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We present an analytic theory of the spin-resolved pair distribution functigngr) and the ground-state
energy of an electron gas with an arbitrary degree of spin polarization. We first use the Hohenberg-Kohn
variational principle and the von Weizd@r-Herring ideal kinetic-energy functional to derive a zero-energy
scattering Schidinger equation for/g,,(r). The solution of this equation is implemented within a Fermi-
hypernetted-chain approximation which embodies the Hartree-Fock limit and is shown to satisfy an important
set of sum rules. We present numerical results for the ground-state energy at selected values of the spin
polarization and fog,,,(r) in both a paramagnetic and a fully spin-polarized electron gas, in comparison with
the available data from quantum Monte Carlo studies over a wide range of electron density.
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I. INTRODUCTION the available QMC data. The fluid that we consider consists
of two spin components at fixed average densitigswith
The homogeneous electron g&s) of fermions interact- o =1 or | and the spin correlations are described by the pair
ing by thee?r law and moving in a uniform neutralizing distribution functionsg,,(r). These are defined so that the
background of positive charge has been for many decadé/antity 4mr°n,.g,, (r)dr gives the average number of
the basic reference system for calculations of electroni(,eIeCtronS with spir” lying within a spherical shell of radius

structure in condensed-matter physiésThe extent to which r and thicknessir .centered on an ?'9.0”0” .W'th Spin The
g_‘deneral strategy is to set up a Sdiirger-like differential

_excfgr;angri} atnd c%rrela_'?m;s c%mpete W'tht e?(_:h other on vbar quation for\/g,,(r) with the help of the Hohenberg-Kohn
Ing the electron density has been a central ISSue going bag, iational principlé and to solve it by a Fermi-hypernetted-

to the work of Bloch on spontaneous spin polarization due tq,in type of approximation tailored to embody the Hartree-
exchange and to that of Wigner and Seitz on cohesion igck limit as well as a set of sum rules for the two-
simple metals. The many-body effective interactions acquirgomponent Fermi fluid.

a magnetic component arising from local deviations of elec- It may be mentioned at this point that there has quite
tron density around any given electron, with the exchangeecently been a renewed interest in the study of the spin-
term being determined by the electrons carrying the samaveraged pair distribution functigg(r) in paramagnetic EG
spin and the correlation term being to a large extent determodels within a two-body scattering approach first proposed
mined by the electrons of opposite spin. The role of spindy Overhauset.In brief, a Schidinger equation is set up to
fluctuations and their correlations thus are a subject of conévaluate particle-pair wave functions from whiglr) can
tinuing interest, on which theoretical progress starting fromP€ built through sums over angular momentum and spin.
the basic Coulomb Hamiltonian has been very slow. Various approximations have been examined for embodying

There is a broad consensus on the increasing importand8€ ma}gsy-body Ieffect§ into theh eﬁ(.acr:i\'/ef ﬁcatterir;g
of spin polarization at strong coupling and of correlations inPotentials. In an alternative approach, which is fully devel-

lowered dimensionality. This fact has been repeatedly em(-)ped. in the present work, we have msteaq sought to use a
phasized by quantum Monte Cal@MC) numerical studies density-functional framework for a self-consistent evaluation
starting from the early work of Ceperley and Alddn par- of g(r) and of the effective scattering potentfal.

ticular, in the three-dimension&BD) electron system these The contents of the paper are briefly as foII_ows. Sect_ion I
studies have revealed a continuous transition from a paraPresemS a formally exact zero-energy scattering equation for

magnetic to a fully spin-polarized ground state occurringthe partial distribution functiong,,,(r) and introduces the

with increasing coupling strength, before a first-order quangpproxmatlons that we propose for the evaluation of the

tum phase transition to a ferromagnetic Wigner Crystalthree main contributions to the scattering potential. Section

occurs?® While the 3D system appears to be most suitable aw shows that these approximafci_ons SatiSfY the [?Iasmon sum
present for improvements and critical tests of analytic theo—“.".e’ the charge n(_autrahty condition, and Kimball's cusp con-
ries, it may be mentioned that studies of spin motions ind't'on' Our.numencal results for the 3D EG are presentqd n
structures of reduced dimensionality are being greatly stimu-sec' I.V' Finally, Sgc. V summarizes our main conclusions
lated by expectations of developments in spin-based ele(f’lnd gives suggestions for further work.

