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Light propagation in semi-infinite photonic crystals and related waveguide structures

Zhi-Yuan Li* and Kai-Ming Ho
Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

~Received 11 April 2003; published 2 October 2003!

A transfer-matrix method~TMM ! that employs the plane-wave expansion of electromagnetic~EM! fields has
been developed to handle EM wave propagation in semi-infinite photonic crystal and related waveguide
structures. The major aim is to account for wave scattering only at the concerned boundary and to completely
remove multiple reflections in the presence of other structural boundaries. It turns out that the scattering
problem is closely connected to the eigenmodes of the transfer matrix for the unit cell of the crystal. A natural
boundary condition is imposed to describe the asymptotic propagation behavior of scattered EM waves in a
region far away from the interface. Theories for a variety of important structures have been systematically set
up. These include wave propagation in a semi-infinite photonic crystal, a coated semi-infinite photonic crystal,
a heterostructure formed by two different semi-infinite photonic crystals face to face, and a complex sand-
wiched structure formed by two semi-infinite photonic crystals separated by a general grating slab. In combi-
nation with a supercell technique, the developed formulations can also be used to handle photonic crystal
waveguide structures. We have applied the developed TMM to two-dimensional photonic crystal and related
waveguide structures. The first is the coupling of an external wave into a photonic crystal~photonic crystal
waveguide! and the related inverse problems of coupling of a Bloch’s wave~guided wave! out of the pho-
tonic crystal~photonic crystal waveguide!. The second is scattering of a guided wave by a cavity introduced
into a photonic crystal waveguide. The developed TMM can help to understand optical properties and
design optimal structures of individual functional elements in an optical integrated circuit built in a photonic
crystal environment.

DOI: 10.1103/PhysRevB.68.155101 PACS number~s!: 42.70.Qs, 41.20.Jb, 78.67.2n
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I. INTRODUCTION

Photonic crystals are materials composed of periodic
rays of dielectric or metallic building blocks. They have a
tracted extensive interest in recent years because the
tence of a photonic band gap~PBG! provides a novel way to
control and mold the flow of electromagnetic~EM! waves
much as conventional semiconductors to do electrons.1,2 For
instance, photonic crystals can serve as the platform for
ture electro-optic or all-optical ultrasmall integrated circu
~IC’s!, thanks to the peculiar propagation behavior of E
wave in defects introduced into photonic crystal structur
An optical IC can be made up of many different function
elements, among which are photonic crystal waveguid
waveguide bends and branches, and cavities.3–14

Understanding the propagation behavior of EM waves
these individual functional elements in the environment of
inhomogeneous medium, here a periodic photonic crysta
of vital importance to assess the overall functionality a
efficiency of an optical IC. It can also lay down the basis
further actively designing high-efficient circuits with mo
complicated configurations. The finite-different time-doma
~FDTD! method15 is a popular theoretical tool for this pur
pose. However, structural boundaries~such as exits of a pho
tonic crystal waveguide! present in the FDTD simulation
can lead to multiple-reflection phenomena that will entan
with useful information and then seriously contaminate
interpretation of the solution to the EM problems. For i
stance, when the FDTD technique is employed to treat c
pling of EM wave into and out of a photonic crystal wav
guide, the multiple reflection induced by second wavegu
exit will greatly complicate the simulation. Another prom
0163-1829/2003/68~15!/155101~15!/$20.00 68 1551
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nent example is the simulation of EM wave propagati
through a waveguide sharp bend and calculation of the be
ing efficiency by means of the FDTD technique. In order
separate sufficiently the useful pulse and parasite mult
reflection pulses from two waveguide exits, very large sim
lation domain size must be adopted.3 Artificial interfaces can
be designed to connect these structural boundaries to
FDTD domain boundaries~usually the free space! to reduce
the reflection.16 However, they can hardly completely re
move the multiple reflection and the design is not alwa
easy for general structures. A naive while efficient and fu
damental way to completely remove these multiple refl
tions is to adopt a structure without boundary. In our curr
problem this amounts to considering the problem of E
wave propagation through a semi-infinite photonic crys
structure in which no structural boundary exists and the
fore no multiple reflection happens. In fact, this idea is no
new one. Recall the old classic problem in general optics
transmission and reflection of light through a glass plate
useful insight into this problem is to first look at the tran
mission and reflection through an air-glass interface and c
temporarily neglect the existence of the other air-glass in
face. Then the glass plate can be assumed to be a s
infinite medium. Further information from the multipl
reflection between the two interfaces can be incorpora
based on the knowledge for each single interface. Obviou
by adopting a semi-infinite glass medium, one has remo
the entanglement with the multiple reflection effect, whi
can be troublesome when the glass plate is very thick.
same concept and principle also apply to our photonic cry
structures. It is helpful to only consider the single structu
boundary in the first step and then add up multiple reflect
©2003 The American Physical Society01-1
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effect in the second step, if necessary.
Unlike a glass plate, the photonic crystal is a much m

complicated inhomogeneous medium. At first glance,
problem seems to be much more difficult. However, after
go deep into analysis of this wave propagation problem
find that the fundamental concept used in the classic g
plate can also be utilized in the current complex structure
we know, the usual way to solve wave propagation throug
glass plate is to write down the eigenmodes in the glass p
~usually a transmission plane wave! and in air~incident and
reflection plane waves!, then to find out the coefficients o
the eigenmodes by matching the boundary condition of
fields at the interface. Energy conservation and lateral m
mentum conservation should be satisfied to yield the fi
answer. It turns out that the current problem of wave pro
gation through a semi-infinite photonic crystal can also
closely related to the eigenmodes in the photonic crys
Unlike the simple eigenmode~plane wave function! in a ho-
mogeneous glass plate, the eigenmode in the photonic cr
is much more complex. Taking into account the principle
energy and lateral momentum conservation, the problem
be recast as: How to find the eigenmodes excited in the p
tonic crystal under an external incident wave at frequencv
and wave vectork0. We find that this problem can be con
veniently solved in the general framework of the transf
matrix formalism.17–26 In this paper we will utilize the
transfer-matrix method~TMM ! on the basis of plane-wav
expansion of EM fields since it provides an accurate way
deal with arbitrary photonic crystal structures.21–26

This paper is arranged as follows. In the next four s
tions, we will develop the TMM formalisms for wave sca
tering by different semi-infinite photonic crystal structure
In Sec. II we first consider the wave propagation in a se
infinite photonic crystal structure surrounded by air or oth
homogeneous medium. This will lay down the theoreti
foundation for later discussions on more complex structu
We also discuss how to solve efficiently the eigenmodes
the photonic crystal. In Sec. III we proceed to consider wa
propagation through a semi-infinite photonic crystal coa
with another general grating slab. In Sec. IV we consi
wave propagation in a composite heterostructure consis
of two different semi-infinite photonic crystals face to fac
Then in Sec. V we turn to a more complicated structu
consisting of two different semi-infinite photonic crysta
separated by a general grating slab, which we call a sa
wiched structure. After we have settled the theoretical ba
we will take several examples of two-dimensional~2D! pho-
tonic cryptal and related waveguide structures to show
power of the developed theoretical tools. However, the
veloped method can equally apply to more complex 3D p
tonic crystal and related waveguide structures. In Sec. VI
consider a 2D photonic crystal composed of a square la
of dielectric cylinders in air and see how an incident pla
wave from the air side is scattered by this semi-infinite p
tonic crystal. The inverse process of a Bloch’s wave incid
from the semi-infinite photonic crystal side scattered by
air-crystal interface is also considered. In Sec. VII we ap
the same theoretical tool to solve the problem of EM wa
coupling into and out of a straight waveguide structure c
15510
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ated in the above 2D photonic crystal. To appreciate the
mulation of the TMM, a supercell technique is used. In S
VIII we focus on sandwiched structures consisting of tw
semi-infinite photonic crystal waveguides separated by lo
ized defect structures. We consider an example of the s
tering of an incident guided wave by a cavity placed betwe
two identical semi-infinite waveguides. In Sec. IX we w
further discuss the developed TMM in comparison with t
popular FDTD techniques in application to design of fun
tional elements in a photonic crystal based optical IC. Fina
we will summarize this paper in Sec. X.

