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Electronic collective modes and superconductivity in layered conductors
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A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the
conduction electrons. This affects thedynamicscreening properties of the Coulomb interaction in a layered
material. We study the consequences of the existence of these collective modes for superconductivity. General
equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon
scheme that accounts for the screened Coulomb interaction. Specifically, we calculate the superconducting
critical temperatureTc taking into account the full temperature, frequency, and wave-vector dependence of the
dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity.
Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides,
layered organic materials, and high-Tc oxides. In particular, we demonstrate that the plasmon contribution
~electronic mechanism! is dominant in the first class of layered materials. The theory shows that the description
of so-called ‘‘quasi-two-dimensional superconductors’’ cannot be reduced to a purely two-dimensional model,
as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into
account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.

DOI: 10.1103/PhysRevB.68.144519 PACS number~s!: 74.20.2z, 71.10.Ca, 71.10.Li, 71.45.Gm
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I. INTRODUCTION

Recent years have witnessed the discovery of many
superconducting materials: high-temperature cuprates,
lerides, borocarbides, ruthenates, MgB2, metal-intercalated
halide nitrides, intercalated NaxCoO2,1 etc. Systems such a
organics, heavy fermions, and nanoparticles have also b
intensively studied. Many of these systems belong to
family of layered conductors characterized, e.g., by stron
anisotropic electronic-transport properties. Recently, it w
reported that even Ba12xKxBiO3 has a layered structure.2 An
interesting question raised by the observation of superc
ductivity in all the systems mentioned above is the follo
ing: why is layering a favorable factor for superconductivit
The present paper addresses this question. We show tha
ering leads to peculiar dynamic screening of the Coulo
interaction and that this is important for the description
the superconducting state in layered conductors.

The conventional theory of superconductivity has mos
dealt with three-dimensional~3D! isotropic systems, al-
though some papers have also described the impact o
Fermi-surface anisotropy on the superconducting state~see,
e.g., Ref. 3!. In this theory the Coulomb repulsion is de
scribed by a static pseudopotentialm* and its value is re-
duced because of the well-known logarithmic factor ln(E/V),
where E is an electronic energy andV is a characteristic
bosonic~e.g., phonon! energy. Such a static approach is ju
tified by the large value of the plasmon frequencyVpl(q
50)5min$V(q)%[Vpl in usual metals, whereVpl ranges
between 5 eV and 30 eV. Such high energies imply a p
0163-1829/2003/68~14!/144519~12!/$20.00 68 1445
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fect, instantaneous screening of the Coulomb interaction
Layered conductors have a structure of the plasmon s

trum that differs fundamentally from 3D metals. In additio
to the high-energy ‘‘optical’’ collective mode mentione
above, the spectrum contains also an important lo
frequency part~see below!. The screening of the Coulom
interaction is incomplete and thedynamicnature of the in-
teraction becomes important. As a result, the interplay
tween the attractive interaction and the Coulomb term
more subtle than introduced in the conventional theory
superconductivity. It is on this screened Coulomb term a
its interplay with the electron-phonon mechanism that
focus in the present paper.

Our goal is to evaluate the additional impact of dynam
screening on pairing in layered superconductors. The p
plasmon mechanism~that is, in absence of any other attra
tive interaction! has been discussed previously for 3D a
2D systems~see, e.g., Refs. 4–7! The acoustic plasmons fo
spatially separated layers in metal-oxide semiconduc
structures were introduced and analyzed by Takada in Re
The author indicated the possibility of acoustic-plasmon m
diated superconductivity. In the present paper we focus
layered conductors. More importantly, we consider pla
mons’ contributionin conjunctionwith the phonon mecha
nism. It is assumed that the phonons themselves provide
pairing so that atT50 K the compound is in the supercon
ducting state. In other words, the presence of phonon
sufficient to overcome the static Coulomb repulsive inter
tion. Within this scenario the dynamic screening acts as
additional factor. Therefore, in the absence of the plasm
term we obtain the conventional Eliashberg equations;
electron-phonon coupling constant and the Coulomb pseu
©2003 The American Physical Society19-1
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potential are thus considered as parameters to be determ
from experimental data~see, e.g., Ref. 9!. Note that the con-
tribution of phonons and plasmons to the superconduc
state has also been considered in Ref. 10 for fullerides.
also point out that we consider the electron-phonon inte
tion ~phonon-plasmon mechanism! for concreteness. How
ever, since our attention is set on the Coulomb contribut
to the total pairing, our approach is valid for other mech
nisms as well. The advantage of the present approach is
we are not restricted to answer the question whether or
plasmons themselves can provide superconductivity, bu
lows to answer the question whether low-energy plasm
can sustain or enhance the pairing induced by other me
nisms.

We discussed briefly our approach in Refs. 11–14. T
present paper contains a detailed analysis of the diele
function, the plasmon spectrum, and its impact on superc
ductivity in layered superconductors. Furthermore, we ap
the theory to characteristic examples of three classes of
terials: metal-intercalated halide nitrides, organic and hi
temperature superconductors.

The structure of the paper is as follows. In Sec. II w
present the main equations describing layered supercond
ors and discuss the electron-phonon and Coulomb contr
tions to the pairing-interaction kernel. In Sec. III we discu
the dynamic screening of the Coulomb interaction in laye
conductors. The dielectric function and the resulting el
tronic collective excitations~layer plasmons! will be de-
scribed. It is essential that the dielectric function is evalua
and analyzed in the thermodynamic Green’s function form
ism; this allows us to calculateTc . In the following section,
Sec. IV, we consider three classes of layered supercond
ors: metal-intercalated halide nitrides, organic and highTc
superconductors. The conclusions are presented in Sec.

II. MAIN EQUATIONS

We consider a layered system consisting of a stack
conducting sheets along thez axis separated by dielectri
spacers~see Fig. 1!. Because of the conductivity’s high an
isotropy, it is a good approximation to neglect transport
tween the layers~see Sec. IV!. On the other hand, the Cou
lomb interaction between charge carriers is effective b
within and betweenthe sheets. To ensure charge neutra

FIG. 1. The layered electron gas~LEG! model. The conducting
sheets~dark! are stacked alongc and separated by spacers~light!
with dielectric constanteM . The model considers an infinite stac
ing of layers. The electrons are moving within the conduct
sheets. The Coulomb interaction is effective within, but also
tween, the sheets~see text!. L is the interlayer distance.
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we further introduce positive counter charges spread out
mogeneously over the sheets.

In order to calculate the critical temperatureTc for the
superconducting transition we start with the equation for
superconducting order parameterD(k,vn) and the renormal-
ization functionZ(k,vn):

D~k,vn!Z~k,vn!5T (
m52`

` E d3k8

~2p!3

3G~k,k8;vn2vm!F†~k8,vm!, ~1a!

