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Nonanalytic corrections to the Fermi-liquid behavior
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The issue of nonanalytic corrections to the Fermi-liquid behavior is revisited. Previous studies have indi-
cated that the corrections to the Fermi-liquid forms of the specific heat and the static spin susceptibility
(CFL}T, xs

FL5const) are nonanalytic inD<3 and scale asdC(T)}TD, xs(T)}TD21, andxs(Q)}QD21,
with extra logarithms inD53 and 1. It is shown that these nonanalytic corrections originate from the universal
singularities in the dynamical bosonic response functions of a generic Fermi liquid. In contrast to the leading,
Fermi-liquid forms which depend on the interaction averaged over the Fermi surface, the nonanalytic correc-
tions are parametrized by only two coupling constants, which are the components of the interaction potential
at momentum transfersq50 and q52pF . For three-dimensional~3D! systems, a recent result of Belitz,
Kirkpatrick, and Vojta for the spin susceptibility is reproduced and the issue why a nonanalytic momentum
dependence,xs(Q,T50)2xs

FL}Q2log Q, is not paralleled by a nonanalyticity in theT dependence
@xs(0,T)2xs

FL#}T2 is clarified. For 2D systems, explicit forms ofC(T)2CFL}T2, x(Q,T50)2xFL}uQu,
andx(0,T)2xFL}T are obtained. It is shown that earlier calculations of the temperature dependences in two
dimensions are incomplete.

DOI: 10.1103/PhysRevB.68.155113 PACS number~s!: 71.10.Ay, 71.10.Pm
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I. INTRODUCTION

The universal features of Fermi liquids and their physi
consequences continue to attract the attention of
condensed-matter community for almost 50 years after
Fermi-liquid theory was developed by Landau.1 A search for
stability conditions of a Fermi liquid and deviations from
Fermi-liquid behavior,2–8 particularly near quantum critica
points, intensified in recent years mostly due to the n
Fermi-liquid features of the normal state of highTc
superconductors9 and heavy fermion materials.10

In a generic Fermi liquid, the fermionic self-energy on t
mass shell behaves at vanishing frequency and temper
as S(v)2S(0)5av . . . , where dotted terms account fo
higher powers of frequency or temperature and are neglig
in the limit v,T→0. This form of the self-energy implie
that the dominant effect of the interaction at low energies
the renormalization of the quasiparticle mass and the res
of the quasiparticle Green’s function, but apart from this,
quasiparticles retain the same properties as free particles~al-
ternatively stated, the quasiparticle Green’s function still h
a well defined pole!.11–14This behavior has a profound effe
on observable quantities such as the specific heat and s
spin and charge susceptibilities, which have the same fu
tional dependences as for free fermions, e.g., the spe
heatC(T) is linear inT, while the susceptibilitiesxs(Q,T)
andxc(Q,T) both approach constant values atQ50 andT
50. A regular behavior of the fermionic self-energy is al
in line with a general reasoning that turning on the inter
tion in D.1 should not affect drastically the low-energ
properties of an electronic system, unless special circ
stances, e.g., proximity to a quantum phase transit
interfere.9,16

In a widely used definition of a Fermi liquid, it is furthe
assumed that the subleading terms in the self-energy are
regular, and, in particular, the imaginary part of the retard
0163-1829/2003/68~15!/155113~33!/$20.00 68 1551
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fermionic self-energySR(k,v) on the mass shell behave
as11–14

SR95A@v21~pT!2#. ~1.1!

Simultaneously, the subleading term inC(T) scales asT3,
while the subleading terms in spin and charge susceptibili
behave asQ2 and T2. The analytic behavior ofSR9 is sup-
ported by perturbative calculations inD53 and by a genera
original argument by Landau thatSR9 is determined by solely
by fermions in a narrow (;v) energy range around th
Fermi surface.11,12 However, Eq.~1.1! as well as the form of
the subleading terms inC(T) and x(Q,T) are not the re-
quirements of the Fermi liquid, but rather a consequence
the assumption that the expansion in powers of frequen
temperature, and momentum is analytic.

The subject of this paper is the analysis of thenonana-
lytic, universal corrections to the Fermi-liquid forms o
S(v,T),C(T), andx(Q,T) that should be present in a ge
neric Fermi liquid. It has been known for some time that t
subleading terms in thev andT expansions of the fermionic
self-energy do not form regular, analytic series inv2 or T2

~i.e., v3,v5, etc. for S8 and v4,v6, etc. for S9).15 In par-
ticular, inD53, power counting shows that the first sublea
ing term in the~retarded! on-shell self-energy atT50 is17

dSR~v!5SR~v!2SR
FL~v!

5B3Dv3ln~2 iv!, ~1.2!

whereB3D is real. For a generic 2,D,3, this subleading
term behaves asvD. In two dimensions, it is again
logarithmic,18–24

dSR~v!52 iB2Dv2ln~2 iv!, ~1.3!

where B2D is real. From a formal perspective, thev2ln v
form of the correction term in two dimensions implies that
©2003 The American Physical Society13-1
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v→0 it dominates over a Fermi-liquidv2 term, i.e., a con-
ventional Fermi-liquid reasoning breaks down. This is tr
also forD,2, where the correction term scales again asvD.
However, as long asD.1, ReSFL(kF ,v);v is asymptoti-
cally larger at low frequencies than ImS(kF ,v), i.e., fermi-
onic excitations remain well defined. For a complete set
references on this problem see Ref. 25.

The singularity in ReS affects directly the subleadin
term dC(T) in the specific heatC(T)5gT1dC(T) via11

dC~T!52p
]

]T F 1

TE dDk

~2p!D

3E
2`

`

dvv
]n~v!

]v
ReS~v,k!d~v2ek!G .

~1.4!

In three dimensions, power counting yieldsdC(T)}T3ln T,26

while in two dimensions, Re@dS(v)#}v2, and by power
countingdC(T)}T2.27,28

Belitz, Kirkpatrick and Vojta~BKV ! argued29 that the sin-
gularity in the fermionic self-energy should also affect sp
susceptibility and give rise to a singular momentum exp
sion of the staticxs(Q,T50). A similar idea was expresse
by Misawa.30 Indeed, the susceptibility is a convolution o
the two fermionic Green’s functions~a particle-hole bubble!.
For non-interacting fermions,xs(Q,0) is given by the
Lindhard function which is analytic inQ for smallQ in all D.
The corrections to the Lindhard form are obtained by s
energy and vertex-correction insertions into the particle-h
bubble~see Fig. 3!. The diagrams with self-energy insertion
can be viewed as convolutions ofG and G0 where G21

5G0
211S. Substituting the self-energy and expanding inS

and inQ, we obtain

dx~Q,0!5x~Q,0!2x~0,0!}Q2E dvdeq

S~v,q!

~ iv2eq!5
.

~1.5!

Substituting the singular part ofS(v,q) into Eq. ~1.5! and
just counting powers, without paying attention to the locat
of the poles, we finddx(Q,0)}Q2lnuQu for D53, and
dx(Q,0)}QD21 for smallerD. @For D51, a more accurate
estimate yieldsx(Q,0)} lnuQu].

To verify this reasoning, BKV explicitly computed
dxs(Q,0) in three dimensions to second order in the inter
tion, and indeed demonstrated29 that dx(Q,0)}Q2lnuQu, in
agreement with power counting. Based on this agreem
BKV conjectured that power counting should be valid for
D.1, i.e., the fully renormalized spin susceptibility shou
scale with momentum asQD21.

Another nonanalytic behavior was discovered in t
analysis of the temperature dependence of the uniform
ceptibility in two dimensions. Baranov, Kagan an
Marenko31 ~BKM ! estimatedxs(Q50,T) using a relation
between the uniform susceptibility and the quasiparticle
teraction function,11,12 and argued thatxs(0,T) is linear inT
in two dimensions. Chitov and Millis~CM! ~Ref. 32! later
15511
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used the same approach, but went beyond estimates and
formed a detailed analysis of the quasiparticle interact
function and the susceptibility. They also found a linear-inT
dependence. The linear inT dependence was then confirme
by Fratini and Guinea,33 who also considered anisotrop
Fermi surfaces.

Another example of nonanalyticity in the leading corre
tions to a Fermi-liquid behavior is linear-in-T correction to
the impurity scattering time in two dimensions.34–37A gen-
eral treatment of this situation38 shows that the correction to
the residual conductivity of a dirty Fermi liquid depends li
early on the temperature in the ballistic regime, i.e., wheT
is much larger than the impurity scattering rate. Unlike t
familiar lnT dependence of the conductivity in the diffusiv
regime,39 this linearT dependence originates from the sing
lar behavior of the response functions of a clean Fermi liq
in two dimensions.

Our intention to pursue a further study of singular corre
tions to the Fermi-liquid behavior is stimulated by seve
factors. First, we want to clarify what actually causes t
singularities in the fermionic self-energy, specific heat, a
spin susceptibility. To illustrate the importance of unde
standing this issue, we note that power counting argume
are not rigorous and can lead to incorrect results. Indeed
us apply power counting to the susceptibility of nonintera
ing fermions, which, we know, is a Lindhard function. Ea
Green’s function of free fermionsG0(p,vn)5@ ivn2vF(k
2kF)#21 scales as one inverse power of momentum a
energy ~the corresponding dynamical exponentzF51), so
the convolution of the two Green’s functions contributes tw
powers of k2kF in the denominator of the integrand fo
x(Q,0). Expanding up toQ2, one then adds two extra pow
ers in the denominator. The frequency integration elimina
one, so there are three powers of momentum left in the
nominator. The prefactor forQ2 should then scale as

E dDq

q3
, ~1.6!

where q5p2kF . The lower limit of the integration is of
orderQ, the upper limit is of orderkF . The integral is infra-
red divergent forD<3, scales as lnuQu for D53, and as
uQuD23 for 1,D,3. We see that a power counting predic
a singular momentum dependence of the Lindhard funct
The true Lindhard function obviously does not obey th
behavior–it is analytic nearQ50 for all D. In three
dimensions,40

x0~Q,T50!5x0
3DS 12

Q2

8kF
2 D , ~1.7!

wherex0
3D5mkF /p2. In two dimensions, it is just a constan

for uQu,2kF ,41,42

x0~Q,0!5x0
2D , Q,2kF , ~1.8!

wherex0
2D5m/p. In one dimension,
3-2
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x0~Q,0!5x0
1DS 11

1

12

Q2

kF
2 D , ~1.9!

wherex0
2D52m/pkF . The failure of power counting argu

ments to reproduce the behavior of the Lindhard funct
clearly calls for understanding under which conditions th
do work. The same problem holds also for the self-energy
the singular forms of Eqs.~1.2! and ~1.3! are obtained by
power counting, and there is no guarantee that the co
cients are nonzero. In fact, CM computed the leading cor
tion to the real part of the self-energy in two dimensions a
argued that itvanishes. This would imply that the coefficien
B2D in Eq. ~1.3! vanishes, and thus thev2ln v term in ImSR
is absent. Our result is different~see below!—we found that
B2D is finite.

Another reason to look more deeply into the physics
singularities is the discrepancy between momentum and t
perature dependences of the susceptibility. The fact that
namical exponentzF51 would normally imply that a
nonanalytic dependencedx(Q,T50)}QD21 should be par-
alleled by a nonanalytic dependence ofdx(0,T)}TD21. In
three dimensions, this analogy would mean thatdx(0,T)
}T2ln T. Misawa43 did find aT2ln T term in his calculations
in early 1970s. However, later Carneiro and Pethick,44 and
recently BKV,29 argued that theT2ln T term is actually absen
in three dimensions. Several explanations have been put
ward to explain this discrepancy. BKV suggested that
absence of theT2ln T dependence in three dimensions is a
cidental and should not be regarded as a failure of po
counting arguments. They conjectured that for a genericD
,3, theTD21 dependence ofxs(0,T) should hold. This con-
jecture was verified numerically by Hirashima an
Takahashi45 for D52, but no definite conclusion has bee
drawn because of numerical difficulties.

As we already said, BKM~Ref. 31! and CM ~Ref. 32!
consideredx(0,T) in two dimensions analytically, and a
gued that the linear-in-T term is present. Both groups argue
that dxs(0,T)}T comes from 2kF effects~our results are in
full agreement with this!. BKM argued that aT-dependence
is caused by the singular behavior of the quasiparticle in
action function for fermions away from the Fermi surface~in
equivalent diagrammatic language—by the singular f
quency dependence of the particle-hole bubble near 2pF).
CM argued that the linear-in-T behavior is caused not onl
by this effect, but also by the singular temperature beha
of the quasiparticle interaction function for fermions at t
Fermi surface~in diagrammatic language, by the singularT
dependence of the static particle-hole bubble near 2pF). The
relation between the singularity in the particle-hole bub
and the nonanalyticity ofxs(0,T) follows from the fact that a
generic diagram for the correction to a Fermi-liquid susc
tibility, e.g., diagram 1 in Fig. 3, contains a combination

dx~0,T!;T(
vn

E d2kG3~k,vn!

3T(
Vm

E d2qG~k1q,vn1Vm!P~q,Vm ,T!,

~1.10!
15511
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where G(k,vn)5( ivn2ek)
21 is the fermionic propagator

At T50, a static particle-hole polarization bubbleP(q,v
50,T50) in D52 has an asymmetric square root singul
ity at q→2kF10.41,42,46,47A finite T or finite v soften the
singularity and yieldP(q,v,T)2P(q,0,0)}Amax$T,v% in
the momentum rangeuq22kFu;max$T,v%/vF .32,42,48 A
simple calculation shows that fermions which contribute
dxs(0,T) have energies of order;T and are located in a
narrow angular range where the angleu between vectorsk
andq is almostp:p2u;(T/EF)1/2. Using this and assem
bling the powers, one obtains thatdx(0,T)}T.

In three dimensions, an analogous reasoning yields
T2ln T behavior. CM suggested32 that previous computation
in three dimensions might have missed the crucial 2kF ef-
fects and hinted that Misawa may be right in that theT2ln T
term may actually be present in three dimensions.

In the present communication, we analyze in detail
physical origin of the nonanalytic corrections to the Fer
liquid and clarify the discrepancy between earlier papers.
obtain explicit results inD52 for the fermionic self-energy
the effective mass, and the specific heat, and for spin
charge susceptibilities at finiteQ and T50, and at finiteT
andQ50. We also verify earlier results forD53.

We argue that a proper treatment of nonanalyticities in
fermionic self-energy and inxs(Q,0) requires the knowledge
of the dynamicalparticle-hole response function. We sho
explicitly that the nonanalyticity in the static Lindhard fun
tion near 2pF does not give rise to a nonanalytic behavior
the self-energy due to extra cancellations. For the spin s
ceptibility, the computation with the static Lindhard functio
does yield linear inuQu andT terms, due to 2kF effects, but
with incorrect prefactors. We also demonstrate that nona
lytic terms in the self-energy and the spin susceptibility c
be viewed equivalently as coming either from the nonana
ticity in the dynamical particle-hole bubble nearq50, or q
52kF , or from the nonanalyticity in the dynamical particle
particle bubble near zero total momentum. In this resp
our results do agree with that of BKV who formally consi
ered onlyq50 contributions. However, we show explicitl
that they indeed computed all possible nonanalytic contri
tions to the static susceptibility, including 2kF effects, but
just used an unconventional labeling of internal momenta
the diagrams. As an essential step beyond the BKV work,
show explicitly that the nonanalytic terms in all diagrams f
xs(Q,0) come exclusively from the vertices in which th
transferred momentum is either 0 or 2kF , and simulta-
neouslythe total momentum is 0. There are only two su
vertices. They can be viewed as two parts of the scatte
amplitude with zero momentum transferand zero total mo-
mentum:

Ga,b;g,d~k,2k;k,2k!5U~0!dagdbd2U~2kF!daddbg .
~1.11!

This restriction to just one scattering amplitude is rather n
trivial, as it implies that nonanalytic terms in all diagrams f
the susceptibility depend only onU(0) andU(2kF) but not
on averaged interactions over the Fermi surface, as in
BKV analysis. A similar result has been obtained recently
3-3
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the conductivity in the ballistic regime in two dimensions38

for a short-range interaction, the prefactor for a nonanal
T-dependent piece in the conductivity depends only onU(0)
andU(2kF) rather than on the interaction averaged over
Fermi surface.

The paper is organized as follows. In Sec. II we brie
review three known nonanalyticities in the response fu
tions of a Fermi liquid. In the next four sections we consid
a fermionic system with a contact, i.e.,q-independent inter-
action. In Sec. III we discuss the leading corrections to
self-energy for interacting fermions in two dimensions. W
show that the on-shell self-energy has the form of Eq.~1.3!
with a nonzeroB2D , and this gives rise to a linear-in-T cor-
rection to the effective mass, and toT2 correction to the
specific heat. We show that a correction to the effective m
is not observable in a magneto-oscillation experiment du
a peculiar cancellation between twoT-dependent terms in th
self-energy. We also briefly discuss self-energy correcti
for D53.

In Secs. IV–VI we consider in detail a nonanalytic pe
turbation theory for the charge and spin susceptibilities.
use the self-energy calculated in Sec. II along with the
namical Lindhard functions nearq50 and 2kF and the dy-
namical particle-hole bubble near the zero total momen
as building blocks, and obtain analytic expressions
charge and spin susceptibilities. More specifically, in Sec.
we present, for completeness, the expressions for the
namical spin susceptibility of noninteracting fermions f
variousD. In Sec. V we consider the susceptibility atT50
and finite Q. We present the first analytic calculation
xs(Q,0) in two dimensions. We explicitly show that it scal
as uQu and compute the prefactor. These two-dimensio
~2D! calculations require substantially more effort than
three dimensions since the internal momenta in the diagr
are all of orderQ, and one cannot simply expand inQ2 and
then cut the infrared divergence of the prefactor byQ, be-
cause in two dimensions the divergence is power law ra
than logarithmic. We then discuss the 3D case for which
reproduce the result of BKV thatdxs(Q,0)}Q2lnuQu. We
explicitly verify that nonanalytic (uQu) terms obtained eithe
via a ‘‘conventional’’ approach to treat 2kF contributions, or
the technique invented by BKV are the same. We also
cuss briefly the 1D case.

