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Adiabatic addition of the Chern-Simons flux, pair correlations, and particle statistics
in two-dimensional electron systems
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Adiabatic introduction of Chern-Simons flux into a two-dimensional electron gas leads automatically to
Laughlin correlations. In contrast to the mean-field composite fermion picture, only a single energy scale, the
Coulomb scale, appears at the large values of the applied magnetic field. The Laughlin correlations partition the
spectrum into bands separated by gaps that depend on pseudopotential coefficientsV(L12) of the Coulomb
interaction. The adiabatic approach also suggests a simple intuitive picture for why the Jain wave functions are
excellent trial functions for condensed states belonging to the Jain sequence.
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I. INTRODUCTION

The mean-field Chern–Simons~CS! picture1 offers a
simple intuitive way of understanding fractional quantu
Hall systems.2 Because it has been used with remarka
qualitative success in the interpretation of experimen
data,3 it has been accepted, almost without question. Ma
body perturbation expansions about the CS mean field h
been developed and applied with some success to both
compressible quantum liquid states4 and to the compressibl
composite Fermion~CF! ~a CF is an electron together with
CS flux tube! state which occurs at filling factorn51/2.5

Despite its qualitative success in describing the structure
the low-lying energy spectrum,6 there are several perplexin
questions related to why this simple mean-field CS pict
works. The mean-field approximation introduces a sec
energy scale proportional to the cyclotron energy\vc in
addition to the Coulomb energy scalee2/l, wherel is the
magnetic length. When\vc@e2/l, this second energy scal
is large but totally irrelevant to the determination of the lo
energy spectrum. In addition, there is no small paramete
the perturbation expansion to justify the use of simple ma
body approximations like RPA, or even to guarantee conv
gence. Jain avoided the ‘‘two energy scale problem’’ in
simple way.1,7 He constructed an antisymmetric produ
function for electrons at the mean-field CF filling factorn*
equal to an integer, and multiplied it by the Jastrow fac
J5) i , j zi j

2p , first introduced by Laughlin to obtain then
5(2p11)21 incompressible states. He then took the proj
tion of this wave function onto the lowest electron Land
level at filling factorn5n* (112pn* )21, and used this as a
trial wave function. In this paper we address the question
why the mean-field CS picture is qualitatively so success
despite its apparent shortcomings, and why the Jain w
functions make such satisfactory trial wave functions. We
this by introducing the CS flux adiabatically instead of via
singular gauge transformation as done in most previ
work.4,5,8 Our emphasis is not on obtaining novel results, b
on obtaining an intuitive physical picture of why these a
proaches are successful. The following results are found~i!
Laughlin pair correlations result automatically, but in the a
sence of Coulomb interactions, the energies are unchan
This means that no new irrelevant energy scale is introdu
~ii ! In contrast to the result of the gauge transformation,
change in particle statistic s occurs for any value of the
0163-1829/2003/68~15!/153310~4!/$20.00 68 1533
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flux. ~iii ! If one starts with an integral electron filling facto
n* 5n and adiabatically increases the dc magnetic field b
factor of 2n11, while at the same time adiabatically addin
two CS flux quanta in the direction opposite to the dc field
each electron, Laughlin pair correlations are automatica
introduced. The wave function for the pairi , j must contain a
factorzi j

2 to conserve the total flux through the pair orbit~i.e.,
the flux due to the dc field plus the CS flux!. The resulting
Jain-type wave function is almost totally contained with
the subspace of the lowest Landau level at the higher m
netic field @i.e., (2n11) times the original field at filling
factor n* 5n].

Laughlin correlations mean that electrons avoid, as m
as possible, pair states with the largest pair angular mom
tum ~or smallest pair radius! thereby lowering their repulsive
Coulomb energy. ForN electrons confined to a spherical su
face, the total angular momentum multiplets resulting fro
Laughlin correlated electrons, each with angular moment
l, can be obtained by addition of the angular momental * of
N composite Fermions,6,9 wherel * 5 l 2(N21). This set of
total angular momentum multiplets is a subset of tho
formed fromN electrons each with angular momentuml. For
all incompressible states of the Jain sequence, only a si
nondegenerateL50 state~i.e., an integral CF fillingn* )
results. Empty states in a nearly filled CF angular moment
shell are Laughlin quasiholes, and filled states in a nea
empty first excited CF shell are quasielectrons. The quasi
ticle ~QP! angular momenta arel QH5 l * and l QE5 l * 11.
The Jain sequence of condensed states atn* 561,62, . . .
occurs at electron fillingn5n* (112pn* )21, since n* 21

