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Langevin vortex dynamics for a layered superconductor in the lowest-Landau-level approximation
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We have numerically investigated the dynamics of vortices in a clean layered superconductor placed in a
perpendicular magnetic field. We describe the energetics using a Ginzburg-Landau free-energy functional in the
lowest-Landau-level approximation. The dynamics are determined using the time-dependent Ginzburg-Landau
approximation, and thermal fluctuations are incorporated via a Langevin termc-@kis conductivity at
nonzero frequencies, as calculated from the Kubo formalism, shows a strong but not divergent increase as the
melting temperaturely, is approached from above, followed by an apparently discontinuous drop at the
vortex-lattice freezing temperature. The discontinuity is consistent with the occurrence of a first-order freezing.
The calculated equilibrium properties agree with previous Monte Carlo studies using the same Hamiltonian.
We briefly discuss the possibility of detecting this fluctuation conductivity experimentally.
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[. INTRODUCTION free-energy functional of a layered superconductor, treated in
the LLL approximation, and are carried out as a function of

Vortices in the mixed state of a clean type-ll supercon-temperature at fixed magnetic field. The dynamics are treated
ductor are believed to break the translational symmetry an@ithin the time-dependent Ginzburg-Landau approximation,
form a triangular Abrikosov lattice for magnetic fieRlex-  with Langevin noise included to simulate the effects of ther-
ceeding the lower critical fieldH ;. At a sufficiently high ~ mal fluctuations. A previous calculation, for a similar model
temperaturél, thermal fluctuations are expected to melt thisin two dimensions, and with spherical rather than periodic
lattice and restore the translational symmetry through doundary conditions, has been carried out by Kienappel and
solid-liquid phase transition. However, in most Iy-super- Moore!® The LLL approximation is expected to be most
conductors, this melting occurs near the upper critical fieldaccurate at strong magnetic fieldsl £/3<B<H,), but
He. and is thus difficult to distinguish from the usual may have a slightly broader range of validity at low tempera-
superconducting-normal transition. In the highcuprates, tures, since a weak participation of higher Landau levels at
however, this melting transition is typically well separatedsuch temperatures can be incorporated by a suitable renor-
from H,. malization of the LLL model parametets.The LLL ap-

Many experiments suggest that this solid-liquid phaseproximation fails, however, at weak magnetic fields, because
transition isfirst order. For example, the resistivity of un- it omits the effects of thermally induced vortex-antivortex
twinned single crystals of YB&u;O;_s (YBCO) drops pairs. Consistent with previous Monte Carlo studies, we find
sharply at a temperaturg,, well below theH.,(T) line!  a single first-order liquid-solid phase transition with simulta-
This temperature also coincides with a discontinuous jump ifeous loss of in-plane and interplane vortex order. However,
the magnetizatiod® Most distinctively, both a latent heat the Langevin simulation also yields information about dy-
and a specific-heat discontinuity have been observed at tHgamical properties such as the conductivity. In particular, we
transition. These signatures have been seen in untwinndthd that thec-axis conductivity shows a striking, but not
single crystals of YBCO for magnetic fields both parallel anddivergent, increase as the first-order melting temperature
perpendicular to the axis? Tw(B) is approached from above.

The first-order nature of the transition is supported by a The remainder of this paper is organized as follows. In
number of theoretical mode¥s® At least at high fields, this Sec. Il we describe the Langevin model, and our method for
transition is thought to represent a simultaneous melting o¢alculating various static and dynamic quantities from the
the vortex lattice in theb plane and decoupling of the vor- model. Our results are presented in Sec. Ill, followed by a
tex “pancakes” in different layers. For example, numerical brief discussion in Sec. IV.
studies of layered superconductors, using Monte Carlo meth-
ods applied to a model Hamiltonian in the lowest-Landau-
level (LLL) approximation, suggest a simultaneous melting
and decoupling transitiot.” A similar conclusion is also A. Model Hamiltonian and dynamical equations
suggested by studies of melting using an analogy with a
two-dimensional(2D) Bose systerfi. On the other hand,
some workers have suggested that the LLL actually gives n
phase transition at all, but only a crossover associated wit
interlayer decoupling.

In this paper, we extend previous numerical studies of flux
lattice melting to treat thelynamicsof a vortex system. Our _ j 2
calculations are based on a Lawrence-Doniach model for the 4 dozn: Aol (1) @

Il. FORMALISM

We consider a three-dimension&D) superconductor
consisting of a stack of Josephson- or proximity-coupled 2D
yers. We assume that this system is described by the free-
nergy functional
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Heren is the layer indexd, is the thickness of one layer, and  Using Eq.(3) for the order parameter, we can rewrite Eq.