In Sec. VI we consider the static susceptibility at finiteT.
We show that in two dimensions,xs(0,T) scales asT with a
universal prefactor. We also show that the linear-in-T depen-
dence come fro m two effects: from the thermal smearing
the static Lindhard function for particles at the Fermi su
face, and from the frequency dependence of the dynam
Lindhard function~i.e., from particles outside the Fermi su
face!. BKM considered only the second source of theO(T)
behavior, CM included both effects. Our result differs by
factor of 2 compared to that of CM—we could not detect t
reason for the discrepancy. We further analyze in detail
physical origin for the linear-in-T term in two dimensions
~andTD21 for a generalD<3), and discuss to which exten
it is related touQuD21 term in xs(Q,0). We show that the
physics behindTD21 term in xs(0,T) and uQuD21 term in
xs(Q,0) is, in fact, different. We discuss how the nonanaly
15511
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term in x(0,T) T evolves withD, and show that forD53,
xs(0,T)}T2 without an extra logarithmic factor. This agree
with Carneiro and Pethick44 and BKV results thatxs(0,T) in
three dimensions is free from nonanalyticities to orderT2.
We also show that althoughxs(0,T) goes smoothly through
D52, the 2D case is still somewhat special. Finally, w
analyze charge susceptibility and find that nonanalytic te
in xc(Q,T) are all cancelled out, i.e., the first corrections
the Fermi-liquid form for the charge susceptibility are a
analytic. For a 2D case, this result fully agrees with that
CM.

In Sec. VII we consider the case of a finite-range inter
tion with q-dependentU(q). We demonstrate that nonana
lytic terms appear in a way similar to anomalies in quant
field theory, and dependonly on U(0) andU(2kF), not on
the momentum-averaged interaction. We show that at b
T50 and finite T, the nonanalytic correction to the sel
energy depends onU2(0)1U2(2kF)2U(0)U(2kF), while
the total nonanalytic correction toxs depends only on
U2(2kF). We show that the charge susceptibility does n
have a nontrivialQ dependence–all nonanalytic terms fro
individual diagrams cancel out even whenU5U(q). In Sec.
VIII we present our conclusions. Appendixes A–D show d
tails of some calculations.

II. NONANALYTICITIES IN THE BOSONIC RESPONSE
FUNCTIONS

We will demonstrate in this paper that the nonanaly
corrections to the Fermi-liquid theory are universally relat
to theFermi-liquid nonanalyticities in the dynamical boson
response functions. To set the stage, we review these non
lyticities briefly.

There are three physically distinct bosonic nonanalyt
ties in a generic Fermi liquid atT50.11–13 The first is the
nonanalyticity in the particle-hole response function,

Pph~Q,Vm!52EE dDpdvn

~2p!D11
G~p,vn!G~p1Q,vn1Vm!,

~2.1!

at small momentum and frequency transfers. ForD52,

Pph
Q→0~Q,Vm!5

m

2p S 12
uVmu

A~vFQ!21Vm
2 D . ~2.2!

For D53,

Pph
Q50~Q,Vm!5

mkF

2p2 S 12
uVmu
vFQ

tan21
vFQ

uVmu D . ~2.3!
3-4



o

al

r-

ns

en

el

h

n

is
is
m

he
s
in
c

ity

ties
ic
pin

he
rv-
cific

a
o-
of

e

or
sed

r

NONANALYTIC CORRECTIONS TO THE FERMI-LIQUID . . . PHYSICAL REVIEW B68, 155113 ~2003!
The zero frequency results:Pph(0,0)5m/2p in 2D and
Pph(0,0)5mkF/2p2 in three dimensions, are the densities
states of free fermions per one spin orientation.

The nonanalyticity in the particle-hole bubble at sm
momenta introduces the dependence ofPph(Q→0,V→0)
on the ratioV/vFQ, and eventually gives rise to the eme
gence of a zero-sound collective mode in a Fermi liquid.11,12

The second nonanalyticity is in the particle-hole respo
function at momentum transfer near 2kF . For D52,

Pph
2kF~Q,Vm!5

m

2p
S12A Q̃

2kF
1FS Vm

2vFkF
D 2

1S Q̃

2kF
D 2G1/2D ,

~2.4!

where Q̃[Q22kF and uQ̃u!2kF . In the static limit, the
nonanalyticity is one-sided41,42,46,47:

Pph
2kF~Q,0!5

m

2p
for Q,2kF ,

Pph
2kF~Q,0!5

m

2p F12S Q22kF

kF
D 1/2G for Q.2kF .

~2.5!

In D53, this nonanalyticity is logarithmic and odd inQ̃40.
In the static limit

Pph
2kF~q,0!5

mkF

4p2 S 12
Q̃

2kF
ln

4kF

uQ̃u
D . ~2.6!

The dynamical expression is rather complex in three dim
sions, and we refrain from presenting it.

The 2kF nonanalyticity gives rise to long-range Fried
oscillations of electron density in a Fermi liquid49 and even-
tually accounts forp-wave pairing in electron systems wit
short-range repulsive interaction.50

The third nonanalyticity is the logarithmic singularity i
the particle-particle response function

Ppp~Q,Vm!52E E dDpdvn

~2p!D11
G~p,vn!G~2p1Q,2vn

1Vm! ~2.7!

at small total momentumQ and frequencyV. In two dimen-
sions,

Ppp~Q,Vm!5
m

2p
ln

uVmu1AVm
2 1~vFQ!2

W
, ~2.8!

whereW;EF . In three dimensions, the functional form
similar. If the full irreducible interaction between electrons
attractive for at least one value of the angular momentu
this singularity gives rise to superconductivity atT50.11 In
the weak-coupling regime that we will be focusing on, t
instability occurs at only exponentially small frequencie
and we will neglect it, assuming that the system rema
normal down toT50. Still, as we will see, a nonanalyti
dependence on the ratioVm /vFQ in Ppp(Q,Vm) will give
rise to a nonanalyticity in the self-energy and susceptibil
15511
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In the rest of the paper we show that these nonanalytici
give rise to universal subleading terms in the fermion
self-energy, effective mass, specific heat, and static s
susceptibility.

III. FERMIONIC SELF-ENERGY. EFFECTIVE MASS,
SPECIFIC HEAT, AND THE AMPLITUDE

OF MAGNETO-OSCILLATIONS

In this section we obtain nonanalytic corrections to t
fermionic self-energy and consider how they affect obse
able quantities such as the effective mass and the spe
heat. We will mostly focus onD52, but for the sake of
completeness will also discuss the situation inD53 and
D51. We also assume for simplicity that the interaction is
contact one, i.e., its Fourier transform is independent of m
mentum. We will restore the momentum dependence
U(q) in Sec. VII.

A. Self-energy of a generic Fermi liquid

The ~Matsubara! fermionic self-energy is related to th
Green’s function via

G21~k,vn!5G0
21~k,vn!1S~k,vn!, ~3.1!

whereG0
21(k,vn)5 ivn2ek andek5(k22kF

2)/2m. The two
nontrivial second-order diagrams forS(k,vn) are presented
in Fig. 1.

For a contact interaction with a coupling constantU, dia-
grams~a! and~b! in Fig. 1 yield identical functional forms of
the self-energy, and only differ in the combinatorial fact
resulting from the spin summation and the number of clo
loops. This factor is equal to22 for diagram~a! in Fig. 1
and to 1 for diagram~b!. The result forS(k,vn) can then be
re-expressed as a single diagram@Fig. 1~c!# in which the
diamond stands for the interaction vertexU. In the analytic
form, we have

FIG. 1. ~a! and~b! The two nontrivial second-order diagrams fo
the self-energy.~c! An equivalent form of diagrams~a! and ~b!.
~‘‘sunrise’’ diagram!. ~d! Diagram~b! in an explicit particle-particle
form.
3-5
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S~k,vn!5U2 (
k1 ,k2 ,k3

G0~k1!G0~k2!G0~k3!

3d~k11k22k32k!. ~3.2!

For brevity, we introduced temporarily a ‘‘relativistic’’ nota
tion k5(k,vn). The diagram in Fig. 1~c! can be equally
re-expressed either via particle-hole polarization opera
Pph(Q,Vm), as

S~k,vn!52TU2(
Vm

E dDQ

~2p!D
G0~k1Q,vn1Vm!

3Pph~Q,Vm!, ~3.3!

or via the particle-particle polarization operator, as

S~k,vn!52TU2(
Vm

E dDQ

~2p!D
G0~Q2k,Vm2vn!

3Ppp~Q,Vm!. ~3.4!

We illustrate the last representation in Fig. 1~d!. Here and
thereaftervn5p(2n11)T andVm52pmT.

For definiteness, we will proceed with the form of E
~3.3! and discuss how the nonanalyticity in the particle-h
bubble gives rise to the nonanalyticity in the fermionic se
energy. To shorten the notations, we will usePph(Q,Vm)
5P(Q,Vm) until otherwise specified. We then show that
nonanalytic part of the self-energy can be viewed equi
lently as coming from the nonanalyticity in the particl
particle bubble.

For the analysis of the specific heat, effective mass
fermionic damping, we will need the retarded fermionic se
energySR(k,v) in real frequencies and at finite temper
tures. In some cases, it can be obtained directly fr
S(k,vn) via a replacementivn→v1 id. In general, though,
it is rather difficult to deal with discrete Matsubara sum
The approach we adopt here will be to find the imagin
part of the retarded self-energySR9 (k,v). The real part of the
self-energy,SR8 (k,v) is then obtained via the Kramers
Kronig relation.

Applying the spectral representation

f ~ ivn!5
1

pE dz
f R9 ~z!

z2 ivn
~3.5!

to Eq. ~3.3!, and using ImG0
R(k1Q,v)52pd(v2ek1Q),

we find

SR9 ~k,v!5
1

2
U2E dVE dDQ

~2p!D
d~V1v2ek1Q!

3PR9 ~Q,V!Fcoth
V

2T
2tanh

v1V

2T G . ~3.6!

We first remind the reader how the Fermi-liquid form
SR9 (k,v) is obtained. Suppose thatv!eF . A simple analysis
of Eq. ~3.6! shows that because of the last term in Eq.~3.6!,
typical V are of order ofv, i.e., they are also small com
15511
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pared toeF . The imaginary part of the retardedPR9 (Q,V) is
an odd function of frequency, and hence for small frequ
ciesP9(Q,V)5VF(Q,V). Let us nowassumethat typical
vFQ are much larger than typicalV. Then F(Q,V)
'F(Q,0). Substituting this into Eq.~3.6!, we obtain

SR9 ~k,v!5
1

2
U2E E dDQ

~2p!D
d~ek1Q!F~Q,0!

3E dVVFcoth
V

2T
2tanh

v1V

2T G . ~3.7!

We see that as long as the momentum integral is infra
convergent, it is dominated by largeQ.kF . The momentum
integral is then fully separated from the frequency integ
and yields a constant prefactor. That typicalQ.kF also jus-
tifies a posteriori the assumption thatF(Q,V)'F(Q,0).
The easiest way to do the remaining frequency integratio
to integrate in a finite range2W,V,W. Shifting the vari-
able in the second term asV1v→V, and then settingW
5`, we find

SR9 ~k,v!5C@v21~pT!2#, ~3.8!

where C is a constant. This is a well-known result in th
conventional~analytic! Fermi-liquid theory.11

The form ofSR9 (k,v) given by Eq.~3.8! is generic to any
Fermi liquid provided that the momentum integral is dom
nated by large momentaQ@V/vF . Higher order terms in
PR9 (Q,V) form a series inV2n11. If we assume that the
prefactors depend onQ in a regular way, we obtain highe
powers ofv2 andT2 in SR9 . As already mentioned, this form
of SR9 (kv) yields, upon a Kramers-Kronig transformation,
regular frequency expansion of the real partSR8 (k,v)5Av
1Bv31•••, where the prefactors are regular functions
T2. Of particular importance here is the absence ofvT term
that would result in a linear-in-T renormalization of the ef-
fective mass. It then follows that nonanalytic corrections
SR8 can only emerge ifPR9 (Q,V) contains nonanalytic term
that break a regular expansion in odd powers ofV, at least
for some momenta. The momentum integration should t
show at which order of the expansion inV the prefactor will
be divergent enough to make the momentum integral in
~3.7! infrared divergent.

We now show that such nonanalytic terms do exist a
give rise to nonanalytic corrections to the Fermi-liquid b
havior. One of nonanalytic corrections comes from t
nonanalyticity inP(Q,V) at smallQ , another comes from
the nonanalyticity inP(Q,V) at Q52kF . We focus on the
2D case and analyze how these two nonanalyticities af
the self-energy.

B. A nonanalytic contribution to the self-energy from QÄ0

We begin with the nonanalyticity inP9(Q,V) at smallQ.
Converting Eq.~2.2! to real frequencies, we find
3-6
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PR9 ~Q,V!5H m

2p

V

@~vFQ!22V2#1/2
for uVu,vFQ

0 otherwise.

We see that the frequency expansion ofPR9 holds in powers
of V/vFQ. Obviously, at some order of the expansion, t
momentum integral becomes infrared divergent, which v
lates the assumption that momentum and frequency integ
in the diagram for the self-energy are decoupled.

In D52, this happens already at the leading order inV.
Indeed, substituting Eq.~3.9! into Eq. ~3.6!, linearizing the
quasiparticle dispersion asek1Q5ek1vFQ cosu, and inte-
grating first overu and then overQ with logarithmic accu-
racy, we obtain

SR9 ~k,v!5
mU2

16p3vF
2E

2`

`

dVV ln
W2

uv2ekuu2V1~v2ek!u

3Fcoth
V

2T
2tanh

v1V

2T G , ~3.9!

where W;EF is the upper cutoff in the integration ove
vFQ. We see that the momentum integral is infrared-singu
and introduces an extra logarithmic dependence on
quency.

The calculation ofSR9 (k,v) in D52 requires certain care
asSR9 (k,v), given by Eq.~3.9!, diverges logarithmically on
the mass shell (v5ek). However, we will see that this di
vergence does not affect the real part of the self-energy a
mass shell and hence does not affect the specific hea
Appendix A, we consider the mass-shell singularity in mo
detail and show that it is in artifact cured by taking in
account either a finite curvature of the electron spectrum
higher orders in the expansion inU.

The frequency integral in Eq.~3.9! can be evaluated ana
lytically at T50, and in the limiting cases at a finiteT. At
T50, Eq. ~3.6! reduces to~at v.0)

SR9 ~k,v!5
mU2

8p3vF
2E0

v

dVV ln
W2

uv2ekuu2V2~v2ek!u
.

~3.10!

The integration overV is straightforward, and yields

SR9 ~k,v!5
mU2

16p3vF
2 F H v22

1

4
~v2ek!

2J ln
W

uv1eku

1H v21
1

4
~v2ek!

2J ln
W

uv2eku
G1•••,

~3.11!

where the••• represents the regularv2 term. Away from a
near vicinity of v52ek , the term with (v2ek)

2 is irrel-
evant~to logarithmic accuracy! andS9(k,v) can be written
as

SR9 ~k,v!5S19~k,v!1S29~k,v!, ~3.12a!
15511
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S19~k,v!5
mU2

16p3vF
2

v2ln
W

uv2eku
, ~3.12b!

S29~k,v!5
mU2

16p3vF
2

v2ln
W

uv1eku
. ~3.12c!

We see from Eq.~3.12a! that for ek;v, both terms scale as
v2ln v. In particular, atek50,

SR9 ~k,v!5
mU2

16p3vF
2

v2ln
W2

v2
. ~3.13!

Tracing Eq.~3.12a! back to Eq.~3.9!, we observe that the
first term S19(k,v) comes from theV-independent part of
the logarithm in Eq.~3.9!, and the second termS29(k,v)
comes from theV-dependent part of the logarithm. We se
that, for S19(k,v), the factorization of the momentum an
frequency integrations still holds, and as in a Fermi liqu
the momentum integral just adds an overall factor that lo
rithmically depends on the externalv and ek . On the con-
trary, for S29(k,v), the momentum and frequency integra
are coupled. In Appendix A, we show that these two singu
terms come from two different forward-scattering process

The zero-temperature result for the self-energy can
also obtained directly in Matsubara frequencies, without
ing the analytic continuation first. Expanding in small m
mentum transferQ, we have, for the Matsubara self-energ
at T50,

S~k,vn!uT5052
mU2

8p4 E0

W/vF
QdQE

2`

`

dVmE
0

p

du

3
1

vFQ cosu1ek2 i ~vn1Vm!
~3.14!

3
uVmu

A~vFQ!21Vm
2

. ~3.15!

The integration overu is elementary and yields

S~k,vn!uT5052 i
mU2

8p3vF
2E

2`

`

dVmuVmu sgn~vn1Vm!

~3.16!

3E
0

W

dx
x

Ax21Vm
2 Ax21~vn1Vm1 i ek!

2
,

~3.17!

where we introducedx5vFQ. Finally performing the
integration overx, we obtain with logarithmic accuracy
for vn.0,
3-7
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S~k,vn!uT5052 i
mU2

8p3vF
2E0

vn
dVmVm

3S ln
W

vn1 i ek
1 ln

W

2Vm1vn1 i ek
D

52 i
mU2

16p3vF
2 F S vn

21
1

4
~vn1 i ek!