5n2122p. They correspond to filled CF shells.
Sitko, Yi, and Quinn10 proposed a CF hierarchy scheme

treat partially filled QP shells in which the mean-field C
transformation was reapplied to the QP’s but not to the
derlying filled shells. This CF hierarchy yielded condens
states at all odd denominator fractions, but it assumed
the CF QP’s formed Laughlin correlated daughter states.
merical calculations demonstrated that not all predicted fr
tions had incompressibleL50 ground states. The reaso
why rested on the behavior of the QP-QP pseudopoten
VQP-QP(L12),

9 the interaction energy of an electron pair as
function of the total pair angular momentum. Only ifVQP-QP
increased withL12 faster thanL12(L1211) could Laughlin
correlations among the QP’s be applied. Quinnet al.
©2003 The American Physical Society10-1
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demonstrated11 that the only Laughlin correlated spin pola
ized daughter states of then51/3 andn51/5 Laughlin states
occurred atnQE51/5 and atnQH51/3 and 1/7. This implied
that then54/11 ~QE’s of then51/3 state atnQE51/3) and
n54/13 ~QH’s of then51/3 state atnQH51/5) states could
not be spin polarized Laughlin correlated QP states. N
spin polarized ground states, formation of QP-QP pairs
other non-Laughlin-like correlations must be responsible
the minima in rxx observed recently12 at these and othe
unusual fractions.

II. CHERN-SIMONS GAUGE FIELD

The CF picture results from the introduction of a Che
Simons gauge field produced by attaching fictitious magn
flux tubes to each electron. The vector potentialaW (rW) pro-
duced by a fluxF5af05a(hc/e) is given by

aW ~rW !5FE d2r 8
ẑ3~rW2rW 8!

urW2rW8u2
r~rW8!, ~1!

whereẑ is a unit vector normal to the two-dimensional~2D!

layer, and r(rW)5C1(rW)C(rW) is the quantum-mechanica
density operator. This vector potential couples to the elec
charge in the usual way. Although it introduces a phase
tor into the quantum-mechanical wave function,aW (rW) has no
effect on the classical equations of motion. This results fr
the fact that no two electrons can occupy the same pos
and that the magnetic field resulting from the CS flux
given by bW (rW)5F( id(r 2W rW i) ẑ, where rW i is the position of
the i th electron. Of course, we assume that no electron in
acts with its own flux tube.

The physics of introducing CS flux can be most simp
understood for a two-electron system. The Hamiltonian fo
pair of electrons in the presence of a dc magnetic fieldBW

5Bẑ separates into center of mass~CM! and relative~R!
coordinate contributions. For the latter, the Hamiltonian
the symmetric gauge can be written

HR5
p2

2m
1

qB

2mc
l z1

q2B2

8mc2
r 2. ~2!

Here rW5rW12rW2 and pW 5 1
2 (pW 12pW 2) are the relative coordi-

nate and momentum, respectively. The reduced mass
charge arem5 1

2 me and q5 1
2 e, and l z5(r 3W pW )z is the z

component of angular momentum. The solution of the Sch¨-
dinger equation can be writtenCnm(rW)5eimfunm(rW). The
radial function satisfies the differential equation13

F2
\2

2m S ]2

]r 2
1

1

r

]

]r
2

m2

r 2 D 1
\qBm

2mc
1

q2B2

8mc2
r 2Gunm

5Enmunm . ~3!

