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Analytic theory of ground-state properties of a three-dimensional electron gas
with arbitrary spin polarization
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We present an analytic theory of the spin-resolved pair distribution functionsgss8(r ) and the ground-state
energy of an electron gas with an arbitrary degree of spin polarization. We first use the Hohenberg-Kohn
variational principle and the von Weizsa¨cker-Herring ideal kinetic-energy functional to derive a zero-energy
scattering Schro¨dinger equation forAgss8(r ). The solution of this equation is implemented within a Fermi-
hypernetted-chain approximation which embodies the Hartree-Fock limit and is shown to satisfy an important
set of sum rules. We present numerical results for the ground-state energy at selected values of the spin
polarization and forgss8(r ) in both a paramagnetic and a fully spin-polarized electron gas, in comparison with
the available data from quantum Monte Carlo studies over a wide range of electron density.
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I. INTRODUCTION

The homogeneous electron gas~EG! of fermions interact-
ing by thee2/r law and moving in a uniform neutralizing
background of positive charge has been for many deca
the basic reference system for calculations of electro
structure in condensed-matter physics.1,2 The extent to which
exchange and correlations compete with each other on v
ing the electron density has been a central issue going b
to the work of Bloch on spontaneous spin polarization due
exchange and to that of Wigner and Seitz on cohesion
simple metals. The many-body effective interactions acqu
a magnetic component arising from local deviations of el
tron density around any given electron, with the exchan
term being determined by the electrons carrying the sa
spin and the correlation term being to a large extent de
mined by the electrons of opposite spin. The role of s
fluctuations and their correlations thus are a subject of c
tinuing interest, on which theoretical progress starting fr
the basic Coulomb Hamiltonian has been very slow.

There is a broad consensus on the increasing importa
of spin polarization at strong coupling and of correlations
lowered dimensionality. This fact has been repeatedly e
phasized by quantum Monte Carlo~QMC! numerical studies,
starting from the early work of Ceperley and Alder.3 In par-
ticular, in the three-dimensional~3D! electron system thes
studies have revealed a continuous transition from a p
magnetic to a fully spin-polarized ground state occurr
with increasing coupling strength, before a first-order qu
tum phase transition to a ferromagnetic Wigner crys
occurs.4,5 While the 3D system appears to be most suitable
present for improvements and critical tests of analytic th
ries, it may be mentioned that studies of spin motions
structures of reduced dimensionality are being greatly stim
lated by expectations of developments in spin-based e
tronics and in quantum computing.6

The main purpose of the present work is the formulat
of a practicable analytic theory for spin correlations in t
3D EG and the comparison of its numerical predictions w
0163-1829/2003/68~15!/155112~9!/$20.00 68 1551
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the available QMC data. The fluid that we consider cons
of two spin components at fixed average densitiesns with
s5↑ or ↓ and the spin correlations are described by the p
distribution functionsgss8(r ). These are defined so that th
quantity 4pr 2ns8gss8(r )dr gives the average number o
electrons with spins8 lying within a spherical shell of radius
r and thicknessdr centered on an electron with spins. The
general strategy is to set up a Schro¨dinger-like differential
equation forAgss8(r ) with the help of the Hohenberg-Koh
variational principle7 and to solve it by a Fermi-hypernetted
chain type of approximation tailored to embody the Hartre
Fock limit as well as a set of sum rules for the tw
component Fermi fluid.

