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The issue of nonanalytic corrections to the Fermi-liquid behavior is revisited. Previous studies have indi-
cated that the corrections to the Fermi-liquid forms of the specific heat and the static spin susceptibility
(CFL=T, xE-=const) are nonanalytic iD<3 and scale agC(T)xTP, x(T)=TP 1, and y4(Q)=QP 1,
with extra logarithms irD =3 and 1. It is shown that these nonanalytic corrections originate from the universal
singularities in the dynamical bosonic response functions of a generic Fermi liquid. In contrast to the leading,
Fermi-liquid forms which depend on the interaction averaged over the Fermi surface, the nonanalytic correc-
tions are parametrized by only two coupling constants, which are the components of the interaction potential
at momentum transfergq=0 and q=2pg. For three-dimensional3D) systems, a recent result of Belitz,
Kirkpatrick, and Vojta for the spin susceptibility is reproduced and the issue why a nonanalytic momentum
dependence,)(S(Q,T=O)—X§Loc Q%logQ, is not paralleled by a nonanalyticity in thd dependence
[xs(0,T)— xE"1= T2 is clarified. For 2D systems, explicit forms 6{(T) —CFL=T2, x(Q,T=0)—x"=|Q|,
andy(0,T)— x"-=T are obtained. It is shown that earlier calculations of the temperature dependences in two
dimensions are incomplete.
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[. INTRODUCTION fermionic self-energy2 g(k,w) on the mass shell behaves
as‘|.1—14
The universal features of Fermi liquids and their physical , ) )
consequences continue to attract the attention of the Sg=Alo*+(7T)7]. 1.9

condensed-matter community for almost 50 years after th%imultaneously the subleading term @(T) scales as
Fermi-liquid theory was developed by Landa@.search for \yhije the subleading terms in spin and charge susceptibilities
stability conditions of a Fermi liquid and deviations from a behave a€Q? and T2. The analytic behavior 0B, is sup-

- . . -8 . ..
Egirr?:sl-lI?r?tfngi%re]zwiﬂﬁrefggtli/lgg:g rziasil;/qu daun;utrg (t:k?gcr?cl)n ported by perturbative calculations =3 and by a general
Fermi-liquid features of the normal state of high, original argument by Landau that; is determined by solely

superconductofsand heavy fermion materialé. by fermions in a narrow £ w) energy range around the

H 1,12
In a generic Fermi liquid, the fermionic self-energy on the Fermi surface:’™ However, Eq/(1.1) as well as the form of

mass shell behaves at vanishing frequency and temperatu%e.3 subleading terms i€(T) and x(Q,T) are not the re-

as3(0)—3(0)=aw where dotted terms account for quirements of the Fermi liquid, but rather a consequence of
higher powers of frequency or temperature and are negligibl he assumption that the expansion In powers of frequency,
: S . T emperature, and momentum is analytic.

in the limit »,T—0. This form of the self-energy implies The subject of this paper is the analysis of tianana-
that the dominant effect of the interaction at low energies iﬁ tic. universal corrections to the Fermi-liquid forms of
the renormalization of the quasiparticle mass and the resid ( ’T) C(T), and x(Q.T) that should be Crlesent in a ge-
of the quasiparticle Green’s function, but apart from this, thene:i)c; Férmi Ii(,quid I)t(ha’s been known for nge time tha?the
quasiparticles retain the same properties as free partales ubleading terms'in the and T expansions of the fermionic
ternatively stated, the quasiparticle Green’s function still has i d Lt | Vi iesuifs or T2

a well defined pole™*~This behavior has a profound effect ¢ ch<rdy do not form reguiar, anaiytic Seriesun or

H 3 5 ’ 4 6 my 15 _
on observable quantities such as the specific heat and stafic @ @, etc. for>’ andw®,«°, etc. for3"). > In par

. e : icular, inD=3, power counting shows that the first sublead-
spin and charge susceptibilities, which have the same func term in the(retardedl on-shell self-energy af=0 ist”

tional dependences as for free fermions, e.g., the specifi'E'gl

heatC(T) is linear inT, while the susceptibilitieg(Q,T) S _ _§FL
and x.(Q,T) both approach constant values@t0 andT *r(@)=2p(0) = 2p (@)
=0. A regular behavior of the fermionic self-energy is also =Bgpo’in(—iw), (1.2

in line with a general reasoning that turning on the interac- ) . ) )
tion in D>1 should not affect drastically the low-energy WhereBsp is real. Fgr a generic 2D <3, this subleading
properties of an electronic system, unless special circumt-erm,ber_""%e_s24 as”. In two dimensions, it is again
stances, e.g., proximity to a quantum phase transition©9arithmic;
interfere®® 5 B wln(—i 13
In a widely used definition of a Fermi liquid, it is further R(@)=~iByparin(—ia), (13
assumed that the subleading terms in the self-energy are alsthere B, is real. From a formal perspective, theln w
regular, and, in particular, the imaginary part of the retardedorm of the correction term in two dimensions implies that at
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w—0 it dominates over a Fermi-liquia? term, i.e., a con- used the same approach, but went beyond estimates and per-
ventional Fermi-liquid reasoning breaks down. This is trueformed a detailed analysis of the quasiparticle interaction
also forD< 2, where the correction term scales agaim&ds  function and the susceptibility. They also found a lineafFin-
However, as long aB>1, ReX (kg ,w)~ w is asymptoti-  dependence. The linear Thdependence was then confirmed
cally larger at low frequencies than B(kg , ), i.e., fermi- by Fratini and Guined® who also considered anisotropic
onic excitations remain well defined. For a complete set ofrermi surfaces.

references on this problem see Ref. 25. Another example of nonanalyticity in the leading correc-

The singularity in R&, affects directly the subleading tions to a Fermi-liquid behavior is linear-iii-correction to
term 6C(T) in the specific hea€(T)=yT+ 5C(T) via** the impurity scattering time in two dimensioffs:3’ A gen-
eral treatment of this situatiéhshows that the correction to
d11 dPk the residual conductivity of a dirty Fermi liquid depends lin-
5C(T)=27T(9—T $f P early on the temperature in the ballistic regime, i.e., wiien
(2m) ; ; ; ; ;
is much larger than the impurity scattering rate. Unlike the
familiar InT dependence of the conductivity in the diffusive
* &n(w) . 39 41 It .. .
><J dow ReS (w,k)8(w—€) |. regime;” this linearT dependence originates from the singu-
- Jo lar behavior of the response functions of a clean Fermi liquid
(1.4 in two (_Jlimen_sions. _
Our intention to pursue a further study of singular correc-
In three dimensions, power counting yield§(T)=T3InT,®  tions to the Fermi-liquid behavior is stimulated by several
while in two dimensions, R&S (w)]xw?, and by power factors. First, we want to clarify what actually causes the
counting 8C(T)ocT2.27:28 singularities in the fermionic self-energy, specific heat, and
Belitz, Kirkpatrick and VojtaBKV) argued® that the sin-  spin susceptibility. To illustrate the importance of under-
gularity in the fermionic self-energy should also affect spinstanding this issue, we note that power counting arguments
susceptibility and give rise to a singular momentum expanare not rigorous and can lead to incorrect results. Indeed, let
sion of the staticys(Q,T=0). A similar idea was expressed us apply power counting to the susceptibility of noninteract-
by Misawa® Indeed, the susceptibility is a convolution of ing fermions, which, we know, is a Lindhard function. Each
the two fermionic Green'’s functior(®& particle-hole bubbje  Green’s function of free fermionSy(p,w,)=[iw,—ve(k
For non-interacting fermionsy(Q,0) is given by the —kg)] ! scales as one inverse power of momentum and
Lindhard function which is analytic i@ for smallQ in all D. energy (the corresponding dynamical exponemt=1), so
The corrections to the Lindhard form are obtained by selfthe convolution of the two Green’s functions contributes two
energy and vertex-correction insertions into the particle-holgpowers ofk—kg in the denominator of the integrand for
bubble(see Fig. 3 The diagrams with self-energy insertions y(Q,0). Expanding up t®?, one then adds two extra pow-
can be viewed as convolutions & and G, where G™!  ers in the denominator. The frequency integration eliminates
=G51+E. Substituting the self-energy and expandingtin  one, so there are three powers of momentum left in the de-

and inQ, we obtain nominator. The prefactor fo®? should then scale as
% (w,9) D
Q0 =X(Q.0~x(0.0%Q? | dudeg— 0 [ L w8
(ilo—¢€q) q® '
1.9

Substituting the singular part &(w,q) into Eq. (1.5) and ~ Whereg=p—kg. The lower limit of the integration is of
just counting powers, without paying attention to the locationorderQ, the upper limit is of ordek . The integral is infra-
of the poles, we findsy(Q,0)=Q?n|Q| for D=3, and red divergent forD<3, scales as |@| for D=33 and as
5x(Q,0)xQP 1 for smallerD. [For D=1, a more accurate |Q|!3*3 for 1<D<3. We see that a power counting predlqts
estimate yields¢(Q,0)eIn|Q)]. a singular momentum de_pendenpe of the Lindhard functhn.
To verify this reasoning, BKV explicity computed 1he true Lindhard function obviously does not obey this
Sx<(Q,0) in three dimensions to second order in the interacb?haV'Qr—'tO'S analytic neaQ=0 for all D. In three
tion, and indeed demonstratédhat 5x(Q,0)<Q?n|qQ|, in dimensions
agreement with power counting. Based on this agreement,
BKYV conjectured that power counting should be valid for all . Q?
D>1, i.e., the fully renormalized spin susceptibility should Xo(Q.T=0)=xp | 1-—5 1, (1.7
scale with momentum a®° 1. 8kr
Another nonanalytic behavior was discovered in the 3D 5 . : L
analysis of the temperature dependence of the uniform sudvherexo =m4l§,:4/277 - In two dimensions, itis just a constant
ceptibility in two dimensions. Baranov, Kagan and fof |Q<2ke,*"
Marenkd? (BKM) estimatedy(Q=0,T) using a relation
between the uniform susceptibility and the quasiparticle in- x0(Q.0=x3", Q<2k, 1.9
teraction functiort!*?and argued thag(0,T) is linear inT
in two dimensions. Chitov and MillisCM) (Ref. 32 later whereX§D=m/Tr. In one dimension,
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1 Q? where G(k,w,)=(iw,— €,) ! is the fermionic propagator.
x0(Q,00=xaP 1+1—2—2 , (1.9 At T=0, a static particle-hole polarization bubtl&(q,
Kg =0,T=0) in D=2 has an asymmetric square root singular-

where x2°=2m/ ks . The failure of power counting argu- ity at q— 2kg+0.**24%47A finite T or finite » soften the
ments to reproduce the behavior of the Lindhard functiorsingularity and yieldlI(q,w,T) —11(q,0,0) ymaxXT,w} in
clearly calls for understanding under which conditions theythe momentum rangdq— 2kg|~maxXT,w}/vg 324248 A

do work. The same problem holds also for the self-energy, asimple calculation shows that fermions which contribute to
the singular forms of Eqs1.2) and (1.3) are obtained by §y(0,T) have energies of order T and are located in a
power counting, and there is no guarantee that the coeffharrow angular range where the angldetween vectork
cients are nonzero. In fact, CM computed the leading correcandq is almosts: m— 6~ (T/Eg) Y2 Using this and assem-
tion to the real part of the self-energy in two dimensions and,jing the powers, one obtains thay(0.T)=T.

argued that ivanishesThis would imply that the coefficient In three dimensions, an analogous reasoning yields the

B2p in Eq.(1.3) vanishes, and thus theln o term in ImXg 121 T pepavior. CM suggestéithat previous computations
is absent. Our result is differefgee below—we found that in three dimensions m?gght have mizsed the crugiqi 2f-

B,p is finite. . . o
Another reason to look more deeply into the physics offeCts and hinted that Misawa may be right in that THén T

singularities is the discrepancy between momentum and teniSrm may actually be present in three dimensions.

perature dependences of the susceptibility. The fact that dy-hm.th‘Ia p.re'sen:c i:r?mmumcatlu?[n, we antglyzetlntgetlzill th?
namical exponentze.=1 would normally imply that a physical ongin o1 the nonanaiylic correéctions to the ermi

i — D-1 ~liquid and clarify the discrepancy between earlier papers. We
gﬁgle;r&agl;(;dneopne;ndj;g? égél—nd?nigﬁx(osgoﬂrdot—)? plir obtain explicit results irb =2 for the fermionic self-energy,
three dimensions, this analogy would méan tbagt(d ) the effective mass, and the specific heat, and for spin and
=T2InT. Misawd? did find aT2In T term in his calculations CHarge susceptibilities at fini@ and T=0, and at finiteT
in early 1970s. However, later Carneiro and Petfifcand andQ=0. We also verify earlier results fd»=3.

recently BKV2® argued that th&?In T term is actually absent We argue that a proper_treatment of nonanalyt|C|t|es in the
p_armmnlc self-energy and ins(Q,0) requires the knowledge

in three dimensions. Several explanations have been put fo . . .
ward to explain this discrepancy. BKV suggested that theof the dynamicalparticle-hole response function. We show

absence of tha2In T dependence in three dimensions is aC_epricitIy that the nonanalyticity in the static Lindhard func-

cidental and should not be regarded as a failure of powelijon near 2 does not give rise to a nonanalytic behavior of

: - . the self-energy due to extra cancellations. For the spin sus-
io;n:nggEglu(g;%rgﬁaggcegQcto(n (J)e_?)t usrﬁgum(’ﬁoﬁ?jr _?hgigse(r:igrr:_c ceptibility, the computation with the static Lindhard function
il S il .

jecture was verified numerically by Hirashima and does yield linear IfQ| andT terms, due to R effects, but

TakahasHF for D=2 but no definite conclusion has been With incorrect prefactors. We also demonstrate that nonana-

drawn because of m’JmericaI difficulties lytic terms in the self-energy and the spin susceptibility can
As we already said, BKMRef. 31 a.nd CM (Ref. 32 be viewed equivalently as coming either from the nonanaly-

consideredy(0,T) in two dimensions analytically, and ar- t|_C|ty in ihe dynamical partlck_a-_hol'e bubble nquto, or g
gued that the linear-ifi-term is present. Both groups argued _2KF’ or from the nonanalyticity in the dynamlcallpartmle-
that 8y(0.T)«T comes from . effects(our results are in particle bubble near zero total momentum. In this respect,
full agr?aement with this BKM argued that aT-dependence our results do agree with that of BKV who formally consid-

is caused by the singular behavior of the quasiparticle inter(-arecj onlyg=0 contributions. However, we show explicitly

action function for fermions away from the Fermi surfdize that they indeed computed all possible nonanalytic contribu-

equivalent diagrammatic language—by the singular fre__t|ons to the static susceptibility, includingkg effects, but

. ust used an unconventional labeling of internal momenta in
guency dependence of the particle-hole bubble ngs) .2 | ) .
CM argued that the linear-ifi-behavior is caused not only the diagrams. As an essential step beyond the BKV work, we

by this effect, but also by the singular temperature behavio?how explicitly that the nonanalytic terms in all diagrams for

of the quasiparticle interaction function for fermions at theXS(Q'o) come echuswe[y frpm the vertices in Wh'Ch the
Fermi surface(in diagrammatic language, by the singular transferred momentum is e|_ther 0 ok and simulta-
dependence of the static particle-hole bubble ngg) 2The neogslythe total momen_tum is 0. There are only two suc_h
relation between the singularity in the particle-hole bubble/tices. They can be viewed as two parts of the scattering
and the nonanalyticity of(0,T) follows from the fact thata 2mPlitude with zero momentum transfand zero total mo-
generic diagram for the correction to a Fermi-liquid suscep-mentum'

tibility, e.g., diagram 1 in Fig. 3, contains a combination
Fa’B;y‘g(k,_k;k,_k):U(O)éayéﬁé‘_U(ka) 50,5551.