Z~k,vn!215
T

vn
(

m52`

` E d3k8

~2p!3

3G~k,k8;vn2vm!G~k8,vm!, ~1b!

where F†5^ck,↑
† c2k,↓

† & is the Gor’kov pairing function,G
5^ck,s

† ck,s& is the usual Green’s function, andG is the total
interaction kernel.

These equations can be rewritten in the following form~at
T5Tc):

fn~k!5T (
m52`

` E d3k8

~2p!3
G~k,k8;vn2vm!

fm~k8!

vm
2 ~k8!1j k8

2 U
Tc

,

~2a!

vn~k!2vn5T (
m52`

` E d3k8

~2p!3

3G~k,k8;vn2vm!
vm~k8!

vm
2 ~k8!1jk8

2 U
Tc

. ~2b!

In these equations and in the rest of the paper we use
following notations:k5(ki ,kz), where thez-axis is chosen
to be perpendicular to the layers. We use the thermodyna
Green’s function formalism~see, e.g., Ref. 15! with vn
5(2n11)pT. Because of the relationvn2vm52pT(n
2m) we often use the shorthand (n2m) to denote the fre-
quency dependence@e.g., (n1m11) stands for vn
2v2(m11)]. Finally, we define fn(k)[Dn(k)Zn(k),
vn(k)[vnZn(k), Dn[D(vn), andZn[Z(vn).

For concreteness, we focus on the case where the inte
tion kernel is a sum of electron-phonon and Coulomb int
actions. Then, the total kernelG[G(q,vn2vm), with q
5k2k8, is written in the form

G5Gph1Gc , ~3!

with

Gph~q;un2mu!5ugn~q!u2D~q,un2mu!

5ugn~q!u2
Vn

2~q!

~vn2vm!21Vn
2~q!

, ~4!

-

9-2



o
rm
re

c-
.
ra
e
no

u
r-

f

s

al

te

u-
th

c

ere

is

ion

s a
a-

e of

as
nd
gas
he

er-
on

e
1
-

-

n

ic

ELECTRONIC COLLECTIVE MODES AND . . . PHYSICAL REVIEW B68, 144519 ~2003!
Gc~q;un2mu!5
Vc~q!

e~q,un2mu!
. ~5!

D(q,n2m) is the phonon Green’s function, andVn
2(q) the

phonon dispersion relation; summation over phon
branchesn is assumed. The second important Coulomb te
Gc is written in its most general form as the ratio of the ba
Coulomb interactionVc(q) and the dielectric function
e(q,vn2vm). Both the Coulomb interaction and the diele
tric function have to be calculated for a layered structure
should be noted that the relation between these two inte
tions @Gph andGc , Eq. ~3!# is more subtle. For example, th
Coulomb screening affects the value of the electron-pho
matrix elements~see, e.g., Ref. 16!. Here, however, we do
not calculate the electron-phonon coupling constantl @see
Eq. ~19a!# and, similar to the treatment of conventional s
perconductors~see, e.g., Ref. 9!, we use the values dete
mined from experimental data. For example, in the case
halide nitrides considered in Sec. IV B,l was determined
from heat capacity measurements.18

The Coulomb potentialVc(q) is the Fourier transform o
the 3D Coulomb interactionVc(r )5e2/eMur u, whereeM is
the dielectric constant of the spacers, and takes the form~see
Appendix A!

Vc~q!5
2pe2

eMqi
R~qi ,qz!, ~6!

whereR(qi ,qz) is defined in Eq.~8! below. Introducing di-
mensionless quantitiesq̃5qi/2kF , kF52kFL (L is the inter-
layer distance, andkF the in-plane Fermi wave vector!, as
well asN(0)5mb/2p\2, the 2D electronic density of state
(mb is the band mass!, we can write

Vc~q!5
lc

N~0!

R~ q̃;qz!

q̃
, ~7!

with

R~ q̃,qz!5
sinh~kFq̃!

cosh~kFq̃!2cos~qzL !
~12dq,0!. ~8!

Equation ~6! contains the product of the two-dimension
Coulomb potential and the functionR(qi ,qz) which reflects
the layered nature of the studied system. As expec
lim

L→`
R(q)51, whereasR(q)52qi /uqu2L for L!1. Fur-

thermore,Vc diverges as 1/uqu2 for uqu→0, in agreement
with the 3D character of this limit. Note thatR(q̃;qz) con-
tains the factor (12dq,0), reflecting the presence of the ne
tralizing positive ion countercharges; the presence of
term is implicit in the following.

Equation~7! contains the dimensionless Coulomb intera
tion constant defined by

lc5
1

2eM
S e2

\vF
D5

r s

A8
5

a

2

c

vF
. ~9!
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vF is the Fermi velocity,c the vacuum speed of light, anda
is the fine structure constant. Note thatlc;r s , where r s

5A2/kFr B (r B5\2eM /me2 is the Bohr radius! is the well-
known dimensionless electron-density radius defined h
for a layered electron gas.

The electronic screening of the Coulomb interaction
described by the dielectric functione(q,vn) written in its
most general form as

e~q,vn2vm!512Vc~q!P~q,vn2vm!. ~10!

In the following we use the random-phase-approximat
~RPA! method. As is known~see, e.g., Ref. 17! for real 3D
metals the RPA provides a qualitative description, wherea
quantitative analysis requires to go beyond this approxim
tion. For the systems of interest, RPA is favorable becaus
the inequalitylc,1 ~see below!. Note that the contribution
of the background dielectric function and the inequalityeM
.1 could be essential~cf., e.g., Ref. 19!. It would be inter-
esting to perform more exact calculations using methods
those of Ref. 20 and, in addition, take into account the ba
structure of real materials instead of the layered electron
~LEG! model. We think that the approximation based on t
inequalitylc,1 provides the adequate physical picture.

III. LAYERED CONDUCTORS: ELECTRONIC
COLLECTIVE MODES

A. Plasmon bands

The spectrum of collective electronic excitations is det
mined by the poles of the two-particle Green’s functi
which coincide with the poles of the vertexGc(q,v). The
latter is the analytic continuation~see, e.g., Ref. 15! of the
function Gc(q,vn), Eq. ~5!. These poles correspond to th
zeros of the real-frequency dielectric function
2Vc(q)P(q,v)50. At T50 the real part of the polarizabil
ity of a single layer takes the form12,13 (v.\qivF)

Re$P~q,v!%52N~0!F v

Av22~\qivF!2
21G . ~11!

For v@\qivF this expression reduces to Re$P%
.N(0)\2qi

2vF
2/v2, as obtained in Ref. 13.

