that introduces an a
cial spatial modulation of the magnetic field. Based on
idea of the flux of a loop in a diagrammatic technique,
obtain a gauge invariant procedure for the calculations in
presence of a homogeneous magnetic field which make
possible to conduct the analysis ofsxy in a general manner
In particular, in the course of the calculations the trans
tional invariance of the problem is maintained, and the us
rather involved procedure of extracting a constantB from the
q→0 limit of a singular expression for the vector potent
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A(q) can be avoided.
In this paper, we show that the Hall coefficient for ele

trons with the quadratic spectrum,e(p)5p2/2m, in the lead-
ing order int tr , is not renormalized by thee-e interaction,
i.e., RH51/nec. @In fact, the cancellation of thee-e renor-
malization in the Hall coefficient holds for any spherical
symmetric dispersione(upu); see Appendix B for com-
ments.# This result explains the stability of the Hall coeffi
cient RH to thee-e interaction demonstrated in Refs. 5 an
3~b!. Notice that the Altshuler-Aronov corrections tosxx and
sxy teach us that there cannot be any general principle
the absence of renormalizations inRH , because correction
to RH of the order 1/eFt tr do exist.6 Therefore the fact stated
here about the cancellation ofe-e renormalizations in the
leading term ofRH should be proved specifically.

The renormalization ofsxy can be also studied within th
Fermi-liquid theory following the line given in Ref. 7. Th
magnetic fieldB comes into a transport equation in a com
bination with the velocity of a charge carrier as (e@vp
3B#]/]p)dnp , wherednp is the departure of the distribu
tion function from equilibrium due to the applied electr
field ~see, e.g., Ref. 8!. In the presence of the electron
electron interaction one may expect in addition terms l
(e@vp3B#]/]p)^ f pp8dnp8&, or ^ f pp8(e@vp83B#]/]p8)
3^ f p8p9dnp9&&, where ^•••& means the average over th
Fermi surface. Herêf pp8dnp8& is the response of the Ferm
liquid to the departure of the distribution function from
equilibrium.7 This approach givessxy renormalized by the
e-e interaction which when combined withsxx yields the
Hall coefficient RH with no renormalization factors. It is
however, not clear that the derivation of the Hall conduct
ity in a weak magnetic field via the transport equation with
the Fermi-liquid theory is accurate enough. For instan
consider the following process: the electric field leads to
departure of the distribution function from equilibrium; th
electron liquid responds to thisdn via the electron interac-
tion; the magnetic field acts on the result of this response
transforms it into the Hall current involving again thee-e
interaction. The nonfactorized part of such two time intera
tion procesŝ ^(e@vp83B#]/]p8) f np(p;p8;p9)dnp9&& corre-
sponds to nonpair correlations, and is beyond the scop
the Fermi-liquid theory.~Some doubts about the derivatio
©2003 The American Physical Society14-1
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via the kinetic equation were expressed in the literature, e
Ref. 8, Sec. 7.12.! We will see, however, that this contribu
tion is small by the parameter 1/eFt tr . Therefore the presen
microscopical derivation justifies the applicability of th
Fermi-liquid treatment of this problem.

In Sec. II the technicalities of the calculation ofsxy in a
constant magnetic field are given. In Sec. III the Hall co
ductivity of the noninteracting electrons is considered, and
particular a nontrivial problem of the Hall conductivity in
system with an arbitrary~nonshort range! impurity potential
is studied. By studying this case we make the needed pr
rations for the analysis of the effects of thee-e interaction to
the Hall conductivity@see Eqs.~23!–~25!#. The problem of
the Hall effect in a weak magnetic field is reformulated in
way such that the magnetic flux associated with the sca
ing process becomes the central element of the calcula
In Sec. IV the role of thee-e interaction is analyzed. There
the main contribution tosxy is given by Eq.~35!. The latter
expression contains a product of two terms; one describes
scattering of the quasiparticles by impurities, while the ot
corresponds to the decoration of the current vertices by
e-e interaction. The derivatives over the momentum in E
~35! correspond to the vector product of the two coordin
differences, see Eq.~23!, in the representation of the flu
which leads to the skew action of the magnetic field.

In the concluding section for completeness we discussRH
using the Fermi-liquid theory.7 In Appendix C we reproduce
the known answer~Ref. 9! for the weak localization correc
tions to sxy as an instructive example of the calculatio
within the new procedure.

II. DIAMAGNETIC AND FLUX CONTRIBUTIONS
IN A HOMOGENEOUS MAGNETIC FIELD

To describe electrons moving in a magnetic field the m
netic vector potentialA can be introduced through the exte
sion of the momentum in the kinetic energy term:e(p)
→e(p2(e/c)A). Although the analysis presented in this p
per is valid for any spectrum with a spherical symmetry~see
Appendix B!, the consideration in the main text will be lim
ited to the electron gas with a quadratic spectrum

H05
1

2m S p2
e

c
AD 2

, ~1!

wherem is the conduction band mass~i.e., m is not renor-
malized yet by the electron-electron interaction!, and we use
the fact that for low concentrations of the electrons only
quadratic term ine(p) is relevant.

Notice that the homogeneous magnetic field demands
cial care as the Fourier components of the vector poten
A(q)5*ddre2 iqrA„r …, are singular in this important cas
Let us take the vector potential in the Landau gauge,

B5Bẑ; Ax50, Ay5Bx. ~2!

Then the Fourier components ofA„r … are

Ay~q!5 iB
]

]qx
dd~q!. ~3!
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When inserted directly into diagrams the expression
Ay(q) being highly singular leads to complications. In ord
to circumvent this difficulty it was proposed in Ref. 10
introduce a magnetic field modulated in space at some w
vectorq in addition to a homogeneous electric field at fin
frequencyv, and to study the (q,v) response of the current
It has been argued in Ref. 10 that in the calculation ofsxy
one should perform the limiting procedure as follows: fi
extract theq-linear contributions related to the vector pote
tial and arrange them into the gauge invariant combinat
B(q)5 iq3A(q); next let q→0 keepingB(q) to be finite;
and, finally, perform the dc limit for the current respons
The first step in this procedure requires combining differ
pieces into the gauge invariant combination, and this
volves nontrivial cancellations amongst different diagram
The outlined procedure is effective when a specific proces
needed to be calculated~see, e.g., Refs. 6 and 9!, but unfor-
tunately it is unsuitable for a general analysis.

The method proposed below treats the magnetic field
q50 ab initio, and at no stage of the calculation does t
vector potential appear explicitly. In addition to the appare
gauge invariance the developed technique shows clearly
although the Hamiltonian in the magnetic field is not tran
lational invariant, any measured quantity like conductiv
can be calculated in an explicitly transitional invariant ma
ner. The calculation is based on the fact that the Gree
function in a constant magnetic field can be represente
the form11–13

G~r1 ,r2 ,t!5exp@~ ie/c!F~r1 ,r2!#G̃~r12r2 ,t!, ~4!

where the phaseF is equal to

F~r1 ,r2!5~r12r2!AS r11r2

2 D ~5!

and G̃ is the core Green’s function which contains the info
mation about the Landau-level quantization. The functionG̃
is translational and rotational invariant and is also invari
with respect to different gauge representations of the m
netic fieldB ~see Appendix A!. Notice that in the presence o
e-e interaction the representation~4! and ~5! is still valid.

