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Light propagation in semi-infinite photonic crystals and related waveguide structures
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A transfer-matrix methodTMM) that employs the plane-wave expansion of electromag(tEkit) fields has
been developed to handle EM wave propagation in semi-infinite photonic crystal and related waveguide
structures. The major aim is to account for wave scattering only at the concerned boundary and to completely
remove multiple reflections in the presence of other structural boundaries. It turns out that the scattering
problem is closely connected to the eigenmodes of the transfer matrix for the unit cell of the crystal. A natural
boundary condition is imposed to describe the asymptotic propagation behavior of scattered EM waves in a
region far away from the interface. Theories for a variety of important structures have been systematically set
up. These include wave propagation in a semi-infinite photonic crystal, a coated semi-infinite photonic crystal,
a heterostructure formed by two different semi-infinite photonic crystals face to face, and a complex sand-
wiched structure formed by two semi-infinite photonic crystals separated by a general grating slab. In combi-
nation with a supercell technique, the developed formulations can also be used to handle photonic crystal
waveguide structures. We have applied the developed TMM to two-dimensional photonic crystal and related
waveguide structures. The first is the coupling of an external wave into a photonic ¢pfstébnic crystal
waveguide and the related inverse problems of coupling of a Bloch’s waueded wavé out of the pho-
tonic crystal(photonic crystal waveguideThe second is scattering of a guided wave by a cavity introduced
into a photonic crystal waveguide. The developed TMM can help to understand optical properties and
design optimal structures of individual functional elements in an optical integrated circuit built in a photonic
crystal environment.
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[. INTRODUCTION nent example is the simulation of EM wave propagation
through a waveguide sharp bend and calculation of the bend-
Photonic crystals are materials composed of periodic aring efficiency by means of the FDTD technique. In order to
rays of dielectric or metallic building blocks. They have at- separate sufficiently the useful pulse and parasite multiple
tracted extensive interest in recent years because the exi®flection pulses from two waveguide exits, very large simu-
tence of a photonic band g&PBG) provides a novel way to lation domain size must be adoptédirtificial interfaces can
control and mold the flow of electromagnetiEM) waves be designed to connect these structural boundaries to the
much as conventional semiconductors to do electtdigor ~ FDTD domain boundariegusually the free spageo reduce
instance, photonic crystals can serve as the platform for futhe reflection:® However, they can hardly completely re-
ture electro-optic or all-optical ultrasmall integrated circuitsmove the multiple reflection and the design is not always
(IC's), thanks to the peculiar propagation behavior of EMeasy for general structures. A naive while efficient and fun-
wave in defects introduced into photonic crystal structuresdamental way to completely remove these multiple reflec-
An optical IC can be made up of many different functionaltions is to adopt a structure without boundary. In our current
elements, among which are photonic crystal waveguidegroblem this amounts to considering the problem of EM
waveguide bends and branches, and cavitit. wave propagation through a semi-infinite photonic crystal
Understanding the propagation behavior of EM waves irstructure in which no structural boundary exists and there-
these individual functional elements in the environment of arfore no multiple reflection happens. In fact, this idea is not a
inhomogeneous medium, here a periodic photonic crystal, inew one. Recall the old classic problem in general optics of
of vital importance to assess the overall functionality andtransmission and reflection of light through a glass plate. A
efficiency of an optical IC. It can also lay down the basis foruseful insight into this problem is to first look at the trans-
further actively designing high-efficient circuits with more mission and reflection through an air-glass interface and con-
complicated configurations. The finite-different time-domaintemporarily neglect the existence of the other air-glass inter-
(FDTD) method® is a popular theoretical tool for this pur- face. Then the glass plate can be assumed to be a semi-
pose. However, structural boundarissich as exits of a pho- infinite medium. Further information from the multiple
tonic crystal waveguidepresent in the FDTD simulations reflection between the two interfaces can be incorporated
can lead to multiple-reflection phenomena that will entanglebased on the knowledge for each single interface. Obviously,
with useful information and then seriously contaminate theby adopting a semi-infinite glass medium, one has removed
interpretation of the solution to the EM problems. For in-the entanglement with the multiple reflection effect, which
stance, when the FDTD technique is employed to treat coucan be troublesome when the glass plate is very thick. The
pling of EM wave into and out of a photonic crystal wave- same concept and principle also apply to our photonic crystal
guide, the multiple reflection induced by second waveguidestructures. It is helpful to only consider the single structural
exit will greatly complicate the simulation. Another promi- boundary in the first step and then add up multiple reflection
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effect in the second step, if necessary. air PC

Unlike a glass plate, the photonic crystal is a much more
complicated inhomogeneous medium. At first glance, the Qg 000000
problem seems to be much more difficult. However, after we O0O000O0
go deep into analysis of this wave propagation problem we oNONONONONO!
find that the fundamental concept used in the classic glass - 0000 Wz+
plate can also be utilized in the current complex structure. As Qo —-—""
we know, the usual way to solve wave propagation through a -— 0000 ﬂ,
glass plate is to write down the eigenmodes in the glass plate O0000O0
(usually a transmission plane wawand in air(incident and O0O000O0
reflection plane wavegsthen to find out the coefficients of (a)
the eigenmodes by matching the boundary condition of EM
fields at the interface. Energy conservation and lateral mo- )
mentum conservation should be satisfied to yield the final air PC
answer. It turns out that the current problem of wave propa- O0000O0
gation through a semi-infinite photonic crystal can also be .
closely related to the eigenmodes in the photonic crystal. Qo 000000 3,
Unlike the simple eigenmodglane wave functionin a ho- O0O00O0O0
mogeneous glass plate, the eigenmode in the photonic crystal 0O0000O0
is much more complex. Taking into account the principle of
energy and lateral momentum conservation, the problem can 00O O.C& i
be recast as: How to find the eigenmodes excited in the pho- O00000 Z,
tonic crystal under an external incident wave at frequancy 0O0000O0

and wave vectok,. We find that this problem can be con- (b)
veniently solved in the general framework of the transfer-

; . . . - FIG. 1. Schematic configurations f@a an external EM wave
matrix formalism!’=2® In this paper we will utilize the d @

. . propagating from left to right scattered by a semi-infinite photonic
transfer-matrix methodTMM) on the basis of plane-wave crystal (PO) surrounded by air anéb) a Bloch wave propagating

expans_ion Of_EM fields Sir_]ce it provides an ‘i‘ggurate way tGrom right to left in the semi-infinite photonic crystal scattered by
deal with arbitrary photonic crystal structur@s: the air-crystal interface.

This paper is arranged as follows. In the next four sec-

tions, we will develop the TMM formalisms for wave scat- ated in the above 2D photonic crystal. To appreciate the for-
tering by different semi-infinite photonic crystal structures.mulation of the TMM, a supercell technique is used. In Sec.

In Sec. I we first consider the wave propagation in a Semi_\/III we focus on sandwiched structures consisting of two
infinite photonic crystal structure surrounded by air or Othersemi-infinite hotonic crvstal waveauides se aratedgb local-
homogeneous medium. This will lay down the theoretical: P y 9 P y

. . . ized defect structures. We consider an example of the scat-
foundation for later discussions on more complex structure P

We also discuss how to solve efficiently the eigenmodes fosfenn_g of an '”C'de'f“. ggl(_:ied wave by a cavity placed betwgen
wo identical semi-infinite waveguides. In Sec. IX we will

the photonic crystal. In Sec. Il we proceed to consider Wavjurther discuss the developed TMM in comparison with the

propagation through a semi-infinite photonic crystal coaterpopular EDTD techniques in application to design of func-

with another general grating slab. In Sec. IV we conside jonal elements in a photonic crystal based optical IC. Finall
wave propagation in a composite heterostructure consistin&/ : inapt ry P ' y
e will summarize this paper in Sec. X.

