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A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the
conduction electrons. This affects thdgnamicscreening properties of the Coulomb interaction in a layered
material. We study the consequences of the existence of these collective modes for superconductivity. General
equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon
scheme that accounts for the screened Coulomb interaction. Specifically, we calculate the superconducting
critical temperaturd ; taking into account the full temperature, frequency, and wave-vector dependence of the
dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity.
Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides,
layered organic materials, and high-oxides. In particular, we demonstrate that the plasmon contribution
(electronic mechanishis dominant in the first class of layered materials. The theory shows that the description
of so-called “quasi-two-dimensional superconductors” cannot be reduced to a purely two-dimensional model,
as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into
account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.
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[. INTRODUCTION fect, instantaneous screening of the Coulomb interaction.
Layered conductors have a structure of the plasmon spec-
Recent years have witnessed the discovery of many newyum that differs fundamentally from 3D metals. In addition
superconducting materials: high-temperature cuprates, futo the high-energy “optical” collective mode mentioned
lerides, borocarbides, ruthenates, MgBnetal-intercalated above, the spectrum contains also an important low-
halide nitrides, intercalated N@00,,* etc. Systems such as frequency parisee below The screening of the Coulomb
organics, heavy fermions, and nanoparticles have also bedpteraction is incomplete and th#ynamicnature of the in-
intensively studied. Many of these systems belong to thderaction become_s important. As a result, the interplay b_e-
family of layered conductors characterized, e.g., by strong| ween the attractive interaction and the Coulomb term is

. : . . . ore subtle than introduced in the conventional theory of
anisotropic electronic-transport properties. Recently, it Wagynerconductivity. It is on this screened Coulomb term and

reported that even Ba,K,BiO; has a Iayered_StrUCtUF@"-\n its interplay with the electron-phonon mechanism that we
interesting question raised by the observation of supercorcuys in the present paper.
ductivity in all the systems mentioned above is the follow-  Qur goal is to evaluate the additional impact of dynamic
ing: why is layering a favorable factor for superconductivity? screening on pairing in layered superconductors. The pure
The present paper addresses this question. We show that lgglasmon mechanisitthat is, in absence of any other attrac-
ering leads to peculiar dynamic screening of the Coulomtive interaction has been discussed previously for 3D and
interaction and that this is important for the description of2D systemgsee, e.g., Refs. 43The acoustic plasmons for
the superconducting state in layered conductors. spatially separated layers in metal-oxide semiconductor
The conventional theory of superconductivity has most|ystructures were introduced and analyzed by Takada in Ref. 8.

dealt with three-dimensional3D) isotropic systems, al- T_he author |nd|cated_the possibility of acoustic-plasmon me-
diated superconductivity. In the present paper we focus on

g](:rlrjr?irjsj?f;ncee %i?sétsrohavinalti% 23522252 dLth'}[ir:mr:t;;teOf tWgyered conductors. More importantly, we consider plas-
Py P 9 ' mons’ contributionin conjunctionwith the phonon mecha-

e.g., Ref. 3. In this theory the Coulomb repulsion is de- s "t is assumed that the phonons themselves provide the
scribed by a static pseudopotentjaf and its value is re- pairing so that af =0 K the compound is in the supercon-
duced because of the well-known logarithmic factoEl6l),  qycting state. In other words, the presence of phonons is
where E is an electronic energy anfl is a characteristic  gyfficient to overcome the static Coulomb repulsive interac-
bosonic(e.g., phononenergy. Such a static approach is jus-tjon. Within this scenario the dynamic screening acts as an
tified by the large value of the plasmon frequery(q  additional factor. Therefore, in the absence of the plasmon
=0)=min{Q(q)}=Qp in usual metals, wher€ ranges term we obtain the conventional Eliashberg equations; the
between 5 eV and 30 eV. Such high energies imply a perelectron-phonon coupling constant and the Coulomb pseudo-
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we further introduce positive counter charges spread out ho-
conducting layer mogeneously over the sheets.

In order to calculate the critical temperatufe for the
superconducting transition we start with the equation for the
superconducting order parametefk, w,)) and the renormal-
ization functionZ(k, w,):

spacer

- ok’
FIG. 1. The layered electron gélsEG) model. The conducting ~ A(K,wn)Z(K,w,)=T > 3
sheets(dark) are stacked along and separated by spacdiight) m=- (27)

with dielectric constanty, . The model considers an infinite stack- XT (kK wy— VET(K' @) (13
ing of layers. The electrons are moving within the conducting mnTm eme
sheets. The Coulomb interaction is effective within, but also be- "

tween, the sheetsee text L is the interlayer distance. 2K —1 T f d®k’
,(l) —l1l=—
" (2m)°

Wp m=—ow

potential are thus considered as parameters to be determined

from experimental datésee, e.g., Ref.)9Note that the con- XT(KK o= 0nG(K' o), (1b

tribution of phonons and plasmons to the superconducting . - ] o ]

state has also been considered in Ref. 10 for fullerides. w&hereF'=(cy ,c’, ) is the Gor’kov pairing functionG

also point out that we consider the electron-phonon interac=(Ct. ,Ck.,) is the usual Green’s function, aidlis the total

tion (phonon-plasmon mechanigrfor concreteness. How- interaction kernel.

ever, since our attention is set on the Coulomb contribution These equations can be rewritten in the following faah

to the total pairing, our approach is valid for other mecha-T=T):

nisms as well. The advantage of the present approach is that

we are not restricted to answer the question whether or not * d3k’ dm(k")

plasmons themselves can provide superconductivity, but akn(K)=T > ST (KK 0p— 0p)————-

lows to answer the question whether low-energy plasmons m==xJ (2m) om(K)+ &

can sustain or enhance the pairing induced by other mecha-

nisms. (2a)
We discussed briefly our approach in Refs. 11-14. The o d3k’

present paper contains a detailed analysis of the dielectricw, (k) — w,=T E

function, the plasmon spectrum, and its impact on supercon- m=—

ductivity in layered superconductors. Furthermore, we apply )

the theory to characteristic examples of three classes of ma- <T oo om(K")
L ; . . . . (k,k"; 0p— @)

terials: metal-intercalated halide nitrides, organic and high- wé(k/)+§i,

temperature superconductors. Te

The structure of the paper is as follows. In Sec. Il we, these equations and in the rest of the paper we use the
present the main equations describing layered supercondu p thes quat ) Pape
qQIIowmg notations:k= (k| ,k,), where thez-axis is chosen

ors and discuss the electron-phonon and Coulomb contrib b dicular to the | W the th d .
tions to the pairing-interaction kernel. In Sec. Il we discuss. € p’)erpen icufar to the fayers. Ve use the thermodynamic
the dynamic screening of the Coulomb interaction in Iayerea?reens function formalism(see, €.g., Ref. J)S_thh “n
conductors. The dielectric function and the resulting elec—_(2n+1)7TT' Because of the relatiom, — wm=27T(n
tronic collective excitationglayer plasmons will be de- —m) we often use the shorthand  m) to denote the fre-
scribed. It is essential that the dielectric function is evaluateiY€NcY depen_dence[e.g., (n+_m+1) stands for w,

and analyzed in the thermodynamic Green’s function formal-~ @~(m+v]- Finally, - we  define ‘¢, (k)=An(k)Zn(k),

ism; this allows us to calculaf€;. In the following section, wn(K)=wnZy(k), Ap=A(wy), andZ,=Z(w,). .