The rotational invariance of the core functionG̃ is respon-
sible for the fact that the Hall current originates either fro
the diamagnetic part of the current operator, or with the p
ticipation of the phase termsF. No contribution tosxy
comes out from the core functions alone. This is because
calculation ofsxy in the Kubo formula involves the averag
ing over the momenta of the nondiagonal current-current c
relator^JxJy&. Since the functionsG̃ are rotational invariant,
the angular integration of the type^px•••py8& makes the core
function’s contribution tosxy zero if the scattering by impu
rities is simple enough and does not itself produce the sk
effect on average. Then only the interference of the ph
factor F or the diamagnetic current make it possible
achieve the skew action of the magnetic field to avoid
vanishing of thê JxJy& current correlator after the angula
integration.~Notice in this connection that the Lorentz forc
4-2
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HALL COEFFICIENT IN AN INTERACTING ELECTRON GAS PHYSICAL REVIEW B68, 155114 ~2003!
can be interpreted as a consequence of the phase accu
tion in the magnetic field, Ref. 14.!

The diamagnetic part of the current operat
2(e2/mc)A, being nongauge invariant has to be comple
into a gauge invariant contribution in any calculation of
measurable quantity. This completion comes out natur
here due to the differentiation of the phase factors in
Green’s functions in the current operator,

Jn~r i !5~e/2mi! lim
r i8→r i

~¹ r i8
n 2¹ r i

n !c†~r i !c~r i8!

2~e2/mc!An~r i !c
†~r i !c~r i !. ~6!

Consider the current vertex at the pointr i connected to the
rest of a diagram~e.g., for a current-current correlator! by a
pair of Green’s functionsG(r1 ,r i) and G(r i ,r2). Then the
diamagnetic part results in

~e2/mc!A~r i !G~r1 ,r i !G~r i ,r2!,

whereas the first term yields

~e/2m!@G~r1 ,r i !~2 i !¹r i
G~r i ,r2!1 i¹r i

G~r1 ,r i !G~r i ,r2!#.

To treat the phase factors in the Green’s functions it is us
to split the A term into two half pieces and introduce th
following relations:

@2 i¹r i
2~e/c!A~r i !#G~r i ,r2 ;t!

5exp@~ ie/c!F~r i ,r2!#

3@2 i¹r i
1~e/2c!~r i2r2!3B#G̃~r i2r2 ;t!, ~7!

and

@ i¹r i
2~e/c!A~r i !#G~r1 ,r i ;t!

5exp@~ ie/c!F~r1 ,r i !#

3@2 i¹r1
2~e/2c!~r12r i !3B#G̃~r12r i ;t!. ~8!

The terms on the right-hand side that containB explicitly
yield the diamagnetic contribution extended to gauge inv
ant combinations. Combining Eqs.~7! and ~8! we obtain

Jextended
diam 5~evc/4!@~r i2r2!3B̂2~r12r i !3B̂#

3G̃~r12r i !G̃~r i2r2!R~r12r f ,r22r f !, ~9!

whereR(r12r f ,r22r f) is the remaining part of a correlato
ending at a pointr f . Notice thatJextended

diam is also translation
invariant. In Eq.~9! the cyclotron frequency has been intr
duced in such way that its sign is that of the carriers:vc
5eB/mc.

The phase factorF(r1 ,r2) appearing in the Green’s func
tion G(r1 ,r2 ,t) may be rewritten as the integral over th
straight line:
15511
ula-

,
d

ly
e

ul

i-

F~r1 ,r2!5~r22r1!AS r11r2

2 D5E
r1

r2
A~r !dr . ~10!

Then collecting the phase factors from all Green’s functio
of a given loop of a diagram one will obtain the so-call
‘‘flux of a loop’’ of a diagram.@The phase factors that appe
on the right-hand side of Eqs.~7! and ~8! after passing
through the differentiation operator join other such facto
from the rest of the Green’s functions.# It follows from Eq.
~10! that the phase associated with each loop in a diagram
proportional to the flux

F loop5 R A~r !dr , ~11!

with the integral taken along the closed polygon correspo
ing to the loop.~The importance of the flux in the calculatio
of the Hall effect in the insulating state was emphasized
Refs. 15 and 16.! Notice that the polygon is oriented alon
the loop in the direction of the arrows of the Green’s fun
tion. The magnetic flux through the polygon is gauge a
translational invariant. It is equal toBS, whereS is the ori-
ented area of a polygon. Depending on the situation one
decompose the polygon into the sum of different pieces. T
decomposition can be done in a variety of ways, and a c
venient choice may simplify the calculation. This is an a
vantage of this method. With the purpose of a general an
sis of the Hall conductivity we will decompose the loo
polygon in a diagram for the current-current correlator in
the sum of triangles, and then use the fact that the fl
through a triangle (r1 ,r2 ,r3) is equal to (1/2)B•@(r22r1)
3(r32r2)#. The details of the decomposition procedure w
be postponed to the next section@see Eqs.~20!–~23!#, where
it will be shown how the flux contribution can be analyze
for the calculation of the Hall conductivity in a system wi
an arbitrary~nonshort range! impurity potential.

Let us summarize. It follows from the symmetry of th
problem that the Hall current may appear either from
diamagnetic part of the current operator, or through the ph
factors of the Green’s functions. Partially we have used
phase factors to extend the diamagnetic term in Eqs.~7!–~9!.
The rest of the phase factors contributions can be organ
in the form of the fluxes of the loops. The main conseque
of this structure is that if one is interested insxy linear in the
external magnetic field only,sxy}B, then it is enough for
the calculations ofsxy that the core Green’s functions will b
taken in the limitB→0, whenG̃ coincide with the Green’s
functions in the absence of the magnetic field:G̃B→0
5GB50. The latter fact enables us to reduce the calculat
of sxy in a small magnetic field to a diagrammatic proble
that uses the Green’s functions in the absence of the m
netic field.

III. HALL CONDUCTIVITY FOR NONINTERACTING
ELECTRONS IN THE PRESENCE OF A FINITE

RANGE DISORDER

We first illustrate the use of Eq.~9! by deriving the Drude
Hall conductivity for the simplest case of short-range imp
4-3
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rities. The conductivity will be calculated in the framewo
of the Kubo linear-response theory. The current-current c
relator on the Matsubara frequencies is defined as

Pab~ ivn!52E
0

b

eivnt^TtJa~t!Jb~0!&. ~12!

The analytic continuation from the discrete frequencies
.

ri
a

’s

15511
r-

n

the upper complex half plane to the real axes yields the
tarded correlatorPab

R (v). This correlator is directly related
to the conductivity,

sab~v!5
i

v
Pab

R ~q50,v!. ~13!

In the case of a short-range disorder the correlator~12! in the
Drude approximation is equal to
Pxy(r i ,r f ;t)5~e2/4m2!~ lim
r i8→r i

{ 2 i¹ r i8
x 2(e/c)Ax(r i8)} 1 i¹ r i

x 2(e/c)Ax(r i)!~2 i¹ r f

y 2~e/c!Ay~r f !

1 lim
r f8→r f

$ i¹r f82~e/c!Ay(r f8)%! G̃~r f2r i ,2t!exp@~ ie/c!F~r f ,r i !#G̃~r i82r f8 ,t!exp@~ ie/c!F~r i8 ,r f8!#.

~14!