11

This restriction to just one scattering amplitude is rather non-
trivial, as it implies that nonanalytic terms in all diagrams for
XTY, f d?qG(k+q, 0, + QIL(q,Qp,, T), the susceptibility depend only di(0) andU(2kg) but not
O on averaged interactions over the Fermi surface, as in the
(1.10  BKV analysis. A similar result has been obtained recently for

Sx(0T)~T>, | d*kG3(k,w,)
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the conductivity in the ballistic regime in two dimensiofis: term in x(0,T) T evolves withD, and show that foD =3,
for a short-range interaction, the prefactor for a nonanalytic, (o T)o T2 without an extra logarithmic factor. This agrees
T-dependent piece in the conductivity depends onlyJg0)  yith Carneiro and Pethiék and BKV results thai<(0.T) in
andU(2ke) rather than on the interaction averaged over theyee gimensions is free from nonanalyticities to or@&r

Fermi surface.
) . . We also show that althou 0,T) goes smoothly through
The paper is organized as follows. In Sec. Il we bneflyD:2 the 2D case is stﬁjlaséomzavshat special. yFinaIIygwe

review three known nonanalyticities in the response func- - ) .
tions of a Fermi liquid. In the next four sections we considerf”malyze charge susceptibility and_ find that_ nonanalyt_lc terms
a fermionic system with a contact, i.e-independent inter- 1" Xc(Q.T) are all cancelled out, i.e., the first corrections to
action. In Sec. Il we discuss the leading corrections to thdh® Fermi-liquid form for the charge susceptibility are all

self-energy for interacting fermions in two dimensions. weanalytic. For a 2D case, this result fully agrees with that of
show that the on-shell self-energy has the form of B3 ) o )
with a nonzerdB,p , and this gives rise to a linear-ihcor- In Sec. VIl we consider the case of a finite-range interac-
rection to the effective mass, and T& correction to the tion with g-dependentJ(q). We demonstrate that nonana-
specific heat. We show that a correction to the effective masitic terms appear in a way similar to anomalies in quantum
is not observable in a magneto-oscillation experiment due téield theory, and dependnly on U(0) andU(2kg), not on
a peculiar cancellation between tWedependent terms in the the momentum-averaged interaction. We show that at both
self-energy. We also briefly discuss self-energy correction§=0 and finite T, the nonanalytic correction to the self-
for D=3. energy depends ob?(0)+ U?(2kg) —U(0)U(2kg), while

In Secs. IV-VI we consider in detail a nonanalytic per-the total nonanalytic correction ts depends only on
turbation theory for the charge and spin susceptibilities. WaJ?(2k:). We show that the charge susceptibility does not
use the self-energy calculated in Sec. Il along with the dyhave a nontriviaQ dependence—all nonanalytic terms from
namical Lindhard functions near=0 and X and the dy- jngjvidual diagrams cancel out even wher=U(q). In Sec.

namical particle-hole bubble near the zero total momentunyj| we present our conclusions. Appendixes A—D show de-
as building blocks, and obtain analytic expressions fok,iis of some calculations.

charge and spin susceptibilities. More specifically, in Sec. IV
we present, for completeness, the expressions for the dy-
namical spin susceptibility of noninteracting fermions for
variousD. In Sec. V we consider the susceptibility Bt 0

and finite Q. We present the first analytic calculation of
xs(Q,0) in two dimensions. We explicitly show that it scales  \we will demonstrate in this paper that the nonanalytic
as |Q| and compute the prefactor. These two-dimensionatorrections to the Fermi-liquid theory are universally related
(2D) calculations require substantially more effort than iny, the Fermi-liquid nonanalyticities in the dynamical bosonic

three dimensions since the internal momenta in the diagramg,spnonse functions. To set the stage, we review these nonana-
are all of orderQ, and one cannot simply expand @ and Iyticities briefly.

then cut the m_frared_ dlvergenqe of the p_refactor@ybe- There are three physically distinct bosonic nonanalytici-
cause in two d_|menS|0ns th_e divergence is power Iavv_ rathetries in a generic Fermi liquid af=0.2"13The first is the
:Zz?oz)ggélt?hrzlié\é\lﬁ?ttrc])(fanB?g\S/CLtjr?aS.ﬂili S’%)iaéglrf]?&\.'vr\}\'lzh W%onanalytmlty in the particle-hole response function,
explicitly verify that nonanalytic |Q|) terms obtained either
via a “conventional” approach to treatkg contributions, or Ppd
the technique invented by BKV are the same. We also dis- _ n
cuss briefly the 1D case. HpH( Q) JJ (2w)D+1G(p'wn)G(p+Q'wn+9m)’

In Sec. VI we consider the static susceptibility at firite 2.1
We show that in two dimensiong(0,T) scales a§ with a
universal prefactor. We also show that the lineafFidepen-
dence come fro m two effects: from the thermal smearing oftt small momentum and frequency transfers. Ber 2,
the static Lindhard function for particles at the Fermi sur-
face, and from the frequency dependence of the dynamical
Lindhard function(i.e., from particles outside the Fermi sur- Q-0 m [ Q)
face. BKM considered only the second source of DET) g Q) =5—| 1~ N2
behavior, CM included both effects. Our result differs by a (veQ) m
factor of 2 compared to that of CM—we could not detect the
reason for the discrepancy. We further analyze in detail the-;, -3
physical origin for the linear-if- term in two dimensions '
(and TP~ for a generaD<3), and discuss to which extent
it is related to|Q|P~! term in x4(Q,0). We show that the
physics behindT®~* term in x¢(0,T) and |Q|°~* term in n9-°(Q,0,,) = mkF(l_ |2l tan—lvFQ>. 2.3
¥s(Q,0) is, in fact, different. We discuss how the nonanalytic ph I o 2 veQ | Qo

Il. NONANALYTICITIES IN THE BOSONIC RESPONSE
FUNCTIONS

. (2.2
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The zero frequency resultdl,,(0,0)=m/27 in 2D and

IT,,(0,0)= mke/272 in three dimensions, are the densities of ?

states of free fermions per one spin orientation.

The nonanalyticity in the particle-hole bubble at small

momenta introduces the dependencelky;,(Q— 0,(2—0)

on the ratioQ/v:Q, and eventually gives rise to the emer-

gence of a zero-sound collective mode in a Fermi lidditf.

PHYSICAL REVIEW B68, 155113(2003

)
&m %

The second nonanalyticity is in the particle-hole response

function at momentum transfer neak2 ForD =2,

RE o) 2 1/2)
i (ZUFKF) +(2_|<F) } ’
(2.9

In the static limit, the

Q
2ke

2F(Q, Q)= (

where Q=Q—2k¢ and |(~Q£<2k,: .
nonanalyticity is one-sidég*246:47

for Q<2kg,

I2F(Q,0)=
_ 1/2
m[ (QK—ZkF) for Q>2kg.
E
(2.5)

In D=3, this nonanalyticity is logarithmic and odd @*.
In the static limit

2k|= mke _E ﬁ
n (@0 ( ZkF'”|é|>'

II2F(Q,0)=

(2.6

Kk k+q k ptq ki
] d)
p K
k 4P gk

FIG. 1. (a) and(b) The two nontrivial second-order diagrams for
the self-energy(c) An equivalent form of diagramga) and (b).
(“sunrise” diagran. (d) Diagram(b) in an explicit particle-particle
form.

In the rest of the paper we show that these nonanalyticities
give rise to universal subleading terms in the fermionic
self-energy, effective mass, specific heat, and static spin
susceptibility.

Ill. FERMIONIC SELF-ENERGY. EFFECTIVE MASS,
SPECIFIC HEAT, AND THE AMPLITUDE
OF MAGNETO-OSCILLATIONS

The dynamical expression is rather complex in three dimen- In this section we obtain nonanalytic corrections to the

sions, and we refrain from presenting it.

fermionic self-energy and consider how they affect observ-

The 2kg nonanalyticity gives rise to long-range Friedel able quantities such as the effective mass and the specific

oscillations of electron density in a Fermi liqfifdcand even-

tually accounts foip-wave pairing in electron systems with

short-range repulsive interactich.

The third nonanalyticity is the logarithmic singularity in

the particle-particle response function

Mpp(Q, Q) =~ ff

+Qpm)

ded

(2 )D+1 G(p,wn)G(—p+Q,—

(2.7

at small total momentur® and frequency. In two dimen-
sions,

|Q |+ VQ +(UFQ)2

pp(Q Qm)__l Y, ,

(2.9

whereW~Eg.

heat. We will mostly focus orD =2, but for the sake of
completeness will also discuss the situationOr=3 and
D=1. We also assume for simplicity that the interaction is a
contact one, i.e., its Fourier transform is independent of mo-
mentum. We will restore the momentum dependence of
uU(q) in Sec. VII.

A. Self-energy of a generic Fermi liquid

The (Matsubara fermionic self-energy is related to the
Green'’s function via
G Yk, wp)=Gg Mk, w,) + 2 (K, 0p), (3.
whereG, *(k,0,) =i w,— €, and = (k?—k2)/2m. The two
nontrivial second-order diagrams farnk,»,) are presented

In three dimensions, the functional form is in Fig. 1.
similar. If the full irreducible interaction between electrons is

For a contact interaction with a coupling constahtdia-

attractive for at least one value of the angular momentumgrams(a) and(b) in Fig. 1 yield identical functional forms of

this singularity gives rise to superconductivity B 0.1 In

the self-energy, and only differ in the combinatorial factor

the weak-coupling regime that we will be focusing on, theresulting from the spin summation and the number of closed
instability occurs at only exponentially small frequencies,loops. This factor is equal te-2 for diagram(a) in Fig. 1
and we will neglect it, assuming that the system remainsnd to 1 for diagrantb). The result forX (k,,) can then be
normal down toT=0. Still, as we will see, a nonanalytic re-expressed as a single diagr@fig. 1(c)] in which the

dependence on the ratld,,/veQ in I1,,(Q,,) will give

diamond stands for the interaction vertgx In the analytic

rise to a nonanalyticity in the self-energy and susceptibility.form, we have
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pared toer . The imaginary part of the retard@tl(Q,Q) is

2(kv‘*’n):Uzk kE . Go(k1)Go(kz)Go(ks) an odd function of frequency, and hence for small frequen-
1 ciesII”(Q,0)=QF(Q,Q). Let us nowassumehat typical
X 6(ky+ky—ks—k). (3.2 veQ are much larger than typicall. Then F(Q,Q)

For brevity, we introduced temporarily a “relativistic” nota- ~F(Q.0). Substituting this into Eq3.6), we obtain

tion k=(k,wp). The diagram in Fig. (c) can be equally

re-expressed either via particle-hole polarization operator 1, d°Q
II,n(Q,Qp), as ER(k!w):EU f f Wé(EHQ)F(Q’O)
Stk =—TUS [ 22 6okt Qo+, « [ doal cotht —tann”" . @7
O (27T)D CO T an T | .
x11 Q) (3.3
) . ph(Q. " o We see that as long as the momentum integral is infrared
or via the particle-particle polarization operator, as convergent, it is dominated by large=k . The momentum
0 integral is then fully separated from the frequency integral
T2 _ -~ and yields a constant prefactor. That typi€ak kg also jus-
2k @p)=—TU sz f (ZW)DGO(Q K, Q=) tifies a posteriori the assumption thaF(Q,Q)~F(Q,0).

The easiest way to do the remaining frequency integration is
XTHp(Q, Q). (3.4  tointegrate in a finite range W< Q <W. Shifting the vari-

We illustrate the last representation in Figd)l Here and ible in the second term &3+ w»— {2, and then settinyV
thereaftero,= m(2n+1)T andQ,=27mT. =2, we find

For definiteness, we will proceed with the form of Eq.
(3.3) and discuss how the nonanalyticity in the particle-hole St(k,w)=Clw?+(7T)?], (3.9
bubble gives rise to the nonanalyticity in the fermionic self-
inﬁr(%/' JO) Sl:]rg)tzlteorlhtr?/virs]ce)tztpl)%r;i} ev(\j/ev\\’/vé”t#g?hs(%ﬁ?g at awhereC is a constant. This is a well-known result in the

Lo ) ) . . ° conventional@nalytig Fermi-liquid theory:*

nonanalytic part of the self-energy can be viewed equiva The form of34(k, ) given by Eq.(3.8) is generic to any

lently as coming from the nonanalyticity in the particle- L ) . : .
Y g yuctty P Fermi liquid provided that the momentum integral is domi-

particle bubble. i :
For the analysis of the specific heat, effective mass anaa},ted by large moment@> (/v Higher order terms in

fermionic damping, we will need the retarded fermionic self-1Iz(Q.€) form a series inQ" "% If we assume that the
energySx(k, ) in real frequencies and at finite tempera- Prefactors depend o@ in a regular way, we obtain higher
tures. In some cases, it can be obtained directly fromPowers ofw? andT?in k. As already mentioned, this form
3 (k, ;) via a replacemeritw,— w+i48. In general, though, Of 3 k(kw) yields, upon a Kramers-Kronig transformation, a
it is rather difficult to deal with discrete Matsubara sums.regular frequency expansion of the real pafi(k,)=Aw
The approach we adopt here will be to find the imaginary+Bw3+ - - -, where the prefactors are regular functions of
part of the retarded self-ener@y(k, »). The real part of the T2. Of particular importance here is the absence)@fterm
self-energy, S (k,w) is then obtained via the Kramers- that would result in a linear-ifi- renormalization of the ef-

Kronig relation. fective mass. It then follows that nonanalytic corrections to
Applying the spectral representation 3k can only emerge if13(Q,)) contains nonanalytic terms
that break a regular expansion in odd powerg)ofat least
. fr(2) for some momenta. The momentum integration should then
fllwn)= ;j dzZ_ iw, (3.9 show at which order of the expansion{hthe prefactor will

be divergent enough to make the momentum integral in Eq.
to Eq.(3.3), and using ING§(k+Q,w)=—7d(w—e€xq),  (3.7) infrared divergent.
we find We now show that such nonanalytic terms do exist and
give rise to nonanalytic corrections to the Fermi-liquid be-
d°Q havior. One of nonanalytic corrections comes from the
(2m)P nonanalyticity inl1(Q,) at smallQ , another comes from
the nonanalyticity infl1(Q,{)) at Q=2kg. We focus on the
2D case and analyze how these two nonanalyticities affect
the self-energy.

1
zg(k,w):zuzf de S(Q+ o€y o)

M2(0.0)| cothos: —tanh“~ . (3.6
X1I%(Q, )cotﬁ tan 5T |- (3.6

We first remind the reader how the Fermi-liquid form of
3 k(k,w) is obtained. Suppose that< er . A simple analysis
of Eq. (3.6) shows that because of the last term in E16), We begin with the nonanalyticity ifl”(Q,Q) at smallQ.
typical Q) are of order ofw, i.e., they are also small com- Converting Eq.(2.2) to real frequencies, we find

B. A nonanalytic contribution to the self-energy from Q=0
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m U2
— ) for |Q|<v Sk, w)= w?In , 3.12h
ITx(Q.Q) = 2 [(UFQ)Z_QZ]”2 [0l<veQ il ) 167730,2: |o— € (
0 otherwise.
2
We see that the frequency expansionHf holds in powers Sh(K,w)= »?In ) (3.129
of Q/veQ. Obviously, at some order of the expansion, the 1677%% |o+ &

momentum integral becomes infrared divergent, which vio-
lates the assumption that momentum and frequency integrae see from Eq(3.123 that for e,~ w, both terms scale as

in the diagram for the self-energy are decoupled. o?In w. In particular, ate,=0,
In D=2, this happens already at the leading ordefin
Indeed, substituting Eq3.9) into Eg. (3.6), linearizing the mu2 W2
quasiparticle dispersion ag . o= €+ vgQ cosé, and inte- Sk, w)= 16732 wzln—z. (3.13
1% w

grating first overd and then oveQ with logarithmic accu- F

racy, we obtain )
Tracing Eq.(3.123 back to Eq.(3.9), we observe that the

U2 (= W2 first term X7 (k,w) comes from theQ)-independent part of
Eﬂ(k,w)=—f dQQ In—— — the logarithm in Eq.(3.9, and the second terl(k,w)
167302 ) - 0= ed|22+ (0= e comes from the)-dependent part of the logarithm. We see
that, for 3](k,), the factorization of the momentum and
, (3.9  frequency integrations still holds, and as in a Fermi liquid,
the momentum integral just adds an overall factor that loga-
where W~ E¢ is the upper cutoff in the integration over rithmically depends on the external and €,. On the con-
veQ. We see that the momentum integral is infrared-singulatrary, for 25(k,w), the momentum and frequency integrals
and introduces an extra logarithmic dependence on freare coupled. In Appendix A, we show that these two singular
guency. terms come from two different forward-scattering processes.
The calculation o& ;(k,) in D=2 requires certain care The zero-temperature result for the self-energy can be
as3p(k,w), given by Eq.(3.9), diverges logarithmically on also obtained directly in Matsubara frequencies, without do-
the mass shellg=¢€,). However, we will see that this di- INg the analytic continuation first. Expanding in small mo-
vergence does not affect the real part of the self-energy at th@entum transfeQ, we have, for the Matsubara self-energy
mass shell and hence does not affect the specific heat. #f T=0,
Appendix A, we consider the mass-shell singularity in more
detail and show that it is in artifact cured by taking into muU? [Wivg
account either a finite curvature of the electron spectrum or S(K,op)|t=0=— 4f
higher orders in the expansion bh 87
The frequency integral in Eq43.9) can be evaluated ana- 1

o+

X
2T

thQ tanh
cotho— —tan

QdQJ:deJ;da

0

lytically at T=0, and in the limiting cases at a finie At X — (3.19
T=0, Eq.(3.6) reduces tdat w>0) vEQCOSO+ ex—i(wn+ Q)
3 (K, ®) o fwdQQ' s [ 3.1
W)= —— n . X . .
® 8mvEJo lo—€[20~ (0~ €] JweQ)2+ 02 319
(3.10
The integration ovef) is straightforward, and yields The integration oved is elementary and yields
I 2|y W 3 (K, wp)] 'muszd9|9| N wnt Q)
” _ _ = _ , =i — S
SRk o) 167731)'2: w 4(w ) In P @n)lT=0 87T3v|2: _ EmlREm g wp m
(3.1
+ w2+£(w—ek)2]|n +o-
4 |o— & ' jw X
X | dx ,
(319 0 W+ OENCH (0pt Qptie)?
where the- - - represents the regulas® term. Away from a
near vicinity of w=—¢,, the term with w—€.)? is irrel- (3.17
evant(to logarithmic accuragyand.”(k,w) can be written
as where we introducedx=vgQ. Finally performing the
, , , integration overx, we obtain with logarithmic accuracy,
SRk, w)=2](k,w)+35(k o), (3.128  for w,>0,
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series representations for the hyperbolic functions we can

mU2 wp
S(K,wp)|r=0=—1 BTJ’ dQ.,Qm then re-express the right-hand side of Ej23 as
Vg 0
n— W S10)=— ™ LT 24 IR + wa)
% nwn+iek+n29m+wn+iek 2(@)= 16732 [(m D)™+ oTIn(T/A) @ 7T
3.2
muU? (2+1( o )2) (3.29
== — w —(w le —
16m%p2[| " 4K whereA is a constant, and
x| W +( 2_ 1 +i 2) X
T - .
N o T\ glotieal f(x)=o.79+73f dytanhTy
W
xIng i € (318 x|yl v Loy (3.29
n n——+——In———. .
Y ly2—=1] Yy ly—1