Sec. IV, we consider three classes of layered superconduct- For conc.reteness, we focus on the case where the ”.“erac'
ors: metal-intercalated halide nitrides, organic and High- tion kernel is a sum of electron-phonon and Coulomb inter-

superconductors. The conclusions are presented in Sec. V.aCt'OnS,' .Then', the. total kemdl=I'(q, o~ wm), with q
=k—k’, is written in the form

1
TC

=J (2m)?

(2b)

II. MAIN EQUATIONS F=Try+I, (3

We consider a layered system consisting of a stack ofiin
conducting sheets along theaxis separated by dielectric
spacergsee Fig. 1 Because of the conductivity’s high an-

Tl — 2 _
isotropy, it is a good approximation to neglect transport be- Tpn(a:|n—=m)=[g,(a)[*D(q,In=m))

tween the layergsee Sec. IY. On the other hand, the Cou- Q%(q)
lomb interaction between charge carriers is effective both =|g,(q)|? ”2 > 4
within and betweenthe sheets. To ensure charge neutrality (wp— o) +Q5(q)
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V.(q) ve is the Fermi velocityc the vacuum speed of light, anrd
I'e(g;n—m))= m (5 is the fine structure constant. Note thei~rg, whererg
=\2/kerg (rg=12%ey/mé is the Bohr radiupsis the well-
D(g,n—m) is the phonon Green’s function, aft?(q) the  known dimensionless electron-density radius defined here
phonon dispersion relation; summation over phonorfor a layered electron gas.
branches is assumed. The second important Coulomb term The electronic screening of the Coulomb interaction is
I is written in its most general form as the ratio of the baredescribed by the dielectric functioe(q,w,) written in its
Coulomb interactionV,(q) and the dielectric function most general form as
€(q,w,— wy). Both the Coulomb interaction and the dielec-
tric function have to be calculated for a layered structure. It €(Q, 0n =~ 0m) = 1= Ve(II(Q, 0n — ). (10
should be noted that the relation between these two interagn the following we use the random-phase-approximation
tions[I'p, andI', Eq.(3)] is more subtle. For example, the (RPA) method. As is knowr(see, e.g., Ref. 27or real 3D
Coulomb screening affects the value of the electron-phonometals the RPA provides a qualitative description, whereas a
matrix elementgsee, e.g., Ref. 16 Here, however, we do quantitative analysis requires to go beyond this approxima-
not calculate the electron-phonon coupling constarisee  tion. For the systems of interest, RPA is favorable because of
Eq. (193] and, similar to the treatment of conventional su-the inequalityr <1 (see below Note that the contribution
perconductorgsee, e.g., Ref.)9 we use the values deter- of the background dielectric function and the inequalify
mined from experimental data. For example, in the case of-1 could be essentidtf., e.g., Ref. 18 It would be inter-
halide nitrides considered in Sec. IV R, was determined esting to perform more exact calculations using methods as
from heat capacity measuremetits. those of Ref. 20 and, in addition, take into account the band
The Coulomb potentiaV/;(q) is the Fourier transform of  structure of real materials instead of the layered electron gas
the 3D Coulomb interactioV.(r)=€% ey|r|, whereey is  (LEG) model. We think that the approximation based on the
the dielectric constant of the spacers, and takes the fee® inequality\ .<1 provides the adequate physical picture.
Appendix A
IIl. LAYERED CONDUCTORS: ELECTRONIC

27e? COLLECTIVE MODES
VC(q) = € R(Q” qu)v (6)
ma| A. Plasmon bands
whereR(q,q,) is defined in Eq(8) below. Introducing di- The spectrum of collective electronic excitations is deter-

mensionless quantities=qy/2ke, k= 2keL (L is the inter-  mined by the poles of the two-particle Green’s function
layer distance, an#ty the in-plane Fermi wave vectoras ~ Which coincide with the poles of the vertdi;(q,w). The
well asN(0)=my/27#?, the 2D electronic density of states latter is the analytic continuatiofsee, e.g., Ref. 1%of the

(my, is the band magswe can write function I';.(q,w,), EQ. (5). These poles correspond to the
zeros of the real-frequency dielectric function 1

=V (g)I1(gq,w)=0. At T=0 the real part of the polarizabil-

Ae R(;
VC(Q):N(B (%qz), (7) ity of a single layer takes the forh™* (w>7%que)
w
with Re(I1(q, =2N0)| ————=—-1/|. 11
gIl(g,w)}=2N(0) T 1 (11)
sinh( k¢Q) For o>figue this expression reduces to ¥

R(9.0;)= q.0)- (8) ~N(0)%%qfvE/w? as obtained in Ref. 13.

