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Linear-scaling time-dependent density-functional theory
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A linear-scaling time-dependent density-functional theory is developed to evaluate the optical response of
large molecular systems. The two-electron Coulomb integrals are evaluated with the fast multipole method, and
the calculation of exchange-correlation quadratures utilizes the locality of exchange-correlation functional
within the adiabatic local density approximation and the integral prescreening technique. Instead of many-body
wave function, the equation of motion is solved for the reduced single-electron density matrix in the time
domain. Based on its ‘‘nearsightedness’’, the reduced density matrix cutoffs are employed to ensure that the
computational time scales linearly with the system size. As an illustration, the resulting time-dependent
density-functional theory is used to calculate the absorption spectra of linear alkanes, and the linear scaling of
computational time versus the system size is clearly demonstrated.
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Time-dependent density-functional theory~TDDFT!
~Refs. 1–6! has become a powerful tool to calculate the e
cited state properties of molecules, such as polarizabilit
hyperpolarizabilities and excited state energies. It is base
the Runge-Gross theorem7 which is the time-dependent gen
eralization of the Hohenberg-Kohn theorem.8,9 The state-of-
the-art TDDFT calculations scale asO(N3) ~Refs. 1,10! (N
is the number of atoms! which makes the TDDFT a rela
tively expensive numerical method. Currently the TDDF
calculations are limited to molecules of modest sizes. I
thus desirable to have linear-scaling TDDFT whose com
tational time scales asO(N).

Much progress has been made for linear-scaling dens
functional theory~DFT!.11–16 The bottlenecks for achieving
linear-scaling were the calculation of two-electron Coulom
integrals and exchange-correlation~XC! quadratures, and th
Hamiltonian diagonalization. The fast multipole meth
~FMM!,17–20which was originally developed to evaluate th
Coulomb interactions of point charges, led to the line
scaling computation of the two-electron Coulomb integra
Linear-scaling evaluation of the XC quadratures was a
achieved by exploiting the localized nature of XC potent
and by employing the integral prescreening technique.15,21

The Hamiltonian diagonalization is intrinsicallyO(N3), and
most O(N) algorithms make use of the locality or ‘‘nea
sightedness’’ of reduced single-electron density matrixr. In
the divide-and-conquer~DAC! method,12 r is patched to-
gether from the pieces that are calculated for smaller s
systems, and this avoids the diagonalization of Hamilton
matrix of entire system. Density-matrix based ene
minimization14,22 provides an alternative to the diagonaliz
tion, in which the energy is minimized upon the variation
r. These works pave the way for linear-scaling TDDF
methods.

The remaining obstacle for linear-scaling TDDFT meth
lies in solving the TDDFT equation. The TDDFT equation
very similar to the time-dependent Hartree-Fock~TDHF!
equation. The localized-density-matrix~LDM ! method was
developed to solve the TDHF equation, and its compu
tional time scales linearly with the system size.23 Instead of
the many-body wave function, the LDM method solves for
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of a molecular system from which its electronic excited st
properties are evaluated. The equation-of-motion~EOM! of
r is integrated in the time domain. The linear scaling
computational time versus the system size is ensured by
introduction of density matrixr cutoffs.23,24 Since TDDFT
and TDHF have similar EOM’s forr, we combine the
TDDFT and LDM methods just as TDHF-LDM method.23

The resulting TDDFT-LDM method shall thus be a linea
scaling method for electronic excited states.

Within the TDDFT, the EOM of reduced single-electro
density matrixr(t) is

i\ṙ~ t !5@h~ t !1 f ~ t !,r~ t !#. ~1!

Hereh(t) is the Fock matrix

hi j ~ t !5t i j 1 (
mn

rmn~ t !~Vi jmn1Vi jmn
xc ! ~2!

with t i j being the one-electron integral between atomic orb
als~AO’s! i and j , Vi jmn the two-electron Coulomb integrals
and Vi jmn

xc the exchange-correlation functional integra
Adiabatic approximation is employed in which the sta
LDA functional evaluated at the time-dependent density
used for the dynamical properties. Within the adiabatic lo
density approximation~ALDA !,1 the functional derivative of
the exchange-correlation potentialyxc reduces to a simple
derivative with respect to the density.f (t) represents the
interaction between an electron and the external fieldE(t),
and its matrix elements can be evaluated as

f i j ~ t !5eE~ t !•^ i u r̂ u j &. ~3!

