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Adiabatic addition of the Chern-Simons flux, pair correlations, and particle statistics
in two-dimensional electron systems
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Adiabatic introduction of Chern-Simons flux into a two-dimensional electron gas leads automatically to
Laughlin correlations. In contrast to the mean-field composite fermion picture, only a single energy scale, the
Coulomb scale, appears at the large values of the applied magnetic field. The Laughlin correlations partition the
spectrum into bands separated by gaps that depend on pseudopotential coeffidigptsof the Coulomb
interaction. The adiabatic approach also suggests a simple intuitive picture for why the Jain wave functions are
excellent trial functions for condensed states belonging to the Jain sequence.
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I. INTRODUCTION flux. (iii) If one starts with an integral electron filling factor
] ) ) v* =n and adiabatically increases the dc magnetic field by a
~The mean-field Chern—SimonéCS) picture’ offers @  factor of 20+ 1, while at the same time adiabatically adding
simple intuitive way of understanding fractional quantumyo CS flux quanta in the direction opposite to the dc field to
Hall systems. Because it has been used with remarkablesach electron, Laughlin pair correlations are automatically
qualitative success in the interpretation of experimentalntroduced. The wave function for the pajj must contain a
data; it has been accepted, almost without question. Manysactorz? to conserve the total flux through the pair orfaié.,
body perturbation expansions a_bout the CS mean field ha_v[q}le quxJ due to the dc field plus the CS flughe resulting
been developed and applied with some success to both ingin_type wave function is almost totally contained within
compressible quantum liquid statemd to the compressible e subspace of the lowest Landau level at the higher mag-
composite FermiofiCF) (@ CF is an electron together with a netic field[i.e., (2n+1) times the original field at filling
CS flux tube state which occurs at filling factor=1/2. factor v* =n.
Despite its qualitative success in describing the structure of | 5,ghin correlations mean that electrons avoid, as much
the low-lying energy spectrufhthere are several perplexing 5 possible, pair states with the largest pair angular momen-
questions related to why this simple mean-field CS p'Ctur%L:Jm(or smallest pair radiyghereby lowering their repulsive
works. The mean—ﬁel_d approximation introduces a SeCoNgoylomb energy. FoN electrons confined to a spherical sur-
energy scale proportional to the cyclotron enefgy. in  face, the total angular momentum multiplets resulting from
addition to the Coulomb energy scaé/\, where) is the | qughlin correlated electrons, each with angular momentum
magnetic length. Whehw:>e“/\, this second energy scale | can pe obtained by addition of the angular moméhtaf
is large but totally irrelevant to the determination of the low- composite Fermion&? wherel* =1 —(N—1). This set of
energy spectrum. In addition, there is no small parameter ifya| angular momentum multiplets is a subset of those
the perturbation expansion to justify the use of simple manys,rmeq fromN electrons each with angular momentirfror
body approximations like RPA, or even to guarantee convery| jncompressible states of the Jain sequence, only a single
gence. Jain avoided the “two energy scale problem” in anongegenerate =0 state(i.e., an integral CF fillingy*)
simple way"’ He constructed an antisymmetric product reqits. Empty states in a nearly filled CF angular momentum
function for electrons at the mean-field CF filling factt  ghe|| gre Laughlin quasiholes, and filled states in a nearly
equal to an integer, and multiplied it by the Jastrow factorempty first excited CF shell are quasielectrons. The quasipar-
j=Hi<J-zijp, first introduced by Laughlin to obtain the  {icle (QP) angular momenta arby=1% and lgg=1%+1.
=(2p+1) ! incompressible states. He then took the ProjeCThe Jain sequence of condensed states*at +1,%2, . . .
tion of this wave function onto the lowest electron Landaug...rs at electron filingy=v* (1+2pv*) %, since v* ~1
level at filling factorv=v*(1+2pv*) "1, and used thisas a _ »~1—2p Thev correspond to filled CE sr,1ells
trial wave function. In this paper we address the question of Sitko \F()i. andguinﬁo p?roposed a CF hierarch;ll scheme to

why the mean-field CS picture is qualitatively so successfu . . ; . ,
. . : eat partially filled QP shells in which the mean-field CS
despite its apparent shortcomings, and why the Jain Wavgransfgrmatign was rQeappIied to the QP’s but not to the un-