of two different semi-infinite photonic crystals face to face.
Then in Sec. V we turn to a more complicated structure

consisting of two different semi-infinite photonic crystals | tHEORY FOR WAVE PROPAGATION IN BARE SEMI-

separated by a general grating slab, which we call a sand- INEINITE PHOTONIC CRYSTAL STRUCTURES
wiched structure. After we have settled the theoretical basis,

we will take several examples of two-dimensiof2D) pho- To see how the problem of wave propagation in a semi-
tonic cryptal and related waveguide structures to show thénfinite photonic crystal structure is connected with the trans-
power of the developed theoretical tools. However, the defer matrix for the unit cell of the photonic crystal, let us first
veloped method can equally apply to more complex 3D pho€onsider a simple case, where a plane EM wave with fre-
tonic crystal and related waveguide structures. In Sec. VI wguencywy and wave vectokg is incident in air from left to
consider a 2D photonic crystal composed of a square latticight along thez axis onto a semi-infinite photonic crystal.
of dielectric cylinders in air and see how an incident planeThe configuration of this problem is schematically depicted
wave from the air side is scattered by this semi-infinite pho4in Fig. 1(@). The question is how to calculate the transmis-
tonic crystal. The inverse process of a Bloch’s wave incidension field into the photonic crystal and the reflection field
from the semi-infinite photonic crystal side scattered by theéback into the air. Since this is essentially a scattering prob-
air-crystal interface is also considered. In Sec. VIl we applylem, we naturally turn to the TMM for answer. In addition,
the same theoretical tool to solve the problem of EM wavewe adopt a plane wave basis to expand the EM fields, and
coupling into and out of a straight waveguide structure creassume that the left and right hand sides of each unit cell of
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Unit Cell In this way, the EM fields inside the photonic crystal have
been related to the fields at the air-crystal interfagigh Qg
and{}, corresponding to the incident and reflection fields in
—— —_— air, respectively through a new transfer matrik".

Now we see that the matriX plays a key role in deter-
mining how the wave propagates through the photonic crys-
tal. Let us first have a closer look at it. From literatures one
- can find that in addition to its routine application in calculat-
Qm Q’i ing transmission and reflection spectra, the TMM can also be
used to solve the ordinary photonic band structures for a
photonic crystal’~1%2526|n doing so, one needs to impose
the Bloch’s boundary condition on the fields at the two hand

Multi-Layer PC Slab sides of the unit cell
+ + or or
Q Qn ! — aik-R i-1 2.3
5 - (nr) ° (n) 23

wherek is the Bloch wave vector an® is the primitive

lattice vector of the photonic crystal. This means that
— —

Q. Q 1) el @ita
0 I L

i—-1 i—1

FIG. 2. Schematic configurations of EM wave propagation Therefore the Bloch phase factor is the eigenvalue of the
through(a) a single unit cell of a photonic crystal afig) a photonic ~ matrix T. This suggests that we solve all the eigenvalues and
crystal slab consisting af unit cells described by a transfer-matrix eigenvectors off, from which we have
formalism in terms of column vectol@*, which are made up of
plane wave coefficients of the EM fields. TS=SA,

. o .. whereA is a diagonal matrix composed of all eigenvalues
the photonic crystal are surrounded by infinitely thin arfy, i=1,... N}, with N being the dimension of. Sis a

ﬁ!ms_zo,zs This means that all plane waves are placed in arx N matrix with itsith column being the eigenvector f
air background, a natural selection to match the current prOt{Sorresponding to the eigenvalue. Note that the Block's
lem that the semi-infinite photonic crystal is surrounded byy,odes are among these eigenmodesTioNow T can be

an air background. This plane-wave basis will be adome%xpressed intd =SAS%, and Eq.(2.2) becomes
throughout all problems in this work. ’

It turns out that the EM fields at the right hand side of a QF Qg
single unit cell of the crystal can be connected with the fields _|=SA"STY T . (2.5
at the left hand sidésee the schematic configuration in the Q, Qo
upper panel of Fig. Rvia a transfer matrix From the eigenequation
Qrf Qr
er) ( f-l) (tn t12>( ?_1) T( )—)\( 26
=Tl . |= . (2.1 o ) Mo~ (2.6
(Qi Oy \tar o/ \ Qi
we find
Here Q" (Q.) is a column vector composed of the expan-
() P P AS =23, 2.7

sion coefficients of the positivenegative propagating plane
wave in free space at the right hand side of ittreunit cell,  where 3=5"%(Q",Q )", with “T” denoting the matrix
while Q" ; (Q;_,) is a column vector at the left hand side transposition.)* and Q= can be column vectors for any
of the ith unit cell. For more detail of this transfer-matrix crystal layer.

technique, the readers are referred to Ref. 2. called the SinceA is a diagonal matrix, the eigenvector correspond-
transfer matrix(more accurately, thd matrix) for the ith  ing to\; should bex=(0, ...,1,...,0J, namely, only one
crystal layer. With this transfer matrik at hand and consid- nonzero element is present at thié row of the column
ering the periodicity of the photonic crystal, it can be shownvector. In fact, every element; in a general column vector

that the fields after passing throughcrystal layers(as de- 3 ={¢;,i=1,... N} denotes an eigenmode of the transfer
picted in the lower panel of Fig.)Zre given by matrix T, whose eigenvalue is; and whose amplitude is; .
This means that the column vecibrhas a very simple while
o o elegant physical implication for the photonic crystal. We can
n 0 . .
( _) = n( _)_ (2.2 see now that the unitary transformati@has served as a
Q, 0, bridge to reflect the eigenmode in the original plane-wave
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basis to that in the new eigenstate basis. Due to the signifeigenmode propagates through the photonic crystal without
cant simplicity of the new eigenstate basis, it is helpful tochanging its state. For a semi-infinite photonic crystal struc-
work closely in this space. Physically, due to the time-ture, there is no boundary to reflect the forward propagating
reversal symmetry of the structure, the eigenvalues of theigenmodes into the backward propagating modes. This
transfer matrix should appear in pairs. Namely, once we havphysical intuition imposes a natural boundary condition for
an eigenvalue\;, we should find another ong;= 1/\; 19 our scattering problem: All backwards propagating modes
This implies that each growing eigenval(end eigenmode  within the photonic crystal are exactly zero. Therefdg,
should one-to-one correspond to a decaying eigenvalue. I& 0, which also means that, =(A_) "3, =0. In addi-
addition, each positivéforward propagating Bloch’s mode tion, according to the first equation in E@.10), all positive
should also find a corresponding negatisackward propa-  propagating mode will decay to null except those Bloch
gating Bloch’s mode. Therefore, we can separate the eigemnodes with|\ ,|=1 after they travel past a long distance
values into two classes, one clags, corresponds to posi- along thez-axis direction. For the time being, let us suppose
tive propagation modes, including thosd\.|<1  only one single Bloch mode is excited inside the photonic
(exponentially decayingand positive propagating Bloch’s crystal atw, andk, (whose component parallel to the sur-
modes, while the other class_ corresponds to negative face of the photonic crystal should be conserved during the
propagation modes, including thofe_|>1 (exponentially  scattering procegsLet the Bloch phase factor be denoted by
growing and negative propagating Bloch’s modes. Corre-eprkO.R):)\j_ From equality

spondingly, the diagonal matriXx can be also separated into

two parts, and thus can be rearranged into the following . Q4 S
form: - " \s- (211
0 0
Ao 0 we derive
! 28

+ + — +

where A, and A _ correspond to the positive and negative o =Su2o. o =Su¥o

eigenmodes, respectively. They should have same dimeiitom which we get

sion. At the same time, the eigenvector matdishould be PR N - P
rearranged in exactly the same way, namely, by exchanging 20=S1Qq, Z;=A1%5=A1S0Q5. (212
different column vectorgeigenvectorscorresponding to.
and X\ _ . In our numerical practice, we find it very easy to
separate exponentially growing or decaying modes by simply Oy =S24= 52151—1195 ' (2.13
looking at the eigenvalue. However, special care must be

taken to those Bloch’s modes wifia|=1.1° One can not and the transmission field is

simply judge the propagation direction of a Bloch’s mode by N N _ N

looking at the Bloch’s wave vectdt,. Instead, the total en- Qn=Sud,, Q,=Sx3,. (2.14

ergy flux along thez-axis direction should be calculated in a e ransmission field is consisting of both the Bloch mode
given plane, with the positivénegative values correspond-  onq )| other evanescent modes. At a plane very far away

ing to the positive(negative propagating modes. Numeri- o the air-crystal interface, only the Bloch mode survives,
cally this can be done from the plane wave coefficients in 4 \a have s =[0 0,00 )" (SE);,0 qr
n 1y r Yy ] K .y .

volved in any column vector® * and() ~, where only those
propagating components corresponding to kgashould be
counted because of nonvanishing energy flux along zthe
axis. Due to the conservation of total energy flux alongzhe
axis, any plane can be adopted.

