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Accurate ground-state phase diagram of the one-dimensional extended Hubbard
model at half filling
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It has been well established that in both the weak- and strong-coupling limits, the phase transition from a
spin-density wavéSDW) to a charge-density wav€DW) in the half-filled extended-Hubbard model occurs
precisely at the ratidJ/V.=2, whereU andV are the on-site and intersite electron-electron interactions,
respectively. However, a recent density-matrix renormalization gfBWRG) study and a previous Monte
Carlo simulation jointly suggest a picture that challenges the well-established weak-coupling result. Here, a
careful calculation shows such a picture is questionable. In particular, it clarifies the DMRG result, even with
a moderate number of states kept in the density matrix, agrees with both the weak- and strong-coupling
findings, and predicts a CDW/SDW phase boundary smoothly links those two coupling limits. Possible sources
of these previous failures are discussed.
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Low-dimensionality and strong electron correlation intro-  In order to clarify these apparent contradictions, we per-
duce many intriguing properties. The phase transition from dorm a sophisticated DMRG calculation by carefully exam-
spin-density wavéSDW) to a charge-density waveCDW) ining the CDW/SDW phase boundary around the transition
in the one-dimensional extended Hubbard model at half fill{point. By systematically monitoring the convergence with
ing is just one example. Although it has been investigated foPoth system size and the truncation, we show that in contrast
more than two decadésits real phase diagram is still con- to the previous DMRG studyour DMRG results obtained
troversial. The weak-couplin, strong-couplind, and  €ven with a moderate truncation are consistent with both the

Hartree-Fock theorids revealed that the SDW-to-CcDW Weak- and strong—coupling limit results. We predict that a
phase transition occurs &t=2V, but in the intermediate- CPW/SDW phase border line smoothly connects the weak-

coupling region, there is a clear deviation from tHe= 2V and strong-coupling limits. A local minimum appears around

line, as first noticed in small clustet$\ Monte Carlo(MC) U/t:38_4' Wh'Ch. IS missing in the previous I\/f’and
. T . . . : DMRG® computations. The origin of those failures in the
simulation in a longer chain confirms this deviatibhut for

. . hprevious DMRG calculation is discussed.
many years there has been no alternative way to prove it. The The well-known extended Hubbard model is described by

advent of the density-matri_x r_enormalization grbup the following Hamiltonian:
(DMRG) scheme changes the situation almost completely by
allowing one to accurately compute the ground-state proper-
ties, in particular in one-dimensional systems. The firstH=—t2, (¢, ;,Ci ,+H.c)+UX NNy +VX ninj.q,
DMRG study demonstrated that there is indeed a phase tran- L : :

sition from the SDW to CDW, but the phase boundary was @
found to be much closer t9=2V than that in the MC. In  \yhere all the operators have their common meantigS.U
contrast to the DMRG results, the MC simulation failed to andV are the on-site and intersite electron-electron interac-
reproduce the weak-coupling limit results. Since in the firsttjons, respectively. Hereaftét andV are measured in units
DMRG study the largest system size usedNis 24 and the  of t. The periodic boundary condition and half-filling case
maximum number of states kept in the density matrixnis are considered. The system sikeand the density-matrix
=160, it is very desirable to perform a computation with atruncationm will be given below. To determine the phase

larger system siz&l and higher truncatiom. transition, we compute the correlation functions for CDW
A recent high-level DMRG calculatichusing the largest and SDW, which are defined as

number of density-matrix eigenstates upe- 1200 and the

largest system sizB= 1024, predicted a result, in excellent .1 L

agreement with the MC results. Precisely such an excellent Cla=gy >, €9 RR)(pn;) %)
agreement worries us since a failure in the MC simulation at b

the weak-coupling limit calls the DMRG results into ques-
tion. What is more troubling is that the same DMRG
calculatiof also contradicts both the very recent weak-

and

coupling theory and the new MC resuft8in predicting the S(q) = 1 s eid'(ﬁifﬁjkgzgz 3)
bond-order wave phase. These contradictions cast doubts on N 77 I

the accuracy of the DMRG calculation and undermines the R o L
validity of the weak-coupling theory in such an important respectively. Hereni=2(,c;r’(,ci’g, and Sf=(n;;—n;)). ()

correlated system. denotes the expectation value in the ground state.
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both of which predict that the phase transition boundary is
slightly deviated fromU=2V_.. TheV.-U plot is useful to
show the phase diagram, but it is insensitive to the important
difference between these two results because both data are so
close to thdJ =2V line. For the same sets of data, if we plot
the ratioU/V, versusU, then their differences become im-
mediately clear. Figure(b) illustrates that in a larg¥ limit,

the DMRG results show a dip &t=5 and then approach to

2, while the MC results first show a linear dependence from
U=2 to 4 and then a kink & =6. The MC results saturate
much faster than the DMRG results, buttabecomes larger,
the difference between them becomes smaller, which is not
surprising since normally the MC simulation works better for
a largerU. In the smallU limit, although the ratidJ/V, is
smaller in the DMRG calculation than that in the MC simu-

Jation, both results show a similar trend and suggest a clear

departure from the ratit)/V.=2 which is a weak-coupling
limit result.