Using Eqs.~7! and ~8!, Eq. ~14! can be rewritten as

Pxy(r i ,r f ;t)5(e2/4m2)~ lim
r i8→r i

$2 i¹ r i8
x 1(e/2c)[( r i82r f8)3B] x%1 i¹ r i

x 2(e/2c)[( r f2r i)3B] x!~2 i¹ r f

y

1(e/2c)[( r f2r i)3B] y1 lim
r f8→r f

$ i¹ r f8
y 2(e/2c)[( r i82r f8)3B] y%! G̃(r f2r i ,2t)G̃(r i82r f8 ,t). ~15!
qs.
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Notice that when in Eq.~15! the gradients from theJx vertex
act on the coordinate dependent terms in theJy part the
corresponding contributions cancel out. The part linear inB
arising from theJx vertex is equal to

Pxy
(x)~r i ,r f ;t!5~e2vc/4m!@~r i2r f !3B̂#x

3$@2 i¹ r f

y G̃~r f2r i ,2t!#G̃~r i2r f ,t!

1G̃~r f2r i ,2t!@ i¹ r f

y G̃~r i2r f ,t!#%,

~16!

and the other term from theJy vertex is

Pxy
(y)~r i ,r f ;t!5~e2vc/4m!@~r f2r i !3B̂#y

3$@ i¹ r i

x G̃~r f2r i ,2t!#G̃~r i2r f ,t!

1G̃~r f2r i ,2t!@2 i¹ r i

x G̃~r i2r f ,t!#%.

~17!

@Notice that Eqs.~16! and~17! reproduce the structure of Eq
~9!.# Now the transitionG̃B→05GB50 can be performed in
these expressions, and as all terms are translational inva
one may use the Fourier transformation. Then the coordin
difference (r f2r i) leads to the differentiation of the Green
function with respect to momentum:
ant
te

Pxy
(x)~q50,ivn!5 i ~e2vc/4m!T(

i en

E ddp

~2p!d

3@G A~p!]/]pyG R~p!

2G R~p!]/]pyG A~p!#py , ~18!

and correspondingly

Pxy
(y)~q50,ivn!5 i ~e2vc/4m!T(

i en

E ddp

~2p!d
px

3@G A~p!]/]pxG R~p!

2G R~p!]/]pxG A~p!#. ~19!

The summation over the frequencies and momentum in E
~18! and ~19! leads to the standard answer:sxy5vctsxx .
This part of the calculation is close to the one presented
Ref. 13.

Next we consider a nontrivial problem of the calculatio
of the Drude Hall conductivity for noninteracting electron
in the presence of a finite range disorder, i.e., for nonsh
range impurities. To the leading order in 1/eFt the conduc-
tivity in this case are given by a set of ladder diagrams.
get sxy that is linear in the external magnetic field we co
sider separately the diamagnetic~extended! contribution, and
the flux contribution that comes out from the phase fact
accumulated by the Green’s functions in a diagram. In
case of a finite range disorder the fermion loop does
degenerate to two retraced paths and the flux term beco
absolutely essential.„Naturally, we have to expand
4-4
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HALL COEFFICIENT IN AN INTERACTING ELECTRON GAS PHYSICAL REVIEW B68, 155114 ~2003!
exp@(ie/c)Floop# and keep the linear term only as we are
terested insxy that is linear inB.…

The diamagnetic contribution is represented in Fig. 1. T
cross means differentiation with respect to momentum. O
the Green’s functions adjacent to the current vertex are
ferentiated. This contribution is obtained using the relatio
~7!, ~8!, and~9! similar to the case of the short-range imp
rities.

To analyze the flux contribution to the Hall conductivi
we decompose the loop polygon in a diagram for the curre
current correlator into the sum of triangles. The decompo
tion will be done as follows: one of the vertexes of an-vertex
polygon is chosen as a reference point~let us call itr1), and
thenr1 is connected to all other vertexes. In result the po
gon is decomposed into oriented triangles all having the
erence point as their vertex.~As an example consider a loo
presented in Fig. 2.! The flux through the polygon is there
fore equal to the sum of the fluxes through each triangle

F loop5
1

2
B•@~r22r1!3~r32r2!1~r32r1!3~r42r3!

1•••#, ~20!

which in turn is equal to

F loop5
1

2
B•@~r22r1!3~r32r2!1~r32r2!3~r42r3!

1~r22r1!3~r42r3!1•••#. ~21!

Here we rewrote the vector differences (r j2r1) as @(r j
2r j 21)1(r j 212•••)1(r22r1)#. Finally we add toF loop
a zero flux expression that does not change its value,

FIG. 1. The diamagnetic contributions:~a! from the Jx vertex,
~b! from theJy vertex.

FIG. 2. Flux contribution.
15511
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B•~rn2rn211rn212•••2r21r22r1!3~r12rn!.

~22!

Now we are ready to state the general rule. After some
erence point has been chosen the flux of the oriented poly
is given by

F loop5
1

2 (
iÞ j

8 ~6 !B•~r i 112r i !3~r j 112r j !, ~23!

where prime means that each pair (i , j ), or (j ,i ) which is the
same, enters the sum only once, and the pair is oriented
respect to the reference point in such a manner that its sig
‘‘ 1 ’’ if we do not pass the reference point moving along t
loop from r i to r j in the arrow direction. The sign is ‘‘2 ’’
otherwise.

After the flux contribution has been decomposed in pa
each pair supplies the diagram with a vector product of
two coordinate differences. When Fourier transformed th
coordinate factors lead to the differentiation of the cor
sponding Green’s function with respect to the moment
componentspx and py . There are also situations when on
or two of (r i 112r i) are adjacent to the current vertexe
Then the Fourier transformation leads, in addition to the d
ferentiation of the vertex-attached Green’s functions, also
the differentiation of the vertex momentum.

Let the left-end current vertex be thepx vertex, and let the
py vertex be on the right end. The left-end located vertex w
be chosen as the reference point with respect to which
orientation in Eq.~23! has been performed. First consider t
terms represented in Figs. 3 and 4 when the vertices have
been differentiated. The difference between the two term
that in Fig. 3 the differentiation]/]px is closer to the leftpx
vertex, whereas in Fig. 4 it is]/]py that is closer to thepx
vertex. The ambiguous terms with]/]px and]/]py standing
on equal distance, i.e., when they stand opposite to e
other, are canceled out. Figure 5 represents schematicall
flux contribution involving the differentiation of thepy ver-

FIG. 3. Flux contributions with no vertex differentiation in
volved and]/]px is closer topx vertex than]/]py .
4-5
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tex at the right end. In Figs. 5~a! and~b! the ]/]px differen-
tiation acts on each place in the loop. It should be notic
however, that the momentum of the vertex originates fr
the gradients of the two Green’s functions that are attac
to the vertex@see, e.g., Eq.~14!#. Therefore the differentia-
tions in Fig. 5 contain false nonflux contributions whe
]/]px and]/]py act on the same Green’s function attach
to the vertex. The compensation of the false terms is give
Fig. 6 where only the Green’s functions closest to thepy
vertex are differentiated. Finally, in Fig. 7 the contributio
involving the px vertex differentiation is represented. He
after cancellations amongst various terms combined int
full derivative only the two terms with the derivatives th
act only on the Green’s function closest to thepx vertex
survive. The apparent asymmetry between Figs. 5 an
compared to Fig. 7 is due to the fact that it was thepx vertex
that was chosen here as a reference point for the orienta
of the pairs, rather than thepy vertex.