The reflection field in the plane wave basis is written as

Equationg2.12—(2.14) are the final answer to our scattering
problem. Using the plane-wave expansion coefficients, one
can calculate the total energy flux for the Bloch wave, and
thus the transmission coefficient. This can be done eithler in
space or in real space. The same procedure can apply to the

our original scattering problem. Equatié®.5) can now be Peflection field and the reflection coefficient for the energy

rewritten as In the above we consider a plane wave incident from the

S .=A"S, air side onto the semi-infinite photonic crystal. The idea and
formulation developed can also be applied to solve the in-
or more explicitly verse problem, namely, how an EM wave propagating from
s+ AT 0\ /s _deep insi(_de the photonic crys.tal incident onto thg air—grystal
n_| T+ )( 0 2.9 |nt'erface is s'cattered by the |nte'rface.' The configuration of
Sh 0 AYJ\Z,)7 ' this problem is schematically depicted in Figbll From the
above analysis we know that the wave mode that can exist
within deep inside the photonic crystal must be a Bloch
N — ANy - mode. Suppose the Bloch mode is at a frequesgyand a
Tn=Ai30, 2a=AZ3. (2.19 Bloch wave vectok,, then the corresponding eigenvalue of
This amounts to first projecting the incident field from origi- the transfer matrixT is \j=exp(ky-R). Part of the wave
nal plane-wave basis onto the eigenmode space, then eaelil transmit through the interface into the air region, other

which yields
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part will be reflected back into the semi-infinite photonic We recognize that Eq2.19 is a standard form of general-
crystal, and finally evolve into another Bloch mode. Accord-ized eigenproblerdx=\BX, whereA andB are both square

ing to Eqg.(2.10, we have matrices\ is the eigenvalue, andis the eigenvector. So we
can use some standard eigensolution algorithms to solve the
So=(A)""X, . (2.19  eigenvalues and eigenvectors of E2.19.
] ) 3 _ - 3 Under givenw, andkg for an incident wave, the number
So if we write %,=(0,...,00;,0,...,0), then %, of Bloch modes that can be excited is limited to two or
=[0,...,09; (\})""0,...,0". From the transformation several. Most eigenmodes for the transfer mafriar S are
(2.11) and the fact that in the air regidmg =0 (no reflection nonpropagation(evanescent modes. The maximurﬂ)\m|
wavesg, we have (corresponding to the strongest decaying mopdesalmost
proportional to the plane wave number us@dm|~e“3m|,
30=Q200, 25=0Q10, (216 where|G,,| is the maximum modulus of the reciprocal lattice

vectors, and is approximately proportional to the plane-wave
number. According to our numerical practice, when the num-
ber of plane wave is not too large, so that,|<10 all
;=035 2.17) gigeqmodes calculateq from tf&matrix.formulatio_n are

0 220 - : identical to those obtained from tilematrix formulation to

From Eqs(2.16 and(2.17) we findESIlenglﬁg, from @ very high accuracy, especially for the Bloch modes and

which the field reflected into the photonic crystal is found toCther nonpropagation modes With| closest to 1. In addi-

be3 . =A"13, in the eigenmode space, and the correspond?ion’ A andh_ have equal numbers, and, =1/ _ is sat-

ing plane-wave expansion form is given by .14 isfied one-to-one to a high accuracy. However, when the
How if the background surrounding the semi-infinite pho_plane-wave number is increased to a Iar_ge value_ in order to
tonic crystal is a general homogeneous material other thafjuarantee a good convergence of numerical so_luﬂon, numerl-
air? The problem can be solved by introducing matrix for cgl overflow or underflow beglns to take effect in solution of
the air and homogeneous medium interfage Let the field elgenproblem'by means of elther E@.6) or (2.19, al- ,
in the homogeneous medium Be: , which is related td) though the eigenvalues and eigenvectors for the Bloch’s
by (QF,0)T=T,(QF,05)7 T'he scattering probloem modes are not affected., and A_ no longer have g\q|ual
morem m : ' . . numbers, and, =1/\ _ is not satisfied for very largex|.
Ppwsc_an é)e sozlvled bé i'mgly _:_epslacflngbthteh e|$ent\_/ector fmaTo overcome these difficulties, we consider another equiva-
i:::(ide:lrl:e gs.(2.19—(2.17 by TS, for both situations of o torm of eigenproblem based on tBamatrix algorithm

. . of Eq. (2.19. Instead of directly solving the eigenvalae
er|1r\]/atlr1],|ee:g?1\ée e?lse(;#\‘/s:::?grss, g‘etﬁ?gxgtr?fsfﬁ:vgdu;?ta::etgne &e turn to solving £ +1) %, which does not cause overflow

gIa a key role in sgolution of the scattering problem. Numeri- underflow for|A|>1 or [\|<1. Similar technique has

play y gp : been employed in Ref. 25. In our numerical practice, it is

cally, to calculate this matrix, we usually cut the unit cell very rare that\ is extremely close to—1, so that &

into a number of thin slices along theaxis direction, as + 1)~ will never overflow. From the equalikx=\Bx, we

shown in the upper panel of Fig. 2. Each of these slices is . - Y )
assumed to be a lamellar grating, for which Maxwell’s equa-Can deriveBx=(A+1) “(A+B)x, or equivalently from Eq.

tions can be solved and the transfer matrix connecting thgz.'lg) we can find the following numerically more stable

fields at the two hand sides of this grating obtained. The tota(?lgenproblem:

whereQ=S"1. From Eq.(2.16) we find that the transmis-
sion field in the air region is given by

T matrix is a simple multiplication of all the single-slice | —s2\ /o |+stD g2
transfer matrices. Another numerically more stable way is to ( 2122)) ( '_1> =(A+1) ¢ (le‘) u 22
use the scattering-matrixSfmatrix) formulation. TheS ma- -5 0, Sy —1=5j

trix for each thin slice can be solved in a similar way to the o+

T matrix2® and theS matrix for the unit cell can be calcu- % “1) (2.20
lated from these individua® matrices through a simple re- Q) '

H : 7,22,26 H ; ;
cursion algorithn. The S matrix for the unit cellS, is Obviously, the eigenvectors solved from E@.20 or Eq.

defined as (2.19 are same as those solved from E®.6), and can be
o + s(1)  g12) + used to construct the important eigenvector ma#ir Eqgs.
( ! >= ( “1) =< o “22)( i—l), (2.5) and (2.19.
Qi 4 QO Sﬁ ) Sﬁ ) Q, In the above discussions, we have extended the conven-

(2.189  tional TMM from its standard application to calculate the

i) g . transmission and reflection spectra for a photonic crystal slab
V\{hereS(JJ) (ij=1,2) are fOW block SmeamceS St‘ The (more generally, a grating slato the current wave propaga-
eigenproblem can be cast into the following form: tion in semi-infinite photonic crystal structures. Since the

sy g + | g2 + photonic crystal sl_ab is usually thiqk compargd to the wave-
u -1 _ u i-1 length, the numerically stablgmatrix formulation is domi-
( I) (Q ) ( )(Qil) nantly used in favor of th@-matrix formulation. In practice,
(2.19 an efficient layer-doubling algorithm has been routinely uti-

