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Quantum magnetic oscillations of the chemical potential in superlattices and layered conductors
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A theory is presented for the chemical potential oscillations in superlattices in a quantizing magnetic field
applied perpendicular to the layers which takes into account the electronic miniband structure attached to each
Landau level. This miniband structure in the occupation below the Fermi energy reduces the amplitude of the
chemical potential oscillations through a specific integral factor which depends on the density of states related
to the electronic motion across the layers.
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I. INTRODUCTION

Recently a good deal of theoretical activity has been
voted to magnetoquantum oscillations of the chemical po
tial in view of unusual phenomena observed in magne
quantum experiments on layered organic quasi-tw
dimensional~2D! conductors. The de Haas–van Alphen1–3

~dHvA! and Shubnikov–de Haas4–9 ~SdH! studies of the
electronic system in these low-dimensional organic cond
tors ~see Ref. 10! have shown numerous deviations from t
standard Lifshitz-Kosevich theory11 which is usually used in
conventional three-dimensional~3D! metals for the analysis
of magnetoquantum phenomena in Fermi-surface invest
tions.

In 2D conductors the Landau-level spectrum is discr
and the chemical potential jumps between successive le
each time the number of electrons in the systemN is an
integer multiplen of the Landau levels degeneracy such th
N5nF/F0, whereF denotes the flux through a sample a
F0 the flux quantum. These jumps give rise to a sawto
profile of the magnetization versus inverse magnetic fi
provided the number of electronsN in the system is fixed, as
was first pointed out by Peierls as early as 1933.12 For a 2D
system with a constant chemical potentialm, the magnetiza-
tion has the shape of a sawtooth with an inverted profile
the teeth~the so called ‘‘inverted sawtooth’’!.13,14 In a pure
2D electron gas it is impossible to have a constant chem
potential, and a special reservoir should exist for the elec
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states in order to pin the chemical potential.
The shape of the magnetization pattern as a function

the inverse magnetic field and the influence of the chem
potential variation has been the subject of recent theore
publications.15–20 However, some points remained uncle
since they were in conflict with recent experiments. In p
ticular, the observation of an inverted saw tooth magneti
tion in the layered organic conducto
b9-(BEDT-TTF)2SF5CH2CF2SO3 implies a constant chemi
cal potential.21 The pinning of the chemical potential in thi
system at the 1D open sheets of the Fermi surface rem
controversial.22 The nontrivial shape of the dHvA oscilla
tions observed in the layered magnetic breakdown orga
conductork-(BEDT-TTF)2Cu(NCS)2 is well described by
the theory under the assumption of a fixed chemi
potential.23 However, the nature of the electron reservo
which pins the chemical potential in layered organic cond
tors remains unclear.

In the case of a 3D conventional metal, the smallness
the variation of the chemical potential is related to the fr
electron motion along the magnetic field characterized by
z component of the momentumkz and the kinetic energyj
5\2kz

2/2m. The energy spectrum in that case depends
two quantum numbers, the Landau level indexn and kz ,
such that

«n~kz!5\vcS n1
1

2D1
\2kz

2

2m
, ~1!
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where vc5eB/cm is the cyclotron frequency and\ the
Planck’s constant.

Since the Landau levels«n(kz) have a parabolickz dis-
persion for 3D conductors~see Fig. 1!, only a small bottom
fraction of the electrons from the parabola above the Fe
level drops to the next-lower Landau level with the increa
of the magnetic field. At the same time numerous electr
which occupy the other parabolic branches pin the chem
potential at the Fermi level. This is in a sharp contrast to
2D case, where the Landau levels are flat and the chem
potential jumps between the two upper populated levels w
the amplitude\vc as shown in Fig. 1. In the 3D case, th
amplitude of the chemical potential oscillation, bein
\vcA\vc /EF, is strongly reduced for\vc!EF (EF is the
Fermi level!.