tronics and in quantum computiig. Il. THEORY

The main purpose of the present work is the formulation '
of a practicable analytic theory for spin correlations in the We consider an inhomogeneous 3D fluid of electrons con-

3D EG and the comparison of its numerical predictions withsisting of the two spin species with densitieg(r) in the
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presence of external potentiaf§*(r) and of a uniform neu- and ‘E’;{'S(r) is the “excess” Kohn-Sham potential, which is
tralizing background. From the Hohenberg-Kohn thedrem given by

the ground-state energy functional of the fluid can be written

as

VED) =uun 4o (0 =n | &rullr-r)
Bl i, (=Tdin,(0)1+ 3 | @rveinan, )
7 , OExd Ny (1) ]
FELN MU+ ELNMN, @ o) —
where An(r)=n,(r)—n, are the deviations of the spin

densities from their average valuds, andE, are the ideal @)

kinetic energy and exchange-correlation energy functionals, . 2
andEy is the Hartree term given by with n=n, +n; andg(r) =2, ,/(NeNo' /N7 Yo (). .
Equations (5)—(7) show that a zero-energy scattering

n(T(r)=n(T g(T(T,(r)

1 theory approach to pair correlations in a quantum electron
Exl{n,(N}=5 > f d3ff dr’ v(|r—r’|) fluid has a sound theoretical justification within the frame-
a0’ work of the Hohenberg-Kohn variational principle. Of
X An,(r)An,.(r'), 2) course, the functional dependenceTof and of E,. on the

_ ) ) ) .. inhomogeneous electron densities is not known and we shall
with v(|r—r’[)=e?/|[r—r'|. The presence of a neutralizing need to resort to appropriate calculational schemes and ap-

background has been taken into account in these equatiorﬁ-oximations for the potentials introduced in E@§) and
Following Herring® we decompose the kinetic-energy func- 7).

tionalinto the sum of two terms, A possible way to handle the kinetic-energy term is to
72 |Vn,(r)|? pass to a Kohn-Sham scheme by expanding the pair distri-
Td{n,(r)}]= am > | B —Z—+T,[{n, ()}, bution functions into Kohn-Sham two-particle scattering or-
Mo No(r) bitals. This was done in a series of previous stuflieas

3 already mentioned in Sec. |, but the model scattering poten-

where the first term is the von Weigser “surface” kinetic  tials used there fail to satisfy the plasmon sum rule and there-
energy* and T, is itself defined by Eq(3). fore do not account.correctly for .the behaviorgf,. (r) at

This general formalism is adapted to the derivation oflarger. In the following we shall instead take advantage of
differential equations for the spin-resolved pair distributionthe formal similarity between EgS) and the Euler-Lagrange
functionsg,,(r) in the homogeneou€G by viewing the ~€quation which is adopted in the so-called Fermi-
quantityn,, [g,,(r)— 1] as the distortion that an electron in hypernetted-chain approximati¢RHNC). This is derived by
the EG, located at position=0 with spinc’, induces in the @ Jastrow-Feenberg variational ansatz on the many-body
density profiles of the electrons with spin2 The appropri- Wave functiod®** and was used to treat two-component
ate ground-state energy functional for this problem is obFermi fluids in the case of electron-hole liquids and of liquid

tained from Eqs(1)—(3) by the formal replacements metallic hydrogert® Such an approach will allow us to build
into the theory some important sum rules and limiting behav-
m— pu, iors.
VI —u(n),