The total contribution. Let us collect all the terms to
gether. Notice the cancellations of Fig. 6 with Fig. 1~b!, and
Fig. 7 with Fig. 1~a!. Then Figs. 3~a!, 3~b!, and 5~a! on one
hand and Figs. 3~c!, 3~d!, and 5~b! on the other can be
packed in combinations such that everything on the ri
from thepx derivative becomes apy derivative of the current
operator:

Pxy
(3,5)5 i ~vcme2/2!@G A~p!]/]pxG R~p!

2G R~p!]/]pxG A~p!#Jx]/]pyJy . ~24!

„In the last expression we have omitted for brev
T( i en

*@ddp/(2p)d#, as well as in Eqs.~25! and~26! below.…

FIG. 4. Flux contributions with no vertex differentiation in
volved and]/]py is closer topx vertex than]/]px .

FIG. 5. Flux contributions withpy vertex differentiation in-
volved.
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In addition, Figs. 4~a! and~b! on one hand and Figs. 4~c! and
~d! on the other yield a similar combination,

Pxy
(4)52 i ~vcme2/2!@G A~p!]/]pyG R~p!

2G R~p!]/]pyG A~p!#Jx]/]pxJy . ~25!

Notice that finally we get a very simple rule: start with th
derivative that stands at the left, and organize all the res
the right as a derivative of theJy current; arrange the sign
depending on whether the derivative is on the left-to-right
the right-to-left segments of the loop, and depending
whether it is a]/]px or ]/]py derivative@the change of the
sign is in accord with the orientation rules for pairs form
lated for Eq.~23!#. Remarkably, the diamagnetic and flu
terms match each other to produce a rather simple form.~The
Peierls substitution for the hopping matrix elements in
presence of a magnetic field is useful to discuss the diam
netic contribution on an equal footing with the flux term.15 In
the continuous limit both terms originate from the phase f
tor 2 ie/c* ṙA in the path-integral formulation of the motio
of the electron in the presence of the vector potential.17!

The Onsager relation,sxy(B)5syx(2B), follows di-
rectly from the rule formulated above. To getsyx(2B) from
a given contribution tosxy(B) one has to interchange deriva
tives ]/]px and ]/]py and reverseB to compensate the
change of the sign.

Now we use a usual trick,10 and interchange in thePxy
(4)

integration variablespx and py . This leads to a convenien
expression forPxy :

Pxy5 ivcm
e2

2 S G A~p!
]

]px
G R~p!2G R~p!

]

]px
G A~p! D

3S Jx

]

]py
Jy2Jy

]

]py
JxD . ~26!

The scattering by long-ranged impurities results in the ren
malization of the current vertex by the ratio of the transp
time t tr to the single-particle scattering timet:

Ja5
t tr~ upu!

t

pa

m
. ~27!

FIG. 6. Compensation of the false contributions of Fig. 5.

FIG. 7. Flux contributions withpx-vertex differentiation in-
volved.
4-6
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Fortunately, in the combination (Jx]/]pyJy2Jy]/]pyJx) the
terms of the type]/]pyt tr(upu) cancel each other out. The
the standard integrations inPxy lead us to a natural conclu
sion that the answer for the finite-range impurities diffe
from that one for the short-range case by the substitu
t→t tr :

sxy5vct trsxx . ~28!

Correspondingly, it follows from this conclusion that th
Hall coefficient is independent on the impurity range.@Here
one point remains to be cleared up. In the presence of d
der the Green’s functions acquire a self-energy part wh
imaginary part is 1/t. Its real part shifts the chemical poten
tial and hence is of no interest, but its dependence on
momentum near the Fermi energy may influence the resu
the integration over momentum in Eq.~26!. However, in the
absence of a special structure of the scatterers, like in liq
metals, the sensitivity to the energy of the electron stat
very small wheneFt tr@1, and this effect can be ignored.#

A comment may be in place here. It was important in t
above derivation to keep thep derivatives in the form of
combined expressions of the type]/]pyJy rather than to con-
sider separate terms. Separately these terms are larg
even more singular than their sum. Let us see how it wo
in a somewhat pathological but instructive example of sh
range impurities. In this case the dressing of the vector
tex by the impurity lines does not give any effect because
the momentum averaging. Thepy derivative makes the vec
tor averaging noneffective as it is illustrated in Fig. 8. Ea
of the three diagrams presented in Fig. 8 contains the sin
lar propagator of the diffusion ladder diagrams~diffusion!
that does not vanish after the averaging. This does not lea
any complications, however, as the sum of these sing
terms vanishes identically. Indeed, the expression co
sponding to the ending block~i.e., separated by the last ve
tical impurity line! when summed over the three diagram
turns out to be a derivative]/] p̃y(G Rp̃yG A), wherep̃ is the
momentum circulating inside this block. The integration ov
p̃ forces the whole contribution to be zero. As a result o
the diagram that does not contain vertical impurity lines s
vives in the case of the short-range impurities as it is obvi
when one considers these terms not separately but in

FIG. 8. Cancellation of the singular terms.

FIG. 9. The irreducible amplitudes of thee-e interaction
G1 andG2.
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combined form]/]pyJy . The observation about the impo
tance of keeping combined expressions in the calculation
sxy is of general character. Separate terms can be more
volved than their total contribution, see, e.g., the discuss
related to]2S/]j2 following Eq. ~36!.

To conclude this section we notice that Eq.~26! repro-
duces the structure of the iterative solution of the transp
equation forsxy. Let us compare Eq.~26! with the term
(e@vp3B#]/]p)dnp that appears in the transport equation
a result of the action of the Lorentz force and describes
turn of the current. In the first bracket of Eq.~26! the deriva-
tive ]/]px yields the velocityvp, while ]/]py in the second
bracket corresponds to the momentum derivative acting
the distribution functiondnp. The derivation in this section
was limited to the leading order in 1/eFt tr . To get further,
one has to study the dependence of 1/t tr on the flux. The
leading term of that kind arises due to the Cooperton corr
tions and is discussed in Appendix C.

IV. ELECTRON-ELECTRON INTERACTION

We are interested in the current-current correlator, a
therefore the basic process to be considered is a seque
rescattering of electron-hole pairs. Diagrammatically t
process is described by the particle-hole ladder sections
ternating with the irreducible amplitudes of thee-e interac-
tion G1 andG2. AmplitudesG1 andG2 differ in spin struc-
ture as it is schematically represented in Fig. 9. Example
such amplitudes are given in Fig. 10.

A typical diagram for the Hall current correlatorPxy in-
cludes theJx-current vertex, severalG amplitudes connected
by the R2R, A2A, or R2A sections and, finally, the
Jy-current vertex. In essence, the correlatorPxy may be
evaluated following the same line as in the case of the lo
range impurity scattering. There is, however, a complicat
related toG1 insertions. In the case of noninteracting ele
trons we have dealt with a flux of a single loop extendi
from theJx to theJy vertex. An insertion ofG2 in a diagram
leaves the number of loops to be the same, while theG1
amplitude splits the loop into pieces and breaks the sin
loop structure. We restore the construction with the main fl
loop having in mind to use the basic results of the previo

FIG. 10. Examples of theG1 andG2 amplitudes.

