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Quantum magnetic oscillations of the chemical potential in superlattices and layered conductors
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A theory is presented for the chemical potential oscillations in superlattices in a quantizing magnetic field
applied perpendicular to the layers which takes into account the electronic miniband structure attached to each
Landau level. This miniband structure in the occupation below the Fermi energy reduces the amplitude of the
chemical potential oscillations through a specific integral factor which depends on the density of states related
to the electronic motion across the layers.
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[. INTRODUCTION states in order to pin the chemical potential.
The shape of the magnetization pattern as a function of

Recently a good deal of theoretical activity has been dethe inverse magnetic field and the influence of the chemical
voted to magnetoquantum oscillations of the chemical potenpotential variation has been the subject of recent theoretical
tial in view of unusual phenomena observed in magnetoPublicationsi®~?° However, some points remained unclear
quantum experiments on |ayered Organic quasi_two_s.ince they were in (..:Oﬂﬂict W|th recent eXperimentS. In pal’-
dimensional(2D) conductors. The de Haas—van Alpheh ticular, the observation of an inverted saw tooth magnetiza-
(dHVA) and Shubnikov—de Hahs' (SdH studies of the ton In the layered  organic conductor
electronic system in these low-dimensional organic conduch? '(BEDT_'TIF)ZSFSCH?CFZSQ implies a constant chemi-
tors (see Ref. 1phave shown numerous deviations from the €& potentiaf The pinning of the chemical potential in this
standard Lifshitz-Kosevich thedrywhich is usually used in SYStéem at .thez 1D open sheets of the Fermi surface remains
conventional three-dimensioné8D) metals for the analysis cpntroversm?. The nontrivial shape of the dHvA oscilla-
of magnetoquantum phenomena in Fermi-surface investigdlons observed in the layered magnetic breakdown organic
tions. conductork-(BEDT-TTF),Cu(NCS), is well described by

In 2D conductors the Landau-level spectrum is discreté"® thec;rgy under the assumption of a fixed chemical
and the chemical potential jumps between successive leveROtential™ However, the nature of the electron reservoir
each time the number of electrons in the systinis an which pins the chemical potential in layered organic conduc-
integer multiplen of the Landau levels degeneracy such that!ors remains unclear. _
N=nd/d,, whered denotes the flux through a sample and In th_e case of a 3D co_nventlonal_mgtal, the smallness of
®, the flux quantum. These jumps give rise to a sawtootHhe varlatlon. of the chemical potgnu_al is related t.o the free
profile of the magnetization versus inverse magnetic fielc!€ctron motion along the magnetic field characterized by the
provided the number of electromsin the system is fixed, as Z cozmzponent of the momentuky and the kinetic energy
was first pointed out by Peierls as early as 183Bor a 2D =#°K;/2m. The energy spectrum in that case depends on
system with a constant chemical potengigl the magnetiza- W0 quantum numbers, the Landau level indexand k;,
tion has the shape of a sawtooth with an inverted profile ofuch that
the teeth(the so called “inverted sawtooth***In a pure
2D electron gas it is impossible to have a constant chemical
potential, and a special reservoir should exist for the electron
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E system of any dimensionality. The reduction of the chemical-
potential oscillation amplitude is given by the coefficient

Ep
D(EF):I _dgg(9), 2

i ] as well as the oscillating layer factbg (see below which
A o ; / depend on the density of statd30S) related to the electron
*\1\._h ﬁ i E motion across the layerg(¢). The magnetic fieldB is as-
LA S p F
!
L

sumed to be perpendicular to the conducting layers.

II. BASIC EQUATIONS

h / The point of departure in our approach is the Landau
v 1 L energy-spectrum which we write in the following form:

{ / en(é)=hw(n+1/2)+&. 3

h Here ¢ is the electron energy related to the motion along the

magnetic field and distributed with the D@$%¢). The den-

ka sity of states of the whole system with the energy spectrum
& eq(€) is given by