(1) as
1
f N]=a(T)|¢gn(N]?+ = N[*+
L ¥n(1)]=a(T)|n(r)] 2/3|¢//n( )| T oS (4 FO), )
n
A 2 2 _
X —ihV—%) Pa(r)| + Sle xnna where F$) is the free energy per layer, and{" is the
2mcd coupling between thath and f+ 1)th layers. These terms
X 2(1) = (D)2 (g takethe form

(1) is the order parameter of threth layer,q= —2e is the () — N2 2
charge of a Cooper paid, is the distance between the layers, Faol(keT)=g7(B,T)n, sgr(aH); [Cnd
and «(T), B, my,, andm; are material-dependent param-

eters. The phase factoy, i 1=(2m/®) [y DdzA,, . 1 ot ot ¢
where ®,=hc/2e is the flux quantum and\ is the vector 4 k,Ep,q 0(P:@)CniChcs pCnicoCrkpg
potential. We will assume that the external magnetic field ©6)

B|/z, i.e., perpendicular to the layers, so that,.;=0, and

we choose a gauge such that —ByX. We also neglect and

screening currents and fluctuations of the vector potential, so

that the local and externally applied magnetic fields are FO/(kaT)=a2(B.T)N C —C 2 7

equal. This should be a good approximation when the c'/(keT)=0"(B.T) ank [Cen=Cnsal®s (@)

Ginzburg-Landau parameter>1, as in the cuprate super-

conductors. Finally, we assume th&ais uniform throughout

the superconductor. vy 2,2, .2
In the LLL approximation, the order parameter in each v(p,g)= V2wt toexd — £5(p°+97)/2], ®

layer is expanded as

Here, we have defined

g%(B,T)=mt?doay/ (BKsT), ©)
= and introduced the dimensionless interlayer coupling
) %; CnichdX.¥). 3 strengthn=J/| | whereJ=%2/(2m.d?) is the Josephson
coupling between the layers. The quantity sgi(=—1 or
where +1 in the superconducting or normal regimes; the mean-
x . 5 field instability occurs wherey(T)=0.
bi(x.y)=e"exd — (y—k€)/(2€9)], (4) The parameteg?(B,T) represents the ratio of the super-

are the lowest eigenstates of the kinetic energy operatocronduCting condensation energy per vortex per layer
: ; _ ¢2dgad/ B to the thermal T within the Gi -
(—iAV—qA/c)?/(2m?,), corresponding to eigenvalue m{"doay/ B 10 the thermal energts T within the Ginzburg

Landau approximation. Note that, for fixed,, g2(B,T)
hqB/(2myc). Here ¢0:[”€2|“H(T)lljl(_eéﬁz)]l/“' an(T)  yaries inversely with temperature. Thus a plot of system
=a(T)(1-B/Hcy), €=1(/|2q|B/ﬁc) is the magnetic ,,herties as a function ¢ may be viewed as a plot as a
length, andto=(4/ \/3) €. The magnitude offg is cho-  fynction of T for fixed B; howeversmall|g| representtarge
sen so that the spatial average|@h(r)|? is |anl/(BB2) T (vortex liquid phase Previous calculatiofid have pro-
with 8,=1.169 - - when the vortices are arranged in a tri- yided evidence that there is a first-order vortex-lattice melt-
angular lattice. . _ . _ing transition as a function aj?.

We assume the'system is a parallelepiped .qf dmensmns We study the dynamics of this system using the time-
Lx, Ly, andL,, with periodic boundary conditions in all gependent Ginzburg-Land4@DGL) equation in the pres-

three directions. We choosg=N.d, whereN, is an integer.  ence of a Langevin noise term. We write this equation as
The periodicity condition in thex direction ¢,(x+L,,y)

=i,(X,y) implies k=27m/L,, wherem is an integer. If an(r,t)
each layer containbl, vortices, there will beN, indepen- r nt = " +&u(r 1), (10
dentc, s labeled bym=0, ... ,(N,—1). The periodicity J Sy (r,t)

constraint in they direction, |¢(x,y+L)|=[¢(x,y)|, im-
plies thatc, ,, =c, , for all m"=m moduloN,, . Finally, the
periodicity constraint in the direction implies that:mNZ’k

whereI" is the relaxation time parameter, agdr,t) is a
white-noise term characterized by the correlation functions

=Cn k. Besides these periodicity conditions, the cell dimen- (&4(r,1))=0,
sions in thex andy direction are chosen to be compatible
with a possible triangular lattice. This choice may be written (E(r 1) &0 (1',0)) =2k TT S(r—r") 8, v 8(1),

as LX/Ly=2nX/(\/§ny) wheren, andn, are the number of
vortices along a given row or column parallel to tkery  where(- - -) denotes an ensemble average. We assumé'that
direction, andN ,=n,n, . is real because the system has particle-hole symmetry; with
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our choice of units]" has the same dimensions #s The 1
noise term ensures that the system will remain in a steady Fab= N > f d?r[ (1), (15
state at temperaturg Zoxmy n

