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Langevin vortex dynamics for a layered superconductor in the lowest-Landau-level approximation

W. A. Al-Saidi* and D. Stroud†

Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
~Received 3 November 2002; revised manuscript received 10 March 2003; published 7 October 2003!

We have numerically investigated the dynamics of vortices in a clean layered superconductor placed in a
perpendicular magnetic field. We describe the energetics using a Ginzburg-Landau free-energy functional in the
lowest-Landau-level approximation. The dynamics are determined using the time-dependent Ginzburg-Landau
approximation, and thermal fluctuations are incorporated via a Langevin term. Thec-axis conductivity at
nonzero frequencies, as calculated from the Kubo formalism, shows a strong but not divergent increase as the
melting temperatureTM is approached from above, followed by an apparently discontinuous drop at the
vortex-lattice freezing temperature. The discontinuity is consistent with the occurrence of a first-order freezing.
The calculated equilibrium properties agree with previous Monte Carlo studies using the same Hamiltonian.
We briefly discuss the possibility of detecting this fluctuation conductivity experimentally.
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I. INTRODUCTION

Vortices in the mixed state of a clean type-II superco
ductor are believed to break the translational symmetry
form a triangular Abrikosov lattice for magnetic fieldB ex-
ceeding the lower critical fieldHc1. At a sufficiently high
temperatureT, thermal fluctuations are expected to melt th
lattice and restore the translational symmetry through
solid-liquid phase transition. However, in most low-Tc super-
conductors, this melting occurs near the upper critical fi
Hc2, and is thus difficult to distinguish from the usu
superconducting-normal transition. In the high-Tc cuprates,
however, this melting transition is typically well separat
from Hc2.

Many experiments suggest that this solid-liquid pha
transition isfirst order. For example, the resistivity of un
twinned single crystals of YBa2Cu3O72d ~YBCO! drops
sharply at a temperatureTM well below theHc2(T) line.1

This temperature also coincides with a discontinuous jum
the magnetization.2,3 Most distinctively, both a latent hea
and a specific-heat discontinuity have been observed a
transition. These signatures have been seen in untwin
single crystals of YBCO for magnetic fields both parallel a
perpendicular to thec axis.4

The first-order nature of the transition is supported b
number of theoretical models.5–9 At least at high fields, this
transition is thought to represent a simultaneous melting
the vortex lattice in theab plane and decoupling of the vor
tex ‘‘pancakes’’ in different layers. For example, numeric
studies of layered superconductors, using Monte Carlo m
ods applied to a model Hamiltonian in the lowest-Landa
level ~LLL ! approximation, suggest a simultaneous melt
and decoupling transition.5–7 A similar conclusion is also
suggested by studies of melting using an analogy wit
two-dimensional~2D! Bose system.8 On the other hand
some workers have suggested that the LLL actually gives
phase transition at all, but only a crossover associated
interlayer decoupling.9

In this paper, we extend previous numerical studies of fl
lattice melting to treat thedynamicsof a vortex system. Our
calculations are based on a Lawrence-Doniach model for
0163-1829/2003/68~14!/144511~8!/$20.00 68 1445
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free-energy functional of a layered superconductor, treate
the LLL approximation, and are carried out as a function
temperature at fixed magnetic field. The dynamics are trea
within the time-dependent Ginzburg-Landau approximati
with Langevin noise included to simulate the effects of th
mal fluctuations. A previous calculation, for a similar mod
in two dimensions, and with spherical rather than perio
boundary conditions, has been carried out by Kienappel
Moore.10 The LLL approximation is expected to be mo
accurate at strong magnetic fields (Hc2/3,B,Hc2), but
may have a slightly broader range of validity at low tempe
tures, since a weak participation of higher Landau levels
such temperatures can be incorporated by a suitable re
malization of the LLL model parameters.11 The LLL ap-
proximation fails, however, at weak magnetic fields, beca
it omits the effects of thermally induced vortex-antivorte
pairs. Consistent with previous Monte Carlo studies, we fi
a single first-order liquid-solid phase transition with simult
neous loss of in-plane and interplane vortex order. Howe
the Langevin simulation also yields information about d
namical properties such as the conductivity. In particular,
find that thec-axis conductivity shows a striking, but no
divergent, increase as the first-order melting tempera
TM(B) is approached from above.