FIG. 11. The phase factors of theG1 amplitude.
4-7
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section, i.e., Eqs.~24! and ~25!.
Consider an insertion ofG1 that splits a loop at the point

i , j ,k,l . To restore the construction with the main flux loo
we attach the phase factori (e/c)(r j2r i)A„(r i1r j )/2… to the
segmentr i→r j in Fig. 11~a!. The analogous operation wi
be done with the segmentr k→r l . Simultaneously the com
pensating phase factors with the opposite sign are attach
the lines going in the opposite directions,r j→r i and r l
→r k . In Fig. 11 all these segments are denoted by
dashed lines with arrows. These dashed lines carry ph
but do not represent any Green’s functions. Now we regr
the phase factors. It is possible because we are interest
sxy that is linear inB, and therefore we have to expand a
keep only linear terms in the phase factors. The phases o
two dashed lines,r i→r j and r k→r l , are used to obtain the
flux of the main loop extending from theJx to theJy vertex
@a fragment of this loop is presented in Fig. 11~b! where it is
indicated by the thick lines#. The other two phase factor
attached to the segmentsr j→r i andr l→r k are used to form
a new flux loop encircling the brick of theG1 amplitude in
the direction opposite to the main flux loop. In Fig. 11~c! all
the parts of the corresponding loop are given by the th
lines.

To get the contribution toPxy from the main flux loop we
shall follow the derivation given in the previous sectio
Consider first the situation when the left standing derivat
acts on a Green’s function in a particle-hole section rat
than on theG amplitudes. Let this left standing derivative b
the px derivative. Then, thepy derivative is supposed to ac
on everything on the right of thepx derivative. The new
element here is that the dashed lines added to restore the
structure do not carry any Green’s functions, but only
phase factors. Let us study the situation when the additio
phase factors arise from one of theG1 amplitudes with the
dashed segmentsr3→r4 and r5→r6, as shown in Fig. 12.
After the decomposition procedure the corresponding fl
contribution is equal to

Fdashed5
1

2
B•@~r22r1!3~r42r3!1~r22r1!3~r62r5!#.

~29!

FIG. 12. The treatment of the dashed lines in theG1 amplitude;
the left standing derivative acts on a particle-hole section.
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Next, Fdashed can be rearranged as12 B•@(r22r1)3(r4
2r5)1(r22r1)3(r62r3)#, and for any structure of theG1
amplitude one obtains

Fdashed5
1

2
B•@~r22r1!3~r42r j1r j2•••2r5!

1~r22r1!3~r62r i1r i2•••2r3!#. ~30!

It follows as a result of this rearrangement that after
Fourier transformation the operation of thepy differentiation
will move all along the Green’s functions in the segmen
r3→r6 and r5→r4.

Since Eq.~30! is valid for anyG1 amplitude, we come to
the conclusion that the dashed lines do not spoil the gen
structure of the discussed contributions, and every Gre
function on the ‘‘vertical’’ lines, liker3→r6 and r5→r4, is
py differentiated on the same footing as any other Gree
function. Thus in the considered case thepy derivative in-
deed acts on everything on the right to thepx derivative, as it
should be expected.

Now we continue with the analysis of the case of the l
standingp derivative that acts on one of the Green’s fun
tions in the particle-hole section. The sectionsR2R or A
2A need not to be considered as each of them yields
expressions that cancel each other out. By theR2A section
we assume a set of the impurity scattering ladder diagra
that modify a current vertexJ by a factort tr /t. In the limit
when the external frequencyv→0 only oneR2A section
should be kept in the current-current correlatorPab(v), be-
cause each such section yields an additional power ofv.
Differentiation of the Green’s functions in theR2A section
splits the set of the ladder diagrams into two pieces t
modify both verticesJx and Jy by t tr /t. As a result the
contribution analogous to that represented in Figs. 3 an
reduces to Eq.~24!, and in the same way the contributio
analogous to Fig. 4 reduces to Eq.~25!. Altogether we come
back to Eq.~26! but with the current vertices and the Green
functions dressed by thee-e interaction.

The terms that have been discussed until now determ
the leading contribution tosxy}t tr

2 . Its analysis will be
completed in the end of this section, but first we turn to t
other case when the left standing derivative, let it be thepx
derivative, is inside one of the interaction amplitudesG,
while the py derivative acts on everything to the right from
this amplitude@an example is presented in Fig. 13~a!#. As a
candidate for a contribution of the ordert tr

2 to sxy in the
discussed process consider the case when thepy derivative is
applied to theR2A section standing on the right fromG.

FIG. 13. A contribution tosxy that involves nonpair-correlation
amplitudes.
4-8
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HALL COEFFICIENT IN AN INTERACTING ELECTRON GAS PHYSICAL REVIEW B68, 155114 ~2003!
This differentiation produces the singular term
(]/]pyG R)G A and G R(]/]pyG A) that separately yield the
contributions}t tr

2 but in the leading order they cancel ea
other out. The latter fact is obvious because we may take
integration overpy by parts and then theR2A section yields
a contribution that is only}t tr . A similar contribution ap-
pears when theR2A section is located on the left from th
amplitudeG that is marked by the differentiation. Arrangin
both the terms in a way that theR2A section becomes fre
from the differentiation the contribution tosxy in the dis-
cussed case can be presented as

sxy}vct tr J̃x~]qxu→]py2]qyu→]px!J̃y . ~31!

Here the current verticesJ̃x,y are dressed by thee-e interac-
tion, but unlikeJ they do not contain the factort tr /t. The
symbol u→ @as well as the right-directed bar in Fig. 13~b!#
indicates that the derivatives are ordered and the deriva
over p acts on the right to theq derivative whereq is an
infinitesimal momentum in the current vertexJy as shown in
Fig. 14~a!. The momentumq has been introduced to get op
posite signs for the derivatives acting on oppositely direc
lines in the current vertex. Since the parameters of the e
tron liquid change on the scale of the Fermi momentum
contribution is small compared to the leading one by
parameter 1/eFt tr . The reason of this smallness is that in t
discussed process the skew action of the magnetic field
develop only on an electron wavelength, while for the lea
ing term the skew effect develops on a free path leng
Notice that the processes just discussed involve the de
tives of theG amplitudes that generate terms with the no
pair electron correlationsf np that were mentioned in the In
troduction. The discussed term may become significan
apart from the wavelength and the mean free path ther
another length scale in the problem. For example, near
superconducting transition the fluctuations of the order
rameter may contribute significantly and change the Hall
efficient.

The last contribution toPxy that remains to be analyzed
related to the flux loops encircling theG1 amplitudes. Con-
sider the loop encircling the amplitudeG1(r1 ,r2 ,r3 ,r4). The
flux through the polygonr1 ,r2 ,r3 ,r4 may be written as the
sum of the fluxes through the two triangles:

FG1
5B•@~r12r2!3~r42r1!1~r32r4!3~r22r3!#.

~32!

FIG. 14. The definition of the Fourier components of the curr
vertexesJ and the interaction amplitudeG.
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We define the Fourier representation ofG1(r1 ,r2 ,r3 ,r4) as
follows @see Fig. 14~b!#:

G1~r1 ,r2 ,r3 ,r4!5E ddp

~2p!dE ddp8

~2p!dE ddq

~2p!d

3exp$ i @~p1q/2!r12~p81q/2!r2

1~p82q/2!r32~p2q/2!r4#%G~p,p8;q!.

~33!

Comparing Eq.~32! with Eq. ~33! we obtain that the produc
G1FG1

when Fourier transformed yields the following com

bination that enters the correlatorPxy :

G1FG1
→B̂•F ]

]q
3S ]

]p8
2

]

]pD GG1~p,p8;q!. ~34!

As the amplitudeG1 is taken in the limitBÄ0 it is a scalar
function of its momenta, and therefore the expression~34!
vanishes.