From Eqs.~7!, ~8!, and~11! we derive the general expres
sion for the plasmon dispersion relation:

v5\qivFA11
@N~0!Vc#

2

1
4 1N~0!Vc

, ~12!

whereVc[Vc(q̃,qz) is the Coulomb interaction defined i
Eq. ~7!. If N(0)Vc@1 we obtain the optical plasmonv
5\qivFA11N(0)Vc ~this corresponds to the hydrodynam
approximation for smallqi, see Ref. 21!. The plasmon band
v5v(qi ,qz) is confined between the upper branch withqz
50 ~in-phase motion of the charge carriers! and the lower
branch atqz5p/L ~out-of-phase motion of carriers!. Indeed,
for v@\qivF Eq. ~12! reduces to the expressionv
.\qivFAN(0)Vc which at qz50 leads to the usual ‘‘opti-
cal’’ plasmon with Vpl

2 [v2(qi50,qz50)54e2«F /eML.
9-3
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For qz5p/L, on the other hand, we obtain the dispersi
law for the ‘‘acoustic’’ plasmon~linear in qi) of the form of
Eq. ~12! with

N~0!VcS q̃,qz5
p

L D5
lc

q̃

sinh~kFq̃!

cosh~kFq̃!11
→

qi→0

lckFL. ~13!

For qz5p/L andqiL!1, we obtainv'(VplL/2)qi .
Thus, the plasmon spectrum of a layered conductor,

~12!, has a rather complicated structure as shown in Fig.
The dispersion can be viewed as a continuous se

acoustic branches parametrized byqzP@0,p/L# ~the slope of
the acoustic plasmon atqi→0 is smallest forqz5p/L and
increases asqz→0). Only the upper branch forqz50 rep-
resents an optical branch and, as expected for the long w
length limit, corresponds to the usual 3D plasmon. Cruc
for the phenomenon of dynamic screening and its impac
the pairing is the presence of the low-energy collective ex
tations, which can play a role similar to phonons~they can be
labeled ‘‘electronic’’ sound!.

Note that the low-energy plasmon branches, so-ca
‘‘demons,’’ also appear in the presence of different overla
ping bands~e.g., ‘‘light’’ and ‘‘heavy’’ carriers; see Refs. 4
and 6!. We emphasize that the case considered in the pre
paper is entirely different. Indeed, the appearance of acou
branches is caused by the presence of spatially sepa
conducting layers and the out-of-phase motion of the carr
in neighboring planes.

The partial density of states can be determined for e
plasmon band~corresponding to eachqz) from the dispersion
relation, Eq.~12!. As first pointed out by two of the authors
Bozovic and co-workers in Ref. 13, the density of sta
considered as a function of energy is peaked at the bou
aries, that is, forqz50 andqz5p/L. A good approximation
is thus to model the plasmon spectrum of a layered cond

FIG. 2. Electronic excitation spectrum for the LEG~see also
Ref. 13!. The solid, dotted, and dash-dotted lines in region Iv
.\qivF) are plasmon dispersion relations corresponding to theqz

indicated in the figure. The area delimited by theqz50 ~solid! and
qz5p/L ~dash-dotted! bands contains the dispersion relations
all qz . The branchqz5p/5L ~dotted! is shown as an example. Th
hashed area denotes the electron-hole excitation continuum
which plasmon~Landau! damping occurs. The long-dashed lin
separates region I (v.\qivF) from region II (v,\qivF).
14451
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tor as consisting of two branches: the upper optical bra
(qz50) and the lower acoustic branch (qz5p/L). We have
shown earlier14 that the optical branch gives an essentia
repulsive contribution to the pairing interaction. We therefo
include this latter part in the effective repulsivem* of region
II ~Fig. 2!. In the following we consider only the contributio
of the dominant acoustic branch atqz5p/L. The contribu-
tion of all other branches only enhances the effect of theqz
5p/L branch, as we discuss below. It is worth emphasiz
that the existence of the latter branches is specific to laye
materials.

We end this section by noting that the inclusion of a
sidual interlayer hopping would imply the appearance o
small gap for the acoustic plasmons. The size of this ga
determined by the interplane hopping parametertz . The
more isotropic the system becomes, the larger is the gap
the isotropic limit the one degenerate optical plasmon bra
observed in 3D metals is recovered. As mentioned in
Introduction, however, the materials of interest for t
present paper~Sec. IV! have a ratiotz /t i&1023, so that
discarding interlayer transport is a good approximation. F
ther support for this approximation is found in Refs. 22 a
23 ~and references therein! from dielectric properties and lat
tice dynamics studies of high-temperature superconducto

B. Screening of the Coulomb interaction: The dielectric
function at finite temperature

To study the impact of dynamic screening on the sup
conducting state we need to calculate the dielectric funct
Eq. ~10!, which contains the polarizabilityP(q,vn). In par-
ticular, to obtainTc , we have to determine these functions
finite temperatures. In RPA the polarizability takes the we
known form

P~qi ,ivn!52E d2ki

f ki
2 f ki1qi

ivn1jki
2jki1qi

, ~14!

where f k[ f (jki
) is the Fermi distribution and all wave vec

tors lie in the plane of the layered structure. To the bes
our knowledge, all previous works concerned with layer
structures were done either using the calculated polarizab
at T50 ~see, e.g., Ref. 24! or taking the static limit for
nonzero temperatures~as done, e.g., in Refs. 4 and 5!. Here
we calculate the polarizability both at finite temperatures~us-
ing the temperature Green’s function formalism! and all val-
ues of (q,vn). As the calculations of the following section
will show, the temperature dependence of the polarizabi
can be neglected in some cases~e.g., for halide nitrides, Sec
IV B ! but should be taken into account for the cupra
where the rationTc /«F is not negligibly small~see Sec.
IV D !. In general, the proper account of dynamic screen
requires to consider all three parameters. Note that to ren
the numerical problem tractable when solving Eq.~17! be-
low, we reduce the number of integrals to be performed
merically by writing Eq.~14! in polar coordinates and inte
grating analytically over the angles~cf. Appendix B!. The
remainingk integration is then done numerically.

in
9-4
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ELECTRONIC COLLECTIVE MODES AND . . . PHYSICAL REVIEW B68, 144519 ~2003!
Figure 3 displays the polarizability, Eq.~14!, of the elec-
tron gas of a layer, as a function of wave vectorq̃5qi/2kF
for different values of the frequencyvn and a typical tem-
peratureT/«F50.03 which applies to high-Tc superconduct-
ors ~see Sec. IV D!. We first point out that theq̃ dependence
of this function is essentially restricted to the interv
@0,4kF#.