Such a surprising departure is unexpected. In order to
resolve this issue, we perform a careful DMRG calculation,
and whenever possible we purposely avoid an extrapolation

In order to have some sense how the phase transition d€f our results since the extrapolation itself may introduce
velops, we start with a two-site model system with a periodicc0™Me u.ncertamfyand. most importantly it makes a direct
boundary conditio* At the half filling, there are four basis comparison almost impossible. Our DMRG computation
states:dy=|11), do=|11), d3=|110), ds=[071). It is st_arts with a careful sweep M around the transition pplnt
easy to show that the ground state is with a very fine step. Depending dm the steps used for is
normally between 0.01 to 0.005 in order to accurately deter-
mine the critical value/.. Our smallest step is 0.001. Note
that this small step does not mean that the smallest possible
error forV, is 0.001, but instead it means that for a fixed

Hubbard model at half filling. The circles are from Ref. 8 and the
squares are from Ref. B) The same data but plotted on the ratio

U/V, vs U diagram. The substantial deviation from 2 can be noted
in the weak-coupling limit.

a b

lg.s)= \/§(|¢1>_|¢2>)+ \/§(|¢3>+|¢4)), (4)

where U, andm, the accuracy is within the 0.001 limit. With such a
tiny step, the computational load is very heavy. The number
a=4t/\16t°+ (2V—¢)? of states kept in the density matrixris= 400 and the infinite
and system scheme is used. We locate the transition point by

checking the correlation functions for SDW and CDW. In
Fig. 2(a@), we present two sets of data fdd=36 (solid
squaresand 40(solid circles, together with those results by
Hirsck® and Jeckelmanf.The result atU=0 is a weak-
coupling result, not computed by the DMRG method. Our
tions for CDW and SDW ar€ () =2b? and () = 2a?, results show that ag decreases to zero or increases to the
respectively. By equatingc(7) to S(w), we obtain the infinity, the ratioU/V. asymptotically approaches 2, which
phase boundary is &1/V.=2. This simple example shows fully agree with the weak- and strong-coupling limit theories.
if V>U/2, the ground-state phase dominates with the CDWf we look at the trend more closely, we find that the ratio
configurations |} | 0) or |07])), otherwise with the SDW U/V, reaches 2 much faster in the weak-coupling limit than
configuration (T]) or || 1)). It is interesting to note that a that in the strong-coupling limit. A local minimum in the
sum rule appear€(w)+ S(w) =2, but this rule is pertinent phase boundary line appears arolwhe 3 and 4. This local
to the N=2 system only. As pointed out by Fourcade andminimum is expected since in both the weak- and strong-
Spronken a long time adgbthe phase boundary 8t=2V is  coupling limitsU/V, is equal to 2, one must have a border-
specific to the two-site system, where the allowed momenténe separating the CDW phase from SDW phase but linking
are only at+ 77/2 and the kinetic energy term vanishes iden-these two extremes.
tically. Consequently, the result does not differ from the We fit the boundary line to
atomic limit one ¢=0) where the transition occurs &t
=2v.4 agU

In a system larger thall=2, the transition happens at UlVe=2+ ———,

' a;U%+a

V.>U/2. Before we present our results, let us first look at ! 2
the previous MC results by Hirseland the existing DMRG whereay,=—0.373,a,=0.217,a,=7.678, anda;=2.512.
results by Jeckelmafinadopted from Table | of Ref.)8  This function correctly shows that the ratio asymptotically
Figure 1a) is a regularV. versusU diagram and shows an approaches 2 atl—0 or U—o. For a smallU, (U/V,
excellent agreement between the MC and DMRG results;-2) depends otJ linearly, but for a largetd, (U/V.—2)

b=(e—2V)/\16t>+(2V—€)°.

The eigenvaluee= (U+2V—\/A)/2, whereA=(U—2V)?
+64t2. From Egs.(2) and(3), we find the correlation func-

®
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un dence ofV, for U=4 is shown in Fig. &) where we keep
0 2 4 6 8 10 12 256 states in the density matrix. One notices Watuickly
saturates aftel = 24. In addition, we find that the finite-size
effect also depends od: the effect is much smaller in the
weak- and strong-coupling limits than that in the