The eigenvaluesEnm5 1
2 \vc(2n111m1umu), wherem is

any integer andn50,1,2, . . . . In most of the remainder o
this paper we will consider only the lowest Landau lev
with n50 andm50,21,22, . . . . Thesubscriptn will sim-
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ply be omitted in that case; thenEm5 1
2 \vc and um(r )

5(r /2l) umuexp(2r2/8l2), wherel is the magnetic length for
a particle of chargee. Replacing the relative coordinaterW by
2rW ~or f by f1p) corresponds to exchange of the pair
particles. Therefore for fermions~bosons! m must be an odd
~even! integer. The functionuum(r )u2 has its maximum value
at r m52umu1/2l, the ‘‘semiclassical orbit’’ radius. This im-
plies that themth orbit encloses 2m flux quanta, i.e.,pr m

2 B
52umuf0.

III. CHERN-SIMONS GAUGE TRANSFORMATION

Ever since the work of Aharanov and Bohm,14 it has be-
come customary to think of quantum-mechanical proble
involving a vector potentialaW (rW) within a region in which
bW (rW)5¹W 3aW (rW) vanishes in terms of a gauge transformati
which alters the phase but not the amplitude of the wa
function. A simple example15 is that a charged particle con
fined to move on a circular path in thex-y plane. At the
center of the path is a long thin solenoid oriented in thez
direction. When the solenoid carries a current which p
duces a fluxF5af0, the eigenfunctionC̄m(rW) can be writ-
ten as follows:

C̄m~rW !5e2( ie/\c)*aW (rW)•drWCm~rW !, ~4!

whereCm(rW)5eimfum(r ) is the eigenfunction whena50,
and in this caseuum(r )u25d(r 2r 0) wherer 0 is the radius of
the circular path. BecauseaW (rW)5(F/2pr )f̂, the phase fac-
tor in Eq. ~4! is equal to2 iaf, where f is the angular
position of the particle along its path. This meansC̄m(rW)
5ei (m2a)fum(r ). For the relative coordinate of a pair~with

q5e/2 and*a•W drW52uau
f0

2p
f) the corresponding equatio

illustrates famous transmutation of statistics in tw
dimensional ~2D! systems.8,16 Odd integral values ofa
change fermions to bosons and vice versa, while noninte
values ofa give rise to anyon statistics.

Because the many body Hamiltonian resulting from t
gauge transformation contains the CS vector potentialaW (rW)
given by Eq.~1! added to the vector potentialAW (rW) of the dc
magnetic field, it is considerably more complicated. Simp
fication results from replacing the density operator appea
in aW (rW) by its ‘‘mean-field’’ valuens , the equilibrium elec-
tron concentration which is independent of position. The
sulting Hamiltonian is the sum of single-particle Hamilt
nians containing an effective magnetic fieldB* 5B
1af0ns . In fractional quantum Hall systems this mea
field CS picture leads to integral CF fillingun* u51,2, . . . at
electron filling factorn given byn5n* /(11uaun* ). Herea
is the CS flux per electron, and negative values ofn* corre-
spond to states withB* in the opposite direction fromB. For
uau52 and values ofl * 5 l 2(N21) close to1

2 (N21), the
quasihole ~quasielectron! angular momentum isl QH5 l *
( l QE5 l * 11). The lowest band of energy states for any a
plied magnetic field is obtained by addition of the angu
momenta of the quasiparticles required for the given va
of l andN. It is worth noting that for a Laughlin state~e.g.,
n51/3) B* 5nB and the CF magnetic length i
l* 5n21/2l. The semiclassical CF orbit has a radi
0-2
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r m* 5n21/2r m , and sincepr m*
2B* 5pr m

2 B, it encloses the
same total flux as the original electron orbit. However, in
eigenvalueEnm , the electron cyclotron frequencyvc must
be replaced byvc* 5nvc , and this gives rise to the irrelevan
energy scale that cannot affect the low-energy states w
\vc@e2/l.

IV. ADIABATIC ADDITION OF CHERN-SIMONS FLUX

Instead of making a gauge transformation we can s
with an initial electron pair state and slowly increase t
value ofaf0 from zero to a final value wherea is an even
integer. The single-particle Hamiltonian is

Hi5
1

2m S pW i1
e

c
@AW ~rW i !1aW ~rW i !# D 2

, ~5!