Equations~1!–~3! adopt the orthonormal atomic orbitals a
the basis functions, and are virtually the same as thos
TDHF ~Ref. 23! except theVi jmn

xc term. We may thus use th
same LDM procedure23 to reduce the computational time fo
Eqs.~1!–~3!.

The density matrixr(t) is partitioned into two parts

r~ t !5r (0)1dr~ t !, ~4!
©2003 The American Physical Society05-1
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wherer (0) is the DFT ground state reduced single-electr
density matrix in the absence of the external field, anddr(t)

is the difference betweenr(t) and r (0), i.e., the induced
reduced single-electron density matrix by the external fi
E(t). To the first order inE(t), Eq. ~1!becomes

i\dṙ (1)5@h(0),dr (1)#1@dh(1),r (0)#1@ f ,r (0)#, ~5!

wheredr (1) is the first-order component ofdr in E(t), h(0)

is the Fock matrix in the absence of the external field, a
dh(1) the first order induced Fock matrix which can be eva
ated as

dhi j
(1)5 (

mn
drmn

(1)~Vi jmn1Vi jmn
xc !. ~6!

We integrate Eq.~5! numerically in the time domain an
solve for the time evolution of the polarization vectorP(t).
Specifically, Eq.~5! can be rewritten as

i\dṙ i j
(1)5 (

k
~hik

(0)drk j
(1)2dr ik

(1)hk j
(0)!

1 (
k

~dhik
(1)rk j

(0)2r ik
(0)dhk j

(1)!

1 (
k

~ f ikrk j
(0)2r ik

(0)f k j!. ~7!

Solving Eq.~7! alone does not lead to the linear scaling
computational time, because the matrix multiplication
volved is intrinsicallyO(N3). The key for theO(N) scaling
lies in the reduction of reduced single-electron density m
trix elements by introduction ofr cutoffs. The cutoffs are
based on the locality or ‘‘nearsightedness’’ ofr.24 Specifi-
cally, r i j

(0) is set to zero forr i j . l 0 ~consequentlyh(0) be-
comes zero forr i j . l 0) and dr i j

(1) is set to zero whenr i j

. l 1, which leads to a reduction of the dimension ofdr (1)

from O(N2) to O(N).
For a fixed pair ofi and j, the summations overk in Eq.

~7! are finite and independent ofN. However, the second
term on the right-hand side~RHS! of Eq. ~7! can be ex-
panded as

(
k

(
m

(
n

~drmn
(1)Vikmnrk j

(0)2r ik
(0)drmn

(1)Vk jmn!

1 (
k

(
m

(
n

~drmn
(1)Vikmn

xc rk j
(0)2r ik

(0)drmn
(1)Vk jmn

xc !. ~8!

The first term in Eq.~8! is from long-range Coulomb inter
action between the induced charge distribution and
ground state charge distribution. The summations overm and
n are ofO(N), which leads to overallO(N2) scaling for the
direct computation of the second term on the RHS of Eq.~7!.
To achieveO(N) computation, we employ the FMM to
evaluate (m (n drmn

(1)Vikmn and (m (n drmn
(1)Vk jmn . The

FMM leads to overall finite number of floating point calc
lations for the first term in Eq.~8!. For the second term in
Eq. ~8!, we resort to numerical quadrature21,26 to calculate it
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since analytical solution cannot be obtained. To achieve
ear scaling, we exploit the localized nature of the XC pote
tial and confine its contributions at a given grid point to
relatively small region around it with negligible loss of a
curacy. Taking advantage of the fast decaying nature
Gaussian basis functions, we discard the integrals when
absolute differential overlap between any two orbitals is l
than 1028.

With the above techniques, the number of summatio
over m and n in Eq. ~7! is restricted to finite range which
does not depend on the value ofN. Since the number of
dr i j

(1) is proportional toN, the total number of floating poin
calculations scales linearly withN. Therefore, we expect tha
the computational time is proportional toN.

Since the LDM employs orthonormal atomic basis set,
Gaussian basis set 6–31 G that we employed needs t
orthogonalized. We use the Cholesky decomposition25 of the
overlap matrixS to transform the Gaussian basis set to t
corresponding orthonormal basis set

S5UTU. ~9!