A. The Pauli potential

NG (r)—N,Gue (1), (4) In the FHNC context the Pauli potential can be chosen so

h —m/2 is the reduced ¢ | i Th as to ensure that the Hartree-Fock limit is correctly embodied
where p=m/2 is the reduced mass of an electron pair. Th&, the theory. An argument can be given to show that this
Euler-Lagrange equations for the spin-resolved pair funcferm in Eq.(5) becomes dominant at weak coupling by con-

'lcjlor;]s an now (ljaeKoer?tain(_ad frcr)]m the V\;a\/r@g‘al pl_r|inci.ple Ofsidering how the various functionals scale under scaling of
ohenberg and Kofinusing the von Weizexer—Herring 5 |engihs by a factok. It was shown by Herrin§ that T,

ideal kinetic-energy functional as shown in Eg). With the scales by a factoh 2, whereas Levy and Perd&Whave

Zero of_energ){ taken a_t the chemical potential, the formallyshown that both the Hartree and the exchange energy func-
exact differential equation feg,,(r) reads tionals scale by a factorn™!. Only the inequality
E[{n,(N}1>A"1EL{nM(r)}] could be provet for the
V0,6 (r)=0. (5) correlation energy functional under scaling, but it seems rea-
sonable to expect that on taking=rg the correlation func-
Here, the “Pauli potential"vg"'(r) is defined by tional would a[so become relati\{ely negligible in the limit
r<—0. Hererg is the usual coupling strength parameter for
the EG, which in 3D is related to the average electron den-
(6)  sity n by rsag=(4mn/3)" 3 with ag as the Bohr radius.
Ne(N)=N; 9yq(F) From the above argument it follows that H§) implies

#2 , ,
— mV,2+v(r)+vg" () +VZy(r)

TN}
v (=50 ()
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o 52 VrZ,/g:(FT,(r) We ?.lSO introduce the Fourier transform M/g"'(r)
vp UFE? ®  (W3”'(q), say. Minimization of the ground state energy
Yoo (T) against arbitrary variations @f, . (r) yields with the help of

in the weak-coupling limit;—0. In Eq.(8) g?i,(r) are the Eq. (11) the expression

spin-resolved pair functions in the Hartree-Fock approxima-

’ &
tion (HF), namely, WE7'(9)= = —=[S,0(4) = 8ppr 1= Voor(q) (13)
- . ) yngn,.
9o =1=9]a(ke o)/ (Keor) 1%, where e,=7%2g%/(2m) are the single-particle kinetic ener-
e gies and the function¥,,/(q) are given by
9,,(r=1, C)
p - i - : Vo) = 2 {— 14 [SE(q) + S2(q) J/A2
where o=—0, j;(x)=(sinx—xcosx)/x> is a spherical oo(Q) ZnU{ [S,o(a)+S, A ]/A%(a)},
Bessel function, andkg,=kg[1+sgn@)Z]*? with kg
=(3m?n)*? the usual Fermi wave number ang=|n; e
—n|/n the degree of spin polarization. V,o(Q)=— d 780;(q)[sw(q)+qu)]/A2(q),
Although the expression for the Pauli potential in E8). 2yngN;
is correct only for a weakly coupled Fermi fluid, we shall (14)

assume in the following that it can yield useful results in ouryith
self-consistent calculations of the pair distribution functions
with increasing coupling strength. This assumption will have A(g)= Saa(Q)SE(Q)—SZ_(Q)- (15)
to be tested through quantitative comparisons of our numeri- 77
cal results with the available QMC data. As a broad qualitaEquations(13)—(15) show how the effective bosonlike inter-
tive argument in support of this assumption we may remarkactionswg” (r) in Eq. (10) are related in Fourier transform
that the role of the statistics is eXpeCted to weaken with into the 5pin-reso|ved pair distribution functions.
creasing coupling strength at least in the spin-averaged pair Turning to the second term on the left-hand side of Eq.
function®*°and that only the von WeiZsker term contrib- (1), the effective pair potentidv®’(r) has a very compli-
utes to the kinetic-energy functional in the case of a chargegdgteq expression within the FHN]%/__ls However, in dealing
Bose fluid® with a one-component electron fluid Kallio and Piiidhave
proposed a simple and effective way to account for this con-
B. The excess Kohn-Sham potential sequence of the antisymmetry of the fermion wave function.
" , Their argument is immediately generalized to our two-
The FHNC expresses the potentlfys(r) in Ed. (5., component Fermi fluid, and leads to the requirement that in
which is the sum of the Hartree and of the exchangerqrier transform this term should cancel the effective
correlation potential, as the sum of two effective PaIMyo0s0nlike interactionVg’(q) for parallel-spin electrons at