and the pair Hamiltonian isH11H2. In Eq. ~5! aW (rW1)
5(af0/2pr )f̂, whererW5urW12rW2u, andf̂ is a unit vector in
the direction of increasing angular coordinatef. It is appar-
ent thataW (rW1)52aW (rW2). When the two-particle Hamiltonian
is separated into CM and relative coordinate contributio
the resultingHR is identical to that in Eq.~2!, except thatB
is replaced byB̃5B12af0 /pr 2. If we assume that the
eigenfunction for the lowest Landau level is of the for
c̃m5eimfwm(r ), then the new radial functionwm(r ) satis-
fies Eq.~3! if B̃ replacesB. It is not difficult to regroup the
terms in the resulting equation to demonstrate thatwm(r )
5um1a(r ). Thus the exact pair wave function isC̃m

5eimfum1a(r ). In contrast,C̄m5ei (m2a)fum(r ), obtained
via the gauge transformation, does not change the ra
function at all, but alters the phase of the angular part of
wave function. In the adiabatic approach, the pair wave fu
tion with angular quantum numberm remains in statem as
uau is slowly increased from zero to a final value ofuau
52. This means there is no change in particle statistics aa
increases continuously with time. The radial function~par-
ticle ‘‘orbit’’ ! does change, starting fromum(r ) and ending
with um1a(r ). The reason for this expansion of the orbit
wave function is that the time rate of change of the CF fl
gives rise, through Faraday’s law, to an induced electric fi
«W along the orbit. The response of an electron to crosse«W

andBW fields is to move in the direction«W 3BW , expanding or
contracting the orbit to conserve the flux enclosed. Star
from the m521 electron pair state, which encloses thr
flux quantum of the fieldBW , and adiabatically addinguau
52 CS flux quanta oriented opposite toBW increases the orbi
size fromr 152l to A3r 1 since um1au53. This orbit en-
closes one flux quantum~13 from theB field and22 from
the CS flux tube!. The orbit is exactly the same size as t
mean-field CF orbit in the fieldB* , but the energy is un-
changed. Only when Coulomb interactions are included
the pair states with larger pair orbits have lower ener
Therefore no new and irrelevant energy scale is introdu
by the adiabatic addition of the CS flux.
15331
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If the pair wave function for the relative motion in th
orbital m is multiplied by the pair function for the CM in the
orbital m50, one obtains

C̄m~1,2!5z12
umuexpF2

r 1
21r 2

2

4l2 G . ~6!

Here z125re2 if and l25\c/eB even though the relative
and CM coordinates have different charges and differ
magnetic lengths. This is just the Laughlin wave function
a pair sincem must be an odd integer. It can also be obtain
by constructing the antisymmetric product of single-parti
wave functions in the two smallest orbitals„i.e., z12exp@
2(r1

21r2
2)/4l2#… and multiplying by the Jastrow facto

(z12)
m21. Here, of course,m21 must be an even integer.

V. TRIAL FUNCTIONS

It is obvious that the behavior of a single-electron pair c
be generalized to obtain the Laughlin wave function for t
n5m21 state of anN electron system. You simply start wit
theN electron system at the filling factorn51 and adiabati-
cally increase the dc magnetic field by a factor of 3 while
the same time adding adiabatically two CS flux quanta
electron in the direction opposite to the dc field. Then51
wave function

C̄15)
i , j

zi j expS 2(
i

r i
2

4l1
2D , ~7!

which is obtained from the antisymmetrized product functi
A) i 51

N cm5 i 21(zi), is simply multiplied by the Jastrow fac
tor zi j

2 for each pair, exactly as Laughlin proposed, while t
magnetic lengthln changes froml1 to l1/3. Of course, in
this casecm(z)5zmexp(2r2/4l1

2), wherez5re2 if, andm
takes on the values 0,1, . . . ,N21 appropriate forN particles
filling the N states of the lowest Landau level.

The same idea can be applied to states of the J
sequence. As an example, consider then52/5 state. Start
with the N electron system at filling factorn52. The wave
function describing this state is simply the antisymm
etric product of the single-particle functionscnm(rW)
5eimfrnm(r ), for Enm in the lowest and first excited Landa
levels. The radial functionrnm are given by rnm(r )
5r umuLn

umu(r 2/2l2)e2r 2/4l2
, and the associated Laguer

polynomials appearing in the product function areL0
umu(x2)

5umu! andL1
umu(x2)5(umu11)!(umu112x2). The main ef-

fect of adiabatically adding the CS flux is to introduc
Laughlin correlations. This can be accounted for by introd
ing a Jastrow factorzi j