The case of superlattices or layered conductors lays
tween the 2D and 3D ones: the parabolas split into an a
nating series of permitted and forbidden minibands wh
width depends on the parameters of the superlattice. Th
bands are indicated by the solid lines in Fig. 1. The popu
tion of the minibands below the Fermi levelEF stabilizes the
chemical potential and decreases the amplitude of its va
tion with the magnetic field. We show in what follows th
the chemical potential oscillation amplitude in superlattic
is in between the above given values\vcA\vc /EF and\vc
for the two extreme cases. The major aim of this paper i
give a theoretical description of the variation of the chemi
potentialm(B) with the external magnetic field valid for 3D
quasi-2D ~superlattices and layered systems!, and 2D sys-
tems. We find that the oscillating part of the chemical pot
tial m(B) is proportional to the quantity\vc /D(EF) in a

FIG. 1. The Landau energy spectrum for 2D, 3D, and super
tice systems. The 2D spectrum~solid horizontal linesis with sepa
ration \vc) is flat and show no dispersion along thekz direction.
The 3D Landau levels have parabolic dispersion~dashed lines!. In
superlattices, the parabolas are splitted into minibands which
populated below the Fermi levelEF ~shown by dotted lines!.
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system of any dimensionality. The reduction of the chemic
potential oscillation amplitude is given by the coefficient

D~EF!5E
2`

EF
djg~j!, ~2!

as well as the oscillating layer factorI p ~see below! which
depend on the density of states~DOS! related to the electron
motion across the layersg(j). The magnetic fieldB is as-
sumed to be perpendicular to the conducting layers.

II. BASIC EQUATIONS

The point of departure in our approach is the Land
energy-spectrum which we write in the following form:

«n~j!5\vc~n11/2!1j. ~3!

Herej is the electron energy related to the motion along
magnetic field and distributed with the DOSg(j). The den-
sity of states of the whole system with the energy spectr
«n(j) is given by

r~«,B!5sE
2`

`

djg~j! (
n50

`

d@«2\vc~n11/2!2j#. ~4!

The quantity s5F/F0 is the degeneracy of the Landa
level. Using the Poisson summation formula

(
n50

`

f ~n11/2!5E
0

`

f ~x!dx12 Re(
p51

`

~21!p

3E
0

`

f ~x!e2p ipxdx. ~5!

Equation~4! can be rewritten as a sum of monotonous a
oscillating terms

r~«,B!5r0~«,B!1 r̃~«,B!, ~6!

where the monotonous part of the density of states is gi
by

r0~«,B!5
s

\vc
E

2`

`

djg~j!u~«2j!5
s

\vc
E

2`

«

djg~j!

~7!

@u(x) is the Heavyside step function#. The oscillating part
can be written as

r̃~«,B!5
s

\vc
Re(

p51

`

~21!pexpS 2p ip«

\vc
D

3E
2`

«

djg~j!expS 2
2p ipj

\vc
D . ~8!

Since the ratios/\vc does not depend on the magnetic fie
the quantityr0(«,B) is in fact independent ofB.

So far we have not paid attention to the disorder which
known to deteriorate magnetic quantum oscillations. Impu
ties broaden thed-function in Eq.~4! into a Lorentzian re-
sulting in the appearance of the Dingle factor

t-

re
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RD~«,p!5exp@22ppG~«!/\vc# ~9!

in Eq. ~8!. The imaginary part of the electron self-ener
G(«) in general is a function of the energy. In the case o
conventional 3D metal it is a good approximation to ta
G(«) independent of the energy, i.e.,G(«)5G5\/t, where
t is the electron scattering time.13,24 In layered conductors
G(«) becomes an oscillating function of the external ma
netic field25

G5
G~«!

112 Re(
p51

`

~21!pRD~«,p!I ~p,EF!cosS 2pp«

\vc
D .

~10!

The layer factorI (p,EF), given by

I ~p,EF!5E
2`

EF
djg~j!expS 2

2p ipj

\vc
D , ~11!

is an important ingredient of the magnetic quantum osci
tions in superlattices. It is an oscillating function of the i
verse magnetic field 1/B responsible for the modulation o
the dHvA ~Refs. 23,26,27! as well as SdH~Ref. 25! oscilla-
tions due to the structural peculiarities of superlattices.
p50, the layer factorI (p50,EF) reduces to the coefficien
D(EF) in Eq. ~2!.