s 21 Mo -8
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lized to extract the overals matrix for the whole slab from
the Smatrices for all the individual composite layérs2°In
the case of a photonic crystal slab, Bmatrix for a unit cell
plays a key role; the same as in the current semi-infinite
structures. However, the TMM developed for a finite slab
cannot be directly applied to a semi-infinite structure. The
reason is simple. In a finite slab, no matter how thick it is,
there always exist two air-crystal interfaces. Consequently
multiple reflections are always present within the slab, and
they become more violent for thicker slabs. Since the usage
of the S'matrix algorithm has automatically involved these
multiple reflections, the solution to a very thick slédven
approaching infinitely thickdoes not converge to the true
wave problem for a semi-infinite structure, where no mul-
tiple reflections are present. Physically, these multiple reflec-
tions will make it difficult to extract the transmission and
reflection properties of the single air-crystal interface from
the overall spectra for the whole slab calculated by the con-
ventional TMM. It is easy to retrieve the overall spectrum
information of the whole slab from those for the individual
interface, but hard or even impossible to do the inverse, es-
pecially for more complex structures involving many inter-
faces. This fact has been well recognized when one tries to
apply the FDTD technique to integrated optical eleménfs.
One might assume that introduction of a slight absorption
into the photonic crystal structure, either from consideration
of the absorptive properties of realistic optical materials or
for the sake of numerical convenience, can remove the mul-
tiple reflections from the second air-crystal interface of a
very thick crystal slab. By doing so, the reflection properties
of a thick crystal slab will approach those of a semi- -infinite
crystal structure, and they can be readily solved by the con
ventional TMM for a finite crystal slab. However, this
scheme can only apply to the simplest problem of an incideng
EM waves from the air side reflected by the air-crystal inter-
face, as shown in Fig.(&). For the inverse problem for a
Bloch's wave scattered by the air-crystal interface as show
in Fig. 1(b), the introduction of absorption into the photonic
crystal will render the problem ill imposed, because no wav
can reach the air-crystal interface due to absorption of E
waves after passing a long path through the thick crysta}
slab. When one considers more complicated semi-infinite,
photonic crystal structures such as a sandwiched stru@are
shown in Fig. 3 that will be discussed in Sec. V, the limita-
tion of this absorption scheme will become more ewdent
Therefore, the scheme of removing multiple reflections
within a photonic crystal by introducing absorption proves
not to be an optimum and effective scheme to handle com
plex photonic crystal functional elements.

Ill. THEORY OF WAVE PROPAGATION IN COATED
SEMI-INFINITE PHOTONIC CRYSTAL STRUCTURES

PHYSICAL REVIEW B 68, 155101 (2003

air  grating PC
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FIG. 3. Schematic configurations fés) scattering of an exter-
nal EM wave by a semi-infinite photonic crystal coated with a grat-
ing slab;(b) scattering of a Bloch wave in the coated semi-infinite
photonic crystal.

lab. In the case of a periodic structure, the lattice in the
lateral XOY plane must match with that of the semi-infinite
hotonic crystal in both the lattice type and lattice constant,
o that the TMM formalism can be employed.

The schematic configuration of this scattering problem is
epicted in Fig. 3. In Fig. @), a plane wave is incident from
eft to right onto the coated layer. One part of the wave is
eflected, the other transmits through the coated layer and
inally evolves into the semi-infinite photonic crystal as a
Bloch wave. The fields at the surface of the coated layer and
the interface between the photonic crystal and the coated
layer [represented by a dashed line in Figa)3 are denoted
asQ, andQ; .
through anS matrix S,

These fields are connected with each other

Qf Qg (S8 s [0
=S = . (31
Qo) TH\ar) \sE sEalar 33

For the semi-infinite photonic crystal, we have the following

relation:

In the last section, we consider EM wave scattering by a
bare semi-infinite photonic crystal surrounded by air or an-
other homogeneous medium background. In this section we
consider a semi-infinite photonic crystal coated with a gen-

Q7 2o) (311 Slz)(zg)
, 3.2
(91_> (Eo S Sl \ 2 (3.2

eral periodic structure, which can be either a photonic crystalvheres ; are coefficients of the eigenmode of the photonic
slab, a general grating, or simply a homogeneous mediurarystal andS is the corresponding eigenvector matrix. We
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PC1 PC2 touch face to face. The schematic configuration of the system
1‘[8 is displayed in Fig. 4. The two semi-infinite photonic crystal
should also have the same lattice structfthe same lattice
+ E— 0o DE ©00000 type and lattice constants the lateralXQY plane, in order
I, 000000000000 that the whole system can be assumed as a grétifigitely
OOOoOoOoOoOoOgioo0o o000 thick) to allow for application of the conventional TMM
~ T formulation.
boooon 2»0 ©000 n Suppose that we have already solved the eigenmodes of
g 00a0 EL_D 000000 the T matrix (or Smatrix) in the semi-infinite photonic crys-
I[I, OoODOOOOiI0l0o00O0O0 tals 1 and 2, following the procedures described in Sec. Il. In
‘ﬁ OO I:r/_I:I olooooo the semi-infinite photonic crystal 1, we have
M, 2 Qf\ (ot
T,=SA,80%, st :(H) 4.1
FIG. 4. Schematic configuration of EM wave propagating in a oh
heterostructure consisting of two different semi-infinite photonicgnq
crystals face to face.
Mg=A 007, Tg=A7_TI,. 4.2

impose the natural boundary condition deep inside the pho- o .
tonic crystalS; =3 =0. This leads ton=SnE§ ~and In the semi-infinite photonic crystal 2, we have

Q7 =S,,3; . Substituting them into Eq3.1), we have : +
T,=SA,S, 0, ‘1( )=( - 4.3
(S S{PS 055 =sihag, @3 2=SAS 0 S g0 7 s
05 =890 + 525,35 . (3.4 and
The reflection field () and transmission field(;) can be 3,=A3.35, 3,=A3_ 3. (4.9

solved directly from Eqs(3.3) and(3.4). Similar to the pro-  The same fields at the interfa¢genoted by the dashed line
cedure in Sec. II, the transmission field, deep inside the in Fig. 4) between the two semi-infinite photonic crystals can
photonic crystals; can be connected t&; through free  be written either in reference to the eigenstate space for the
propagation of each eigenmode, and only the Bloch modesemi-infinite crystal on the left hand side or to the eigenstate
can survive after such a long path of propagation. space for the crystal on the right hand side. This leads to the
We can also consider the inverse process, namely, a Blodbllowing equality:
wave, which is described by a column vector in the eigen-
state spac&,=(0,...,0g;,0,...,0), is incident from Q0| [Q1p
right to left onto the interface between the coated layer and 05, - O
the photonic crystal, as shown schematically in Figh)3 ‘ ’
One part of wave is reflected back into the crystal, the otheff0 solve the scattering problem, we need to impose a natural
transmits through the coated layer into the air background. Ifvoundary condition that , =0 atz= + . This immediately
such a situation, we hav@; =0. Then from Eq(3.1) we  vieldsX,=0. From Eq.(4.5 we get
find Q7 =s{!?0;, 0, =5%Q; . Substituting them into

(4.5

Eq. (3.2, we have the following linear equations: Sz( 23) B <H5>
. So) g )
(811 —8232)) 23) S ; ° °
Sy -1 Na;)Tlsss ) (3.9  which yields
. + _ . . ) H+ 2+
After solution of 25 andQ; , the reflection field into the 0 _p[ =0 4.6
photonic crystal(described by2; and ) and the trans- I, B 30/ '
mission field into air, which is given b, =S , are . _ ,
readily known. whereP=(S;) ™ *S,. From the fact thak, =0 we can write
+_ + -_ +
IV. THEORY OF WAVE PROPAGATION IN PHOTONIC Mo =Puo, Ip=PaZo. @7
CRYSTAL HETEROSTRUCTURES In combination of Eq(4.2), we find
In the above sections we consider wave propagation in a S¢=(Py) AL IO, (4.9

composite infinite system composed of a semi-infinitg @ir

other homogeneous medilitmackground and a semi-infinite  The transmission and reflection fields can be directly calcu-
photonic crystal structuréeither bare or coatedNow we lated from= g,

push one step further to investigate a heterostructure formed B N e N1 .

by two different semi-infinite photonic crystal structures in Oy =(A1_) Ty =(A7_) "Px2g, (4.9
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PC1 . Grating PC2 structure. The scattered EM fields also correspond to the
ITg Bloch’s wave propagation in each photonic crystal when far
Doooo\goooio00000 away from the sandwiched structure.