2D
3 ln

W

vn1 i ek
1S vn

22
1

4
~v1 i ek!

2D
3 ln

W

vn2 i ek
G . ~3.18!

Continuing to real frequencies, (ivn→v1 i0), we indeed
obtain Eq.~3.11! for SR9 . The Matsubara self-energy can al
be partitioned intoS1(k,vn) andS2(k,vn). The first term is
singular near the mass surface, while for the second we h
to logarithmic accuracy, for a genericek /vn ,

S2~k,vn!uT5052 i
mU2

16p3vF
2

vn
2ln

W

vn
. ~3.19!

Continuing to real frequencies, we obtain

S2~k,v!uT505
mU2

16p3vF
2

v2S 2
p

2
sgnv1 i ln

W

uvu D .

~3.20!

At finite T, instead of Eq.~3.10! we have

SR9 ~k,v!5
mU2

16p3vF
2E

2`

`

dVV ln
W2

uv2ekuu2V1~v2ek!u

3Fcoth
V

2T
2tanh

v1V

2T G . ~3.21!

It is again convenient to split the self-energy into two par
S19(v) and S29(v), coming from V-independent and
V-dependent pieces of the logarithm in Eq.~3.21!. For the
V-independent part of the logarithm, the frequency integ
tion is the same as in a Fermi liquid, hence

S19~k,v!5
mU2

16p3vF
2 @v21~pT!2# ln

W

uv2eku
. ~3.22!

For the second term, we have

S29~k,v!5
mU2

16p3vF
2E dVV ln

W

u2V1~v2ek!u

3Fcoth
V

2T
2tanh

v1V

2T G . ~3.23!

In this last term, the dependence on the ratiov/ek is not
singular and can be neglected, to logarithmic accuracy. U
15511
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series representations for the hyperbolic functions we
then re-express the right-hand side of Eq.~3.23! as

S29~v!52
mU2

16p3vF
2 F @~pT!21v2# ln~T/Ā!1v2f S v

pTD G ,
~3.24!

whereĀ is a constant, and

f ~x!50.791PE dy tanh
pxy

2

3S y ln
y2

uy221u
1

1

y
2 ln

y11

uy21u D . ~3.25!

One can easily make sure that the expansion off (x) holds in
even powers ofx. At large x, f (x)' ln x, i.e., atv@T, this
expression reproducesS9(v)}v2ln v. At small x, i.e., atv
!T, f (x)'0.7910.35x2.

C. A nonanalytic contribution to the self-energy from qÉ2kF

We next consider a singular contribution toSR9 (k,v) from
momentum transfers close to 2kF . To perform computations
along the same lines as for Q near 0, we would need to kn
the form of P(Q,V) at finite V and T, which is rather in-
volved. However, we actually would not need this form
all, as we demonstrate below that the contribution to
self-energy fromQ'2kF is exactly the sameas S2(k,v)
defined in Eq.~3.12c!. The most straightforward way to se
this is to go back to a diagram representation of the s
energy in terms of three fermionic propagators@Fig. 1~c! and
Fig. 2~a!#. In analytic form, the ‘‘q50’’ contribution to the
self-energy is

Sq50~k!5U2E dD11q

~2p!D11E dD11p

~2p!D11
Gk1qGpGp1q ,

~3.26!

whereq is assumed to be small. We again use ‘‘relativisti
notationk[(k,v) and q[(Q,V). Integrating overp first,
we obtain

S~k!
q5052U2E dD11q

~2p!D11
Gk1qP~q!, ~3.27!

where P(q) is a particle-hole bubble at small momentu
and frequency. In Sec. III B we used this expression a
found two singular contributions toS (k)

q50: S1(k) andS2(k),
whereS2(k) comes from the momentum region where tw
of the internal momenta are close to2k and the third one is
close tok, i.e., from the range ofp which are nearly antipar-
allel to k ~see Appendix A!. Sincep1k are small~of order of
external momenta!, we can relabel the momenta as shown
Fig. 2~b! and re-expressS2(k) as
3-8
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S2~k!5U2E dD11q

~2p!D11E dD11q8

~2p!D11

3Gk1qG2k1q8G2k1q1q8 , ~3.28!

where nowboth qandq8 are small. Integrating overq8 first,
we obtain a conventional expression forS2(k) in terms of
the polarization operator with small momentum transfers.
the other hand, changing the order of integration and in
grating overq first, we obtain

S2~k!52U2E dD11q8

~2p!D11
G2k1q8P̃~2k2q8!,

~3.29!

where

P̃~2k2q8!52E dD11q

~2p!D11
Gk1qG2k1q1q8 . ~3.30!

In general,P̃(2k2q) is not equivalent to the polarizatio
bubbleP(q) with momentum near 2kF , as our rewriting is
only valid if internalq are small. However, the singular par
of the two bubbles coincide because the singular par
P(Q'2kF ,V) @proportional toAuQ22kFuu(uQ22kFu) in
the static case# comes from the momentum range where t
two internal momenta in the particle-hole bubble are close
6k, i.e., from exactly the same range that is covered
P̃(2k2q8). We show this explicitly in Appendix B. This
equivalence implies that the right-hand side of Eq.~3.29! is
just the singular part of the ‘‘2kF’’ contribution to the self-
energy. We see therefore thatSq52kF(k)5S2

q50(k). The to-
tal self-energy is then

S~k!5Sq50~k!1Sq52kF5S1~k!12S2~k!. ~3.31!

For momentum-dependent interactionU5U(q), the compu-
tation of the 2kF contribution requires more care, and w
present it in Sec. VII.

That the 2kF singularity comes from nearly antiparalle
internal fermionic momenta has been implicitly used in t
Kohn-Luttinger analysis of superconducting instability wi
large angular momenta of Cooper pairs.49 In the context of
corrections to the Fermi-liquid theory, Belitzet al.29 argued
that all singular contributions to the spin susceptibility can
described as smallq effects, although they did not emphasi
that some of their smallq effects are in fact equivalent t
2kF contributions in conventional notations.

FIG. 2. ~a! q50 contribution to the self-energy.~b! q52kF

contribution to the self-energy.
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That bothq50 andq52kF singularities in the polariza-
tion bubble contribute to the self-energy was first emp
sized by CM.32 However, the relative sign of the two terms
different in their and our calculations. We found that t
singular terms add, while they argued that singular contri
tions fromq50 and 2kF cancel each other. Since the inte
play betweenq50 and 2kF contributions to the self-energ
is crucial to the issue of whether or not there is aT2 term in
the specific heat and linear-in-T term in the effective mass
~CM argued that both are absent due to cancellation betw
q50 and 2kF terms!, in Appendix C we present an explic
computation of the 2kF contribution to the second-order sel
energy at T50. This calculation confirms thatSq52kF

5S2
q50.

D. An alternative analysis, in terms ofPpp„Q,V…

We next demonstrate that the backscattering nonanaly
ity in the fermionic self-energy can be viewed equivalen
as coming from the nonanalyticity in the particle-partic
bubble at small total momentum and frequency. This read
follows from our consideration of the ‘‘2kF’’ diagram. In-
deed, since bothq andq8 are small, the full self-energy ca
be re-expressed as

S~k!52U2E dD11q

~2p!D11E dD11q8

~2p!D11

3G2k1q1q8Ppp~q1q8!. ~3.32!

Performing the same analysis as in Sec. III C, we obse
that the deviation from the Fermi-liquid form ofS is only
possible if the expansion ofPpp9 (Q,V) in odd powers ofV
breaks down due to infrared divergences of momentum
pendent prefactors. This is precisely what happens
Ppp(Q,V) given by Eq.~2.8! as the frequency expansio
holds inV/vFQ, i.e., the prefactors are nonanalytic at va
ishing Q. We emphasize that the logarithmic divergence
Ppp(Q,V) at vanishingQ and V is by itself not essential;
what matters is a nonanalytic dependence on the r
V/vFQ.

We see, therefore, that the nonanalytic piece in the s
energy can be viewed equivalently as coming from a nona
lyticity in the particle-hole bubble,or from a nonanalyticity
in the particle-particle bubble. To further verify this, in Ap
pendix C we explicitly compute the nonanalytic part ofS(k)
at T50 using the ‘‘particle-particle formalism,’’ and indee
find it to be equal to 2S2(k,v) that we obtained in the
‘‘particle-hole formalism,’’ i.e.,

Spp
(Q50)~k!52S2~k!. ~3.33!

The termS1(k,v) can be also reproduced in the particl
particle formalism, but this contribution comes from larg
q1q8'2k, and we refrain from rederiving this piece.

Our results on this issue again disagree with those
CM.32 They performed a complementary analysis of the s
energy based on the evaluation of an effective vertex fu
tion to second order inU, and argued that there is a cance
lation between nonanalytic contributions coming from t
3-9
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2kF nonanalyticity in the particle-hole channel and t
nonanalyticity in the particle-particle channel. We, on t
contrary, find that the contribution from the particle-partic
nonanalyticity is twice the ‘‘2kF’’ contribution from the par-
ticle hole channel.

Summarizing the results of the last two subsections,
see that the nonanalytic part of the fermionic self-energy
two dimensions consists of two parts. The first part,S19(k),
comes from forward scattering when all four momenta
close to each other. It has the same functional form,v2

1(pT)2, as in a Fermi liquid, but the prefactor depen
logarithmically onv2ek . The second part,S29(k), comes
from the processes which involve the scattering amplitu
with near-zero total and transferred momentum. ThisS29(k)
has a non-Fermi-liquid form, and can be equally attributed
the Q50 nonanalyticity in the particle-hole polarizatio
bubble, or to the 2kF nonanalyticity in the same bubble, or t
the Q50 singularity in the particle-particle bubble. In Se
III E we show that onlyS2(k) actually contributes to the
thermodynamics.

E. Effective mass and specific heat

We first use the result forS9 obtained in Sec. III B and
compute the real part of the self-energy on the mass s
We then useS8(v5ek) to find the effective mass and sp
cific heat.

The Kramers-Kronig relation on the mass shell is

SR8 ~v!5
1

p
PE dE

S9~E,ek5v!

E2v
. ~3.34!

We begin with S1(k). Substituting S19(k,v) from Eq.
~3.12b! into Eq. ~3.34!, we find that on the mass shell

S18~k,v!uv5ek
5

mU2

16p4vF
2
PE

2`

`

dz
z21~pT!2

z2v
ln

W

uz2vu
.

~3.35!

By dimensional analysis, the integral in Eq.~3.35! is of order
v2. However, the prefactor in front ofv2 turns out to be
zero. The easiest way to see this is to evaluate the integr
finite limits 2W,z,W and to search for the universal ter
that would be independent ofW. Performing elementary ma
nipulations, we find thatS18(v) does not contain such a term
Foreshadowing, we note that the same result holds for
static spin susceptibility which we discuss in detail in Se
IV A and IV B. We will see there that the inclusion of th
S2(k,v) into a particle-hole bubble with external mome
tum Q yields a nonanalyticuQu term in xs(Q). On the con-
trary, the susceptibility diagram with an extraS1(k,v)
scales, in Matsubara frequencies, as

dx}E dvnvnE dek

ln@W/~ek2 ivn!#

~ek2 ivn!2@~ek2 ivn!22~vFQ!2#
.

~3.36!

By power counting, the leadingQ dependence of the integra
should be uQu. However, a straightforward computatio
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shows that the prefactor again vanishes. The outcome of
analysis is that the divergence ofS19(k,v) on the mass shel
does not give rise to nonanalytic corrections to Fermi-liqu
form of the thermodynamic observables.

We next considerS28(k,v). SubstitutingS29(k,v) from
Eq. ~3.21! into Eq. ~3.34!, we obtain, after simple manipula
tions,

S28~v!52
mU2

16p4vF
2

vE
2`

`

dVVPE
0

` dE

E22v2

3S coth
V

2T
2tanh

V1E

2T D
3S E

v
lnU2V1E2v

2V1E1vU1 ln
u~2V1E!22v2u

W2 D .

~3.37!

Integrations overV andE can be performed exactly. W
give the details of this calculation in Appendix D, an
present just the results here. AtT50, we obtain

S28~v!52
mU2

32p2vF
2

vuvu. ~3.38!

This coincides with Eq.~3.20! obtained via analytic continu
ation of the Matsubara self-energy.

In the opposite limit of smallv/T, we have

S28~v!52
mU2ln 2

8p2vF
2

vT. ~3.39!

As the self-energy in this region is linear inv, Eq. ~3.39!
implies that the effective mass of subthermal quasipartic
scales linearly withT. Using the fact that the fullS(k,v)
5S1(k,v)12S2(k,v) and thatS1(k,v) does not contrib-
ute to thermodynamics, we obtain

m* ~T!5m* ~T50!F122 ln 2S mU

4p D 2 T

EF
G . ~3.40!

In a very recent study Das Sarma, Galitskii, and Zhan51

did find a linear-in-T correction to the effective mass for th
Coulomb interaction inD52. Although the sign of their
linear-in-T term is opposite to that in Eq.~3.40!, we believe
there is no contradiction here as there are no physically
tivated restrictions on the sign of the prefactor. It is therefo
quite possible that the sign of theO(T) term is different for
short- and long-range interactions. Note in this regard t
the effect of the interaction on the effective mass is differ
for these two cases even atT50: a short-range interaction
increasesm* , while the Coulomb interaction decreasesm*
in the limit r s!1.11

For genericv/T, the nonanalytic part of the fullS8(v)
can be cast into the following scaling form:
3-10
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S8~v!52
mU2

16p2vF
2

vuvugS uvu
T D , ~3.41!

where

g~x!511
4

x2 Fp2

12
1Li2~2e2x!G , ~3.42!

and Li2(x) is a polylogarithmic function. Note thatg(`)
51 and g(x!1)'4 ln 2/x. Substituting these limiting ex
pressions into Eq.~3.41! we indeed reproduce Eqs.~3.38!
and ~3.39!.

The full functional form ofg(x) is required for the com-
putation of the specific heat, as the frequency integral
C(T) given by Eq.~1.4! is confined tov;T. Substituting
our result forS8 into ~1.4! we obtain, in two dimensions,

dC~T!5CFL

48K

p S mU

4p D 2 T

EF
, ~3.43!

whereCFL(T)5mpT/3 is the Fermi gas result for the sp
cific heat and

K5E
0

` dxx

cosh2x
Fx21

p2

12
1Li2~2e22x!G51.803.

~3.44!

As anticipated, the nonanalytic correction to the fermio
self-energy gives rise to theT2 term in the specific heat. It is
essential that this nonanalytic term comes only from fer
ons in a near vicinity of the Fermi surface and is thus mo
independent. The same is true for the linear-in-T correction
to the effective mass. In other words, the leading correcti
to the Fermi-liquid forms ofm andC(T) are fully universal.

The T2-dependence of the correction to the specific h
agrees with the results by Coffey and Bedell28 and Misawa.30

However, Coffey and Bedell did not explicitly compute th
prefactor and apparently only included small moment
transfers~i.e., no 2kF effects!. Misawa did compute the pref
actor, but he neglected the temperature dependence o
fermionic self-energy. We found above that thisT depen-
dence cannot be neglected, and our prefactor disagrees
that by Misawa.

F. Amplitude of quantum magneto-oscillations

In previous sections, we found the general form
nonanalytic corrections to the real and imaginary parts of
self-energy. We now discuss whether these corrections
be observed experimentally via magneto-oscillations. N
ively speaking, one might have expected the finite quasi
ticle relaxation rate,T2ln T, to damp the amplitude of the
oscillations as a contribution to the ‘‘Dingle temperature
whereas theT-dependent effective mass might affect t
thermal smearing factor. However, we argue below that q
dratic and quadratic-times-log terms in the self-energy
not detectable by measuring the amplitude of magne
oscillations inD52.
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In the Luttinger formalism,55 the amplitude of thekth
harmonic of magneto-oscillations is given by

Ak5
4p2kT

Vc
(

vn.0
expS 2

2pk@vn2 iS~vn ,T!#

Vc
D ,

~3.45!

whereVc is the cyclotron frequency. It is essential for o
consideration that the amplitude is determined by the s
energy in the Matsubara representation rather than by
real and imaginary parts of the retarded self-energy.56 By
itself, SR8 andSR9 determine the fermion dispersion and life
time, respectively; however in Eq.~3.45! this distinction is
lost.

The assumption made in deriving Eq.~3.45! is that the
dependence of the self-energy on the magnetic field can
neglected. In three dimensions, this assumption is well ju
fied as the effect of the magnetic field on the self-ene
yields corrections toAk which are small in 1/AN, whereN
5eF /Vc@1 is the total number of Landau levels. In tw
dimensions, however, the effect of the magnetic field is n
perturbative, and atT50 and in the absence of disorder, th
field-induced oscillations of the self-energy are as import
as the oscillations of the thermodynamic potential itsel57

Equation~3.45! is then only applicable as long as oscillatio
of the thermodynamic potential are exponentially small d
to either finite temperature and/or disorder. In this paper
disregard effects of disorder~considered recently in Ref. 58!,
thus the amplitude is only controlled by the finite tempe
ture. In this case, the restriction of the small amplitude in
turn implies that the sum over Matsubara frequencies in
~3.45! can be truncated to only then50 term. Notice that
this restriction is mandatory inD52 within the Luttinger
formalism but depends on the choice of experimental con
tions in D53. The amplitude of the first~largest! harmonic
then simplifies to

A15
4p2T

Vc
expS 2

2p@pT2 iS~pT,T!#

Vc
D . ~3.46!

The temperature enters the Matsubara self-energyS(vn ,T)
in two ways: first, as the Matsubara frequency, and seco
as the physical temperature determining the thermal distr
tion of the degrees of freedom. For the lowest frequen
v05pT, the interplay between the two effects leads to
peculiar cancellation.