Let us now consider the temperature dependence of
polarizability. First, we discuss the caseT50. For the real-
frequency polarizability the analytical continuation gives t
result derived by Stern in Ref. 24. On the other hand, in
Matsubara temperature Green’s function formalism the
larizability does not depend on frequency forv,qivF @cf.
Ref. 15~a!, Sec. 20.2#: P(q,vn)522N(0)52mb /p\2

~bottom dotted line of Fig. 3!. For T.0 the polarizability
vanishes at high frequencies as shown in Fig. 3. The hig
the temperature, the smaller is the frequency range o
which the polarizability remains finite. Note that the shape
P(q̃,vn2vm50) ~lower solid line on the figure! is almost
unaltered until very high temperatures. This can also be
rectly seen from the analytical expression@see Appendix B,
Eq. ~B8!#.

Using the above results for the polarizability we calcula
the dynamic dielectric function, Eq.~10!, or rather its inverse
e21(q,vn2vm) since it is this quantity that enters the vert
Gc , Eq.~5!. The result is shown in Fig. 4 for the same valu
of parameters as in Fig. 3. We point out a few importa
properties of the inverse dielectric function. This function
bounded for allq andvn2vm . For high frequencies and/o
large wave vectors,e21(q,vn2vm)→1, meaning that the
Coulomb interaction is unscreened in these cases. In fa
can be shown that for\qvF!vn2vm the dielectric function
takes the form17

e~\qvF!vn2vm!.eD~n2m!, ~15!

where

FIG. 3. Electronic polarizability in RPA as a function ofq̃
5qi/2kF for various values ofvn2vm52(n2m)pT ~from top to
bottom! and a typical temperatureT/«F50.03. The lowest, dash
dotted curve is obtained forT50 K and remains the same forall
frequencies@i.e., atT50, P(q,2kF ,vn2vm)522N(0)].
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eD~n2m![11
Vpl

2

~vn2vm!2
. ~16!

Equation~15! describes the dielectric function in the Drud
limit. Note that the latter expression is exact in the limitq
50 andv.0.17

The result of Fig. 4 shows that forany finite frequency,
the long-wavelength limit takes the forme(uqu→0,vn2vm
.0)→eD(vn2vm). Thus, it is only in the static casevn
2vm50 that the Coulomb interaction is ‘‘perfectly’
screened~exponential screening in real space!: e(q→0,vn

2vm50)'@11kTF
2 /uqu2#21. The latter limit is the so-

called Thomas-Fermi screening of the Coulomb potent
For the LEG the screening length is given bykTF

2

5pN(0)Vpl
2 . In all other cases the limit of long wave

lengths is given by the Drude limit.
The dielectric function describing the screening in layer

conductors will be used in the following section to calcula
the effect of the dynamically screened Coulomb interact
on Tc in several classes of layered superconductors.
thereby use the full wave vector, frequency, and tempera
dependence ofe(q,vn2vm) calculated in this section.

IV. APPLICATION TO VARIOUS LAYERED SYSTEMS

In this section we consider the phonon-plasmon mec
nism and in particular the impact of the dynamic screen
of the Coulomb interaction on the superconducting state
several layered systems. We discuss specific examples
longing to three classes of materials: metallochloronitrid
organics, and high-Tc superconductors. To this aim, we fir
rewrite Eqs.~2a! and ~2b! in a form adequate for layere
conductors and convenient for calculations. We then evalu
the critical temperatureTc of the various compounds.

FIG. 4. Inverse dielectric function of the LEG. The soli
dashed, and dotted lines correspond toqzL50,p/2,p, respectively.
The three bottom curves are obtained forvn2vm50, the three
middle curves are forn2m510, and the three uppermost curve
are forn2m540. The other parameters were given in the previo
figure. Note thate21(q→0,vn2vm) is zero ~perfect screening!
only in the static limit.
9-5
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A. Numerical analysis

We assume isotropy within the layers. The order para
eter and the renormalization function can therefore be wri
asDn(k).Dn(ki5kF ,kz)[Dn(kz) andZn(k)[Zn(kz) ~see
Appendix C!. This approximation is valid since the Coop
instability ~see, e.g., Ref. 15! and, correspondingly, the pair
ing, occurs on the Fermi surface. As for the integrands
Eqs.~1!–~5!, they depend mainly on the momentum trans
qi . Thus, in the layered electron gas the order param
depends on the frequency and the wave vector perpendic
to the layers.

To perform numerical calculations with Eqs.~2a! and
~2b!, we follow the standard procedure adapted to the cas
layered materials. We first express the integral overki in
terms of an integral over energy and in-plane wave-vec
amplitude and carry out the former analytically~see Appen-
dix C!. We thereby reduce the equations to a form contain
one-dimensionalk-space integrals. Note, however, that t
dielectric function also contains an integral to be perform
at each iteration of the calculation@Eqs.~10! and ~14!#. The
resulting equations take the form~Appendix C!

fn~kz!5pT (
m52`

`
1

Nz
(

kz852p

p

Ḡ~qz ,n2m!
fm~kz8!

uvm~kz8!u
,

~17a!

vn~kz!2vn5pT (
m52`

`
1

Nz
(

kz852p

p

Ḡ~qz ,n2m!
vm

uvmu
,

~17b!

whereNz are the number ofkz points taken in the first Bril-
louin zone and the kernel is given by

Ḡ~qz ,n2m!5lD~n2m!1lcGc~qz ,n2m!, ~18!

with

l[
N~0!

p
E

0

1 dq̃

A12q̃2
ugn~ q̃!u2, ~19a!

Gc~qz ,n2m![
1

p
E

0

1 dq̃

A12q̃2

R~ q̃,qz!/q̃

e~ q̃,qz ,n2m!
. ~19b!

All other quantities were defined in Sec. II. Two simplific
tions are made in the following calculations that allow
single out the effect of low-energy electronic collecti
modes on superconductivity. The first is to replace the p
non contribution to the pairing to one@or two, see below Sec
IV C# characteristic phonon modes. The second is that
can setkz5p/L, based on the analysis made in Sec. III
which shows that this wave vector gives the largest con
bution to the pairing. Consequently, the order parameter
the renormalization function taken at the zone bound
alongkz are a function of frequencyvn only. We emphasize
however, that these two simplifications are not affecting
main results presented below. Rather, they would lead
smaller coupling constants necessary to reach a specific
cal temperatureTc . For example, we expect that taking in
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account all plasmon acoustic plasmon branches would
to higher critical temperatures~or correspondingly to smalle
Coulomb coupling constants for a givenTc) since they con-
tribute to the attractive pairing interaction, though with less
weight.13,14

As discussed in Sec. III A the excitation spectrum of
layered electron gas~see Fig. 2! allows us to divide the
(qi ,v) space into two main regions. The first~region I! con-
tains the additional collective excitations discussed here
this region should be considered exactly in the equati
above. On the other hand, region II contains no such a
tional plasmon features and the equations have a form an
gous to the 3D case in this area. Therefore, we take a fur
step by dividing the Coulomb part, Eq.~19b!, into two parts
corresponding to the two regions of Fig. 2:

Gc~qz ,n2m!5Gc
I ~qz ,n2m!1Gc

II~qz ,n2m!