II. THEORY FOR WAVE PROPAGATION IN BARE SEMI-
INFINITE PHOTONIC CRYSTAL STRUCTURES

To see how the problem of wave propagation in a se
infinite photonic crystal structure is connected with the tra
fer matrix for the unit cell of the photonic crystal, let us fir
consider a simple case, where a plane EM wave with
quencyv0 and wave vectork0 is incident in air from left to
right along thez axis onto a semi-infinite photonic crysta
The configuration of this problem is schematically depict
in Fig. 1~a!. The question is how to calculate the transm
sion field into the photonic crystal and the reflection fie
back into the air. Since this is essentially a scattering pr
lem, we naturally turn to the TMM for answer. In addition
we adopt a plane wave basis to expand the EM fields,
assume that the left and right hand sides of each unit ce

FIG. 1. Schematic configurations for~a! an external EM wave
propagating from left to right scattered by a semi-infinite photo
crystal ~PC! surrounded by air and~b! a Bloch wave propagating
from right to left in the semi-infinite photonic crystal scattered
the air-crystal interface.
1-2
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LIGHT PROPAGATION IN SEMI-INFINITE PHOTONIC . . . PHYSICAL REVIEW B 68, 155101 ~2003!
the photonic crystal are surrounded by infinitely thin
films.20,26 This means that all plane waves are placed in
air background, a natural selection to match the current p
lem that the semi-infinite photonic crystal is surrounded
an air background. This plane-wave basis will be adop
throughout all problems in this work.

It turns out that the EM fields at the right hand side o
single unit cell of the crystal can be connected with the fie
at the left hand side~see the schematic configuration in th
upper panel of Fig. 2! via a transfer matrix

S V i
1

V i
2D 5TS V i 21

1

V i 21
2 D 5S t11 t12

t21 t22
D S V i 21

1

V i 21
2 D . ~2.1!

HereV i
1 (V i

2) is a column vector composed of the expa
sion coefficients of the positive~negative! propagating plane
wave in free space at the right hand side of thei th unit cell,
while V i 21

1 (V i 21
2 ) is a column vector at the left hand sid

of the i th unit cell. For more detail of this transfer-matr
technique, the readers are referred to Ref. 26.T is called the
transfer matrix~more accurately, theT matrix! for the i th
crystal layer. With this transfer matrixT at hand and consid
ering the periodicity of the photonic crystal, it can be sho
that the fields after passing throughn crystal layers~as de-
picted in the lower panel of Fig. 2! are given by

S Vn
1

Vn
2D 5TnS V0

1

V0
2D . ~2.2!

FIG. 2. Schematic configurations of EM wave propagat
through~a! a single unit cell of a photonic crystal and~b! a photonic
crystal slab consisting ofn unit cells described by a transfer-matr
formalism in terms of column vectorsV6, which are made up of
plane wave coefficients of the EM fields.
15510
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In this way, the EM fields inside the photonic crystal ha
been related to the fields at the air-crystal interface~with V0

1

andV0
2 corresponding to the incident and reflection fields

air, respectively! through a new transfer matrixTn.
Now we see that the matrixT plays a key role in deter-

mining how the wave propagates through the photonic cr
tal. Let us first have a closer look at it. From literatures o
can find that in addition to its routine application in calcula
ing transmission and reflection spectra, the TMM can also
used to solve the ordinary photonic band structures fo
photonic crystal.17–19,25,26In doing so, one needs to impos
the Bloch’s boundary condition on the fields at the two ha
sides of the unit cell

S V i
1

V i
2D 5eik•RS V i 21

1

V i 21
2 D , ~2.3!

where k is the Bloch wave vector andR is the primitive
lattice vector of the photonic crystal. This means that

TS V i 21
1

V i 21
2 D 5eik•RS V i 21

1

V i 21
2 D . ~2.4!

Therefore the Bloch phase factor is the eigenvalue of
matrix T. This suggests that we solve all the eigenvalues
eigenvectors ofT, from which we have

TS5SL,

whereL is a diagonal matrix composed of all eigenvalu
$l i ,i 51, . . . ,N%, with N being the dimension ofT. S is a
N3N matrix with its i th column being the eigenvector ofT
corresponding to the eigenvaluel i . Note that the Block’s
modes are among these eigenmodes forT. Now T can be
expressed intoT5SLS21, and Eq.~2.2! becomes

S Vn
1

Vn
2D 5SLnS21S V0

1

V0
2D . ~2.5!

From the eigenequation

TS V1

V2D 5lS V1

V2D , ~2.6!

we find

LS5lS, ~2.7!

where S5S21(V1,V2)T, with ‘‘ T’’ denoting the matrix
transposition.V1 and V2 can be column vectors for an
crystal layer.

SinceL is a diagonal matrix, the eigenvector correspon
ing to l i should beS5(0, . . . ,1, . . . ,0)T, namely, only one
nonzero element is present at thei th row of the column
vector. In fact, every elements i in a general column vecto
S5$s i ,i 51, . . . ,N% denotes an eigenmode of the trans
matrix T, whose eigenvalue isl i and whose amplitude iss i .
This means that the column vectorS has a very simple while
elegant physical implication for the photonic crystal. We c
see now that the unitary transformationS has served as a
bridge to reflect the eigenmode in the original plane-wa
1-3
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 155101 ~2003!
basis to that in the new eigenstate basis. Due to the sig
cant simplicity of the new eigenstate basis, it is helpful
work closely in this space. Physically, due to the tim
reversal symmetry of the structure, the eigenvalues of
transfer matrix should appear in pairs. Namely, once we h
an eigenvaluel i , we should find another onel j51/l i .19

This implies that each growing eigenvalue~and eigenmode!
should one-to-one correspond to a decaying eigenvalue
addition, each positive~forward! propagating Bloch’s mode
should also find a corresponding negative~backward! propa-
gating Bloch’s mode. Therefore, we can separate the eig
valuesl into two classes, one classl1 corresponds to posi
tive propagation modes, including thoseul1u,1
~exponentially decaying! and positive propagating Bloch’
modes, while the other classl2 corresponds to negativ
propagation modes, including thoseul2u.1 ~exponentially
growing! and negative propagating Bloch’s modes. Cor
spondingly, the diagonal matrixL can be also separated in
two parts, and thus can be rearranged into the follow
form:

L5S L1 0

0 L2
D , ~2.8!

whereL1 and L2 correspond to the positive and negati
eigenmodes, respectively. They should have same dim
sion. At the same time, the eigenvector matrixS should be
rearranged in exactly the same way, namely, by exchan
different column vectors~eigenvectors! corresponding tol1

and l2 . In our numerical practice, we find it very easy
separate exponentially growing or decaying modes by sim
looking at the eigenvalue. However, special care must
taken to those Bloch’s modes withulu51.19 One can not
simply judge the propagation direction of a Bloch’s mode
looking at the Bloch’s wave vectork0. Instead, the total en
ergy flux along thez-axis direction should be calculated in
given plane, with the positive~negative! values correspond
ing to the positive~negative! propagating modes. Numer
cally this can be done from the plane wave coefficients
volved in any column vectorsV1 andV2, where only those
propagating components corresponding to realkz should be
counted because of nonvanishing energy flux along thz
axis. Due to the conservation of total energy flux along thz
axis, any plane can be adopted.

With the new eigenstate basis at hand, we return bac
our original scattering problem. Equation~2.5! can now be
rewritten as

Sn5LnS0

or more explicitly

S Sn
1

Sn
2D 5S L1

n 0

0 L2
n D S S0

1

S0
2D , ~2.9!

which yields

Sn
15L1

n S0
1 , Sn

25L2
n S0

2 . ~2.10!