From Eqgs.(7), (8), and(11) we derive the general expres-
Equation (6) contains the product of the two-dimensional sion for the plasmon dispersion relation:
Coulomb potential and the functid®(q;,q,) which reflects

the layered nature of the studied system. As expected, _ [N(0)V,]?
. 2 w=hgpe\| 1+, (12)
lim __R(q)=1, whereasR(q)=2q;/|g|°L for L<1. Fur- L4 N(0)V,

thermore,V, diverges as 14|? for |q/—0, in agreement
with the 3D character of this limit. Note th&(q;q,) con- Eq. (7). If N(O)V.>1 we obtain the optical plasmom

tains the factor (6, ), reflecting the presence of the neu- _ RN v .
tralizing positive ion countercharges; the presence of this_ﬁq”v.F 1.+N(O)V° (this corresponds to the hydrodynamic
term is implicit in the following. approximation for smalty;, see Ref. 2L The plasmon band

Equation(7) contains the dimensionless Coulomb interac-® = ©(d].02) is confined between the upper branch wdh
tion constant defined by =0 (in-phase motion of the charge carrieend the lower

branch aig,= #/L (out-of-phase motion of carrierdndeed,

coshkeq)—cosq,L)

whereV,=V.(q,q,) is the Coulomb interaction defined in

) for w>Aque EQg. (12 reduces to the expressiow
A :i<e_ _ s _ fi_ (9) =hqueVN(0)V, which atq,=0 leads to the usual “opti-
¢ 2ey\hve] B8 2ve cal” plasmon with 02 =w?(q=00,=0)=4e’s/eyL.
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tor as consisting of two branches: the upper optical branch
(g,=0) and the lower acoustic branch,& 7/L). We have
shown earlief* that the optical branch gives an essentially

d repulsive contribution to the pairing interaction. We therefore
include this latter part in the effective repulsiu& of region
’ Il (Fig. 2). In the following we consider only the contribution
. of the dominant acoustic branch @==/L. The contribu-
] tion of all other branches only enhances the effect ofghe
= /L branch, as we discuss below. It is worth emphasizing
that the existence of the latter branches is specific to layered
materials.
0 & We end this section by noting that the inclusion of a re-
sidual interlayer hopping would imply the appearance of a
A/2Ke small gap for the acoustic plasmons. The size of this gap is
FIG. 2. Electronic excitation spectrum for the LEGee also  determined by the interplane hopping parameter The
Ref. 13. The solid, dotted, and dash-dotted lines in regiomwl (- more isotropic the system becomes, the larger is the gap. In
>hqjug) are plasmon dispersion relations corresponding tajthe - the jsotropic limit the one degenerate optical plasmon branch
indicated in the figure. The area delimited by the-0 (solid) and  opserved in 3D metals is recovered. As mentioned in the
g,= 7/L (dash-dotteflbands contains the dispersion relations forlntroduction however. the materials of interest for the
all g, . The brancfy, = /5L (dotted is shown as an example. The o g0 pap;e(Sec. I\A, have a ratiot,/t;<10"3, so that
ha;hed area denotes the el?Ctron'hme excitation continuum IEiscarding interlayer transport is a good approximation. Fur-
which plasmo.n(l‘andau damping oceurs. The long-dashed line ther support for this approximation is found in Refs. 22 and
separates region k(>#qyve) from region Il (@<Ad). 23 (and references thersifrom dielectric properties and lat-
tice dynamics studies of high-temperature superconductors.

For g,=w/L, on the other hand, we obtain the dispersion
law for the “acoustic” plasmorflinear inqy) of the form of
Eq. (12) with B. Screening of the Coulomb interaction: The dielectric

function at finite temperature

To study the impact of dynamic screening on the super-
conducting state we need to calculate the dielectric function,
Eq. (10), which contains the polarizabilitii(q,w,). In par-
Forg,= /L andqjL<1, we obtainw=(Q,L/2)q;. t?cylar, to obtainT ., we have to deterr_nine_ f[hese functions at

Thus, the plasmon spectrum of a layered conductor, Edfinite temperatures. In RPA the polarizability takes the well-
(12), has a rather complicated structure as shown in Fig. 2 known form

The dispersion can be viewed as a continuous set of
acoustic branches parametrizeddyy [ 0,7/L] (the slope of
the acoustic plasmon af—0 is smallest forg,= 7/L and
increases ag,—0). Only the upper branch fay,=0 rep-
resents an optical branch and, as expected for the long wave- ) S
length limit, corresponds to the usual 3D plasmon. Cruciaiheref=f(£,) is the Fermi distribution and all wave vec-
for the phenomenon of dynamic screening and its impact otors lie in the plane of the layered structure. To the best of
the pairing is the presence of the low-energy collective exciour knowledge, all previous works concerned with layered
tations, which can play a role similar to phondtisey can be  structures were done either using the calculated polarizability
labeled “electronic” soungl at T=0 (see, e.g., Ref. 24or taking the static limit for

Note that the low-energy plasmon branches, so-callethonzero temperaturéas done, e.g., in Refs. 4 andl Here
“demons,” also appear in the presence of different overlapwe calculate the polarizability both at finite temperatures
ping bands(e.g., “light” and “heavy” carriers; see Refs. 4 ing the temperature Green'’s function formaljsamd all val-
and 6. We emphasize that the case considered in the presenes of ,w,). As the calculations of the following sections
paper is entirely different. Indeed, the appearance of acoustiwill show, the temperature dependence of the polarizability
branches is caused by the presence of spatially separateen be neglected in some caseg., for halide nitrides, Sec.
conducting layers and the out-of-phase motion of the carrierf/ B) but should be taken into account for the cuprates
in neighboring planes. where the rationT./eg is not negligibly small(see Sec.

The partial density of states can be determined for eachv D). In general, the proper account of dynamic screening
plasmon bandcorresponding to eadly,) from the dispersion requires to consider all three parameters. Note that to render
relation, Eq.(12). As first pointed out by two of the authors, the numerical problem tractable when solving Etj7) be-
Bozovic and co-workers in Ref. 13, the density of statedow, we reduce the number of integrals to be performed nu-
considered as a function of energy is peaked at the boundnerically by writing Eq.(14) in polar coordinates and inte-
aries, that is, fo,=0 andq,= 7/L. A good approximation grating analytically over the anglgsf. Appendix B. The
is thus to model the plasmon spectrum of a layered conduaemainingk integration is then done numerically.

- Ao sinh(keq) 97°
N(O)Vc<q,qz:z):éﬂ — Nkel. (13
L/ g coshkeq)+1

fiy = firq

H(qH ,iwn)ZZJ d2k|| o
n

&~ Ekeg ’ e
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FIG. 3. Electronic polarizability in RPA as a function of FIG. 4. Inverse dielectric function of the LEG. The solid,

=(/2k for various values ofo,— wy=2(n—m)«T (fromtop to gashed, and dotted lines correspondjb=0,7/2,m, respectively.
bottom and a typical temperaturé/e=0.03. The lowest, dash- The three bottom curves are obtained fof— w,=0, the three
dotted curve is obtained fof=0 K and remains the same fail middle curves are fon—m=10, and the three uppermost curves

frequenciedi.e., atT=0, II(q<2kg ,w,— oyn) = —2N(0)]. are forn—m=40. The other parameters were given in the previous
figure. Note thate *(q— 0,0,— w,) is zero (perfect screening
Figure 3 displays the polarizability, E¢L4), of the elec- ~ ©nly in the static limit.
tron gas of a layer, as a function of wave vedips q)/2Ke

for different values of the frequenay,, and a typical tem- 02
peratureT/e-=0.03 which applies to higfi superconduct- ep(N—m)=1+ —p'2 (16
ors(see Sec. IV I We first point out that the dependence (@n— wp)

of this function is essentially restricted to the interval

[0,4K].