Summarizing the analysis presented in this section
conclude that the leading contribution tosxy is determined
by the following expression:

Pxy5 ieB
e2

2c S t tr

t D 2S G A~p!
]

]px
G R~p!2G R~p!

]

]px
G A~p! D

3S J̃x

]

]py
J̃y2 J̃y

]

]py
J̃xD . ~35!

The derivatives over the momentum in Eq.~35! correspond
to the vector product of the two coordinate differences in
representation of the flux in Eq.~23!. The current vertexes
J̃x,y are not sensitive to the renormalizations by impurit
due to 1/eFt!1, and are determined by the Ward identity18

J̃m5
pm

m S 11
]S~p,e!

]jp
D , ~36!

whereS(p,e) is a self-energy of the Green’s function in th
presence of thee-e interaction. Equations~35! and~36! cor-
respond to the solution of the transport equation forsxy for
the interacting electrons@see the discussion of Eq.~26! con-
cluding Sec. III#. Due to the specific structure of the la
bracket in Eq.~35! the second derivative]2S/]j2, which is
not conventional in the Fermi-liquid theory, does not en
the final answer. Altogether we get the factor@1
1]S(p,0)/]jp# three times: two from the vertexes and o
from thepx derivatives of the Green’s functions in the squa
brackets. The integration over momentum inPxy can be per-
formed keeping the Green’s functions in the pole approxim
tion:

G R,A~e,p!5
@12]S~pF ,e!/]e#21

e2 m
m*

jp6 i
2t

, ~37!

wheret is the free path time of the quasiparticles that
cludes the renormalization by thee-e interaction, and

t

4-9
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m/m* 5@11]S~p,0!/]jp#/@12]S~pF ,e!/]e#. ~38!

The latter relation is a standard one for the microscop
theory of the Fermi liquid.18 All three factors @1
2]S(pF ,e)/]e#21 created by the Green’s functions in E
~35! together with the three factors@11]S(p,0)/]jp# can be
combined into the cube of the physical combinationm/m* .
After integration overjp one power ofm/m* will be elimi-
nated and ultimately we obtain

sxy5vc* t trsxx ~39!

with vc* 5eB/m* c andsxx5ne2t tr /m* . This result implies
that no Hall coefficient renormalization develops due to
e-e interaction in the leading terms over 1/eFt tr .

V. DISCUSSION

We have shown microscopically that the Hall coefficie
in a weak magnetic field is not renormalized by thee-e in-
teraction in the leading order in 1/eFt tr . Although the terms
that are not conventional in the Fermi-liquid theory appea
the intermediate stages, they do not enter the final ans
This remarkable fact is a direct consequence of the s
structure which arises in the Hall effect because of the m
netic flux.

The result about the cancellation of the Fermi-liqu
renormalization corrections in the Hall coefficient diffe
from the one obtained previously in Refs. 10 and 19. It
formidable to make a comparison with the analysis of th
papers because the distinction of the impurity scattering
plitudes from thee-e interaction amplitudes was not pe
formed explicitly. These amplitudes have different structu
in exchange of the frequency, however. Therefore any tr
ment lacking clear distinction between these amplitude
potentially dangerous. The analysis of the Fermi liquid
Ref. 19 did not reproduce the well established results of
transport theory, because of the confusing treatment of
frequency integrations induced by thee-e interaction ampli-
tudes. On the other hand, in Ref. 10 the authors were ma
concerned with the impurity scattering. One can check
fact, that their factor@11]S8(p,0)/]e(p)#2 in RH differs
negligibly from unity in the case of noninteracting electro
scattered by a random potential.

The absence of the renormalization in the Hall coeffici
corresponds to the result that can be obtained within
phenomenological theory of the Fermi liquid. For comple
ness we reproduce it here following Sec. 3.6 in Ref. 7. In
Fermi-liquid theory the excited states of the interacting el
trons are described by the gas of quasiparticles with the
fective Hamiltonian written via the distribution function o
the quasiparticlesnp(r ,t):

ēp~r !5ep1(
p8

f pp8dnp8~r !. ~40!

Here (p,r ) are classical variables, and the interaction te
f pp85*dr 8 f (pr ,p8r 8) is assumed to be local. In the pre
ence of the vector potentialA(r ,t) one should make a tran
sition to the pair of the conjugate variables (P,r ):
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ẽP~r !5 ēP2(e/c)A~r !; ñP~r !5nP2(e/c)A~r !, ~41!

where the vector potentialA(r ,t) represents both magneti
and electric fields:B5¹3A, E52(1/c)]A/]t. In the
phase space (P,r ) the flow of the quasiparticle densityñP(r )
satisfies the Liouville equation:

]ñ

]t
1

]ñ

]r

]ẽ

]P
2

]ñ

]P

]ẽ

]r
5I coll . ~42!

To make the dependence on the external fields explicit i
convenient to reexpress Eq.~42! in terms ofn(p,r ,t):

]n

]t
1

]ē

]pa

]n

]r a
2

]ē

]r a

]n

]pa
1eEa

]n

]pa
1

e

c
S ]ē

]p
3BD

a

]n

]pa

5I coll . ~43!

Next, it is useful to introduce the deviations from the glob
and local equilibrium defined as

dnp~r !5np~r !2n0~ep!, dn̄p~r !5np~r !2n0
„ēp~r !…,

~44!

respectively. The two are related as follows:

dn̄p~r !5dnp~r !2
]n0

]ep
(
p8

f pp8dnp8~r !. ~45!

With the use of Eqs.~44! and ~45!, Eq. ~43! yields after
linearization

]dn

]t
1eEa

]n0

]pa
1va

]dn̄

]r a
1

e

c
~v3B!a

]dn̄

]pa
5I coll ,

~46!

whereva5pa /m* , and in the relaxation time approximatio
I coll52dn̄p /t tr . The current density is also express
through the deviation from the local equilibrium

Ja~r !5(
p

pa

m*
dn̄p . ~47!

To study the Hall effect one should look for the stationa
homogeneous distributiondn̄p . The static limit of Eqs.~46!
and~47! are identical to the corresponding equations for no
interacting electrons, ifm* →m anddn̄→dn. Therefore the
transport coefficients are given by the free electron exp
sions with the substitutionm to m* , andsxy5vc* t trsxx .

It is clear form this discussion that since the Fermi-liqu
theory uses a local functional with the distribution functio
depending on the classical variables (p,r ) it does not contain
the nonpair-correlation contribution~31!. The latter describes
the influence of the flux phase on the interaction amplitu
and, obviously, is beyond the scope of the Fermi-liqu
theory. Fortunately, this term is small by the parame
1/eFt tr .

To summarize, we have proved that the Hall coefficien
not renormalized by thee-e interaction in the leading orde
in 1/eFt. The result holds for not too low temperatures wh
4-10
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HALL COEFFICIENT IN AN INTERACTING ELECTRON GAS PHYSICAL REVIEW B68, 155114 ~2003!
the logarithmic corrections from the Altshuler-Aronov effe
can be ignored, i.e., when (e2/hsxx)ln(1/Tt)!1. Further-
more it follows from the analysis of Ref. 20 that while as w
show the leading term is robust, the temperature correct
to the Hall coefficient remain small up to the temperatu
substantially lower than 1/t. Combined with this observation
the present analysis gives an explanation of the stability
the Hall coefficientRH to the e-e interaction observed in
Refs. 5 and 3~b! for the dilute electron gas in Si MOSFET
not too close to the metal-insulator transition.
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APPENDIX A: SYMMETRY PROPERTIES

In this appendix the symmetry properties of the co
Green’s functionG̃ are presented. A useful discussion of t
symmetry properties of the Green’s function in the prese
of e-e interaction can be found in the classical papers21,22

which study the quantum oscillations in a magnetic field.