This amounts to first projecting the incident field from orig
nal plane-wave basis onto the eigenmode space, then
15510
fi-

-
e
e

In

n-

-

g

n-

g

ly
e

-

to

ch

eigenmode propagates through the photonic crystal with
changing its state. For a semi-infinite photonic crystal str
ture, there is no boundary to reflect the forward propagat
eigenmodes into the backward propagating modes. T
physical intuition imposes a natural boundary condition
our scattering problem: All backwards propagating mod
within the photonic crystal are exactly zero. Therefore,Sn

2

50, which also means thatS0
25(L2)2nSn

250. In addi-
tion, according to the first equation in Eq.~2.10!, all positive
propagating mode will decay to null except those Blo
modes withul1u51 after they travel past a long distanc
along thez-axis direction. For the time being, let us suppo
only one single Bloch mode is excited inside the photo
crystal atv0 and k0 ~whose component parallel to the su
face of the photonic crystal should be conserved during
scattering process!. Let the Bloch phase factor be denoted
exp(ik0•R)5l j . From equality

S21S V0
1

V0
2D 5S S0

1

S0
2D ~2.11!

we derive

V0
15S11S0

1 , V0
25S21S0

1 ,

from which we get

S0
15S11

21V0
1 , Sn

15L1
n S0

15L1
n S11

21V0
1 . ~2.12!

The reflection field in the plane wave basis is written as

V0
25S21S0

15S21S11
21V0

1 , ~2.13!

and the transmission field is

Vn
15S11Sn

1 , Vn
25S21Sn

1 . ~2.14!

The transmission field is consisting of both the Bloch mo
and all other evanescent modes. At a plane very far aw
from the air-crystal interface, only the Bloch mode survive
and we have Sn

15@0, . . .,0,(l j )
n(S11

21V0
1) j ,0, . . . ,0#T.

Equations~2.12!–~2.14! are the final answer to our scatterin
problem. Using the plane-wave expansion coefficients,
can calculate the total energy flux for the Bloch wave, a
thus the transmission coefficient. This can be done eitherk
space or in real space. The same procedure can apply to
reflection field and the reflection coefficient for the ener
flux.

In the above we consider a plane wave incident from
air side onto the semi-infinite photonic crystal. The idea a
formulation developed can also be applied to solve the
verse problem, namely, how an EM wave propagating fr
deep inside the photonic crystal incident onto the air-crys
interface is scattered by the interface. The configuration
this problem is schematically depicted in Fig. 1~b!. From the
above analysis we know that the wave mode that can e
within deep inside the photonic crystal must be a Blo
mode. Suppose the Bloch mode is at a frequencyv0 and a
Bloch wave vectork0, then the corresponding eigenvalue
the transfer matrixT is l j5exp(ik0•R). Part of the wave
will transmit through the interface into the air region, oth
1-4
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part will be reflected back into the semi-infinite photon
crystal, and finally evolve into another Bloch mode. Acco
ing to Eq.~2.10!, we have

S0
25~L2!2nSn

2 . ~2.15!

So if we write Sn
25(0, . . . ,0,s j

2,0, . . . ,0)T, then S0
2

5@0, . . . ,0,s j
2(l j )

2n,0, . . . ,0#T. From the transformation
~2.11! and the fact that in the air regionV0

150 ~no reflection
waves!, we have

S0
25Q22V0

2 , S0
15Q12V0

2 , ~2.16!

whereQ5S21. From Eq.~2.16! we find that the transmis
sion field in the air region is given by

V0
25Q22

21S0
2 . ~2.17!

From Eqs.~2.16! and~2.17! we findS0
15Q12Q22

21S0
2 , from

which the field reflected into the photonic crystal is found
beSn

15L1
n S0

1 in the eigenmode space, and the correspo
ing plane-wave expansion form is given by Eq.~2.14!.

How if the background surrounding the semi-infinite ph
tonic crystal is a general homogeneous material other t
air? The problem can be solved by introducing aT matrix for
the air and homogeneous medium interfaceTm . Let the field
in the homogeneous medium beVm

6 , which is related toV0
6

by (Vm
1 ,Vm

2)T5Tm(V0
1 ,V0

2)T. The scattering problem
now can be solved by simply replacing the eigenvector m
trix S in Eqs. ~2.11!–~2.17! by TmS, for both situations of
incidence.

In the above discussions, we have observed that the
genvalues and eigenvectors of theT matrix for a unit cell
play a key role in solution of the scattering problem. Nume
cally, to calculate thisT matrix, we usually cut the unit cel
into a number of thin slices along thez-axis direction, as
shown in the upper panel of Fig. 2. Each of these slice
assumed to be a lamellar grating, for which Maxwell’s equ
tions can be solved and the transfer matrix connecting
fields at the two hand sides of this grating obtained. The t
T matrix is a simple multiplication of all the single-slic
transfer matrices. Another numerically more stable way is
use the scattering-matrix (S-matrix! formulation. TheS ma-
trix for each thin slice can be solved in a similar way to t
T matrix,26 and theS matrix for the unit cell can be calcu
lated from these individualS matrices through a simple re
cursion algorithm.17,22,26The S matrix for the unit cellSu is
defined as

S V i
1

V i 21
2 D 5SuS V i 21

1

V i
2 D 5S Su

(11) Su
(12)

Su
(21) Su

(22)D S V i 21
1

V i
2 D ,

~2.18!

whereSu
( i j ) ( i,j51,2) are four block submatrices ofSu . The

eigenproblem can be cast into the following form:

S Su
(11) 0

Su
(21) 2I

D S V i 21
1

V i 21
2 D 5lS I 2Su

(12)

0 2Su
(22)D S V i 21

1

V i 21
2 D .

~2.19!
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We recognize that Eq.~2.19! is a standard form of genera
ized eigenproblemAx5lBx, whereA andB are both square
matrices,l is the eigenvalue, andx is the eigenvector. So we
can use some standard eigensolution algorithms to solve
eigenvalues and eigenvectors of Eq.~2.19!.

Under givenv0 andk0 for an incident wave, the numbe
of Bloch modes that can be excited is limited to two
several. Most eigenmodes for the transfer matrixT or S are
nonpropagation~evanescent! modes. The maximumulmu
~corresponding to the strongest decaying modes! is almost
proportional to the plane wave number used,ulmu'euGmu,
whereuGmu is the maximum modulus of the reciprocal lattic
vectors, and is approximately proportional to the plane-wa
number. According to our numerical practice, when the nu
ber of plane wave is not too large, so thatulmu,1014, all
eigenmodes calculated from theS-matrix formulation are
identical to those obtained from theT-matrix formulation to
a very high accuracy, especially for the Bloch modes a
other nonpropagation modes withulu closest to 1. In addi-
tion, l1 andl2 have equal numbers, andl151/l2 is sat-
isfied one-to-one to a high accuracy. However, when
plane-wave number is increased to a large value in orde
guarantee a good convergence of numerical solution, num
cal overflow or underflow begins to take effect in solution
eigenproblem by means of either Eq.~2.6! or ~2.19!, al-
though the eigenvalues and eigenvectors for the Bloc
modes are not affected.l1 and l2 no longer have equa
numbers, andl151/l2 is not satisfied for very largeulu.
To overcome these difficulties, we consider another equ
lent form of eigenproblem based on theS-matrix algorithm
of Eq. ~2.19!. Instead of directly solving the eigenvaluel,
we turn to solving (l11)21, which does not cause overflow
or underflow for ulu@1 or ulu!1. Similar technique has
been employed in Ref. 25. In our numerical practice, it
very rare thatl is extremely close to21, so that (l
11)21 will never overflow. From the equalityAx5lBx, we
can deriveBx5(l11)21(A1B)x, or equivalently from Eq.
~2.19! we can find the following numerically more stab
eigenproblem:

S I 2Su
(12)

0 2Su
(22)D S V i 21

1

V i 21
2 D 5~l11!21S I 1Su

(11) 2Su
(12)

Su
(21) 2I 2Su

(22)D
3S V i 21

1

V i 21
2 D . ~2.20!

Obviously, the eigenvectors solved from Eq.~2.20! or Eq.
~2.19! are same as those solved from Eq.~2.6!, and can be
used to construct the important eigenvector matrixS in Eqs.
~2.5! and ~2.11!.