Continuing to real frequenciesjd,— »+i0), we indeed

obtain Eq.(3.11) for 2. The Matsubara self-energy can also 5q can easily make sure that the expansiof(f holds in
be partitioned int® ; (k, w,) and2,(k,w,). The first term is even powers ok. At largex, f(x)=Inx, i.e., atw>T, this
singular near the mass surface, while for the second we ha‘@(pression reproducd®’(w) = »?n w. At smallx, i.e., atw
to logarithmic accuracy, for a generig/w,,, <T, f(x)~0.79+ 0.35¢. ' T

mu> W
wiln—. (3.19 C. A nonanalytic contribution to the self-energy from g~ 2k

2(k, _o=—I
2( wn)|T 0 167731)'2: "o,

We next consider a singular contributioni@(k, ) from
Continuing to real frequencies, we obtain momentum transfers close t&g2. To perform computations
along the same lines as for Q near 0, we would need to know
mu? ) i the form of I1(Q,) at finite O and T, which is rather in-
22(|<"*’)|T:0:16 3 2@ T 5 S9nw Tl |“m - volved. However, we actually would not need this form at
71- vF . -
(3.20 all, as we demonstrate below that the contribution to the
' self-energy fromQ=~2kg is exactly the sameas 2 ,(k,w)
At finite T, instead of Eq(3.10 we have defined in Eq.(3.129. The most straightforward way to see
' this is to go back to a diagram representation of the self-

mu2 (= W2 energy in terms of three fermionic propagatg. 1(c) and
Sk, 0)= —J' dQOIn Fig. 2(a)]. In analytic form, the “g=0" contribution to the
16732 ) = |o— €20+ (0 — €l self-energy is
X thQ t hOLH—Q (3.2) D+1 D+1
coth—— —tanh——|. .
2T 2T quo(k)zuzf q d” " p (GG
(2’7T)D+1 (27T)D+l +q~p=~p+q:

It is again convenient to split the self-energy into two parts, (3.26
31(w) and X%(w), coming from Q-independent and
(-dependent pieces of the logarithm in E§.21). For the  \yhereq is assumed to be small. We again use “relativistic”

-independent part of the logarithm, the frequency integranotationk=(k,w) and q=(Q,(). Integrating overp first,
tion is the same as in a Fermi liquid, hence we obtain

2

Sk, w)=

2 2 D+1
1 7Tgvé[w +(7T) ]In|w—5k|- (3.22 zﬁ;o:_uzf ﬁGHqH(Q)' (3.27
For the second term, we have
whereIl(q) is a particle-hole bubble at small momentum
, muU? w and frequency. In Sec. Ill B we used this expression and
25k, 0)= mf dQQ |nm found two singular contributions ;% 3 1(k) andX,(k),
whereZ (k) comes from the momentum region where two
of the internal momenta are close tdk and the third one is
(323 close tok, i.e., from the range gb which are nearly antipar-
allel tok (see Appendix A Sincep+ k are smallof order of
In this last term, the dependence on the ratite, is not  external momenjawe can relabel the momenta as shown in
singular and can be neglected, to logarithmic accuracy. Usingig. 2(b) and re-expres¥ (k) as

Q w+Q
coth— —tanh——

x| cothoT 2T
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-k+q That bothg=0 andq=2kg singularities in the polariza-
m tion bubble contribute to the self-energy was first empha-
k S S sized by CM32 However, the relative sign of the two terms is
w different in their and our calculations. We found that the
singular terms add, while they argued that singular contribu-
a) b) tions fromg=0 and X cancel each other. Since the inter-

play betweerg=0 and X contributions to the self-energy
FIG. 2. (@) gq=0 contribution to the self-energyb) q=2kg is crucial to the issue of whether or not there i§%term in

contribution to the self-energy. the specific heat and linear-ih-term in the effective mass
(CM argued that both are absent due to cancellation between
, D+1q dP+ig’ gq=0 and. Xe terms, in AppenQix C we present an explicit
2.(k)=U 0i1 o1 computation of the R contribution to the second-order self-
(2m) (2m) energy atT=0. This calculation confirms thaB =2k
= q:O
XGy+¢GC-k+q'C—k+q+q’ s (3.28 2
where nowboth gandq’ are small. Integrating ovey’ first, D. An alternative analysis, in terms of IT,,(Q,€2)

we obtain a conventional expression (k) in terms of . .
the polarization operator with small momentum transfers. On We next demonstrate that the backscattering nonanalytic-

the other hand, changing the order of integration and inte! In the fermionic self-energy can be viewed equivalently
grating overg fir,st we obtain as coming from the nonanalyticity in the particle-particle

bubble at small total momentum and frequency. This readily
D41 follows from our consideration of the ‘&-" diagram. In-
S ,(K) = — sz q G—k+q’ﬁ(2k_q,)’ deed, since botly andq’ are small, the full self-energy can

(2m)P*1t be re-expressed as
(3.29
dD+1q dD+1q/
where S(K =—U2f
( ) (27T)D+l (2’7T)D+1
D+1 ,
H(z"_q'):_f—chle+qG—k+q+q'- (3.30 XG_yrqrqpp(a+a’). (3.32
(2m) Performing the same analysis as in Sec. Ill C, we observe

that the deviation from the Fermi-liquid form & is only

possible if the expansion (ﬂ[gp(Q,Q) in odd powers of)

breaks down due to infrared divergences of momentum de-
endent prefactors. This is precisely what happens in

In general,ﬁ(Zk—q) is not equivalent to the polarization
bubblell(qg) with momentum near -, as our rewriting is
only valid if internalq are small. However, the singular parts

of the two bubbles coincide because the singular part i (Q.0Q) given by Eq.(2.8 as the frequency expansion
=~ i N[ — i ppLcs &
I1(Q~2kg,€2) [proportional to|Q—2ke| 6(|Q—2kel) in holds inQ/v(Q, i.e., the prefactors are nonanalytic at van-

the static casecomes from the momentum range where the, | . ) TR
two internal momenta in the particle-hole bubble are close t ishing Q. We emphasize that the logarithmic divergence of

+Kk, i.e., from exactly the same range that is covered in pp(Q, 1) at vanishingQ and {1 is by itself not essential;
~ , . C . . what matters is a nonanalytic dependence on the ratio
II(2k—q'). We show this explicitly in Appendix B. This Q/veQ.

equivalence implies that the right-hand side of E129 is We see, therefore, that the nonanalytic piece in the self-

just the singular part of the “Qg’;kcont“b“g'gg to the self-  gnergy can be viewed equivalently as coming from a nonana-
energy. We see therefore that™“#(k)=%37"(k). The to-  ticity in the particle-hole bubblegr from a nonanalyticity
tal self-energy is then in the particle-particle bubble. To further verify this, in Ap-
_<q-0 0= 2ke pendix C we explicitly compute the nonanalytic parti(fk)
2(k)=297(k) +X F=21(k)+2%,(k). (3.3 at T=0 using the “particle-particle formalism,” and indeed
find it to be equal to Z,(k,®) that we obtained in the

For momentum-dependent interaction= U(q), the compu- “particle-hole formalism,” i.e.,

tation of the Xg contribution requires more care, and we
present it in Sec. VII. (Q=0)/1\ —

That the Xg singularity comes from nearly antiparallel 2pp (K)=222(K). (3.33
internal fermionic momenta has been implicitly used in theThe termZ,(k,w) can be also reproduced in the particle-
Kohn-Luttinger analysis of superconducting instability with particle formalism, but this contribution comes from large
large angular momenta of Cooper pditdn the context of g+q’'=~2k, and we refrain from rederiving this piece.
corrections to the Fermi-liquid theory, Beliet al?® argued Our results on this issue again disagree with those by
that all singular contributions to the spin susceptibility can beCM.3? They performed a complementary analysis of the self-
described as smatj effects, although they did not emphasize energy based on the evaluation of an effective vertex func-
that some of their smalf| effects are in fact equivalent to tion to second order i, and argued that there is a cancel-
2kg contributions in conventional notations. lation between nonanalytic contributions coming from the
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2ke nonanalyticity in the particle-hole channel and theshows that the prefactor again vanishes. The outcome of this

nonanalyticity in the particle-particle channel. We, on theanalysis is that the divergence ®f (k,) on the mass shell

contrary, find that the contribution from the particle-particle does not give rise to nonanalytic corrections to Fermi-liquid

nonanalyticity is twice the “Rg” contribution from the par-  form of the thermodynamic observables.

ticle hole channel. We next considel ;(k,w). SubstitutingX5(k,w) from
Summarizing the results of the last two subsections, weeq. (3.21) into Eq.(3.34), we obtain, after simple manipula-

see that the nonanalytic part of the fermionic self-energy irtions,

two dimensions consists of two parts. The first parf(k),

comes from forward scattering when all four momenta are muU?2 - -

close to each other. It has the same functional fown, Eé(w):_—wj dQQPJ

+(#T)?, as in a Fermi liquid, but the prefactor depends 16m'vf )= 0E*~w

logarithmically onw— €. The second part;(k), comes

2

- . ) Q Q+E
from the processes which involve the scattering amplitude % | coth— — tanh———
with near-zero total and transferred momentum. TEj¢k) 2T 2T
has a non-Ferml-hqu_ld_ for_m, and can _be equally attrl_but_ed to E [20+E— w‘ (20 4+E)2— o?
the Q=0 nonanalyticity in the particle-hole polarization x| —In +In )
bubble, or to the R: nonanalyticity in the same bubble, or to o |20+E+o| W2

the Q=0 singularity in the particle-particle bubble. In Sec. (3.37)
[l E we show that only3,(k) actually contributes to the i

thermodynamics. Integrations ovef) andE can be performed exactly. We

give the details of this calculation in Appendix D, and

E. Effective mass and specific heat present just the results here. A0, we obtain
We first use the result foE” obtained in Sec. Il B and
compute the real part of the self-energy on the mass shell. 2
We then use’(w=¢,) to find the effective mass and spe- S(w)=— ol (3.39
cific heat. 32m*vE

The Kramers-Kronig relation on the mass shell is . o . . . . .
9 This coincides with Eq(3.20) obtained via analytic continu-

1 S"(E, 6= w) ation of the Matsubara self-energy.
Sh(w)= ;Pf dE?. (3.39 In the opposite limit of small/T, we have
We begin with 3,(k). Substituting 37(k,w0) from Eg. , muU2ln 2
(3.12b into Eq.(3.34), we find that on the mass shell 2(w)=— maﬂ'- (3.39
F

n w ) As the self-energy in this region is linear i, Eq. (3.39
12— ol implies that the effective mass of subthermal quasiparticles
(3.35  scales linearly withT. Using the fact that the fulk(k,)
=31(k,w)+23,(k,w) and thatX ;(k,w) does not contrib-
ute to thermodynamics, we obtain

s/ (K . mu? PJOC g 22+(7TT)2|
1( ,w)|w=ek—m | dz——

By dimensional analysis, the integral in E§.35) is of order
w?. However, the prefactor in front ab? turns out to be
zero. The easiest way to see this is to evaluate the integral in

finite limits —W<z<W and to search for the universal term m* (T)=m*(T=0)
that would be independent 9¥. Performing elementary ma-

nipulations, we find that ; (w) does not contain such a term.

Foreshadowing, we note that the same result holds for the In a very recent study Das Sarma, Galitskii, and ZRang
static spin susceptibility which we discuss in detail in Secsdid find a linear-inT correction to the effective mass for the
IV A and IV B. We will see there that the inclusion of the Coulomb interaction inD=2. Although the sign of their
2,(k,w) into a particle-hole bubble with external momen- |inear-in-T term is opposite to that in E¢3.40, we believe
tum Q yields a nonanalyti¢Q| term in xs(Q). On the con-  there is no contradiction here as there are no physically mo-
trary, the susceptibility diagram with an exti&®;(k, ) tivated restrictions on the sign of the prefactor. It is therefore

2

1-21n2 ™Y
A\ an

-
Bl (3.40

scales, in Matsubara frequencies, as quite possible that the sign of th&(T) term is different for
short- and long-range interactions. Note in this regard that
IN[W/(ex—iwp)] the effect of the interaction on the effective mass is different
5X°‘f dwnwnf dey - > - P o for these two cases even @t=0: a short-range interaction
(ex—Twn)T(e—iwn) = (veQ)7]

increasesn®, while the Coulomb interaction decrease$
(3.30  in the limitre<1.1t
By power counting, the leadin@ dependence of the integral For genericw/T, the nonanalytic part of the full’(w)
should be|Q|. However, a straightforward computation can be cast into the following scaling form:
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mu2 o] In the Luttinger formalisn?® the amplitude of thekth
(w)=— w|o|gl =, 3.4 armonic of magneto-oscillations is given by
P L6722 g - h ic of illati is gi b
T UE
472KT 27kl w,— i3 (w,,T)]
A= exp — ,
where S w%o x;{ a.
422 (3.45
g(x)=1+ 2 E+L|2(—e*>‘) ' (342 where(), is the cyclotron frequency. It is essential for our

consideration that the amplitude is determined by the self-

and Liy(x) is a polylogarithmic function. Note thay(x)  €nergy in the Matsubara representation rather than by the

=1 andg(x<1)~4In2k. Substituting these limiting ex- €@l and imaginary parts of the retarded selfjené?g@y.

pressions into Eq(3.41) we indeed reproduce Eq¢3.39  itself, 3k andX}, determine the fermion dispersion and life-

and (3.39. time, respectively; however in E¢3.45 this distinction is
The full functional form ofg(x) is required for the com- lost. . . o .

putation of the specific heat, as the frequency integral for The assumption made in deriving E@.45 is that the

C(T) given by Eq.(1.4) is confined tow~T. Substituting dependence of the self-energy on the magnetic field can be

our result forS’ into (1.4) we obtain, in two dimensions, ~ Neglected. In three dimensions, this assumption is well justi-
fied as the effect of the magnetic field on the self-energy

48K mU)2 T yields corrections tdA, which are small in 1N, whereN

5C(T) = CFL?