FIG. 1. The Landau energy spectrum for 2D, 3D, and superlat- w *
tice systems. The 2D spectrugsolid horizontal linesis with sepa- p(g,B)zsf dég(é) 2 de—hw(n+1/12)—£&]. (4)
ration fw,) is flat and show no dispersion along tkgdirection. e n=0
The 3D Landau levels have parabolic dispersidashed lines In The quantitys=®/®, is the degeneracy of the Landau
superlattices, the parabolas are splitted into minibands which aRyel. Using the Poisson summation formula
populated below the Fermi levé&l: (shown by dotted lings

where w.=eB/cm is the cyclotron frequency ané the > f(n+1/2):J f(x)dx+2 ReY, (—1)P
Planck’s constant. n=0 0 p=1
Since the Landau levels,(k,) have a parabolik, dis- o
persion for 3D conductorésee Fig. 1, only a small bottom XJ f(x)e?™PXdx. 5)
0

fraction of the electrons from the parabola above the Fermi
level drops to the next-lower Landau level with the increasegquation(4) can be rewritten as a sum of monotonous and
of the magnetic field. At the same time numerous electrongscillating terms

which occupy the other parabolic branches pin the chemical

potential at the Fermi level. This is in a sharp contrast to the p(s,B)=p0(s,B)+}3(s,B), (6)

2D case, where the Landau levels are flat and the chemical ) o
potential jumps between the two upper populated levels witffvhere the monotonous part of the density of states is given
the amplitudef w, as shown in Fig. 1. In the 3D case, the by

amplitude of the chemical potential oscillation, being s [ s (e

hoVhiw/Eg, is strongly reduced fot w,<Ep (Ef is the po(e,B)= —j dég(é)o(e— &)= —J’ dég(é)

Fermi leve). hwe) - hwe) -

The case of superlattices or layered conductors lays be- @)
tween the 2D and 3D ones: the parabolas split into an altel-g(x) is the Heavyside step functignThe oscillating part
nating series of permitted and forbidden minibands whosean be written as
width depends on the parameters of the superlattice. These

bands are indicated by the solid lines in Fig. 1. The popula- - s ” 2mipe
tion of the minibands below the Fermi levie stabilizes the p(e,B)= ReY, (—1)Pex
. ‘ : - . hws  p=1 W
chemical potential and decreases the amplitude of its varia-
tion with the magnetic field. We show in what follows that e 2mipé
the chemical potential oscillation amplitude in superlattices XJ dég(é)exp — o (8)
. c

is in between the above given values i w./Er andf w,
for the two extreme cases. The major aim of this paper is t&ince the ratis/% w, does not depend on the magnetic field,
give a theoretical description of the variation of the chemicalthe quantityp,(e,B) is in fact independent dB.

potentialw(B) with the external magnetic field valid for 3D, So far we have not paid attention to the disorder which is
quasi-2D (superlattices and layered systgmand 2D sys- known to deteriorate magnetic quantum oscillations. Impuri-
tems. We find that the oscillating part of the chemical potenties broaden the-function in Eq.(4) into a Lorentzian re-
tial w(B) is proportional to the quantitfiw./D(Eg) in a  sulting in the appearance of the Dingle factor
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Rp(e,p)=exd —27pl'(e)/hw] (9 mating it by the exponent Rp(e,p)~Rp(p)=exp
(—2mpl'lhwy). For the 3D and quasi-2D cases it is an accept-
able approximatioriin the 3D case, for example, it is a well
%established standard approitH). One could take account
for small corrections tdRp(p) in the dirty limit from the
power series expansion of Ed.0) as was done previousf.

In order to simplify calculations, we do not consider these
corrections here since they are irrelevant to the main point of

in Eq. (8). The imaginary part of the electron self-energy
I'(¢) in general is a function of the energy. In the case of a
conventional 3D metal it is a good approximation to take
I'(e) independent of the energy, i.&:(e)=I"=#/7, where

7 is the electron scattering tinté?* In layered conductors
I'(e) becomes an oscillating function of the external mag-

L s AR5
netic field our subject.

I'(e) So far we did not give a definition of the Fermi energy

= _ ) Er. We will define Ex as the chemical potential at zero

2mpe magnetic field, i.e.Eg=u(B=0). Using this definition to-
1+2 Repzl (= 1)pRD(8'p)|(p’EF)COS< h o ) gether with Eqs(12) and(14), and the above discussed ap-
(10) proximation for the Dingle factor bir(p), we have