In the above discussions, we have extended the con
tional TMM from its standard application to calculate th
transmission and reflection spectra for a photonic crystal s
~more generally, a grating slab! to the current wave propaga
tion in semi-infinite photonic crystal structures. Since t
photonic crystal slab is usually thick compared to the wa
length, the numerically stableS-matrix formulation is domi-
nantly used in favor of theT-matrix formulation. In practice,
an efficient layer-doubling algorithm has been routinely u
1-5
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lized to extract the overallS matrix for the whole slab from
theSmatrices for all the individual composite layers.17–26In
the case of a photonic crystal slab, theSmatrix for a unit cell
plays a key role; the same as in the current semi-infin
structures. However, the TMM developed for a finite sl
cannot be directly applied to a semi-infinite structure. T
reason is simple. In a finite slab, no matter how thick it
there always exist two air-crystal interfaces. Conseque
multiple reflections are always present within the slab, a
they become more violent for thicker slabs. Since the us
of the S-matrix algorithm has automatically involved the
multiple reflections, the solution to a very thick slab~even
approaching infinitely thick! does not converge to the tru
wave problem for a semi-infinite structure, where no m
tiple reflections are present. Physically, these multiple refl
tions will make it difficult to extract the transmission an
reflection properties of the single air-crystal interface fro
the overall spectra for the whole slab calculated by the c
ventional TMM. It is easy to retrieve the overall spectru
information of the whole slab from those for the individu
interface, but hard or even impossible to do the inverse,
pecially for more complex structures involving many inte
faces. This fact has been well recognized when one trie
apply the FDTD technique to integrated optical elements3,16

One might assume that introduction of a slight absorpt
into the photonic crystal structure, either from considerat
of the absorptive properties of realistic optical materials
for the sake of numerical convenience, can remove the m
tiple reflections from the second air-crystal interface o
very thick crystal slab. By doing so, the reflection propert
of a thick crystal slab will approach those of a semi-infin
crystal structure, and they can be readily solved by the c
ventional TMM for a finite crystal slab. However, th
scheme can only apply to the simplest problem of an incid
EM waves from the air side reflected by the air-crystal int
face, as shown in Fig. 1~a!. For the inverse problem for a
Bloch’s wave scattered by the air-crystal interface as sho
in Fig. 1~b!, the introduction of absorption into the photon
crystal will render the problem ill imposed, because no wa
can reach the air-crystal interface due to absorption of
waves after passing a long path through the thick cry
slab. When one considers more complicated semi-infi
photonic crystal structures such as a sandwiched structur~as
shown in Fig. 5! that will be discussed in Sec. V, the limita
tion of this absorption scheme will become more evide
Therefore, the scheme of removing multiple reflectio
within a photonic crystal by introducing absorption prov
not to be an optimum and effective scheme to handle c
plex photonic crystal functional elements.

III. THEORY OF WAVE PROPAGATION IN COATED
SEMI-INFINITE PHOTONIC CRYSTAL STRUCTURES

In the last section, we consider EM wave scattering b
bare semi-infinite photonic crystal surrounded by air or
other homogeneous medium background. In this section
consider a semi-infinite photonic crystal coated with a g
eral periodic structure, which can be either a photonic cry
slab, a general grating, or simply a homogeneous med
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slab. In the case of a periodic structure, the lattice in
lateralXOY plane must match with that of the semi-infini
photonic crystal in both the lattice type and lattice consta
so that the TMM formalism can be employed.

The schematic configuration of this scattering problem
depicted in Fig. 3. In Fig. 3~a!, a plane wave is incident from
left to right onto the coated layer. One part of the wave
reflected, the other transmits through the coated layer
finally evolves into the semi-infinite photonic crystal as
Bloch wave. The fields at the surface of the coated layer
the interface between the photonic crystal and the coa
layer @represented by a dashed line in Fig. 3~a!# are denoted
asV0

6 andV1
6 . These fields are connected with each oth

through anS matrix Sa ,

S V1
1

V0
2D 5SaS V0

1

V1
2D 5S Sa

(11) Sa
(12)

Sa
(21) Sa

(22)D S V0
1

V1
2D . ~3.1!

For the semi-infinite photonic crystal, we have the followin
relation:

S V1
1

V1
2D 5SS S0

1

S0
2D 5S S11 S12

S21 S22
D S S0

1

S0
2D , ~3.2!

whereS0
6 are coefficients of the eigenmode of the photon

crystal andS is the corresponding eigenvector matrix. W

FIG. 3. Schematic configurations for~a! scattering of an exter-
nal EM wave by a semi-infinite photonic crystal coated with a gr
ing slab;~b! scattering of a Bloch wave in the coated semi-infin
photonic crystal.
1-6
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impose the natural boundary condition deep inside the p
tonic crystalS0

25Sn
250. This leads toV1

15S11S0
1 , and

V1
25S21S0

1 . Substituting them into Eq.~3.1!, we have

@S112Sa
(12)S21#S0

15Sa
(11)V0

1 , ~3.3!

V0
25Sa

(21)V0
11Sa

(22)S21S0
1 . ~3.4!

The reflection field (V0
2) and transmission field (S0

1) can be
solved directly from Eqs.~3.3! and~3.4!. Similar to the pro-
cedure in Sec. II, the transmission fieldSn

1 deep inside the
photonic crystalSn

1 can be connected toS0
1 through free

propagation of each eigenmode, and only the Bloch mo
can survive after such a long path of propagation.

We can also consider the inverse process, namely, a B
wave, which is described by a column vector in the eig
state spaceSn

25(0, . . . ,0,s j
2,0, . . . ,0)T, is incident from

right to left onto the interface between the coated layer
the photonic crystal, as shown schematically in Fig. 3~b!.
One part of wave is reflected back into the crystal, the ot
transmits through the coated layer into the air background
such a situation, we haveV0

150. Then from Eq.~3.1! we
find V1

15Sa
(12)V1

2 , V0
25Sa

(22)V1
2 . Substituting them into

Eq. ~3.2!, we have the following linear equations:

S S11 2Sa
(12)

S21 2I
D S S0

1

V1
2D 5S S12S0

2

S22S0
2D . ~3.5!

After solution of S0
1 and V1

2 , the reflection field into the
photonic crystal~described byS0

1 and Sn
1) and the trans-

mission field into air, which is given byV0
25Sa

(22)V1
2 , are

readily known.

IV. THEORY OF WAVE PROPAGATION IN PHOTONIC
CRYSTAL HETEROSTRUCTURES

In the above sections we consider wave propagation
composite infinite system composed of a semi-infinite air~or
other homogeneous medium! background and a semi-infinit
photonic crystal structure~either bare or coated!. Now we
push one step further to investigate a heterostructure for
by two different semi-infinite photonic crystal structures

FIG. 4. Schematic configuration of EM wave propagating in
heterostructure consisting of two different semi-infinite photo
crystals face to face.
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touch face to face. The schematic configuration of the sys
is displayed in Fig. 4. The two semi-infinite photonic crys
should also have the same lattice structure~the same lattice
type and lattice constants! in the lateralXOYplane, in order
that the whole system can be assumed as a grating~infinitely
thick! to allow for application of the conventional TMM
formulation.

Suppose that we have already solved the eigenmode
theT matrix ~or Smatrix! in the semi-infinite photonic crys
tals 1 and 2, following the procedures described in Sec. II
the semi-infinite photonic crystal 1, we have

T15S1L1S1
21 , S1

21S V1
1

V1
2D 5S P1

P2D ~4.1!

and

P0
15L1,1

n Pn
1 , P0

25L1,2
n Pn

2 . ~4.2!

In the semi-infinite photonic crystal 2, we have

T25S2L2S2
21 , S2

21S V2
1

V2
2D 5S S1

S2D ~4.3!

and

Sn
15L2,1

n S0
1 , Sn

25L2,2
n S0

2 . ~4.4!

The same fields at the interface~denoted by the dashed lin
in Fig. 4! between the two semi-infinite photonic crystals c
be written either in reference to the eigenstate space for
semi-infinite crystal on the left hand side or to the eigenst
space for the crystal on the right hand side. This leads to
following equality:

S V2,0
1

V2,0
2 D 5S V1,0

1

V1,0
2 D . ~4.5!