Indeed, consider for a moment a generic Fermi liquid,
which

S~vn ,T!5S m*

m
21D ivn1 iC@~pT!22vn

2#1•••,

~3.47!

whereC is a constant, . . . stands for the higher order term
@O(en

3 ,T3)#, andm* /m has a regular expansion in powe
of T2. The analytic continuation of~3.47! to real frequencies
yields the correct retarded self-energy~1.1!. We see that the
second termS(vn ,T) vanishes forvn56pT, i.e., the self-
energy that enters into the formula forAk contains terms only
of order T3 and higher. In other words, the quadratic inT
3-11
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piece present in the imaginary part of the retarded s
energy and associated observables, does not affect the a
tude of magneto-oscillations, which to orderT3 is given by

A15
4p2T

Vc
expS 2

2p2T

Vc*
D , Vc* [

m

m*
Vc , ~3.48!

wherem* /m is a regular mass renormalization which com
from fermions far away from the Fermi surface. This rath
remarkable result was previously obtained specifically
electron-phonon interaction and is known as a ‘‘Fowl
Prange theorem.’’59

We found that a similar cancellation occurs also for o
self-energy inD52. To logarithmic accuracy, the secon
term in Eq.~3.47! is replaced by

S̃~vn ,T!52 iC̃T(
Vm

sgn~vn2Vm!uVmu ln
uVmu

W
,

~3.49!

whereC̃ is a real constant, and the factor of sgn(vn2Vm)
resulted from the angular integration of the Green’s functi
A simple transformation of the Matsubara sum redu
S̃(vn ,T) to

S̃~vn ,T!522iTC̃ (
Vm50

vn2pT

Vmln
Vm

W
. ~3.50!

This self-energy obviously vanishes forvn5pT, i.e., there-
fore S(pT,T) in Eq. ~3.46! does not contain a contributio
from S̃. Due to this cancellation, the exponential factor inA1
does not contain terms of orderT2ln T. A more detailed
analysis58 shows thatT2 terms are also absent, i.e., both qu
dratic terms and quadratic-times-log terms in the self-ene
„and thus the linear-in-T effective mass@Eq. ~3.40!#… are not
observable in a magneto-oscillation experiments.

IV. SPIN AND CHARGE SUSCEPTIBILITIES

We next proceed to the analysis of the corrections to
Fermi-liquid forms of spin and charge susceptibilities.

The charge and spin operators are bilinear combinat
of fermions:

C~q!5(
k,a

ck1q,a
† ck,a ~4.1!

for charge, and

SW ~q!5 (
k,a,b

sW abck1q,a
† ck,b ~4.2!

for spin. The corresponding susceptibilities for a system
interacting fermions are given by fully renormalized partic
hole bubbles with side vertices,

Gc5da,b , Gs
i 5sa,b

i , ~4.3!

wherec ands refer to charge and spin, respectively.
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For noninteracting fermions, the spin and charge susc
tibilities are equal and given by the Lindhard function th
coincides, up to an overall factor, with the polarization o
eratorP(Q,Vm):

x0
c~Q,Vm!5x0

s~Q,Vm!52P~Q,Vm!, ~4.4!

wherex0
s(Q,Vm)[@x0

s(Q,Vm)# i i and i 51,2,3, and

P~Q,Vm!52T(
m

E dDk

~2p!d
G0~k,vn!

3G0~k1Q,vn1Vm!. ~4.5!

At T50, the charge and spin susceptibilities can
evaluated exactly for anyQ and Vm . In the static limit,
Vm50, they acquire particularly simple forms. ForD53,
we have40

x0
c~Q,0!5x0

s~Q,0!5x0
3DF1

2
1

4kF2Q2

8QkF
ln

Q12kF

uQ22kFuG ,
~4.6!

wherex0
3D5mkF /p2. In D52, the corresponding expres

sion is41,42

x0
c~Q,0!5x0

s~Q,0!5x0
2D , Q,2kF ,

x0
c~Q,0!5x0

s~Q,0!5x0
2DF12S 12

4kF
2

Q2 D 1/2G , Q.2kF ,

~4.7!

wherex0
2D5m/p. In one dimension, we have60

x0
c~Q,0!5x0

s~Q,0!5x0
1D kF

Q
lnU kF1

Q

2

kF2
Q

2

U , ~4.8!

wherex0
1D52/(pvF).

As we mentioned in Sec. I,x0
c,s(Q,0) is analytic inQ for

small Q in all dimensions. The issue we consider below
whether this analyticity survives perturbative corrections.

The first nontrivial corrections tox0
c,s(Q,0) come from

the diagrams presented in Fig. 3. These diagrams repre
self-energy and vertex-correction insertions into the b
particle-hole bubble.29 Diagrams 1–5 are nonzero for bothxs
andxc . Diagrams 6 and 7 are finite forxc , but vanish forxs

upon the spin summation ((asaa
i 50). The internal parts of

all diagrams contain fermionic bubbles: particle-hole bubb
for diagrams 1, 2, 3, and 5 and particle-particle bubble
diagram 4. In the next two sections we analyze the form
the static susceptibility first at a finiteQ and zero tempera
ture, and then at finiteT andQ50.

A. Spin and charge susceptibilities at finiteQ and TÄ0

As in Sec. III, we assume that the interaction is indep
dent of momentum. We explicitly computed all seven d
grams in Fig. 3, and found that each of the diagrams~except
3-12
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for diagrams 6 and 7 which vanish identically for the sp
channel! contributes a correctiondx(Q,0)}uQu, and that this
nonanalyticity is a direct consequence of the dynamical
gularities in the particle-hole and particle-particle bubbl
We first perform computations inD52 where no results
have been previously obtained, and then verify that our co
putations reproduce the previously obtained results inD53
andD51.

1. DÄ2

As we mentioned in Sec. I, the calculation inD52 is
more difficult to perform than inD53 because all typica
internal momenta and energies are of the same order a
external ones (Q andvFQ, respectively!; thus no expansion
is possible. In three dimensions, wheredx(Q,0)}Q2ln Q,
typical internal momenta are larger than externalQ, and one
could expand the integrand inQ2 and evaluate the prefacto
to logarithmic accuracy.

We begin with diagram 1 which represents the self-ene
insertion into the particle-hole bubble. This diagram yie
the same contribution for spin and charge channels, so
will drop the subscript and denotex1[x1s5x1c .

An analytic form of diagram 1 in the Matsubara represe
tation is given by

dx1~Q,0!528U2E d2kd2qdvmdV

~2p!6

3G0
2~k,vm!G0~k1Q,vm!G0~k1q,vm1Vm!

3P~q,Vm!. ~4.9!

FIG. 3. Each of the seven diagrams in this figure give singu
corrections to spin and charge susceptibilities.
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The combinatorial factor of 8 includes two factors of 2 d
to spin summation and an extra factor of 2 associated w
the fact that the self-energy can be added to any of the
fermionic lines in the bubble. Nonanalytic contributions
dx1(Q,0) come from two regions of momentum transfersq
near zero andq near 2kF . Since we have already shown i
Sec. III that the contributions to the self-energy from the
two regions are equal for a contact interaction~up to a for-
ward scattering piece inSq50 that, as we demonstrated, do
not contribute touQu term in the susceptibility!, we do not
have to calculate theq50 and 2kF contributions tox1(Q,0)
separately—the two are just equal:

dx1
q50~Q,0!5dx1

q52kF~Q,0!. ~4.10!

This implies that we only have to computedx1
q50(Q,0), the

full dx1(Q,0) will be twice that value. To be on a safe sid
we verified this reasoning by explicitly computin
dx1

q52kF(Q,0). We present the calculations in Appendix
We indeed found it to be equal todx1

q50(Q,0).
We now computedx1

q50(Q,0) Since the nonanalyticity in
x1(Q,0) is expected to come from the vicinity of the Ferm
surface, the fermionic spectraek , ek1q , and ek1Q can be
expanded to first order ink2kF :

ek5vF~k2kF!,

ek1Q5ek1vFQ cosu1 ,

ek1q5ek1vFq cosu2 . ~4.11!

Substituting this expansion into Eq.~4.9! and performing
elementary integrations overk, v, andu1, we obtain

dx1
q50~Q,0!52

2mU2

p4 E
0

`

qdqE
0

`

VmdVP~q,Vm! ~4.12!

3E
0

p

du2

1

~ iVm2vFq cosu2!2

3
1

A~vFQ!21~Vm1 ivFq cosu2!2
, ~4.13!

whereP(q,V) at smallq andV is given by Eq.~2.2!. Res-
caling the remaining variables asq̃5q/Q,ṽ5Vm/(vFQ)
and introducing polar coordinates asq̃5r cosf,ṽ5r sinf,
we obtain from Eq.~4.13!,

dx1
q50~Q,0!52

2mU2uQu

p4vF
E

0

p/2

df sinf cosfP~f!

3E
0

p

du2E rdr
1

~cosf cosu22 i sinf!2

3
1

A11r 2~sinf1 i cosf cosu2!2
, ~4.14!

r

3-13
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whereP(f)5(m/2p)(12sinf). The upper limit of the in-
tegral overr is r max5O(kF /Q)@1. The integration overr is
straightforward, and yields

dx1
q50~Q,0!

5
2mU2

p4vF
E

0

p/2

df sinf cosfP~f!

3E
0

p

du2

1

~cosf cosu22 i sinf!4

3@AQ21~Qrmax!
2~sinf1 i cosf cosu2!22uQu#.

~4.15!

As Qrmax;kF , the dominant piece indx1
q50(Q,0) comes

from high energies and accounts for the non-universal c
rection to the uniform susceptibilityx(0,0). We, however,
are interested in the first subleading term which scales asuQu
and does not depend onr max. Performing the integration
over u2, we obtain for this universal contribution

dx1
q50~Q,0!52

mU2uQu

p3vF

3E
0

p/2

df sin2f cosf~5 sin2f23!P~f!.

~4.16!

Finally, introducing z5cosf @so that P(z)5(m/2p)(1
2z)], we obtain

dx1
q50~Q,0!52

m2U2uQu

2p4vF
E

0

1

dz~5z423z2!~12z!.

~4.17!

The relevance of the nonanalyticity in the polarizati
bubble is now transparent: ifP(z) was z-independent, the
integral over z would vanish. However, because of th
nonanalyticity,P(z) varies linearly withz. The integral over
z then does not vanish, and performing the integration,
obtain

dx1
q50~Q,0!5x0

2

3p S mU

4p D 2 uQu
kF

, ~4.18!

wherex052P(0,0)5m/p is the static susceptibility of non
interacting fermions.

Using Eq.~4.10!, we then obtain the total contribution o
diagram 1:

dx1~Q,0!52dx1
q50~Q,0!5x0

4

3p S mU

4p D 2 uQu
kF

.

~4.19!

Diagram 2 is another self-energy insertion into t
particle-hole bubble. For a contact interaction,dx2 is exactly
(21/2) of dx1, the rescaling factor21/2 comes from the
fact that compared to diagram 1, diagram 2 has one
15511
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fermionic loop with more than one vertex, and lacks t
factor of 2 due to spin summation. Therefore,

dx2~Q,0!52x0

2

3p S mU

4p D 2 uQu
kF

. ~4.20!

The diagram 3 represents a vertex correction to
particle-hole bubble. Theq50 contribution to this diagram
can be shown to be of the same magnitude but opposite
as theq50 part of diagram 1. To see this, we write th
q50 contribution to diagram 3 as

dx3
q50~Q,0!524U2E E E E d2kd2qdvmdVm

~2p!6

3G0~k,vm!G0~k1q,vm1Vm! ~4.21!

3G0~k1Q1q,vm1Vm!

3G0~k1Q,vm!P~q,Vm!, ~4.22!

and consider a combination

C5
1

2
dx1

q501dx3
q50 . ~4.23!

Linearizing the fermionic spectra according to Eq.~4.11!, we
rewrite C as

C524U2n1E E E d2qdvmdVm

~2p!4

3E du1P~q,Vm!@S11S3#, ~4.24!

where

S15E dekG0
2~k,v!G0~k1Q,vm!G0~k1q,vm1Vm!

~4.25!

and

S35E dekG0~k,vm!G0~k1q,vm1Vm!

3G0~k1Q1q,vm1Vm!G0~k1Q,vm!.

~4.26!

Integrating overek in Eqs.~4.25! and ~4.26! yields
3-14
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S1522p i sgn~Vm!u@vm~Vm2vm!#

3
1

~ iVm1vFk̂•q!2

1

iVm1vFk̂•qÀvFk̂•Q
,

S352p i sgn~Vm!u@vm~Vm2vm!#

3
1

vFk̂•Q

1

iVm1vFk̂•q

3S 1

iVm1vFk̂•qÀvFk̂•Q
2

1

iVm1vFk̂•Q
D .

Adding S1 andS3 and performing some elementary transfo
mations, we obtain

S11S352p i sgn~Vm!u@vm~Vm2vm!#

3
1

~ iVm1vFk̂•q!2

1

iVm1vFk̂•q1vFk̂•Q
.

Substituting the last expression back into Eq.~4.24! and
making the change of variablesk→2k, q→2q results in

C52
1

2
dx1

q50 . ~4.27!

Together with Eq.~4.23!, this proves that

dx3
q50~Q,0!52dx1

q50~Q,0!52x0

2

3p S mU

4p D 2 uQu
kF

.

~4.28!

The 2kF contribution from diagram 3 must be compute
independently. The computations are performed along
same lines as for diagram 1. We present them in the App
dix E. We obtain

dx3
2kF~Q,0!5x0

2

3p S mU

4p D 2 uQu
kF

. ~4.29!

Comparing this with Eq.~4.20!, we see that, for a constan
interaction, theO(uQu) contributions to diagram 3 from th
singularities atq50 and 2kF cancel each other. This resu
also appears to be quite general~the same is true forD53
and 1~see below!, but we do not know how to prove it othe
than to explicitly compute the diagrams.

Next we consider diagram 4, which is obtained by inse
ing the particle-particle bubble into the original particle-ho
bubble. Expressingdx4 via the product of four Greens’
functions and the particle-particle bubble, we obtain

dx4~Q,0!522U2E E E E d2kd2qdvmdVm

~2p!6

3G0~k,vm!G0~k1Q,vm!G0~q2k,Vm2vm!

3G0~q2k2Q,Vm2vm!Ppp~q,Vm!, ~4.30!

wherePpp(q,Vm) is given by Eq.~2.8!.
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In principle the result fordx4 can be found by substitut
ing the particle-particle propagator into Eq.~4.30!. However,
a straightforward approach is very cumbersome in this ca
There is a more elegant way to computedx4 as the nonana-
lytic part of this diagram is related to the nonanalytic 2kF
contribution from diagram 3, which we have already foun
Indeed, it is easy to make sure that a nonanalytic (}uQu)
contribution from diagram 4 comes from internal momen
for which one of the internal 3-momentum transfers is sm
We can then label the internal momenta in diagram 4
shown in Fig. 4 and set 3-momentumq to be small~there is
a combinatorial factor of 2 associated with this choice!. We
can then represent diagram 3 as an integral-over-q of a prod-
uct of two terms~‘‘triads’’ ! each containing a product o
three Green’s functions:

dx452232U2E E d2qdVm

~2p!3
I ~q,Vm;Q!

3I ~2q,2Vm;2Q!, ~4.31!

where a ‘‘triad’’ is defined as

I ~q,Vm;Qm!5E E d2kdv

~2p!3

3G~k,vm!G~k2q,vm2Vm!G~k1Q,vm!.

~4.32!

An extra overall factor of22 in ~4.33! is due to spin sum-
mation and the presence of one closed fermionic loop. At
same time, we can use the fact that in the 2kF part of dia-
gram 3, one of the two momenta in the internal particle-h
bubble is close to incoming ones. Using the labeling as
Fig. 4, we can express the 2kF part of diagram 3 as

dx3
2kF54U2E E d2qdVm

~2p!3
@ I ~q,Vm;Q!#2. ~4.33!

Carrying out integrations overek and v in Eq. ~4.32!, we
find that

I ~2q,2Vm;Q!52I ~q,Vm;Q!, ~4.34!

and hence

dx4~Q,0!5dx3
2kF~Q,0!5x0

2

3p S mU

4p D 2 uQu
kF

. ~4.35!

Similarly, diagram 5 differs by a factor of21 from dia-
gram 3 ~the lack of the spin factor of two, compared

FIG. 4. A reduction ofdx4 to the 2kF part of dx3.
3-15
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diagram 3, is compensated by an extra combinatorial fa
of two!. For a contact interaction, the nonanalytic part of t
diagram vanishes in the same way as it does for diagram

Finally, for the charge susceptibility, diagram 6 just diffe
by 21 from diagram 3, and diagram 7 differs by an ex
22 from diagram 4. For diagram 6, the extra21 is due to
the fact that, compared to diagram 3,q50 andq52kF con-
tributions are interchanged. For diagram 7, the extra facto
due to the spin summation and reflects the presence of
closed fermionic loops in diagram 7, as opposed to one l
in diagram 4.

Collecting all terms, we obtain

dx1~Q,0!5x0

4

3p S mU

4p D 2 uQu
kF

,

dx2~Q,0!52
1

2
dx1~Q,0!, dx3~Q,0!50,

dx4~Q,0!5
1

2
dx1~Q,0!, ~4.36!

dx5~Q,0!50, dx6~Q,0!50, dx7~Q,0!52dx1~Q,0!.
~4.37!

As a result,

dxs
2D~Q,0!5x0

2D 4

3p S mU

4p D 2 uQu
kF

,

~4.38!
dxc~Q,0!50.