O, OoOoOoooOoeooioo0000 When the central sandwiched slab is thick, the algorithm
OoooooooO000000. to derive theT matrix T, is numerically unstable. So, we
ooooooodoooo 00O st need to take another stable algorithm, ti&matrix

~ - " algorithm. Let theS matrix for the total slab b&,, which
0oooooeeoi0o00000 catisfies

n, Oooooneeoi0oo0000
O0O00oVOR o000 00 N "

1; b 20 o
0 0 =S . (5.3
‘Ql,O QZ,O

FIG. 5. Schematic configuration of EM wave propagating in a

complex sandwiched structure consisting of two semi-infinite phO‘According to Egs(4.1) and(4.3), the column vectors in the
tonic crystals separated by a general grating slab. both hand sides are related to the eigenmodes of the two

photonic crystals by
S =A% 5] (4.10

The field distribution in the real space can then be evaluated Q3=SM3g, Q=S¢
from the plane-wave expansion of the eigenmodes using Egs.
(4.1) and (4.3). Therefore, given an incident Bloch mode
I, =(0,...,0m,0,...,0f, we can calculate the reflec-
tion and transmission fields in the two hand sides of the

photonic crystal heterostructure. These fields should Corr%heres(l”) andsi) (i,j=1,2) are the block submatrices of

spond to the Bloch wave propagation in each photonic crys; . .
tal when far away from the interface. S, andS,. In deriving Eq.(5.4), we have considered the fact

thatX, =0, andIl; has already been known from the co-
efficient of the incident Bloch modél, (IIg=Af II).
Combining Egs(5.3) and(5.4), we have

Q1 =Sy +s21,, Qp=SEg +sPan 5(5, .

V. THEORY OF WAVE PROPAGATION IN SANDWICHED
PHOTONIC CRYSTAL STRUCTURES

Now suppose that the two semi-infinite photonic crystals

do not directly touch face to face, but are separated by a ( 0 N

© o)

sandwiched structure, as shown schematically in Fig. 5. The S‘f”flg 0 5(122) I,

central sandwiched structure can be a simple homogeneous

medium slab, a general grating slab, or another photonic SEiIN 0 sM\/3g
crystal slab. We also require that the sandwiched slab should =Sa( 0 +S, @) g ) (H)
have the same lattice structure as the two semi-infinite pho- S5 0

tonic crystals in the lateraXQOY plane. (5.5

The solution follows a very similar procedure to that for
the heterostructure discussed in Sec. IV. Instead of£§), . . . . .
the fields at the surface of the left photonic crystal and thd"om which we obtain the following linear equations:
fields at the surface of the right photonic crystahich are
also the left and right surface of the sandwiched skate (11)_ g12)g(21) _ g(ing(12) s
now connected by a transfer matify (a T matrix) as (82 oS a ~1 )( 0 )

22 21 22 21 12 —
—Sg )5(2 ) S(l )—Sg )S(l ) HO

030 Q1o
( Q_' ) =Ta( Q_’ . (5.0 SIS S
2,0 10 =| [g@ngn_ g |- (5.6
[SaSi =Sl
Then we get
I, . %5 £, [NEq (5.6), S{) (i,j=1,2) are the block submatrices of the
I, - S/ (5.2 S matrix S,. The unknown variablex; andII, can be

o solved by standard technique such as Gaussian elimination
whereP=(S,) " *(T,) 'S,. The subsequent derivations are method. After they are solved, the coefficients of the reflec-
exactly identical to Eqs(4.7)-(4.10 in Sec. IV. Therefore, tjon and transmission Bloch modes in the two photonic crys-
given an incident Bloch mode at= — < of the left photonic tals can be obtained by using qug) and (41@ Then the
crystal structure, which corresponds to a column vector ineflection and transmission fields as well as the total energy
the eigenstate space for this photonic crystal [d§  flux of these fields are readily calculated, from which we
=(0,...,0,0,...,0], we can calculate the reflection can obtain the knowledge of transmission and reflection
field and the transmission field scattered by the sandwichedoefficients.
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structures are solved by means of a transfer-matrix method.
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Frequency (wa/2rc)
VI. WAVE TRANSMISSION AND REFLECTION
IN SEMI-INFINITE 2D PHOTONIC CRYSTALS FIG. 7. (a) Calculated transmission and reflection spectra for a
plane EM wave scattering by the semi-infinite 2D photonic crystal
To demonstrate the power of the developed TMM in ap-investigated in Fig. 6. The plane wave is normally incident on the
plication to semi-infinite photonic crystal structures, we will surface of the crystal along tt{&0) direction.(b) The phase shift of
take some examples. For simplicity and brevity, we onlythe reflection wave relative to the incident wave.
consider 2D photonic crystal and related waveguide struc-
tures. The extension to 3D photonic crystal structures is Now we send a plane wave normally incident on the
straightforward, but needs much more time-consuming nusemi-infinite photonic crystal, in a way very closely repre-
merical efforts. The photonic crystal we study here is com-sented by the schematic configuration shown in Fig). We
posed of a square lattice of dielectric cylinders embedded iscan the frequency range between 0 to Om¢/Aa) by using
an air background. The cylinder has a dielectric constant o& small step of 0.002(2c/a). For each monochromatic in-
€=11.56 and a radius of=0.18, wherea is the lattice cident wave, we can calculate the transmission wave propa-
constant. The corresponding filling fraction of the cylinder isgating into the photonic crystal and the reflection wave
f=10.3%. For a semi-infinite photonic crystal, we assumedounced back from the crystal. The resulting spectra of the
that the surface is normal to t&0) crystallographic direc- transmission and reflection coefficients are displayed in Fig.
tion. In addition, we assume that the incident wave is at th&’(a). At the frequency range of the two band gaps, the trans-
E-polarization mode(with the electric field parallel to the mission coefficient is exactly zero, and the reflection coeffi-
cylinder axig, and propagates parallel to this direction. Ob-cient is precisely 100%, as can be expected. More interesting
viously, we have considered a normal incidence situationfeatures come from the frequency range corresponding to the
The incident wave will then witness the photonic band strucphotonic bands, and they show complex behaviors. At fre-
tures and band gaps along tfi#) direction. We have used quencies below the fundamental band gap, which ranges
the TMM described in Sec. Il to calculate the band structurefrom 0 to 0.261(2rc/a), the transmissiorireflection coef-
and the result is plotted in Fig. 6. Here 15 plane waves havécient shows a very simple monotonous decayiggwing)
been used in the calculation, and good convergence has bebahavior. At very long wavelengths, a saturation occurs in
achieved, consistent with the fact that tRepolarization the transmission and reflection spectra, leaving a 96.74%
mode allows for fast convergency. Only eigenmodes with (3.26%9 transmissior{reflection coefficient. It has been well
below 0.7(2rc/a) are shown, where is the light speed in established that a photonic crystal behaves similar to a ho-
free space. There is a wide fundameitidl) directional band mogeneous medium with an effective refractive index of
gap between 0.261¢2c/a) and 0.443(Zrc/a). Another the long-wavelength limit. According to the well-known
much narrower band gap opens between the second and thiFdesnel’s formula =(1—n)/(1+n) andR= r2. For the cur-
photonic bands. We have also applied the conventionaient photonic crystalR=3.26%, therr =—18.06%, which
plane-wave expansion metHdd?® to solve the photonic vyields an effective refractive index of=1.441. This value
band structure, and found the same results. is very close to that calculated by a scalar effective medium

155101-9



ZHI-YUAN LI AND KAI-MING HO PHYSICAL REVIEW B 68, 155101 (2003

1.0 o o 0.46 4
Transmission 0.44 )
081 Q o042
© & -
S 0.6 @ 0.40 i
@ =
& 0.4 > 038 -
c
o 0.36+ Band Gap T
0.2 1
Reflection g 0.34 1
-
0. 0T+ LRI L B B B RN R B L 0.32 o 1
00 01 02 03 04 05 06 07 050 o0
Frequency (wa/2rc) ' e
00 01 02 03 04 05 06 07 08
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inverse problem of Fig. 7, where a Bloch wave is scattered by the

semi-infinite 2D photonic crystal investigated in Fig. 6. The Bloch  FIG. 9. Plot of the band diagram of guided modes in a wave-
wave is normally incident on the surface of the crystal along theguide created in the 2D photonic crystal investigated in Fig. 6 by
(10) direction. Data in the band gaps are absent because there is nemoving a single row of cylinders along tfi&0) direction. The
Bloch mode in these frequency ranges. results are solved by means of a transfer-matrix method.