To solve the scattering problem, we need to impose a nat
boundary condition thatSn

250 atz51`. This immediately
yields S0

250. From Eq.~4.5! we get

S2S S0
1

S0
2D 5S1S P0

1

P0
2D ,

which yields

S P0
1

P0
2D 5PS S0

1

S0
2D , ~4.6!

whereP5(S1)21S2. From the fact thatS0
250 we can write

P0
15P11S0

1 , P0
25P21S0

1 . ~4.7!

In combination of Eq.~4.2!, we find

S0
15~P11!

21L1,1
n Pn

1 . ~4.8!

The transmission and reflection fields can be directly cal
lated fromS0

1 ,

Pn
25~L1,2

n !21P0
25~L1,2

n !21P21S0
1 , ~4.9!
1-7
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Sn
15L2,1

n S0
1 . ~4.10!

The field distribution in the real space can then be evalua
from the plane-wave expansion of the eigenmodes using
~4.1! and ~4.3!. Therefore, given an incident Bloch mod
Pn

15(0, . . . ,0,p j
1,0, . . . ,0)T, we can calculate the reflec

tion and transmission fields in the two hand sides of
photonic crystal heterostructure. These fields should co
spond to the Bloch wave propagation in each photonic c
tal when far away from the interface.

V. THEORY OF WAVE PROPAGATION IN SANDWICHED
PHOTONIC CRYSTAL STRUCTURES

Now suppose that the two semi-infinite photonic cryst
do not directly touch face to face, but are separated b
sandwiched structure, as shown schematically in Fig. 5.
central sandwiched structure can be a simple homogen
medium slab, a general grating slab, or another photo
crystal slab. We also require that the sandwiched slab sh
have the same lattice structure as the two semi-infinite p
tonic crystals in the lateralXOYplane.

The solution follows a very similar procedure to that f
the heterostructure discussed in Sec. IV. Instead of Eq.~4.5!,
the fields at the surface of the left photonic crystal and
fields at the surface of the right photonic crystal~which are
also the left and right surface of the sandwiched slab! are
now connected by a transfer matrixTa ~a T matrix! as

S V2,0
1

V2,0
2 D 5TaS V1,0

1

V1,0
2 D . ~5.1!

Then we get

S P0
1

P0
2D 5PS S0

1

S0
2D , ~5.2!

whereP5(S1)21(Ta)21S2. The subsequent derivations a
exactly identical to Eqs.~4.7!–~4.10! in Sec. IV. Therefore,
given an incident Bloch mode atz52` of the left photonic
crystal structure, which corresponds to a column vecto
the eigenstate space for this photonic crystal asPn

1

5(0, . . . ,0,p j
1,0, . . . ,0)T, we can calculate the reflectio

field and the transmission field scattered by the sandwic

FIG. 5. Schematic configuration of EM wave propagating in
complex sandwiched structure consisting of two semi-infinite p
tonic crystals separated by a general grating slab.
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structure. The scattered EM fields also correspond to
Bloch’s wave propagation in each photonic crystal when
away from the sandwiched structure.

When the central sandwiched slab is thick, the algorit
to derive theT matrix Ta is numerically unstable. So, w
need to take another stable algorithm, theS-matrix
algorithm. Let theS matrix for the total slab beSa , which
satisfies

S V2,0
1

V1,0
2 D 5SaS V1,0

1

V2,0
2 D . ~5.3!

According to Eqs.~4.1! and~4.3!, the column vectors in the
both hand sides are related to the eigenmodes of the
photonic crystals by

V2,0
1 5S2

(11)S0
1 , V2,0

2 5S2
(21)S0

1 ,

V1,0
1 5S1

(11)P0
11S1

(12)P0
2 , V1,0

2 5S1
(21)P0

11S1
(22)P0

2 ,
~5.4!

whereS1
( i j ) andS2

( i j ) ( i , j 51,2) are the block submatrices o
S1 andS2. In deriving Eq.~5.4!, we have considered the fac
that S0

250, andP0
1 has already been known from the c

efficient of the incident Bloch modePn
1 (P0

15L1,1
n Pn

1).
Combining Eqs.~5.3! and ~5.4!, we have

S 0

S1
(21)P0

1D 1S S2
(11) 0

0 S1
(22)D S S0

1

P0
2D

5SaS S1
(11)P0

1

0
D 1SaS 0 S1

(12)

S2
(21) 0

D S S0
1

P0
2D

~5.5!

from which we obtain the following linear equations:

S S2
(11)2Sa

(12)S2
(21) 2Sa

(11)S1
(12)

2Sa
(22)S2

(21) S1
(22)2Sa

(21)S1
(12)D S S0

1

P0
2D

5S Sa
(11)S1

(11)P0
1

@Sa
(21)S1

(11)2S1
(21)#P0

1D . ~5.6!

In Eq. ~5.6!, Sa
( i j ) ( i , j 51,2) are the block submatrices of th

S matrix Sa . The unknown variablesS0
1 and P0

2 can be
solved by standard technique such as Gaussian elimina
method. After they are solved, the coefficients of the refl
tion and transmission Bloch modes in the two photonic cr
tals can be obtained by using Eqs.~4.9! and~4.10!. Then the
reflection and transmission fields as well as the total ene
flux of these fields are readily calculated, from which w
can obtain the knowledge of transmission and reflect
coefficients.

-

1-8
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VI. WAVE TRANSMISSION AND REFLECTION
IN SEMI-INFINITE 2D PHOTONIC CRYSTALS

To demonstrate the power of the developed TMM in a
plication to semi-infinite photonic crystal structures, we w
take some examples. For simplicity and brevity, we o
consider 2D photonic crystal and related waveguide str
tures. The extension to 3D photonic crystal structures
straightforward, but needs much more time-consuming
merical efforts. The photonic crystal we study here is co
posed of a square lattice of dielectric cylinders embedde
an air background. The cylinder has a dielectric constan
e511.56 and a radius ofr 50.18a, wherea is the lattice
constant. The corresponding filling fraction of the cylinder
f 510.3%. For a semi-infinite photonic crystal, we assu
that the surface is normal to the~10! crystallographic direc-
tion. In addition, we assume that the incident wave is at
E-polarization mode~with the electric field parallel to the
cylinder axis!, and propagates parallel to this direction. O
viously, we have considered a normal incidence situat
The incident wave will then witness the photonic band str
tures and band gaps along the~10! direction. We have used
the TMM described in Sec. II to calculate the band structu
and the result is plotted in Fig. 6. Here 15 plane waves h
been used in the calculation, and good convergence has
achieved, consistent with the fact that theE-polarization
mode allows for fast convergency. Only eigenmodes withv
below 0.7(2pc/a) are shown, wherec is the light speed in
free space. There is a wide fundamental~10! directional band
gap between 0.261(2pc/a) and 0.443(2pc/a). Another
much narrower band gap opens between the second and
photonic bands. We have also applied the conventio
plane-wave expansion method27–29 to solve the photonic
band structure, and found the same results.

FIG. 6. Plots of the photonic band structures along the~10!
direction of a 2D photonic crystal. The crystal is composed o
square lattice of dielectric cylinder in air with parameterse
511.56 andr 50.18a, wherea is the lattice constant. The ban
structures are solved by means of a transfer-matrix method.
15510
-

c-
is
-
-
in
of

e

e

-
.
-

,
e
en

ird
al

Now we send a plane wave normally incident on t
semi-infinite photonic crystal, in a way very closely repr
sented by the schematic configuration shown in Fig. 1~a!. We
scan the frequency range between 0 to 0.7(2pc/a) by using
a small step of 0.002(2pc/a). For each monochromatic in
cident wave, we can calculate the transmission wave pro
gating into the photonic crystal and the reflection wa
bounced back from the crystal. The resulting spectra of
transmission and reflection coefficients are displayed in F
7~a!. At the frequency range of the two band gaps, the tra
mission coefficient is exactly zero, and the reflection coe
cient is precisely 100%, as can be expected. More interes
features come from the frequency range corresponding to
photonic bands, and they show complex behaviors. At
quencies below the fundamental band gap, which ran
from 0 to 0.261(2pc/a), the transmission~reflection! coef-
ficient shows a very simple monotonous decaying~growing!
behavior. At very long wavelengths, a saturation occurs
the transmission and reflection spectra, leaving a 96.7
~3.26%! transmission~reflection! coefficient. It has been wel
established that a photonic crystal behaves similar to a
mogeneous medium with an effective refractive index ofn in
the long-wavelength limit. According to the well-know
Fresnel’s formular 5(12n)/(11n) andR5r 2. For the cur-
rent photonic crystal,R53.26%, thenr 5218.06%, which
yields an effective refractive index ofn51.441. This value
is very close to that calculated by a scalar effective medi