(3.49

- B (343  =¢ /01 is the total number of Landau levels. In two
a E . . . . .
dimensions, however, the effect of the magnetic field is non-
whereCg, (T)=m=T/3 is the Fermi gas result for the spe- perturbative, and al=0 and in the absence of disorder, the
cific heat and field-induced oscillations of the self-energy are as important
as the oscillations of the thermodynamic potential it3lf.
©  dxx 2 Equation(3.45) is then only applicable as long as oscillations
Kzf X2+ —+ Li2(—ezx)} =1.803. of the thermodynamic potential are exponentially small due
0 cosx 12 to either finite temperature and/or disorder. In this paper we
(3.44 disregard effects of disordéconsidered recently in Ref. 58
. i ) .. thus the amplitude is only controlled by the finite tempera-
As anticipated, the nonanalytic correction to the fermionicy,re | this case, the restriction of the small amplitude in its
self-energy gives rise to tHE” term in the specific heat. Itis implies that the sum over Matsubara frequencies in Eq.
essential that this nonanalytic term comes only from fermi- 3.45 can be truncated to only the=0 term. Notice that
ons in a near vicinity of the Fermi surface and is thus mode{hiS restriction is mandatory iD=2 within the Luttinger
independent. The same is true for the lineafFiorrection  ¢5:majism but depends on the choice of experimental condi-
to the effect.lv_e mass. In other words, the leading porrectlonﬁons inD=3. The amplitude of the firsfargesi harmonic
to the Fermi-liquid forms omandC(T) are fully universal.  1ap simplifies to
The T?-dependence of the correction to the specific heat
agrees with the results by Coffey and Betfedind Misawa® 42T 2w T—i3(wT,T)]
However, Coffey and Bedell did not explicitly compute the A= Q ex;{ - Q
prefactor and apparently only included small momentum ¢ ¢
transfergii.e., no Xg effects. Misawa did compute the pref- The temperature enters the Matsubara self-en2i@y,, ,T)
actor, but he neglected the temperature dependence of tlve two ways: first, as the Matsubara frequency, and second,
fermionic self-energy. We found above that thisdepen- as the physical temperature determining the thermal distribu-
dence cannot be neglected, and our prefactor disagrees wition of the degrees of freedom. For the lowest frequency,

that by Misawa. wo=7T, the interplay between the two effects leads to a
peculiar cancellation.
F. Amplitude of quantum magneto-oscillations Indeed, consider for a moment a generic Fermi liquid, for
which

In previous sections, we found the general form of
nonanalytic corrections to the real and imaginary parts of the
self-energy. We now discuss whether these corrections can E(wnyT):<F_l fw, +HIC[(7T)2—wh]+ -,
be observed experimentally via magneto-oscillations. Na- (3.47)
ively speaking, one might have expected the finite quasipar-
ticle relaxation rateT?In T, to damp the amplitude of the whereC is a constant .. stands for the higher order terms
oscillations as a contribution to the “Dingle temperature,” [O(e3,T%)], andm*/m has a regular expansion in powers
whereas theT-dependent effective mass might affect theof T2. The analytic continuation df3.47 to real frequencies
thermal smearing factor. However, we argue below that quayields the correct retarded self-enerdyl). We see that the
dratic and quadratic-times-log terms in the self-energy aresecond tern® (w,,T) vanishes fow,= = #T, i.e., the self-
not detectable by measuring the amplitude of magnetoenergy that enters into the formula &g contains terms only
oscillations inD=2. of order T® and higher. In other words, the quadraticTin

*
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piece present in the imaginary part of the retarded self- For noninteracting fermions, the spin and charge suscep-
energy and associated observables, does not affect the amgibilities are equal and given by the Lindhard function that
tude of magneto-oscillations, which to ordEt is given by  coincides, up to an overall factor, with the polarization op-

eratorll(Q,Q,):
47T 2T m
A=—5 exp(— o | =0 (348 X§(Q. Q) =x5(Q.Q)=211(Q,Q,), (4.4
c c

where x5(Q,Qm)=[x3(Q,Qm i andi=1,2,3, and
wherem*/m is a regular mass renormalization which comes

from fermions far away from the Fermi surface. This rather

remarkable result was previously obtained specifically for H(Q,Qm)z—TE j Go(k,mwy)
electron-phonon interaction and is known as a “Fowler- m (2

59
Prange theorem: o . X Go(k+Q,wp+ Q). (4.5

We found that a similar cancellation occurs also for our
self-energy inD=2. To logarithmic accuracy, the second At T=0, the charge and spin susceptibilities can be

term in Eq.(3.47) is replaced by evaluated exactly for an®) and Q,,. In the static limit,
Q. 0,=0, they acquire particularly simple forms. FBr=3,
S(0q,T)=~1CT sgrton— | Qulin we havé
) 3.4 ol 1 4ke— Q2 Q-+ 2kg
B Q=0 3 ok Moz
whereC is a real constant, and the factor of sgRt-(,,) (4.6)

resulted from the angular integration of the Green’s function. )
A simple transformation of the Matsubara sum reducedVh ere yo’=mk:/m% In D=2, the corresponding expres-

3 (0,,T) to sion ig*2
3 T g X§(Q.0=x3(Q.0=x5", Q<2ke,
z(wn,T)=—2iTEQm2:0 Quinr. (350 ) 12

This self-energy obviously vanishes for,= =T, i.e., there- X(QO=x6(Q0=x0") 1 ( - Q_2F ] Q>2ke.

fore 3 (#T,T) in Eq. (3.46 does not contain a contribution
from 3. Due to this cancellation, the exponential factoAin

_ _ where x2°=m/. In one dimension, we haf
does not contain terms of orddPInT. A more detailed

analysis® shows thafl® terms are also absent, i.e., both qua- Q
dratic terms and quadratic-times-log terms in the self-energy Ket+
(and thus th.e linear-ifi- effectiye mas$Eq. (_3.4@]) are not x5(Q,0)=x5(Q,0) = x5° QF ol 4.8
observable in a magneto-oscillation experiments. Ke— =
2
IV. SPIN AND CHARGE SUSCEPTIBILITIES where y2° = 2/(mv). | N
We next proceed to the analysis of the corrections to the AS we mentioned in Sec. kg (Q,0) is analytic inQ for
Fermi-liquid forms of spin and charge susceptibilities. small Q in all dimensions. The issue we consider below is
The charge and spin operators are bilinear combinationwhether this analyticity survives perturbative corrections.
of fermions: The first nontrivial corrections tog*(Q,0) come from

the diagrams presented in Fig. 3. These diagrams represent
self-energy and vertex-correction insertions into the bare

_ T
Cla)= k% Ck+0,aCk,a (4.1 particle-hole bubblé® Diagrams 1-5 are nonzero for both
’ andy. . Diagrams 6 and 7 are finite far, , but vanish fory
for charge, and upon the spin summatior®(,o,,=0). The internal parts of

all diagrams contain fermionic bubbles: particle-hole bubbles
N - for diagrams 1, 2, 3, and 5 and particle-particle bubble for
- t
S(q)—kgﬂ TapCh-+q,aCk.p 4.2 diagram 4. In the next two sections we analyze the form of
the static susceptibility first at a finit® and zero tempera-
for spin. The corresponding susceptibilities for a system oture, and then at finitd andQ=0.
interacting fermions are given by fully renormalized patrticle-

hole bubbles with side vertices, A. Spin and charge susceptibilities at finiteQ and T=0

Ie=08,p, ri=¢ 5 (4.3 As in Sec. Ill, we assume that the interaction is indepen-
’ ’ dent of momentum. We explicitly computed all seven dia-
wherec ands refer to charge and spin, respectively. grams in Fig. 3, and found that each of the diagraexxept
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The combinatorial factor of 8 includes two factors of 2 due
S to spin summation and an extra factor of 2 associated with
the fact that the self-energy can be added to any of the two
fermionic lines in the bubble. Nonanalytic contributions to
6x1(Q,0) come from two regions of momentum transfegs:
near zero and] near Xg. Since we have already shown in
L 2. Sec. Il that the contributions to the self-energy from these

two regions are equal for a contact interactiop to a for-
ward scattering piece B9° that, as we demonstrated, does
not contribute to|Q| term in the susceptibilily we do not
have to calculate thg=0 and X contributions toy,(Q,0)
separately—the two are just equal:

3.
Sl = =2k
PR RN 5I(Q0=8x! **(Q0). (410
\&/ This implies that we only have to compusg?~°(Q,0), the
4, 5.

full 5x1(Q,0) will be twice that value. To be on a safe side,
we verified this reasoning by explicitty computing
EXgZZkF(Q,O). We present the calculations in Appendix E.
We indeed found it to be equal t&/\/‘jzo(Q,O).

We now Computéx‘fo(Q,O) Since the nonanalyticity in
x1(Q,0) is expected to come from the vicinity of the Fermi
;5’8# surface, the fermionic spectig, €4, and €. o can be
ks expanded to first order ik—Kg:
7.

6. Ek:UF(k_kF)7

FIG. 3. Each of the seven diagrams in this figure give singular

corrections to spin and charge susceptibilities. €k+Q= ek T UrQ Costy,

for diagrams 6 and 7 which vanish identically for the spin €k+q= €kt UEQ COSH,. (4.11
channel contributes a correctiofiy(Q,0)«|Q|, and that this

nonanalyticity is a direct consequence of the dynamical sinSubstituting this expansion into E@4.9) and performing
gularities in the particle-hole and particle-particle bubbleselementary integrations ovéy », and 6;, we obtain

We first perform computations iD=2 where no results

have been previously obtained, and then verify that our com- o 2mu2 (= o
putations reproduce the previously obtained resul®in3  dx{ (Q,00=—— J quJ QndQII(g, Q) (412
andD=1. 7 Jo 0
1.D=2 -

As we mentioned in Sec. |, the calculation =2 is x JO dﬁz(mm_qu C0S6,)2
more difficult to perform than irD=3 because all typical
internal momenta and energies are of the same order as the 1
external ones@ andvgQ, respectively, thus no expansion X ) - N (4.13
is possible. In three dimensions, whefg(Q,0)=Q%nQ, V(eQ)*+(Qp+iveq costy)

typical internal momenta are larger than extei@abnd one —
could expand the integrand @2 and evaluate the prefactor wh_ereH(q,Q) at_s_mallq a_ndQ IS given by~Eq.(2.2). Res-
to logarithmic accuracy. caling the remaining variables aq;fq/Q,w=Qm/(uFQ)
We begin with diagram 1 which represents the self-energyand introducing polar coordinates gs=r cos¢,o=r sin ¢,
insertion into the particle-hole bubble. This diagram yieldswe obtain from Eq(4.13,
the same contribution for spin and charge channels, so we
will drop the subscript and denojg = y1s= x1c¢ - 2mU?|Q| (2
An analytic form of diagram 1 in the Matsubara represen-  §y3~%(Q,0)=— 4—J d¢ sing cosoll(¢p)
tation is given by m™Ug JO

d’kd?qdw,dQ ™ 1
5X1(Q,0)=—8u2f s L ><J dazf rdr —
(2m)°8 0 (cos¢ cosb,—i sing)
X G3(K,wm)Go(k+Q,wm) Go(k+ 0, wm+ Q 1
O( ©m) Gl Q, wm)Go( q,om m) % _ . . 4.14
xI1(q,Qy,). (4.9 JV1+r2(sing+i cose cosb,)
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wherell(¢)=(m/27)(1—sin¢). The upper limit of the in-
tegral over isr .= O(ke /Q)>1. The integration overis
straightforward, and yields

sx$°(Q.0)
2mu? [l
7 dg¢ sing cosgll( @)
T UE 0

1
xf do, T
0 (cos¢ cosb,—i sing)*

PHYSICAL REVIEW B 68, 155113(2003

fermionic loop with more than one vertex, and lacks the
factor of 2 due to spin summation. Therefore,

2 u\2
5x2(Q,0)= (m ) 9l

X3\ A kF' (4.20

The diagram 3 represents a vertex correction to the
particle-hole bubble. Thg=0 contribution to this diagram
can be shown to be of the same magnitude but opposite sign
as theq=0 part of diagram 1. To see this, we write the

g=0 contribution to diagram 3 as

Rl

X[VQ?+(Qrmad*(sing+i cose cosdy)*—|Q|].
(4.15

As Qrpnax—ke, the dominant piece by}~ °(Q,0) comes
from high energies and accounts for the non-universal cor-

d*kd?qdwndQp,
(277)6

rection to the uniform susceptibility(0,0). We, however, X Go(K,wm)Go(k+q, 00+ Q) (4.2
are interested in the first subleading term which scalé®fs
and does not depend an,... Performing the integration
over #,, we obtain for this universal contribution XGo(k+Q+q,0n+Qpy)
—0 mU?[Q|
ox1 (Q,0)=—— X Go(k+Q,0n)I(q,Qp), (4.22
T UE
/2 ) ) and consider a combination
xf d¢ sirP¢ cosd(5 sirf¢p—3)I1( ).
0
1
(4.18 C=5axd ™o+ axd™. 4.23

Finally, introducing z=cos¢ [so that I1(z)=(m/27)(1
—2)], we obtain
Linearizing the fermionic spectra according to E411), we

rewrite C as
d?qdw,,dQ,
=—4U2V1Jff 499m
(277)4

xjdeln(q,ﬂm>[sl+ss],

m?U?|Q| (1

’7TU;:

-372%)(1-2).
(4.1

The relevance of the nonanalyticity in the polarization
bubble is now transparent: I (z) was zindependent, the
integral overz would vanish. However, because of the
nonanalyticity,[1(z) varies linearly withz. The integral over
z then does not vanish, and performing the integration, we
obtain

X7 %Q,0=— dz<5z

(4.29

where

2
2 (mu) Q| .18

(Q 0)=Xxo3=
3wl 4m] ke’ slzf deGa(k,)Go(k+Q,wm) Go(k+q,0m+ Qpy)
whereyx=211(0,0)=m/ 7 is the static susceptibility of non- (4.25
interacting fermions.
Using Eq.(4.10), we then obtain the total contribution of

diagram 1:

mU\?[Q|
4] ke’ S3:fdkaO(kvwm)GO(k+q:wm+Qm)
(4.19

Diagram 2 is another self-energy insertion into the
particle-hole bubble. For a contact interactiow,, is exactly
(—1/2) of 6x,, the rescaling factor-1/2 comes from the
fact that compared to diagram 1, diagram 2 has one lesmtegrating overe, in Egs.(4.25 and (4.26) yields

4
6xl<Q,0>=25X%=°<Q,0>=XO§(

XGo(k+Q+q,wnt+ Q) Go(k+Q,wy).
(4.26
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S1=— 21 sgn Q) Ol om( Uy~ @) ] , ka
k p-Q
1 1
X— _ _ _ —
(iQm+vek-q)2 iQn+tvek-g—vek-Q
k+Q P
S3=27i YN Q) Ol &l Ly~ @) ke P :
3. .
% 1 1 FIG. 4. A reduction oféx, to the X part of dxa.

UFR'Q iQm+UFI2'q
In principle the result fordy, can be found by substitut-
1 1 ing the particle-particle propagator into E¢.30. However,
: C o~ C ' a straightforward approach is very cumbersome in this case.
+ .0— . —+ . :
Qntoek-g=vek-Q 10 tvek-Q There is a more elegant way to compute, as the nonana-
Adding S; andS; and performing some elementary transfor- lytic part of this diagram is related to the nonanalytikr2

mations, we obtain contribution from diagram 3, which we have already found.
Indeed, it is easy to make sure that a nonanalyti¢Q()

S+ S3= 271 sgn Q) Ol o Q= o) ] contribution from diagram 4 comes from internal momenta

for which one of the internal 3-momentum transfers is small.

% 1 1 We can then label the internal momenta in diagram 4 as
(iQm+vek-q)2iQn+vek-q+ovek-Q shown in Fig. 4 and set 3-momentugrto be small(there is

a combinatorial factor of 2 associated with this chaidse
Substituting the last expression back into £4.24 and  can then represent diagram 3 as an integral-ovef-a prod-
making the change of variablés— —k, g——qresultsin et of two terms(“triads”) each containing a product of
three Green'’s functions:

1
cz—iax‘ro. (4.27)

) d?qdQ,,
. . Ox4=—2X2U f f 3 (0,0 Q)
Together with Eq(4.23), this proves that (27)

2 (mU)2|Q| X (=0, —Qm —Q), (4.3

x37%Q,0=—6x3"%Q,0=—xo5—| | .
Xs QO xi QO X°3Tr A7) kg where a “triad” is defined as

(4.28

d?kd
The ¢ contribution from diagram 3 must be computed I(q,Qm;Qm)zf f (:
independently. The computations are performed along the (2m)

same lines as for diagram 1. We present them in the Appen- . _

dix E. We obtain XG(kvwm)G(k q,om Qm)G(k+Q1wm)-

(4.32
2k 2 [mU\?|Q| . . _
OX3 F(Q,o):XO—(— — (4.29  An extra overall factor of-2 in (4.33 is due to spin sum-
3wl 4m] ke mation and the presence of one closed fermionic loop. At the

Comparing this with Eq(4.20, we see that, for a constant Same time, we can use the fact that in thie: part of dia-
interaction, the®(|Q|) contributions to diagram 3 from the 9ram 3, one of the two momenta in the internal particle-hole
singularities ag=0 and g cancel each other. This result PUbble is close to incoming ones. Using the labeling as in
also appears to be quite geneftde same is true fob=3 9. 4, we can express thekg part of diagram 3 as

and 1(see belowy, but we do not know how to prove it other

than to explicitly compute the diagrams. 5X§kF=4UZJ f d(zzngim[l(q,ﬂm?@]z- (4.33
T

Next we consider diagram 4, which is obtained by insert-
ing the particle-particle bubble into the original particle-hole ) ) ) )
bubble. Expressingsy, via the product of four Greens's Carrying out integrations oves, and w in Eq. (4.32, we

functions and the particle-particle bubble, we obtain find that
d?kd?qdew,dQ 1(—=9,—QmQ)=—-1(q,2mQ), (4.34
sraQo=—2u [ [ [ [ FEAH T .
(2m)8 and hence

2
X Go(K, ) Go(k+Q,wy)Go(q—K, Q2 — o) 5X4(Quo):5X§kF(QaO):XO% T_:) % (4.35

XGo(g—k—Q,Qm— wnIl Qn), (43 . _ . .
o( Q= omlpp(G, ), (430 Similarly, diagram 5 differs by a factor of 1 from dia-
wherell;;(q,{,) is given by Eq.(2.9). gram 3 (the lack of the spin factor of two, compared to
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diagram 3, is compensated by an extra combinatorial factowhere y3°=mkg /7?2 is the static spin susceptibility aral
of two). For a contact interaction, the nonanalytic part of this=mU/4+ is the scattering length. Combining all contribu-
diagram vanishes in the same way as it does for diagram 3ions we obtain

Finally, for the charge susceptibility, diagram 6 just differs
by —1 from diagram 3, and diagram 7 differs by an extra 7/ Q 2| Ke
—2 from diagram 4. For diagram 6, the extral is due to k) Q)
the fact that, compared to diagramd3= 0 andg=2kg con-

ake

ko

:iSD

3P (Q0)= 5xo

(4.40

tributions are interchanged. For diagram 7, the extra factor i
due to the spin summation and reflects the presence of t
closed fermionic loops in diagram 7, as opposed to one loo

in diagram 4.
Collecting all terms, we obtain
5 o0 4 (mU\?|Q|
x1(Q.0=xoz | 7~ P

1
5X2(Q10):_§5X1(Q10)1 5X3(Q!0):01

1
5X4(Q10): §5X1(Q10)1 (436)

oxs5(Q,00=0, 6x6(Q,00=0, x7(Q,00=-x1(Q,0).
(4.3
As a result,
4 [muU\?
5X§D(Q,0)=X5D§(E) %,
(4.38
ox:(Q,0)=0.

fquations(4.39) and (4.40 precisely coincide with the ear-

r results by BKV? We also considered the charge suscep-
bEiIity and found that, as in two dimensions, it does not
é)ossess a nonanalytic dependence&on

In one dimension, the relations between various compo-
nents of5X§D(Q,O) are the same as in three dimensions, and

SxP(Q,0=6x1(Q,0=25x"°(Q,0)
In—F.