The remainder of this paper is organized as follows.
Sec. II we describe the Langevin model, and our method
calculating various static and dynamic quantities from
model. Our results are presented in Sec. III, followed by
brief discussion in Sec. IV.

II. FORMALISM

A. Model Hamiltonian and dynamical equations

We consider a three-dimensional~3D! superconductor
consisting of a stack of Josephson- or proximity-coupled
layers. We assume that this system is described by the f
energy functional

F5d0(
n
E d2r f n@cn~r !#. ~1!
©2003 The American Physical Society11-1
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Heren is the layer index,d0 is the thickness of one layer, an

f n@cn~r !#5a~T!ucn~r !u21
1

2
bucn~r !u41

1

2mab

3US 2 i\¹2
qA

c Dcn~r !U2

1
\2

2mcd
2

ue2 ixn,n11

3cn11~r !2cn~r !u2. ~2!

cn(r ) is the order parameter of thenth layer,q522e is the
charge of a Cooper pair,d is the distance between the layer
and a(T), b, mab , and mc are material-dependent param
eters. The phase factorxn,n115(2p/F0)*nd

(n11)ddzAz ,
whereF05hc/2e is the flux quantum andA is the vector
potential. We will assume that the external magnetic fi
Biz, i.e., perpendicular to the layers, so thatxn,n1150, and
we choose a gauge such thatA52Byx̂. We also neglect
screening currents and fluctuations of the vector potentia
that the local and externally applied magnetic fields
equal. This should be a good approximation when
Ginzburg-Landau parameterk@1, as in the cuprate supe
conductors. Finally, we assume thatB is uniform throughout
the superconductor.

In the LLL approximation, the order parameter in ea
layer is expanded as

cn~r !5c0(
k

cn,kfk~x,y!, ~3!

where

fk~x,y!5eikxexp@2~y2k,2!2/~2,2!#, ~4!

are the lowest eigenstates of the kinetic energy oper
(2 i\¹2qA/c)2/(2mab* ), corresponding to eigenvalu
\qB/(2mabc). Herec05@p,2uaH(T)u2/(,0

2b2)#1/4, aH(T)
5a(T)(12B/Hc2), ,5(uquB/\c)21/2 is the magnetic
length, and,05(4p/A3)1/2,. The magnitude ofc0 is cho-
sen so that the spatial average ofucn(r )u2 is uaHu/(bbn)
with bn51.169••• when the vortices are arranged in a t
angular lattice.

We assume the system is a parallelepiped of dimens
Lx , Ly , and Lz , with periodic boundary conditions in a
three directions. We chooseLz5Nzd, whereNz is an integer.
The periodicity condition in thex direction cn(x1Lx ,y)
5cn(x,y) implies k52pm/Lx , where m is an integer. If
each layer containsNf vortices, there will beNf indepen-
dent cn,k’s labeled bym50, . . . ,(Nf21). The periodicity
constraint in they direction, uc(x,y1Ly)u5uc(x,y)u, im-
plies thatcn,m85cn,m for all m85m moduloNf . Finally, the
periodicity constraint in thez direction implies thatcn1Nz ,k

5cn,k . Besides these periodicity conditions, the cell dime
sions in thex and y direction are chosen to be compatib
with a possible triangular lattice. This choice may be writt
asLx /Ly52nx /(A3ny) wherenx andny are the number of
vortices along a given row or column parallel to thex or y
direction, andNf5nxny .
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Using Eq.~3! for the order parameter, we can rewrite E
~1! as

F5(
n

~F 2D
(n)1F C

(n)!, ~5!

where F 2D
(n) is the free energy per layer, andF C

(n) is the
coupling between thenth and (n11)th layers. These term
take the form

F 2D
(n)/~kBT!5g2~B,T!nxS sgn~aH!(

k
ucn,ku2

1
1

4 (
k,p,q

v~p,q!cn,kcn,k1p* cn,k1q* cn,k1p1qD
~6!

and

F C
(n)/~kBT!5g2~B,T!nxh(

k
uck,n2ck,n11u2. ~7!