a

FIG. 7. ~a! Calculated transmission and reflection spectra fo
plane EM wave scattering by the semi-infinite 2D photonic crys
investigated in Fig. 6. The plane wave is normally incident on
surface of the crystal along the~10! direction.~b! The phase shift of
the reflection wave relative to the incident wave.
1-9
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 155101 ~2003!
theoryn5Af e1(12 f )51.445. If we can regard the photo
nic crystal as an effective homogeneous medium in
whole frequency range below the fundamental band g
then the monotonous growing behavior ofR implies that the
effective refractive indexn increases monotonously to a
infinite value at the band edge. Of course, the effective m
dium theory only holds in the long-wavelength limit and fa
at those modest frequencies close to the band gap. At hi
photonic bands the spectra show more complicated be
iors, where no monotonous variation behavior is found.

It is interesting to look at the phase of the reflection wa
In the whole frequency range considered here, the reflec
wave in the far-field region only contains zero-order Bra
wave ~plane wave!, so it is possible to define the phase
this plane wave in reference to that of the incident pla
wave. The calculated result is displayed in Fig. 7~b!. In the
whole frequency range below the fundamental band gap,
phase shift of the reflection wave compared to the incid
wave remains at2p ~same top). If we use the formula
r (v)5@12n(v)#/@11n(v)#, then we find thatn(v) is al-
ways a real number larger than 1. In the fundamental b
gap, the phase shift increases from2p to 0, indicating that
n(v) is now a complex number,n(v)5nr(v)1 ini(v), and
r (v)5@12nr(v)2 ini(v)#/@11nr(v)1 ini(v)#. This is
consistent with the fact that in the band gap, the photo
crystal behaves similar to a metallic material with a comp
refractive index, and the only mode that can exist is
surface evanescent mode. A similar metallic behavior
also be found in the phase-shift pattern at the second b
gap. Similar to the transmission~reflection! spectra, the
phase shift for higher photonic bands shows a complica
behavior, and cannot be explained by a simple paramete
n(v). This is not hard to understand because the effec
refractive index has no physical significance at short wa
lengths comparable to the lattice constant of the photo
crystal.

Now let us look at the inverse problem of a Bloch wa
propagating from deep inside the photonic crystal along
~10! direction scattered by the air-crystal interface, as sho

FIG. 8. Calculated transmission and reflection spectra for
inverse problem of Fig. 7, where a Bloch wave is scattered by
semi-infinite 2D photonic crystal investigated in Fig. 6. The Blo
wave is normally incident on the surface of the crystal along
~10! direction. Data in the band gaps are absent because there
Bloch mode in these frequency ranges.
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in Fig. 1~b!. The calculated transmission and reflection co
ficients are plotted in Fig. 8 as a function of the frequency
the incident Bloch wave. Note that the data in the band ga
absent. The reason is that no Bloch modes exist in th
frequency ranges, which renders the wave propagation p
lem meaningless. An interesting phenomenon can be fo
in the spectra when we compare Fig. 8 to Fig. 7~a!: The
spectrum curves are identical to each other. This identity
the transmission and reflection coefficients in the two inve
wave propagation problems can be understood from
time-reversal symmetry in this system. In other words, it i
natural result from the application of reciprocal theorem
light to the current purely dielectric structure. This also r
calls the situation of a homogeneous glass plate with a
fractive indexn. The reflection coefficient for a plane wav
normally incident from air onto the glass is identical to th
for a plane wave normally incident from glass onto air, bo
areR5r 25(12n)2/(11n)2. The other reason for this iden
tity is that there is only zero-order Bragg wave existing in t
air region, and only one Bloch mode can be excited in
photonic crystal, so that these two inverse problems are s
metrical when time is reversed. In more complicated sit
tions, this identity might be broken.

VII. COUPLING OF EM WAVES
INTO AND OUT OF

PHOTONIC CRYSTAL WAVEGUIDES

After having gained some experience on how the TMM
applied to simple semi-infinite photonic crystal structure
we proceed to considering wave propagation in a photo
crystal waveguide structure, which is an important functio
element in a photonic crystal based optical IC. The wa
guide is created in the above semi-infinite 2D photonic cr
tal by removing a single row of cylinders along the~10!
direction. One important subject about such an optical e
ment is the coupling of EM waves into and out of the wav
guide. As we discussed in the Introduction, it is of gre
benefit both physically and numerically to completely r

e
e

e
no

FIG. 9. Plot of the band diagram of guided modes in a wa
guide created in the 2D photonic crystal investigated in Fig. 6
removing a single row of cylinders along the~10! direction. The
results are solved by means of a transfer-matrix method.
1-10



in
ve
is
fo
t
th

w
i
h
is
ve
ha
od
in
th

t
t

ou

-
e

rt
o

o
te

g
na
am
co

g

l
of

-
tal

ion

this
dot

he
ve-

e-
ge.

y

nt
n-

lic-
the

f-
hat
ulk
ve-

a
e to
d
of

rgy
ar-

ci-

r
ta
rin

r a
s in
t to
set

LIGHT PROPAGATION IN SEMI-INFINITE PHOTONIC . . . PHYSICAL REVIEW B 68, 155101 ~2003!
move the multiple-reflection contamination to the useful
formation induced by the second exit in a finite-length wa
guide. To achieve this, a semi-infinite waveguide
necessary and our developed TMM is perfectly suitable
this task. Unlike the above photonic crystal, we need
adopt a supercell technique in order to appreciate
transfer-matrix formalism.

In order to have a clear understanding of this problem,
first investigate the behavior of guided modes existing
such a waveguide. The band diagram of guided mode
been calculated by means of the TMM. A supercell cons
ing of up to 11 unit cells centered at the axis of the wa
guide has been adopted, and up to 129 plane waves
been used to calculate the dispersion of the Bloch m
~guided mode! in this structure. The result is displayed
Fig. 9, where the two horizontal dashed lines denotes
edge of the completeE-polarization band gap of the bulk 2D
photonic crystal, which lie at 0.302 and 0.443(2pc/a), re-
spectively. A single wide guided-mode band spans mono
nously from 0.312(2pc/a) at k50 to the upper band edge a
aboutk50.76(p/a).

The schematic configuration of guided wave coupling
of the waveguide is shown in the inset of Fig. 10.Sn

2

5(0, . . . ,0,s j
2,0, . . . ,0)T is the column vector in the eigen

state space, wheres j
251 is the amplitude for the negativ

propagating~from right to left! guided mode. When this
guided mode impinges on the waveguide exit, some pa
reflected back into the waveguide and finally evolves int
positive propagating~from left to right! guided mode de-
scribed bySn

15(0, . . . ,0,sm
1,0, . . . ,0)T, with sm

1 being the
amplitude of this positive guided mode. The other part
wave transmits through the waveguide exit and dissipa
into the free space in the form ofV0

2 . Although we only
consider the simple case of a waveguide connected with
air background, a more complex problem such as couplin
wave out of photonic crystal waveguides into conventio
planar or slab waveguides can also be solved in the s
framework. To calculate the reflection and transmission
efficients, we work in the real space instead of thek space.
We first calculate the distribution of the electric and ma

FIG. 10. Calculated transmission and reflection spectra fo
guided wave coupling out of a semi-infinite 2D photonic crys
waveguide investigated in Fig. 9. The configuration of the scatte
problem is depicted in the inset.
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netic fields in a plane~with a size equal to the supercel!
perpendicular to the waveguide axis from the knowledge
Sn

2 , Sn
1 , andV0

2 , from which the Poynting vector is cal
culated at each sampling point in this plane. Then the to
energy flux in this plane is summed up toI 0 , I r , and I t
corresponding to the incident, reflection, and transmiss
energy fluxes, from which we findR5I r /I 0 and T5I t /I 0.
The calculated reflection and transmission spectra for
waveguide are displayed in Fig. 10 by the solid and open
curves, respectively. It can be seen that the reflection~trans-
mission! coefficient almost monotonously decays when t
frequency of the guided mode is increased. Near the wa
guide cutoff frequency @0.312(2pc/a)#, the reflection
~transmission! coefficient can be over 90%~below 10%!, in-
dicating very poor coupling-out efficiency. The contrary b
havior is found at frequencies near the upper band ed
Here the transmission~reflection! coefficient can be as high
as 97%~as low as 3%!, and therefore the coupling efficienc
out of the waveguide is very high.