5
1

p H E
0

q̃c
1E

q̃c

1 J dq̃

A12q̃2

R~ q̃,qz!/q̃

e~ q̃,qz ,n2m!
,

~20!

whereqc5min$2kF ,uvn2vmu/\vF% andq̃c[qc/2kF . The part
Gc

I will be considered exactly, in particular, with respect
the frequency dependence that has the distinctive feature
layered conductors. The partGc

II , on the other hand, is re
duced to an effective constant Coulomb pseudopoten
m* u(vn2Vc) with a standard cutoff given byVc.103V
(V is the characteristic phonon energy!. This treatment of
region II calls for a comment. As was mentioned earlier,
consider usual phonon-mediated superconductivity~Eliash-
berg equations! as a starting point of our analysis. Accord
ingly, the electron-phonon coupling constant and the st
termm* are treated in the conventional way as parameter
be determined from experimental data. Thus, the static t
m* is here a phenomenological parameter. We focus on
term describing the contribution of the dynamic screeni
This part~present in region I! will be evaluated explicitly for
different systems with the use of normal-state parameters~as,
e.g.,vF or eM ; see below!. Note that for the pure plasmo
mechanism both static and dynamic terms were calculate
Ref. 7 ~in 3D!. This step was crucial since its value wa
directly related to the criterion for the appearence of sup
conductivity. For the phonon-plasmon mechanism, on
other hand, we assume that the phonons are sufficient fo
occurrence of the superconducting state, which allows to
the conventional approach for the static term. Naturally
would be of great interest to calculate the static term. Suc
full self-consistent calculation including also real band stru
tures will be carried out elsewhere.

As shown in Appendix C~see also Ref. 25!, the above
equations can be mapped onto an eigenvalue problem wr
in tensorial form,

K F5hF, ~21!

where (F)n,nz
5Fn(nz)[Dn(nz)/A2n11 andK is given by

Eq. ~C3! in Appendix C. Equation~21! is written explicitly
in Eq. ~C4!. Note that an artificial eigenvalueh has been
9-6
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ELECTRONIC COLLECTIVE MODES AND . . . PHYSICAL REVIEW B68, 144519 ~2003!
introduced in Eq.~21!. Tc is reached whenh is one. Since all
eigenvalues satisfy the inequalityh<1, we only need study-
ing the highest of them. Furthermore, the solution of th
equations also gives the renormalized order parameterFn
nearTc . We can thus analyze how this function is affect
by the contribution of low-energy plasmons to the pairi
interaction. A typical functionFn is shown in Fig. 5 and will
be discussed in the following section. Using the eigenva
equation~21! @or Eq. ~C4! in Appendix C# we apply the
theory to various layered superconductors and calcu
their Tc .

B. Intercalated metal halide nitrides

The first class of materials we consider is the family
layered metal-intercalated halide nitrides. We give spe
attention to this family because low-energy plasmons
only contribute to the pairing but, in fact, play the key ro
for the superconducting state, as we show below. We bel
that this is the first observed system where the supercond
ing state of the electrons is essentially self-supported, tha
where the pairing is provided by collective excitations of t
same carriers as those forming pairs.

This family of novel superconductors has been discove
recently and studied in detail in Refs. 18 and 26–36. As
known ~see, e.g., Ref. 26!, the intercalation of alkali atoms
and organic molecules into the parent compound~Zr,Hf!NCl
leads to a superconductor with rather high critical tempe
ture (Tc;25 K). Based on experimental18,26–33studies and
band-structure calculations35 it was concluded that electron
phonon mediated pairing is insufficient to explain the o
servedTc , since the electron-phonon coupling constant
pears to be too small. Note also that a small nitrogen isot
effect ofTc has been observed.32 In addition, the compounds
do not contain any magnetic ions and no sign of magnet
has been found in band-structure calculations. This exclu
a magnetic pairing mechanism. Finally, normal-state prop

FIG. 5. Normalized order parameterFn5Dn /A2n11 as a
function of Matsubara frequencyvn5(2n11)pT. The solid and
dashed lines obtained forl51 and 1.5, respectively, represent th
order parameter in the presence of the plasmon contribution.
dotted line was obtained in the absence of the plasmon contribu
(lc50, l51). Note the presence of an additional structure~step!
when including the pairing due to low-energy plasmons~solid and
dashed lines!; m* 50.1.
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ties of the materials studied intensively in Refs. 18, 35, a
36 can be described by Fermi-liquid theory, so that there
no evidence for the presence of strong correlations.

We apply our approach to this novel layered system.
note from Eqs.~9! and~17–20! that the evaluation ofTc for
a specific compound needs the knowledge of following
rameters: the interlayer distanceL, the band massmb , Fermi
velocity vF , and the dielectric constant of the spacerseM. In
addition, the evaluation of the phonon contribution to t
pairing requires the knowledge of the characteristic phon
frequencyV, the electron-phonon coupling constantl, and
the Coulomb pseudopotentialm* .

Specifically, we consider Li0.48(THF)yHfNCl (THF
5tetrahydrofurane) as an example, since the largest am
of information necessary for the determination ofTc is avail-
able for this material, both from experiment and ban
structure calculations. According to Refs. 18, 30, and 34
interlayer distanceL and the characteristic phonon frequen
V are equal toL518.72 Å andV560 meV. The values of
the band mass and Fermi energy have been evaluated
band-structure calculations, Ref. 35. Accordingly,mb
50.6me , where me is the free-electron mass and«F
.1 eV. For eM we have chosen the reasonable valueeM
51.75. It follows thatlc.0.8 and, correspondingly, usin
Eq. ~9!, r s.2 ~i.e., close to the high-density limit!. The value
of the electron-phonon coupling constant can be estima
from the knowledge of the electron specific heat constang
and the band density of states,N(0). Indeed, the electron-
phonon interaction renormalizesg as g5gb(11l), where
gb52p2N(0)/3 is the free-electron Sommerfeld constan
The value of g was estimated in Ref. 18 to beg
.1.1 mJ/molK2, whereas band-structure calculations35 give
N(0).0.74 eV21. Thus,l.0.25. Settingm* 50.1 and us-
ing Eqs.~17!–~20!, we obtainTc.24.5 K. The calculatedTc

is very close to the observed valueTc
exp525.5 K. The essen-

tial point to note is that in absence of the plasmon contri
tion we obtainTc

phonon!1 K(!). This demonstrates that, in
deed, the low-energy plasmon contribution plays a key r
for superconductivity in metallochloronitrides.