P . .
Au)= Rez( ) X[{Zmpﬂ> -I)\p

c

The layer factod (p,Eg), given by

Er 2mipé fhiwe | SiNh(\p)
B0 - | aa@es - o], ap
N v X1(p,E p( 2mpl 15
is an important ingredient of the magnetic quantum oscilla- (P.Er)ex hoe |’ (15
tions in superlattices. It is an oscillating function of the in- . . , .
verse magnetic field B/ responsible for the modulation of where the functiom(x) is defined by the equation
the dHvVA (Refs. 23,26,2)as well as SdHRef. 25 oscilla- 1 (&
tions due to the structural peculiarities of superlattices. For Alp)= de (16)
p=0, the layer factot (p=0,Er) reduces to the coefficient hoc) -
D(Eg) in Eq. (2). . _ .
Thus, the oscillating part of the density of states in ). Sincep~Eg we can approximaté () as
can be rewritten as 1
A(p)~ o (n—Er)D(Ep), 7
~ B 2mipe ¢
pe.B)= f hog Ro(e,p)I(p.e). where the factoD(Eg) has been introduced earlier by Eq.
(12 (2). We also used that fou>kgT holds
Having at hand the density of states one can calculate the " of o
thermodynamic potential in a standard fashion J ¢ [ p—— (18
— (ef+ 1)2 sinh( o)
Q(wp,B,T)= —Tj p(g,B)In 1+exr{ T ) de. The equation for the chemical potentidl6) can be written
0 as
(13
Hereu is the chemical potential anbdtemperature. With the i(— 1)p 2wipu
help of Eq.(6) the thermodynamic potential can be written as M= EFJr 2 hoe
a sum of two term€(u,B,T)=Qq(x,B,T)+Q(u,B,T).
The oscillating par€(u,B,T) determines all types of ther- XRy(p)l(p E,:)exp( _ ZWpF)_ (19)
modynamic oscillations in an electronic system. ' hog

The chemical potentiak(B) is a solution to the equation This equation is the main result of the present publication.

20 w (&,B) Here we introduced a standard notation for the temperature
=<— =J —— —de=const. (14) damping factor
ulrg Jo p(s—ﬂ>
1+ex
T AP
o . Re(P)= Sy (20
We have to make some approximations in this equation as sinh(Ap)

wells as in Eq(12) to go ahead. We first note that because of 2
the sh f the Fermi distribution function at low tem-1t0 X =27 KeT/fiwe.
e sharpness of the Fermi distribution function at low tem- Now one can easily single out an oscillating part of the
peratures only energies within the vicinity gf in the inte- hemical ol (B E b ivial shift of th
gral of Eq.(14) are essentialg> i w, and is of the order of CcNemical potentialu(B)=u—E by a trivial shift of the
the E¢). Therefore the factol(p,e) can be replaced by Fermienergy. We see that the amplitudeugB) in Eq. (19)
I(p,Eg) given by Eq.(11). We also, following Refs. 18—20, is not only much less than the Fermi energy, i2(B)
neglect the energy dependence in the Dingle factor approxi<Eg . It is less tham o, because of the large factbr(Eg)
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in the denominator and due to the smallness of the Dingleand
temperature, and layer factors.

It is also possible to set up a relationship between the V2mEg
oscillations of the chemical potential and the magnetization, D(Ep)=——3— (29
i.e., the dHvVA effect, using the derivative of the oscillating
part of the thermodynamical potential M(B)= Substituting these equations into E@.6) we obtain the

— 90/ 9B| , n=conse Retrieving only the highest terms due to Lifshitz-Kosevich equation

the derivative of the rapid oscillations of the exponent

exp(2mipul/fiwy) in Egs.(12) and (13) we have P Erthio, fiog ReS) (—1)°
E s Er =1 227p¥?
~ F ~
M(B):Eﬁw D(Ee)p(B). @D 2wipu 2mpl’
Cc i _
;{ froo, i 7 Rﬂp)exp{ hrog ) (26)

The relative amplitude of the magnetization oscillations is

Lnuch higher than that of the chemical potential. Becausg, ine K theory! for the magnetic oscillations in 3D con-
«(B) is proportional to the factob (Eg) ', the dHVA am-  ventional metals it is assumed that the chemical potential is
plitude M (B) is independent o (Eg). The proportionality — approximately equal to the Fermi energy<Er. This fol-

between the magnetizatidvi(B) and z(B) has been estab- lows from the inequalityi w.<Eg, which makes the ampli-
lished previously®1®2°Our more general result is obtained tude of the chemical oscillations small becaugew,/Er

in terms of the density of statege) and is valid both for <1. In the next section we will consider the case of a su-
periodic and irregular superlattices for which the momentunperlattice.

k, is no longer a good quantum number. Note that @24 is

valid approximately only for the case of layered electron gas.  |1I. CHEMICAL POTENTIAL OSCILLATIONS IN A