U 2
— 1D
B (ZWUF) Q

This 6x2°(Q,0) agrees with the earlier result by Dzyaloshin-
skii and Larkin®®

(4.41

B. Spin and charge susceptibilities at finiteT and Q=0

In this section, we consider the unifor @& 0) spin and
charge susceptibilities at finife. Of particular interest here
is the question whether a nonanalytic momentum depen-
dence of the static susceptibility &=0 is accompanied by
that of the static susceptibility. We remind that Ih=3,
according to Carneiro and Pethfékand BKV, x(Q,0)
—x(0,0) behaves a®?In|Q|, but x(0,T) — x(0,0) is analytic
and behaves a$?. Misawa?® on the contrary, did find a
T2In T-behavior. BKV conjectured that for a genefi the

This result is consistent with the Conjecture by BK\/, who momentum and temperature dependenceﬁscﬁhOLﬂd have
found that the spin susceptibility hagIn|Q| dispersion in  the same exponents.

three dimensions, and conjectured thatQ,0) should scale As it was pointed out in Sec. |, there were two micro-
as|Q| in two dimensions. We emphasize, however, that wescopic calculations of(0.T) in two dimensions: by BKM
present for the first time an explicit calculation@f(Q.,0) in  (Ref. 37) and CM3? Both groups foundys(0,T) T and as-
two dimensions. BKV did not eXpIICItIy consider the Charge sociated this nonana|ytica'|[’ dependence with the square-
susceptibility, but the absence of the nonanalytic momenturfoot singularity in the quasiparticle interaction function
dependence of. can be readily extracted from their analy- f(k k') caused by R scattering. We recall that the quasi-

SIS.

2.D=3 and 1

particle interaction functiorf,(k,k"), is obtained by comput-
ing the vertex'(k,w;k’,w";q,Q) to the second order in the
interaction and using the relatithi?

For completeness, we also performed full calculations in

D=3 and 1. In both cases, the result$y3"(Q,0)

f(k,k')=AT(k, e ;K € ;a/Q—0),  (4.42

«Q%NnQ, sx2°(Q,0)=InQ, have logarithmic nonanalytici- whereA is a normalization factor, BKMRef. 31 explored

ties in Q, which allows one to expand i@ from the very
beginning. Doing so, we reproduced the results by BKV.

the singularity in the zero-temperatufék,k’), for small
quasiparticle energieg, and ¢, i.e., for particles away

In three dimensions, for the spin susceptibility we ob-from the Fermi surface. In their approach thelependence

tained

ox3(Q.,0)=6x5(Q,0=0,

1 1
xAQ0)=~5x(Q0), xs(Q.0=5(Q0),
(4.39
/]2
ke/ "Q

o

_ 1
x1(Q.0)=26x{(Q.0 = 75x5"

comes from the Fermi functions. In the diagrammatic lan-
guage, the approximation made by BKM accounts for evalu-
ating the particle-hole polarization bubble ned&:2t T=0

but at a finite frequency. CM included this effect into their
consideration, but they also exploited,/a-singularity asso-
ciated with the thermal smearing of thé&R2feature in the
static susceptibility for particles on the Fermi surface, i.e.,
for e,= ¢, =0. Diagramatically, this amounts to replacing
all internal bubbles which appear as insertions into diagrams
for spin (and charggsusceptibilities, by their static values.

155113-16



NONANALYTIC CORRECTIONS TO THE FERMI-LIQUID . .. PHYSICAL REVIEW B568, 155113(2003

We computex(Q=0,T) in a straightforward diagram- For Q,<Xq,, S(m) is close to 1, ie., S(m=1
matic approachithe same we employed for tl@#0, T +O(Qﬁ1/X(2)), whereas for(),,> X, it falls off rapidly [as
=0), in which all possible sources of-dependence are (X,/,,)?]. The vanishing ofS(m) at largem ensures the
taken into account automatically. We report our results forconvergence of the sum in EGt.47) and allows one to use
D=2 first and then analyze the case of arbitrBry the Euler-Maclaurin formul&* Applying this formula, the

sum reduces to
1. D=2

The analysis ofy(0,T) proceeds in the same way as in | T f”’ T
Sec. IV A. We found that the interplay between the nonana- 4E. m;m S(m)= 2Er Jo dmSm)- Eps O+
lytic terms in various diagrams for the susceptibility Tt (4.49
#0 is exactlythe same as at=0. Namely, the nonanalytic ) o

pieces originate from thg=0 and %; nonanalyticities in Where- - stands for higher-order derivatives 8f All de-
the particle-hole susceptibility, or alternatively, from the 'ivatives of S(m) obviously vanish in the continuum limit
—0 nonanalyticity in the particle-particle susceptibility. We W—. The remaining integral term in E¢4.49 gives
explicitly verified that the relative coefficients between

nonanalytic terms are the same a§ &t0. This implies that ljmdem)= i ﬁ (4.50
(i) just as afT=0, there is no nonanalytit dependence in 2EgJo 16 Er’ '

the charge susceptibility, arid) to obtain the full correction o ) o
the spin susceptibility, it is sufficient to evaluate just oneWhich is aT-independent contribution. As a result, the above

computation does not yield a linear-in- piece in
sx{°(0.T).
A more careful inspection of the steps we took to arrive at
8xs(0.T)=25x]7%0.T). (4.43  this result reveals a problem. That is, it is obvious from
(4.46 that the term withm=0, i.e., withQ,,=0, vanishes
At finite T andQ=0, a general form oBy3~°(0,T) is for any finite x. However, in the sum in Eq4.47) the m
=0 term is present and contributd34E;-. As the static
B d?kd?q susceptibility is properly defined as the limit {Q,T) at
Sx§~°(0T)=—-8U2T2 3 J J 2 Q—0, one should always keepfinite at the intermediate
o m (2) steps of the computations. Alternatively, one can perform
X G3(K,0)Go(K+q,wn+ Qm)II(q,Q). calculations for a finite system and then extend the system
size to infinity. In both cases, there exists a lower cutoff in
(4.44  the integral overx. This cutoff plays no role for all terms
gvith m= 0 but it eliminates the term witm=0. Subtracting
Off this term from Eq.(4.47), and using our previous results
we obtain auniversal linear-in-T piece inl(T):

nonanalytic contribution, e.g.,5x§:°(O,T). The full
6xs(0,T) is then given by

Expanding the quasiparticle spectra near the Fermi surfac
integrating over, and then evaluating the sum owey,, we
obtain, after simple algebra,

T
I(T)= (4.5))

u\? o
6x%°<0.T>=—4xSD(T7) (M), (445 4Eq

An alternative way to arrive at E§4.5)) is to perform the

where x3°=m/, : _ . 0 pert
summation ovef),, in Eq. (4.46 first, keepingx finite, and

2 2 2 then integrate ovex. Performing the summation, we obtain
T O (2Q075,—x%%)
(T)y=—=— >, fdxx—, (4.46
Er ‘7 (Q2+x2)3 » 2
m 1 T vz, L
, _ , I =25 | Y Y|y ne(y ™) +5
andx=uvgqg. Expressiorn(4.46 is rather tricky, becausgT) FJo ay

is formally ultraviolet divergent. The most straightforward )
way to get rid of the ultraviolet divergence is to introduce a +2f9_[y3/2[ na(yY?) + 1
J 2

short-rang€lattice) cutoff in the momentum integral so that
x=<Xo~W. Evaluating the integral ovex first we obtain

I

whereng(z) = (exp@T)—1) "1 is the Bose distribution func-

T tion andyzvﬁqz. Integrating by parts, we obtain from Eq.
I(T)= T % S(m), (447 (452,
where 1 o P NPT B
2 ) I(T)__E(Prﬁfo dyw{y ng(y~9)} TR
Q Q 4.5
Sm=1+2—5—"—-3——"——. (448 (453
Qn+Xs  (Qp+Xp) in agreement with Eq4.51).
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The above analysis shows tha$(0,T) does indeed con-

) i ) : . ; 1 L1+ 2ng(x)
tain a linear-inT term inD=2. However, the physics behind Ip(T)= ﬁf dxxP~1 o
this term is very different from the one that leads to (@ 2Ef X
piece inxs(Q,0). 4 2

Substituting Eq(4.51) into Eq. (4.45 and then using Eq. o2t 1+2ng(x)  X* 67 1+2ng(X) _
(4.43), we obtain NG 2X 2 5x2 2X

, (4.58
5XS(0,T)=2X§D(m—U) l (454  Evaluating the integral overx and introducing an
4w Ef infinitesimally-small § to eliminate infrared divergencies at

intermediate steps, we find tieindependent part dfy(T)
This is the central result of this subsection. Our functionalfor D=2 to be given by
form of 5x¢(0,T) agrees withCM, but the prefactor differs

by a factor of 2. We could not establish the reason for the (D—2)(4—D) [ T\P 1 = dzP 2
discrepancy. Io(T)=~ T8 \Ef fo 01

We remind the reader that the fulL(0,T), given by Eq. (4.59
(4.54) comes from the dynamical particle-hole bngble. To
emphasize this point, in Appendix F we compuig; " ne- (D—-2)(4—-D)
glecting the frequency dependence of the polarization - TF(D_l)g(D_l)' (4.60
bubble, and show that this yields an incorrect prefactor in the _ _
linear-inT piece. wherel'(x) and {(x) are the Euler and Riemann functions,

respectively. ForD—2, the pole of thel function, (D
—1)—1/(D-2), is canceled by the prefactbr— 2, so that

puting a linear inT contribution from 2 polarization e . )
bubble at a finiteT (as we did for|Q| term atT=0). This l(i(% Is finite and equal to-T/4E, in agreement with Eq.

calculation would require, as an input, the analytical expres- For D<2, care has to be taken to ensure the cancellation

sion for the dynamical pqlarlz_atlon bubple .ned{FZat a  of the divergent terms. The final result for this case is
finite T. We could not obtain this expression in a managable

form, nor we could find ?t in the I;tkerature. I_t would be ipter- (2-D)(4-D)( T\P (= dz [1 1
esting, however, to verify ouby; - numerically by using I(T)=— 8 J
the numerical results fafl(q, o, T).5?

We didn’t attempt to verify ouré‘)(ikF by explicitly com-

Er z -1/

(4.61

2. Other dimensions We see that for arbitrarp, the functionl 5(T) (and thus the
spin susceptibility scales ag® 2. In an explicit form,

0 227D

For arbitraryD, the consideration analogous to the one for
D=2 yields, instead of Eq4.45),

D-1
Sxs(0,T)=— CUZ(ELF) f(D). (4.62

2
oxo(0.1)==CUp(T), 4.59 Functionf(D) diverges logarithmically foD=1 (and atD

=1, ox=InT). NearD=3 functionf(D) is perfectly regu-

whereC is a positive constant, lar and equal to

Q; f(3)= m 4.6
In(T)=TE P> J o|xxD—1—(Qz = 25 (4.56) ®="2 (463
m +X
" As we see from Eqg4.62 and(4.63, this last result implies
that in three dimensions, the leading temperature correction

andx=vgqg. ForD=2, Eq.(4.56 coincides with Eq(4.46 - ) o

. to the susceptibility scales &€, and there is no logarithmic
2_ 2 2,23 )

modulo a piec T2/ dxx(Qy —=x7)/(Qp+x9)°] thatvan- oo This agrees with the results of Cardeiro and

ishes upon integration over The ambiguity with the order Pethick* and BKV.
of summation and integration was resolved in the previous Obviously, the ébsence of tHE2In T-behavior ofy(0,T)

tsr?ct_lotn; notvv we kngw ;hat I |st:?]afe to sun:_ om_;‘;]r?;anhd | in three dimensions, and ti@?In Q-behavior ofy(Q,0) im-
€ Integrateé ovex. Feriorming the summation wi e help plies that there is no one-to-one correspondence between

of the well-known formula thermal corrections and quantum correctionsTat0. Our
consideration shows that, strictly speaking, thermal and

1 1+ 2ng(X) guantum corrections are not equivalent in dhy
5 o , (4.57 We also see that although{D) goes smoothly through
m Qnt+X D=2, the functional form off (D) changes betweeb >2

andD<2. The consequences of this fact are, however, un-
we find clear to us.
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U2k ) m[UZ(0)+ U2(2ke) — U(0)U(2ke)]
U(O) F )= — F F
;9‘%“ %17% e tors?
Xw|w|g(?). (5.2
k k+q -k+l -k+m The limiting forms of the scaling functiog(x) are g(«)

FIG. 5. One of the self-energy diagrams di(0)+# U (2kg). =1 andg(x<1)~4log 2/(x).

Momentag,l, andm are small compared tk
B. Spin and charge susceptibilities
V. FINITE-RANGE INTERACTION The same consideration holds for the susceptibility—the
very fact that all nonanalytic contributions come from the
In the previous sections we considered the model case @fertices with near zero total momentum and transferred mo-
a contact interaction, characterized by a single coupling conmentum either near zero or neakg2implies that forU
stant U which is independent of the momentum transfer.=U(q), an overall factor ofJ? is replaced either by?(0)
Now we analyze the more realistic case of a finite-rangeor U2(2kg), as in diagrams 1, 3, 6 and 7 in Fig. 3, and by
interaction when the coupling is a function of the momentumuU (0)U(2kg), as in diagrams 2, 4, and 5. With this substitu-
transfer U—U(q), where U(q) is such thatU(0) and tion, we have, finally

U(2kg) are finite. Our key result is that only these two pa- 5 5
rameters are important. ox1(Q,T)=K(Q,T)[U*(0) +U"(2ke)],

Ox2(Q,T)=—K(Q,T)U(0)U(Zkg),

— 2 2

We begin with the self-energy. For momentum-dependent oxs(QD=K(Q DU (2ke) =UAO)].
U(q) the two self-energy diagrams in Fig. 1 have to be con- Sx4(Q,T)=K(Q,T)U(0)U(2k), (5.3
sidered separately. For diagram shown in Fig) the exten-
sion toU=U(q) is straightforward—the factor\2? for that Sxs(Q,T)=0, xs(Q,T)=K(Q,T)[U?(0)—U?(2kg)],
part of the self-energy which corresponds to proo@sn
Fig. 7 (we recall that only that part contributes to thermody- Sx7(Q,T)=—K(Q,T)[U?0)+U?(2kg)],
namics is be replaced byW?(0)+ U?(2kg). The diagram in
Fig. 1(b) requires more care, but we know from the anaIyS|s
of the “sunrise” diagram for the self-enerdiig. 4(b)] that a

A. Self-energy

where K(Q,0) and K(0,T) are given by Egs(4.18 and
(4.54), respectively:

nonanalytic piece comes from the range where two internal 21| m\2T
momenta in the self-energy diagram are neds, and the K(Q,0= ( ) o K(O’T):X(z)D(_) —
third is neark. For Fig. b), this implies that the momenta 4m) Ke 4m E(g 4

are labeled as in Fig. 5.
It is then obvious that the overall factor for the diagram inwhere yx2°=m/7. When both Q and T are nonzero,

Flg 1b) is U(O)U(Zk,:) Process(a) in Flg 7 determines K(Q T) K(Q O)Q(UFQ/T) Whereg(x) is a scallng func-

that part of the self-energy which is singular on the mass-.
shell and does not contribute to thermodynamics. The overaﬂOn subject tog(x=>1)= L. However, we did not attempt to

factor for that part i4)2(0). Collecting all contributions, we COMputeg(x) atx other thanx=0 ands.
find that Collecting all contributions we find for the spin suscepti-

bility

— 2
muU%(0) Sxs(Q,T)=2K(Q,T)U?(2k). (5.5

R0, T)=———[w*+(aT)?]in P As for the casdJ = const, the charge susceptibility is regular
16mvg W~ € : : A )
because all nonanalytic corrections from individual diagrams
m[U2(0)+ U%(2ke) — U(0)U(2kg)] cancel out. Equation$s.1), (5.2), (5.4), and (5.5 are the
+ " central results of the paper.
87 vk While it is intuitively obvious that the momentum depen-
A dence of the susceptibility should only includ&0) and
» T .
% T2+ 02lin= — zf(_H, 5.1 U(2kg), this intuition is baggq on the ar_1aIyS|s of the self-
[(mT)"+ o] T Y NaT 6.1 energy but not the susceptibility itself. It is therefore worth-
while to demonstratexplicitly that nonanalytic terms in the
o susceptibility do not depend on the momentum-averaged in-
whereA is a constant, and the scaling functibfx) is given  teraction. This is what we are going to do in the remainder of
by Eq.(3.25. The real part of the self-energy is given by this section.
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2y This integration is tedious but straightforward, and carrying
12 it out we obtain, after some algebra,