It would be of great interest to carry out specific tunneli
~cf. Ref. 9! and optical measurements on this material. W
expect that tunneling experiments, similar to heat-capa
data~see above!, will provide the valuel.0.25, and optical
measurements will lead toeM.1.75.

As mentioned earlier, by solving Eq.~17! we not only
obtainTc , but we also get the superconducting order para
eter Fn5Dn /A2n11. It is interesting to see howFn is
affected by the additional pairing arising from the presen
of acoustic plasmons~Fig. 5!. Note that the qualitative form
of the order parameter is the same for all classes of mate
discussed in the present paper. In the absence of the plas
contribution, the order parameter is a rapidly decreas
monotonic function of the Matsubara frequency~dotted line
of Fig. 5!. The effect of plasmons reveals itself as an ad
tional ‘‘step’’ in Fn at intermediate frequencies, as exemp
fied by the solid and dashed lines in Fig. 5. It is this posit
part of the order parameter due to the pairing induced by
low-energy collective modes that is responsible for the

he
on
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hancement of the value ofTc . We observe that the orde
parameter remains positive over a frequency range also
termined by the value ofl andm* . Whereas the frequenc
range over whichFn remains positive shrinks with increas
ing l ~compare solid and dashed lines in Fig. 5! it increases
with increasingm* ~not shown in the figure!. This apparently
counterintuitive behavior is easily understood by the fact t
an order parameter extending to higher frequencies will p
up more and more repulsive components of the pairing in
action. The ‘‘shorter’’ the step in frequency of the plasmo
induced structure, the smaller is the repulsive contribution
the effective interaction kernel and, consequently, the hig
the Tc .

Concluding this section, we emphasize that the dyna
screening of the Coulomb interaction~the contribution from
low-energy electronic collective modes! is essential for the
understanding of the superconducting state in intercala
layered metal halide nitrides.

C. Layered organic superconductors

Organic superconductors were predicted in Ref. 37
discovered in Ref. 38. In this section we apply the theory
the class of layered organic superconductors~see, e.g., Refs
39–43 and references therein!. As an example, we focus o
k-(ET)2Cu(NCS)2 (ET5BEDT-TTF is a short notation for
bisethylenedithiotetrathiofulvalene!. The basic structura
building blocks of these materials are large, elongated
planar molecules stretching along thec axis forming the con-
ducting layer.44 These thick conducting layers are separa
by thin insulating spacers of planar NCS molecules exte
ing in the ab plane. The NCS counterions take one cha
per two ET molecules leaving the ET highest occupied m
lecular orbital~HOMO! partially unfilled. The HOMO arep
holes delocalized over the large organic molecule and fo
the hole conduction bands.

Layered organic conductors have highly anisotropic tra
port properties. Typically, the ratio of in-plane to out-o
plane conductivity is at least of the orders i /s';104.42,45

Band-structure calculations46 confirm the presence of quas
two-dimensional bands. We emphasize once more, howe
that only electronic-transport properties are quasi-2D. As
cussed in the previous sections, the Coulomb interactio
important in all three dimensions. In particular, incomple
screening between layers implies that carriers from differ
layers interact with each other, leading to the low-ene
electronic collective modes discussed here. As we show
the following, this aspect is important for understanding
relatively high value of the critical temperatures observed
these materials.

Superconductivity has been observed for temperatureT
,Tc.10.4 K. Recent studies have shown the importance
electron-phonon interaction for the pairing mechanism.48–53

For example, isotope effect studies of the superconduc
Tc by isotope substitution of C and S atoms on the ET m
ecules have singled out the effect ofintramolecularvibra-
tions for the superconducting pairing48,49 A shift of phonon
frequency caused by the superconducting transition has
been observed with inelastic neutron scattering.50 This shift
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indicates that the coupling tointermolecular acoustic
phonons contributes to superconductivity. Further work s
porting the importance of electron-phonon interaction for
perconductivity is given in Refs. 51–53. Therefore, it is i
teresting to apply our phonon-plasmon model to this clas
materials and study the effect of acoustic plasmons on
superconductingTc .

As it appears that both intermolecular and intramolecu
vibrational modes are of importance to superconductivity,
modelize the phonon kernel in Eq.~3! by a two-peak func-
tion

Gph~vn2vm!5lFw1

V1
2

~vn2vm!21V1
2

1w2

V2
2

~vn2vm!21V2
2G .

~22!

The lower-frequency modeV155 meV corresponds to li-
bration and intermolecular modes.42,50 The higher-frequency
peak is located at the frequencyV2, and was calculated fo
the ET-intramolecular vibrations:V2510 meV.52,54 Given
the number of modes present near each peak and their
sible coupling to the electrons, we setw150.75 andw2
50.25. The coupling constants to each set of modes is t
defined asl j5lwj ( j 51,2).

To calculate the value ofTc , we need to know the value
of the band massmb , the interlayer distanceL, the Fermi
energy «F , and the dielectric constant of the spacerseM
~normal state parameters!, as well as the value of the
electron-phonon coupling constantl and the Coulomb
pseudopotentialm* . From band-structure calculations w
have mb51.72me .46 The structure determination givesL
516.2 Å.44 The average value of the Fermi wave vect
obtained from Shubnikov–de Haas measurements iskF
.2.63107 cm21 ~Ref. 45!. Inserting these values in«F

[\2kF
2/2mb we obtain«F.0.17 eV. Note that this is ex

actly the value obtained from band-structure calculation46

Finally, we extract the value ofeM from optical reflectance
measurements.47 Using Eqs.~D1! and ~D2! and the data of
Ugawaet al.47 we obtaineM56.5 ~Appendix D!. Note that
the ionic screening of the Coulomb interaction is more e
cient in organics than in metallochloronitrides~preceding
section!. One reason for this difference is given by the fa
that in organics the thick conducting slabs are made of la
molecules, whereas in the metallochloronitrides conduct
sheets are thin and made of covalently bonded atoms.
polarizability of the molecules implies better ionic screeni
of the Coulomb interaction and, therefore, a larger value
eM . These parameters lead tolc.0.9 and thusr s.2.5.