Here, we have defined

v~p,q!5A2p,2/,0
2exp@2,2~p21q2!/2#, ~8!

g2~B,T!5p,2d0aH
2 /~bkBT!, ~9!

and introduced the dimensionless interlayer coupl
strengthh5J/uaHu whereJ[\2/(2mcd

2) is the Josephson
coupling between the layers. The quantity sgn(aH)521 or
11 in the superconducting or normal regimes; the me
field instability occurs whenaH(T)50.

The parameterg2(B,T) represents the ratio of the supe
conducting condensation energy per vortex per la
p,2d0aH

2 /b to the thermal energykBT within the Ginzburg-
Landau approximation. Note that, for fixedaH , g2(B,T)
varies inversely with temperature. Thus a plot of syste
properties as a function ofugu may be viewed as a plot as
function ofT for fixed B; however,small ugu representslarge
T ~vortex liquid phase!. Previous calculations6,7 have pro-
vided evidence that there is a first-order vortex-lattice m
ing transition as a function ofg2.

We study the dynamics of this system using the tim
dependent Ginzburg-Landau~TDGL! equation in the pres-
ence of a Langevin noise term. We write this equation as

G
]cn~r ,t !

]t
52

dF
dcn* ~r ,t !

1jn~r ,t !, ~10!

where G is the relaxation time parameter, andj(r ,t) is a
white-noise term characterized by the correlation function

^jn~r ,t !&50,

^jn* ~r ,t !jn8~r 8,0!&52kBTGd~rÀr 8!dn,n8d~ t !,

where^•••& denotes an ensemble average. We assume thG
is real because the system has particle-hole symmetry;
1-2
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LANGEVIN VORTEX DYNAMICS FOR A LAYERED . . . PHYSICAL REVIEW B68, 144511 ~2003!
our choice of units,G has the same dimensions as\. The
noise term ensures that the system will remain in a ste
state at temperatureT.

Langevin dynamical calculations have previously be
carried out by Ryu and Stroud12 to study vortex lattice melt-
ing for both clean and dirty high-Tc layered superconductors
They differ from the present calculation by using a differe
equilibrium free-energy functionalF than ours. In the mode
of Ref. 12, the flux lines cannot be broken; this featu
should lead to rather different results from those obtained
the present model calculations.

In the present LLL expansion, the TDGL equation may
rewritten as

dcn,k

dt
52Fsgn~aH!cn,k

1
1

2 (
p,q

v~k2p,q!cn,p1q* cn,k1pcn,qG
2h~cn21,k22cn,k1cn11,k!1jn,k8 ~t!. ~11!

Here we have introduced a dimensionless time variablt
5uaHut/G[t/t0, wheret05G/uaHu is a characteristic relax
ation time. The noise termj8 is now described by the corre
lation functions13

^jn,k8 ~t!&50; ~12!

^j8n,k* ~t!j8n8,k8~t8!&5
2

nxg
2~B,T!

dk,k8dn,n8d~t2t8!.

~13!

B. Calculated quantities

1. Equilibrium quantities

Equilibrium quantities can be computed as time avera
of the solutions to the TDGL equations, either in the solid
the liquid phase. According to the ergodic hypothesis, t
procedure should give the same results as an equilibr
average obtained by treating Eq.~5! as a Hamiltonian. We
have, in fact, confirmed this point by comparing some of o
results with those obtained earlier by other workers from
~5! using Monte Carlo techniques.5,7

We have evaluated several thermodynamic propertie
the system. One is the generalized Abrikosov factor

bA5NzLxLy

(
n
E d2r ucn~r !u4

F(
n
E d2r uc~r !u2G2 . ~14!

When the vortices form a triangular lattice,bA reaches its
minimum value ofbn , but exceeds this value for other vo
tex configurations. We have also computed the spatial a
age ofucn(r )u2, defined as
14451
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(

n
E d2r ucn~r !u2, ~15!

which at low temperatures reaches the mean-field va
r ab

MF5uaHu/(bnb). Both bA and r ab vary smoothly with
temperature and thus do not show any special behavior a
flux lattice melting temperatureTM(B). We have therefore
also examined three other equilibrium quantities which m
clearly show signals of this transition: the isothermal sh
modulusm(T) of the flux lattice; a quantity we denoteC(T),
which measures the degree of coherence between vortic
adjacent layers; and thezzcomponent of the helicity modu
lus tensor,Ycc(T), which measures stiffness against a lon
wavelength twist in the phase of the order parameter.