- L 13-16
interactions: low coupling. That is,

29 (1) =WE7 (1) + 8,5 WI(1). 10 e

A=W (0 - o W (q) == lim WE"(9)=5--[1+2 ()]

The first term on the left-hand side of E4.0) descends from rs—0 o

the two-body correlation functions,,(r) in the Jastrow- HE

Feenberg wave function and is therefore formally the same Sro(@)—1

as for a binary boson mixture. The second term is instead due SA())

to the antisymmetry of the fermion many-body wave func-

tion. Here, SF(q) is the Hartree-Fock structure factor, which is
As shown by Chakrabort{ in treating a binary fermion given by

mixture, the HNC closure yields far,, (r) the expression

2
(16)

3 1
—(a/Key) — 7=(al/ke,)®  for =2k,
U (N =INGr ()~ (G (N =11+ Coor(D), (1) giF(qy—{ 4 VKre) ™ 76 0/keo)” for a=2ke
wherec,,,(r) are the direct correlation functions, which are 1 forq=2ke, .
related tog,,(r) by the Ornstein-Zernike relatiod8.We (17)
introd_uce at t_his point the p_artial structure factS[‘,gr(q) of It is evident that the insertion of Eq&8)—(17) into Eq. (5)
the binary mixture, which in essence are the Fourier transallows for a self-consistent calculation of the spin-resolved
forms ofg,,(r): pair distribution functions and of the effective electron-
electron interactions. Before proceeding to the numerical so-
. lution of this problem, we examine how the approximate
_ Il _ _ia.
Se0! (@)= Gggr T NNNGr f d*r[gq (1) —1lexp(=ig-r). theory presented above fares in regard to some exact prop-
(12 erties of pair correlations.
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Ill. SUM RULES AND LIMITING BEHAVIORS

In this section we show that the pair functions obtained

PHYSICAL REVIEW B68, 155112 (2003

(23

VNG J dsr[gaa’(r)_l]:_ao'o"

from the theory presented in Sec. Il satisfy three exact propg, g .(q—0)=0 from Eq.(12).

erties. These are the charge neutrality condition, the plasmon

sum rule, and Kimball's cusp condition.

The asymptotic behavior of the effective potential
V. (r) is first obtained from Eq(5), which can be rewritten

in the form
Vo (1) =G (N[0 () + W (1) +087 ()]

, h?
+[g0'0"(r)_1]wgg (r)+ ﬂ|v Vgoo’(r)|2'
(18

A careful analysis of this equation shows thdf.,/(r)

—v(r)+6,,Wg’(r) for r—o, and hence in Fourier trans-

form we have from Eq(16),
Voo(@)—vq+872h% (3mke,),

VUJQ)HUq (19

for g—0, withv,=4me?/q? in the 3D EG. The correspond-

The form of Eq.(21) also ensures that the plasmon sum
rule is satisfied. This reads

lim S(Q) =&/ (),
q—0

whereS(q) =2, ,/(vVn,n,/n)S,,(q). Note that the self-
consistent Hartree approximation proposed by Davoudi
et al® does not lead to the fulfilment of the plasmon sum
rule.