This result is consistent with the conjecture by BKV, wh
found that the spin susceptibility has aQ2lnuQu dispersion in
three dimensions, and conjectured thatxs(Q,0) should scale
as uQu in two dimensions. We emphasize, however, that
present for the first time an explicit calculation ofxs(Q,0) in
two dimensions. BKV did not explicitly consider the charg
susceptibility, but the absence of the nonanalytic momen
dependence ofxc can be readily extracted from their anal
sis.

2. DÄ3 and 1

For completeness, we also performed full calculations
D53 and 1. In both cases, the results,dxs

3D(Q,0)
}Q2ln Q, dxs

1D(Q,0)} ln Q, have logarithmic nonanalytici
ties in Q, which allows one to expand inQ from the very
beginning. Doing so, we reproduced the results by BKV.

In three dimensions, for the spin susceptibility we o
tained

dx3~Q,0!5dx5~Q,0!50,

dx2~Q,0!52
1

2
dx1~Q,0!, dx4~Q,0!5

1

2
dx1~Q,0!,

~4.39!

dx1~Q,0!52dx1
q50~Q,0!5

1

18
x0

3DS akF

p D 2F S Q

kF
D 2

ln
kF

Q G ,

15511
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wherex0
3D5mkF /p2 is the static spin susceptibility anda

5mU/4p is the scattering length. Combining all contribu
tions we obtain

dxs
3D~Q,0!5

1

18
x0

3DS akF

p D 2F S Q

kF
D 2

ln
kF

Q G . ~4.40!

Equations~4.39! and ~4.40! precisely coincide with the ear
lier results by BKV.29 We also considered the charge susce
tibility and found that, as in two dimensions, it does n
possess a nonanalytic dependence onQ.

In one dimension, the relations between various com
nents ofdxs

1D(Q,0) are the same as in three dimensions, a

dxs
1D~Q,0!5dx1~Q,0!52dx1

q50~Q,0!

522x0
1DS U

2pvF
D 2

ln
kF

Q
. ~4.41!

This dxs
1D(Q,0) agrees with the earlier result by Dzyaloshi

skii and Larkin.60

B. Spin and charge susceptibilities at finiteT and QÄ0

In this section, we consider the uniform (Q50) spin and
charge susceptibilities at finiteT. Of particular interest here
is the question whether a nonanalytic momentum dep
dence of the static susceptibility atT50 is accompanied by
that of the static susceptibility. We remind that inD53,
according to Carneiro and Pethick44 and BKV, x(Q,0)
2x(0,0) behaves asQ2lnuQu, butx(0,T)2x(0,0) is analytic
and behaves asT2. Misawa,43 on the contrary, did find a
T2ln T-behavior. BKV conjectured that for a genericD, the
momentum and temperature dependences ofxs should have
the same exponents.

As it was pointed out in Sec. I, there were two micr
scopic calculations ofx(0,T) in two dimensions: by BKM
~Ref. 31! and CM.32 Both groups foundxs(0,T)}T and as-
sociated this nonanalyticalT dependence with the square
root singularity in the quasiparticle interaction functio
f (k,k8) caused by 2kF scattering. We recall that the quas
particle interaction function,f (k,k8), is obtained by comput-
ing the vertexG(k,v;k8,v8;q,V) to the second order in the
interaction and using the relation11,12

f ~k,k8!5AG~k,ek ;k8ek8 ;q/V→0!, ~4.42!

whereA is a normalization factor, BKM~Ref. 31! explored
the singularity in the zero-temperaturef (k,k8), for small
quasiparticle energiesek and ek8 , i.e., for particles away
from the Fermi surface. In their approach theT dependence
comes from the Fermi functions. In the diagrammatic la
guage, the approximation made by BKM accounts for eva
ating the particle-hole polarization bubble near 2kF at T50
but at a finite frequency. CM included this effect into the
consideration, but they also exploited aAT-singularity asso-
ciated with the thermal smearing of the 2kF feature in the
static susceptibility for particles on the Fermi surface, i.
for ek5ek850. Diagramatically, this amounts to replacin
all internal bubbles which appear as insertions into diagra
for spin ~and charge! susceptibilities, by their static values
3-16
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We computexs(Q50,T) in a straightforward diagram
matic approach~the same we employed for theQÞ0, T
50), in which all possible sources ofT-dependence are
taken into account automatically. We report our results
D52 first and then analyze the case of arbitraryD.

1. DÄ2

The analysis ofx(0,T) proceeds in the same way as
Sec. IV A. We found that the interplay between the nona
lytic terms in various diagrams for the susceptibility atT
Þ0 is exactlythe same as atT50. Namely, the nonanalytic
pieces originate from theq50 and 2kF nonanalyticities in
the particle-hole susceptibility, or alternatively, from theq
50 nonanalyticity in the particle-particle susceptibility. W
explicitly verified that the relative coefficients betwee
nonanalytic terms are the same as atT50. This implies that
~i! just as atT50, there is no nonanalyticT dependence in
the charge susceptibility, and~ii ! to obtain the full correction
the spin susceptibility, it is sufficient to evaluate just o
nonanalytic contribution, e.g.,dx1

q50(0,T). The full
dxs(0,T) is then given by

dxs~0,T!52dx1
q50~0,T!. ~4.43!

At finite T andQ50, a general form ofdx1
q50(0,T) is

dx1
q50~0,T!528U2T2 (

vn ,Vm

E E d2kd2q

~2p!4

3G0
3~k,v!G0~k1q,vn1Vm!P~q,V!.

~4.44!

Expanding the quasiparticle spectra near the Fermi surf
integrating overek and then evaluating the sum overvn , we
obtain, after simple algebra,

dx1
q50~0,T!524x0

2DS mU

4p D 2

I ~T!, ~4.45!

wherex0
2D5m/p,

I ~T!5
T

EF
(
m

E dxx
Vm

2 ~2Vm
2 2x2!

~Vm
2 1x2!3

, ~4.46!

andx[vFq. Expression~4.46! is rather tricky, becauseI (T)
is formally ultraviolet divergent. The most straightforwa
way to get rid of the ultraviolet divergence is to introduce
short-range~lattice! cutoff in the momentum integral so tha
x<X0;W. Evaluating the integral overx first we obtain

I ~T!5
T

4EF
(
m

S~m!, ~4.47!

where

S~m!5112
Vm

2

Vm
2 1X0

2
23

Vm
4

~Vm
2 1X0

2!2
. ~4.48!
15511
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For Vm!X0 , S(m) is close to 1, i.e., S(m)51
1O(Vm

2 /X0
2), whereas forVm@X0 it falls off rapidly @as

(X0 /Vm)2]. The vanishing ofS(m) at largem ensures the
convergence of the sum in Eq.~4.47! and allows one to use
the Euler-Maclaurin formula.61 Applying this formula, the
sum reduces to

T

4EF
(

m52`

`

S~m!5
T

2EF
E

0

`

dmS~m!2
T

24EF
S8~0!1•••,

~4.49!

where••• stands for higher-order derivatives ofS. All de-
rivatives of S(m) obviously vanish in the continuum limi
W→`. The remaining integral term in Eq.~4.49! gives

T

2EF
E

0

`

dmS~m!5
5

16

X0

EF
, ~4.50!

which is aT-independent contribution. As a result, the abo
computation does not yield a linear-in-T piece in
dx1

q50(0,T).
A more careful inspection of the steps we took to arrive

this result reveals a problem. That is, it is obvious fro
~4.46! that the term withm50, i.e., with Vm50, vanishes
for any finite x. However, in the sum in Eq.~4.47! the m
50 term is present and contributesT/4EF . As the static
susceptibility is properly defined as the limit ofx(Q,T) at
Q→0, one should always keepx finite at the intermediate
steps of the computations. Alternatively, one can perfo
calculations for a finite system and then extend the sys
size to infinity. In both cases, there exists a lower cutoff
the integral overx. This cutoff plays no role for all terms
with mÞ0 but it eliminates the term withm50. Subtracting
off this term from Eq.~4.47!, and using our previous result
we obtain auniversal, linear-in-T piece inI (T):

I ~T!52
T

4EF
. ~4.51!

An alternative way to arrive at Eq.~4.51! is to perform the
summation overVm in Eq. ~4.46! first, keepingx finite, and
then integrate overx. Performing the summation, we obtai

I ~T!5
1

4EF
E

0

`

dyS y
]2

]y2 Fy1/2H nB~y1/2!1
1

2J G
12

]2

]y2 Fy3/2H nB~y1/2!1
1

2J G D , ~4.52!

wherenB(z)5(exp(z/T)21)21 is the Bose distribution func-
tion andy5vF

2q2. Integrating by parts, we obtain from Eq
~4.52!,

I ~T!52
1

2EF
S 11

1

2TE0

`

dy
]

]y
$y1/2nB~y1/2!% D 52

T

4EF
,

~4.53!

in agreement with Eq.~4.51!.
3-17
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The above analysis shows thatxs(0,T) does indeed con
tain a linear-in-T term inD52. However, the physics behin
this term is very different from the one that leads to theuQu
piece inxs(Q,0).

Substituting Eq.~4.51! into Eq. ~4.45! and then using Eq
~4.43!, we obtain

dxs~0,T!52x0
2DS mU

4p D 2 T

EF
. ~4.54!

This is the central result of this subsection. Our functio
form of dxs(0,T) agrees withCM, but the prefactor differs
by a factor of 2. We could not establish the reason for
discrepancy.

We remind the reader that the fullxs(0,T), given by Eq.
~4.54! comes from the dynamical particle-hole bubble.
emphasize this point, in Appendix F we computedx1

2kF ne-
glecting the frequency dependence of the polarizat
bubble, and show that this yields an incorrect prefactor in
linear-in-T piece.

We didn’t attempt to verify ourdx1
2kF by explicitly com-

puting a linear in T contribution from 2pF polarization
bubble at a finiteT ~as we did foruQu term atT50). This
calculation would require, as an input, the analytical expr
sion for the dynamical polarization bubble near 2kF at a
finite T. We could not obtain this expression in a managa
form, nor we could find it in the literature. It would be inte
esting, however, to verify ourdx1

2kF numerically by using
the numerical results forP(q,v,T).62

2. Other dimensions

For arbitraryD, the consideration analogous to the one
D52 yields, instead of Eq.~4.45!,

dxD~0,T!52CU2I D~T!, ~4.55!

whereC is a positive constant,

I D~T!5TEF
12D(

m
E dxxD21

Vm
4

~Vm
2 1x2!3

, ~4.56!

andx5vFq. For D52, Eq.~4.56! coincides with Eq.~4.46!
modulo a piece@T(m*dxx(Vm

2 2x2)/(Vm
2 1x2)3# that van-

ishes upon integration overx. The ambiguity with the order
of summation and integration was resolved in the previ
section; now we know that it is safe to sum overVm first and
the integrate overx. Performing the summation with the he
of the well-known formula

(
m

1

Vm
2 1x2

5
112nB~x!

2x
, ~4.57!

we find
15511
l

e

n
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-
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I D~T!5
1

2EF
D21E dxxD21F112nB~x!

2x

12x2
]

]x2

112nB~x!

2x
1

x4

2

]2

]x2

112nB~x!

2x G .

~4.58!

Evaluating the integral overx and introducing an
infinitesimally-smalld to eliminate infrared divergencies a
intermediate steps, we find theT-independent part ofI D(T)
for D>2 to be given by

I D~T!52
~D22!~42D !

8 S T

EF
D D21E

0

` dzzD22

ez21
~4.59!

52
~D22!~42D !

8
G~D21!z~D21!, ~4.60!

whereG(x) andz(x) are the Euler and Riemann function
respectively. ForD→2, the pole of thez function, z(D
21)→1/(D22), is canceled by the prefactorD22, so that
I 2(T) is finite and equal to2T/4EF , in agreement with Eq.
~4.53!.

For D,2, care has to be taken to ensure the cancella
of the divergent terms. The final result for this case is

I ~T!52
~22D !~42D !

8 S T

EF
D D21E

0

` dz

z22D S 1

z
2

1

ez21
D .

~4.61!

We see that for arbitraryD, the functionI D(T) ~and thus the
spin susceptibility! scales asTD22. In an explicit form,

dxs~0,T!52CU2S T

EF
D D21

f ~D !. ~4.62!

Function f (D) diverges logarithmically forD51 ~and atD
51, dx} ln T). NearD53 function f (D) is perfectly regu-
lar and equal to

f ~3!52
p2

48
. ~4.63!

As we see from Eqs.~4.62! and~4.63!, this last result implies
that in three dimensions, the leading temperature correc
to the susceptibility scales asT2, and there is no logarithmic
prefactor. This agrees with the results of Cardeiro a
Pethick44 and BKV.

Obviously, the absence of theT2ln T-behavior ofx(0,T)
in three dimensions, and theQ2ln Q-behavior ofx(Q,0) im-
plies that there is no one-to-one correspondence betw
thermal corrections and quantum corrections atT50. Our
consideration shows that, strictly speaking, thermal a
quantum corrections are not equivalent in anyD.

We also see that althoughf (D) goes smoothly through
D52, the functional form off (D) changes betweenD.2
andD,2. The consequences of this fact are, however,
clear to us.
3-18
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V. FINITE-RANGE INTERACTION

In the previous sections we considered the model cas
a contact interaction, characterized by a single coupling c
stant U which is independent of the momentum transf
Now we analyze the more realistic case of a finite-ran
interaction when the coupling is a function of the moment
transfer U→U(q), where U(q) is such thatU(0) and
U(2kF) are finite. Our key result is that only these two p
rameters are important.

A. Self-energy

We begin with the self-energy. For momentum-depend
U(q) the two self-energy diagrams in Fig. 1 have to be co
sidered separately. For diagram shown in Fig. 1~a! the exten-
sion toU5U(q) is straightforward–the factor 2U2 for that
part of the self-energy which corresponds to process~b! in
Fig. 7 ~we recall that only that part contributes to thermod
namics! is be replaced byU2(0)1U2(2kF). The diagram in
Fig. 1~b! requires more care, but we know from the analy
of the ‘‘sunrise’’ diagram for the self-energy@Fig. 4~b!# that a
nonanalytic piece comes from the range where two inte
momenta in the self-energy diagram are near2k, and the
third is neark. For Fig. 1~b!, this implies that the moment
are labeled as in Fig. 5.

It is then obvious that the overall factor for the diagram
Fig. 1~b! is U(0)U(2kF). Process~a! in Fig. 7 determines
that part of the self-energy which is singular on the ma
shell and does not contribute to thermodynamics. The ove
factor for that part isU2(0). Collecting all contributions, we
find that

SR9 ~v,T!5
mU2~0!

16p3vF
2 @v21~pT!2# ln

W

uv2eku

1
m@U2~0!1U2~2kF!2U~0!U~2kF!#

8p3vF
2

3F @~pT!21v2# ln
Ā

T
2v2f S v

pTD G , ~5.1!

whereĀ is a constant, and the scaling functionf (x) is given
by Eq. ~3.25!. The real part of the self-energy is given by

FIG. 5. One of the self-energy diagrams forU(0)ÞU(2kF).
Momentaq,l , andm are small compared tok.
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SR8 ~v!52
m@U2~0!1U2~2kF!2U~0!U~2kF!#

16p2vF
2

3vuvugS v

T D . ~5.2!

The limiting forms of the scaling functiong(x) are g(`)
51 andg(x!1)'4 log 2/(x).

B. Spin and charge susceptibilities

The same consideration holds for the susceptibility–
very fact that all nonanalytic contributions come from t
vertices with near zero total momentum and transferred m
mentum either near zero or near 2kF implies that for U
5U(q), an overall factor ofU2 is replaced either byU2(0)
or U2(2kF), as in diagrams 1, 3, 6 and 7 in Fig. 3, and
U(0)U(2kF), as in diagrams 2, 4, and 5. With this substit
tion, we have, finally

dx1~Q,T!5K~Q,T!@U2~0!1U2~2kF!#,

dx2~Q,T!52K~Q,T!U~0!U~2kF!,

dx3~Q,T!5K~Q,T!@U2~2kF!2U2~0!#,

dx4~Q,T!5K~Q,T!U~0!U~2kF!, ~5.3!

dx5~Q,T!50, dx6~Q,T!5K~Q,T!@U2~0!2U2~2kF!#,

dx7~Q,T!52K~Q,T!@U2~0!1U2~2kF!#,

where K(Q,0) and K(0,T) are given by Eqs.~4.18! and
~4.54!, respectively:

K~Q,0!5x0
2D 2

3p S m

4p D 2 uQu
kF

, K~0,T!5x0
2DS m

4p D 2 T

EF
,

~5.4!

where x0
2D5m/p. When both Q and T are nonzero,

K(Q,T)5K(Q,0)g̃(vFQ/T), whereg̃(x) is a scaling func-
tion subject tog̃(x@1)}1/x. However, we did not attempt to
computeg̃(x) at x other thanx50 and`.

Collecting all contributions we find for the spin suscep
bility

dxs~Q,T!52K~Q,T!U2~2kF!. ~5.5!

As for the caseU5const, the charge susceptibility is regul
because all nonanalytic corrections from individual diagra
cancel out. Equations~5.1!, ~5.2!, ~5.4!, and ~5.5! are the
central results of the paper.