The case of layered organic conductors with more complex SUPERLATTICE

2D Fermi surface will be considered elsewhere. , . I . :
We consider now the limiting 2D and 3D cases. In the 2D The chemical potential oscillations in superlattices can be
case the DOS is given bg(£)=5(¢) and the factor considered as an intermediate case between the above dis-

D(Ef)=1. The equation for the chemical potential then cussed 2D and 3D cases. The periodic potential in the direc-

takes the known fordd tion perpendicular to layers splits the parabolic branches of
the kinetic energyé=7%2k2/2m into minibands attached to
(=)D 2mpu each Landau level. Electronic states in minibands below the
n= EF+thle p ( Tro, ) Fermi level decrease the oscillations amplitude of 4{&).

Formally this is because the fact®(Eg) in Eq. (19) is
27rpF) approximately equal to the number of minibands, i.e., more

(22 than unity. The layer factor is small and also damp these
oscillations! (p,Eg)<1 for p=1.

At zero temperature the fact®(p) =1 and a series for the The key quantity in our approach is the density of states

oscillating part of the chemical potential in this equation cang(¢) since it determines the factoRy Eg) andl(p,Eg) both

X RT(p)exp( -

hw

be calculated exactly to yield for regular and irregular layer stacking. We consider in this
section a simple model of a superlattice with the periaglic
hw si '
p—Eot —Carctar( : n(y) ) ’ 23 potential
7 e’+cogy) "
where y=2wulfio. with disorder parameter b V(z)=up, 2, 8(z—na). (27)
n=-—ow

=2nl'lhw,. This equation foru(B) was numerically

investigated® The variationu(B)=p—Eg has a sawtooth The dispersion relation for this potential is well knotth:
profile with the amplitudéi o, whenb=0. The amplitude

decreases and the teeth profile become more rounded with

the increase of the disorder. But in the 3D case the amplitude cog k,a)=cog ka) — Mupa sin(«a) , (28)
of the chemical potential oscillations is much smaller. In that h? Ka
case
and relates the quasimomentlmwith the energy through
ﬁ2k§ 1 2m the quantityx(e)=+2me/%2. The density of states can be
§= 5 and 9§ =5 = (24 calculated as follows:
and the factor® (Eg) andl(p,Eg) are given by 1 |dk,a
9(e)=—| 5" (29
Vv2m i hw
[(p,Ep)= s—-exp —iml4) . . . .
27h 2p Using the dispersion relation, we have
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FIG. 2. The chemical potential oscillations in a superlattice as a

function of the inverse magnetic field at=1.2 K and 27I'/kg
=0.84 K for transparency factorsy=1 (a), 7y=50 (b),
and y=100.

1 df
=, 30
9(e)=— T f(e)?|de (30)
with the dispersion function
sin(ka)
f(e)=cogka)— vy - (31

for the parametety=u,ma/#? depending on the strength of
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The results of this numerical analysis are shown in Figs. 2
and 3 where oscillations of the chemical potential and their
Fourier transforms are presented for superlattices with three
different transparencieg of the barriers between the layers.
For the superlattice parameters we have taken a layer thick-
nessa=10 A, a Fermi energf=3600 K, and an effective
electron massn=5m, (free electron mass.). The choice
of these parameters reflects more or less a layered organic
conductor. For the Dingle parameter we have taken
27I'/kg=0.84 K. Figures 2 and 3 show the results of the
chemical potential variations at=1.2 K for superlattices
with y=1, 50, and 100. They parameter determines the
transparency coefficienT(e) =1+ yug/ea which in-
creases with decreasing (the barrier energyly is propor-
tional to y). For the same parameter set Fig. 4 shows the
result for the Lifshitz-Kosevich formula of a 3D metal.

The normalized amplitudg.(B)/Eg of the chemical po-
tential oscillations in Fig. 2 equals approximately 60 °
for y=1, 1x10 4 for y=50, and 210 * for y=100. In
the 3D case this relative amplitude is approximately 4
X 10" % which is of the same order of magnitude as for the
superlattice with the most transparent barriers corresponding
to y=1. For the limiting field values in Fig. 2, the ratio
hwo/Eg varies from 2.K10 2 at 16.7 T to 3.X 10 3 at 20
T. Compared to the 2D case where the chemical potential
jumps between the Landau levels with the relative amplitude
hw./Eg, the amplitudes of the oscillations in a superlattice
description are suppressed by an additional factor!10
—10 2 depending on the value of the transparency param-
etery.