functions make such satisfactory trial wave functions. We d ) ; : : .
this by introducing the CS flux adiabatically instead of via ad®rying filled shells. This CF hierarchy yielded condensed

singular gauge transformation as done in most previou§tates at all odd denominator fractions, but it assumed that
work #58 Our emphasis is not on obtaining novel results, buth® CF QP’s formed Laughlin correlated daughter states. Nu-
on obtaining an intuitive physical picture of why these ap-merical calculations demonstrated that not all predicted frac-
proaches are successful. The following results are foGind: tions had incompressible =0 ground states. The reason
Laughlin pair correlations result automatically, but in the ab-why rested on the behavior of the QP-QP pseudopotential,
sence of Coulomb interactions, the energies are unchange\de.Qp(le),9 the interaction energy of an electron pair as a
This means that no new irrelevant energy scale is introducedunction of the total pair angular momentum. OnlMgp_gp

(i) In contrast to the result of the gauge transformation, nancreased withL,, faster thanL5(L,+1) could Laughlin
change in particle statistic s occurs for any value of the CRorrelations among the QP’s be applied. Quiebal.
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demonstratett that the only Laughlin correlated spin polar- ply be omitted in that case; theB,=3%w. and um(r)
ized daughter states of the=1/3 andv=1/5 Laughlin states = (y/2))IMexp(—r%8x2), where\ is the magnetic length for

tohcctutrr:ed ftz;?lEl: 1/;3”‘: 'ﬂVQli:l%:/B3 ?”td 1/;' T_hils/:;mpli%d a particle of charge. Replacing the relative coordinateby
atthev= (QE's of they=1/3 state abqe=1/3) an —r (or ¢ by ¢+ ) corresponds to exchange of the pair of

V:t4t/)13 (QH's Olf the Itjj:Lll 3 Sr:?te aﬁ’QletléS) sgatttastcoulﬂ particles. Therefore for fermior®oson$ m must be an odd
not be spin polarized Laughlin correlated QP states. Non even integer. The functiofiu,(r)|? has its maximum value

spin polarized ground states, formation of QP-QP pairs, 0 tr,=2|m/"\, the “semiclassical orbit” radius. This im-

other nqn-La_ughIm-hke correlations must be responsible forpIieS that themth orbit encloses @ flux quanta, i.e.,rrrﬁqB
the minima inp,, observed recently at these and other =2|ml¢
unusual fractions. o

Ill. CHERN-SIMONS GAUGE TRANSFORMATION

Ever since the work of Aharanov and BoHfhit has be-
The CF picture results from the introduction of a Chern-come customary to think of quantum-mechanical problems

Simons gauge field produced by attaching fictitious magnetiinvolving a vector potentiaE(F) within a region in which

flux tubes to each electron. The vector potenéiél) pro-  b(r)=Vxa(r) vanishes in terms of a gauge transformation

Il. CHERN-SIMONS GAUGE FIELD

duced by a flux® = a¢y= a(hc/e) is given by which alters the phase but not the amplitude of the wave
function. A simple exampl€ is that a charged particle con-
- ZX(r=r") . fined to move on a circular path in they plane. At the
a(r):q)f dzf'wp(f'). (1) center of the path is a long thin solenoid oriented in the

direction. When the solenoid carries a current which pro-
wherez is a unit vector normal to the two-dimensioaD)  duces a fluxd = a¢, the eigenfunctioV',(r) can be writ-

layer, and p(F)=""(F)W(r) is the quantum-mechanical ©" 2 follows:
density operator. This vector potential couples to the electron @m( ;) _ e—(ie/hc)fé(()~dfq,m(f’), (4)
charge in the usual way. Although it introduces a phase fac- S _ _ _
tor into the quantum-mechanical wave functiagr) has no where\Pm(r)=e'm¢umgr) is the eigenfunction when =0,
effect on the classical equations of motion. This results fronfind in this cas@um(r)|“= 8(r —ro) wherer g is the radius of
the fact that no two electrons can occupy the same positiof€ circular path. Becausg(r) = (®/27r) ¢, the phase fac-
and that the magnetic field resulting from the CS flux istor in Eq. (4) is equal to—ia¢, where ¢ is the angular
given by b(r)=®X,8(r —r,)z, wherer, is the position of posii(trig” )Of the particle along its path. This meaifs,(r)
theith electron. Of course, we assume that no electron inter= € " Un(r). For the¢r6|atlve coordinate of & paiuih
acts with its own flux tube. _ gt 0 : .
The physics of introducing CS flux can be most simplyq_e/2 andfa-dr=2|a| 57 ¢) the corresponding equation
understood for a two-electron system. The Hamiltonian for dllustrates famous transmutation of statistics in two-