Thus, the oscillating part of the density of states in Eq.~8!
can be rewritten as

r̃~«,B!5
2s

\vc
Re(

p51

`

~21!pexpS 2p ip«

\vc
DRD~«,p!I ~p,«!.

~12!

Having at hand the density of states one can calculate
thermodynamic potential in a standard fashion

V~m,B,T!52TE
0

`

r~«,B!lnF11expS m2«

T D Gd«.

~13!

Herem is the chemical potential andT temperature. With the
help of Eq.~6! the thermodynamic potential can be written
a sum of two termsV(m,B,T)5V0(m,B,T)1Ṽ(m,B,T).
The oscillating partṼ(m,B,T) determines all types of ther
modynamic oscillations in an electronic system.

The chemical potentialm(B) is a solution to the equation

N5S ]V

]m D
T,B

5E
0

` r~«,B!

11expS «2m

T D d«5const. ~14!

We have to make some approximations in this equation
wells as in Eq.~12! to go ahead. We first note that because
the sharpness of the Fermi distribution function at low te
peratures only energies within the vicinity ofm in the inte-
gral of Eq.~14! are essential (m@\vc and is of the order of
the EF). Therefore the factorI (p,e) can be replaced by
I (p,EF) given by Eq.~11!. We also, following Refs. 18–20
neglect the energy dependence in the Dingle factor appr
15510
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mating it by the exponent RD(«,p)'RD(p)5exp
(22ppG/\vc). For the 3D and quasi-2D cases it is an acce
able approximation~in the 3D case, for example, it is a we
established standard approach13,24!. One could take accoun
for small corrections toRD(p) in the dirty limit from the
power series expansion of Eq.~10! as was done previously.28

In order to simplify calculations, we do not consider the
corrections here since they are irrelevant to the main poin
our subject.

So far we did not give a definition of the Fermi energ
EF . We will define EF as the chemical potential at zer
magnetic field, i.e.,EF5m(B50). Using this definition to-
gether with Eqs.~12! and ~14!, and the above discussed a
proximation for the Dingle factor byR(p), we have

D~m!5Re(
p51

`
~21!p

pp
expS 2p ipm

\vc
D ilp

sinh~lp!

3I ~p,EF!expS 2
2ppG

\vc
D , ~15!

where the functionD(m) is defined by the equation

D~m!52
1

\vc
E

m

EF
d«E

2`

«

djg~j!. ~16!

Sincem'EF we can approximateD(m) as

D~m!'
1

\vc
~m2EF!D~EF!, ~17!

where the factorD(EF) has been introduced earlier by E
~2!. We also used that form@kBT holds

E
2`

` ej

~ej11!2
eiajdj5

pa

sinh~pa!
. ~18!

The equation for the chemical potential~16! can be written
as

m5EF1
\vc

D~EF!
Re(

p51

`
i ~21!p

pp
expS 2p ipm

\vc
D

3RT~p!I ~p,EF!expS 2
2ppG

\vc
D . ~19!

This equation is the main result of the present publicati
Here we introduced a standard notation for the tempera
damping factor

RT~p!5
lp

sinh~lp!
, ~20!

with l[2p2kBT/\vc .
Now one can easily single out an oscillating part of t

chemical potentialm̃(B)[m2EF by a trivial shift of the
Fermi energy. We see that the amplitude ofm̃(B) in Eq. ~19!

is not only much less than the Fermi energy, i.e.,m̃(B)
!EF . It is less than\vc because of the large factorD(EF)
7-3
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in the denominator and due to the smallness of the Din
temperature, and layer factors.

It is also possible to set up a relationship between
oscillations of the chemical potential and the magnetizati
i.e., the dHvA effect, using the derivative of the oscillatin
part of the thermodynamical potential M̃ (B)5

2]Ṽ/]Bum,N5const. Retrieving only the highest terms due
the derivative of the rapid oscillations of the expone
exp(2pipm/\vc) in Eqs.~12! and ~13! we have

M̃ ~B!5
EF

B

s

\vc
D~EF!m̃~B!. ~21!