The two major factors reducing the ratip ¢ Eg)/Eg are
given byl (p,Eg) andD(Eg)=1(0,Eg). The factorl (p,Eg)
not only decreases the amplitude of the chemical potential
oscillations but also adds new frequencigasnc/zie making
a more rich Fourier transform content as shown in Fig. 3.
These new frequencies appear due to the band structure
caused by the periodic potential of the superlattice. The fac-
tor 1(p,Egr) oscillates and thereby produces beats seen
clearly in Fig. 2. These beats are absent in Fig. 4 for oscil-
lations of the chemical potential in the conventional 3D
Lifshitz-Kosevich case. The amplitude of the chemical po-
tential oscillations depends only weakly on the coefficient
The parametery controls the transparency of the barriers
which changes the band width but not their number below
the Fermi energy. The latter depends only on the pesiof
the superlattice since the gaps between the minibands appear
at k,= = wn/a for integern. In our numerical calculations
there are only two bands belok& .

IV. DISCUSSION AND SUMMARY

the § potential of the layered structure. The energy spectrum
of a superlattice consists of alternating bands of forbidden The observation of the quantum magnetic oscillations

states for +f(e)?<0 and permitted states for-if(e)?

in layered organic conductors put forward a lot of puz-

=0. The band positions are determined by the transcendemies waiting for a theoretical explanation. The salt

tal equation 1 f(&)2=0 which can be solved only numeri-
cally. The factordD(Eg) andl(p,Eg) to be used in the nu-
merical analysis of the chemical potentja(B) oscillations
can also be calculated only numerically.

B"-(BEDT-TTF),SKCH,CF,SO;, for example, gives evi-
dence for an incoherent electron transport across the fyers
and has a fixed chemical potential, unusual for the quasi-2D
system. Incoherence means that the quasimomentum is not a
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(a) physical idea is that electrons from the parabolic branches of
= 0.20] ' ' ' ] the Landau levels, which play the role of a reservoir that pins
’§ n(B) at the Fermi level in the 3D case, do not vanish from
g 015} 1 the balance equation for the(B) in the case of a superlat-

& 10 tice.
S In the ideal 2D case the Landau levels are flat ar)
% 0.05 | jumps at zero temperature between the Landau levels with
E N amplitudeiw.. Nonzero temperatures as well as electron
0.004 500615600 7500030000 scattering decreases this amplitude. In the 3D case the am-
Frequency (T) plitude of the chemical potential oscillations reduces to

(b) hoVho/EE. In superlattices the amplitude is given by
- 0.50[ ' ' ' ] fhiw./D(Eg). This value is essentially less thadm . because
‘§ 040l the factorD(Eg) may be much more than unity depending
S on the superlattice parameters. If, for example, the insulating
& 030t 1 barriers between the layers have a very low transparency the
§ 0.20 | permitted bands have a vanishing width so that the density of
Z 010 statesg(e) is given approximately by a sum of delta func-
E tions (e —¢,) over the set of quan_tized energy levels

0.00¢ 5090 70000750600 25000 =#2k%/2ma?. The factorD(Eg) in this case equals to the
Frequency (T) numb_er of these levels below the Fermi energy which is huge
© for thick Iaye_rs. .
. : . These points related to the miniband structure were
@ 1.00¢ 1 missed in previous theories by considering only a single-
5 o080} 1 band approximation with the simplest dispersion within the
£ 60 band
Sl/ . o
8 040 ] e=2tcogk,a). (32)
g 020 1 The corresponding density of states is
< pool— : ;
0 5000 10000 15000 20000 1

Frequency (T)

9(e)=—F—
FIG. 3. The Fourier transform of the chemical potential oscilla- TVAT—e
tions in Fig. 2 for a superlattice with transparency factgrsl (a), ~ Which in view of the fact that the hopping integrais less
v=50 (b), and y=100. than the Fermi energy t2 Er yields D(Ef)=1 and the
layer factor is given by the Bessel function
good quantum number for electrons hopping between the
layers. In this connection we put forward an approach to the 4mtp
problem of the chemical potential dependence on the exter- hog |
nal magnetic field in superlattices and layered conductors in ) ) ) ] )
terms of the DOS)(&). Our main result is Eq19) for u(B) The. equation for the chemical potent{@0) in this approxi-
which covers not only the case of a superlattice but permits &ation takes the for#