N . . 16 .
pair of electrons in the presence of a dc magnetic fisld dimensional (2D) systems:™® Odd integral values ofa

- ] ] change fermions to bosons and vice versa, while nonintegral
=Bz separates into center of ma&SM) and relative(R)  \gjues ofa give rise to anyon statistics.

the symmetric gauge can be written gauge transformation contains the CS vector potenifa)

2 2Rp2 given by Eq.(1) added to the vector potentia(r) of the dc
p qB g°B o o . . ST
Hrp=2—+ =——I,+ 2r2. (2) magnetic field, it is considerably more complicated. Simpli-
2u 2pc " 8uc fication results from replacing the density operator appearing

S>> - > 1,2 = : . in a(r) by its “mean-field” valueng, the equilibrium elec-
?aetr: ra;(;lmgzmgzgu?n_ Zr((aggl)ecr:iz\ZeE/reTtr?: rrg(lji{g: q Cr?gsdsl' 47PN concentration which is independent of position. The re-
. ' N ' IR ' Iting Hamiltonian is the sum of single-particle Hamilto-

charge areu=3;m, and q=ze, and|,=(rxp), is thez  pians containing an effective magnetic fielB* =B
Component of angular momentum. The solution of the SChrO+ a/d)OnS' In fractional quantum Hall Systems this mean-
dinger equation can be writtet',,(r)=e™%u,(r). The field CS picture leads to integral CF fillijg*|=1,2, ... at
radial function satisfies the differential equafion electron filling factorv given byv=v*/(1+|a|v*). Herea

is the CS flux per electron, and negative valuesdfcorre-

n?[* 149 m* AgBm g°B® spond to states witB* in the opposite direction frorB. For
s\ Sty 2 +——=reju |a|=2 and values of* =I—(N—1) close to3(N—1), the
2 21 or 2 2uc 2 nm : ; 2\N7 L)
;A or ' H 8uc quasihole (quasielectrop angular momentum id gp=1*
=EpmUnm- 3) (oe= [*+1). The lowest band of energy states for any ap-

_ _ plied magnetic field is obtained by addition of the angular
The eigenvalue€,,= 3 w.(2n+1+m+|m|), wheremis  momenta of the quasiparticles required for the given value

any integer anch=0,1,2 ... . Inmost of the remainder of of | andN. It is worth noting that for a Laughlin state.g.,
this paper we will consider only the lowest Landau levelv=1/3) B*=vB and the CF magnetic length is
with n=0 andm=0,—1,—2, ... . Thesubscripm will sim- ~ A*=p"Y2\. The semiclassical CF orbit has a radius
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r¥=v"Y% . and sincenr}?B*=xr2B, it encloses the If the pair wave function for the relative motion in the
same total flux as the original electron orbit. However, in theorbital mis multiplied by the pair function for the CM in the
eigenvalueE,,,, the electron cyclotron frequenay, must  Orbitalm=0, one obtains

be replaced by? = vw., and this gives rise to the irrelevant 2.

— ri+rs
energy scale that cannot affect the low-energy states when V(1,2 =Z0lexpg — (6)
ho>e?/\. 4\2

Here z;,=re ' and A>=#c/eB even though the relative
and CM coordinates have different charges and different
magnetic lengths. This is just the Laughlin wave function for
Instead of making a gauge transformation we can star@ pair sincen must be an odd integer. It can also be obtained
with an initial electron pair state and slowly increase theby constructing the antisymmetric product of single-particle
value of ¢, from zero to a final value where is an even Wwave functions in the two smallest orbitalse., z;,exd

integer. The single-particle Hamiltonian is —(riﬂé)/‘”\z]) and multiplying by the Jastrow factor
(z12™ *. Here, of coursemn—1 must be an even integer.