The relative amplitude of the magnetization oscillations
much higher than that of the chemical potential. Beca
m̃(B) is proportional to the factorD(EF)21, the dHvA am-
plitude M̃ (B) is independent onD(EF). The proportionality
between the magnetizationM̃ (B) andm̃(B) has been estab
lished previously.18,19,29Our more general result is obtaine
in terms of the density of statesg(«) and is valid both for
periodic and irregular superlattices for which the moment
kz is no longer a good quantum number. Note that Eq.~21! is
valid approximately only for the case of layered electron g
The case of layered organic conductors with more comp
2D Fermi surface will be considered elsewhere.

We consider now the limiting 2D and 3D cases. In the
case the DOS is given byg(j)5d(j) and the factor
D(EF)51. The equation for the chemical potential th
takes the known form20

m5EF1\vc(
p51

`
~21!(p11)

pp
sinS 2ppm

\vc
D

3RT~p!expS 2
2ppG

\vc
D . ~22!

At zero temperature the factorRT(p)51 and a series for the
oscillating part of the chemical potential in this equation c
be calculated exactly to yield

m5EF1
\vc

p
arctanS sin~y!

eb1cos~y!
D , ~23!

where y[2pm/\vc with disorder parameter b
[2pG/\vc . This equation for m(B) was numerically
investigated.19 The variationm̃(B)[m2EF has a sawtooth
profile with the amplitude\vc when b50. The amplitude
decreases and the teeth profile become more rounded
the increase of the disorder. But in the 3D case the amplit
of the chemical potential oscillations is much smaller. In th
case

j5
\2kz

2

2m
and g~j!5

1

2p\
A2m

j
, ~24!

and the factorsD(EF) and I (p,EF) are given by

I ~p,EF!5
A2m

2p\
exp~2 ip/4!A\vc

2p
15510
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D~EF!5
A2mEF

p\
. ~25!

Substituting these equations into Eq.~16! we obtain the
Lifshitz-Kosevich equation

m5EF1\vcA\vc

EF
Re(

p51

`
~21!p

2A2pp3/2

3expS 2p ipm

\vc
2 i

p

4 DRT~p!expS 2
2ppG

\vc
D . ~26!

In the LK theory11 for the magnetic oscillations in 3D con
ventional metals it is assumed that the chemical potentia
approximately equal to the Fermi energym'EF . This fol-
lows from the inequality\vc!EF , which makes the ampli-
tude of the chemical oscillations small becauseA\vc /EF
!1. In the next section we will consider the case of a s
perlattice.

III. CHEMICAL POTENTIAL OSCILLATIONS IN A
SUPERLATTICE

The chemical potential oscillations in superlattices can
considered as an intermediate case between the above
cussed 2D and 3D cases. The periodic potential in the di
tion perpendicular to layers splits the parabolic branches
the kinetic energyj5\2kz

2/2m into minibands attached to
each Landau level. Electronic states in minibands below
Fermi level decrease the oscillations amplitude of them(B).
Formally this is because the factorD(EF) in Eq. ~19! is
approximately equal to the number of minibands, i.e., m
than unity. The layer factor is small and also damp the
oscillationsI (p,EF)!1 for p>1.

The key quantity in our approach is the density of sta
g(j) since it determines the factorsD(EF) andI (p,EF) both
for regular and irregular layer stacking. We consider in t
section a simple model of a superlattice with the periodicd
potential

V~z!5u0 (
n52`

`

d~z2na!. ~27!

The dispersion relation for this potential is well known:30

cos~kza!5cos~ka!2
mu0a

\2

sin~ka!

ka
, ~28!

and relates the quasimomentumkz with the energy« through
the quantityk(«)5A2m«/\2. The density of states can b
calculated as follows:

g~«!5
1

p Udkza

d« U. ~29!