Equation(15) describes the dielectric function in the Drude
it. Note that the latter expression is exact in the limit
=0 andw>0.

Let us now consider the temperature dependence of th
polarizability. First, we discuss the case=0. For the real-
frequency polarizability the analytical continuation gives the . .
result derived by Stern in Ref. 24. On the other hand, in th%heTlr;?] r?v?/:te?;n':l?ﬁ filmsi??;\((se;h;tef%?z(?nrtjgi?u_ez)cy’
Matsubara temperature Green's function formalism the po->0)_>iJ (0n— @ Q)J Thus, it is only in thg stati'c E:asem
larizability does not depend on frequency r qjue [cf. o DAt Hm/ ’ ) . N n
Ref. 15a), Sec. 20.2 T1(q,wp)= —2N(0)= —m, /> on=0 that the Coulomb interaction is “perfectly

(bottom dotted line of Fig. B8 For T>0 the polarizability s;c(rfeE%()iSﬁTigtlﬁlq|szc]:r_elen|_|r_1|§1elnlart<tagl irﬁfel(sq thg,a;:)
. . : Lt . m=0)~ “ ) -
vanishes at high frequencies as shown in Fig. 3. The highet lled Thomas-Fermi screening of the Coulomb potential.

the temperature, the smaller is the frequency range ove h h . | hoi . by?
which the polarizability remains finite. Note that the shape of ©" the LEG the screening length is given byre

~ _ 2 _— i
I1(q, w,— wy®=0) (lower solid line on the figuneis almost |el’:ﬂ:lf$50)i?pli\./ell'l'lq ba"tr?éhgugzsﬁ;itthe limitof long wave
unaltered until very high temperatures. This can also be di~ 2, > 3 IVEN bY fs I o
rectly seen from the analytical expressimee Appendix B The dlelec§r|c functlon_descnblng t.he screening in layered
Eq. (B8)] " conductors will be used in the following section to calculate

Using the above results for the polarizability we calculatethe effe_ct of the dynamically screened Coulomb interaction

on T, in several classes of layered superconductors. We

the dynamic dielectric function, E@L0), or rather its inverse thereby use the full wave vector. frequency. and temperature
e 1(q,w,— wy) since it is this quantity that enters the vertex y » requency, emp
dependence of(q,w,— w,,) calculated in this section.

I'c, Eq.(5). The result is shown in Fig. 4 for the same values
of parameters as in Fig. 3. We point out a few important

properties of the inverse dielectric function. This function is
bounded for allf andw,— w,. For high frequencies and/or V- APPLICATION TO VARIOUS LAYERED SYSTEMS

large wave vectorse (q,w,— wy)—1, meaning that the | this section we consider the phonon-plasmon mecha-
Coulomb interaction is unscreened in th_ese cases. In_ fact, ffism and in particular the impact of the dynamic screening
can be shown that foiqu < w, — wp, the dielectric function  of the Coulomb interaction on the superconducting state of
takes the form several layered systems. We discuss specific examples be-

longing to three classes of materials: metallochloronitrides,
(15) organics, and higf-. superconductors. To this aim, we first

rewrite Egs.(2a and (2b) in a form adequate for layered

conductors and convenient for calculations. We then evaluate
where the critical temperatur@, of the various compounds.

e(hQue<wp— wy)=e€p(n—m),
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A. Numerical analysis account all plasmon acoustic plasmon branches would lead

We assume isotropy within the layers. The order paramIO higher critica'l temperaturegsr corrgspond!ngly to smaller
eter and the renormalization function can therefore be writte?OUIOmbP coupling constants for a givép) since they con-
asAn(K)=An(kj=Ke k) =An(ky) andZ,(k)=Z,(k,) (see tribute }gltbe attractive pairing interaction, though with lesser
Appendix O. This approximation is valid since the Cooper Weight:" . L
instability (see, e.g., Ref. 15and, correspondingly, the pair- As discussed in Sec. InA the excitation spectrum of a
ing, occurs on the Fermi surface. As for the integrands ifayered electron gassee Fig. 2 allows us to divide the
Egs.(1)—(5), they depend mainly on the momentum transfer(d] ;@) Space into two main regions. The fifsegion ) con-
q;. Thus, in the layered electron gas the order parametéf’"”s the additional collective excitations discussed here and

depends on the frequency and the wave vector perpendicul{liS région should be considered exactly in the equations
to the layers. above. On the other hand, region Il contains no such addi-

To perform numerical calculations with Eq&a and tional plasmon features and the equations have a form analo-
(2b), we follow the standard procedure adapted to the case &PUS to the_ 3_D case in this area. Therefore_, we take a further
layered materials. We first express the integral okeiin step by lel_dlng the Coulomb_ part, E(ﬂl.gb),.mto two parts
terms of an integral over energy and in-plane wave-vectofOrresponding to the two regions of Fig. 2:

amplitude and carry out the former analyticaltee Appen- I«(g,,n— m)=F'c(qz,n— m) +F!;I(qz ,n—m)

dix C). We thereby reduce the equations to a form containing

one-dimensionak-space integrals. Note, however, that the 1( (3 1) dg R(9,9,)/q
dielectric function also contains an integral to be performed = —“ ‘4 ﬁ } — ,
at each iteration of the calculatigfqgs.(10) and(14)]. The ™0 ) \/1-g? €(,0,,n—m)

resulting equations take the for@Appendix Q

(20
bo(k)=7T > 1 S T(g,.,n—m) Pm(kz) , whereq,=min{2k ,| oy — wy/five} andq.=q./2k . The part
e m=e Ny & |om(k))| I'L will be considered exactly, in particular, with respect to

(179  the frequency dependence that has the distinctive features of
layered conductors. The pa‘rﬂ, on the other hand, is re-