Before passing to discuss Kimball’s cusp condiffowe
would like to point out a series of important limiting behav-
iors of S,/ (q) and ‘B’"'(q) for gq—c. Using Eq.(18) it is
possible to show tha¥ ,;(r—0)—g,,(0)v(r) andV ,(r
—0)—3#%a,,/m-b,,, wherea,,=g,,(r—0)/r?> (see
below) andb,,=WZ?(r—0). In Fourier space this implies
that V,(4—%)—0,s(0)vg and V,,(q—*)—c,,/q*
wherec,,, is a constant. Combining these asymptotic behav-
iors with Eq.(20) it is possible to prove the,(g—»)—
—8m\n,N;0,,(0)/(8sq")  and S, (q—®)-1—
—2n,¢,,m/ (%20°). Note that these asymptotic behaviors of
S,.(q) are in agreement with those reported in Ref. 24.

(24)

ing asymptotic behavior of the structure factors is obtainquSing Egs.(13) and (14) it is finally possible to show that

from Eqgs.(14), which can be inverted to yield

) Ai;Ag
SU'O' = EA - ’
(@ 2+[A,,+AL]A
A 7A3/2
S,5(q)= 27 , 20
A9 V2+[A,,+A]1A 20

whereA,,/(q) = 6y, +2 sgnea’)Vyn,N, Ve (d)/eq and
A(Q)=(Ap A, —AF) M2
From Egs.(19) and(20) we find

Sy (D) F g (D) o+ G (D) (21)
! q oo’ k|: go-o—, Zﬁwm
for g—0, with wy=(4mne?/m)*? g, (0)=[1
+sgn(©){], 9,5({)=v1-{% and
f (g)zg\/2[1—sgr<o>§]/[1+sgr(o>g]
77 8 (1+§)*l/3+(1_§)71/3 !
f ——§\/ 2 (22)
a';(g)_ 8 (1+§)71/3+(1_§)71/3.

These limiting expressions were earlier known to hold at

=0 within the random phase approximati(see, e.g., work
of Gori-Giorgi et al,?? and references given thergirThe

Wg"(qﬂoo)e—48772e2n;g(2m%0)/(a3q6) and
—0)— = 12m(N,Cpr+ NyCry) 9ol 0)/ (@B0°).

The cusp condition as first demonstrated by Kinfall
relates the logarithmic derivative @f; (r) in the origin to
the Bohr radius and is satisfied if the most singular part of
the scattering potential between pairs of electrons with anti-
parallel spins for —0 is the bare Coulomb potential. This
can be shown by using Eg&) and(10) and knowing that
WE7(q—)=q 8 [i.e., W3“(r) is regular in the origihand
vp’(r)=Wg’(r)=0.

Finally, the Pauli principle requirement,,(0)=0 is en-
sured in our approach by the behavior of the Pauli potential
in the origin,v 37(r —0)— 2 #2/(mr?). This behavior deter-
mines the power-law exponent in the distribution function of
parallel-spin electrongy,,(r —0)xr?2, as can be proved di-
rectly from Eq.(5).

Wg“(q

IV. NUMERICAL RESULTS

We turn to a presentation of our numerical results, which
are obtained by solving Eq5) with the following self-
consistency cycle. We start with the trial choigg,(r)
=g, (r) andwg”'(r)=0, and find the effective potentials
V. (r) by means of Eq(18) and hence the structure factors
S,.(Q) via Eg. (20). At this point we can calculate new
values forg,,(r) and forwg”'(r) by taking Fourier trans-
forms and using Eq(13). This procedure is repeated until
self-consistency is achieved. The computational time typi-
cally needed to obtaig,,(r) at each value ofg and{ is a

form of Eq. (21) immediately ensures that the charge neu-few minutes on a PC with a Pentium IV/1.4 GHz processor.

trality condition is satisfied. This reads

We have calculated in this way the spin-resolved pair dis-

155112-4
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OHBQMC - OHB/QMC
| Plresent worlf 0 , . \ Plresent wor||<
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3

r/(rs ag) v/(rs ag)