The inverse problem of coupling an external incide
wave into the waveguide~the corresponding schematic co
figuration is shown in the inset of Fig. 11! has also been
investigated in the same theoretical framework. For simp
ity, we also consider a plane wave normally incident on
waveguide. Since the incident field (V0

1) is extended in
space~and thus infinite in the energy flux!, while the trans-
mission field (Sn

1) is a localized guided wave~and thus fi-
nite in the energy flux!, the transmission and reflection coe
ficients are ill defined. Physically it is easy to understand t
most part of the incident wave is reflected back by the b
photonic crystal, and only those waves close to the wa
guide exit can go into the waveguide and evolves into
guided wave. Therefore, one more reasonable measur
monitor the coupling efficiency is to look at a normalize
transmission coefficient, which is defined to be the ratio
the total transmission energy flux to the total incident ene
flux in a sampling region whose width is equal to the app
ent width of the waveguide (a for the current structure!. The
normalized transmission coefficient as a function of the in

a
l
g

FIG. 11. Calculated normalized transmission spectrum fo
plane wave coupling into the same photonic crystal waveguide a
Fig. 10. The transmission coefficient is normalized with respec
an incident total energy flux in a size of one lattice constant. In
shows the configuration of the wave scattering problem.
1-11
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 155101 ~2003!
dent wave frequency has been calculated and the resu
plotted in Fig. 11. In contrast to the monotonous variation
Fig. 10, the transmission spectrum shows a more com
feature. A peak stands around frequency 0.36(2pc/a),
where the efficiency can reach 120%, indicating a slight
cusing effect. The coupling-in efficiency is very bad near
waveguide cutoff frequency, similar to the behavior of t
coupling-out efficiency. Another significant difference b
tween the two processes lies at frequencies near the u
band edge. While the coupling-out efficiency is close
100%, the coupling-in efficiency is below 80%. This mig
be attributed to the mismatch of a uniform field profile of t
incident plane wave with that of a localized guided wave
this frequency range. We have found that much be
coupling-in efficiency can be achieved by careful design
the incident wave profile. For example, a Gaussian beam
improve the coupling-in efficiency remarkably.

VIII. WAVE PROPAGATION IN SANDWICHED PHOTONIC
CRYSTAL WAVEGUIDE STRUCTURES

In the above two sections we have discussed the solu
of wave propagation in semi-infinite 2D photonic crystal a
related waveguide structures. Now we go one step furthe
look at more complicated sandwiched photonic crystal a
related waveguide structures. We will take a functional e
ment in an optical IC, cavities created in a straight photo

FIG. 12. Transmission spectra for a guided wave scattered
cavity ~with a size of one unit cell! introduced into a 2D photonic
crystal waveguide. The schematic configurations of the waveg
and the cavity are depicted in the insets.
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crystal waveguide,30,31 as an example to demonstrate t
principle and power of the developed TMM

The first structure we study is schematically shown in
inset of Fig. 12~a!. The basic structure is a straight photon
crystal waveguide that has been discussed in Sec. VII w
parameters ofe511.56 and r 50.18a. Excitation of an
E-polarization mode is also assumed. A cavity can be int
duced into this background waveguide by placing two sy
metric walls made up of dielectric cylinders. These cylinde
have the same geometrical and physical parameters as
other cylinders building the background photonic cryst
and are located in the lattice sites of the background crys
The cavity is characterized by two geometric parametersnw
andnc , which denotes the layer number of each wall and
layer number occupied by the central vacant region betw
the two walls. Therefore,nw andnc are parameters determin
ing the wall thickness and size of the cavity. In the curre
structure,nw51 andnc51, namely, the cavity is one unit
cell wide, and the wall is one unit-cell thick. Suppose
guided wave is sent propagating from left to right and i
pinges on the cavity, the question is to find out the transm
sion and reflection coefficients.

To find the answer to this question, we first adopt a
percell to place the wave propagation problem into the TM
framework. Next we look upon the central cavity as a grat
slab three unit cells thick sandwiched between two se
infinite photonic crystal waveguides. After this, we can d
rectly utilize the formalisms described in Sec. V to calcula
the transmission and reflection coefficients. The key is
solve the eigenmodes of the two identical semi-infin
waveguides~including two guided modes and many evane
cent modes! as well as theSmatrix for the grating slab. The
result of the transmission spectra is plotted in Fig. 12~a! for a
wide frequency range almost covering the whole guid
mode band. A single peak is found with the resonance oc
ring at frequencyv050.3862(2pc/a). The full width at half
maximum ~FWHM! of the peak is about Dv
50.009(2pc/a). From these two physical parameters w
can calculate the quality factor (Q factor! of this cavity,
which isQ5v0 /Dv'43. Naively one can imagine that thi
transmission peak is induced by the cavity mode coupl
with the incident guided wave. In fact, we have calculat
the localization mode involved in this cavity~with infinitely
thick walls! by means of the conventional plane-wave expa
sion method.27–29 Using a supercell composed of 737
square unit cells and up to 3000 plane waves, we fin
single cavity mode located at an eigenfrequency ofv
50.3870(2pc/a), very close to the transmission spectru
calculation. One important point about the spectrum is t
the signal is very clean, completely free from usual den
interference pattern~induced by multiple reflection from the
two waveguide exits in a usual waveguide of finite leng!
superimposed onto the envelope of the useful signal.
mere reason is that two semi-infinite waveguides
adopted, and there is no structural boundaries~the waveguide
exits! present.

We can change the geometrical parameters of the s
wiched cavity structure to modify its optical properties. Fi
ure 12~b! shows the transmission spectrum for a cavity w

a

e
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nw52 and nc51. Since the thickness of the wall of th
cavity is doubled, we expect that theQ factor of the cavity
will be significantly enhanced. Indeed Fig. 12~b! has fully
validated this assumption. Now the resonance peak is loc
at v50.3871(2pc/a), a slight blueshift compared to th
resonance peak in Fig. 12~a! for nw51. The FWHM of this
new peak is found to be about 0.0008(2pc/a), leading to a
Q factor of about 484, over 10 times larger than theQ factor
of the cavity withnw51. It is expected that when the wall o
the cavity is further increased, itsQ factor will continue to
grow, basically following an exponential law. In these stru
tures the introduction of a cavity can serve as an effici
filter to the wide-band guided wave.

In addition to changing the thickness of the wall of t
cavity, we can also adjust the size of the vacant space o
cavity. It is expected that fine tuning of the resonance f
quency can be easily achieved. Figures 13~a! shows the
transmission spectrum for a cavity withnw51 andnc52 ~as
schematically depicted in the inset! in a wide frequency
range. The space of the cavity has been increased to oc
two unit cells. Consequently two resonance peaks app
with the lower one centered atv150.3452(2pc/a), while
the higher one centered atv250.4260(2pc/a). We also
carry out solution of the localization modes involved in th
cavity ~also with infinitely thick walls!, and find two cavity
mode located at frequency 0.3451(2pc/a) and
0.4258(2pc/a), respectively, also very close to the tran
mission spectrum calculation. This means that the two tra
mission peaks definitely come from the resonance coup
with the cavity modes.