While it is intuitively obvious that the momentum depe
dence of the susceptibility should only includeU(0) and
U(2kF), this intuition is based on the analysis of the se
energy but not the susceptibility itself. It is therefore wort
while to demonstrateexplicitly that nonanalytic terms in the
susceptibility do not depend on the momentum-averaged
teraction. This is what we are going to do in the remainde
this section.
3-19
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To demonstrate that onlyU(2kF) matters, consider one o
the diagrams for which, as we claim, the nonanalytic te
scales asU(0)U(2kF), i.e., diagrams 2, 4, and 5. Each
these diagrams has two interaction lines. Quite obviou
one of momentum transfers should be near zero. The iss
to prove that the other one is near 2kF . Consider, for defi-
niteness, diagram 5. The net result for this diagram is z
but this is a result of the cancellation between two contri
tions, dx5

a(Q) and dx5
b(Q), which differ in the choice of

which of the two interactions carry small momentum. Co
sider one of the choices. We label the internal momenta
the diagram ask, k1q, k1Q, k1q1Q, l1q/2, and l
2q/2, whereQ is the external momentum, and introdu
two anglesu1 andu2 betweenq and l and betweenq andk,
respectively~cf. Fig. 6!.

The integration overk and the corresponding frequencyv
is straightforward~see Appendix E!. Introducing thenq
5r cosf andV5r sinf, whereV is the frequency associ
ated withq, we integrate overr and, after redefinition of the
variables, obtain that the nonanalytic, linear-in-Q piece of
diagram 5 reduces to

dx5
a~Q!5x0

m2U~0!

4p5

uQu
kF

J, ~5.6!

where

J5E
0

`

dxx2E
2p

p du1

x1 i cosu1
E

2p

p du2

~x1 i cosu2!4

3US 2kFsin2
u12u2

2 D . ~5.7!

For a constant interactionU(q)5U, we can integrate inde
pendently overu1 andu2, and then integrate overx, which
givesJ5p2U/6. The result fordx5

a(Q) then coincides with
one of the two contributions todx5(Q), as we discussed in
Sec. IV A 1. A relevant point here is that typical cosu1,2 are
of order x, whereas typicalx are of order 1. Henceu12u2
;1, i.e., typical angles between two momenta are gene
This would imply that the argument ofU(2kFsin2(u1
2u2)/2) is just of the order ofkF but not necessarily close t
2kF .

We now show that, in fact, onlyu12u256p matter. To
see this, we introduce diagonal variablesa5(u11u2)/2 and
b5(u12u2)/2 and integrate first overx and then overa.

FIG. 6. Another way of labeling momenta indx5.
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This integration is tedious but straightforward, and carryi
it out we obtain, after some algebra,

J52E
0

p/2

dbU~2kFsin2b!Re@S~b!1S~p2b!#, ~5.8!

where

S~b!5S 4

3
1

cos 2b

sin4b
D ln cos 2bS 1

sin 2b2 id
2

1

sin 2b1 id D .

~5.9!

Then

J5 id ImE
0

p

dz ln cosz sin2z

1d2S 4

3
1

cosz

~sinz/2!4D U@2kF~sinz/2!2#. ~5.10!

The integral does not vanish due to divergences nearz50
andz5p. The divergence nearz50 does not contribute to
the imaginary part of the integral, but the one nearz5p does
contribute. Restrictingz nearp, we obtain

J5
1

3
U~2kF!E

0

` dyd

y21d2
5

p2

6
U~2kF!. ~5.11!

This consideration shows that, although for a momentu
independent interaction we could evaluatedx5

a(Q) in a
scheme in which the angular integrals were not restricted
particularu1 or u2, the calculation performed in another wa
demonstrates that the whole integral comes only from
range whereu12u256p. For a momentum-dependent in
teraction, this implies that onlyU(2kF) matters, precisely as
we anticipated. Similar calculations can be repeated for o
cross diagrams with the result that the overall factor is
ways U(0)U(2kF). The above consideration is another i
dication that the nonanalyticities in the specific heat and s
susceptibility come from the two interaction vertice
in which the transferred momentum is either near 0 or 2kF ,
and simultaneously the total momentum for both vertic
is near 2kF .

VI. CONCLUSIONS

We now summarize the key results of the paper. We c
sidered the universal corrections to the Fermi-liquid forms
the effective mass, specific heat, and spin and charge sus
tibilities of the 2D Fermi liquid. We assumed that the Bo
approximation is valid, i.e.,mU(q)/4p!1, and performed
calculations to second order in the interaction poten
U(q). We found that the corrections to the mass and spec
heat are nonanalytic and linear inT, and obtained the explici
results for these corrections. We next found that the corr
tions to the static spin susceptibility are also nonanalytic a
yield the uQu-dependence ofxs(Q,T50) andT dependence
of xs(Q50,T). We obtained the explicit expressions for th
linear-in-Q and linear-in-T terms in the susceptibility. We
found that the corrections to the charge susceptibility are
3-20
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analytic. We also performed calculations in three dimensi
and confirmed the results of BKV and others that the corr
tion to xs(Q,T50) scales asQ2ln Q, but the correction to
xs(Q50,T) scales asT2 without a logarithmic prefactor.

We analyzed in detail the physical origin of the nonan
lytic corrections to the Fermi liquid and clarified the discre
ancy between earlier papers. We argued that the nonan
icities in the fermionic self-energy and inxs(Q,0) are due to
the nonanalyticities in the dynamical two-particle respon
functions. We have shown that nonanalytic terms in the s
energy and the spin susceptibility come from the proces
which involve the scattering amplitude with a small mome
tum transferand a small total momentum. We explicitly
demonstrated that the nonanalytic terms can be vie
equivalently as coming fromeither of the two nonanalytici-
ties in the dynamical particle-hole bubble—the one neaq
50 and the other one nearq52kF—or from the singularity
in the dynamical particle-particle bubble near zero total m
mentum. We also demonstrated explicitly that the nona
lytic terms in all diagrams for the susceptibility and the se
energy depend only onU(0) and U(2kF), but not on
averaged interactions over the Fermi surface. Only under
condition, is there a substantial cancellation between dif
ent diagrams for the susceptibility. Due to these cance
tions, the nonanalytic correction to the spin susceptibi
depends only onU(2kF), but not onU(0), andscales as
U2(2kF). The nonanalytic corrections to the effective ma
and the specific heat scale asU2(0)1U2(2kF)
2U(0)U(2kF).

The nonanalyticQ behavior ofxs(Q,T50) obtained in
both two and three dimensions questions the validity of
Hertz-Millis-Moriya phenomenological theory of quantu
phase transitions. This theory assumes a regularq2 expan-
sion of the spin susceptibility. Indeed, extending the res
for xs(Q,T) to the critical region one obtains a rather com
plex quantum critical behavior,63 which is very different
from the Hertz-Millis-Moriya theory. We caution, howeve
that the nonanalytic behavior ofxs(Q,T) was obtained
within the Born approximation, when fermions behave
sharp quasiparticles. Near a magnetic transition, the fe
onic self-energy is large, and destroys the coherent Fe
liquid behavior beginning at a frequency which vanishes
the quantum critical point. In this situation, the second-or
perturbation theory is unreliable. The issue whether nona
lytic corrections to the staticxs(Q,T) survive at criticality is
now under consideration and we refrain from further spe
lations on this matter.
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APPENDIX A: MASS-SHELL SINGULARITY

In this Appendix, we take a deeper look into the origin
the logarithmic divergence of the self-energy on the m
shell. To better understand where it comes from, we co
back to the derivation of Eq.~3.11!. Rewriting Eq.~3.11! as
Eq. ~3.12a! to logarithmic accuracy, we now argue that th
two logarithmic terms in Eq.~3.12a! come from two differ-
ent processes, as shown in Fig. 7. In the first process@Fig.
7~a!# all four momenta are close to each other, and in
second one@Fig. 7~b!#, the net momentum of the two incom
ing particles is close to zero, whereas the momenta of
outgoing particles are close to incoming momenta. In ter
of the momentum transfers, both processes are of forw
scattering type. To see this, we notice that for genericv/ek ,
i.e., not too close to the mass shell, the logarithmic form
the self-energy is due to 1/Q behavior of the momentum
integrand in Eq.~3.6! at vFQ@V,v. This 1/Q form in two
dimensions results from the combination of two facts:~i! the
polarization operatorP(Q,V) behaves asV/vFQ, and ~ii !
the imaginary part of the fermionic propagator, integrat
over the angleu betweenQ and external momentumk, be-
haves as 1/Q. The product of the two terms yield
*QdQ/Q2 that gives rise to a logarithm. It is easy to ma
sure that forvFQ@V, typical values ofu are close to6p/2,
the deviation from these values being of orderuVu/vFQ.
That means that the external momentum (k) and the internal
~small! one (Q) @as labeled in Fig. 1~a!# are nearly orthogo-
nal to each other. The same reasoning also works for
polarization bubble. If the two internal momenta in th
bubble arep andp1Q, then typicalp andQ are also nearly
orthogonal. Since bothk and p are orthogonal to the sam
Q, and both are confined to the near vicinity of the Fer
surface, they are either near each other, or near the opp
points of the Fermi surface. Ifp and k are close to each
other, all three internal fermionic momenta in the secon
order diagram are close to externalk, if p is close to2k, out
of three internal momenta one is close tok, while the other
two are close to2k. These two regions of intermediate mo
menta give rise to two logarithms in Eq.~3.12a!. The loga-
rithm that diverges on the mass shell comes from a reg
where all momenta are close tok. To see this, we recall tha
the actual divergence is the consequence of the fact that

FIG. 7. Two processes which contributes to the log singulari
in the self-energy.
3-21
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the polarization bubble and the angle-averagedG9(k1Q,v
1V) at the mass shell possess square-root singularitie
the form 1/A(vFQ)22(V)2 such that the product of the tw
gives (vFQ)22(V)2)21, and the momentum integral d
verges. The square-root singularities come from near par
p andQ andk andQ, respectively. Obviously then,k andp
are near parallel, i.e., they are located near the same poi
the Fermi surface. With a little more effort, one can sh
that asv approachesek , typical angles betweenp andQ and
betweenk and Q, both move from nearp/2 ~or 2p/2) to
near zero, but in such a way thatk and p remain parallel.
This once again confirms that the divergent logarithm com
from the process in Fig. 7~a! ~all internal momenta are clos
to k), while the ‘‘conventional,’’ nondivergentv2ln v term
comes from the process in Fig. 7~b!. The analysis can be
extended to finiteT, and the~anticipated! result is thatS19
given by Eq. ~3.22! comes from the process in Fig. 7~a!,
while S29 given by Eq.~3.23! comes from the process in Fig
7~b!.

It is interesting to follow the same arguments forD51.
In this case, processes in Fig. 7 acquire even simpler phy
meanings: process~a! is a forward scattering of fermions o
the same chirality, e.g., two right-moving fermions scat
into two right-moving ones, whereas process~b! is a forward
scattering of fermions of opposite chirality. In the g-olog
notations, vertex~a! is g4 and vertex~b! is g2.52 In the Lut-
tinger model, when only forward scattering is taken into a
count, the self-energy of, e.g., right-moving fermions is re
resented by the set of diagrams shown in Fig. 8,53 where6
denotes propagators of right/left moving species:

G6~k,v!5
1

iv7ek
6

, ek
65vF~k7kF!. ~A1!

Diagrams~a! and ~c! contain two vertices of type~a! from
Fig. 7, whereas diagram~b! contain vertices of type~b! from
Fig. 7. The imaginary parts of the retarded polarizat
bubbles for right- and left-moving fermions foruQu→0 are
given by

FIG. 8. Nontrivial diagrams for the self-energy in one dime
sion. 6 denotes the propagator of right/left moving fermion.
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PR6
9 5

Q

2
d~V7vFQ!. ~A2!

The delta-function form ofPR6
9 is due to the fact that in one

dimension and for uQu→0 the particle-hole continuum
shrinks to two lines in the (V,Q) plane described byV
5vFuQu. The combination of the diagrams~a! and~c! in Fig.
8, yields, for the imaginary part of the self-energy,

@SR19 ~k,v!#a)1c)5
U2

8pvF
2

v2d~v2ek
1!. ~A3!

We see thatSR19 given by~A3!, which is a 1D analog of our
S29 from Eq. ~3.12c!, is very singular on the mass shell b
vanishes outside the mass shell. At the same time, diag
~b! in Fig. 8 yields

@SR19 ~k,v!#b)5H U2

2pvF
2 ~sgnv!~ uvu2uek

1u! for v.uek
1u

0 otherwise.

.

This self-energy vanishes on the mass shell, but
a generic v/ek it yields @SR19 (k,v)#b)}uvu. This uvu
dependence obviously implies that Fermi-liquid behav
is in danger.

Which of the two terms is actually relevant? In one d
mension, the answer is well known: the summation of in
nite series of the diagrams yields the non-Fermi-liquid b
havior, and the resulting state—the Luttinger liquid—is fr
of singularities on the mass shell. This implies that the m
shell singularity of Eq.~A3! is completely eliminated by the
re-summation of diagrams to all orders in the interactio
This can be shown explicitly either via Ward identities
using the bosonization.54 Furthermore, the exact solution o
the model with only type~a! scattering~‘‘ g4 model’’! yields
a free-Fermi-gas behavior with a renormalized Fermi velo
ity, i.e., no mass-shell singularity. This all implies that th
mass shell singularity found in the second-order self-ene
diagram in one dimension is an artificial one and is elim
nated by higher order diagrams.

The same elimination of the mass shell singularity ho
in two dimensions, as we now demonstrate. Indeed, as
mentioned before, the logarithmic divergence in Eq.~3.12a!
at v5ek is the consequence of the matching of the tw
square-root singularities: one resulting from the angular
tegration of the fermionic Green’s function, and another o
being the 1/A(vFQ)22V2 singularity inPR9 (Q,V). Suppose
now that the interaction is renormalized~screened! by
higher-order terms inU so thatU→U(Q,V). The combina-
tion U2PR9 (Q,V) in Eq. ~3.6! is now replaced byUR9 (Q,V).
In the random phase approximation~RPA! ~which is not a
controllable one for a short-range interaction but, nevert
less, captures the physics of screening!.
3-22
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UR9 ~Q,V!5
U2PR9 ~V,Q!

@11UPR8 ~Q,V!#21@UPR9 ~V,Q!#2

5
2p

m
Ũ2V

A~vFQ!22V2u~vFQ2uVu!

~11Ũ !2@~vFQ!22V2#1Ũ2V2
,

~A4!

where Ũ[mU/2p. Obviously, UR9 now vanishes atQ
5uVu/vF , and the divergence is eliminated. At the sam
time, the logarithmic dependence onV in Eq. ~3.9!, and
hence thev2ln v form of the self-energy, survive as the
come from typical V;vFQ for which PR8 (Q,V) and
PR9 (Q,V) are of the same order, and hence the scree
interaction is of the order of the bare one. Note that t
reasoning is also valid for the Coulomb interaction, f
which the RPA approximation is asymptotically exact in t
high-density limit.

Another argument that the mass-shell singularity is ar
cial is that it is eliminated, already at the second order
interaction, if one takes into account the curvature of
fermionic dispersion. Indeed, in obtaining Eq.~3.11!, we lin-
earized the fermionic dispersion near the Fermi surface,
approximatedek1q by ek1vFq cosu. Using the full qua-
dratic dispersion, we obtain, instead of Eq.~3.10!,

SR9 ~k,v!5
mU2

8p3vF
2E0

v

dVV ln
W2

B
,

B5~ek2v!~2V2v1ek!1D~v,V!,
~A5!

whereW;EF is a bandwidth and

D~v,V!5
V2

2EF
~3v2ek2V!, ~A6!

and where, for the sake of definiteness, we assumedv.0.
On the mass shell,v5ek , the integration overV yields a
finite result

SR9 ~k,v!uv5ek
5

3U2m

16p3vF
2

v2ln
W

uvu
. ~A7!

The crossover between Eqs.~3.11! and ~A7! occurs when,
inside the log in Eq.~3.11!, D(v,V) becomes comparable t
the other term in the denominator, i.e., when

uv2eku;v2/W. ~A8!

For uv2eku@v2/W, the leading asymptotic behavior o
SR9 (k,v) is given by Eq.~3.11! and foruv2eku!v2/W it is
given by Eq.~A7!. A general formula which interpolates be
tween the two limiting cases might, in principle, be obtain
but we do not dwell on this here. Notice thatSR9 (k,v) on the
mass shell is by a factor of 3/2 bigger than its value on
Fermi surface, which means that, for fixedv, the slope of
SR9 (k,v) as function ofek becomes steeper as the mass sh
is approached.
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The same result can be also obtained by calculating
quasiparticle lifetime forT50 which, by definition, is taken
directly on the mass shell. ForD52, the Fermi golden rule
gives

1/t~v!5
U2m

8p3 E0

v

dVE
2V

0

dv8EW/vF
dQQE duE du8

3d~V2«k1«k2Q!d~V2«p1Q1«p!, ~A9!

where «5ek ,v85ep , and u,u8 are the angles betweenk
and q and p and q, respectively, andW is the ultraviolet
energy cutoff. For linearized dispersion the arguments of
first and second delta-functions in Eq.~A9! reduce toV
1vFQ cosu and V2vFQ cosu8, respectively. Each of the
angular integrations yields a factor of 2/A(vFQ)22V2, and
the integral overQ,

A5E
uVu/vF

W/vF
dQQ

1

~vFQ!22V2
, ~A10!

diverges logarithmically at the lower limit. To regularize th
singularity, one must keep the higher-order terms in«k2Q
and«p1Q . On the mass shell,

«k2«k2Q5vFQS 11
v

2EF
D cosu2

Q2

2m
~A11a!

«p2«p1Q52vFQS 11
v8

2EF
D cosu82

Q2

2m
. ~A11b!

Now the integral overQ takes the form

A5EW/vF
dQQ

1

A~vFQ!22V22d

1

A~vFQ!22V21d8
,

~A12!

where

d5VS vFQ
v

EF
1

Q2

m D , ~A13a!

d85VS vFQ
v8

EF
1

Q2

m D . ~A13b!