FIG. 1. The pair distribution functiog(r) in a paramagnetic 3D FIG. 3. The antiparallel-spin pair distribution functign (r) in
EG atrg=1, 5, 10, and 2Qfrom top to bottom at lowr) as a  a paramagnetic 3D EG at=1, 5, 10, and 20 as a function of
function ofr/(r.ag). The results of the present wotkill lines) are  r/(rsag). The results of the present wofkull lines) are compared
compared with QMC data of Ortiet al. (Ref. 4) (dots. with QMC data of Ortizet al. (Ref. 4 (dotg. The curves atg

=5, 10, and 20 have been shifted upwards by 0.4, 0.8, and 1.2,
tribution functions of a 3D electron gas fog up to 100. The  respectively.
main results of our work are shown in Figs. 1-8.

In Fig. 1 we show that our results fag(r)=[g;;(r) ment with the QMC data of Ortiet al.* To the best of our
+g;,(r)]/2 in the paramagnetic EG at=1, 5, 10, and 20 knowledge theoretical results of similar quality have not
are in excellent agreement with the QMC data of Oetial*  been reported in the literature from an approach which is free
In the same range our results f@fr) are in excellent agree- of input and/or fitting parameters. Figure 4 shows a compari-
ment with those of Kallio and Piilé! In Figs. 2 and 3 we son of the present results a{=10 with those previously
show that for the same cases our results for the spin-resolvetbtained by udwith a self-consistent Hartree approximation.
pair functionsg,(r) andg; (r) are also in excellent agree-

2 T T T T T
T T T T T
gnuln
15 b
grr(r)
= 1
=
& 90
1}
re=1
0.5 ]
05 | 4
OHB/QMC
OHB/QMC - Present work
Present work Hartree -------
0 1 1 1 1 1 0 Il 1 1 1
0 0.5 1 1.5 2 25 3 0 05 1 1.5 2 25 3
t/rs ag) r/(r ag)
FIG. 2. The parallel-spin pair distribution functiay,(r) in a FIG. 4. The averagg(r) and spin-resolved pair functions in a

paramagnetic 3D EG at;=1,5,10, and 20 as a function of paramagnetic 3D EG at=10 as a function of/(rsag). The re-
r/(rsag). The results of the present wo(full lines) are compared  sults of the present worfull lines) are compared with our previous
with QMC data of Ortizet al. (Ref. 4 (dot9. The curves at Hartree result¢Ref. 8 (dashesand with QMC data of Ortizt al.
=5, 10, and 20 have been shifted upwards for clarity by 0.4, 0.8(Ref. 4 (dots. The results fog,,(r) have been shifted upwards by
and 1.2, respectively. 0.4 and that foig; (r) by 0.8.
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0.04 T T too.
mE
0.035 ¥ E;O: s i
T, 8=,
T, ¢=0,
0.03 |
0.025 |
= 8, 002
(=] >"’
0.015
0.01 |
0.005
02 OHB/QMC
ZLC/IQMC T
Present work 0 L L 1
0 1 1 1 1 0 2 4 6 8 1
0 0.5 1 15 2 25 3 qr.ag
r(rs ag)
0.2 T T T
FIG. 5. The pair distribution functiog(r) in a paramagnetic 3D " %:?;
EG atry=40 and 100 as a function of (rag). The results of the 0.15 | % %:8,
present work(full lines) are compared with QMC data of Ortiz Tt
et al. (Ref. 4 (dotg and of Zonget al. (Ref. 5 (empty boxes The 01 | . &0,
curves atr ;=100 have been shifted upwards by 0.4.
0.05 - .
In Fig. 5 we compare our results for the paramagnetic EG =
at r¢=40 and 100 with the QMC data of Ortiet al* and B ) SIS N——
with those obtained more recently by Zoegal® As dis- >
cussed by the latter authors, these two QMC approaches ar -0.05 .
essentially the same but involve some technical differences.
In particular, the study reported by Zore al® includes 0.1 - y
backflow and three-body terms in the wave function, and g
uses a novel numerical technique termed “twisted averaged 015 '1.‘ ! y
3.5 T T : . . 0.2 1 - 1 1 1
0 1 2 3 4 5