The transformed density matrixr and Fock matrixh are
expressed as

r5UrAOUT h5U2ThAOU21 ~10!

FIG. 1. Absorption spectra for C40H82. The solid line is for
C40H82 and l 525 Å, and the dashed line for the full TDDFT ca
culation. The phenomenological dephasing constantG50.1 eV.~b!
Absorption spectrum for C60H122 usingl 05 l 1525 Å . The phenom-
enological dephasing constantG50.1 eV.
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whererAO and hAO are the reduced single-electron dens
matrix and Fock matrix in the original atomic orbital bas
set, respectively. Since the overlap matrixS between Gauss
ian AO’s becomes sparser with increasing molecular size,
transformation involves only multiplication of sparse mat
ces, which ensures that the computational cost of the tr
formation goes up linearly with the system size.14

To demonstrate that the resulting TDLDA-LDM metho
is indeed a linear-scaling method, we have carried calc
tions on a series of linear alkanes which are chosen solely
the test purpose. We set the electric fieldE~t! parallel to the
linear alkanes. The time step of simulation is set to 0.005
and the total simulation time is 70 fs. The accuracy of c
culation is determined by the values ofl 0 and l 1. For sim-
plicity, we choosel 05 l 15 l in our calculation. In Fig. 1~a!,
we present the calculated absorption spectrum for C40H82
using l 525 Å . The absorption spectrum is calculated fro
dr (1) via a Fourier transformation. To examine the accura
of the calculation, we perform a full TDLDA calculatio
where no cutoffs are employed for the same molecule.
dashed line represents the results of full TDLDA calculat
and the solid line is our TDLDA-LDM spectrum. The tw
sets of calculation results agree very well, which indica
that the cutoff lengthl 05 l 1525 Å is adequate. The critica
length does not alter with increasingN, when the overall
system size is much larger than the critical length. The sa
l 0 andl 1 may thus be used for differentN. We also calculated
the absorption spectrum of C60H122 with l 05 l 1525 Å . The
resulting absorption spectrum is plotted in Fig. 1~b!. For both
C40H82 and C60H122, we can observe absorptions starting a
eV. This is consistent with the observeds to s* transition at
about 150 nm wavelength.27 Study of the gas phase spect
of n alkanes28 shows that the absorption edges of sufficie

*Current address: Institute of Materials Science, University
Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8573, Japan

†Electronic address: ghc@everest.hku.hk
1M. E. Casida,Recent Developments and Applications of Mode

Density Functional Theory, edited by J. M. Seminario, Vol. 4 o

FIG. 2. CPU time forN562, 92, 122, 242, 362, 602. Each ca
culation is performed during the time interval between20.5 and 0.5
fs with time step 0.005 fs.l 525 Å is used. Filled circles are th
CPU time and the dashed line is fitting of the results.
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long alkanes approach at;7.8 eV, which is close to our
result of C40H82 and C60H122.

In Fig. 2, we examine theO(N) scaling of computationa
time and plot the CPU time versusN. The computational
time spent in solving the DFT ground state is negligible co
pared to the total CPU time for TDDFT calculation. The to
CPU time is approximately the time needed for solving E
~7!. Clearly, the CPU time scales linearly withN for N be-
tween 62 and 602. We have also performed the full TDLD
calculations forN532,62,92,122. The CPU time of ful
TDLDA calculations scales asO(N3). In Fig. 3, we compare
the CPU times for full TDLDA and TDLDA-LDM calcula-
tions. Clearly the drastic reduction of CPU time for the LD
method is observed as compared to those of full TDLD
calculations.

To summarize, we have developed a linear-scal
TDLDA method. The key for our linear-scaling TDLDA
method are~1! solving the TDLDA equation in the time do
main and~2! introducing the reduced single-electron dens
matrix cutoffs. In addition, the FMM is employed to reduc
the computational time for evaluating the Coulomb intera
tion between the induced and ground state charge distr
tions. The calculations on the linear alkanes demonstrate
accuracy and efficiency of TDLDA-LDM method. Thi
makes it possible the first-principles calculation of the e
cited state properties of very large molecular systems.
though the linear response has been the focus in this w
nonlinear response may easily be evaluated via a stra
forward extension of the method.
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