It may be mentioned at this point that there has qu
recently been a renewed interest in the study of the s
averaged pair distribution functiong(r ) in paramagnetic EG
models within a two-body scattering approach first propo
by Overhauser.8 In brief, a Schro¨dinger equation is set up to
evaluate particle-pair wave functions from whichg(r ) can
be built through sums over angular momentum and sp
Various approximations have been examined for embody
the many-body effects into the effective scatteri
potentials.8 In an alternative approach, which is fully deve
oped in the present work, we have instead sought to us
density-functional framework for a self-consistent evaluat
of g(r ) and of the effective scattering potential.9

The contents of the paper are briefly as follows. Sectio
presents a formally exact zero-energy scattering equation
the partial distribution functionsgss8(r ) and introduces the
approximations that we propose for the evaluation of
three main contributions to the scattering potential. Sect
III shows that these approximations satisfy the plasmon s
rule, the charge neutrality condition, and Kimball’s cusp co
dition. Our numerical results for the 3D EG are presented
Sec. IV. Finally, Sec. V summarizes our main conclusio
and gives suggestions for further work.

II. THEORY

We consider an inhomogeneous 3D fluid of electrons c
sisting of the two spin species with densitiesns(r ) in the
©2003 The American Physical Society12-1
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presence of external potentialsVs
ext(r … and of a uniform neu-

tralizing background. From the Hohenberg-Kohn theore7

the ground-state energy functional of the fluid can be writ
as

Egs@$ns~r !%#5Ts@$ns~r !%#1(
s

E d3rVs
ext~r !Dns~r !

1EH@$ns~r !%#1Exc@$ns~r !%#, ~1!

where Dns(r )5ns(r )2ns are the deviations of the spi
densities from their average values,Ts andExc are the ideal
kinetic energy and exchange-correlation energy function
andEH is the Hartree term given by

EH@$ns~r !%#5
1

2 (
s,s8

E d3rE d3r 8 v~ ur2r 8u!

3Dns~r !Dns8~r 8!, ~2!

with v(ur2r 8u)5e2/ur2r 8u. The presence of a neutralizin
background has been taken into account in these equat
Following Herring10 we decompose the kinetic-energy fun
tional into the sum of two terms,

Ts@$ns~r !%#5
\2

8m (
s

E d3r
u“ns~r !u2

ns~r !
1Tu@$ns~r !%#,

~3!

where the first term is the von Weizsa¨cker ‘‘surface’’ kinetic
energy11 andTu is itself defined by Eq.~3!.

This general formalism is adapted to the derivation
differential equations for the spin-resolved pair distributi
functions gss8(r ) in the homogeneousEG by viewing the
quantityns @gss8(r )21# as the distortion that an electron
the EG, located at positionr 50 with spins8, induces in the
density profiles of the electrons with spins.12 The appropri-
ate ground-state energy functional for this problem is
tained from Eqs.~1!–~3! by the formal replacements

m→m,

Vs
ext~r !→v~r !,

ns~r !→nsgss8~r !, ~4!

wherem5m/2 is the reduced mass of an electron pair. T
Euler-Lagrange equations for the spin-resolved pair fu
tions can now be obtained from the variational principle
Hohenberg and Kohn7 using the von Weizsa¨cker–Herring
ideal kinetic-energy functional as shown in Eq.~3!. With the
zero of energy taken at the chemical potential, the forma
exact differential equation forgss8(r ) reads

F2
\2

m
¹ r

21v~r !1vP
ss8~r !1VEKS

ss8~r !GAgss8~r !50. ~5!

Here, the ‘‘Pauli potential’’vP
ss8(r ) is defined by

vP
ss8~r !5

dTu@$ns~r !%#

dns~r !
U

ns(r )5ns gss8(r )

~6!
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andVEKS
ss8(r ) is the ‘‘excess’’ Kohn-Sham potential, which i

given by

VEKS
ss8~r !5vH~r !1vxc

ss8~r !5nE d3r 8v(ur2r 8u)

3@g~r 8!21#1
dExc@nss8~r !#

dnss8~r !
U

ns(r )5ns gss8(r )

,

~7!

with n5n↑1n↓ andg(r )5(s,s8(nsns8 /n2)gss8(r ).
Equations ~5!–~7! show that a zero-energy scatterin

theory approach to pair correlations in a quantum elect
fluid has a sound theoretical justification within the fram
work of the Hohenberg-Kohn variational principle. O
course, the functional dependence ofTu and of Exc on the
inhomogeneous electron densities is not known and we s
need to resort to appropriate calculational schemes and
proximations for the potentials introduced in Eqs.~6! and
~7!.