The shear modulusm(T) is defined14 by

m~T!5
1

NzLxLy
S ]2F

]u2 D
T,u50

, ~16!

where u is the shear angle. The free energyF can be ob-
tained from Eq. ~5!, using F52kBT ln Z where Z
5Tr e2F/kBT and the trace is taken over the classical va
ablescn,k andcn,k* . An explicit 2D form form(T) in the LLL
approximation has been given in Ref. 14, where it has b
found that m(T) reaches its mean-field valuemMF(T)
50.354NfkBTg2(T) at low T and it vanishes everywhere i
the liquid phase. If the transition between the vortex so
and vortex liquid state is first order, thenm(T) will, in the
thermodynamic limit, jumpdiscontinuouslyfrom a finite
value to zero atTM(B). However, such a jump doesnot
prove that the melting transition is first order, since cert
continuous melting transitions in two dimensions also hav
jump in m(T) at melting.15 However, other independent ca
culations give evidence that the melting transition is fi
order within the LLL approximation in three dimension
~e.g., by exhibiting a finite latent heat!.

C(T) is defined by

C~T!5

(
n
E d2r ucn11~r !2cn~r !u2

2(
n
E d2r ucn~r !u2

. ~17!

At low T, where the vortex system forms a flux lattice wi
flux lines all parallel to thec axis, cn11(r )5cn(r ) and
henceC50. By contrast, deep in the liquid phase, the pha
of cn(r ) and cn11(r ) are uncorrelated, andC approaches
unity. To calculateC(T) and other ratios of spatial average
we evaluate the ratios at fixed time, and then average ov
period of time as described below.

Finally, the helicity modulus componentYcc(T) is defined
by the relation16

Ycc~T!5
1

V S ]2F

]az
2 D

T,V;a50

. ~18!

Hereaz is an additional uniform vector potential applied
the z direction ~besides that which is needed to produce
1-3
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magnetic field!, and V is the system volume. A further dis
cussion of the meaning ofYcc is to be found in Ref. 6. In the
mean-field approximation,Ycc(T) is approximated by
Ycc

MF(T)52Jdd0r ab
MF/F0

2 , where r ab
MF5uaHu/(bDb) is the

mean-field value of the quantityr ab defined in Eq.~15!. Ycc
is shown in Ref. 6 to drop discontinuously to zero atTM(B).

2. Dynamical quantities

The wave-number- and frequency-dependent conducti
of the vortex system can be computed using the Kubo
mula. If the frequenciesv satisfy the condition\v!kBT,
one may use the Kubo formula in the classical limit:17

smn~q,v!5
1

kBTVE dtE d3xd3x8eiq•(x2x8)2 ivt

3^ j m~x,t ! j n~x8,0!&. ~19!

Here j m(x,t) is the mth component of the current densit
and smn(q,v) is the mnth component of the complex con
ductivity tensor for a wave numberq and frequencyv, and
^•••& denotes an average over the thermal noise distribut

In the present work, we have considered only the cond
tivity componentsc , which requires only thec-axis current
density. Within the Lawrence-Doniach model, this curre
density, forz in the region between thenth and (n11)th
layer, is

j z
(n)~r ,t !5

\q

mcd
Im@cn11* ~r !cn~r !#. ~20!

If we expandc(r ) using the representation~3!, we find that
Jz(t)[(1/Nz)(n*d2r j z

(n)(r ,t) is

Jz~ t !5
\qLx,Ap

mcd
uc0u2J~ t !, ~21!

where

J~ t !5
1

Nz
Im (

k,n
cn11,k* cn,k . ~22!

Note that this current density includes only the Joseph
currents between the layers, and not any additional nor
currents which may be flowing in parallel.

The corresponding real fluctuation conductivitysc,1(v)
[Re@scc(q50,v)# follows from the Kubo formula~19!:

sc,1~v!5
d0

2Nz
2

kBTVE0

`

dt cos~vt !^Jz~ t !Jz~0!&. ~23!

Upon using Eq.~21!, it takes the form

sc,1~v8!

s0
5

NznxG
2~T!

ny
E

0

`

dt cos~v8t!^J~t!J~0!&,

~24!

wheres05q2t0uc0u2/mc , v85vt0, and
14451
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G2~T!5
2d0hg2~B,T!