a(n

FIG. 6. The pair distribution functiog(r) in the fully spin-
polarized 3D EG atr =1, 5, 20, 40, and 100 as a function of
r/(rsag). The results of the present woffull lines) are compared
with QMC data of Ortizet al. (Ref. 4 (dotg and of Zonget al.
(Ref. 5 (empty boxes The curves at =5, 20, 40, and 100 have

g=1

OHB/QMC
ZLC/QMC
Plresent worl§

1.5
I’/(I'S aB)

2 2.5 3

been shifted upwards by 0.4, 0.8, 1.2, and 1.6, respectively.

thrs ag)

FIG. 7. Top pane(momentum spagethe spin-dependent effec-
tive interactionnv‘e’f‘f"(q) (in units of e¥/ag) in a 3D EG atr,
=10 and 20 as a function afr,ag . Bottom panelreal spacg the
spin-dependent effective interactiafgf}"(r) (in units ofhzkﬁlm)
in a 3D EG atr;=10 and 20 as a function af (rsag).

boundary conditions” which allows a sizable reduction of
finite-size error€® The reader is referred to Ref. 5 for details.
These differences are not expected to change significantly
the results of Ortizet al* for rg below 20, but, as is clear
from Fig. 5, the differences between the two QMC studies
become significant at largeg. Our results lie somewhere in
between the two sets of QMC data at lange From the
theoretical point of view it is important to remark that in
FHNC-type calculations at strong coupling the induced

’
[oxen

& (q) interactions should be corrected by the addition of
three-body correlations and elementary-diagfam*“bridge
functions”) contributionst>~1°

Further comparisons with QMC data on pair distribution
functions can be made for the fully spin-polarized EG (
=1). This is done in Figure 6 at,=1, 5, 20, 40 and 100.
The same inaccuracies in the theory that we have exposed in
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-0.1
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FIG. 8. The Pauli potenti S"'(r) (in units of 2%k2/m) as a
function of r/(rsag). With this choice of units the Pauli potential

has no explicit dependence og.
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the paramagnetic EG at strong coupling are also foungl at
=1.

Finally, in Fig. 7 we report the spin-dependent effective
electron-electron  interaction V;’f‘f"(r)zv(r)+wg"'(r)
+8,-Wg?(r) and its Fourier transfor ‘e’f‘f"(q), as it
emerges from our self-consistent calculations on a 3D EG

both in the paramagnetic and in the ferromagnetic state. The
attractive part of the parallel-spin effective interaction deep-

ens at increased, as is physically expected. The Pauli po-
tential and its dependence gnare shown in Fig. 8.

A. Ground-state energy

The ground-state energy, (per electrop of the EG at

each value ofrg and ¢ can be calculated by means of an
integration over the coupling constaxt

1 (1N [ dq
smeat o] 5] Goadls@-1 @

Ichimaru (Ref. 27.

TABLE I. Energy of the 3D EG in Ry/electron. CA/QMC from Ceperley and Al¢Ref. 3, OHB/QMC from Ortiz, Harris, and Ballone

(Ref. 4 ZLC/QMC from Zong, Lin, and Ceperle§Ref. 5 STLS from Singwi, Tosi, Land, and Sander(Ref. 26 and TI from Tanaka and