I(p,EF)=Jo

correct description of the 2D and 3D limiting cases with the - ( 1)+ D) )
i i - a
appropriate density of statgsee Eqs(22),(26)]. The central w=Epttio,S sin( pM) Ry(p)
p=1 P hoe
0.5 : . . :
0.4 ] 47tp 2apl’
0.3 ] ><Jo< oo, )exp( — oy | (33
5 02 _ _ _ o _
% 0.1 This equation permits a 2D limitt—0 for which
u 0.0} Jo(4mtplhiw)=1. For large hopping integral #p/iw,
oE-0.1[l >1 and using the asymptotic Bessel functiSithe chemical
202l potential has an expression similar to the Lifshitz-Kosevich
0.31 ] result(26) but containing the pre-factdro Vi w./t instead
of Awc\Vhw/Eg. In quasi-2D conductorgg is determined

-0.4 . . . ,
0.050 0.052 0.054 0.056 0.058 0.060

1/8 (11T) by the electron density in layers while theas the hopping

integral between them.

FIG. 4. The chemical potential oscillations in a 3D electron gas In layered conductors it is assumed that electrons are
as a function of inverse magnetic field Bt=1.2 K and 2rI'/kg nearly localized within the layers because of the small over-
=0.84 K. lap of the wave functions for the neighboring layers. In our
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model this means negative, and hyperbolic rather than of the oscillations by a factor 1¢— 10 2. These minibands
trigonometric functions in the right-hand side of EQJ1). may be flat such that the interlayer transport may be much
For y>1 the dispersion can be written as in Eg2) with  less that the transport within the layers or even incohérent.
the “hopping integral”t=(%2/ma?) y?exp(— 7). In the case Due to the magnetic breakdown phenomenon in ET salts,
of a superlattice the dispersion within the minibands is morghe 2D Landau spectrum is much more complex than for the
complex than given by Eq32). case of a layered 2D electron gas considered abble.

The recent observation of an inverted sawtooth magnetiwould be very interesting to extend the proposed approach
zation in the layered organic conductor towards a more realistic band structure for the ET salts.
B"-(BEDT-TTF),SK,CH,CF,SO; (Ref. 21 gives evidence
for a fixed chemical potential in this quasi-2D system. An
attempt to explain this fact by the pinning of at the 1D
open sheets of the Fermi surface in this conductor was not The authors acknowledge useful discussions with W. Bib-
successfuf? With the proposed minibands structure attachederacher, T. Champel, P.D. Grigoriev, A. M. Dyugaev, M.V.
to each Landau level the amplitude of the chemical potentiaKartsovnik, T. Maniv, V.P. Mineev, and J. Wosnitza. The
oscillations is suppressed. These bands comprise a reservaiork was supported in part by the INTAS program, Project
of electronic states which damp the oscillations ©0fB) No. INTAS-01-0791, the CNRS French-Ukrainian coopera-
compared to the pure 2D case. For the given example of thigon program, Project No. 9324, and the NATO Collaborative
superlattice model, the existence of even two minibands be-inkage Grant No. 977292. V.M.G. is grateful to P. Fulde
low the Fermi level is sufficient to suppress the amplitudesand S. Flach for the hospitality at MPIPKS in Dresden.

ACKNOWLEDGMENTS

*On leave from the Kharkov National University, 61077, Kharkov, *6A.S. Alexandrov and A.M. Bratkovsky, Phys. Rev. Lét6, 1308

Ukraine. (1986.

1EA. Meyer, E. Steep, W. Biberacher, P. Christ, A. Lerf, A.G.M. *’P.D. Grigoriev and 1.D. Vagner, Pisma Zh. Exp. Teor. F8,
Jansen, W. Joss, and P. Wyder, Europhys. 138t681 (1995. 139(1999 [JETP Lett.69, 156 (1999].

2S. Uji, M. Chaparala, S. Hill, P.S. Sandhu, J. Qualls, L. Seger, and°P- Grigoriev, Zh. Exp. Teor. Fi19, 1257(2001) [JETP92, 1090
J.S. Brooks, Synth. MeB5, 1573(1997. » (200D].

3E. Steep, L.H. Nguyen, W. Biberacher, H. Muller, A.G.M. Jansen,on- Champel, Phys. Rev. B4, 054407(2002.
and P. Wyder, Physica B59-261 1079(1999. T. Champel and V.P. Mineev, Philos. Mag.&, 55 (2002).

