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Linear-scaling time-dependent density-functional theory
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A linear-scaling time-dependent density-functional theory is developed to evaluate the optical response of
large molecular systems. The two-electron Coulomb integrals are evaluated with the fast multipole method, and
the calculation of exchange-correlation quadratures utilizes the locality of exchange-correlation functional
within the adiabatic local density approximation and the integral prescreening technique. Instead of many-body
wave function, the equation of motion is solved for the reduced single-electron density matrix in the time
domain. Based on its “nearsightedness”, the reduced density matrix cutoffs are employed to ensure that the
computational time scales linearly with the system size. As an illustration, the resulting time-dependent
density-functional theory is used to calculate the absorption spectra of linear alkanes, and the linear scaling of
computational time versus the system size is clearly demonstrated.
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Time-dependent density-functional theoryTDDFT) of a molecular system from which its electronic excited state
(Refs. 1-6 has become a powerful tool to calculate the ex-properties are evaluated. The equation-of-motB@M) of
cited state properties of molecules, such as polarizabilitiesy is integrated in the time domain. The linear scaling of
hyperpolarizabilities and excited state energies. It is based ogomputational time versus the system size is ensured by the
the Runge-Gross theorémwhich is the time-dependent gen- introduction of density matrip cutoffs?** Since TDDFT
eralization of the Hohenberg-Kohn theoréthThe state-of- and TDHF have similar EOM’s fop, we combine the
the-art TDDFT calculations scale &(N3) (Refs. 1,10 (N TDDFT and LDM methods just as TDHF-LDM methdd.
is the number of atomswhich makes the TDDFT a rela- The resulting TDDFT-LDM method shall thus be a linear-
tively expensive numerical method. Currently the TDDFT scaling method for electronic excited states.
calculations are limited to molecules of modest sizes. It is Within the TDDFT, the EOM of reduced single-electron
thus desirable to have linear-scaling TDDFT whose compuedensity matrixp(t) is
tational time scales aS(N).

Much progress has been made for linear-scaling density- ifip(t)=[h(t)+ f(t),p(t)]. (1)
functional theory(DFT).}1~1 The bottlenecks for achieving
linear-scaling were the calculation of two-electron CoulombHereh(t) is the Fock matrix
integrals and exchange-correlatiofC) quadratures, and the
Hamiltonian diagonalization. The fast multipole method
(FMM),Y"~2%which was originally developed to evaluate the
Coulomb interactions of point charges, led to the linear-
scaling computation of the two-electron Coulomb integralswith t;; being the one-electron integral between atomic orbit-
Linear-scaling evaluation of the XC quadratures was als@ls(AO’s) i andj, Vjjm, the two-electron Coulomb integrals,
achieved by exploiting the localized nature of XC potentialand V7., the exchange-correlation functional integrals.
and by employing the integral prescreening techniqifé. Adiabatic approximation is employed in which the static
The Hamiltonian diagonalization is intrinsical(N®), and  LDA functional evaluated at the time-dependent density is
most O(N) algorithms make use of the locality or “near- used for the dynamical properties. Within the adiabatic local
sightedness” of reduced single-electron density mairixn density approximatioALDA ),* the functional derivative of
the divide-and-conquefDAC) method!? p is patched to- the exchange-correlation potentiaj. reduces to a simple
gether from the pieces that are calculated for smaller subderivative with respect to the densitf(t) represents the
systems, and this avoids the diagonalization of Hamiltoniarinteraction between an electron and the external figlg,
matrix of entire system. Density-matrix based energyand its matrix elements can be evaluated as
minimization**?2 provides an alternative to the diagonaliza-

hij () =t;; + % P (Vijmnt Viimn) 2

tion, in which the energy is minimized upon the variation of fij () =eE(t) (i |F|j). ©)
p. These works pave the way for linear-scaling TDDFT
methods. Equations(1)—(3) adopt the orthonormal atomic orbitals as