rs Various calculations {=0.0 {=0.333 {=0.667 (=10
1 CA/QMC 1.174
OHB/QMC 1.181 2.294
Present work 1.17810 1.29786 1.66346 2.29753
STLS 1.1704 1.2885 1.6505 2.2849
TI 1.167 2.281
5 CA/QMC —0.1512 -0.1214
Present work —0.14974 —0.14616 —0.13557 —0.11846
STLS —0.1511 —0.1483 —0.1393 —0.1235
TI —0.1544 —0.1267
10 CA/QMC -0.107 -0.101
OHB/QMC —0.106 -0.101
Present work —0.10562 —0.10488 —0.10277 —0.09957
STLS —0.1058 —0.1055 —0.1043 —0.1020
TI —0.1084 —0.1046
20 CA/QMC —0.063 —0.0625
OHB/QMC —0.063 —0.0625
Present work —0.06265 —0.06250 —0.06210 —0.06153
STLS —0.0623 —0.0623
TI —0.0642 —0.0642
40 ZLC/IQMC —0.03523748(60) —0.03523295(67) —0.03520539(67) —0.03513483(72)
Present work —0.03470 —0.03467 —0.03459 —0.03450
STLS —0.0342 —0.0345
50 ZLC/IQMC —0.02889900(62) —0.02889962(68) —0.02888835(62) —0.02884983(81)
OHB/QMC —0.029 —0.0288
Present work —0.02845 —0.02844 —0.02839 —0.02834
STLS —0.0280 —0.0282
TI —0.0290 —0.0293
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directly from the structure facto®, (q) calculated with in- V. SUMMARY AND DISCUSSION

- A

teraggon ng)jd'wez_)‘/qz' _ Here o= 3.[(1+§)5/3+(1 In summary, we have presented in this work a theoretical
—4) ]/(}863“ rs) Ry is the ideal-gas kinetic energy with 4y of the spin-resolved pair distribution functions and of
=(97/4)"~ and$(q) has been defined immediately below e ground-state energy of the 3D electron gas. Our approach
Eq. (24). In fact, the integration ovek is carried out by  yie|ds numerical results of good quality in the regime of
integration overrs. The second term in Eq25) is the  \yeak- and intermediate-coupling strength.
exchange-correlation energy, from which the correlation en- Improvements of the theory will be necessary for a quan-
ergy is obtained by subtracti/ng the exp/;ression for the exgtative study of the magnetic phase diagram and for an ex-
change energy,=—3[(1+¢)**+(1-)*]/(4mar) RY.  tension to electron fluids of lower dimensionality. As we

We have calculated the ground-state energy §610,  nave already commented in the main text, the kinetic-energy
0.333, 0.667, and 1 over the range<A;<50. The results  fnctional may be treated more accurately by recourse to an
are reported in Table I in comfanson with QI;AC data fromgnalysis of the pair functions into Kohn-Sham pair
Ceperley and Aldet,Ortiz et al,” and Zonget al® The table  orpitals®® Preliminary calculations indicate that an appre-
also includes other theoretical results obtained in the selfgjgple improvement can be obtained in this way in the values
consistent dielectric theory of Singwét al®® and in the of the ground-state energy at small to intermediate coupling
mo_dn‘led-zgonvolutIOn approximation  of Tanaka and gyer the values reported in Table I. At larger values of the
Ichimaru _ coupling we expect that a sizable improvement on the FHNC

It is seen from Table I that the present theoretical apppproximation to the effective electron-electron interactions
proach yields fairly accurate values of the ground-state encan only arise from the inclusion of contributions from the
ergy even ats=50, even though the details of the pair dis- so-called elementary diagrams and from three-body
tribution function are becoming quantitatively inaccurate ascorrelationst® Better quantitative accuracy can be expected
we have already seen in Figs. 5 and 6. Much higher accuragy, e achieved by such means when the self-consistency re-
is needed for theoretical predictions on the quantum phasgyirements on the theory are extended to include the thermo-
transition from the paramagnetic phase to the fully spindynamic sum rules on the compressibility and spin suscepti-
polarized phase, since from the QMC study of Za@igl® bility of the electron fluic?®
the difference in energy between these two phases; at
=100 is only about 410 ® Ry in favor of the latter. A ACKNOWLEDGMENTS
continuous transition between these two states seems to start
for r¢=50-70 according to the QMC data. In contrast, the This work was partially supported by MIUR through the
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