IV. ADIABATIC ADDITION OF CHERN-SIMONS FLUX

1. 2 V. TRIAL FUNCTIONS

Hi= | Bt AT +a()1 | ®

=5 P
2m It is obvious that the behavior of a single-electron pair can

be genleralized to obtain the Laughlin wave function for the

and the pair Hamiltonian isH,+H,. In Eq. (5) 5(;1) v=m’ - state of arN electron system. You simply start w!th

B 121) 5. wherer =7« —r1. 4o it vector | the N electron system at the filling facter=1 and adiabati-

_(a(.f)o 7r)d>, wherer .—|r1 raf, ande IS a unit vector in cally increase the dc magnetic field by a factor of 3 while at

the direction of increasing angular coordingielt is appar-  the'same time adding adiabatically two CS flux quanta per

ent thata(r,) = —a(r,). When the two-particle Hamiltonian electron in the direction opposite to the dc field. Tiwe 1

is separated into CM and relative coordinate contributionswave function

the resultingHy, is identical to that in Eq(2), except thaB )

is replaced by§=B+2a¢0/wr2. If we assume that the v =H 7. ex _2 I )

eigenfunction for the lowest Landau level is of the form g ™ T a2’

Ym=e"wy(r), then the new radial functiow(r) safis-  \hich is obtained from the antisymmetrized product function
fies Eq.(3) if B replacesB. It is not difficult to regroup the ~ AIN | y_i_1(z), is simply multiplied by the Jastrow fac-
terms in the resulting equation to demonstrate tha(r)  tor z{; for each pair, exactly as Laughlin proposed, while the
=Ums4(r). Thus the exact pair wave function ¥,  magnetic length\, changes from\; to \y3. Of course, in
—eMPy_ . (r). In contrast¥,,=e (™ ®9y_(r), obtained thiS caseyn(z)=2"exp(-r?/4\1), wherez=re '?, andm
via the gauge transformation, does not change the radid®kes on the values Q,1.. N—1 appropriate foN particles
function at all, but alters the phase of the angular part of thdilling the N states of the lowest Landau level.

wave function. In the adiabatic approach, the pair wave func- 'N€ same idea can Ibe appl_igd tt?rest/ates of the Jain
tion with angular quantum numben remains in staten as ~ S€JUENCe. As an example, consider the2/5 state. Start

la| is slowly increased from zero to a final value [af] with the N electron system at filling factov=2. The wave

=2. This means there is no change in particle statistiag as funphon describing this -state IS .S|mply the a”“SXm”"
increases continuously with time. The radial functiguar- etr|icm¢product of the single-particle functiong/,m(r)
ticle “orbit” ) does change, starting fromy(r) and ending ~ € Pnm(T), for Eqpyin the lowest and first excited Landau
with u,,, ,(r). The reason for this expansion of the orbital I€VE!S: The radial functionp,y, are given by pum(r)
wave function is that the time rate of change of the CF flux="""LI"(r?2x%) e, and the associated Laguerre
gives rise, through Faraday’s law, to an induced electric field0lynomials appearing in the product function arg'(x?)

> R o _ Im[/y2y — 2 ; -~
& along the orbit. The response of an electron to crossed — | M! andL"(x)=(|m|+1)!(Jm|+1-x). The main ef

> . . s s . fect of adiabatically adding the CS flux is to introduce
andB fields is to move in the directioaxX B, expanding or

. . . Laughlin correlations. This can be accounted for by introduc-
contracting the orbit to conserve the flu>§ enclosed. Startmq;ngl a Jastrow factozizj for every pair as suggested by Jaih.
from them=—1 electron pair state, which encloses thréetpg ;antum numbers of the single-particle wave functions
flux quantum of the field, and adiabatically addinge|  appearing in the antisymmetrized product function are un-
=2 CS flux quanta oriented oppositeBancreases the orbit changed, but the magnetic length appearing in these func-
size fromr,;=2\ to \3r, since|m+a|=3. This orbit en- tions changes from, (appropriate at the filling factor
closes one flux quantur3 from theB field and—2 from  =2) t0 A5 (appropriate aw=2/5) as the dc magnetic field
the CS flux tubg The orbit is exactly the same size as the!S changed adiabatically from; to B;s=>5B,. It is worth
mean-field CF orbit in the fiel®*, but the energy is un- noting that the maximum value of the exponent péppear-

changed. Only when Coulomb interactions are included dén% in Zthferhtra?]sformed wave ffunctiorr: ii’ m(_l)?(NQS h
the pair states with larger pair orbits have lower energy. )+2. The three terms arise from the Jastrow factor, the

Therefore no new and irrelevant energy scale is introduced'@Imum value ofm for fiIIing_fancfltorzvzzz, and from the
by the adiabatic addition of the CS flux. associated Laguerre polynomﬂaL (re/2n°), respectively.