A possible way to handle the kinetic-energy term is
pass to a Kohn-Sham scheme by expanding the pair di
bution functions into Kohn-Sham two-particle scattering o
bitals. This was done in a series of previous studies,8,9 as
already mentioned in Sec. I, but the model scattering po
tials used there fail to satisfy the plasmon sum rule and th
fore do not account correctly for the behavior ofgss8(r ) at
large r. In the following we shall instead take advantage
the formal similarity between Eq.~5! and the Euler-Lagrange
equation which is adopted in the so-called Ferm
hypernetted-chain approximation~FHNC!. This is derived by
a Jastrow-Feenberg variational ansatz on the many-b
wave function13–15 and was used to treat two-compone
Fermi fluids in the case of electron-hole liquids and of liqu
metallic hydrogen.16 Such an approach will allow us to buil
into the theory some important sum rules and limiting beh
iors.

A. The Pauli potential

In the FHNC context the Pauli potential can be chosen
as to ensure that the Hartree-Fock limit is correctly embod
into the theory. An argument can be given to show that t
term in Eq.~5! becomes dominant at weak coupling by co
sidering how the various functionals scale under scaling
all lengths by a factorl. It was shown by Herring10 that Tu
scales by a factorl22, whereas Levy and Perdew17 have
shown that both the Hartree and the exchange energy f
tionals scale by a factorl21. Only the inequality
Ec@$ns(r )%#.l21Ec@$ns

(l)(r )%# could be proved17 for the
correlation energy functional under scaling, but it seems r
sonable to expect that on takingl5r s the correlation func-
tional would also become relatively negligible in the lim
r s→0. Herer s is the usual coupling strength parameter f
the EG, which in 3D is related to the average electron d
sity n by r saB5(4pn/3)21/3, with aB as the Bohr radius.

From the above argument it follows that Eq.~5! implies
2-2
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vP
ss8~r !5

\2

m

¹ r
2Agss8

HF
~r !

Agss8
HF

~r !
~8!

in the weak-coupling limitr s→0. In Eq.~8! gss8
HF (r ) are the

spin-resolved pair functions in the Hartree-Fock approxim
tion ~HF!, namely,

gss
HF~r !5129@ j 1~kFsr !/~kFsr !#2,

gss̄
HF

~r !51, ~9!

where s̄52s, j 1(x)5(sinx2xcosx)/x2 is a spherical
Bessel function, andkFs5kF@11sgn(s)z#1/3, with kF
5(3p2n)1/3 the usual Fermi wave number andz5un↑
2n↓u/n the degree of spin polarization.

Although the expression for the Pauli potential in Eq.~8!
is correct only for a weakly coupled Fermi fluid, we sha
assume in the following that it can yield useful results in o
self-consistent calculations of the pair distribution functio
with increasing coupling strength. This assumption will ha
to be tested through quantitative comparisons of our num
cal results with the available QMC data. As a broad qual
tive argument in support of this assumption we may rem
that the role of the statistics is expected to weaken with
creasing coupling strength at least in the spin-averaged
function18,19 and that only the von Weizsa¨cker term contrib-
utes to the kinetic-energy functional in the case of a char
Bose fluid.9

B. The excess Kohn-Sham potential

The FHNC expresses the potentialVEKS
ss8(r ) in Eq. ~5!,

which is the sum of the Hartree and of the exchan
correlation potential, as the sum of two effective p
interactions:13–16

VEKS
ss8~r !5WB

ss8~r !1dss8We
ss~r !. ~10!