31/4d
. ~25!

Besides the frequency-dependent conductivity, it is som
times of interest to compute theintegrated fluctuation con-
ductivity, g2, defined by18

g25
1

pE0

`

dv8sc,1~v8!. ~26!

With the use of Eq.~24!, g2 can be simplified to

g25
G2~T!s0nx

nyNz
^uJ~0!u2&, ~27!

whereJ(0) is given by Eq.~22!.

III. RESULTS

We have solved the Langevin equations~11! numerically
using a second order Runge-Kutta algorithm. In this alg
rithm, F is correct throughO(e2) in the time stepe.19 In
most of our simulations, we usede50.15t0; a smaller time
step of e50.05t0 was found to give similar results but t
require more computer time. The real and imaginary parts
the noise termjn,k8 (t) in Eq. ~11! are chosen from Gaussia
distributions with a mean zero and a variances2/e where
s252/@nxg

2(B,T)#. This choice insures that these term
have mean and variance which satisfy Eqs.~12! and ~13!.

In most cases, we have started our simulations from
low-temperature Abrikosov phase, then gradually increa
T, taking the initial state for a higherT as the equilibrium
state for the previous slightly lowerT. We have verified that
our results exhibit only a little hysteresis—that is, we obta
the same equilibrium and nearly the same dynamical res
whetherTM(B) is approached from below or from abov
We have found that our choice of initial state generally h
little effect on dynamics, providing we ‘‘anneal’’ our samp
for a long enough time as described in the next paragra
We have confirmed this lack of effect by obtaining simil
results for various calculated dynamical quantities whet
we begin by choosing an Abrikosov or a liquidlike initia
state.

For each temperature considered, we have allowed
system to equilibrate for a period ranging from 103 to 4
3106 time steps, before starting to compute averages,
larger number corresponding to temperatures close toTM .
We then run the dynamics for an additional 33104–106 time
steps at this temperature, and use these results to compu
averages.

To calculate the quantity of interest, we include in t
averages only the results obtained in everyN0 time steps,
whereN0 is chosen as explained below. If this procedure
used, then, according to Ref. 20, the consecutive values
cluded in the average become nearly statistically indep
dent. We chooseN0 using a criterion involving the so-calle
self-correlator. This self-correlator is defined by the relati
Cx(k)5(^xi 1kxi&2^xi&

2)/(^xi
2&2^xi&

2), where xi is the
physical quantity of interest at thei th time step, and̂•••& is
1-4
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a time average. With this definition,Cx(0)51; also,Cx(k)
decreases ask increases. The optimum choice ofk to be used
in the simulations~i.e., the optimum number of steps b
tween those included in the averages! is that which makes
Cx(k) as small as possible, typically less than 0.05. For
simulations, we find that this optimum value ofk[N0 is
typically between 20 and 50. In general, we find that coll
tive properties such as conductivity require much longer r
than single-particle properties such asr ab ; the optimum ratio
of collective to single-particle running times itself depen
on the system size.

As a test of our numerical algorithm, we have compu
several equilibrium properties of the system which have b
previously evaluated using Monte Carlo methods.6,7 Our re-
sults are shown in Fig. 1. For these calculations, the lat
used contained 636 vortices in theab plane and 12 layers in

FIG. 1. ~a! Ratio of the mean-square gapr ab @Eq. ~15!# to its
mean-field valuer ab

MF , and the ratio of the generalized Abrikoso
factorbA @Eq. ~14!# to its valuebD in a triangular lattice, plotted as
a function of ugu @Eq. ~9!#. ~b! The calculated ratios of the shea
modulusm and thec-axis helicity modulusYcc to their mean-field
valuesmMF andYcc

MF , as obtained from Langevin dynamical sim
lations, plotted as a function ofugu. Also shown isC(T) @Eq. ~17!#.
The lattice used containsNf5636 vortices in the ab-plane an
Nz512 layers in thec direction, with periodic boundary conditions
the interlayer coupling is chosen so thathugu50.02. The error bars
in this and later figures represent the standard deviations of re
from about five Langevin dynamical simulations run for equ
lengths of time.
14451
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thec direction. The coupling between the layers is chosen
hugu50.02. We emphasize that our calculations are inten
to probe a range of physically reasonable parameters, ra
than to describe any specific superconductor. In Ref. 7,hugu
was estimated to vary from 0.0075~BSCCO! to 0.30
~YBCO! in typical cuprate superconductors at temperatu
and magnetic fields where the LLL approximation is likely
be valid; our choice falls well within this range.