3 % 1 i — Wm duced to an effective constant Coulomb pseudopotential
on(k) —on=7T 2, N, F(‘312'”_m)|wm| ' w* 0(w,— Q) with a standard cutoff given bf),=10x O
kp=—m (17b (Q is the characteristic phonon eneygyhis treatment of

region Il calls for a comment. As was mentioned earlier, we
whereN, are the number dk, points taken in the first Bril- consider usual phonon-mediated superconductifiiyash-
louin zone and the kernel is given by berg equationsas a starting point of our analysis. Accord-
o ingly, the electron-phonon coupling constant and the static
I'(q,,n—m)=AD(n—m)+A.Js(qg,,n—m), (18 termu* are treated in the conventional way as parameters to
be determined from experimental data. Thus, the static term
©* is here a phenomenological parameter. We focus on the
N(0) (1 da term describing the contribut_ion of the dynamic.s.creening.
A= _f |9V(a)|2, (199  This part(present in region)lwill be evaluated explicitly for
™ Jo 1-92 different systems with the use of normal-state paramésess
e.g.,ug Or €y ; see below Note that for the pure plasmon
1,1 dg R(9,9,)/q mechanism both static and dynamic terms were calculated in
Fc(qz,n—m)z—f — . (19 Ref. 7 (in 3D). This step was crucial since its value was
™o V1-7¢? €(9,9,,n—m) directly related to the criterion for the appearence of super-
conductivity. For the phonon-plasmon mechanism, on the
other hand, we assume that the phonons are sufficient for the
occurrence of the superconducting state, which allows to use
the conventional approach for the static term. Naturally, it
would be of great interest to calculate the static term. Such a
full self-consistent calculation including also real band struc-

with

All other quantities were defined in Sec. Il. Two simplifica-
tions are made in the following calculations that allow to
single out the effect of low-energy electronic collective
modes on superconductivity. The first is to replace the pho
non contribution to the pairing to orier two, see below Sec.
IV C] characteristic phonon modes. The second is that W& res will be carried out elsewhere.

can setk,= /L, bas_ed on the analys_is made in Sec. lll A,_ As shown in Appendix Osee also Ref. 25 the above
which shows that this wave vector gives the largest contriyq ations can be mapped onto an eigenvalue problem written
bution to the pairing. Consequently, the order parameter angl '+ 1< orial form,

the renormalization function taken at the zone boundary

alongk, are a function of frequency,, only. We emphasize, K®=nd, (21
however, that these two simplifications are not affecting the =

main results presented below. Rather, they would lead tgvhere @), , =®(n)=An(n;)/y2n+1 andK is given by
smaller coupling constants necessary to reach a specific critieq. (C3) in Appendix C. Equatior(21) is written explicitly

cal temperaturd .. For example, we expect that taking into in Eq. (C4). Note that an artificial eigenvalue has been
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0.5 - - : - - ties of the materials studied intensively in Refs. 18, 35, and
36 can be described by Fermi-liquid theory, so that there is
no evidence for the presence of strong correlations.

We apply our approach to this novel layered system. We
note from Eqgs(9) and(17-20 that the evaluation of ; for
. a specific compound needs the knowledge of following pa-
1 rameters: the interlayer distancethe band mass,, Fermi
0.1 -\\ 1 velocity vg, and the dielectric constant of the spacgys In
S ——————— —\ addition, the evaluation of the phonon contribution to the
pairing requires the knowledge of the characteristic phonon
. , . . . frequency(, the electron-phonon coupling constantand
1 51 101 151 201 251 301 the Coulomb pseudopotential .

frequency 2n+1 Specifically, we consider ki THF),HfNCI (THF

FIG. 5. Normalized order parametéb,=A,/\2n+1 as a =tetrahydrofurane) as an example, since the largest amount
function of Matsubara frequenay,=(2n+1)«T. The solid and  of information necessary for the determinationTgfis avail-
dashed lines obtained far=1 and 1.5, respectively, represent the gple for this material, both from experiment and band-
order parameter in the presence of the plasmon contribution. Th§tructure calculations. According to Refs. 18, 30, and 34 the
dotted line was obtained in the absence of th_e_ plasmon contributiomte”ayer distancé and the characteristic phonon frequency
(A¢=0, A=1). Note the presence of an additional struct(step Q are equal td.=18.72 A andQ =60 meV. The values of
when including the pairing due to low-energy plasméssiid and e hanq mass and Fermi energy have been evaluated from
dashed lines " =0.1. band-structure calculations, Ref. 35. Accordingly,
=0.6m,, where m, is the free-electron mass anel
=1 eV. For e, we have chosen the reasonable vakye
=1.75. It follows that\.=0.8 and, correspondingly, using
eEq. (9), rs=2 (i.e., close to the high-density limitThe value
of the electron-phonon coupling constant can be estimated
from the knowledge of the electron specific heat consgant

0.3

-0.1

introduced in Eq(21). T, is reached whemy is one. Since all
eigenvalues satisfy the inequality=<1, we only need study-
ing the highest of them. Furthermore, the solution of thes
equations also gives the renormalized order paranéter
nearT.. We can thus analyze how this function is affected

by the contribution of low-energy plasmons to the pairingand the band density of statd$(0). Indeed, the electron-
interaction. A typical functionb,, is shown in Fig. 5 and will '

; ) : : . . = +
o dctsse i e ollwing secton, Usng e ienilod, 7G5 r o locon Sommerald ontat
thqeory to various C};';lyered suggrconductors ar?cri) ycalculat-é—he value of y was estimated in Ref. 18 10 b@’
their T =1.1 mJ/molk, whereas band-structure calculatibhgive
¢ N(0)=0.74 eV 1. Thus,\=0.25. Settingu* =0.1 and us-
ing Egs.(17)—(20), we obtainT.=24.5 K. The calculated
B. Intercalated metal halide nitrides is very close to the observed valli§*P=25.5 K. The essen-

The first class of materials we consider is the family oftial point to note is that in absence of the plasmon contribu-
layered metal-intercalated halide nitrides. We give speciation we obtainTE"°"°"<1 K(!). This demonstrates that, in-
attention to this family because low-energy plasmons notleed, the low-energy plasmon contribution plays a key role
only contribute to the pairing but, in fact, play the key role for superconductivity in metallochloronitrides.
for the superconducting state, as we show below. We believe It would be of great interest to carry out specific tunneling
that this is the first observed system where the supercondudicf. Ref. 9 and optical measurements on this material. We
ing state of the electrons is essentially self-supported, that igxpect that tunneling experiments, similar to heat-capacity
where the pairing is provided by collective excitations of thedata(see above will provide the valuex=0.25, and optical
same carriers as those forming pairs. measurements will lead tey,=1.75.