The first term on the left-hand side of Eq.~10! descends from
the two-body correlation functionsuss8(r ) in the Jastrow-
Feenberg wave function and is therefore formally the sa
as for a binary boson mixture. The second term is instead
to the antisymmetry of the fermion many-body wave fun
tion.

As shown by Chakraborty16 in treating a binary fermion
mixture, the HNC closure yields foruss8(r ) the expression

uss8~r !5 lngss8~r !2@gss8~r !21#1css8~r !, ~11!

wherecss8(r ) are the direct correlation functions, which a
related togss8(r ) by the Ornstein-Zernike relations.20 We
introduce at this point the partial structure factorsSss8(q) of
the binary mixture, which in essence are the Fourier tra
forms of gss8(r ):

Sss8~q!5dss81Ansns8 E d3r @gss8~r !21#exp~2 iq•r !.

~12!
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We also introduce the Fourier transform ofWB
ss8(r )

(WB
ss8(q), say!. Minimization of the ground state energ

against arbitrary variations ofgss8(r ) yields with the help of
Eq. ~11! the expression

WB
ss8~q!52

«q

Ansns8

@Sss8~q!2dss8#2Vss8~q! ~13!

where «q5\2q2/(2m) are the single-particle kinetic ene
gies and the functionsVss8(q) are given by

Vss~q!5
«q

2ns
$211@Ss̄s̄

2
~q!1Sss̄

2
~q!#/D2~q!%,

Vss̄~q!52
«q

2Ansns̄

Sss̄~q!@Sss~q!1Ss̄s̄~q!#/D2~q!,

~14!

with

D~q!5Sss~q!Ss̄s̄~q!2Sss̄
2

~q!. ~15!

Equations~13!–~15! show how the effective bosonlike inter

actionsWB
ss8(r ) in Eq. ~10! are related in Fourier transform

to the spin-resolved pair distribution functions.
Turning to the second term on the left-hand side of E

~10!, the effective pair potentialWe
ss(r ) has a very compli-

cated expression within the FHNC.13–15However, in dealing
with a one-component electron fluid Kallio and Piilo21 have
proposed a simple and effective way to account for this c
sequence of the antisymmetry of the fermion wave functi
Their argument is immediately generalized to our tw
component Fermi fluid, and leads to the requirement tha
Fourier transform this term should cancel the effect
bosonlike interactionWB

ss(q) for parallel-spin electrons a
low coupling. That is,

We
ss~q!52 lim

r s→0
WB

ss~q!5
«q

2ns
@112 Sss

HF~q!#

3FSss
HF~q!21

Sss
HF~q!

G 2

. ~16!

Here,Sss
HF(q) is the Hartree-Fock structure factor, which

given by

Sss
HF~q!5H 3

4
~q/kFs!2

1

16
~q/kFs!3 for q<2kFs

1 for q>2kFs .
~17!

It is evident that the insertion of Eqs.~8!–~17! into Eq. ~5!
allows for a self-consistent calculation of the spin-resolv
pair distribution functions and of the effective electro
electron interactions. Before proceeding to the numerical
lution of this problem, we examine how the approxima
theory presented above fares in regard to some exact p
erties of pair correlations.
2-3
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III. SUM RULES AND LIMITING BEHAVIORS

In this section we show that the pair functions obtain
from the theory presented in Sec. II satisfy three exact pr
erties. These are the charge neutrality condition, the plas
sum rule, and Kimball’s cusp condition.

The asymptotic behavior of the effective potent
Vss8(r ) is first obtained from Eq.~5!, which can be rewritten
in the form

Vss8~r !5gss8~r !@v~r !1We
ss8~r !1vP

ss8~r !#

1@gss8~r !21#WB
ss8~r !1

\2

2m
u“Agss8~r !u2.

~18!