Figure 1~a! displays the generalized Abrikosov facto
bA /bn @Eq. ~14!# and the quantityr ab @Eq. ~15!# as a func-
tion of g @Eq. ~9!#. These results are similar to previous r
sults obtained using the Monte Carlo method.7 In Fig. 1~b!
we show the calculatedm/mMF @Eq. ~16!# versusugu. The
sharp drop inm/mMF nearugu'4 is clearly visible. Although
our sample sizes are quite small, the calculated equilibr
quantities still show the expected behavior of larger samp
though somewhat broadened by the substantial finite-size
fects.

Also shown in Fig. 1~b! is the interlayer coupling strengt
parameterC(T) @Eq. ~17!# and the helicity modulus compo
nentYcc(T), both plotted as functions ofugu. Both of these
quantities~which are sensitive toz-axis coherence! show a
drop nearugu'4, but C(T) is expected to vary smoothly
through this region ofugu, while Ycc(T) is expected to drop
discontinuously to zero in the thermodynamic limit; som
evidence of this distinction can be seen in the figure. T
simultaneous drop inm/mMF and Ycc(T) nearTM suggests
that there is simultaneous flux lattice melting in theab plane
and interlayer decoupling in thec direction, nearT5TM ,
consistent with previous calculations in clean systems.5–7,14

Next, we turn to the dynamics of the system. We ha
calculated^Jz(t/t0)Jz(0)& as a function of various system
parameters. In Fig. 2, we plot this correlation function a
function of t/t0 for several values ofugu both above and
below the expected melting point, denotedugMu. (ugMu'4
for lattices of this size and our choice of parameters.5,7!
Clearly, the decay rate slows considerably as melting is
proached from higher temperatures, i.e., from smaller val
of ugu. However, the decay rate is rapid and only weak
dependent onugu in the vortex lattice phase,ugu.ugMu.

To make thisugu dependence more apparent, we plot
Fig. 3 the half-lifet1/2 of this correlation function versusugu
for two different system sizes, normalized byNzt0 . t1/2 is
defined as the time at whicĥJz(t/t0)Jz(0)& has fallen to
half its t50 value. Consistent with Fig. 2,t1/2 is relatively
small in both the solid and the liquid phases far fromugMu; it
increases noticeably asugMu is approached from the liquid
but not from the solid phase. Despite this increase, we
lieve thatt1/2 will not diverge atugMu, becauseugMu corre-
sponds to a first-order melting transition, with no dynamic
critical phenomena such as a diverging correlation time.

Figures 4~a! and~b! showsc,1(v8), as obtained from Eq
~23! for several values ofv8, and for two different system
sizes. The lines simply connect the calculated points. T
melting valueugMu'4, as estimated from Fig. 1~b!. For v8
50.004 and 0.008,sc,1(v8) increases strongly asugMu is
approached from the liquid side. There is a smaller incre
at higherv8, because the transition primarily affects fluctu

lts
l

1-5
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FIG. 2. Normalized correlation function
CJ(t)5^J(t)J(0)&/^J(0)2& plotted as a func-
tion of t for several values ofg as indicated in
the figure. The freezing transition occurs atugu
'4 for this lattice size. Note the expanded ho
zontal scale. The lattice used here has 16 vorti
in each plane, and 16 planes (16316 lattice!, and
we choosehugu50.05.
e

to

u-

c

e.
d

se

f

ng
ur

,

hey
tions on a lower frequency scale. In the solid phase, ther
little evidence of fluctuations insc,1(v8), which remains
very small at nonzero frequencies for allugu.ugMu studied.
At fixed ugu in the liquid phase nearugMu, we expect
sc,1(v8) to decrease monotonically with increasingv8; we
ascribe any deviation from monotonic behavior in Fig. 4 is
numerical uncertainties. Similarly, althoughsc,1(v8) some-
times seems to peak at a value ofugu slightly smaller than
ugMu, we believe that this behavior also lies within our n
merical uncertainties.