The exact value of the electron-phonon coupling const
l is unknown at present. Estimates forl range between 0.5
and 1.5.42,52,54Consequently, we present results for this ran
of values in Fig. 6~we have chosenm* 50.1 and the cutoff
at Vc510V250.1 eV). Using these parameters we calcul
Tc from Eqs.~17! and~18! ~see Fig. 6!. The result shows tha
the increase ofTc in the presence of low-energy electron
collective modes is substantial. We can quantify this e
hancement ofTc for the specific example studied, th
9-8
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ELECTRONIC COLLECTIVE MODES AND . . . PHYSICAL REVIEW B68, 144519 ~2003!
k-(ET)2Cu(NCS)2 compound. According to our calculatio
~see Fig. 6! the experimentally observed valueTc510.4 K is
obtained forl.1, implying a coupling to the low- and high
energy phonon modes ofl150.83 andl250.28, respec-
tively. Thus,k-(ET)2Cu(NCS)2 is an intermediate coupling
superconductor. In the absence of acoustic plasmons we
tain Tc

phonon56.3 K for thisl. Thus, in the present case 40
of the value ofTc is due to the pairing of electrons via th
exchange of acoustic plasmons. These calculations lead
conclude that the contribution of low-energy electronic c
lective modes to the pairing is significant in organic sup
conductors~though not dominant as in the case of metal
halidenitrides, Sec. IV B!.

D. High-temperature oxides

In this section we discuss superconductivity in the c
prates within our phonon-plasmon model. We analyze
specific material, La1.85Sr0.15CuO4, for which most param-
eters have been determined. The normal-state paramete
the interlayer distanceL56.5 Å, the Fermi wave vectorkF
53.53107 cm21, the characteristic phonon frequencyV
.15 meV, and the dielectric constanteM.5 –10.23,55

Therefore,lc.1 and r s.2.8. The effective massm* and
electron-phonon coupling constantl were determined by
Wolf and one of the authors from heat capac
measurements.56,57 The obtained values arel52 and m*
'5mb . From the relationm* 5(11l)mb we then obtain
mb.1.7. Finally, the Coulomb pseudopotential is taken to
m* .0.1.

The solution of Eqs.~17a!, ~17b!, and~18! with use of the
aforementioned parameters lead toTc536.5 K, which is
close to the experimental valueTc

exp.38 K. It is essential to
note that in the absence of the screened Coulomb interac
we would obtainTc

ph530 K. Thus, about 20% of the ob
served value ofTc is due to acoustic plasmons. For thin film
the stiffness of the lattice usually increases, leading t
higher value of the characteristic phonon frequencyV. As-
sumingV520 meV, we obtainTc549 K which is close to
the experimental valueTc

exp545 K observed, e.g., in Ref

FIG. 6. Tc(l), wherel is defined in Eq.~22!. Tc is normalized
to the lowest phonon energyV1. The upper~lower! curve is ob-
tained in the presence~absence! of the acoustic plasmon contribu
tion; m* 50.1.
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57. This value is indeed higher than the one of bulk samp
Interestingly, we obtainTc

ph540 K, so that the increase o
Tc induced by acoustic plasmons is again of the order
20%.

Thus, the dynamically screened interlayer Coulomb int
action is important for superconductivity in the cuprate
Note that a proper account of the Coulomb interact
screening is not only of importance for superconductivity
these materials, but also for a proper description of norm
state properties such as lattice dynamics.22,23

V. DISCUSSION AND CONCLUSIONS

The purpose of the present paper was to study the im
of layering on superconductivity. Particular emphasis was
on thedynamically screenedCoulomb interaction. Layered
materials have distinctivelow-energyelectronic collective
excitations that provide exchange bosons for the pairing
tween electrons. We have shown that these acoustic p
mons lead to an enhancement of the superconductingTc . We
have applied the theory to three classes of layered super
ductors: alkali-intercalated halide nitrides, organic and hig
temperature superconductors.

Within our phonon-plasmon model we observe an
creasing influence of the electronic pairing mechanism
the three classes of layered superconductors considere
metal-intercalated halide nitrides the contribution arisi
from low-energy electronic collective modes is domina
These materials are thus unique in the sense that an
tronic pairing mechanism is at the origin of superconduct
ity: the exchange bosons are made of the same particles~the
electrons! than those who bind into pairs belowTc . In the
case of organic layered materials, the electronic a
phononic energies, as well as the structure of the conduc
layers and insulating spacers, lead to a situation where
contribution of phonons and acoustic plasmons is of
same order. Finally, in the case of high-temperature su
conductors, the contribution of low-energy plasmons is s
nificant but not dominant. Within our model the phonon co
tribution is still largest.

There are other classes of layered superconductors
have not been considered in the present paper. Among th
the most prominent is that of dichalcogenides. We belie
that some experimental observations58 are related to the phe
nomenon discussed in this paper. However, we also note
many of the systems belonging to this class of mater
exhibit charge-density wave instabilities. This both obscu
and changes the contribution of acoustic plasmons to su
conductivity and will be discussed elsewhere.

Another interesting system is the CoO2-based layered
compound studied recently in Ref. 1. We point out that
system becomes superconducting only for relatively large
terlayer distance. This is consistent with the present the
and the material deserves further study.

An essential conclusion of the present work is that
physics of layered~super!conductors cannot be reduced
the study of one conducting layer~or the layers belonging to
one unit cell as in some high-temperature superconducto!.
Such simplification relies on the observation of ‘‘quasi-tw
9-9
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A. BILL, H. MORAWITZ, AND V. Z. KRESIN PHYSICAL REVIEW B 68, 144519 ~2003!
dimensional’’ transport. However, it misses to account for
screening properties of the electron-electron Coulomb in
action ~and of the electron-phonon interaction as well; s
Refs. 59 and 22!. As we discussed in the paper, the screen
is very different in layered materials as compared to 2D a
3D isotropic metals. We believe that the particular screen
properties are essential for the behavior of layered~super!
conductors. How large the effect of screened Coulomb in
action is, depends very much on the specific features of
material. For example, the covalency within the conduct
layers, the structure of the spacers, and the presence o
der Waals gaps will determine its contribution both
normal- and superconducting-state properties. Therefore
study of screening properties in layered conductors i
promising direction to better understand the similarities a
differences between different classes of materials and s
as a bridge in the study of properties of 2D and 3D syste
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APPENDIX A: COULOMB POTENTIAL FOR LAYERED
SYSTEMS

Using cylindrical coordinatesr5(r i ,z) ~wherez is per-
pendicular to the layers! the Fourier transform of the 3D
Coulomb potentialVc(r )5e2/eMur u is given in layered
structures by21

Vc~q!5
1

Nz
(

n
e2 iqznLE dr ie

2 iqir i
e2eM

21

r i
21~nL!2

5
1

Nz
(

n
e2 iqznL

2pe2

eMqi
e2qinL, ~A1!

where we have taken into account the fact that the cha
are located in the conducting sheets, and thusz5nL, where
L is the interlayer spacing andn indexes the layers. Note tha
the second line of Eq.~A1! shows how the Coulomb inter
action is exponentially decaying~in real space! along the
direction perpendicular to the layers, the decay being de
mined byqiL. Performing the sum in Eq.~A1! we obtain Eq.
~6!.