Using the dispersion relation, we have
7-4
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g~«!5
1

pA12 f ~«!2 Ud f

deU, ~30!

with the dispersion function

f ~«!5cos~ka!2g
sin~ka!

ka
~31!

for the parameterg5u0ma/\2 depending on the strength o
thed potential of the layered structure. The energy spectr
of a superlattice consists of alternating bands of forbidd
states for 12 f («)2,0 and permitted states for 12 f («)2

>0. The band positions are determined by the transcen
tal equation 12 f («)250 which can be solved only numer
cally. The factorsD(EF) and I (p,EF) to be used in the nu
merical analysis of the chemical potentialm(B) oscillations
can also be calculated only numerically.

FIG. 2. The chemical potential oscillations in a superlattice a
function of the inverse magnetic field atT51.2 K and 2pG/kB

50.84 K for transparency factorsg51 ~a!, g550 ~b!,
andg5100.
15510
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The results of this numerical analysis are shown in Figs
and 3 where oscillations of the chemical potential and th
Fourier transforms are presented for superlattices with th
different transparenciesg of the barriers between the layer
For the superlattice parameters we have taken a layer th
nessa510 Å, a Fermi energyEF53600 K, and an effective
electron massm55me ~free electron massme). The choice
of these parameters reflects more or less a layered org
conductor. For the Dingle parameter we have tak
2pG/kB50.84 K. Figures 2 and 3 show the results of t
chemical potential variations atT51.2 K for superlattices
with g51, 50, and 100. Theg parameter determines th
transparency coefficientT(«)21511gu0 /«a which in-
creases with decreasingg ~the barrier energyu0 is propor-
tional to g). For the same parameter set Fig. 4 shows
result for the Lifshitz-Kosevich formula of a 3D metal.

The normalized amplitudem̃(B)/EF of the chemical po-
tential oscillations in Fig. 2 equals approximately 631025

for g51, 131024 for g550, and 231024 for g5100. In
the 3D case this relative amplitude is approximately
31025 which is of the same order of magnitude as for t
superlattice with the most transparent barriers correspon
to g51. For the limiting field values in Fig. 2, the rati
\vc /EF varies from 2.731023 at 16.7 T to 3.231023 at 20
T. Compared to the 2D case where the chemical poten
jumps between the Landau levels with the relative amplitu
\vc /EF , the amplitudes of the oscillations in a superlatti
description are suppressed by an additional factor 121

21022 depending on the value of the transparency para
eterg.

The two major factors reducing the ratio (m2EF)/EF are
given by I (p,EF) andD(EF)5I (0,EF). The factorI (p,EF)
not only decreases the amplitude of the chemical poten
oscillations but also adds new frequencies«kmc/\e making
a more rich Fourier transform content as shown in Fig.
These new frequencies appear due to the band struc
caused by the periodic potential of the superlattice. The f
tor I (p,EF) oscillates and thereby produces beats s
clearly in Fig. 2. These beats are absent in Fig. 4 for os
lations of the chemical potential in the conventional 3
Lifshitz-Kosevich case. The amplitude of the chemical p
tential oscillations depends only weakly on the coefficientg.
The parameterg controls the transparency of the barrie
which changes the band width but not their number bel
the Fermi energy. The latter depends only on the perioda of
the superlattice since the gaps between the minibands ap
at kz56pn/a for integern. In our numerical calculations
there are only two bands belowEF .

IV. DISCUSSION AND SUMMARY

The observation of the quantum magnetic oscillatio
in layered organic conductors put forward a lot of pu
zles waiting for a theoretical explanation. The s
b9-(BEDT-TTF)2SF5CH2CF2SO3, for example, gives evi-
dence for an incoherent electron transport across the laye31

and has a fixed chemical potential, unusual for the quasi
system. Incoherence means that the quasimomentum is

a
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good quantum number for electrons hopping between
layers. In this connection we put forward an approach to
problem of the chemical potential dependence on the ex
nal magnetic field in superlattices and layered conductor
terms of the DOSg(«). Our main result is Eq.~19! for m(B)
which covers not only the case of a superlattice but permi
correct description of the 2D and 3D limiting cases with t
appropriate density of states@see Eqs.~22!,~26!#. The central

FIG. 3. The Fourier transform of the chemical potential oscil
tions in Fig. 2 for a superlattice with transparency factorsg51 ~a!,
g550 ~b!, andg5100.