The remaining obstacle for linear-scaling TDDFT methodthe basis functions, and are virtually the same as those of
lies in solving the TDDFT equation. The TDDFT equation is TDHF (Ref. 23 except the\/f‘fmn term. We may thus use the
very similar to the time-dependent Hartree-FOGKDHF)  same LDM procedur@ to reduce the computational time for
equation. The localized-density-matrfkDM) method was Egs.(1)—(3).
developed to solve the TDHF equation, and its computa- The density matrixp(t) is partitioned into two parts
tional time scales linearly with the system sfZdnstead of
the many-body wave function, the LDM method solvesgdor p(t)=p@+ 8p(t), (4
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where p® is the DFT ground state reduced single-electron 45 -
density matrix in the absence of the external field, an¢t) 40 | (@) ]

is the difference betweep(t) and p(®, i.e., the induced
reduced single-electron density matrix by the external field
E(t). To the first order irE(t), Eq. (1)becomes

i spD=[h© 5pM+[sh®D p@1+[f p@], (5

where 8p) is the first-order component @ in E(t), h©®

sorption (arbitrary unit)
[\]
(3]

is the Fock matrix in the absence of the external field, andg 1or
5h™) the first order induced Fock matrix which can be evalu- 5r
ated as 0 :
6
oh{M=2> SpQN(Vijmnt Vifinn) - (6)
mn 70 ;
We integrate Eq(5) numerically in the time domain and 60 | (b) i
solve for the time evolution of the polarization vect(t). IS
Specifically, Eq.(5) can be rewritten as 2 50 ]
: £ 40t ]
ih6p0=S (hPop(D~ 5piPni?) &
K c 30 i
S
a 20 t+ J
1) (0 0) (1
+ ; (8h{Ppld— Pl shi) 2
< 10} }
0 0 0— ' : : : '
+ ; (fikpl = pi 1) (7 6 8 10 12 14 16 18 20

E (eV)

Solving Eq.(7) alone does not lead to the linear scaling of £ 1. Absorption spectra for gHg,. The solid line is for
computational time, because the matrix multiplication in-c, 4. and1=25 A, and the dashed line for the full TDDFT cal-
volved is intrinsicallyO(N®). The key for theD(N) scaling  culation. The phenomenological dephasing consfan0.1 eV. (b)
lies in the reduction of reduced single-electron density maabsorption spectrum for gH;,, usingly=1,=25 A . The phenom-
trix elements by introduction op cutoffs. The cutoffs are enological dephasing constafit=0.1 eV.

based on the locality or “nearsightedness” f* Specifi-
0

cally, pi(j ) is set to zero fom;;>1, (consequentiyh® be-  since analytical solution cannot be obtained. To achieve lin-
comes zero forr;>1y) and 5pi(jl) is set to zero wherm;; ear scaling, we exploit the localized nature of the XC poten-
>14, which leads to a reduction of the dimension &p‘(ls tial and confine its contributions at a given grid point to a
from O(N?) to O(N). relatively small region around it with negligible loss of ac-

For a fixed pair ofi andj, the summations ovekin Eq.  curacy. Taking advantage of the fast decaying nature of
(7) are finite and independent ™. However, the second Gaussian basis functions, we discard the integrals when the
term on the right-hand sideRHS) of Eq. (7) can be ex- absolute differential overlap between any two orbitals is less
panded as than 10°8.

With the above techniques, the number of summations
over m and n in Eq. (7) is restricted to finite range which
does not depend on the value Nf Since the number of
5pi(j1) is proportional toN, the total number of floating point
Iy,xe (0 0) o (1)h jxc calculations scales linearly witk. Therefore, we expect that

- ; % ; (St kimnPkd)— P1E P Vi) (8) the computational time is proportional

_ _ ) ) Since the LDM employs orthonormal atomic basis set, the
The first term in Eq(8) is from long-range Coulomb inter- Gayssian basis set 6-31 G that we employed needs to be
action between the .ind_uce_d charge distripution and th%rthogonalized. We use the Cholesky decompositionthe
ground state charge distribution. The summations avand  gyerlap matrixS to transform the Gaussian basis set to the
n are ofO(N), which leads to overalD(N?) scaling for the corresponding orthonormal basis set
direct computation of the second term on the RHS of (Zj.
To achieveO(N) computation, we employ the FMM to S=uU'u. 9
evaluate =2, 8pGiVikmn and =n=n 8p5Vigmn- The  The transformed density matrix and Fock matrixh are
FMM leads to overall finite number of floating point calcu- expressed as
lations for the first term in Eq(8). For the second term in
Eq. (8), we resort to numerical quadratdté®to calculate it p=UpaoUT h=U ThyoU? (10)

; ; 2 (5P%%Vikmnp(k?)—Pi(l?)5pfnlr)1vkjmn)
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FIG. 2. CPU time foN=62, 92, 122, 242, 362, 602. Each cal- Number of atoms
culation is performed during the time interval betwee®.5 and 0.5 FIG. 3. CPU time of TDLDA-LDM forN=62, 122, 182, 242
fs with time step 0.005 fS|-=_25_A is used. Filled circles are the with |=25 A . The circles are for the full TDLDA calculations and
CPU time and the dashed line is fitting of the results. the crosses are for the TDLDA-LDM. Lines are guides to the eyes.

long alkanes approach at7.8 eV, which is close to our
result of GgHg, and GoH1oo.