The lower limit in the integral is such that the arguments
the square roots are positive. The momentum integral is c
trolled by Q;uVu/vF . To logarithmic accuracy, one ca
then just replaceQ by uVu/vF in Eqs. ~A13a! and ~A13b!.
After this replacement, the momentum integration can
easily performed and gives

A5
1

2vF
2

ln
EF

2W

V2~v1v8!1V3
. ~A14!

We next have to perform the frequency integration. It is ea
to verify that, in the two integrals over frequency, the dom
nant contributions come from the regionsV;v8;v. To
logarithmic accuracy, one can then simplifyA to
3-23
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3

2vF
2

ln
W

v
. ~A15!

We again used the fact thatEF;W. Substituting this into
~A9! and performing frequency integrations we obtain fina

1

t~v!
5

3U2m

8p3vF
2

v2ln
W

v
. ~A16!

We see that 1/t(v) is finite–the only memory left about th
mass-shell singularity for the linearized spectrum is the
hanced numerical prefactor. Identifying 1/t with 2SR9 , we
see that the results for 1/t and S9(v5ek) coincide, as in-
deed they should.

APPENDIX B: POLARIZATION BUBBLE NEAR 2 kF

In this Appendix, we show that the computation of
nonanalytic piece in the particle-hole bubble atQ'2kF can
be always performed in such a way that the dominant c
tribution comes from fermions near the Fermi surface a
with nearly antiparallel momenta6Q/2. We do this in two
ways. First, we computePph(Q,Vm) explicitly and check
where the nonanalyticity comes from. Second, we comp
Pph(Q,Vm) by linearizing the dispersion of fermions, form
ing the polarization bubble, near6Q/2 and show that the
nonanalyticity inPph(Q,Vm) comes from the lower limit of
momentum integration and therefore does not depend on
upper cutoff imposed by the linearization procedure.

1. Explicit computation

Consider firstT50. Labeling the momenta of interna
fermionic lines in the polarization bubble asp6Q/2, we
obtain, in Matsubara frequencies,

P~Q,Vm!52E d2pdv

~2p!3
GS p1

Q

2
,vn1VmD

3GS p2
Q

2
,vnD . ~B1!

For a circular Fermi surface,

ep6Q/25
p22kF

2

2m
6

pQ cosu

2m
1

Q2

8m
. ~B2!

Substituting Eq.~B2! into Eq. ~B1! and integrating over fre-
quency and then overp, we obtain, forQ,2kF ,

P~Q,Vm!5
m

2p S 122
mVm

pQ2 E0

p/2 du

cos2u

3Farctan
p1

mVm
2arctan

p2

mVm
G D , ~B3!

where
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p1,25Q cosuAkF
22

Q2

4
sin2u6

1

2
Q2cos2u. ~B4!

For Q52kF , we havep154kF
2cos2u, p250, and Eq.~B3!

reduces to

P~Q,Vm!5
m

2p S 122
mVm

pQ2 E0

p/2 du

cos2u
arctan

4kF
2cos2u

mVm
D

5
m

2p F12
1

2 S uVmu
EF

D 1/2G . ~B5!

It is easy to see that the integral comes from co2u
;uVmu/EF , i.e., typicalp are nearly orthogonal toQ. Further-
more, in the integral overp, typical p were of orderQ cosu.
Hence typicalp are of orderQAuVmu/EF, i.e., at vanishing
Vm, the integration is indeed confined to internal mome
which nearly coincide with6Q/2.

The same reasoning is valid also forQ in a narrow range
near 2kF . For Q<2kF , Eq. ~B5! can be rewritten as

P~Q,Vm!5
m

2p S 122
mVm

pQ2 E0

p/2 du

cos2u

3arctan
Q2cos2u

~mVm!~12Q2cos2ue2!
D , ~B6!

wheree25(Q2/42kF
2)/muVmu. Assuming that the integral is

dominated byu nearp/2 and expandingu to linear order
nearp/2, we obtain, after simple manipulations,

P~Q,Vm!5
m

2p S 12
~muVmu!1/2

pkF
E

0

`

dzarctan
1

z22e2D .

~B7!

We see that the integral is convergent, i.e., the lineariza
of cosu nearp/2 does not lead to cutoff-dependent integra
This implies that the nonanalytic piece in the polarizati
operator comes from typically small cosu and hence from
typically small internalp}cosu. Evaluating the integral ove
z in Eq. ~B7!, we obtain

P~Q,Vm!5
m

2p
H 12

1

2 S uVmu
EF

D 1/2

3F vFQ̃

uVmu
1A11S vFQ̃

uVmu D
2G1/2J ~B8!

where Q̃5Q22kF . This is the result that we cited in th
text @Eq. ~2.4!#.

For Q.2kF , i.e., Q̃.0, the calculations proceed in th
same way. Integrating overp and overv and again expand
ing to linear order nearu5p/2 we obtain after straightfor-
ward manipulations
3-24
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P~Q,Vm!5
m

2p F12S Q̃

kF
D 1/2

2
1

pA2
S uVmu

EF
D 1/2

3E
0

1/2e

dzarctan
~124e2z2!1/2

z21e2 G . ~B9!

Evaluating the integral we find that the result reduc
to Eq. ~B8!.

2. Another way of calculating P„QÉ2kF ,Vm…

For completeness, we also compute the nonanalytic
in P(Q,Vm) near 2kF by explicitly restricting the integra
over p in Eq. ~B1! to smallp and assuming thatp is nearly
orthogonal toQ. This calculation shows in a more direct wa
that typical valuesp are indeed small. To avoid lengthy ca
culations, we assume thatQ52kF and aim at reproducing
the AVm nonanalyticity. ForQ52kF , the energies on the
internal fermionic lines areekFn̂1p ande2kFn̂1p . Introducing

x5vFp and g51/(2mvF
2)51/(4EF), expanding cosu'ũ,

whereũ5p/22u and substituting into Eq.~B1!, we obtain

P~2kF ,Vm!5
1

4p3vF
2E

2`

`

dũE
2`

`

dvE
0

`

dx

3
x

~xũ1gx22 ivn!@xũ2gx21 i ~vn1Vm!#
.

~B10!

Introducing y5xũ and integrating overy, we obtain after
simple manipulations with variables

P~2kF ,Vm!5
1

2p2vF
2E0

`

dxE
uVmu

` zdz

z214g2x4
. ~B11!

The integration is elementary and yields

P~2kF ,V!5
1

8pvF
2Ag

E
uVmu

` dz

Az
. ~B12!

The divergence of the integral at the upper limit simply
flects that a constant term in the polarization bubble can
be reproduced this way. However, the lower limit of the
tegral overz yields a universal and nonanalytic contributio
to P(2kF ,Vm) of the form

Psing~2kF ,Vm!52
1

4pvF
2 S uVmu

g D 1/2

52
m

4p S uVmu
EF

D 1/2

.

~B13!

This coincides with Eq.~B8!. It is essential that this resu
does not depend on the upper limit, and hence typical in
nal momenta scale with externalV. This obviously implies
that typical values ofp are indeed small.
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3. Finite temperature

At finite T, a sharpAQ22kF nonanalyticity in the static
polarization operator is softened in qualitatively the sa
way as it is softened by a finiteVm at T50. In general,

P~Q,Vm ,T!5
m

2p F12S T

EF
D 1/2

FS vFuQ22kFu
T

,
Vm

T D G .
~B14!

We could not find a simple analytical expression for the sc
ing functionF(x,y) at arbitrary values of its arguments. A
Q52kF andV50, F(0,0)'0.339.

APPENDIX C: EQUIVALENCE OF QÄ0 AND QÄ2KF

CONTRIBUTIONS TO THE SELF-ENERGY

In this appendix, we explicitly compute the contributio
to the self-energy from the 2kF nonanalyticity in the particle-
hole bubble, and show that it is equal toS2(k,v) part of the
self-energy from theq50 nonanalyticity. We will also show
that the nonanalytic self-energy can be equally viewed
coming from the singularity in the particle-particle chann
at zero total momentum and frequency.

1. 2kF part of the self-energy from the particle-hole channel

Since our goal is to verify a general reasoning thatq50
and 2kF contributions toS(k,v) are equal, we focus on th
caseT5ek50, compute the 2kF part of the self-energy in
Matsubara frequencies and compare the prefactor
vnlnuvnu term with 1/2 of that in Eq.~3.18! which is S2(v)
in this limit.

For a contact interaction, the second-order self-energy

S~k,vn!52U2E E d2qdVm

~2p!3

3G0~k1q,vn1Vm!Pph~q,Vm!. ~C1!

Assumingq52kF1q̃, whereq̃ is small, we expandek1q as
ek1q52ek1vFq̃12vFkF(11cosu), whereu is the angle
betweenk and q. As we already discussed in Appendix B
only u nearu5p matter~i.e., typicalq is nearly antiparallel
to k), hence we can further approximateek1q as

ek1q'2ek1vFq̃1vFkFũ2, ~C2!

where ũ5p2u. Substituting Eq.~C2! into Eq. ~B1!, we
obtain, settingek50,

S2kF
~vn!5

2U2kF

~2p!3 E2`

`

dq̃dVmE
0

`

dũ

3
1

vFq̃1vFkFũ22 i ~vn1Vm!
Pph~ q̃,Vm!,

~C3!

wherePph(q̃,Vm) is given by Eq.~2.4!.
3-25



er
th

.

ow

f-

r

i
a-

ty

i
th
b

-
9

to
e

on,

f

to

a
ur
-

-

t

ANDREY V. CHUBUKOV AND DMITRII L. MASLOV PHYSICAL REVIEW B 68, 155113 ~2003!
As an exercise, consider first a model case wh
Pph(q̃,Vm) is static. To ensure convergence, we assume
the static behavior holds forVm!V0, whereV0 is some
ultraviolet cutoff ~of order bandwidth!, and for largerVm ,
Pph(q̃,Vm) rapidly falls off. The angular integration in Eq
~C1! reduces the range of integration overVm to 2vn
<Vm<vn , hence at the smallestvn , S}vn . This accounts
for the conventional mass renormalization. We now sh
that there are no nonanalytic corrections toS in this model.
A static Pph(q̃,0) is nonanalytic only forq̃.0, where
Pph(q̃,Vm)5(m/2p)@12(q̃/kF)1/2#. Substituting the
nonanalytic part of the polarization bubble into Eq.~B5!,

introducing ũ5Ar /vFkFcosf,Aq̃5Ar /vFsinf, and inte-
grating overf, for a potentially nonanalytic part of the sel
energy we obtain

S2kF
~v!52

mU2

32p3vF
2E

2`

`

dVmE
0

` rdr

r 2 i ~vn1Vm!
.

~C4!

One can easily make sure that this integral yields a regulav
term ~determined by high-energy states!, but no universal
v2ln v term. This implies, as we mentioned several times
the text, that staticPph(q̃,0) does not give rise to a nonan
lyticity in the fermionic self-energy.

It is instructive to distinguish this case from the impuri
problem. If one of the interaction lines in Fig. 1~a! is re-
placed by an impurity line, as shown in Fig. 9, the diagram
Fig. 1~a! transforms into the Hartree diagram describing
scattering of fermions by Friedel oscillations produced
impurities. In the ballistic limit,uvnut@1, it suffices to keep
only a single impurity line connectingG and Pph and also
neglect disorder inG. For delta-correlated disorder with am
plitude V, the analytic expression for the diagram in Fig.
takes the form

S~k,vn!522UVE d2q

~2p!3
G0~k1q,vn!Pph~q,0!.

~C5!

The particle-hole bubble is still static, but in distinction
Eq. ~C1! we no longer have to perform a summation ov
frequencies. The nonanalytic piece inS(v) is then given by,
instead of Eq.~B6!,

FIG. 9. Hartree contribution to the self-energy for scattering a
Friedel oscillation.
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S~vn!52
mUV

4p3vF
2 E

0

` rdr

r 2 ivn
. ~C6!

Due to the absence of the integral overVm , ~C4! does yield
a universal contribution S(vn)}2 ivnln(2ivn) which
comes from the lower limit of the integral overr. Upon
analytic continuation, one obtainsSR8}v lnuvu and SR

9 (v)
}uvu. The linear in v form of SR

9 (v) is related to the
Hartree part of the linear-in-T term in the conductivity at
finite T38.

We now come back to the electron-electron interacti
when a nonanalytic-in-vn behavior ofS2kF

(vn) can be ob-

tained if theVm dependence is retained inPph(q̃,Vm). As
with any logarithmic singularity, typicalq̃ should well ex-
ceedvn /vF . We will see that typicalVm are of ordervn .
Typical values ofvFq̃ then well exceed typical values o
Vm , and one can expandPph(q̃,Vm) in powers ofVm /vFq̃.
For q̃.0, the frequency expansion ofPph(q̃,Vm) starts at a
constant and holds in even powers ofVm /vFq̃. We have
already verified that the constant term does not give rise
an v2ln v piece inS2kF

(v). At q̃,0, however, the leading

expansion term has the sameuVmu nonanalyticity as the po-
larization operator nearq50. The nonanalytic behavior in
frequency is crucial as it prevents one from eliminating
low-energy nonanalyticity by closing the integration conto
in the integral overVm over a distant semicircle in a half
plane where the denominator in Eq.~B5! has no poles.

ExpandingPph(q̃,Vm) at q̃,0 andVm!vFuq̃u, we find

Pph~ q̃,Vm!5
m

2p S 12
uVmu

2vF~kFuq̃u!1/2D . ~C7!

Substituting this result into Eq.~B5! and keeping only poten
tially nonanalytic piece, we obtain

S2kF
~v!52

2mU2kF

~2p!4 E
2`

`

dVmE
2`

0

dq̃E
0

`

dũ

3
1

vFq̃1vFkFũ22 i ~vn1Vm!

uVmu

vF~kFuq̃u!1/2
.

~C8!

Introducingx252vFq̃ and y25vFkFũ2, from Eq. ~C8! we
obtain

S2kF
~v!52

mU2

4p4vF
2E

2`

`

dVmuVmu

3E
0

`E
0

` dxdy

y22x22 i ~vn1Vm!
. ~C9!

Introducing further y5Arcosf/2, x5Arsinf/2 and inte-
grating overf first, we obtain

a
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S2kF
~v!52

mU2

8p4vF
2E

2`

`

dVmuVmu

3E
0

Wdr

r E0

p df

cosf2 i ~v1V!/r

52 i
mU2

8p3vF
2E

2`

`

dVmuVmusgn~vn1Vm!

3E
0

W2 dr

@r 21~vn1Vm!2#1/2
. ~C10!

Evaluating the integral overr with logarithmic accuracy and
integrating finally overVm , we obtain

S2kF
~v!52 i

mU2

16p3vF
2

vn
2ln

W2

vn
2

. ~C11!

This coincides with the half of Eq.~3.18! for ek50, i.e., with
S2(v).

To further clarify this issue, we redo the calculation in
different way. That is, we use the fact that forQ522k
1Q8, and Q8 small, the nonanalytic part of the bubb
Pph(Q8,Vm) comes from the region of smallQ9 in the fol-
lowing integral:

Pph~Q8,Vm!52E E d2Q9dvn

~2p!3

3Gk¿Q9,vn
G2k¿Q8¿Q9,vn1Vm

.

~C12!

Now, we want to re-express the 2kF contribution as an ef-
fective Q50 contribution. To do this, we substitute E
~C12! into Eq. ~B1! and change the order of the integratio
over Q8 and Q9. The nonanalytic ‘‘2kF’’ piece in the self-
energy then becomes

S2kF
~k,vn!52U2E E d2Q9dVm

~2p!3

3Gk¿Q8,vn1Vm
P̃~Q8,Vm!, ~C13!

where the effective particle hole-bubble

P̃~Q9,Vm!52E E d2Q9dvn

~2p!3

3G2k¿Q9,vn
G2k¿Q8¿Q9,vn1Vm

. ~C14!

This P̃ is a part of the particle-hole polarization bubble
small momentum transfer, which comes from the integrat
oversmall Q9. We now show that forVm!vFQ9, i.e., in the
momentum/frequency range which yields the logarithm
the self-energy, the nonanalytic part ofP̃(Q,Vm) is a half of
15511
t
n

that inP(Q,Vm). This would again imply that the 2kF con-
tribution to the self-energy coincides with theS2 part of
‘ ‘ q50’’ contribution.

The calculation proceeds as follows. We setek50 and
write e2k¿Q852x cosu11gx2 where x5vFQ8, g
5(2mvF

2)21, andu1 is the angle betweenk andQ8. Simi-
larly, e2k¿Q852x cosu12ycosu21g@x21y212xycos(u1
2u2)#, wherey5vFQ, andu2 is the angle betweenk andQ.
As we said, we need to evaluateP̃ for u2 close to6p/2 and
small y. We therefore neglecty2 terms and setu2'p/2 for
definiteness. We assume and then verify thatV/vFQ term in
the polarization operator comes fromu1 near6p /2 and lin-
earize cosu1 near these points. The integration overu1 is
then straightforward, and performing it we obtain that t
integration overvn is confined to2Vm,vn,0 ~for defi-
niteness we assumed thatVm.0). The result is

P̃~Q,Vm!5
iVm

4p2vF
2gy

E
0

`

dpS 1

cosu222p2 iVm

1
1

cosu212p2 iVm
D , ~C15!

where we introducedp5gx. The integration overp is
straightforward, and for smallVm and cosu2 the integral
over dp yields ip/2. Substituting this into Eq.~C15! we
obtain

P̃~Q,Vm!5
1

2

m

2p

Vm

vFQ
. ~C16!

It is essential that the momentum integral is confined
smallp5Q8/kF ~typical p;cosu2;Vm/vFQ), and hence we
are really restricting our momentum integral to smallQ8.
Comparing Eqs.~C16! and~2.2! we see that, as we expecte
Eq. ~C16! is a half of a nonanalytic part ofP(Q,Vm) at
Vm!vFQ. Another half obviously comes from th
region of largeQ8, which cannot be re-expressed as a ‘‘2kF
contribution.’’