2 for every pair as suggested by Jain.1,7

The quantum numbers of the single-particle wave functio
appearing in the antisymmetrized product function are
changed, but the magnetic length appearing in these fu
tions changes froml2 ~appropriate at the filling factorn
52) to l2/5 ~appropriate arn52/5) as the dc magnetic field
is changed adiabatically fromB2 to B2/555B2. It is worth
noting that the maximum value of the exponent ofr i appear-
ing in the transformed wave function is 2(N21)1(Nf
21)12. The three terms arise from the Jastrow factor,
maximum value ofumu for filling factor n52, and from the
associated Laguerre polynomialL1

umu(r 2/2l2), respectively.

We require this maximum value to be equal toÑf21, where

0-3
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Ñf55Nf is the degeneracy of the lowest Landau level at
magnetic field forn52/5. Equating 2N1Nf to Ñf55Nf

gives N5 2
5 Ñf or n5N/Ñf52/5. This means that the new

wave function corresponds to a filling factorn52/5. As Jain
has demonstrated, these wave functions lie mostly within
Hilbert space of the lowest Landau level at the magnetic fi
B2/5. The most accurate evaluation of the energy spect
for the Jain states requires the projection of the trial wa
functions onto the Hilbert space of the lowest Landau le
at the higher magnetic field. Jain and Kamilla7 developed an
efficient technique for obtaining the projected trial function
and demonstrated their excellent overlap with the ex
eigenfunctions for finite-size systems.

VI. SUMMARY AND CONCLUSIONS

We have demonstrated that the adiabatic addition of
even number of CS flux quanta per electron results in Lau
lin correlations. This selects from the set of total angu
momentum multiplets, a subset that has smaller Coulo
repulsion and therefore lower energy. In the absence of C
lomb interactions, the energies of the selected subset are
changed by the presence of the CS flux, so no new
irrelevant energy scale is introduced. For incompress
quantum Hall states only a singleL50 state belongs to the
subset, and it corresponds an integral numberun* u of filled
CF angular momentum shells.

This picture gives an intuitive feeling for why the C
model describes states with filling close to that of the inco
pressible liquid states. It also gives some insight into why
Jain trial functions are so good. They can be obtained w
out any mean-field approximation by adiabatically increas
the dc magnetic field and at the same time adiabatically a
ing an opposing CS flux. This leaves the integrally filledN
particle wave function unchanged except for two effects, fi
the magnetic length is changed from that of the original m
netic field to the smaller magnetic field associated with
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change in magnetic length and replacement ofumu in L1

umu by
umu12p.

One might well ask about then51/2 state where the RPA
has been applied to interactions beyond the mean field. T
is no small parameter to justify using the RPA. As point
out in Ref. 5 and studied in detail by Simon and Halperin17

Landau Fermi-liquid corrections can be inserted by hand.
prefer thinking of Ref. 5 in terms of Silin’s18 generalization
of the Landau theory to an interacting electron liquid. Lon
range Coulomb interactions are accounted for through
self-consistent Hartree field~equivalent to the RPA!, and
short-range correlation effects through the Landau inter
tion f (pW ,pW 8) among quasiparticles. The Landau-Silin kine
equation contains an effective massm* , renormalized by the
Coulomb interactions, and a cyclotron frequencyvc
5eB/m* c. In the Landau theorym* is equal to (1
1A1)m, wherem is the bare band mass andA1 is the n
51 coefficient of the expansion of the spin symmetric int
action function in Fourier series in the angle betweenpW and
pW 8.19 The expansion coefficientsAn depend on magnetic
field and filling factor, and they are very difficult to evalua
from first principles. However, the spin-independent
sponse functions17,19 contain denominators of the form@v
2n(11An)vc#. This causes the fundamentaln51 cyclo-
tron resonance to occur at the bare cyclotron freque
eB/mc as required by Kohn’s theorem. Though the RPA
itself is not valid for the CS gauge interactions, the Landa
Silin kinetic equation with phenomenological interaction c
efficientsAn should be a reasonable way to evaluate the
sponse of a strongly interacting 2D composite Ferm
liquid in the presence of a magnetic field.
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