1+q/2 I-q/2

k+Q J=—fﬂlzdbU(Zszinzb)Re[S(b)+S(7r—b)], (5.9

k+g+Q 0
where
k+q k by= 4 cosd | " 1 1
5 Sb)=|z+ sirp | %P\ sin2b—i5 sin2b+is)”
: (5.9
FIG. 6. Another way of labeling momenta #)s. Then
To demonstrate that only (2kg) matters, consider one of _ w .
the diagrams for which, as we claim, the nonanalytic term J=|5|mf0 dzln coszsin’z
scales asJ(0)U(2kg), i.e., diagrams 2, 4, and 5. Each of
these diagrams has two interaction lines. Quite obviously, 4 coSsz
one of momentum transfers should be near zero. The issue is + 62 §+ — U[2kg(sinz/2)?].  (5.10
to prove that the other one is neak2 Consider, for defi- (sinz/2)

niteness, diagram 5. The net result for this diagram is zeroype integral does not vanish due to divergences zedd
but this is a result of the cancellation between two contribu4,q7= 7. The divergence near=0 does not contribute to

tions, 5x5(Q) and 8xs(Q), which differ in the choice of  the imaginary part of the integral, but the one rear does
which of the two interactions carry small momentum. Con-contripute. Restricting near, we obtain
sider one of the choices. We label the internal momenta in

the diagram a¥x, k+q, k+Q, k+qg+Q, I+qg/2, andl 1 = dys 7P

—q/2, whereQ is the external momentum, and introduce J=§U(2kF)f .2 g Y2ke). (511

two anglesf; and 8, betweeng andl and betweem andk, 0 y*t+o

respectively(cf. Fig. 6). This consideration shows that, although for a momentum-

The integration ovek and the corresponding frequen@y  independent interaction we could evaluadg2(Q) in a
is straightforward(see Appendix E Introducing thenq  scheme in which the angular integrals were not restricted to a
=r cos¢ and () =r sin¢, where() is the frequency associ- particularé, or 6,, the calculation performed in another way
ated withg, we integrate over and, after redefinition of the demonstrates that the whole integral comes only from the
variables, obtain that the nonanalytic, linearnpiece of  range whered; — 6,= = 7. For a momentum-dependent in-
diagram 5 reduces to teraction, this implies that only (2kg) matters, precisely as
we anticipated. Similar calculations can be repeated for other

SX3(Q)=yx m*U(0) @J (5.6  Cross diagrams with the result that the overall factor is al-

5 O 4x5 ke ' ways U (0)U(2kg). The above consideration is another in-
dication that the nonanalyticities in the specific heat and spin

where susceptibility come from the two interaction vertices

in which the transferred momentum is either near O lof 2
J=jxdxx2 i qel f” df, and simultaneously the total momentum for both vertices
0 —aX+1c0s01) -7 (x+i cosh,)* is near Xg.
U 2Kesir? 91;02» 5.7 VI. CONCLUSIONS

We now summarize the key results of the paper. We con-

For a constant interactiod (q)=U, we can integrate inde- sjdered the universal corrections to the Fermi-liquid forms of
pendently overg; and 6,, and then integrate oves which  the effective mass, specific heat, and spin and charge suscep-
givesJ=72U/6. The result forsx3(Q) then coincides with tibilities of the 2D Fermi liquid. We assumed that the Born
one of the two contributions téys(Q), as we discussed in  approximation is valid, i.e.mU(q)/4w<1, and performed
Sec. IV A1l. Arelevant point here is that typical ds, are  calculations to second order in the interaction potential
of orderx, whereas typicak are of order 1. Henc#,— 6,  U(q). We found that the corrections to the mass and specific
~1, i.e., typical angles between two momenta are genericheat are nonanalytic and linearThand obtained the explicit
This would imply that the argument ofJ(2kgsir?(6; results for these corrections. We next found that the correc-
—6,)/2) is just of the order okg but not necessarily close to tions to the static spin susceptibility are also nonanalytic and
2Kg . yield the|Q|-dependence of,(Q,T=0) andT dependence

We now show that, in fact, only; — 6,=* 7 matter. To  of y,(Q=0,T). We obtained the explicit expressions for the
see this, we introduce diagonal variabkes (6,+ 6,)/2 and  linear-in-Q and linear-inT terms in the susceptibility. We
b=(6,—6,)/2 and integrate first ovex and then overa.  found that the corrections to the charge susceptibility are all
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analytic. We also performed calculations in three dimensions a \K o/ ktard

and confirmed the results of BKV and others that the correc- k ktq+q’

tion to x<(Q,T=0) scales a®)?In Q, but the correction to oy o

xs(Q=0,T) scales ag? without a logarithmic prefactor. 4 kd
We analyzed in detail the physical origin of the nonana- B ) B B B

lytic corrections to the Fermi liquid and clarified the discrep- a

ancy between earlier papers. We argued that the nonanaly

icities in the fermionic self-energy and j(Q,0) are due to b)

the nonanalyticities in the dynamical two-particle response . . . i

functions. W)(; have shown thét nonanalyticpterms in thg self. FIG. 7. Two processes which contributes to the log singularities

. o in the self-energy.

energy and the spin susceptibility come from the processes

which involve the scattering amplitude with a small momen-

tum transferand a small total momentum. We explicitly tute for Fundamental Theory at the University of Florida,

demonstrated that the nonanalytic terms can be viewewhere part of this work was done.

equivalently as coming fromaither of the two nonanalytici-

ties in the dynamical particle-hole bubble—the one ngar

=0 and the other one negr=2k—or from the singularity APPENDIX A: MASS-SHELL SINGULARITY

in the dynamical particle-particle bubble near zero total mo-

mentum. We also demonstrated explicitly that the nonana- N this Appendix, we take a deeper look into the origin of
lytic terms in all diagrams for the susceptibility and the self-the logarithmic divergence of the self-energy on the mass
energy depend only onJ(0) and U(2kg), but not on shell. To better understand where it comes from, we come

averaged interactions over the Fermi surface. Only under thiack to the derivation of Eq3.11). Rewriting Eq.(3.11) as

condition, is there a substantial cancellation between differ=d- (3-128 to logarithmic accuracy, we now argue that the

ent diagrams for the susceptibility. Due to these cancellalV© logarithmic terms in Eq(3.128 come from two differ-
tions, the nonanalytic correction to the spin susceptibilityeNt Processes, as shown in Fig. 7. In the first pro¢€as
depends only orJ(2kg), but not onU(0), andscales as 7(a)] all four_momenta are close to each other, aqd in the
U2(2kg). The nonanalytic corrections to the effective mass_second _on@H_g. 7(b)], the net momentum of the two incom-
and the specific heat scale aJ2(0)+UZ%(2kg) ing pgmcles is close to zero, v_vhereas the momenta of the
—U(0)U(2kp). outgoing particles are close to incoming momenta. In terms
of the momentum transfers, both processes are of forward-
écattering type. To see this, we notice that for genefie,,
I.e., not too close to the mass shell, the logarithmic form of
the self-energy is due to Q/ behavior of the momentum
dntegrand in Eq(3.6) atvpQ>Q,w. This 1Q form in two
dimensions results from the combination of two fa¢tsthe
polarization operatofI(Q,{)) behaves a$)/v:Q, and (ii)
the imaginary part of the fermionic propagator, integrated
over the angled betweenQ and external momenturk be-
Shaves as ). The product of the two terms yields

-fj_‘QdQ/Q2 that gives rise to a logarithm. It is easy to make

B

-k+q -k-q

The nonanalytiocQ behavior of y4(Q,T=0) obtained in
both two and three dimensions questions the validity of th
Hertz-Millis-Moriya phenomenological theory of quantum
phase transitions. This theory assumes a reguiaexpan-
sion of the spin susceptibility. Indeed, extending the result
for xs(Q,T) to the critical region one obtains a rather com-
plex quantum critical behavi6f which is very different
from the Hertz-Millis-Moriya theory. We caution, however,
that the nonanalytic behavior of4(Q,T) was obtained
within the Born approximation, when fermions behave a

sharp quasiparticles. Near a magnetic transition, the ferm hat f Q ical val |
onic self-energy is large, and destroys the coherent Fermgure that fongQ>, typical values o) are close to- m/2,
the deviation from these values being of ord€|/vQ.

liquid behavior beginning at a frequency which vanishes a .
the quantum critical point. In this situation, the second-order! at means that the external momentu) nd the internal

perturbation theory is unreliable. The issue whether nonandSmal) one Q) [as labeled in Fig. (B)] are nearly orthogo-
lytic corrections to the statig.(Q,T) survive at criticality is @l t0 each other. The same reasoning also works for the

now under consideration and we refrain from further specuPolarization bubble. If the two internal momenta in that
lations on this matter. bubble arep andp+ Q, then typicalp andQ are also nearly

orthogonal. Since botk andp are orthogonal to the same
Q, and both are confined to the near vicinity of the Fermi
surface, they are either near each other, or near the opposite
points of the Fermi surface. If and k are close to each
We acknowledge stimulating discussions with A. Abanov,other, all three internal fermionic momenta in the second-
I. Aleiner, B. Altshuler, D. Belitz, S. DasSarma, A. Finkel- order diagram are close to exterialif p is close to—k, out
stein, A. Millis, M. Norman, C. Pepin, A. Rosch, J. Rech, M. of three internal momenta one is closekiowhile the other
Yu. Reizer, and Q. Si. We also thank M. Mar’enko for bring- two are close to-k. These two regions of intermediate mo-
ing Ref. 31 to our attention, and G. Martin for a critical menta give rise to two logarithms in E¢3.123. The loga-
reading of the manuscript. The research was supported kjthm that diverges on the mass shell comes from a region
NSF DMR 9979749(A.V.Ch.) and NSF DMR-0077825 where all momenta are close o To see this, we recall that
(D.L.M.). A.V.Ch. acknowledges the hospitality of the Insti- the actual divergence is the consequence of the fact that both
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. ) Q
? b M. =7 8(QFveQ). (A2)
. ; . . > > g > The delta-function form ofI. is due to the fact that in one
+ + + + + + dimension and for|Q|—0 the particle-hole continuum

shrinks to two lines in the ({,Q) plane described by)
=vg|Ql. The combination of the diagranta) and(c) in Fig.
8, yields, for the imaginary part of the self-energy,

SR :

> U
L [E'F’e+(k,w)]a)+c)=8mzw25(w—€|f)- (A3)
F

c)

+

FIG. 8. Nontrivial diagrams for the self-energy in one dimen-
sion. = denotes the propagator of right/left moving fermion.

We see thal ., given by(A3), which is a 1D analog of our
the polarization bubble and the angle-avera@ddk+Q,w 35 from Eq.(3.129, is very singular on the mass shell but
+(1) at the mass shell possess square-root singularities wanishes outside the mass shell. At the same time, diagram
the form 14/(veQ)?— (Q)? such that the product of the two (b) in Fig. 8 yields
gives ©rQ)?—(Q)?) 1, and the momentum integral di-
verges. The square-root singularities come from near parallel
p andQ andk andQ, respectively. Obviously thetk, andp U2
are near parallel, i.e., they are located near the same point at, >
the Fermi surface. With a little more effort, one can showl>r+(K:@)]p)=1 27vg
that asw approachesg,, typical angles betwegmandQ and 0 otherwise.

betweenk andQ, both move from nearr/2 (or —m/2) to This self-energy vanishes on the mass shell, but for
near zero, but in such a way thiatand p remain parallel. 5 generic w/e, it yields [ ’F’<+(k,w)]b)oc|w|. This ||

This once again confirms that the divergent logarithm COMEeJenendence obviously implies that Fermi-liquid behavior
from the process in Fig.(@ (all internal momenta are close g i danger.
to k), while the “conventional,” nondivergeni?In w term Which of the two terms is actually relevant? In one di-
comes from the process in Fig(bj. The analysis can ”be mension, the answer is well known; the summation of infi-
extended to finiteT, and the(anticipated result is that>] pjte series of the diagrams yields the non-Fermi-liquid be-
given by Eq.(3.22 comes from the process in Fig(al,  havior, and the resulting state—the Luttinger liquid—is free
while %7 given by Eq.(3.23 comes from the process in Fig. of singularities on the mass shell. This implies that the mass
7(b). shell singularity of Eq(A3) is completely eliminated by the
It is interesting to follow the same arguments @r=1.  re-summation of diagrams to all orders in the interaction.
In this case, processes in Fig. 7 acquire even simpler physicghis can be shown explicitly either via Ward identities or
meanings: proces®) is a forward scattering of fermions of ysing the bosonizatiotf. Furthermore, the exact solution of
the same chirality, e.g., two right-moving fermions scatterthe model with only typda) scattering(“ g, model”) yields
into two right-moving ones, whereas procéskis a forward 3 free-Fermi-gas behavior with a renormalized Fermi veloc-
scattering of fermions of opposite chirality. In the g-ology ity, i.e., no mass-shell singularity. This all implies that the
notations, vertexa) is g, and vertex(b) is g,.°” In the Lut-  mass shell singularity found in the second-order self-energy
tinger model, when only forward scattering is taken into ac-diagram in one dimension is an artificial one and is elimi-
count, the self-energy of, e.g., right-moving fermions is rep-nated by higher order diagrams.
resented by the set of diagrams shown in Fig® &here + The same elimination of the mass shell singularity holds
denotes propagators of right/left moving species: in two dimensions, as we now demonstrate. Indeed, as we
mentioned before, the logarithmic divergence in E123
at w=¢, is the consequence of the matching of the two
N _ square-root singularities: one resulting from the angular in-
Gu(kw)= o et e =vr(kTke). (A1) tegration of the fermionic Green’s function, and another one
K being the 1{/(vQ)%— Q2 singularity inII%(Q,Q). Suppose
now that the interaction is renormalize@creenef by
Diagrams(a) and (c) contain two vertices of typ¢a) from  higher-order terms itJ so thatU—U(Q,(). The combina-
Fig. 7, whereas diagrarfib) contain vertices of typéb) from  tion U%II%(Q,Q) in Eq.(3.6) is now replaced bWx(Q, Q).
Fig. 7. The imaginary parts of the retarded polarizationin the random phase approximatioRPA) (which is not a
bubbles for right- and left-moving fermions f0®@|—0 are  controllable one for a short-range interaction but, neverthe-
given by less, captures the physics of screening

(sgrw)(|w|—|eg|)  for w>]e;|
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UL(0.0)= UZI1R(2,Q)

R [1+UNIKQ,Q) 12+ [UITK(Q,Q) ]2

_ 27500 VweQ)?=Q20(veQ—1Q|)

m= (1+0)F(veQ)?- 02+ 020?
(Ad)

”n

where U=mU/27. Obviously, r how vanishes atQ

=|Q|/vg, and the divergence is eliminated. At the SaMehere s = ¢, , o’

time, the logarithmic dependence dh in Eq. (3.9), and
hence thew?ln w form of the self-energy,
come from typical Q~veQ for which TI;(Q,Q) and

PHYSICAL REVIEW B568, 155113 (2003
The same result can be also obtained by calculating the

quasiparticle lifetime foiT =0 which, by definition, is taken
directly on the mass shell. F@=2, the Fermi golden rule

gives
U?m (o 0 Wivg
J dQJ dw’j dQQf dHJ de’
873 Jo -Q

(A9)

lUr(w)=

X6(Q—erter g)d(Q—epiotep,

=¢€,, and 6,0" are the angles betweén
and g and p and g, respectively, andV is the ultraviolet

survive as they gnergy cutoff. For linearized dispersion the arguments of the

first and second delta-functions in EGA9) reduce to()

IT(Q,Q) are of the same order, and hence the screene¢vFQ cosf and Q —vQ cos#’, respectively. Each of the

interaction is of the order of the bare one. Note that thisyngylar integrations yields a factor of\Zb-Q)2— Q?, and
reasoning is also valid for the Coulomb interaction, forhe integral over,

which the RPA approximation is asymptotically exact in the

high-density limit.