We require this maximum value to be equaNg— 1, where
153310-3



BRIEF REPORTS PHYSICAL REVIEW B8, 153310(2003

N,=5N, is the degeneracy of the lowest Landau level at thdractional filling; second the Jastrow factaf” (where 2
magnetic field fory=2/5. Equating +N,, to N,=5N CS flux quanta are .add}:dnulpplles the wave fupct|on ob-

. p~ e ) ¢ b ¢ tained from the antisymmetrized product function after the
givesN=5N or »=N/N4=2/5. This means that the new change in magnetic length and replacemerjtifin L™ by
wave function corresponds to a filling facter2/5. As Jain ||+ 2p.
has demonstrated, these wave functions lie mostly within the ope might well ask about the= 1/2 state where the RPA
Hilbert space of the lowest Landau level at the magnetic fielthas been applied to interactions beyond the mean field. There
B,s. The most accurate evaluation of the energy spectruns no small parameter to justify using the RPA. As pointed
for the Jain states requires the projection of the trial waveout in Ref. 5 and studied in detail by Simon and Halpéfin,
functions onto the Hilbert space of the lowest Landau leveLandau Fermi-liquid corrections can be inserted by hand. We
at the higher magnetic field. Jain and Kanfilieveloped an prefer thinking of Ref. 5 in terms of Silin'§ generalization
efficient technique for obtaining the projected trial functions,of the Landau theory to an interacting electron liquid. Long-
and demonstrated their excellent overlap with the exactange Coulomb interactions are accounted for through the
eigenfunctions for finite-size systems. self-consistent Hartree fiel@equivalent to the RPA and

short-range correlation effects through the Landau interac-

tion f(p,p’) among quasiparticles. The Landau-Silin kinetic
equation contains an effective mags$, renormalized by the

] . -~ Coulomb interactions, and a cyclotron frequenay,
We have demonstrated that the adiabatic addition of an-ep/m*c. In the Landau theorym* is equal to (1

even number of CS flux quanta per electron results in Laughs- A ym, wherem is the bare band mass arq is the n
lin correlations. This selects from the set of total angular=1 coefficient of the expansion of the Spin Symmetric inter-

momentum multiplets, a subset that has smaller CoulomB (i function in Fourier series in the angle betwgeand
repulsion and therefore lower energy. In the absence of Cou, 19

lomb interactions, the energies of the selected subset are up-, The_gxpansmn coefficienta, deper)q on magnetic

’ eld and filling factor, and they are very difficult to evaluate
_changed by the presence (.)f the CS flux, S0 NO NEW angqn,  first principles. However, the spin-independent re-
irrelevant energy scale is introduced. For mcompresmbl:%ponse functioré® contain denominators of the forfw
guantum Hall states only a single=0 state belongs to the

: - _ —n(1+A,) w.]. This causes the fundamentai1 cyclo-
subset, and it corresponds an integral nunjb&t of filled  on resonance to occur at the bare cyclotron frequency
CF angular momentum shells.

19Ule ‘ 1etls. . eB/mc as required by Kohn's theorem. Though the RPA by
This picture gives an intuitive feeling for why the CF jtself is not valid for the CS gauge interactions, the Landau-
model describes states with filling close to that of the incom-ilin kinetic equation with phenomenological interaction co-
pressible liquid states. It also gives some insight into why thexfficientsA,, should be a reasonable way to evaluate the re-
Jain trial functions are so good. They can be obtained withsponse of a strongly interacting 2D composite Fermion
out any mean-field approximation by adiabatically increasindiquid in the presence of a magnetic field.
the dc magnetic field and at the same time adiabatically add- The authors gratefully acknowledge the support of Grant
ing an opposing CS flux. This leaves the integrally filldd No. DE-FG02-97ER45657 of the Materials Science
particle wave function unchanged except for two effects, firsProgram-Basic Energy Science of the U.S. Department of
the magnetic length is changed from that of the original magEnergy, and thank Professor A. Wojs and Professor K.-S. Yi
netic field to the smaller magnetic field associated with thefor very helpful discussions.
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