A careful analysis of this equation shows thatVss8(r )
→v(r )1dss8We

ss(r ) for r→`, and hence in Fourier trans
form we have from Eq.~16!,

Vss~q!→vq18p2\2/~3mkFs!,

Vss̄~q!→vq ~19!

for q→0, with vq54pe2/q2 in the 3D EG. The correspond
ing asymptotic behavior of the structure factors is obtain
from Eqs.~14!, which can be inverted to yield

Sss~q!5AAs̄s̄D22
Ass̄

2
D3

21@Ass1As̄s̄#D
,

Sss̄~q!5
Ass̄D3/2

A21@Ass1As̄s̄#D
, ~20!

whereAss8(q)5dss812 sgn(ss8)Ansns8 Vss8(q)/«q and
D(q)5(A↑↑A↓↓2A↑↓

2 )21/2.
From Eqs.~19! and ~20! we find

Sss8~q!→ f ss8~z!
q

kF
1gss8~z!

«q

2\vpl
~21!

for q→0, with vpl5(4pne2/m)1/2, gss(z)5@1
1sgn(s)z#, gss̄(z)5A12z2, and

f ss~z!5
3

8
A2@12sgn~s!z#/@11sgn~s!z#

~11z!21/31~12z!21/3
,

f ss̄~z!52
3

8
A 2

~11z!21/31~12z!21/3
. ~22!

These limiting expressions were earlier known to hold az
50 within the random phase approximation~see, e.g., work
of Gori-Giorgi et al.,22 and references given therein!. The
form of Eq. ~21! immediately ensures that the charge ne
trality condition is satisfied. This reads
15511
d
p-
on

l

d

-

Ansns8 E d3r @gss8~r !21#52dss8 ~23!

or Sss8(q→0)50 from Eq.~12!.
The form of Eq.~21! also ensures that the plasmon su

rule is satisfied. This reads

lim
q→0

S~q!5«q /~\vpl!, ~24!

whereS(q)5(s,s8(Ansns8/n)Sss8(q). Note that the self-
consistent Hartree approximation proposed by Davo
et al.8 does not lead to the fulfillment of the plasmon su
rule.

Before passing to discuss Kimball’s cusp condition23 we
would like to point out a series of important limiting beha

iors of Sss8(q) andWB
ss8(q) for q→`. Using Eq.~18! it is

possible to show thatVss̄(r→0)→gss̄(0)v(r ) and Vss(r
→0)→3\2ass /m2bss , where ass[gss(r→0)/r 2 ~see
below! andbss[WB

ss(r→0). In Fourier space this implies
that Vss̄(q→`)→gss̄(0)vq and Vss(q→`)→css /q4,
wherecss is a constant. Combining these asymptotic beh
iors with Eq.~20! it is possible to prove thatSss̄(q→`)→
28pAnsns̄gss̄(0)/(aBq4) and Sss(q→`)21→
22nscssm/(\2q6). Note that these asymptotic behaviors
Sss8(q) are in agreement with those reported in Ref. 2
Using Eqs.~13! and ~14! it is finally possible to show tha

WB
ss(q→`)→248p2e2ns̄gss̄

2 (0)/(aBq6) and WB
ss̄(q

→`)→212p(nscss1ns̄cs̄s̄)gss̄(0)/(aBq8).
The cusp condition as first demonstrated by Kimba23

relates the logarithmic derivative ofg↑↓(r ) in the origin to
the Bohr radius and is satisfied if the most singular part
the scattering potential between pairs of electrons with a
parallel spins forr→0 is the bare Coulomb potential. Thi
can be shown by using Eqs.~5! and ~10! and knowing that

WB
ss̄(q→`)}q28 @i.e., WB

ss̄(r ) is regular in the origin# and

vP
ss̄(r )5We

ss̄(r )[0.
Finally, the Pauli principle requirementgss(0)50 is en-

sured in our approach by the behavior of the Pauli poten
in the origin,vP

ss(r→0)→2 \2/(mr2). This behavior deter-
mines the power-law exponent in the distribution function
parallel-spin electrons,gss(r→0)}r 2, as can be proved di
rectly from Eq.~5!.