theoryn= \fe+ (1—f)=1.445. If we can regard the photo- in Fig. 1(b). The calculated transmission and reflection coef-
nic crystal as an effective homogeneous medium in thdicients are plotted in Fig. 8 as a function of the frequency of
whole frequency range below the fundamental band gaphe incident Bloch wave. Note that the data in the band gap is
then the monotonous growing behavior®implies that the absent. The reason is that no Bloch modes exist in these
effective refractive indexh increases monotonously to an frequency ranges, which renders the wave propagation prob-
infinite value at the band edge. Of course, the effective melem meaningless. An interesting phenomenon can be found
dium theory only holds in the long-wavelength limit and fails in the spectra when we compare Fig. 8 to Figa)7 The
at those modest frequencies close to the band gap. At highepectrum curves are identical to each other. This identity of
photonic bands the spectra show more complicated behathe transmission and reflection coefficients in the two inverse
iors, where no monotonous variation behavior is found.  wave propagation problems can be understood from the
It is interesting to look at the phase of the reflection wave time-reversal symmetry in this system. In other words, it is a
In the whole frequency range considered here, the reflectionatural result from the application of reciprocal theorem of
wave in the far-field region only contains zero-order Bragglight to the current purely dielectric structure. This also re-
wave (plane wavg so it is possible to define the phase of calls the situation of a homogeneous glass plate with a re-
this plane wave in reference to that of the incident plandractive indexn. The reflection coefficient for a plane wave
wave. The calculated result is displayed in Figh)7In the  normally incident from air onto the glass is identical to that
whole frequency range below the fundamental band gap, thor a plane wave normally incident from glass onto air, both
phase shift of the reflection wave compared to the incidenareR=r?=(1—n)?/(1+n)2. The other reason for this iden-
wave remains at- 7 (same tow). If we use the formula tity is that there is only zero-order Bragg wave existing in the
r(w)=[1-n(w)]/[1+n(w)], then we find thah(w) is al-  air region, and only one Bloch mode can be excited in the
ways a real number larger than 1. In the fundamental banghotonic crystal, so that these two inverse problems are sym-
gap, the phase shift increases fremr to 0, indicating that metrical when time is reversed. In more complicated situa-
n(w) is now a complex numben(w)=n,(w)+in;(w), and tions, this identity might be broken.
rNw)=[1-n(w)—iny(w)]/[1+n,(w)+in;(w)]. This is

consistent with the 'fact that in thg band gap, the photonic VII. COUPLING OF EM WAVES
crystal behaves similar to a metallic material with a complex INTO AND OUT OF
refractive index, and the only mode that can exist is the PHOTONIC CRYSTAL WAVEGUIDES

surface evanescent mode. A similar metallic behavior can
also be found in the phase-shift pattern at the second band After having gained some experience on how the TMM is
gap. Similar to the transmissiofreflection spectra, the applied to simple semi-infinite photonic crystal structures,
phase shift for higher photonic bands shows a complicatese proceed to considering wave propagation in a photonic
behavior, and cannot be explained by a simple parameter afrystal waveguide structure, which is an important functional
n(w). This is not hard to understand because the effectivelement in a photonic crystal based optical IC. The wave-
refractive index has no physical significance at short waveguide is created in the above semi-infinite 2D photonic crys-
lengths comparable to the lattice constant of the photonital by removing a single row of cylinders along tli&0)
crystal. direction. One important subject about such an optical ele-
Now let us look at the inverse problem of a Bloch wave ment is the coupling of EM waves into and out of the wave-
propagating from deep inside the photonic crystal along thgjuide. As we discussed in the Introduction, it is of great
(10) direction scattered by the air-crystal interface, as showibenefit both physically and numerically to completely re-
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FIG. 10. Calculated transmission and reflection spectra for a FIG. 11. Calculated normalized transmission spectrum for a
guided wave coupling out of a semi-infinite 2D photonic crystal plane wave coupling into the same photonic crystal waveguide as in

waveguide investigated in Fig. 9. The configuration of the scatterind-ig. 10. The transmission coefficient is normalized with respect to
problem is depicted in the inset. an incident total energy flux in a size of one lattice constant. Inset

shows the configuration of the wave scattering problem.
move the multiple-reflection contamination to the useful in-
formation induced by the second exit in a finite-length wavenetic fields in a plandwith a size equal to the superdell
guide. To achieve this, a semi-infinite waveguide isperpendicular to the waveguide axis from the knowledge of
necessary and our developed TMM is perfectly suitable fors = 5 * andQ, , from which the Poynting vector is cal-
this task. Unlike the above photonic crystal, we need tocylated at each sampling point in this plane. Then the total
adopt a supercell technique in order to appreciate th%nergy flux in this plane is summed up kg, I,, andl,

transfer-matrix formalism. _ _ corresponding to the incident, reflection, and transmission
In order to have a clear understanding of this problem, Wesnergy fluxes, from which we fin&=1,/1, and T=1,/1,.

first investigate the behavior of guided modes existing inThe calculated reflection and transmission spectra for this
such a waveguide. The band diagram of guided mode hagayeguide are displayed in Fig. 10 by the solid and open dot
peen calculated by means of the TMM. A su_percell consistgyryes, respectively. It can be seen that the refledtiems-
ing of up to 11 unit cells centered at the axis of the wavenissjon coefficient almost monotonously decays when the
guide has been adopted, and up to 129 plane waves hayquency of the guided mode is increased. Near the wave-
been used to calculate the dispersion of the Bloch mOdﬁuide cutoff frequency[0.312(27c/a)], the reflection
(quided modg in this structure. The result is displayed in (ransmissioncoefficient can be over 90%below 10%, in-
Fig. 9, where the two horizontal dashed lines denotes thgjcating very poor coupling-out efficiency. The contrary be-
edge of the completB-polarization band gap of the bulk 2D hayior is found at frequencies near the upper band edge.
photonic crystal, which lie at 0.302 and 0.443{@a), re-  Here the transmissiofreflection coefficient can be as high
spectively. A single wide guided-mode band spans monotoas 9794(as low as 3% and therefore the coupling efficiency
nously from 0.312(zrc/a) atk=0 to the upper band edge at oyt of the waveguide is very high.
aboutk=0.76(r/a). The inverse problem of coupling an external incident
The schematic configuration of guided wave coupling outyave into the waveguidéhe corresponding schematic con-
of the waveguide is shown in the inset of Fig. 10, figuration is shown in the inset of Fig. lhas also been
=(0, ... 00 .,0,. .. ,0Y is the column vector in the eigen- investigated in the same theoretical framework. For simplic-
state space, where; =1 is the amplitude for the negative ity, we also consider a plane wave normally incident on the
propagating(from right to lefy guided mode. When this waveguide. Since the incident field2§) is extended in
guided mode impinges on the waveguide exit, some part ispace(and thus infinite in the energy fluxwhile the trans-
reflected back into the waveguide and finally evolves into amission field &, ) is a localized guided wavéand thus fi-
positive propagatingfrom left to righy guided mode de- nite in the energy flu the transmission and reflection coef-
scribed bys ;= (0, ...,00,,,0, ...,0), with o, being the ficients are ill defined. Physically it is easy to understand that
amplitude of this positive guided mode. The other part ofmost part of the incident wave is reflected back by the bulk
wave transmits through the waveguide exit and dissipatephotonic crystal, and only those waves close to the wave-
into the free space in the form &, . Although we only guide exit can go into the waveguide and evolves into a
consider the simple case of a waveguide connected with aguided wave. Therefore, one more reasonable measure to
air background, a more complex problem such as coupling afnonitor the coupling efficiency is to look at a normalized
wave out of photonic crystal waveguides into conventionatransmission coefficient, which is defined to be the ratio of
planar or slab waveguides can also be solved in the santbe total transmission energy flux to the total incident energy
framework. To calculate the reflection and transmission coflux in a sampling region whose width is equal to the appar-
efficients, we work in the real space instead of khgpace. ent width of the waveguidea(for the current structuje The
We first calculate the distribution of the electric and mag-normalized transmission coefficient as a function of the inci-
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10]00000000000000000 ' crystal waveguidé®3! as an example to demonstrate the
" | 0c000000000000000 i principle and power of the developed TMM
100000000000000000C CaVIty . . . .
0.8 ©0000000000000000 -1 The first structure we study is schematically shown in the
. Q0000000000000 000 I"Iw— . . . . . .
S {o055550%0  0oooco0 n =1 inset of Fig. 12a). The basic structure is a straight photonic
@ 0.699900000000000000 B crystal waveguide that has been discussed in Sec. VIl with
I= 100000000000000000 parameters ofe=11.56 andr=0.18. Excitation of an
@ 0.44 Q0000000000000 000 ~ . . . . . _
2 E-polarization mode is also assumed. A cavity can be intro
|‘_=E ] duced into this background waveguide by placing two sym-
0'2'_ (a) metric walls made up of dielectric cylinders. These cylinders
0.0 have the same geometrical and physical parameters as the
05> os4 o056 o058 o040 ouo other cylinders building the background photonic crystal,
' ' ' ' ' ' and are located in the lattice sites of the background crystal.
Frequency (wa/2nc) The cavity is characterized by two geometric parameters
cuosooosoooaoa0aa - andn., which denotes the layer number of each wall and the
1-0‘_ 99990000000000000 cavity layer number occupied by the central vacant region between
0.8] 22299999222999938 n =2 the two walls. Thereforey,, andn, are parameters determin-
804 0000000000000 00O0O0 W . . . .
< Sooan 098,98 oo, n=1 ing the wall thickness and size of the caV|t'y. Iln the current
B 064 8992999990900 e structure,n,,=1 andn,=1, namely, the cavity is one unit-
é’ 1899999000000 ceI_I wide, anql the wall is one unit-cell thick._Suppose_ a
@ 0.4 - guided wave is sent propagating from left to right and im-
© 1 pinges on the cavity, the question is to find out the transmis-
= 024 (b) - sion and reflection coefficients.
I To find the answer to this question, we first adopt a su-
0.0 . . . — percell to place the wave propagation problem into the TMM
0.382 0.384 0.386 0.388 0.390