In Fig. 5 we show the total integrated fluctuation condu
tivity g2 @Eq. ~27!#, in units ofs0G2(T), plotted as a func-
tion of ugu for two lattice sizes. We have computedg2 using
the equilibrium expression Eq.~27!, which is equivalent to
the frequency integral of the quantity shown in Figs. 4~a! or
~b!. As ugMu is approached from the liquid side;g2 falls
sharply atugMu, to a small value in the vortex lattice phas
This drops is expected to be discontinuous in the thermo

FIG. 3. Half-life t1/2 characterizing the decay rate o
^Jz(t/t0)Jz(0)& plotted as a function ofugu. The full lines simply
connect the calculated points. Error bars have the same meani
in Fig. 1. The sizes of the lattice used are indicated in the fig
legend and the interlayer coupling is chosen so thathugu50.05.
14451
is

-

y-

namic ~large size! limit. As previously, the full lines simply
connect the calculated points. Note thatg2 /@s0G2(T)# is
approximatelyugu independent in the liquid phase, becau
of the way it is normalized (G2}g2).

as
e

FIG. 4. ~a! The real part of the fluctuation conductivity
sc,1(v8)/@s0G2(T)#, plotted versusugu for several values ofv8 for
a 434310[16310 lattice.~b! Same as~a! except that the lattice
size is 434316. Note the sharp increase insc,1(v8) in the vortex
liquid phase near and belowugMu for smallv8. The parameters are
the same as in Fig. 2. For clarity, we do not show error bars; t
are comparable to those of Fig. 3.
1-6
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IV. DISCUSSION

The present results are consistent with the scenario
first-order melting transition atTM(B), where long-range
vortex order in theab planes, and in thec direction, disap-
pear simultaneously. This interpretation is supported by
behavior of the helicity modulusYcc(T) and shear modulus
m(T), both of which vanish at the same temperatureT. Al-
though the present calculations are limited to relatively sm
samples~with fewer than 50 vortex pancakes per plan!,
similar behavior has been observed in Monte Carlo simu
tions for considerably larger systems.5–7

The behavior ofdynamicalproperties, such assc,1(v8),
is also consistent with first-order melting. For smallv8,
sc,1(v8) shows a strong increase asT approachesTM from
above. This behavior occurs because, in the solid phase
vortex pancakes in adjacent layers lie above one anothe
a result, fluctuating currents between the layers are small
the other hand, when the lattice melts~low ugu or high T),
the vortex pancakes in adjacent layers no longer lie dire
above one another; hence fluctuating phase gradients
tween the layers increase the current fluctuations and
fluctuation conductivity. In the liquid phase,sc,1(v8) de-
creases with decreasingugu, becauset1/2 is becoming
smaller. However,sc,1(v8) once again appears to show
discontinuity rather than a divergence atugMu, consistent
with the first-order nature of the transition.

Why doessc,1(v8) in the liquid state, shown in Fig. 4 fo
several frequencies, decrease with increasing temperatuT
above TM? We believe this decrease occurs because
shown in Fig. 3,t1/2 decreases with increasingT. By con-
trast, the quantityg2 /(s0G2), shown in Fig. 5, behaves dif
ferently from sc,1 : it has a discontinuity atTM but varies
slowly in the liquid. The lack of any clear peak i
g2 /(s0G2) nearTM can be understood from Eq.~26!, which
shows thatg2 is independent oft1/2, depending only on
equal-time current density fluctuations att50. By contrast,
sc,1(v8) is sensitive tot1/2 especially for smallv8.

At this point, we briefly comment on a seemingly cou
terintuitive feature of the dynamical results shown in Figs
namely, thatsc,1(v8) is small in the vortex lattice phase fo