IV. NUMERICAL RESULTS

We turn to a presentation of our numerical results, wh
are obtained by solving Eq.~5! with the following self-
consistency cycle. We start with the trial choicegss8(r )

5gss8
HF (r ) andWB

ss8(r )50, and find the effective potential
Vss8(r ) by means of Eq.~18! and hence the structure facto
Sss8(q) via Eq. ~20!. At this point we can calculate new

values forgss8(r ) and forWB
ss8(r ) by taking Fourier trans-

forms and using Eq.~13!. This procedure is repeated unt
self-consistency is achieved. The computational time ty
cally needed to obtaingss8(r ) at each value ofr s andz is a
few minutes on a PC with a Pentium IV/1.4 GHz process

We have calculated in this way the spin-resolved pair d
2-4
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tribution functions of a 3D electron gas forr s up to 100. The
main results of our work are shown in Figs. 1–8.

In Fig. 1 we show that our results forg(r )5@g↑↑(r )
1g↑↓(r )#/2 in the paramagnetic EG atr s51, 5, 10, and 20
are in excellent agreement with the QMC data of Ortizet al.4

In the same range our results forg(r ) are in excellent agree
ment with those of Kallio and Piilo.21 In Figs. 2 and 3 we
show that for the same cases our results for the spin-reso
pair functionsg↑↑(r ) andg↑↓(r ) are also in excellent agree

FIG. 1. The pair distribution functiong(r ) in a paramagnetic 3D
EG at r s51, 5, 10, and 20~from top to bottom at lowr ) as a
function of r /(r saB). The results of the present work~full lines! are
compared with QMC data of Ortizet al. ~Ref. 4! ~dots!.

FIG. 2. The parallel-spin pair distribution functiong↑↑(r ) in a
paramagnetic 3D EG atr s51,5,10, and 20 as a function o
r /(r saB). The results of the present work~full lines! are compared
with QMC data of Ortizet al. ~Ref. 4! ~dots!. The curves atr s

55, 10, and 20 have been shifted upwards for clarity by 0.4,
and 1.2, respectively.
15511
ed

ment with the QMC data of Ortizet al.4 To the best of our
knowledge theoretical results of similar quality have n
been reported in the literature from an approach which is f
of input and/or fitting parameters. Figure 4 shows a comp
son of the present results atr s510 with those previously
obtained by us8 with a self-consistent Hartree approximatio

,

FIG. 3. The antiparallel-spin pair distribution functiong↑↓(r ) in
a paramagnetic 3D EG atr s51, 5, 10, and 20 as a function o
r /(r saB). The results of the present work~full lines! are compared
with QMC data of Ortizet al. ~Ref. 4! ~dots!. The curves atr s

55, 10, and 20 have been shifted upwards by 0.4, 0.8, and
respectively.

FIG. 4. The averageg(r ) and spin-resolved pair functions in
paramagnetic 3D EG atr s510 as a function ofr /(r saB). The re-
sults of the present work~full lines! are compared with our previou
Hartree results~Ref. 8! ~dashes! and with QMC data of Ortizet al.
~Ref. 4! ~dots!. The results forg↑↑(r ) have been shifted upwards b
0.4 and that forg↑↓(r ) by 0.8.
2-5
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In Fig. 5 we compare our results for the paramagnetic
at r s540 and 100 with the QMC data of Ortizet al.4 and
with those obtained more recently by Zonget al.5 As dis-
cussed by the latter authors, these two QMC approache
essentially the same but involve some technical differen
In particular, the study reported by Zonget al.5 includes
backflow and three-body terms in the wave function, a
uses a novel numerical technique termed ‘‘twisted avera

FIG. 5. The pair distribution functiong(r ) in a paramagnetic 3D
EG atr s540 and 100 as a function ofr /(r saB). The results of the
present work~full lines! are compared with QMC data of Orti
et al. ~Ref. 4! ~dots! and of Zonget al. ~Ref. 5! ~empty boxes!. The
curves atr s5100 have been shifted upwards by 0.4.