Note that the detailed structure of the spacers separa
the conducting sheets is not considered in the present mo
We thus have included the screening resulting from polar
tion effect of the spacers via the dielectric constanteM . The
dielectric function in the denominator of Eq.~5! thus ac-
counts for the screening induced by the charge carriers o
conduction bands only.

APPENDIX B: POLARIZABILITY

The RPA polarizability of a single conducting sheet, E
~14!, is written in polar coordinateski5(k,w),
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P~qi ,ivn!5
2

~2p!2E0

`

dk k fkI w~k,qi ,vn!, ~B1!

I w~k,qi ,ivn!5E
0

2p

dwH 1

ivn1jki
1jki1qi

2
1

ivn1jki
2jki1qi

J . ~B2!

For T50 the integral overki can be calculated analytically
leading to the result first derived in Ref. 24. At finite tem
perature there is no simple analytical form. However, to
duce the amount of numerical work in solving Eqs.~17a! and
~17b! for Tc , we calculate the angle integral analyticall
Using the transformationz5exp(iw) we integrateI w over z
in the complex plane to obtain

I w52
A2p

qi

u1

W
@d~ k̃!1u12u2#, ~B3!

with u65AA6W, W5AA21B2, A54k̃2q̃2(z1
22z2

221),

B54k̃2q̃2z1z2, and

z5z11 i z2[
q̃

2k̃
1 i

ṽn

4k̃q̃
. ~B4!

As in the main text we normalize all wave vectors toX̃
[X/2kF , X5q,k. u j ( j 51,2) are defined in terms of Heav
side functions asu j5u(12uzj u2), zj5xj1 iy j with

x15uu1u2z1 ,y15uu2u2z2 , ~B5!

x252uu1u2z1 ,y252uu2u2z2 , ~B6!

for B>0 whereasy1 andy2 are interchanged forB,0. In-
serting this expression into Eq.~B1! above, we obtain the
following compact form for the polarizability:

P~q̃,vn!52N~0!
A2

q̃2 E0

`

dA fA
]u1

]A
@d~ k̃!1u12u2#. ~B7!

This expression of the polarizability has been used to ca
late the dielectric function that appears in Eqs.~17a! and
~17b! and is depicted in Fig. 3. Note that

lim
q→0

P~q,vn2vm!522N~0! f kF
dvn ,vm

. ~B8!

APPENDIX C: EQUATIONS FOR THE ORDER
PARAMETER AND THE RENORMALIZATION FUNCTION

We start with Eq.~2! and, as mentioned in Sec. IV A
assume isotropy of the bands within the planes. Thus,D and
Z depend only on the norm ofki ~and onkz). In this case, it
is possible to calculate one of the integrals overki8 analyti-
cally. To this aim, we transform the 2D in-plane integrati
in a way analogous to the 3D cases generally stud
namely, introducing polar coordinatesd2k5k8dk8dw.
With k8dk852pN(0) dj and q25uk82ku25k21k82
9-10
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22k8kcos(w) the integral overki is transformed into an in-
tegral over energyj and anglew. Using the fact that the
resulting energy integrand of Eq.~2! is falling off asj22, the
main contribution to this integral will come fromj/«F!1
and we obtain

d2k852pN~0!djdw.4pN~0!dj
dq̃

A12q̃2
, ~C1!

with q̃,1. The energy integral can then easily be perform
Gathering the different terms and assuming that the elect
phonon coupling functiongn(q)5gn(qi), in order to define
l andGc as in Eq.~19!, we obtain Eq.~17!. The latter equa-
tions have been obtained by discretizingkz52p/L
12pnz /NzL with nz51, . . . ,Nz . Note, that the angle inte
gration can in principle be performed exactly, without ne
of the approximation, Eq.~C1!. However, the difference with
the present method is minimal and we use the approxima
above for simplicity.

To perform the numerical calculation we cast Eq.~2! or
Eq. ~17! into a matrix form. We first transform the summ
tion overm5 . . . ,21,0,1, . . . , to a sumover non-negative
m only. Equation~17! then takes the form

Dn~kz!Zn~kz!5pT (
m>0

1

Nz
(

kz852p

p

$Ḡ~qz ,n2m!

1Ḡ~qz ,n1m11!%
Dm~kz8!

uvmu
, ~C2a!

Zn~kz!511p
T

vn
(

m50

2n
1

Nz
(

kz852p

p

Ḡ8~qz ,n2m!. ~C2b!

The second equation has been simplified further, reduc

the sum overm to the range@0,2n#. The kernelḠ8 in Eq.
~C2b! now only contains frequency-dependent terms.
frequency-independent terms vanished in the folding of
summation overm.

Inserting Eq. ~C2b! into ~C2a!, defining Fn(kz)
5Dn(kz)/A2n11, and

Knm~qz5kz82kz!5
1

A~2n11!~2m11!
H Ḡ~qz ,n2m!

1Ḡ~qz ,n1m11!2dn,m(
p50

2n

Ḡ8~qz ,n2p!,J
~C3!
.A

14451
.
n-

d

n

g

l
e

we finally condense Eq.~C2! to the matrix form (qz5kz8
2kz),

(
m>0

1

Nz
(

nz851

Nz

Knm~ unz82nzu!Fm~nz8!5hFn~nz!,

nz51, . . . ,Nz . ~C4!

This is the explicit form of Eq.~21!. Note that the kernel
K nm(qz) depends onn andm separately and not only onn
2m. Furthermore, the kernel is even inqz , Knm(qz)
5Knm(uqzu). We have introduced the artificial eigenvalueh
to map the problem onto an eigenvalue equation.Tc is ob-
tained whenh51.

APPENDIX D: DIELECTRIC CONSTANT OF THE
SPACERSeM

The dielectric constant of the spacers (eM) can be ex-
tracted from infrared or reflectivity data. We parametrize t
dielectric function obtained in these experiments by
Drude-Lorentz model,

e~v!5e`1(
j

Sjv j
2

v j
22v22 ivG j

1e fc , ~D1!

where e fc is the free carrier contribution to the dielectr
constant. The dielectric constant for the spacers is then
fined as

eM5e~v50!2e fc5e`1(
j

Sj . ~D2!

For the determination of the dielectric constant of the
ganic materialk-(ET)2Cu(NCS)2 we use Ugawaet al.’s re-
flectivity measurements.47 Their parametrization givese`

53.2 and

v150.16, v250.28, v350.47 eV,

Vp150.093, Vp250.7, Vp350.44 eV.

With the correspondenceVp j
2 [Sjv j

2 , we haveS1.0.762,
S2.1.581, andS3.0.968. From these data and Eq.~D2!, it
follows that

eM56.5 ~D3!
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