1. Translation invariance

A many-body system in a homogeneous magnetic fiel
described by the Hamiltonian

H5(
i

1

2m S pi2
e

c
A~r i ! D 2

1
1

2 (
iÞ j

V~ ur i2r j u!. ~A1!

In this case the vector potential depends linearly on the
ordinates, and we introduce a matrixAmn following the con-
siderations of Ref. 12,

Am~r !5Amnr n . ~A2!

The conjugate vector potential is defined through its tra
poseÃm(r )5Ãmnr n in such a way that the gauge invaria
relationÃmn2Amn5B«mn holds. The generators of the ma
netic translations are defined as

Tm5(
i

S pi
m2

e

c
Ãm~r i ! D , ~A3!

where the sum is taken over all electrons. Consider the
erator of a finite translationSa5exp(2iamTm). The Matsub-
ara Green’s functionG(r1 ,r2 ;t)52^Ttc(r1 ,t)c†(r2)& re-
mains unchanged under the canonical transformationc
→c85Sa

21cSa , as the generators~A3! commute with the
Hamiltonian~A1!. Consider now this transformation explic
itly. Using the Baker-Hausdorff identity exp(A1B)
5exp(A)exp(B)exp(2@A,B#/2) theSa may be decomposed a
15511
ns
s

f

I.
-
-

e

is

o-

-

p-

Sa5exp~2 ia•Ptot!expS i
e

c
a•ÃtotD

3expF2
ie

4c
aman~Ãnm1Ãmn!G , ~A4!

where thePtot is the total momentum andÃtot is the sum of
the conjugate vector potentials felt by all the particles in
system. Then the transformed operatorc8 becomes

c8~r !5c~r2a!expS ie

c
aÃ~r ! D ~A5!

and correspondingly

c8†~r !5c~r2a!expS 2
ie

c
aÃ~r ! D . ~A6!

Relations~A5! and ~A6! imply that

G~r1 ,r2 ;t!5G~r12a,r22a;t!expS ie

c
aÃ~r12r2! D .

~A7!

It follows then from the relation~A7! that the core Green’s
function defined in Eq.~4! is translation invariant. In the
presence of disorder the statement is still valid for avera
Green’s functions.~The average over disorder generat
translation invariant two-body ‘‘interaction’’ terms when on
introducesn→0 replicas of the system, or uses other sta
dard tricks.!

2. Gauge invariance

It has been shown in Ref. 21 that Green’s functions
transformed as

expS i
e

c
@x~r1!2x~r2!# DGA~r 1 ,r 2 ;t!5GA1“x~r 1 ,r 2 ;t!

~A8!

under the gauge transformationA→A85A1¹x. Clearly,
the integral (ie/c)* r2

r1Adr in the exponential prefactor in Eq

~4! changes exactly in a way as to cancel out the fac
appearing in the left-hand side of Eq.~A8!. This cancellation
ensures the gauge invariance of the core Green’s functio

3. Rotational invariance

We consider the transformation properties under rotati
in the x2y plane in the circular gauge,

A5
1

2
B3r . ~A9!

In this gauge the Hamiltonian~A1! takes explicitly the form
which contains rotational invariant terms only. Similarly
Sa the operatorsSf5exp(2ifLz) can be introduced. AsSf

commute with the Hamiltonian, the Green’s function rema
invariant under the action ofSf which rotate the coordinate
r1 and r2 in G(r1 ,r2 ,t). The phase factor (ie/c)* r

r1Adr is

2
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also unchanged in the course of rotation in the circu
gauge, and therefore the core Green’s functionG̃ should be
rotational invariant as well. SinceG̃ is gauge invariant the
statement holds for any gauge.

APPENDIX B: SPHERICALLY SYMMETRIC SPECTRUM

Transport properties in the case of a complicated b
structure are nonuniversal. For this reason we are not g
to extend the present analysis of the renormalization ofsxy
by e-e interaction for an arbitrary spectrum. However, t
obtained result can be readily extended toRH in the case of
a general but spherically symmetric spectrume(upu). ~Such
spectrum can naturally appear if the degrees of freedom
some energy shell are integrated out in the course of
Renormalization Group treatment.! In the presence of the
magnetic field the corresponding part of the Hamiltonian
given by the gauge invariant extension ofe(upu) with a sub-
sequent symmetrization required to make the Hamilton
Hermitian. The latter is needed since different component
the velocity operator do not commute. To get a symmetri
extension of the kinetic term we expande(upu) in the Taylor
series,

e~ upu!5(
m,n

em,npx
mpy

n . ~B1!

The symmetrization procedure leads to

e~ upu!⇒(
m,n

em,n~Cm1n
n !21(

P
S p2

e

c
AD

P[1]

3S p2
e

c
AD

P[2]

•••S p2
e

c
AD

P[m1n]

,

~B2!

where the sum is taken over all inequivalent permutationsP,
in such a way that altogether there arem and n factors @p
2(e/c)A#x and @p2(e/c)A#y respectively, andP@ l #5x,y.
The current operator is determined by the variation of
energy with respect to the vector potential:

Jm52d^H&/dAm . ~B3!

Now we follow the main text after Eq.~6!. Consider the
diagrammatic element related to the current operator at
point r i after the contractions with the operatorsc(r1) and
c†(r2) have been performed. Using Eqs.~B2! and ~B3! and
integrating by parts we obtain for this element
15511
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P
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l
~Cm1n

n !21S 2 i¹r1
2

e

c
AD

P( l 21)

•••S 2 i¹r1
2

e

c
AD

P(1)

G~r12r i !S 2 i¹r i
2

e

c
AD

P( l 11)

•••S 2 i¹r i
2

e

c
AD

P(m1n)

G~r i2r2!. ~B4!

Here for each permutation all terms with the projectionm are
varied to get the currentJm ; correspondingly the sum(8 is
taken over alll with P@ l #5m. In the absence of the vecto
potential the current operator yields]e/]p as expected. To
obtain the diamagnetic term in its extended form@see Eq.~9!
above# it is needed to apply Eq.~4! and to pass the terms
@2 i¹2(e/c)A# through the phase factors using Eqs.~7! and
~8!. The result is

Jm
m,n5em,n(

P
( 8

l
~Cm1n

n !21exp$~ ie/c!@F~r1 ,r i !

1F~r i ,r2!#%S 2 i¹r1
2

e

2c
~r12r i !3BD

P( l 21)

•••S 2 i¹r1
2

e

2c
~r12r i !3BD

P(1)

G̃~r12r i !

3S 2 i¹r i
1

e

2c
~r i2r2!3BD

P( l 11)

. . . S 2 i¹r i
1

e

2c
~r i2r2!3BD

P(m1n)

G̃~r i2r2!.

~B5!

Here the gradients not acting on the Green’s functions
canceled out due to the symmetrization procedure. At
stage the analysis of the main text can be extended up to
Eq. ~35!, where now

J̃m5
]e~p!

]pm
S 11

]S~p,e!

]jp
D . ~B6!

The result~39! still holds with

vc* 5
e8~p!

p S 11]S~p,0!/]jp

12]S~pF ,e!/]e D eB

c
. ~B7!