FIG. 5. The integrated fluctuation conductivityg2 /@s0G2(T)#
plotted as a function ofugu for two lattice sizes as shown in th
figure legend. The parameters are the same as in Fig. 2
14451
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nonzerov8, even well belowTM . Intuitively, one might
expect, since this phase is superconducting, with a finite
licity modulus in thec direction, thatsc,1(v8) would be
large in this regime. However, this behavior is actua
physically reasonable; our picture of the underlying phys
is the following. We believe thatsc,1(v8) corresponding to
our model dynamics is the sum of two parts:~i! the fluctua-
tion conductivity shown in Figs. 4~a! and~b! ~whose integral
is shown in Fig. 5; and~ii ! a delta function at zero frequency
corresponding to perfect conductivity. The delta functi
does not appear in Figs. 4~a! or ~b! because those calcula
tions are carried out at finite frequency, nor does it appea
the integral shown in Fig. 5. The strength of this delta fun
tion is proportional to the helicity modulus shown in Fi
1~b!, which vanishes forT.TM . Thus sc,1(v8) is small
belowTM simply because thefluctuationcontributions to the
conductivity are small in this temperature range; the sys
is still phase coherent in the c-direction and still has a fin
helicity modulus belowTM . Although it may seem strang
thatsc,1(v8) is small forT,TM and finitev8, this behavior
is not unprecedented. For example, in low-Tc s-wave super-
conductors, the existence of a finite gap belowTc means that
s1(v)50 for T,Tc and for\v smaller than twice the en
ergy gap.

To our knowledge, no direct measurements ofsc,1(v8)
have been carried out in the cuprate superconductors in
high-field, clean-limit regime where our calculations mig
be applicable. We therefore comment briefly on an entir
different experiment in which the reported behavior som
what resembles that shown in Fig. 4. This is a rec
study of the frequency-dependent conductivity
BiSr2Ca2CuO81dwithin the ab plane at zero applied mag
netic field.21 This experiment reports a rather sharp peak n
Tc in the real part of the in-plane conductivity at about 0
THz. This peak is thought to be due to fluctuations in t
phase of the order parameter which are strongest nearTc ,
and weaker both above and belowTc . We believe that simi-
lar fluctuations~probably in the amplitude of the order pa
rameter as well as the phase! are producing the increase i
sc,1(v8) in the present model nearTM . These fluctuations
are, we believe, limited in size because the melting transi
is first-order rather than continuous, and they are relativ
small for T,TM .

The present calculations may be relevant toc-axis trans-
port atstrongmagnetic fields~where the LLL approximation
is adequate! in a clean high-Tc superconductor~where a
first-order vortex lattice melting is expected!, provided a
Langevin dynamics is appropriate. We have tried to estim
the numerical value of our calculatedsc,1(v8) @Eq. ~24!# for
reasonable experimental parameters. Forv8!1 or vt0!1,
sc,1(v8) has the same order of magnitude as the quantit

s0G2~T!5q2t0~2d0 /p,2\2!kBT~hg!2g2. ~28!

All the quantities in this equation are easily determined
cept t0. We attempt to estimatet0 using an early pape
by Schmid,22 in which the time-dependent Ginzburg
Landau equation is derived from the original BCS theo
within the Gor’kov approximation. Schmid finds thatt0
1-7
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'h/@32kBTc0(12T/Tc0)(12B/Hc2)#, where Tc0 is the
mean-field superconducting transition temperature atB50.
Taking Tc0;80 K, T;60 K, we findt0;4310214 sec at a
field of 5 T. Substituting this value into Eq.~28!, and using
hg50.05, g2;20, and d0;5 Å, we obtain s0G2;5
31011 esu, or about 0.06V21 cm21. This conductivity is
considerably smaller than the apparentc-axis conductivity in
the vortex liquid state, even in a very anisotropic mate
such as BiSr2Ca2CuO81d .23 Thus it might be difficult to
observe the fluctuation contribution in a clean anisotro
superconductor, unless we have substantially underestim
t0. Such an underestimate is possible, since the calculat
of Schmid are based on a microscopic theory which may
be directly applicable to the layered high-Tc materials.

Few experiments appear to have measured thec-axis re-
sistivity at the high fields where the LLL approximatio
would be most accurate. Fuchset al.23 working at far lower
fields (;25–200 Oe), have observed a simultaneous dis
pearance of resistivity in theab plane and in thec direction
~indicating a single phase transition!, and an abrupt increas
in the c-axis resistivity at a temperature just above that tr
sition. However, their experiments are done at such frequ
cies ('72 Hz) that the inductive contribution is very dom
nant in the solid phase.

Finally, we briefly discuss the fact that our calculated h
teretic effects are very small in the vicinity of the first-ord
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