This family of novel superconductors has been discovered As mentioned earlier, by solving E¢1l7) we not only
recently and studied in detail in Refs. 18 and 26—36. As i®btainT,, but we also get the superconducting order param-
known (see, e.g., Ref. 26the intercalation of alkali atoms eter ®,=A,/y2n+1. It is interesting to see howb, is
and organic molecules into the parent compo(wHf)NCI  affected by the additional pairing arising from the presence
leads to a superconductor with rather high critical temperaef acoustic plasmon&=ig. 5. Note that the qualitative form
ture (T.~25 K). Based on experiment&?®~*3studies and of the order parameter is the same for all classes of materials
band-structure calculatioffsit was concluded that electron- discussed in the present paper. In the absence of the plasmon
phonon mediated pairing is insufficient to explain the ob-contribution, the order parameter is a rapidly decreasing
servedT,, since the electron-phonon coupling constant apimonotonic function of the Matsubara frequer(cdptted line
pears to be too small. Note also that a small nitrogen isotopef Fig. 5). The effect of plasmons reveals itself as an addi-
effect of T, has been observeédn addition, the compounds tional “step” in ®,, at intermediate frequencies, as exempli-
do not contain any magnetic ions and no sign of magnetisnfied by the solid and dashed lines in Fig. 5. It is this positive
has been found in band-structure calculations. This excludgsart of the order parameter due to the pairing induced by the
a magnetic pairing mechanism. Finally, normal-state properow-energy collective modes that is responsible for the en-
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hancement of the value of.. We observe that the order indicates that the coupling tantermolecular acoustic
parameter remains positive over a frequency range also dghonons contributes to superconductivity. Further work sup-
termined by the value of and u*. Whereas the frequency porting the importance of electron-phonon interaction for su-
range over whichb,, remains positive shrinks with increas- perconductivity is given in Refs. 51-53. Therefore, it is in-
ing A (compare solid and dashed lines in Fig.ittincreases teresting to apply our phonon-plasmon model to this class of
with increasingu* (not shown in the figune This apparently materials and study the effect of acoustic plasmons on the
counterintuitive behavior is easily understood by the fact thasuperconducting’. .

an order parameter extending to higher frequencies will pick As it appears that both intermolecular and intramolecular
up more and more repulsive components of the pairing intervibrational modes are of importance to superconductivity, we
action. The “shorter” the step in frequency of the plasmon-modelize the phonon kernel in E) by a two-peak func-
induced structure, the smaller is the repulsive contribution ofion
the effective interaction kernel and, consequently, the higher
theT,.

Concluding this section, we emphasize that the dynamic
screening of the Coulomb interactidtine contribution from
low-energy electronic collective modets essential for the N Q§
understanding of the superconducting state in intercalated Wz(wn—wm)2+Q§ . (22)

layered metal halide nitrides.
The lower-frequency modé€);=5 meV corresponds to li-
bration and intermolecular mod&s*° The higher-frequency
C. Layered organic superconductors peak is located at the frequen€l,, and was calculated for

Organic superconductors were predicted in Ref. 37 andhe ET-intramolecular vibrationst), =10 meV>*%* Given
discovered in Ref. 38. In this section we apply the theory tod€ number of modes present near each peak and their pos-
the class of layered organic superconductses, e.g., Refs. Sible coupling to the electrons, we set=0.75 andw,
39-43 and references thergifs an example, we focus on =0_.25. The coupllng constants to each set of modes is then
x-(ET),Cu(NCS), (ET=BEDT-TTF is a short notation for defined as\;=iw; (j=1,2).
bisethylenedithiotetrathiofulvalene The basic structural To calculate the value of;, we need to know the value
building blocks of these materials are large, elongated EPf the band massn,, the interlayer distance, the Fermi
planar molecules stretching along thaxis forming the con- e€nergy g, and the dielectric constant of the spacefs
ducting layef* These thick conducting layers are separatednormal state parametgysas well as the value of the
by thin insulating spacers of planar NCS molecules extendelectron-phonon coupling constant and the Coulomb
ing in the ab plane. The NCS counterions take one chargePseudopotential®. From band-structure calculations we
per two ET molecules leaving the ET highest occupied mohave my=1.72m..*° The structure determination givess

0

I'of(wp—om) =\ —_—
P il (wn—wm)z-i-ﬂi

Wy

lecular orbital(HOMO) partially unfilled. The HOMO arer ~ =16.2 A% The average value of the Fermi wave vector
holes delocalized over the large organic molecule and forn®btained from Shubnikov—de Haas measurementgis
the hole conduction bands. =2.6x10" cm ! (Ref. 49. Inserting these values igg

Layered organic conductors have highly anisotropic trans= #2k2/2m, we obtaine=0.17 eV. Note that this is ex-
port properties. Typically, the ratio of in-plane to out-of- actly the value obtained from band-structure calculatfns.
plane conductivity is at least of the ordef/o, ~10*.*>*>  Finally, we extract the value ofy from optical reflectance
Band-structure calculatioffsconfirm the presence of quasi- measurement¥. Using Egs.(D1) and (D2) and the data of
two-dimensional bands. We emphasize once more, howevedgawaet al*” we obtainey=6.5 (Appendix D. Note that
that only electronic-transport properties are quasi-2D. As disthe ionic screening of the Coulomb interaction is more effi-
cussed in the previous sections, the Coulomb interaction isient in organics than in metallochloronitridé¢preceding
important in all three dimensions. In particular, incompletesection. One reason for this difference is given by the fact
screening between layers implies that carriers from differenthat in organics the thick conducting slabs are made of large
layers interact with each other, leading to the low-energymolecules, whereas in the metallochloronitrides conducting
electronic collective modes discussed here. As we show isheets are thin and made of covalently bonded atoms. The
the following, this aspect is important for understanding thepolarizability of the molecules implies better ionic screening
relatively high value of the critical temperatures observed inof the Coulomb interaction and, therefore, a larger value of
these materials. €y - These parameters lead X@=0.9 and thug 4=2.5.