Another argument that the mass-shell singularity is artifi- A=f
cial is that it is eliminated, already at the second order of

W/vg 1

REEEE

Qv

interaction, if one takes into account the curvature of theyierges logarithmically at the lower limit. To regularize the

fermionic dispersion. Indeed, in obtaining E§.11), we lin-

earized the fermionic dispersion near the Fermi surface, i.e

approximatede, 4 by ec+vgqcosé. Using the full qua-
dratic dispersion, we obtain, instead of E§.10),

37k, @) mu” fwdgm w?
] = 4 5 n_l
R 8mv2Jo B

B=(ex,—0)(2Q—w+¢)+A(w,Q),
(A5)

whereW~Er is a bandwidth and

QZ
A(w,Q)ZZ—EF(gw—Ek—Q), (AG)
and where, for the sake of definiteness, we assuaed.
On the mass shellp= ¢, the integration ovef) yields a
finite result

Sk 3U%m
W) lw=¢=" T - 2 5
R k16732

) W
wln—. (A7)
||

The crossover between Eq®.11) and (A7) occurs when,

inside the log in Eq(3.11), A(w,{)) becomes comparable to

the other term in the denominator, i.e., when

|w— €]~ w?/W. (A8)

singularity, one must keep the higher-order termssjnq
ande,,q. On the mass shell,

ek~ &k-Q=VrQ (Alla)

1) Q?
1+ Z_EF) cosf— ﬁ

o' ’ Q2
Sp—8p+Q:—UFQ 1+2—EF cosé _ﬁ. (Allb)

Now the integral oveQ takes the form

W/v,:d 1 1
A: 1
f 27075 V0, Q7071 5
(A12)
where
_ ( 0 Q
6=Q UFQE_F"‘F y (Alsa)
- ' Q2
6'=Q UFQE—F‘FF . (Al?)b)

The lower limit in the integral is such that the arguments of
the square roots are positive. The momentum integral is con-
trolled by Q~|Q|/ve. To logarithmic accuracy, one can
then just replace® by |Q|/vg in Egs. (A13a and (A13b).
After this replacement, the momentum integration can be

For |w— e/>w?/W, the leading asymptotic behavior of easily performed and gives

S k(k,w) is given by Eq.(3.11) and for|w — €] <w?W it is

given by Eq.(A7). A general formula which interpolates be-
tween the two limiting cases might, in principle, be obtained

but we do not dwell on this here. Notice tiag(k, ) on the

A 1 E2W

=——n—-. Al4
202 0¥w+w')+03 (AL4)

mass shell is by a factor of 3/2 bigger than its value on thene next have to perform the frequency integration. It is easy

Fermi surface, which means that, for fixed the slope of

to verify that, in the two integrals over frequency, the domi-

3 r(k,w) as function ofe, becomes steeper as the mass shelhant contributions come from the regios~w’~w. To

is approached.

logarithmic accuracy, one can then simplfyto
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3 W [, Q2
—In—. (A15) p1,=Q cosf\/ k2 ——sm20+ Q200520 (B4)
2U|: o

We again used the fact th&-~W. Substituting this into For Q=2kg, we havep,=4kZcog6, p,=0, and Eq.(B3)
(A9) and performing frequency integrations we obtain finally reduces to

1 3U%m 2 W (A16) 6.0 m . ZQOlez do kZcog 6
= wln—. = — - “—
@) g @ (Q0m) =57 7Q? Jo cogo ™ B ma,
We see that I w) is finite—the only memory left about the m 1/]Qn\ Y2
mass-shell singularity for the linearized spectrum is the en- o4l 2 E, (BS)

hanced numerical prefactor. Identifyingriwith 23%, we
see that the results for 4land X" (w=¢€) coincide, as in- |t js easy to see that the integral comes from 26os

deed they should. ~|Qnl/EF, i.e., typicalp are nearly orthogonal t@. Further-
more, in the integral ovep, typical p were of orderQ cosé.
APPENDIX B: POLARIZATION BUBBLE NEAR 2 k¢ Hence typicalp are of orderQ+/|Q,|/Eg, i.e., at vanishing

Q. the integration is indeed confined to internal momenta
which nearly coincide witht Q/2.

The same reasoning is valid also @rin a narrow range
(Pear X . ForQ=2kg, Eqg.(B5) can be rewritten as

In this Appendix, we show that the computation of a
nonanalytic piece in the particle-hole bubbleCat2ke can
be always performed in such a way that the dominant con
tribution comes from fermions near the Fermi surface an
with nearly antiparallel momenta Q/2. We do this in two

ways. First, we computél,,(Q,(,,) explicitly and check mQ, (72 do
ici I(Q, Q)= 1-
where the nonanalyticity comes from. Second, we compute 7Q2Jo  coge
IT,1(Q,€y,) by linearizing the dispersion of fermions, form-
ing the polarization bubble, near Q/2 and show that the Q%cog0
nonanalyticity inl1,,(Q,Q,) comes from the lower limit of XarCtarEQO)(l—cho§062) , (B6)

momentum integration and therefore does not depend on the

upper cutoff imposed by the linearization procedure. 5 ) 5 , . ,
wheree®= (Q?%/4—kg)/m|Q,|. Assuming that the integral is

dominated byé near w/2 and expanding to linear order

1. Explicit computation near/2, we obtain, after simple manipulations,

Consider firstT=0. Labeling the momenta of internal

fermionic lines in the polarization bubble astQ/2, we m (mlQ |)1/2 " 1
obtain, in Matsubara frequencies, M(Q,0,)= 1-——"" | dzarctan——|.
m mke  Jo Z—€
d?pdw Q (B7)
H(Q,Qm)z—f 5G| Pt 5. 0, Qp
(2m) 2 We see that the integral is convergent, i.e., the linearization

Q of cos# nearm/2 does not lead to cutoff-dependent integrals.
p__,wn)_ (B1)  This implies that the nonanalytic piece in the polarization
2 operator comes from typically small c6sand hence from
typically small internapocosé. Evaluating the integral over

zin Eq. (B7), we obtain

XG

For a circular Fermi surface,

pz—k§+chosﬁ Q_2
2m — 2m 8am’

(B2) 1/]1Qm

m
““?'Qm):zw[ ‘E(E—)

€p+rQ2™

Substituting Eq(B2) into Eq. (B1) and integrating over fre-

guency and then oves, we obtain, forQ<<2kg, UFQ
(B8)
Iﬂml
(0.0, )= m 1_2mﬂmfw/2 de
( m 7Q%?Jo cose Where6=Q—2kF. This is the result that we cited in the
text[Eq. (2.4)].
x| arcta P1 _arcta P2 (B3 For Q>2kg, |.e._,Q>O, the calculations pro_ceed in the
mQ ., mQ,, same way. Integrating overand overo and again expand-
ing to linear order nea®= 7/2 we obtain after straightfor-
where ward manipulations
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m 6 172 1 |Qm| 12 3. Finite temperature
Q0w = o 1- E) B W( ) At finite T, a sharpyQ— 2k nonanalyticity in the static
polarization operator is softened in qualitatively the same
1/2e (1—4€%2%)12 way as it is softened by a finit@,, at T=0. In general,
X f dzarcta O . (B9)
0 zte m T\" (velQ—2ke| O
H(Q,Qm,T):z—[l— E—) o f’?) .
Evaluating the integral we find that the result reduces m F
to Eq. (BS). (B14)
We could not find a simple analytical expression for the scal-
2. Another way of calculating TT(Q= 2k , Q) ing function®(x,y) at arbitrary values of its arguments. At

. ?ZZkF andQ =0, ¢(0,0)~0.339.
For completeness, we also compute the nonanalytic par

in I1(Q,Q ) near Xg by explicitly restricting the integral
overp in Eqg. (B1) to smallp and assuming thai is nearly
orthogonal taQ. This calculation shows in a more direct way
that typical valuep are indeed small. To avoid lengthy cal-  |n this appendix, we explicitly compute the contribution
culations, we assume th&=2ke and aim at reproducing to the self-energy from thekg nonanalyticity in the particle-
the \Q,,, nonanalyticity. ForQ=2ke, the energies on the hole bubble, and show that it is equal¥a(k, ) part of the
internal fermionic lines arey ;. ande_y .. Introducing  self-energy from thej=0 nonanalyticity. We will also show
x=vep and y=1/(2mv2)=1/(4E;), expanding cos~¥, that the nonanalytic self-energy can be equally viewed as

whered= m/2— 6 and substituting into E¢(B1), we obtain coming from the singularity in the particle-particle channel
at zero total momentum and frequency.

APPENDIX C: EQUIVALENCE OF Q=0 AND Q=2K¢
CONTRIBUTIONS TO THE SELF-ENERGY

(2ke , Q) = 2 13 ZJ'W d?fm dwfwdx 1. 2k part of the self-energy from the particle-hole channel
o 0

Since our goal is to verify a general reasoning tat0
and X contributions to (k,w) are equal, we focus on the

X )
X —— _ ) caseT=¢,=0, compute the B part of the self-energy in
(X0+ yx2—iw,)[X0— yx°+i(w,+ Q)] Matsubara frequencies and compare the prefactor for
(B10) wpIn|wy| term with 1/2 of that in Eq(3.18 which is > ,(w)
in this limit.

For a contact interaction, the second-order self-energy is

S (k)= —U JJ dzqu

Introducingy=x# and integrating ovey, we obtain after
simple manipulations with variables

PSR Y . poet e

, =— X _—.

P a2 T oy 22+ 42 X Go(k+ G, 0+ Q) Ton(q, Q). (CD)

The integration is elementary and yields Assumingq=2kF+<~q, whereﬁ is small, we expandy, 4 as

€rq= — e+ vrq+2vpke(1+ cosé), where 6 is the angle
© dz betweenk andq. As we already discussed in Appendix B,
H(2kg , Q)= ———= —-=. (B12)  only ¢ nearf= = matter(i.e., typicalq is nearly antiparallel
8mv2\yJlaq Vz

to k), hence we can further approximatg, 4 as

The divergence of the integral at the upper limit simply re-
flects that a constant term in the polarization bubble cannot
be reproduced this way. However, the lower limit of the in- where 9= m— 6. Substituting Eq.(C2) into Eq. (B1), we
tegral overz yields a universal and nonanalytic contribution obtain. settinge.—0

to T1(2ke ,(2,,) of the form ' i

€k~ — ekt Urd+ ke 6, (C2)

1 (0|2 m (0| S g ()= ZU—Zka dado, | “db
— _ F 3/ .
(B13) 1 ~
X T pn(G, 2,

This coincides with Eq(B8). It is essential that this result VEQ+UEke 0 =i (wp+ Q)
does not depend on the upper limit, and hence typical inter- (C3
nal momenta scale with extern@l. This obviously implies 5
that typical values op are indeed small. wherell,n(q,€ ) is given by Eq.(2.4).
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fw rdr
or—i wp '
Due to the absence of the integral o¥&r,, (C4) does yield
a universal contribution 3 (w,)*—iw,In(—iw,) which
comes from the lower limit of the integral over Upon
analytic continuation, one obtains;xw Injw| and 3 ()
«|w|. The linear inw form of Sx(w) is related to the
Hartree part of the linear-ii- term in the conductivity at
. _ finite T8,
. _F(;GI. 9. I_-lllar:ree contribution to the self-energy for scattering at a We now come back to the electron-electron interaction,
riedet osciiation. when a nonanalytic-ie, behavior ofS 5 (w,) can be ob-

As an exercise, consider first a model case wherd@ined if theQ, dependence is retained lIit,(q, Q). As
I,,(9,0,,) is static. To ensure convergence, we assume tha¥/ith any logarithmic singularity, typicadj should well ex-
the static behavior holds foR,,<Q,, whereQ, is some C€€dwn/ve. We will see that typicall, are of orderwy,.
ultraviolet cutoff (of order bandwidth and for largerQ),,,  Typical values ofveq then well exceed typical values of
I,4(9,Qp) rapidly falls off. The angular integration in Eq. (m, and one can exparid,,(q, Q) in powers of(}, /v £.
(CD reduces the range of integration over, to —w, Forg>0, the frequency expansion bf,,(q,{),) starts at a
<Qp<w,, hence at the smallest,, 3w, . This accounts  constant and holds in even powers @f,/v-q. We have

for the conventional mass renormalization. We now shovgjready verified that the constant term does not give rise to
that there are no nonanalytic correctionstan this model. an 2 o piece inzsz(w)- At G<0, however, the leading

A Stftlc Mpn(0.,0) is non~anal3$|c only f°m!>9’ where expansion term has the saff®,,| nonanalyticity as the po-
pn(9, Q) = (M/2m)[ 1~ (a/ke) 2] Substituting  the  arization operator neag=0. The nonanalytic behavior in
nonanalytic part of the polarization bubble into E&S),  frequency is crucial as it prevents one from eliminating a

introducing 6= \r/v ,:kFCOqu,\/a: Jrivgsing, and inte- low-energy nonanalyticity by closing the integration contour
grating overg, for a potentially nonanalytic part of the self- in the integral ovel},, over a distant semicircle in a half-
energy we obtain plane where the denominator in E&®5) has no poles.

, ExpandinglT,,(q,Q,) atq<0 andQ,<ve[q|, we find
muU o
3 =— —j dQ

2% () 327%2) =

muVv

3.2
47TUF

2(C’)n): -

(C6)

—p - —

rdr

ml

2UF(|<|=|“C‘1|)1/2

2@ ) ' €7

Sk ()=~

Q|
vEQ+veke 02— i(wnt Q) ve(ke[a)) V2
(C8)

mfor_i(wn+ﬂm). ~ m |Q
(C4) (9, Q) =
One can easily make sure that this integral yields a regular o ) ) )
term (determined by high-energy statedut no universal S_ubstltutlng thls re_sult into onBS} and keeping only poten-
»?In  term. This implies, as we mentioned several times infially nonanalytic piece, we obtain
the text, that stati(ﬂph(a,O) does not give rise to a nonana- 5
lyticity in the fermionic self-energy. 2mu ij” 40 fo dNdeE
It is instructive to distinguish this case from the impurity (2m)* J-= " q 0
problem. If one of the interaction lines in Fig(al is re-
placed by an impurity line, as shown in Fig. 9, the diagram in 1
Fig. 1(a) transforms into the Hartree diagram describing the X
scattering of fermions by Friedel oscillations produced by
impurities. In the ballistic limit] w,| 7> 1, it suffices to keep
only a single impurity line connectin@ andII, and also 5 g
neglect disorder ifs. For delta-correlated disorder with am- Introducingx®= —vgq andy?=uv kg 62, from Eq.(C8) we
plitude V, the analytic expression for the diagram in Fig. 9 obtain
takes the form

muU?

d? s -
q 2k (@) 2ol

3 (K, wp) = —2qu (ZW)BGO(k+q,wn)th(q,0).
(CH

The particle-hole bubble is still static, but in distinction to
Eqg. (C1) we no longer have to perform a summation over

| 00,

xfwfoc dxdy
0 Joy2—x2—i(w,+ Q)

(C9

frequencies. The nonanalytic piecedifw) is then given by,
instead of Eq(B6),

Introducing furthery= \rcos#/2, x=rsing/2 and inte-
grating over¢ first, we obtain
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S (@)= M fx 40,0,
2Kkg 87740,2: o mi=~m
wdr (7 do¢
1, Tfo cos¢—i(w+Q)Ir
- mu? (=
=1 8W3v'2:fmdﬂm|9m|3gr(wn+ﬂm)

XJWZ dr
0 [r24(wa+ Q442

(C10

Evaluating the integral overwith logarithmic accuracy and
integrating finally over},,, we obtain

S (w)=—i my” 2| w? (C11)
w)=—I w nN—:.
2 167730,2: " wﬁ

This coincides with the half of E43.18 for €,=0, i.e., with
22((1)).

To further clarify this issue, we redo the calculation in a

different way. That is, we use the fact that fQ= —2k
+Q’, and Q' small, the nonanalytic part of the bubble
I,n(Q',€y,) comes from the region of sma@” in the fol-
lowing integral:

Mph(Q",Q2m) =~ f f

X Gk+Q",0,C—k+Q'+Q" 0+ 0 -
(c12

dZQHdwn

(2m)®

Now, we want to re-express thek2 contribution as an ef-
fective Q=0 contribution. To do this, we substitute Eg.

PHYSICAL REVIEW B568, 155113(2003

that inTI(Q,Q,,). This would again imply that thekZ con-
tribution to the self-energy coincides with tf¥&, part of
“q=0"" contribution.

The calculation proceeds as follows. We ggt=0 and
write  €_y4o = —xcosb+y* where x=veQ’, y
=(2mv§)‘1, and 6, is the angle betweek andQ’. Simi-
larly,  €_y4+qr = —X COSH;—Y COSO,+ Y X*+Yy*+2xy cos(;
—6,)], wherey=vQ, and#, is the angle betweek andQ.
As we said, we need to evaludtefor 6, close to* 7/2 and
smally. We therefore negleat® terms and set,~ /2 for
definiteness. We assume and then verify &t -Q term in
the polarization operator comes frofp near= 7,2 and lin-
earize co®; near these points. The integration owyr is
then straightforward, and performing it we obtain that the
integration overw, is confined to—Q,,<w,<0 (for defi-
niteness we assumed thHat,>0). The result is

- iQ,
I(Q,0 )= p

Wzv,zzyyfo dp( CoStr—2p—iQy

1
* cos¢92+2p—iQm)’ (C19

where we introducedpb= yx. The integration overp is
straightforward, and for small),, and co%, the integral
over dp yields i«/2. Substituting this into Eq(C15 we
obtain

O

0eQ (C16

Q0= 2 o
(Q, m)_iﬁ
It is essential that the momentum integral is confined to
smallp=Q'/kg (typical p~cosf,~Q,,/veQ), and hence we

are really restricting our momentum integral to small.
Comparing Eqs(C16) and(2.2) we see that, as we expected,

(C12 into Eg.(B1) and change the order of the integrations Eq. (C16) is a half of a nonanalytic part ofi(Q,Q,) at

over Q' and Q”. The nonanalytic “X¢" piece in the self-
energy then becomes

Esz(k,wn)Z—sz f (2m)°

X Gty 0, 11(Q D),

dZQNde

(C13

where the effective particle hole-bubble

ﬁ(Q",Qm>=—H

X G _k+Q",0,C-k+Q'+Q" v +0,- (C14

d?Q'dw,

(2m)®

This 11 is a part of the particle-hole polarization bubble at

O ,<veQ. Another half obviously comes from the
region of largeQ’, which cannot be re-expressed as &g2
contribution.”