FIG. 6. The pair distribution functiong(r ) in the fully spin-
polarized 3D EG atr s51, 5, 20, 40, and 100 as a function o
r /(r saB). The results of the present work~full lines! are compared
with QMC data of Ortizet al. ~Ref. 4! ~dots! and of Zonget al.
~Ref. 5! ~empty boxes!. The curves atr s55, 20, 40, and 100 have
been shifted upwards by 0.4, 0.8, 1.2, and 1.6, respectively.
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are
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d
d

boundary conditions’’ which allows a sizable reduction
finite-size errors.25 The reader is referred to Ref. 5 for detail
These differences are not expected to change significa
the results of Ortizet al.4 for r s below 20, but, as is clea
from Fig. 5, the differences between the two QMC stud
become significant at largerr s . Our results lie somewhere in
between the two sets of QMC data at larger s . From the
theoretical point of view it is important to remark that
FHNC-type calculations at strong coupling the induc

WB
ss8(q) interactions should be corrected by the addition

three-body correlations and elementary-diagram~or ‘‘bridge
functions’’! contributions.13–15

Further comparisons with QMC data on pair distributi
functions can be made for the fully spin-polarized EGz
51). This is done in Figure 6 atr s51, 5, 20, 40 and 100.
The same inaccuracies in the theory that we have expose

FIG. 7. Top panel~momentum space!: the spin-dependent effec

tive interactionnVeff
ss8(q) ~in units of e2/aB) in a 3D EG atr s

510 and 20 as a function ofqrsaB . Bottom panel~real space!: the

spin-dependent effective interactionVeff
ss8(r ) ~in units of \2kF

2/m)
in a 3D EG atr s510 and 20 as a function ofr /(r saB).
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FIG. 8. The Pauli potentialvP
ss8(r ) ~in units of \2kF

2/m) as a
function of r /(r saB). With this choice of units the Pauli potentia
has no explicit dependence onr s .
15511
the paramagnetic EG at strong coupling are also foundz
51.

Finally, in Fig. 7 we report the spin-dependent effecti

electron-electron interaction Veff
ss8(r )5v(r )1WB

ss8(r )

1dss8We
ss(r ) and its Fourier transformVeff

ss8(q), as it
emerges from our self-consistent calculations on a 3D
both in the paramagnetic and in the ferromagnetic state.
attractive part of the parallel-spin effective interaction dee
ens at increasedz, as is physically expected. The Pauli p
tential and its dependence onz are shown in Fig. 8.

A. Ground-state energy

The ground-state energy«g ~per electron! of the EG at
each value ofr s and z can be calculated by means of a
integration over the coupling constantl,

«g5«01
1

2E0

1dl

l E d3q

~2p!3
vq

(l)@Sl~q!21# ~25!
TABLE I. Energy of the 3D EG in Ry/electron. CA/QMC from Ceperley and Alder~Ref. 3!, OHB/QMC from Ortiz, Harris, and Ballone
~Ref. 4! ZLC/QMC from Zong, Lin, and Ceperley~Ref. 5! STLS from Singwi, Tosi, Land, and Sjo¨lander~Ref. 26! and TI from Tanaka and
Ichimaru ~Ref. 27!.

r s Various calculations z50.0 z50.333 z50.667 z51.0

1 CA/QMC 1.174
OHB/QMC 1.181 2.294

Present work 1.17810 1.29786 1.66346 2.29753
STLS 1.1704 1.2885 1.6505 2.2849

TI 1.167 2.281

5 CA/QMC 20.1512 20.1214
Present work 20.14974 20.14616 20.13557 20.11846

STLS 20.1511 20.1483 20.1393 20.1235
TI 20.1544 20.1267

10 CA/QMC 20.107 20.101
OHB/QMC 20.106 20.101

Present work 20.10562 20.10488 20.10277 20.09957
STLS 20.1058 20.1055 20.1043 20.1020