Superconductivity has been observed for temperatlires  The exact value of the electron-phonon coupling constant
<T.=10.4 K. Recent studies have shown the importance ok is unknown at present. Estimates forrange between 0.5
electron-phonon interaction for the pairing mechanféni®  and 1.5'°?**Consequently, we present results for this range
For example, isotope effect studies of the superconductingf values in Fig. 6we have chosep* =0.1 and the cutoff
T, by isotope substitution of C and S atoms on the ET mol-atQ.=100,=0.1 eV). Using these parameters we calculate
ecules have singled out the effect inframolecularvibra- T, from Eqgs.(17) and(18) (see Fig. 6. The result shows that
tions for the superconducting pairi¥g® A shift of phonon  the increase of in the presence of low-energy electronic
frequency caused by the superconducting transition has alsmllective modes is substantial. We can quantify this en-
been observed with inelastic neutron scatterfhghis shift ~ hancement ofT, for the specific example studied, the
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57. This value is indeed higher than the one of bulk samples.
Interestingly, we obtainT?"=40 K, so that the increase of
T. induced by acoustic plasmons is again of the order of
20%.

Thus, the dynamically screened interlayer Coulomb inter-
action is important for superconductivity in the cuprates.
Note that a proper account of the Coulomb interaction
screening is not only of importance for superconductivity in
these materials, but also for a proper description of normal-
state properties such as lattice dynamfcs

T, /Q,

00_5 1 15 V. DISCUSSION AND CONCLUSIONS
electron—phonon coupling A
FIG. 6. T.(\), where\ is defined in Eq(22). T, is normalized
to the lowest phonon energ®,. The upper(lower) curve is ob-
tained in the presend@bsencgof the acoustic plasmon contribu-
tion; u*=0.1.

The purpose of the present paper was to study the impact
of layering on superconductivity. Particular emphasis was set
on thedynamically screene€oulomb interaction. Layered
materials have distinctivéow-energy electronic collective
excitations that provide exchange bosons for the pairing be-
. ~ tween electrons. We have shown that these acoustic plas-
x-(ET),Cu(NCS), compound. According to our calculation s |ead to an enhancement of the supercondugtingVe
(see Fig. 6the experimentally observed vallig=10.4 Kis  paye applied the theory to three classes of layered supercon-
obtained forx=1, implying a coupling to the low- and high- qyctors: alkali-intercalated halide nitrides, organic and high-
energy phonon modes of;=0.83 and\,=0.28, respec- temperature superconductors.
tively. Thus, x-(ET),Cu(NCS), is an intermediate coupling  wjthin our phonon-plasmon model we observe an in-
superconductor. In the absence of acoustic plasmons we OBreasing influence of the electronic pairing mechanism for
tain TP"°"°"=6.3 K for this\. Thus, in the present case 40% the three classes of layered superconductors considered. In
of the value ofT, is due to the pairing of electrons via the metal-intercalated halide nitrides the contribution arising
exchange of acoustic plasmons. These calculations lead usfi@m low-energy electronic collective modes is dominant.
conclude that the contribution of low-energy electronic col-These materials are thus unique in the sense that an elec-
lective modes to the pairing is significant in organic superronic pairing mechanism is at the origin of superconductiv-
conductors(though not dominant as in the case of metallo-jty: the exchange bosons are made of the same partities

halidenitrides, Sec. IV B electrons than those who bind into pairs beloW. In the
case of organic layered materials, the electronic and
D. High-temperature oxides phononic energies, as well as the structure of the conducting

layers and insulating spacers, lead to a situation where the
contribution of phonons and acoustic plasmons is of the
Same order. Finally, in the case of high-temperature super-
conductors, the contribution of low-energy plasmons is sig-
#ificant but not dominant. Within our model the phonon con-
tribution is still largest.

) g 23 55 There are other classes of layered superconductors that
=15meV, and the dielectric constqrﬁM:S—l*O. ' have not been considered in the present paper. Among them,
Therefore,\.=1 andrs=2.8. The effective mass"* and 4o most prominent is that of dichalcogenides. We believe
electron-phonon coupling constait were determined by st some experimental observatihare related to the phe-
Wolf and one. of the authors from heat capacity nomenon discussed in this paper. However, we also note that
measurement&:>’ The obtained values are=2 andm*  any of the systems belonging to this class of materials
~5my,. From the relationm® =(1+\)m, we then obtain  eypihit charge-density wave instabilities. This both obscures
my,=1.7. Finally, the Coulomb pseudopotential is taken to beyng changes the contribution of acoustic plasmons to super-
w*=0.1. _ conductivity and will be discussed elsewhere.

The solution of Eqs(179, (17b), and(18) with use of the Another interesting system is the Ce®ased layered
aforementioned parameters lead Te=36.5 K, which is  compound studied recently in Ref. 1. We point out that the
close to the experimental vallg =38 K. It is essential to  system becomes superconducting only for relatively large in-
note that in the absence of the screened Coulomb interactiagrlayer distance. This is consistent with the present theory
we would obtainTP"=30 K. Thus, about 20% of the ob- and the material deserves further study.
served value of ; is due to acoustic plasmons. For thin films ~ An essential conclusion of the present work is that the
the stiffness of the lattice usually increases, leading to @hysics of layeredsupeyconductors cannot be reduced to
higher value of the characteristic phonon frequefyAs-  the study of one conducting layéor the layers belonging to
suming{ =20 meV, we obtairil ;=49 K which is close to one unit cell as in some high-temperature supercondyctors
the experimental valud¢*P=45 K observed, e.g., in Ref. Such simplification relies on the observation of “quasi-two-

In this section we discuss superconductivity in the cu-
prates within our phonon-plasmon model. We analyze on
specific material, LagsSry 1:CuQ,, for which most param-
eters have been determined. The normal-state parameters
the interlayer distance=6.5 A, the Fermi wave vectdt:
=3.5x 10" cm !, the characteristic phonon frequen€y
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dimensional” transport. However, it misses to account for the 2 o

screening properties of the electron-electron Coulomb inter- I (q),iw,) = —Zj dk k fil ,(k,qj,w,),  (B1)
action (and of the electron-phonon interaction as well; see (2m)<Jo

Refs. 59 and 22 As we discussed in the paper, the screening

is very different in layered materials as compared to 2D and (kg i) = f”d 1

3D isotropic metals. We believe that the particular screening LKt en 0 ¢ fon+ &+ &k +q
properties are essential for the behavior of laye(®apey : o
conductors. How large the effect of screened Coulomb inter- 1

action is, depends very much on the specific features of the N iw,+ 5k”_fk”+qu ' (B2)

material. For example, the covalency within the conducting

layers, the structure of the spacers, and the presence of v&or T=0 the integral ovek can be calculated analytically,
der Waals gaps will determine its contribution both toleading to the result first derived in Ref. 24. At finite tem-
normal- and superconducting-state properties. Therefore, thgerature there is no simple analytical form. However, to re-
study of screening properties in layered conductors is auce the amount of numerical work in solving E¢E7a and
promising direction to better understand the similarities and17b) for T., we calculate the angle integral analytically.
differences between different classes of materials and servdsing the transformatioa=exp{¢) we integratel , over z

as a bridge in the study of properties of 2D and 3D systemsn the complex plane to obtain