It follows from Eq.~B7! that the renormalization correction
to RH are canceled out.

APPENDIX C: WEAK LOCALIZATION CORRECTIONS
TO THE HALL COEFFICIENT

The weak localization corrections originate from th
quantum interference, and diagrammatically are known to
related to a set of the ladder diagrams in the particle-part
channel which is called ‘‘the cooperon.’’As a doubly charg
object the cooperon in the magnetic field acquires the fo
4-12
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CB~r i ,r f !5exp@~ i2e/c!F~r i ,r f !#C̃~r i2r f !, ~C1!

whereF is given by Eq.~5! and C̃ has the same symmetr
properties as the corresponding functionG̃ in Eq. ~4!. The
latter fact can be seen from the Dyson equation for the co
eron in the magnetic field

CB~r i ,r f !5
d~r i2r f !

2ptn
1

1

2ptnE dr 8G R~r i ,r 8!

3G A~r i ,r 8!C~r 8,r f !. ~C2!

Using Eqs.~4! and ~C1! one gets from Eq.~C2! an integral
equation forC̃,

C̃~r i ,r f !5
d~r i2r f !

2ptn
1

1

2ptnE dr 8G̃R~r i2r 8!G̃A~r i2r 8!

3exp@~2ie/c!F~r i ,r 8,r f !#C̃~r 8,r f !, ~C3!

whereF(r1 ,r2 ,r3) is the magnetic flux through the triang
with vertexes (r1 ,r2 ,r3):

F~r1 ,r2 ,r3!5
1

2
B•@~r12r3!3~r22r1!#. ~C4!

Equation~C3! contains invariant ingredients only, and th
ensures thatC̃ has the same symmetry properties asG̃. One
can readily derive the following equation forC̃:

FDS 2 i¹2
2eB

2c
3r D 2

1uvnuGC̃~r ,vn!5
dd~r !

2pt2n
. ~C5!

As it has been already explained in the main text forsxy

linear inB it is enough to keepG̃ andC̃ in the limit B50. At
the vanishing magnetic fieldC̃ turns into the singular propa
gator

C~Q,ivn!5
1

2pt2n

1

uvnu1DQ2
. ~C6!

In this Appendix we will assume that the scattering pote
tial is short ranged and that the electrons have an arbit

FIG. 15. Weak localization corrections tosxy . The wavy line
denotes the cooperon, the dashed wavy lines carry phases
dashed line denotes the scattering by impurities.
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but spherically symmetric spectrume(p). Consider first the
diagram presented in Fig. 15~a!. With the use of Equation~9!
the diamagnetic contribution from theJx vertex can be writ-
ten as

Pxy
x ~q50,ivn!

5 i
e3B

4c
T(

i en

E ddp

~2p!dE ddQ

~2p!d
«mn

]2e

]px]pm

3S G A~p!
]

]pn
G R~p!2G R~p!

]

]pn
G A~p! D

3C~Q!G R~2p1Q!G A~2p1Q!vy~2p1Q!,

~C7!

whereva(p)5]e/]pa is the velocity and]2e/]pa]pb is the
inverse mass tensor. Together with theJy vertex contribution
a symmetric combination

@~]2e/]px
2!~]e/]py!222~]2e/]px]py!~]e/]px!~]e/]py!

1~]2e/]py
2!~]e/]px!

2#

arises. Exactly the same combination appears also in the
culation ofsxy in the Drude’s approximation. In the spher
cally symmetric case this combination reduces
(2/d)vF

2m21, where m215vF /pF . @The fact that the dis-
cussed combination contains the first derivative ofe(p) only
was important for the derivation ofRH51/nec for the arbi-
trary spectrume(upu), see Eq.~B7!.#

To evaluate the flux term, we split the phase of the co
eron into two equal parts indicated by the dashed lines
Fig. 15~a!. Then the flux of this diagram becomes a sum
the fluxes through the two triangles:

Fa5F~r i ,r1 ,r2!1F~r f ,r1 ,r2!. ~C8!

When the Fourier transformation is performed the coordin
differences inFa lead to the differentiation with respect t
momentum. To get a nonvanishing contribution tosxy one of
the differentiation should be applied to a current vertex
turns out that the diamagnetic and flux terms are identi
Together they yield

dsxy
a 53vctdsxx , ~C9!

wherevc5(eB/c)m21, and dsxx is the weak localization
correction to the longitudinal conductivity.

For the terms presented in Figs. 15~b! and~c! the diamag-
netic contributions are absent. The flux term of the diagr
15~b! may be represented most economically as

Fb5F~r i ,r1 ,r3!1F~r f ,r2 ,r1!22F~r1 ,r3 ,r2!.
~C10!

The advantage of this representation is that the first
fluxes are similar to the diamagnetic terms and do not c
tribute tosxy . The remaining flux term leads to

the
4-13
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Pxy
b ~q50,ivn!52 i

e3B

c S 1

2pnt DT(
i en

E ddp

~2p!dE ddp8

~2p!dE ddQ

~2p!d
vx~p!G A~p!G R~p!

]G A~ u2p1Qu!
]~2p1Q!x

3C~Q!G A~ u2p81Qu!G R~ u2p81Qu!
]G A~p8!

]py8
vy~2p81Q!. ~C11!

The differentiated Green’s functions are indicated by crosses in Figs. 15~b! and ~c!. Similarly, the flux term of the diagram
15~c! is

Pxy
c ~q50,ivn!5 i

e3B

c S 1

2pnt DT(
i en

E ddp

~2p!dE ddp8

~2p!dE ddQ

~2p!d
vx~p!G A~p!G R~p!

]G R~ u2p1Qu!
]~2p1Q!x

3C~Q!G A~ u2p81Qu!G R~ u2p81Qu!
]G R~p8!

]py8
vy~2p81Q!. ~C12!
Eq.
t is

ux
ions
-

To proceed further, we rearrange the sumP̃xy5Pxy
b 1Pxy

c to
the following form:

P̃xy~q50,ivn!

5 i
e3B

c S 1

2pnt DT(
i en

E dQ

~2p!d
C~Q!

3E ddp̃

~2p!d

1

d
v2@G R

3~ p̃!GA~ p̃!1G A
3~ p̃!GR~ p̃!#

3E ddp

~2p!d

1

d
v2@G R

3~p!GA~p!2G A
3~p!GR~p!#.

~C13!

One should be cautious with the last integral ast(G R
3GA

2G A
3GR)52i j(GRGA)3 is an odd function inj. We have

therefore to perform an expansion inj to get a nonvanishing
result. This leads us to an integral
.
ett

,

-

.

v,

h

15511
2i

d E dj
d~nv2t21!

dj
j2~GRGA!3

5
4i

d E djF ~nt21!
]2e~p!

]p2
1v2

d~nt21!

dj Gj2~GRGA!3.

~C14!

Unlike the expressions discussed above, the integrand in
~C14! depends on the specific form of the spectrum, i.e., i
not universal. Fore(p)5p2/2m and d52 the diagrams of
Figs. 15~b! and ~c! yield dsxy

(b1c)52vctdsxx . Then the
weak localization correction to the Hall coefficient,

dRH

RH
5

dsxy

sxy
22

dsxx

sxx
, ~C15!

vanishes as it was first shown by H. Fukuyama.9

The possibility of an economic representation of the fl
is the essential advantage of the method. The express
~C7!, ~C11!, and ~C12! have been obtained without any in
termediate steps here.
,
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