19 intermediate-coupling regiol. We will come back to this

point below.
>’ If we compare our resultghe filled boxes and circles in
> o—e This work, N=40 Fig. 2(a)] with the previous resultgthe empty circles and
1.8 =—a This work, N=36 1 empty boxes in Fig. @], we find that in the strong-coupling
0—o Jeckelmann limit our results agree with the previous DMRG results and
(a) o—a Hirsch in some sense the MC results, but there is a big difference in
1.7 the intermediate and small regions. Firstly, neither the pre-

vious MC® nor DMRG® calculations predict a local mini-
mum. Secondly, these calculations predict a monotonic de-
L 1209 crease of the rati&J/V, with U, which directly contradicts
~o  thetrend predicted by the weak-coupling thebtlo have a
_ 1207 guantitative view, in Table | we list our results with system
(c) U=4 size N=40 andm=400 in the second column while the
) s 20 third, fourth, and fifth columns are the previous DMRG,
100 200 300 400 previous® and recerf MC results, respectively. The last col-
m umn shows the ratit/V, for the weak- and strong-coupling
FIG. 2. (a) Comparison of the phase diagrams for the one-limits. One notices that the difference between our data and
dimensional half-filled extended-Hubbard model. The DMRG datalN0S€ previous results becomes larger for the intermediate
from this work are represented by the solid circléé<(40) and and smallU. Jeckelmanh claimed that his DMRG results
boxes (N=36) with m=400. No extrapolation has been made. The @greed quantitatively with the recent quantum Monte Carlo
empty circles denote the DMRG results from Ref. 8 and the emptysimulations'® but we checked Ref. 10 and found that Ref. 10
boxes represent the MC results from Ref(#. Dependence oY/, only has a few points such as: onelat4 and the other at
on the system siz&l with m=256. (c) Dependence of/, on the =~ U=8, while Ref. 8 has more than 7 points. It is entirely
number of states kept in the density matrix foN=40. unclear to us how such a comparison could be done and how
the quantitative agreement could be reached. We also noticed
~agla,U~%?2 which can be directly compared with the re- a similar problem in Ref. 8 about the bond-ordered wave
sults by theg-ology and the strong-coupling thediyWe  phase'® Interestingly, we find that the DMRG results in Ref.
also check the finite-size effect of this borderline as a func8 are in fact consistent with the previous MC results by
tion of the system size. By comparing the results for twoHirsct? (compare columns 3 and 4 in Table |
different system sizes, namely=36 (solid boxeg and 40 Since the previous DMRG calculatibdoes not explicitly
(solid circleg, we find that the overall finite-size effect is give information about the system size and the truncation
very small[see Fig. 2a)] where the solid circles almost com- for all the results, it is not possible to make a quantitative
pletely overlap the solid squares. The explicit size depeneomparison with his results on the equal footing. We decide

2.1 T T T T T 2.1

TABLE |. The second column shows our DMRG results computeaha400 andN=40. The numbers
in the parentheses are estimated. Note that no attempt has been made to extrapolate the results to the
infinite-size and truncation limit¢for the reason, see the texfThe third column is the previous DMRG
results(Ref. 8 while the previougRef. 5 and recentRef. 10 Monte Carlo results are in the fourth and fifth
columns, respectively. The last column shows the weak- and strong-coupling limiting results.

U V. (this work) V.(Ref. 8 V.(Ref. 5 V. (Ref. 10 U/V, (limiting case$
0 2

1 0.51@5)

2 1.0462) 1.125 1.15

3 1.5789) 1.640 1.675

4 2.1043) 2.150 2.163 2.16

5 2.62@6) 2.665

6 3.1297) 3.155 3.158

8 4.1326) 4.141 4131 4.14

12 6.1111) 6.115

8
N
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to discuss several possible sources of errors. All the DMRGevel off. The results converge smoothly when we increase
results have two related error@) the finite-size effect and to 400. Notice that it is difficult to extrapolate those lovwer

(b) the truncation error. For instance, for the same number ofesults to highem ones, which is why we avoid an extrapo-
states kept in the density matrix, elongating the chain retation. Our detailed analyses and expensive calculations fi-
duces the finite-size effect but increases the truncation erropally establish that the DMRG results are reliable and are

This means that a large system size and a large truncation dQily consistent with both strong- and weak-coupling
not necessarily produce an accurate result. Our experienggeories.

shows that it is always better to check the finite-size effect |, conclusion. our careful study finally settles down the
first at a moderate truncatian. After the convergence with ., niroversial issue raised by the recent DMRG and previous

system size is reached, one then converges the results wigfj- investigations. We clarify there is no discrepancy be-

the truncation. tween the DMRG results and the weak-coupling theory, and

Another possible error comes from the fact that the Con'predict that a CDW/SDW phase boundary smoothly connects

vergence withm and N is U dependent. We find that it IS he \veak- and strong-coupling limits. Possible sources of
better to use a most difficult to check the convergence with ,e\i6,s failures are discussed. Our results may pave the

N andm. In Fig. Zc), we show such an example, where the oy 1o accurately investigate other phase transitions which
system size iN=40 andU =4. One notices that due to the currently are under an intensive debte.

periodic boundary condition, the convergenceV@fwith m

is extremely slowt” From m= 100 to 200, there is no indi- This work was in part supported by National Science
cation of convergence. Only after=300, thenV. beginsto  Foundation under NUE proposal No. 0304487.
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