21 ;
4C.P. Heidmann, H. Mueller, W. Biberacher, K. Neumaier, C. J. Wosnitza, S. Wanka, J. Hagel, H.v. Lohney_sen, J.S. Qualls, J.S.
Probst, K. Andres, A.G.M. Jansen, and W. Joss, Synth. Met. Brooks, E. Balthes, J.A. Schlueter, U. Geiser, J. Mohtasham,

41-43 2029(1991). R.W. Wlnter, and G.L. Gard, Phys. Rev. L&86, 508 (ZOQ]); J.
5T. Sasaki, H. Sato, and N. Toyota, Solid State ComnTn507 Wosnitza, S. Wanka, J. Hagel, E. Balthes, N. Harrison, J.A.
&1990 T ' - foyota, Schlueter, A.M. Kini, U. Geiser, J. Mohtasham, R.W. Winter,

and G.L. Gard, Phys. Rev. 81, 7383(2000.

63. caulfield, J. Singleton, F.L. Pratt, M. Doporto, W. Lubczynski, 22)01.S. Nam. A. Ardavan. J.A. Symington, J. Singleton, N. Harri-

W. Hayes, M. Kurmoo, P. Day, P.T.J. Hendriks, and JAAJ. o0 ¢ H Mieke, J.A. Schiueter, R.W. Winter, and G.L. Gard,
Perenboom, Synth Me61, 63 (1993 PhyS Rev. Lett87, 117001(200])

"M.V. Kartsovnik, G.Yu. Logvenov, T. Ishiguro, W. Biberacher, H. 23/’ Gvozdikov, Yu.V. Pershin, E. Steep, A.G.M. Jansen, and P.
Anzai, and N.D. Kushch, Phys. Rev. LeTt7, 2530(1996. Wyder, Phys. Rev. B5, 165102(2002.

8N. Harrison, J. Caulfield, J. Singleton, P.H.P. Reinders, F24AA Abrikoso\/, Fundamentals of Theory of MetaNauka, Mos-
Herlach, W. Hayes, M. Kurmoo, and P. Day, J. Phys.: Condens. cow, 1987 (in Russia.

Matter 8, 5415(1996. 25V/.M. Gvozdikov, Fiz. Nizk. Temp27, 956 (2001 [Low Temp.

°E. Steep, L.H. Nguyen, W. Biberacher, H. Muller, A.G.M. Jansen,  Phys.27, 704 (2001)].
and P. Wyder, Physica B59-261 1079(1999. 26\ M. Gvozdikov, Sov. Phys. Solid Staf, 1560(1984); 28, 179

103, Singleton, Rep. Prog. Phy&3, 1111(2000. (1986.

.M. Lifshitz and A.M. Kosevich, Zh. Eksp. Teor. Fi29, 730  2’V.M. Gvozdikov and M.V. Gvozdikova, Phys. Rev. B8, 8716
(1956. (1998.

2R Peierls, Z. Phys81, 186(1933. 28M.V. Kartsovnik, P.D. Grigoriev, W. Biberacher, N.D. Kushch,

13p. Shoenberg, J. Low Temp. Phys, 417(1984; D. Shoenberg, and P. Wyder, Phys. Rev. Le&9, 126802(2002.
Magnetic Oscillations in Metal§Cambridge University Press, 29N Harrison, R. Bogaerts, P.H.P. Reinders, J. Singleton, S.J. Blun-
Cambridge, 198¢ dell, and F. Herlach, Phys. Rev. 8!, 9977 (1996.

1.D. Vagner, T. Maniv, and E. Ehrenfreund, Phys. Rev. L&t;.  °L.D. Landau and I.M. Lifshits,Quantum Mechanic{Nauka,
1700 (1983; K. Jauregui, V.I. Marchenko, and I.D. Vagner, Moscow, 196% (in Russian.
Phys. Rev. B41, 12 922(1990; M.A. Itskovsky, T. Maniv, and 813, Wosnitza, J. Hagel, J.S. Qualls, J.S. Brooks, E. Balthes, D.
I.D. Vagner, Z. Phys. B: Condens. Matt&®1, 13 (1996. Schweitzer, J.A. Shlueter, U. Geiser, J. Mochtasham, R. Winter,
M. Nakano, J. Phys. Soc. Jp86, 19 (1997). and G.L. Gard, Phys. Rev. B85, 180506R) (2002.

155107-7