In Fig. 2, we examine th®(N) scaling of computational
gme and plot the CPU time versud. The computational

whereppo and hag are the reduced single-electron density
matrix and Fock matrix in the original atomic orbital basis
set, respectively. Since the overlap maBiketween Gauss-

ian AO’s becomes sparser with increasing molecular size, th . : . T
P 9 time spent in solving the DFT ground state is negligible com-

transformation involves only multiplication of sparse matri- i ;
ces. which ensures that thg comp%tational cos? of the tran ared to the total CPU time for TDDFT calculation. The total
o ; ; PU time is approximately the time needed for solving Eq.
formation goes up linearly with the system siZe. i ) .
g P Y y (7). Clearly, the CPU time scales linearly with for N be-

To demonstrate that the resulting TDLDA-LDM method
. ; crali : tween 62 and 602. We have also performed the full TDLDA
is indeed a linear-scaling method, we have carried calcula alculations forN—32.62.92,122. The CPU time of full

tions on a series of linear alkanes which are chosen solely f . .
y DLDA calculations scales a@(N?®). In Fig. 3, we compare

the test purpose. We set the electric field) parallel to the X

linear alkanes. The time step of simulation is set to 0.005 fé_he C'Z:llJ t'Teifo(; fuII_TDLdDA _and IBII‘D%ATLD'}A Caticull_EBM
and the total simulation time is 70 fs. The accuracy of cal-t'onf]' q ear ybt N rSSt'C re uct|ondo h tlmefc;r Itl ?’DLDA
culation is determined by the values lgfandl,. For sim- ?a?ct:u(ljati;so served as compared to those of fu

plicity, we choosdo=1,=1 in our calculation. In Fig. @), To summarize, we have developed a linear-scaling
we present the calculated absorption spectrum fgig, TDLDA method. The key for our linear-scaling TDLDA

usingl =25 A . The absorption spectrum is calculated from . ST .
8p'V via a Fourier transformation. To examine the accurac>;mathOd arg(1) solving the TDLDA equation in the time do-

of the calculation, we perform a full TDLDA calculation m:{rr]iXagggcf'sntlrrc:d;dcéﬁgoahigsd:&ﬁ i‘ssme%l]e'l%legg?g :jeednuscl:tg
where no cutoffs are employed for the same molecule. Th ' ' poy

dashed line represents the results of full TDLDA calculationtioi C&Tﬁg;ﬁ'?ﬁ:”g&iggraer\llglufé'l?r? dtr;fagog:]%?be'gi,{ﬁg;_
and the solid line is our TDLDA-LDM spectrum. The two g g

sets of calculation results agree very well, which indicates:['ons' The calculations on the linear alkanes demonstrate the

that the cutoff lengthy=1,=25 A is adequate. The critical accltjraqy and_ (Tfflcrl]en?y of .TD.LlDA'LDIM | metho?. hTh'S
length does not alter with increasig, when the overall makes it possible the first-principles calculation of the ex-

system size is much larger than the critical length. The sam ited state properties of very large molecular systems. Al-
. ough the linear response has been the focus in this work,

I, andl; may thus be used for differeht We also calculated . ; . )

: : o nonlinear response may easily be evaluated via a straight
the absorption spectrum ofg@1,, with 1,=1,=25 A . The forward extension of the method
resulting absorption spectrum is plotted in Fi¢h)1 For both '
CaoHgo and GgH425, we can observe absorptions starting at8  Support from the Hong Kong Research Grant Council
eV. This is consistent with the observedo o* transition at (RGC) and the Committee for Research and Conference
about 150 nm wavelengthf.Study of the gas phase spectra Grants(CRCG of the University of Hong Kong is gratefully
of n alkane&® shows that the absorption edges of sufficientacknowledged.
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