TI 20.1084 20.1046

20 CA/QMC 20.063 20.0625
OHB/QMC 20.063 20.0625

Present work 20.06265 20.06250 20.06210 20.06153
STLS 20.0623 20.0623

TI 20.0642 20.0642

40 ZLC/QMC 20.03523748(60) 20.03523295(67) 20.03520539(67) 20.03513483(72)
Present work 20.03470 20.03467 20.03459 20.03450

STLS 20.0342 20.0345

50 ZLC/QMC 20.02889900(62) 20.02889962(68) 20.02888835(62) 20.02884983(81)
OHB/QMC 20.029 20.0288

Present work 20.02845 20.02844 20.02839 20.02834
STLS 20.0280 20.0282

TI 20.0290 20.0293
2-7
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directly from the structure factorSl(q) calculated with in-
teraction vq

(l)54pe2l/q2. Here «053@(11z)5/31(1
2z)5/3#/(10a2r s

2) Ry is the ideal-gas kinetic energy witha
5(9p/4)21/3 andS(q) has been defined immediately belo
Eq. ~24!. In fact, the integration overl is carried out by
integration overr s . The second term in Eq.~25! is the
exchange-correlation energy, from which the correlation
ergy is obtained by subtracting the expression for the
change energy«x523@(11z)4/31(12z)4/3#/(4par s) Ry.

We have calculated the ground-state energy forz50,
0.333, 0.667, and 1 over the range 1<r s<50. The results
are reported in Table I in comparison with QMC data fro
Ceperley and Alder,1 Ortiz et al.,4 and Zonget al.5 The table
also includes other theoretical results obtained in the s
consistent dielectric theory of Singwiet al.26 and in the
modified-convolution approximation of Tanaka an
Ichimaru.27

It is seen from Table I that the present theoretical
proach yields fairly accurate values of the ground-state
ergy even atr s.50, even though the details of the pair di
tribution function are becoming quantitatively inaccurate
we have already seen in Figs. 5 and 6. Much higher accu
is needed for theoretical predictions on the quantum ph
transition from the paramagnetic phase to the fully sp
polarized phase, since from the QMC study of Zonget al.5

the difference in energy between these two phases ar s
5100 is only about 431026 Ry in favor of the latter. A
continuous transition between these two states seems to
for r s.50–70 according to the QMC data. In contrast, t
theoretical approaches of Singwiet al.26 and of Tanaka and
Ichimaru27 suggest that the magnetically ordered state m
be the favored one already atr s.40–50.
,

m
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n-
.

ex
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i-
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V. SUMMARY AND DISCUSSION

In summary, we have presented in this work a theoret
study of the spin-resolved pair distribution functions and
the ground-state energy of the 3D electron gas. Our appro
yields numerical results of good quality in the regime
weak- and intermediate-coupling strength.

Improvements of the theory will be necessary for a qu
titative study of the magnetic phase diagram and for an
tension to electron fluids of lower dimensionality. As w
have already commented in the main text, the kinetic-ene
functional may be treated more accurately by recourse to
analysis of the pair functions into Kohn-Sham pa
orbitals.8,9 Preliminary calculations indicate that an appr
ciable improvement can be obtained in this way in the val
of the ground-state energy at small to intermediate coup
over the values reported in Table I. At larger values of t
coupling we expect that a sizable improvement on the FH
approximation to the effective electron-electron interactio
can only arise from the inclusion of contributions from th
so-called elementary diagrams and from three-bo
correlations.15 Better quantitative accuracy can be expec
to be achieved by such means when the self-consistenc
quirements on the theory are extended to include the ther
dynamic sum rules on the compressibility and spin susce
bility of the electron fluid.28
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