2. An alternative computation of the self-energy,
via Ppp„q,V…

We discussed in the text that the second-order self-ene
can be equivalently presented as a convolution of the fer
onic Green’s function and the particle-particle bubble

S~vn!52U2E E d2qdVm

~2p!3

3G0~2kFn̂1q,2vn1Vm!Ppp~q,Vm!,

~C17!

where Ppp(q,Vm)5(m/2p)ln@B/(uVmu1AVm1(vFq)2)#.
Substituting thisPpp into the self-energy and expandin
e2kFn̂1q as2vFq cosu, for ek50 we obtain
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S~vn!52
mU2

8p4vF
2E

2`

`

dVmE
0

p

duE
0

W

dx

3
x

x cosu1 i ~Vm2vn!
ln

B

uVmu1AVm1x2
. ~C18!

Assuming, as before, that typicalVm are of ordervn , while
typical x5vFq are much larger, we can further expand und
the logarithm and obtain

S~vn!5
mU2

8p4vF
2E

2`

`

dVmuVmu E
0

p

duE
0

W

dx

3
1

x cosu1 i ~Vm2vn!
. ~C19!

The integration overu yields

S~vn!5 i
mU2

8p3vF
2E

2`

`

dVmuVmusgn~Vm2vn!

3E
0

W

dx
1

Ax21~Vm2vn!2
. ~C20!

Evaluating the integral overx with logarithmic accuracy, we
finally obtain

S~vn!52 i
mU2

16p3vF
2

vnln
W2

vn
. ~C21!

This precisely coincides with Eq.~B11!.

APPENDIX D: EVALUATION OF SR8 „v,ek…

ON THE MASS SHELL

In this appendix, we present the calculation of the r
part of the fermionic self-energy on the mass shell. We w
be only interested in the nonanalytic piece of the self-ene
The nonanalytic part ofSR8 (v) is simply twice that of
S28(v), which, according to Eq.~3.37!, can be written as

S28~v!52
mU2

16p4vF
2

vZ~v,T!, ~D1!

where

Z~v,T!5E
2`

`

dVVPE
0

` dE

E22v2 S coth
V

2T
2tanh

V1E

2T D
3S E

v
lnU2V1E2v

2V1E1vU1 ln
u~2V1E!22v2u

W2 D .

~D2!

We first findZ(v) at T50. The term with coth and tanh
functions restricts the integration overV to the interval
15511
r
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2E<V<0. Introducing the rescaled variablesE5vz and
V52vzx and assuming for definiteness thatv.0 ~and
thusz.0), we obtain

Z~v!52vE
0

` dz

z221
E

0

1

xdxFz lnUz~2x21!11

z~2x21!21U
1 ln@z2~2x21!221#G . ~D3!

Introducing a new variable viay52x21 and eliminating
terms that vanish by parity we obtain, instead of Eq.~D3!,

Z~v!5vE
0

` dz

z221
E

0

1

dyFzy lnUzy11

zy21U1 ln~z2y221!G .
~D4!

The integration overy is now straightforward, and perform
ing it we obtain

Z~v!5vF E
0

` dz

z221
S 1

z
lnUz11

z21U1 ln z221D
1E

0

`dz

2z
lnUz11

z21UG . ~D5!

Finally, we use the values of the following integrals:

E
0

`

dz
ln z221

z221
5

p2

2
;

E
0

` dz

z221

1

z
lnUz11

z21U52
p2

4
;

E
0

`dz

2z
lnUz11

z21U5 p2

4
. ~D6!

Substituting these results into Eq.~D5! we obtain

Z~v!5v
p2

2
. ~D7!

Substituting this further into Eq.~D1! we reproduce Eq.
~3.38!.

We next consider finiteT. As a first step, we show tha
one can safely replace cothV/(2T) by tanhV/(2T) in Eq.
~D2!. Indeed, this replacement changesZ(v) by

Zextra~v,T!52E
2`

`

dV
V

sinh
V

T

PE
0

` dE

E22v2

3S E

v
lnU2V1E2v

2V1E1vU1 ln
u~2V1E!22v2u

W2 D .

~D8!

The integration overE in Zextra(v,T) is straightforward, and
performing it we obtain
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Zextra~v,T!52E
2`

`

dV
V

sinh
V

T

ln2
u2V1vu
u2V2vu

. ~D9!

This integral obviously vanishes as the integrand is odd
V.

Next, one can readily check that in the expression forZ,
obtained by replacing cothV/(2T) →tanhV/(2T), i.e., in

Z~v,T!5E
2`

`

dVVPE
0

` dE

E22v2 S tanh
V

2T
2tanh

V1E

2T D
3S E

v
lnU2V1E2v

2V1E1vU1 ln
u~2V1E!22v2u

W2 D ,

~D10!

the integrand vanishes at largeuVu, E. Hence the integration
can be performed in the infinite limits and Eq.~D10! can be
rewritten as a difference of two terms with the same ar
ment of tanh, upon changing in the second term to a n
variableV1E. Carrying out this procedure, introducing ne
variables, and converting theV integration to the integra
over positiveV, we obtain

Z~v,T!5E
0

`

dV tanh
V

2T
CS 2V

uvu D , ~D11!

where

C~a!5PE
0

` dxx

x221
Fa lnUa22~x21!2

a22~x11!2U
1x lnU~a21!22x2

~a11!22x2U1 lnU~a2x!221

~a1x!221
UG .

~D12!

The integration overx is tedious but straightforward, an
yields

C~a!5H 2p2
a

2
for a,2;

2p2 for a.2.

Substituting this into Eq.~D11! and integrating overV, we
obtain

Z~v!5A1
p2uvu

2
gS v

T D , ~D13!

whereA,0 is a ~formerly infinite! constant which is irrel-
evant to us as it accounts for the high energy contribution
a linear in v term in S28(v), g(x) is a universal scaling
function,

g~x!511
4

x2 Fp2

12
1Li2~2e2x!G , ~D14!
15511
n

-
w

o

and Li2(x) is a polylogarithmic function. This is the resu
we cited in Eq.~3.42!.

At x5`, i.e., at T50, we haveg(`)51 and thus
Z(v)5(p2/2)uvu. This coincides with Eq.~D7!. In the op-
posite limit of uvu!T, we use property

Li2~2e2x!5 (
k51

`
~2e2x!k

k2
'2

p2

12
1x ln 21O~x2!.

~D15!

Substituting this into Eqs.~D14! and ~D13! we obtain that,
up to a constant,

Z~v!T!'2p2ln 2T. ~D16!

Substituting this further into Eq.~D1! we obtain

S28~v!52
mU2ln 2

8p2vF
2

vT. ~D17!

This is the result we cited in Eq.~3.39!.
As an independent verification, we reproduced Eq.~D17!

by computing the temperature derivative ofZ(v) in the limit
v→0. ~It is essential to take the limit, not just setv50.!
Evaluating the derivative, settingv→0, introducing dimen-
sionless variables, and eliminating the terms which vanish
parity, we obtain

]Z~v,T!

]T
54E

0

` dxx

cosh2x
PE

0

`dy

y
lnUy11

y21U. ~D18!

The integral overx gives ln 2, whereas that overy yields,
upon integrating by parts,

PE
0

` dy ln y

y221
5

p2

4
. ~D19!

Combining the two terms we obtain]Z(v,T)/]T
52p2ln 2, i.e., up to a constantZ(v!T)52p2ln 2T. This
coincides with Eq.~D16!.

APPENDIX E: 2 kF CONTRIBUTIONS TO DIAGRAMS 1
AND 3 IN FIG. 5

In this appendix we present explicit calculations of t
2kF-contributions to diagrams 1 and 3 in Fig. 3.

1. 2kF part of diagram 1

We first verify that the nonanalyticO(uQu) term that re-
sults from the 2kF nonanalyticity in the particle-hole bubbl
is indeed the same as the contribution from theq50 nonana-
lyticity. For dx1

q50(Q,0) we obtained, in Eq.~4.18!,

dx1
q50~Q,0!5x0

2

3p S mU

4p D 2 uQu
kF

. ~E1!

Now we explicitly evaluatedx1
2kF(Q,0). The general expres

sion for diagram 1 is
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dx1~Q,0!528U2E d2kd2qdvdV

~2p!6
G0

2~k,v!

3G0~k1Q,v!G0~k1q,v1V!P~q,V!.

~E2!

For q'2kF the quasiparticle energies can be approxima
by

ek5vF~k2kF!, ek1Q5ek1vFQ cosu1 ,

ek1q52ek1vFq̃12vFkF~11cosu2!, ~E3!

whereq̃5q22kF , andu1 andu2 are the angles betweenk
andQ and betweenk andq, respectively. As we have state
several times before, the 2kF nonanalyticity comes from in-
ternal fermionic momenta in the particle-hole bubble th
nearly coincide with the external one. In our notations, t
implies thatu2 is close top. We can then expand in cosu2

upon which ek1q reduces toek1q52ek1vFq̃1vFkF(p
2u2)2. Substituting this expansion into Eq.~4.9!, integrating
overek and then overv ~this requires more care than for th
q50 case!, and introducing dimensionless variablesq̄
5q̃/uQu,v̄5V/(vFuQu), kF(p2u2)25uQuū2 and polar co-
ordinates asq̄5r cosf,v̄5r sinf, we obtain, from Eq.~4.9!,

dx1
2kF~Q,0!5

4mU2~kFuQu!1/2

p4vF

3E
0

p

dfP~f!ReE rdr E
0

p du1

cos2u1

~E4!

E
0

`

dũ2F cosu1

ũ21reif
2 ln

ũ21reif1cosu1

ũ21reif G .

~E5!

The polarization operator is now given by Eq.~2.4!, which in
the new variables takes the form

P~f!5
m

2p F12S r uQu
kF

D 1/2

cos
f

2 G . ~E6!
15511
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Performing the integration overr and keeping only the con
tribution which comes from low energies, we again find th
only the nonanalytic piece inP(f) contributes to orderuQu,
and this universal contribution is

dx1
2kF~Q,0!5

2m2U2uQu

3p5vF
E

0

p

df cos
f

2
ReE

0

` dũ2

~ ũ21eif!3

~E7!

3E
0

p

du1cosu1ln
ũ21eif

cosu1
. ~E8!

The integral overu1 yields ip. Evaluating then the integra
over ũ2, we obtain

dx1
2kF~Q,0!5

m2U2uQu

8p4vF
E

0

p

df cos
f

2
sin

5f

2

5x0

2

3p S mU

4p D 2 uQu
kF

; x0[
m

p
. ~E9!

Comparing this result with Eq.~4.18!, we see that the two
expressions are indeed equal. We emphasize again th
order to obtain this result, one has to include the freque
dependence ofP(q,v) near q52kF . Had we replaced
P(q,v) by its static valueP(q,0), we would not have ob-
tained Eq.~E9!.

2. 2kF part of the diagram 3

In explicit form,

dx3~Q,0!524U2E d2k d2q dvmdVm

~2p!6

3G0~k,vm!G0~k1Q,vm!

3G0~k1q,vm1Vm!G0~k1q1Q,vm1Vm!

3Pph~q,Vm!. ~E10!

Assuming thatq is close to 2kF and expanding quasiparticl
energies as in Eq.~E3! we obtain after rescaling the variable
and restricting with only the nonanalytic part
dx3
2kF~Q,0!5x0

m2U2

4p6

uQu
kF

E
2`

`

dxE
0

`

dVm~Ax1 iVm1Ax2 iVm!E
0

p

duE
0

`

dyE
2`

`

dzE
2`

`

dvm

1

~z2 ivm!~z1cosu2 ivm!

~E11!

3
1

@z2x2y21 i ~vm1Vm!#@z2x2y21cosu1 i ~vm1Vm!#
, ~E12!

wherex05m/p. Performing the integration overz first we obtain, after straightforward manipulations,
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dx3
2kF~Q,0!52x0

m2U2

p5

uQu
kF

E
2`

`

dxE
0

`

dVm~Ax1 iVm1Ax2 iVm!E
0

p

duE
0

`

dy

3ImF E
0

`

dvm

1

$@x1y22 i ~vm1Vm!#@x1y22 i ~vm1Vm!#22cos2u%
G . ~E13!

Introducing x5r cosf and V5r sinw such that (Ax1 iVm1Ax2 iVm)52Arcosf/2 and rescalingvm→rvm, and y
→Ary , we obtain

dx3
2kF~Q,0!522x0

m2U2

p5

uQu
kF

E
0

p

df cosf/2

3ImF E
0

`

dyE
0

`

dvmE
0

`

r 2drE
0

p

du
1

~e2 if1y22 ivm!@r 2~e2 if1y22 ivm!22cos2u#
G . ~E14!

Introducing furtherp5r (e2 if1y22 ivm), replacing the integration overr by the integration overp, and restricting with the
universal contribution from the lower limit of thep integral, we obtain, after integrating overp and then overu,

dx3
2kF~Q,0!522x0

m2U2

p4

uQu
kF

E
0

p

df cosf/2E
0

`

dyE
0

`

dvm ReF 1

@vm1 i ~y21e2 if!#4G . ~E15!
th
in
c

.
ta

ac-
elf-
The integration overvm is now straightforward. Performing
it and then evaluating the integral overy we finally obtain

dx3
2kF~Q,0!5x0

m2U2

8p3

uQu
kF

E
0

p

df cos
f

2
sin

5f

2

5x0

2

3p S mU

4p D 2 uQu
kF

. ~E16!

This is the result that we cited in the text.

APPENDIX F: 2 KF CONTRIBUTION TO xs„QÄ0,T…
FOR A STATIC LINDHARD FUNCTION

In this appendix we show that the thermal smearing of
static Lindhard function by itself does give rise to a linear-
T term in the uniform spin susceptibility, but does not a
count for the full linear-in-T dependence ofxs(0,T)—the
latter also contains a contribution from finite frequencies

The computation proceeds as follows. Because a s

FIG. 10. Diagram 1 as the first-order self-energy insertion.
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polarization operator can be viewed as an effective inter
tion, diagram 1 can be re-expressed as the first-order s
energy insertion~see Fig. 10!

dx1,static524T(
vn

E d2k

~2p!2
@G~k,vn!#3Seff~ek!,

~F1!

where the effective self-energy is given by

Seff~ek!52U2T(
n
E d2q

~2p!2
P~q,0,T!G0~k1q,vn!

52U2E d2q

~2p!2
P~q,0,T!nF~ek¿q!.

This self-energy is obviously independent ofvn . Although
the static polarization operatorP(q,0,T) is not known ex-
actly, it can be cast into an intergal form32 convenient for
further calculations. We have

P~q,0,T!5
m

2p F 12
kF

2

8mT

3E
21

S q
2kF

D 2
21 dz

cosh2
kF

2z

4mT

S 12
11z

~q/2kF!2D 1/2G .

~F2!

Rewriting @G#35(1/2)]2G/]ek
2 , summing overvn with the

help of an identity T(vn
G(k,vn)5nF(ek)21/2 where

nF(z)5(ez/T11)21 is the Fermi distribution function, and
integrating by parts twice, we obtain
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dx1,static52x0
2DE

2`

`

deknF~ek!
d2Seff~ek!

dek
2

, ~F3!

wherex0
2D5m/p. The nonanalytic temperature dependen

of dx1,static is due to the region ofq near 2kF , where
P(q,0,T) is singular. Expanding, as before,ek¿q near q
52kF and along the direction ofq nearly antiparallel tok
because only theseq contribute to the nonanalyticity, we
obtain

ek¿q52ek1vF~q22kF!1vFkF~p2u!2, ~F4!

whereu is the angle betweenq andk. Substitutingek¿q into
Eq. ~F2! and rescaling variables, we obtain, for the effect
self-energy,

Seff~ek!52
mU2kF

2

2p3 S 2T

EF
D 2E

2`

`

dxE
0

`

dyE
2`

x

dz
~x2z!1/2

cosh2z

3nF@2ek14T~x1y2!#. ~F5!

Substituting this self-energy into Eq.~F3!, evaluating the de-
rivative, and further rescaling variables, we obtain

dx1,static52x0
2DS mU

4p D 2 T

EF
Z, ~F6!

where

Z5
4

pE0

`

daE
2`

`

dbE
0

` dc

Ac

sinh~b2c!

cosh3~b2c!
J~a,b! ~F7!

and
hy
7

15511
e

J~a,b!5E
2`

`

dx
1

ex11

1

e4(b1a22x)11
. ~F8!

The last integral can be easily evaluated, and yields

J~a,b!5
4~b1a2!

e4(b1a2)21
. ~F9!

Substituting this result into Eq.~F7!, introducingc̄5Ac and
b̄5a21b, and integrating overc̄ anda using polar coordi-
nates, after straightforward calculations we obtain

Z524E
2`

` db̄b̄

e4b̄21

1

cosh2b̄
. ~F10!

Carrying out the last integration, we finally obtain

dx1,static5x0
2DS mU

4p D 2 T

eF
Z , ~F11!

whereZ511p2/4.

Comparing this result with our dx1
q52pF5dx1

q50

5(1/2)dxs(0,T), given by Eq.~4.54!, we see that they differ
in that ZÞ1. This discrepancy shows that the frequency d
pendence of the polarization bubble does contribute to
nonanalytic piece in the thermal static uniform susceptibil
Note in passing that CM obtainedZ52 instead of 1
1p2/4. That would be the value ofZ if J(a,b) was equal to
1—the latter result is obtained if one neglects the dep
dence ofa andb in the integrand in Eq.~F8!, which physi-
cally corresponds to a restriction with a strict backscatteri
ek1q52ek .
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