The two transmission peaks almost has an equal dista
to the peak@centered atv050.3862(2pc/a)] for the smaller
cavity with nc51 in Fig. 12, indicating that the two new
resonance peaks might origin from symmetric splitting of
old single peak due to a size effect. The FWHM for the
two resonance peaks are 0.0028(2pc/a) and 0.009(2pc/a),

FIG. 13. Same as in Fig. 12, except the cavity is now of a s
of two unit cells.
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corresponding to aQ factor of 123 and 47, respectively
Clearly the two peaks are quite asymmetric in their opti
properties. We also increase the thickness of the wall of
cavity, and the calculated transmission spectrum is displa
in Fig. 13~b! for nw52 and nc52 ~whose geometry is
shown in the inset!. For clarity of eyeview, only spectra
around the resonance peaks are shown here. Similar to
smaller cavity in Fig. 12, the resonance peaks in the cur
cavity become much narrower. The peaks are now cente
at v150.3466(2pc/a) and v250.4251(2pc/a), slightly
blueshift and redshift, respectively, from the two peaks
the cavity with thinner wall ofnw51. The FWHM for the
two peaks are reduced to values of 0.00024(2pc/a) and
0.0014(2pc/a), and the correspondingQ factors are about
1444 and 304, respectively. Obviously the lower resona
peak is much finer than the higher peak. This phenome
might be related to the fact that the distance of the low
peak away from the lower PBG edge@0.302(2pc/a)# is
much larger than the distance of the higher peak away fr
the higher PBG edge@0.443(2pc/a)#, and therefore is more
localized around the waveguide.

IX. FURTHER DISCUSSIONS ON TMM IN APPLICATION
TO PHOTONIC CRYSTAL FUNCTIONAL ELEMENTS

It is interesting to make some comparisons between
developed TMM and the more popular FDTD approach. T
FDTD approach can efficiently govern the dynamics~time
evolution! of EM wave propagation in complex structure
and has been dominantly utilized in theoretical understa
ing of the optical properties of many important function
elements built in a photonic crystal platform, such as wa
guide, waveguide bends and branches, and cavities. O
reasons that greatly contribute to the popularity of the FD
approach are its simplicity in essence, ease of computati
memory-space requirement, and ability to handle any co
plex structure, either periodic or aperiodic.

However, the FDTD approach also exhibits some intrin
weaknesses when applied to treat the spectrum of scatte
problems in a closed system~where the background is no
free space but rather an extended inhomogeneous me
such as a photonic crystal!. In the scheme of pulse excitation
in order to have a very fine frequency resolution, as is
quired for the current resonance scattering problems, the
put pulse needs to be very long. However, this is in contr
to the adoption of a finite simulation domain and consequ
multiple reflection from the structural boundaries. To obta
a reasonable result for the spectrum, the parasite reflec
pulses from the boundary must be in sufficient separa
from other useful pulses. This in turn requires a sufficien
large simulation domain size. The contrast can only be e
ciently solved by increasing the structure size. An infin
structure ~such as the semi-infinite photonic cryst
waveguides studied in the above sections! should be most
welcomed, but unfortunately it has not been seriously c
sidered~or perhaps hard to be implemented! in the FDTD
technique. These practical weaknesses suggest that peop
more careful in extracting very quantitative informatio
about the spectrum for a closed system such as the a

e
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ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 155101 ~2003!
waveguide-cavity sandwiched structures. In contrast, op
system related problems such as wave scattering by a sp
limited object placed in free space are not subject to th
weaknesses.

The developed TMM can overcome the shortcomings
the FDTD scheme in application to those closed syste
First, since it is working in the frequency domain, there is
difficulty of frequency resolution. Therefore, it is the be
candidate for the purpose of spectrum calculation in a w
scattering problem. Second, since we have developed mo
to match the semi-infinite photonic crystal structures, the
ficulty of multiple-reflection induced contamination to th
useful spectrum no longer exists. This makes it more co
petitive to handle the spectrum for wave scattering in
closed system than the FDTD techniques. Yet, one disad
tage of the TMM is that the computational memory-spa
requirement~which is proportional to the square of the pla
wave number! is far larger than in the FDTD approac
~which is linearly proportional to the pixel number in re
space and the time step used!. Another more serious disad
vantage is that the current formulation of the TMM is limite
to periodic structures, or structures that can be approxim
by an artificial periodic system~where a supercell techniqu
can be utilized!. Extension of the formulation to aperiodi
functional elements in an optical IC should be invaluable

Finally we would like to point out that the TMM can
provide a better environment for designing new optical fu
tional elements than the FDTD technique can. Take the c
ity problem discussed in Sec. VIII as an example. Supp
we wish to design an efficient element only through adju
ment of the geometrical and physical parameters of the s
cavity region. Then in the framework of the TMM, each tim
we only need to change theSmatrix for the sandwiched sla
occupied by the cavities, other physical quantities such as
eigenmodes in the background two semi-infinite wavegu
structures can be stored and used as many times as
would like once they have been calculated. Obviously,
numerical burden is limited to the small sandwiched regi
The situation is completely different in the FDTD schem
Every time one changes the parameters~no matter how
little!, one needs to run the numerical calculation once ag
in the whole simulation domain, which in most cases is
larger than the sandwiched slab. This limitation surely w
bring great inconvenience to active design of functional e
ments in a photonic crystal background. The same situa
also exists in the waveguide coupling problem discusse
Sec. VII.

X. SUMMARY

In summary, we have developed a TMM that is based
the plane-wave expansion of EM fields to handle EM wa
propagation in semi-infinite photonic crystal and relat
waveguide structures. One great advantage for this TMM
that it enables one to focus only on wave scattering at
concerned structural boundary and to completely remove
contamination due to multiple reflections in the presence
other structural boundaries. We have found that the w
scattering problem is closely connected to the eigenmode
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the transfer matrix for the unit cell of the photonic crysta
We have imposed a natural boundary condition to desc
the asymptotic propagation behavior of scattered EM wa
in a region far away from the scattering region. This h
efficiently accounted for the physical information of EM
wave propagation in the inhomogeneous background ma
als, periodic photonic crystals, and related waveguide st
tures here. Several numerical schemes have been im
mented to efficiently and accurately solve the eigenmo
for the transfer matrix. In this eigenstate space, EM wa
will not encounter any scattering when propagating throu
the photonic crystal. This basis brings significant simplific
tion to the solution of the wave propagation problem.

We have considered several general structures in conj
tion with a semi-infinite photonic crystal, and evaluated t
corresponding theoretical tools. These include wave pro
gation in a semi-infinite photonic crystal, a coated sem
infinite photonic crystal, a heterostructure formed by two d
ferent semi-infinite photonic crystals face to face, and a m
complex sandwiched structure formed by two semi-infin
photonic crystals separated by a general grating slab. In c
bination with a supercell technique, the developed form
isms can also be used to handle photonic crystal waveg
structures. We have applied the developed theoretical too
investigate 2D photonic crystal and related waveguide str
tures under the excitation of theE-polarization mode. We
first consider the simplest situation of a plane wave propa
tion into a 2D photonic crystal and the corresponding inve
problem of a Bloch’s wave propagation out of the photon
crystal. Then we turn to the problem of EM wave couplin
into and out of a photonic crystal waveguide. Both t
coupling-in and coupling-out efficiencies have been a
dressed. We then look at wave propagation in more com
cated sandwiched photonic crystal waveguide structures.
structure we study is a cavity introduced into a photo
crystal waveguide. This cavity can act as a frequency filte
a continuous spectrum of guided wave. We have changed
geometrical configurations of the cavity and examined
optical properties in the environment of the photonic crys
waveguide.

The developed TMM can have advantage over the po
lar FDTD approach in extracting accurate spectrum inform
tion of wave scattering in closed systems of functional e
ments embedded in an extended inhomogeneous med
background such as a photonic crystal. In addition, the TM
is more competent and convenient to actively design n
optical functional elements created in a photonic crys
background than the FDTD approach does. It is expected
developed TMM can help people to understand complica
wave propagation behavior in individual functional eleme
comprising an optical IC built in a photonic crystal platform
and then design optimal optical elements to realize appl
tions in a wide range. It is also expected that the power
this efficient theoretical tool and its advantage over ot
numerical tools will be witnessed more fully in handlin
complex 3D photonic crystal functional elements.
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