framework. Next we look upon the central cavity as a grating
slab three unit cells thick sandwiched between two semi-
infinite photonic crystal waveguides. After this, we can di-
FIG. 12. Transmission spectra for a guided wave scattered by gectly utilize the formalisms described in Sec. V to calculate
cavity (with a size of one unit cellintroduced into a 2D photonic  the transmission and reflection coefficients. The key is to
crystal wavgguide. Th(ﬂT schgmatic_configurations of the waveguidgohle the eigenmodes of the two identical semi-infinite
and the cavity are depicted in the insets. waveguidegincluding two guided modes and many evanes-
cent modepas well as thes matrix for the grating slab. The
dent wave frequency has been calculated and the result {gsult of the transmission spectra is plotted in Figalfor a
plotted in Fig. 11. In contrast to the monotonous variation inwide frequency range almost covering the whole guided-
Fig. 10, the transmission spectrum shows a more compléfode band. A single peak is found with the resonance occur-
feature. A peak stands around frequency 0.3f{/&), ring at frequencyw,=0.3862(2rc/a). The full width at half
where the efficiency can reach 120%, indicating a slight fomaximum (FWHM) of the peak is about Aw
cusing effect. The coupling-in efficiency is very bad near the=0.009(2rc/a). From these two physical parameters we
Waveguide cutoff frequency, similar to the behavior of thecan calculate the qua“ty facto[Q( factoﬁ of this Cavity,
coupling-out efficiency. Another significant difference be- which isQ=wy/Aw~43. Naively one can imagine that this
tween the two processes lies at frequencies near the uppgansmission peak is induced by the cavity mode coupling
band edge. While the coupling-out efficiency is close towith the incident guided wave. In fact, we have calculated
100%, the coupling-in efficiency is below 80%. This might the |ocalization mode involved in this cavitwith infinitely
be attributed to the mismatch of a uniform field prOf”e of theth|ck Wa“s) by means of the conventional p|ane_wave expan-
incident plane wave with that of a localized gu|ded wave insion method??_zg Using a Superce" Composed of><7]
this frequency range. We have found that much bettegquare unit cells and up to 3000 plane waves, we find a
coupling-in efficiency can be achieved by careful design ofsingle cavity mode located at an eigenfrequency «of
fche incident wave _prof_ile. F_or_ example, a Gaussian beam can 0.3870(2rc/a), very close to the transmission spectrum
improve the coupling-in efficiency remarkably. calculation. One important point about the spectrum is that
the signal is very clean, completely free from usual dense
interference patterfinduced by multiple reflection from the
two waveguide exits in a usual waveguide of finite length
superimposed onto the envelope of the useful signal. The
In the above two sections we have discussed the solutiomere reason is that two semi-infinite waveguides are
of wave propagation in semi-infinite 2D photonic crystal andadopted, and there is no structural boundafties waveguide
related waveguide structures. Now we go one step further texits) present.
look at more complicated sandwiched photonic crystal and We can change the geometrical parameters of the sand-
related waveguide structures. We will take a functional elewiched cavity structure to modify its optical properties. Fig-
ment in an optical IC, cavities created in a straight photoniaure 12b) shows the transmission spectrum for a cavity with

Frequency (wa/2rc)

VIIl. WAVE PROPAGATION IN SANDWICHED PHOTONIC
CRYSTAL WAVEGUIDE STRUCTURES
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10] ;avity ' ' ' ' ' i corresponding to & factor of 123 and 4_7, _respe_ctively.
o §§§§§§§§§§§ §§§§§ Clearly the two peaks are quite asymmetric in their optical
g 0.8+ o 90000000000000000 r properties. We also increase the thickness of the wall of this
@ 0.6 ‘ 06565002002 L cavity, and the calculated transmission spectrum is displayed
?, 0.4 98900000000 i in Fig. 13b) for n,=2 and n,=2 (whose geometry is
= 00056600000 shown in the insgt For clarity of eyeview, only spectra
= %21 (a) r around the resonance peaks are shown here. Similar to the
0.0 L smaller cavity in Fig. 12, the resonance peaks in the current
032 034 036 038 040 042 044 cavity become much narrower. The peaks are now centered
Frequency (sa/2nc) at w;=0.3466(2rc/a) and w,=0.4251(27c/a), slightly
, , , . , , blueshift and redshift, respectively, from the two peaks for
1.01 cavity 90000000000000000 - the cavity with thinner wall ofh,=1. The FWHM for the
c 08l n-2 00000000000000000 I two peaks are reduced to values of 0.0002#¢) and
2 ool N2 ©00000000000000060 0.0014(2rc/a), and the_ correspo.ndm@ factors are about
E : §§§§§§§§§§§§§§§§§ 1444 _and 304,_respect|vely. waously the Io_wer resonance
B 041 9880800000030355 L pgak is much finer than the higher peqk. This phenomenon
g ol b might be related to the fact that the distance of the lower
= ( ) peak away from the lower PBG ed®.302(27c/a)] is
0.01 much larger than the distance of the higher peak away from

0.344 0346 0348 0350 0422 0424 0426 0428

the higher PBG edg0.443(2rc/a)], and therefore is more

FIG. 13. Same as in Fig. 12, except the cavity is now of a sizdocalized around the waveguide.
of two unit cells.