FIG. 4. The chemical potential oscillations in a 3D electron g
as a function of inverse magnetic field atT51.2 K and 2pG/kB

50.84 K.
15510
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physical idea is that electrons from the parabolic branche
the Landau levels, which play the role of a reservoir that p
m(B) at the Fermi level in the 3D case, do not vanish fro
the balance equation for them(B) in the case of a superlat
tice.

In the ideal 2D case the Landau levels are flat andm(B)
jumps at zero temperature between the Landau levels
amplitude\vc . Nonzero temperatures as well as electr
scattering decreases this amplitude. In the 3D case the
plitude of the chemical potential oscillations reduces
\vcA\vc /EF. In superlattices the amplitude is given b
\vc /D(EF). This value is essentially less than\vc because
the factorD(EF) may be much more than unity dependin
on the superlattice parameters. If, for example, the insula
barriers between the layers have a very low transparency
permitted bands have a vanishing width so that the densit
statesg(«) is given approximately by a sum of delta fun
tions d(«2«k) over the set of quantized energy levels«k
5\2k2/2ma2. The factorD(EF) in this case equals to th
number of these levels below the Fermi energy which is h
for thick layers.

These points related to the miniband structure w
missed in previous theories by considering only a sing
band approximation with the simplest dispersion within t
band

«52t cos~kza!. ~32!

The corresponding density of states is

g~«!5
1

pA4t22«2

which in view of the fact that the hopping integralt is less
than the Fermi energy 2t,EF yields D(EF)51 and the
layer factor is given by the Bessel function

I ~p,EF!5J0S 4ptp

\vc
D .

The equation for the chemical potential~20! in this approxi-
mation takes the form20

m5EF1\vc(
p51

`
~21!(p11)

pp
sinS 2ppm

\vc
DRT~p!

3J0S 4ptp

\vc
DexpS 2

2ppG

\vc
D . ~33!

This equation permits a 2D limitt→0 for which
J0(4ptp/\vc)51. For large hopping integral 4ptp/\vc
@1 and using the asymptotic Bessel function,19 the chemical
potential has an expression similar to the Lifshitz-Kosev
result~26! but containing the pre-factor\vcA\vc /t instead
of \vcA\vc /EF. In quasi-2D conductorsEF is determined
by the electron density in layers while thet is the hopping
integral between them.

In layered conductors it is assumed that electrons
nearly localized within the layers because of the small ov
lap of the wave functions for the neighboring layers. In o

-

s
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QUANTUM MAGNETIC OSCILLATIONS OF THE . . . PHYSICAL REVIEW B 68, 155107 ~2003!
model this means negativeu0 and hyperbolic rather than
trigonometric functions in the right-hand side of Eq.~21!.
For g@1 the dispersion can be written as in Eq.~32! with
the ‘‘hopping integral’’t5(\2/ma2)g2exp(2g). In the case
of a superlattice the dispersion within the minibands is m
complex than given by Eq.~32!.

The recent observation of an inverted sawtooth magn
zation in the layered organic conduct
b9-(BEDT-TTF)2SF5CH2CF2SO3 ~Ref. 21! gives evidence
for a fixed chemical potential in this quasi-2D system. A
attempt to explain this fact by the pinning ofm at the 1D
open sheets of the Fermi surface in this conductor was
successful.22 With the proposed minibands structure attach
to each Landau level the amplitude of the chemical poten
oscillations is suppressed. These bands comprise a rese
of electronic states which damp the oscillations ofm(B)
compared to the pure 2D case. For the given example of
superlattice model, the existence of even two minibands
low the Fermi level is sufficient to suppress the amplitud

*On leave from the Kharkov National University, 61077, Kharko
Ukraine.
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Due to the magnetic breakdown phenomenon in ET sa
the 2D Landau spectrum is much more complex than for
case of a layered 2D electron gas considered above.23 It
would be very interesting to extend the proposed appro
towards a more realistic band structure for the ET salts.
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