2. An alternative computation of the self-energy,
via I1,,(q,Q)

We discussed in the text that the second-order self-energy
can be equivalently presented as a convolution of the fermi-
onic Green'’s function and the particle-particle bubble

s(on=-v?[ |

X Go( —ken+d,— @+ Q) (9,2 ),
(C17)

d?qdQ,,
(2m)®

small momentum transfer, which comes from the integration

oversmall d. We now show that foﬂm<uFQ", i.e., inthe

where pr(q,Qm)=(m/27r)ln[B/(|Qm|+\/Qm+(qu)2)].

momentum/frequency range which yields the logarithm inSubstituting thisIl,, into the self-energy and expanding

the self-energy, the nonanalytic partﬁb(Q,Qm) is a half of

€_ken+q @S —UE(Q COSH, for e,=0 we obtain
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—E=<Q=<0. Introducing the rescaled variablés= vz and
S(w,)=— j dQ f def dx QO =—wzx and assuming for definiteness that>0 (and
8 UF thusz>0), we obtain
X B
z(2x—1)+1
X - In . (C18 _
X coSO+i(Qpm— w,) |Qm|+1/Qm+x2 (€19 Z(“’)_z‘” Xd z(2x 1)—-1
Assuming, as before, that typicél,, are of orderw,,, while

typical x=wvgq are much larger, we can further expand under +In[Z%(2x—1)%— 1]}. (D3)

the logarithm and obtain
Introducing a new variable vig=2x—1 and eliminating

2 (= w w terms that vanish by parity we obtain, instead of H3),
S ()= Zf de|Qm|j dBJ dx
8w vgJ - © dz (1 zy+1
Z(w)=wf f dy| zyIn +In(z%y%—1)|.
« (19 0o 22—1Jo zy—1
X cosO+i(Qpm—wp,) (D4)

The integration ovey is now straightforward, and perform-

The integration ovep yields LT :
ing it we obtain

muU? [
_ _ » dz (1 |z+1
E(wn) |8W30'2:fxdﬂm|ﬂm|39r(ﬂm wn) Z(w):w J;) 22_1 Elnﬁﬂnzz—l)
w 1
xf dx . (C20 f“’d_z ztl
0 \/X2+(Qm_wn)2 * 22|n z—1 (DS)

Evaluating the integral over with logarithmic accuracy, we  Finally, we use the values of the following integrals:

finally obtain
Inz>—1 =2
mU? W2 f dz
S(wy)=—i——wn—. Cc21
()= T 5 zoin, (c21)
- 2
This precisely coincides with EqB11). f dz }In 7
0 2-12 |z—1 4"
APPENDIX D: EVALUATION OF X j(w,€) 5
ON THE MASS SHELL Wd_z _Z+ 1 _T
22" z=1|” 4 (D6)
In this appendix, we present the calculation of the real 0
part of the fermionic self-energy on the mass shell. We willSubstituting these results into E@5) we obtain
be only interested in the nonanalytic piece of the self-energy. 5
The nonanalytic part off;(w) is simply twice that of Z(w):wﬂ_ (D7)
3 ,(w), which, according to Eq(3.37), can be written as 2
) Substituting this further into Eq(D1) we reproduce Eg.
! —— Z ,T , Dl (3.3&.
>2() 16774U§ wZ(w,T) (b1) We next consider finitdl. As a first step, we show that
one can safely replace cdili(2T) by tanhQ/(2T) in Eq.
where (D2). Indeed, this replacement chang&sv) by
. T—Jx 400 Jw dE thQ . Q+E o Q = dE
(0,T)= - P o m Cco 5T~ an“—ZT Zextra(w!T)_Zf_wdQ 0 PJO E2_ 2
smh?
E [20+E-w|  [(20+E)*—o?|
X Zln 29+E+w|+ n W2 ) E ZQ-I—E a)‘ ZQ+E)2—w2|
ZQ+ E+w ‘+ n W2 '

(D2) (D8)

We first findZ(w) at T=0. The term with coth and tanh The integration oveE in Z.{ w,T) is straightforward, and
functions restricts the integration ovéd to the interval performing it we obtain
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o Q 2|20+w| and Li,(x) is a polylogarithmic function. This is the result
Zextra(va)zzf dQ—-7-In 20-w] (D9 we cited in Eq.(3.42.
o sinh— At x=c, ie., atT=0, we haveg(»)=1 and thus

Z(w)=(7?/2)|w|. This coincides with Eq(D7). In the op-

This integral obviously vanishes as the integrand is odd ifPosite limit of |w|<T, we use property
Q.

*© —x\k 2
Next, one can readily check that in the expressionZor L aex) — (—e™) - 7T_+ + 2
obtained by replacing co®/(2T) —tanhQ/(2T), i.e., in Lia(—e™) kgl k2 12 xIn2+00c).
(D15)
o o Q QO+E - . .
Z(w,T)=J dQQ'PJ tanh— — tanh——— Substituting this into Eqs(D14) and (D13) we obtain that,
—o 0 E?—w? 2T 2T up to a constant,
x(Em 20+E-o| o |(ZQ+E)2—w2|) Z(w<T)~272n 2T. (D16)
0 [20+E+o| w? Substituting this further into EqD1) we obtain
(D10)
_ . . _ mU?in 2
the integrand vanishes at larye|, E. Hence the integration S(w)=— 55 oT. (D17)
can be performed in the infinite limits and E&10) can be 87 vk

rewritten as a difference of two terms with the same argU=rps is the result we cited in Eq3.39.

me!’“ of tanh, upon .changing. in the secopd term .to a NeW  as an independent verification, we reproduced ExL7)
var!ag:eQJr Ed Carryln?_ outt:gs _p;ocedtL_Jre, tmtrt(r)]du_m?g nelw by computing the temperature derivativeA{fw) in the limit
varia es.,_anQ convetr) Ing integration to the integral -~ * o, (It is essential to take the limit, not just set=0.)
over positive(}, we obtain Evaluating the derivative, setting— 0, introducing dimen-
" Q 20 sior_1|ess variab_les, and eliminating the terms which vanish by
Z(w,T)= fo dQ tanhﬁllf(—), (D11)  parity, we obtain

||
where az(w’T):4Jm dxx wad—yln E. (D18)
aT ocosHx Joy [y—1
» d 2_ -1 2
\[/(a):’pj 2xx a2 (x )2‘ The integral overx gives In2, whereas that overyields,
0o x°—1 a—(x+1) ‘ upon integrating by parts,
a—1)%—x? a—x)?-1
fxin| 2 | | | : P " dyiny _ 7 (D19)
(a+l)2—x2‘ (a+x)2—l‘ o y2-1 4
(D12

Combining the two terms we obtaindZ(w,T)/dT
The integration oveix is tedious but straightforward, and =2#2In2, i.e., up to a constarf(w<T)=27?In2T. This

yields coincides with Eq(D16).
_ ’7T2§ for a<?2: APPENDIX E: 2kg CONTRIBUTIONS TO DIAGRAMS 1
Y(a)= 2 ’ AND 3 IN FIG. 5

2 . . . .
m"  for a>2. In this appendix we present explicit calculations of the

Substituting this into Eq(D11) and integrating ovef), we  2Ke-contributions to diagrams 1 and 3 in Fig. 3.
obtain
1. 2kg part of diagram 1

2

Z(w)=A+ o] g(2>, (D13) We first verify that the nonanalyti®(|Q|) term that re-
2 T sults from the & nonanalyticity in the particle-hole bubble

is indeed the same as the contribution fromde0 nonana-

where A<O0 is a(formerly infinite) constant which is irrel- (I)yticity. For 5XT=O(Q,0) we obtained, in Eq4.18,

evant to us as it accounts for the high energy contribution t

a linear inw term in 3(w), g(x) is a universal scaling 2 (mu\2|Q|
function, q=0 =yy— | — | —.
2
g(x)=1+ i 77_+ LiL(—e )|, (D14) l\!ow we gxplicitly eyaluateSXikF(Q,O). The general expres-
x?12 sion for diagram 1 is
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d2kd2qdwd () Performing the integration overand keeping only the con-
Sx1(Q,0)= —8U2j —GGg(k,w) tribution which comes from low energies, we again find that
(2m) only the nonanalytic piece ill(¢) contributes to ordeiQ],

and this universal contribution is

X Go(k+Q,)Go(k+q, 0+ Q)I1(q, ).
E2 m2U2 = de
o , (2 5XikF(Q,0) |Q|f de cos—Re —
For g~2kg the quasiparticle energies can be approximated 0 (6?+e'?)?
by (E7)
€k=l)|:(k_k|:), €+Q~ €k+U|:Q COSHl, 0 |¢
f df,cosfIn——— 050 (E8)
Ek+q: - Ek+U|:a+20|:k|:(1+Cosez), (E3) !

The integral ovem, yieldsis. Evaluating then the integral

whereq=q—2kg, and g, and 6, are the angles betwedn overd,, we obtain

andQ and betweerk andq, respectively. As we have stated
several times before, thekg nonanalyticity comes from in-

2112

o ; X m-U m 5
ternal fermionic momenta in the particle-hole bubble that 5%“%@@:# d¢ cosfsin—d)
nearly coincide with the external one. In our notations, this 8m v Jo 2 2
implies that#, is close tor. We can then expand in cés 2

~ 2 [mU\?[|Q| m

upon which €, reduces to€yq= — et veq+uveke(m =Xo3-\ 27| Kb Xo= (E9
— 6,)2. Substituting this expansion into E@.9), integrating AT e ™

over €, and then ovem (this requires more care than for the Comparing this result with Eq4.18), we see that the two

g=0 CEEQ, and introducing dimensiogless variabIeTs
=/|Ql,w=/(ve|Ql), k(7 6,)?=|Q[¢” and polar co-
ordinates ag=r cos¢,w=r sin ¢, we obtain, from Eq(4.9),

4mU?(ke| Q)M

Sx2F(Q.0)= .
™ UE
T T dgl
xf d¢H(¢)Ref rdrj (E4)
0 0 cos 6,
deé cosf, ‘6*+re'?+cosb,
o | BP+reld 62 4re'?
(E9

The polarization operator is now given by Eg.4), which in
the new variables takes the form

(rlQl)l’2 ¢

coS=|.
ke

m
M(g)=5_|1 5 (E6)

expressions are indeed equal. We emphasize again that in
order to obtain this result, one has to include the frequency
dependence ofll(gq,w) near q=2kg. Had we replaced
I1(g,w) by its static valudI(qg,0), we would not have ob-
tained Eq.(E9).
2. 2k part of the diagram 3
In explicit form,

d’k d’q dw,dQ,
(2m)®
X Go(K,wm)Go(k+Q, )
X Go(k+ 0, wm+ Q) Go(k+ g+ Q,wm+ Q)

X pp(d, Q). (E10

Assuming thaf is close to X and expanding quasiparticle
energies as in EGE3) we obtain after rescaling the variables
and restricting with only the nonanalytic part

ox3(Q,0)= —4U2f

SX2¥(Q,0=xo

1

2U2|Q|f f dQ (VX +iQp, +\/x—|Qm)J dﬁf dyf de dwm(Z 1

—iwm)(z+cost—iwy)
(E1)

>< t
[Z—X—Y?+i(ownt+ Q) ][z2—X—Yy?+cosO+i(wn+ Q)]

where yo=

(E12

m/r. Performing the integration overfirst we obtain, after straightforward manipulations,
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m?U? Q|

7T

SX2%(Q,00=—xo f fdQ (Vx+iQ, +\/x—|Qm)f daf dy

XIm

(E13

1
fo dwm{[x‘"yz—i(wm+9m)][x+y2—i(wm+ Q) ]2—coge}|

Introducing x=r cos¢ and Q=r sing such that (x+iQ,+x—iQ,)=2\rcos¢/2 and rescalingw,—rwy, andy
—Jry, we obtain

2k m*U? Q] [~
5)(3 F(Q.O):—ZXO 5 k_FJO d¢COS¢/2

X1m

(E14

® w % ™ 1
d f d J r2er do— . .
fo Y]o 4emf, 0 (e +y’—jw)[ri(e " ?*+y?’—iw,,)?—cosd]

Introducing furthep=r (e '?+y?—iw,,), replacing the integration overby the integration ovep, and restricting with the
universal contribution from the lower limit of the integral, we obtain, after integrating overand then ove,

m2u?
2kF u® Q| 1
(Q,00= 2)(0 J'd¢cos¢/21 dyj do,R {[mm+i(y2+e‘i‘”)]4

(E19

The integration ovemw,, is now straightforward. Performing polarization operator can be viewed as an effective interac-
it and then evaluating the integral owemwe finally obtain tion, diagram 1 can be re-expressed as the first-order self-
energy insertior(see Fig. 10

m?U? w 5
5X3kF(Q 0= @ do cosfsin—
8773 ke Jo 2 2 OX1static™ 4T2 eﬁ( €4,
2 (mU\?|Q| (F1)
_XOE(E) Ke E18  \here the effective self-energy is given by

This is the result that we cited in the text.

Ze(€)=2U T)Go(k+0,@,)

APPENDIX F: 2K CONTRIBUTION TO x(Q=0,T)
FOR A STATIC LINDHARD FUNCTION d2q
=2U f )ZH(QaO-T)nF(Ek+q)-

In this appendix we show that the thermal smearing of the
static Lindhard function by itself does give rise to a linear-in-
This self-
T term in the uniform spin susceptibility, but does not ac-
count for the full linear-inf dependence of(0,T)—
latter also contains a contribution from finite frequencies
The computation proceeds as follows. Because a static

energy is obviously independent ®f,. Although
the static polarization operatdi(q,0,T) is not known ex-
actly, it can be cast into an intergal fotfnconvenient for
further calculations. We have

‘ . m k2
% (q’O'T)_E 1—8ﬁ-
Z T~
‘ NN , 172
= 4 \ q |2 dz 1+z
\/ Xﬂ?k?) h kiz (1_< 12ke)?
cosif —— G4leke

4mT
(F2)

o Rewriting[ G]°= (1/2)3°G/ de? , summing overw, with the
-T T help of an identity TEwnG(k,wn)=nF(ek)—1/2 where
ne(z)=(e?"+1) ! is the Fermi distribution function, and

FIG. 10. Diagram 1 as the first-order self-energy insertion.  integrating by parts twice, we obtain
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5 T d el €) e o= [ x> = F8
X1static™ XO eknF(Ek)d—ek’ (F3) J(a,b)= o Xex+1e4(b+a2—x)+1' (Fg)

where x2P=m/ . The nonanalytic temperature dependencelhe last integral can be easily evaluated, and yields
of Sxistatic 1S due to the region ofy near Xg, where

2
I1(q,0,T) is singular. Expanding, as before,.,, nearq J(a'b)zm_ (F9)
=2ke and along the direction off nearly antiparallel tc etbrad_1q

because only thesg contribute to the nonanalyticity, we Substituting this result into EF7), introducingc=c and

obtain =
b=a?+b, and integrating ovec anda using polar coordi-
€krq= — €T V(0= 2Kp) +vpke(m— )2, (F4) nates, after straightforward calculations we obtain
where¢ is the angle betweeq andk. Substitutingey +q into « dbb 1
Eq. (F2) and rescaling variables, we obtain, for the effective Z=— f T e (F10
self-energy, -= e"—1 cosltb
Carrying out the last integration, we finally obtain
mUkg (2T 2)"?
S e €)= — ) f dxf dyf dz muU\?
¢ 273 cosh’-z SMisaic=Xo | 7 6—Fz, (F11)
XNe[ = e+ 4T(x+y?)]. (FS  wherez=1+=%a4.
Substituting this self-energy into E(F3), evaluating the de- Comparing this result with our 5Xq 2pF _ Sx9=0
rivative, and further rescaling variables, we obtain = (1/2)8x(0.T), given by Eq.(4.54, we see that they differ
mu\2 T in thatZ# 1. This discrepancy shows that the frequency de-
OX1static= —XSD(4— E—Z, (F6)  pendence of the polarization bubble does contribute to the
™ F nonanalytic piece in the thermal static uniform susceptibility.
where Note in passing that CM obtained=2 instead of 1
+ mr?/4. That would be the value & if J(a,b) was equal to
f d f dbf dc sinhb—c) SIO=C) 5 ab) F7) 1—the latter result is obtained if one neglects the depen-
e — a a, - . . . ._
\/E cosh(b—c) dence ofa andb in the integrand in Eq(F8), which physi

cally corresponds to a restriction with a strict backscattering:
and €k+q— — €k-
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