IX. FURTHER DISCUSSIONS ON TMM IN APPLICATION

= =1. Si i Il of the
ny=2 andne=1. Since the thickness of the wall o TO PHOTONIC CRYSTAL FUNCTIONAL ELEMENTS

cavity is doubled, we expect that ti§g factor of the cavity

will be significantly enhanced. Indeed Fig. (b2 has fully It is interesting to make some comparisons between the
validated this assumption. Now the resonance peak is locategkveloped TMM and the more popular FDTD approach. The
at w=0.3871(2rc/a), a slight blueshift compared to the FDTD approach can efficiently govern the dynamitime
resonance peak in Fig. (@ for n,,=1. The FWHM of this  evolution of EM wave propagation in complex structures,
new peak is found to be about 0.0008(@a), leading to a and has been dominantly utilized in theoretical understand-
Q factor of about 484, over 10 times larger than @éactor  ing of the optical properties of many important functional
of the cavity withn,,= 1. It is expected that when the wall of elements built in a photonic crystal platform, such as wave-
the cavity is further increased, i@ factor will continue to  guide, waveguide bends and branches, and cavities. Other
grow, basically following an exponential law. In these struc-reasons that greatly contribute to the popularity of the FDTD
tures the introduction of a cavity can serve as an efficienbpproach are its simplicity in essence, ease of computational
filter to the wide-band guided wave. memory-space requirement, and ability to handle any com-
In addition to changing the thickness of the wall of the plex structure, either periodic or aperiodic.
cavity, we can also adjust the size of the vacant space of the However, the FDTD approach also exhibits some intrinsic
cavity. It is expected that fine tuning of the resonance freweaknesses when applied to treat the spectrum of scattering
quency can be easily achieved. Figuregal3hows the problems in a closed systefwhere the background is not
transmission spectrum for a cavity with,=1 andn,=2 (as  free space but rather an extended inhomogeneous medium
schematically depicted in the ingein a wide frequency such as a photonic crysjaln the scheme of pulse excitation,
range. The space of the cavity has been increased to occupy order to have a very fine frequency resolution, as is re-
two unit cells. Consequently two resonance peaks appeaguired for the current resonance scattering problems, the in-
with the lower one centered ai; =0.3452(2rc/a), while  put pulse needs to be very long. However, this is in contrast
the higher one centered ai,=0.4260(27c/a). We also to the adoption of a finite simulation domain and consequent
carry out solution of the localization modes involved in this multiple reflection from the structural boundaries. To obtain
cavity (also with infinitely thick wall$, and find two cavity —a reasonable result for the spectrum, the parasite reflection
mode located at frequency 0.345K@a) and pulses from the boundary must be in sufficient separation
0.4258(2rc/a), respectively, also very close to the trans-from other useful pulses. This in turn requires a sufficiently
mission spectrum calculation. This means that the two trandarge simulation domain size. The contrast can only be effi-
mission peaks definitely come from the resonance couplingiently solved by increasing the structure size. An infinite
with the cavity modes. structure (such as the semi-infinite photonic crystal
The two transmission peaks almost has an equal distanagaveguides studied in the above sectjossould be most
to the peacentered atrg=0.3862(2rc/a)] for the smaller  welcomed, but unfortunately it has not been seriously con-
cavity with n.=1 in Fig. 12, indicating that the two new sidered(or perhaps hard to be implemented the FDTD
resonance peaks might origin from symmetric splitting of thetechnique. These practical weaknesses suggest that people be
old single peak due to a size effect. The FWHM for thesemore careful in extracting very quantitative information
two resonance peaks are 0.0028¢2a) and 0.009(2rc/a), about the spectrum for a closed system such as the above
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waveguide-cavity sandwiched structures. In contrast, operthe transfer matrix for the unit cell of the photonic crystal.
system related problems such as wave scattering by a spadde have imposed a natural boundary condition to describe
limited object placed in free space are not subject to thesthe asymptotic propagation behavior of scattered EM waves
weaknesses. in a region far away from the scattering region. This has
The developed TMM can overcome the shortcomings offficiently accounted for the physical information of EM
the FDTD scheme in application to those closed systemdvave propagation in the inhomogeneous background materi-
First, since it is working in the frequency domain, there is no@lS, periodic photonic crystals, and related waveguide struc-
difficulty of frequency resolution. Therefore, it is the bestUres here. Several numerical schemes have been imple-
candidate for the purpose of spectrum calculation in a wavé'ented to efficiently and accurately solve the eigenmodes
scattering problem. Second, since we have developed mod R the transfer matrix. In th|s_ eigenstate space, EM wave
to match the semi-infinite photonic crystal structures, the dif-WIII not encounter any scattering when propagating through

) e T L the photonic crystal. This basis brings significant simplifica-
ficulty of multiple-reflection induced contamination to the tion to the solution of the wave propagation problem.

useful spectrum no longer exists. This makes it MOreé COm-ye have considered several general structures in conjunc-
ion with a semi-infinite photonic crystal, and evaluated the

i ; rresponding theoretical tools. These include wave propa-
tage of the TMM s that the computational memory-spaceyation in a semi-infinite photonic crystal, a coated semi-

requirementwhich is proportional to the square of the plane nfinite photonic crystal, a heterostructure formed by two dif-
wave number is far larger than in the FDTD approach ferent semi-infinite photonic crystals face to face, and a more
(which is linearly proportional to the pixel number in real complex sandwiched structure formed by two semi-infinite
space and the time step ugednother more serious disad- photonic crystals separated by a general grating slab. In com-
vantage is that the current formulation of the TMM is limited bination with a supercell technique, the developed formal-
to periodic structures, or structures that can be approximateigms can also be used to handle photonic crystal waveguide
by an artificial periodic systertwhere a supercell technique structures. We have applied the developed theoretical tools to
can be utilizegl Extension of the formulation to aperiodic investigate 2D photonic crystal and related waveguide struc-
functional elements in an optical IC should be invaluable. tures under the excitation of the-polarization mode. We
Finally we would like to point out that the TMM can first consider the simplest situation of a plane wave propaga-
provide a better environment for designing new optical function into a 2D photonic crystal and the corresponding inverse
tional elements than the FDTD technique can. Take the cawroblem of a Bloch's wave propagation out of the photonic
ity problem discussed in Sec. VIl as an example. Supposgrystal- Then we turn to the problem of EM wave coupling
we wish to design an efficient element only through adjust/to and out of a photonic crystal waveguide. Both the
ment of the geometrical and physical parameters of the smafieuPling-in and coupling-out efficiencies have been ad-
cavity region. Then in the framework of the TMM, each time ressed. We_then look at wave propagation in more compli-
we only need to change ti@matrix for the sandwiched slab cated sandwiched photonic crystal waveguide structures. The

. s . o tructure we study is a cavity introduced into a photonic
opcup|ed by the cavities, other physical quantities such as.th rystal waveguide. This cavity can act as a frequency filter to
eigenmodes in the background two semi-infinite waveguid

% continuous spectrum of guided wave. We have changed the

Strutl:tulr'(la(s can bi storr]ed and usedl als many tlmeslas ho Eometrical configurations of the cavity and examined its
would like once they have been calculated. Obviously, thestical properties in the environment of the photonic crystal

numerical burden is limited to the small sandwiched regio”waveguide.
The situation is completely different in the FDTD scheme. The developed TMM can have advantage over the popu-
Every time one changes the parameténs matter how |ar FDTD approach in extracting accurate spectrum informa-
little), one needs to run the numerical calculation once agaifion of wave scattering in closed systems of functional ele-
in the whole simulation domain, which in most cases is farments embedded in an extended inhomogeneous medium
larger than the sandwiched slab. This limitation surely willbackground such as a photonic crystal. In addition, the TMM
bring great inconvenience to active design of functional eleis more competent and convenient to actively design new
ments in a photonic crystal background. The same situationptical functional elements created in a photonic crystal
also exists in the waveguide coupling problem discussed ibackground than the FDTD approach does. It is expected the
Sec. VII. developed TMM can help people to understand complicated
wave propagation behavior in individual functional elements
comprising an optical IC built in a photonic crystal platform,
X. SUMMARY and then design optimal optical elements to realize applica-

In summary, we have developed a TMM that is based o iqns in' a wide range. It is also ex'pected that the power of
the plane-wave expansion of EM fields to handle EM wavehIS ef_ﬁment theor_etlcal tO.OI and its advantag_e over o_ther
propagation in semi-infinite photonic crystal and relatednumerlcal tools W'". be W|tnessed_ more fully in handling
waveguide structures. One great advantage for this TMM igomplex 3D photonic crystal functional elements.
that it enables one to focus only on wave scattering at the ACKNOWLEDGMENTS
concerned structural boundary and to completely remove the
contamination due to multiple reflections in the presence of Ames Laboratory is operated for the U.S. Department of
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