27 u ~
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APPENDIX A: COULOMB POTENTIAL FOR LAYERED

SYSTEMS As in the main text we normalize all wave vectors Xo

Using cylindrical coordinates= (r,z) (wherez is per- =X/2ke, X=q,k. 0; (j=1,2) are defined in terms of Heavi-
pendicular to the layeysthe Fourier transform of the 3D Side functions a®;=60(1—|z|?), zj=x;+iy; with
Coulomb potentialV.(r)=e% ey|r| is given in layered

structures b§* Xp=[ui|={1y1=[u-|— {5, (BS)
1 . . e?epy’ Xo=—[uy|={1.y2=—[u_| =z, (B6)
V(@)= > e*'qz”Lf drje” ' ———— M for B=0 wh .
N, “q r2+(nL)? or B=0 whereas/; andy, are interchanged fdB<0. In-
serting this expression into EqB1) above, we obtain the
1 > eiianLZ’ﬂez o-ant (A1) following compact form for the polarizability:
"% 2 ,

md 2 (= au
where we have taken into account the fact that the chargesn(q,wn):—N(O)l/—;f dAfs <9A+[5(k)+ 61— 0,].  (B7)
are located in the conducting sheets, and gL, where q- 7o

L is the interlayer spacing antindexes the layers. Note that This expression of the polarizability has been used to calcu-
the second line of EqAL) shows how the Coulomb inter- |ate the dielectric function that appears in E¢s7a and

action is exponentially decayingn real spacg along the (17 and is depicted in Fig. 3. Note that
direction perpendicular to the layers, the decay being deter-

mined byqL. Performing the sum in E4A1) we obtain Eq. ImIl(q,w,— w,) = —2N(0)ko5wn o (B8)
(6). q—0

Note that the detailed structure of the spacers separating
the conducting sheets is not considered in the present model. ~ APPENDIX C: EQUATIONS FOR THE ORDER

We thus have included the screening resulting from polarizapPARAMETER AND THE RENORMALIZATION FUNCTION
tion effect of the spacers via the dielectric constapt The

dielectric function in the denominator of E¢5) thus ac- We start with Eq.(2) and, as mentioned in Sec. IV A,
counts for the screening induced by the charge carriers of th@SSume isotropy of the bands within the planes. Thuand
conduction bands only. Z depend only on the norm & (and onk,). In this case, it

is possible to calculate one of the integrals okﬁaranalyti-

cally. To this aim, we transform the 2D in-plane integration

in a way analogous to the 3D cases generally studied,
The RPA polarizability of a single conducting sheet, Eq.namely, introducing polar coordinatesi’k=k’dk’de.

(14), is written in polar coordinatels;= (k, @), Wwith  k'dk’=27N(0)d¢ and ¢%=|k’—k|?=k2+k'?

APPENDIX B: POLARIZABILITY
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—2k’kcos(p) the integral ovek; is transformed into an in- we finally condense Eq(C2) to the matrix form @,=k;
tegral over energy and anglep. Using the fact that the —k,),
resulting energy integrand of E(p) is falling off as¢™ 2, the

main contribution to this integral will come fror/e<1 1 N
and we obtain B Kam(|nz =Nz )@ y(n)) = n®y(ny),
~ m=0 Nz n'=1
dq ‘
d%k’ =2aN(0)déde=4mN(0)dé ——, (C1) n=1,...N;. (C4
V1-¢9?

OIThis is the explicit form of Eq(21). Note that the kernel
r#gnm(qz) depends om and m separately and not only om
—m. Furthermore, the kernel is even ig,, K,n(q,
=K,m(|9,]). We have introduced the artificial eigenvalye
to map the problem onto an eigenvalue equatibnis ob-
tained whenp=1.

with g<1. The energy integral can then easily be performe
Gathering the different terms and assuming that the electro
phonon coupling functiowy,(q) =g,(q), in order to define

A\ andI’; as in Eq.(19), we obtain Eq(17). The latter equa-
tions have been obtained by discretizing,=— /L
+2mn,/N,L with n,=1,... N,. Note, that the angle inte-
gration can in principle be performed exactly, without need

of the approximation, EqC1). However, the difference with APPENDIX D: DIELECTRIC CONSTANT OF THE
the present method is minimal and we use the approximation SPACERS €y,

above for simplicity.

To perform the numerical calculation we cast EB). or
Eq. (17) into a matrix form. We first transform the summa-
tion overm=...,—1,0,1 ..., to a sunover non-negative
m only. Equation(17) then takes the form

The dielectric constant of the spacers,] can be ex-
tracted from infrared or reflectivity data. We parametrize the
dielectric function obtained in these experiments by the
Drude-Lorentz model,

1 S — S w?
An(ko)Zo(kp)=mT 2 = 20 {T(d;,n—m) fw)=et 5 ——+te, (DD
m=0 Nz /=7 T oo —iol
— An(ky) where ¢, is the free carrier contribution to the dielectric
+T(q;,n+m+1)} lwm| (C2a constant. The dielectric constant for the spacers is then de-
fined as
T 2n T .
Zy(k)=1+m— X = > T'(g;,n—m). (C2b
n m=0 — Esz(wZO)_EfC:€x+2 S (D2)
i

The second equation has been simplified further, reducing
the sum ovem to the rangg 0,2n]. The kernell'’ in Eq. For the determination of the dielectric constant of the or-
(C2b now only contains frequency-dependent terms. All9anic materiak-(ET),Cu(NCS), we use Ugawat al's re-
frequency-independent terms vanished in the folding of thdl€ctivity measurementt. Their parametrization gives..
summation ovem. =3.2.and

Inserting Eqg. (C2b into (C2a, defining ®,(k,)

=An(k,)/y2n+1, and 0,016, w,—028, wy—047 eV,
! T Qplzoogs' Qp2:o'71 Qp3:044 eV
Knm(qz:kz_kz):\/ I'iq,,n—m)
(2n+1)(zm+1) With the correspondenc@;;=Sjw’, we haveS;~0.762,

_ 2n S,=1.581, andS;=0.968. From these data and EB2), it
+F(qz,n+m+l)—5n,m2 F'(qz,n—p),] follows that
p=0

(C3 ey=6.5 (D3)
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