Langevin dynamical calculations have previously beenwhich at low temperatures reaches the mean-field value
carried out by Ryu and Strolftto study vortex lattice melt- rgﬂlleaHV(BA:B)- Both B, and r,, vary smoothly with
ing for both clean and dirty higfi-, layered superconductors. temperature and thus do not show any special behavior at the
They differ from the present calculation by using a differentflux lattice melting temperatur&,,(B). We have therefore
equilibrium free-energy functiona¥ than ours. In the model also examined three other equilibrium quantities which more
of Ref. 12, the flux lines cannot be broken; this featureclearly show signals of this transition: the isothermal shear
should lead to rather different results from those obtained ifmodulusw(T) of the flux lattice; a quantity we denot%T),

the present model calculations. which measures the degree of coherence between vortices in
In the present LLL expansion, the TDGL equation may beadjacent layers; and trezcomponent of the helicity modu-
rewritten as lus tensor,Y .(T), which measures stiffness against a long-
wavelength twist in the phase of the order parameter.
den k The shear modulug(T) is defined* by
9, | SOrlan)Cnk
(M= ’QZF) 16
1 pM=7| 5 :
+ 2 E U(k_pvq)C:,p+an,k+an,q Nebiby 96 T,0=0

p.q
where 6 is the shear angle. The free energycan be ob-

—7(Cho1x—2ChktCryr) T K(T). (11 tained from Eq. (5), using F=—kgTInZ where Z
=Tre 7%eT and the trace is taken over the classical vari-
Here we have introduced a dimensionless time variable ablesc,, , andc? . An explicit 2D form foru(T) in the LLL
=|ay|t/IT=t/t,, whereto=T"/|ay| is a characteristic relax- approximation has been given in Ref. 14, where it has been
ation time. The noise terrﬁ’ is now described by the corre- found that M(T) reaches its mean-field vaIuaMF(T)
lation functions® =0.354N 4kgTg?(T) at low T and it vanishes everywhere in
the liquid phase. If the transition between the vortex solid
(&hx(1)=0; (12  and vortex liquid state is first order, then(T) will, in the
thermodynamic limit, jumpdiscontinuouslyfrom a finite
value to zero afTy(B). However, such a jump doasot
Serr S (7= 7). prove that the melting transition is first order, since certain
o continuous melting transitions in two dimensions also have a
(13)  jump in u(T) at melting'® However, other independent cal-
culations give evidence that the melting transition is first
order within the LLL approximation in three dimensions
(e.g., by exhibiting a finite latent heat

(&' mk(DE (T )>=m

B. Calculated quantities

1. Equilibrium quantities C(T) is defined by
Equilibrium quantities can be computed as time averages
of the solutions to the TDGL equations, either in the solid or 2 J A2 | s 1(r) — gn(1)|?
the liquid phase. According to the ergodic hypothesis, this o(T)= n 17)
procedure should give the same results as an equilibrium 5 ) '
average obtained by treating E@) as a Hamiltonian. We 22;4 f d°r|¢rn(r)]

have, in fact, confirmed this point by comparing some of our _ .
results with those obtained earlier by other workers from EqAt low T, where the vortex system forms a flux lattice with

(5) using Monte Carlo techniqués. flux lines all parallel to thec axis, ¢, 1(r) = n(r) and
We have evaluated several thermodynamic properties dienceC=0. By contrast, deep in the liquid phase, the phases
the system. One is the generalized Abrikosov factor of ¢n(r) and ¢,.,(r) are uncorrelated, and approaches

unity. To calculate’(T) and other ratios of spatial averages,
we evaluate the ratios at fixed time, and then average over a

> f d?r| g (r)|* period of time as described below.
_ " Finally, the helicity modulus componehit.( T) is defined
=N,L,L . 14 '

Pa=Nebx V[E fd2f|¢(f)|2 s 4 by the relation®
n
Y (T)= L[ 7F 18
When the vortices form a triangular lattic8, reaches its o T)= V| 932 ' (18)
Z/ T,V;a=0

minimum value ofB, , but exceeds this value for other vor-
tex configurations. We have also computed the spatial aveHere a, is an additional uniform vector potential applied in
age of|y,(r)|?, defined as the z direction (besides that which is needed to produce the

144511-3



W. A. AL-SAIDI AND D. STROUD PHYSICAL REVIEW B 68, 144511 (2003
magnetic fielg, and V is the system volume. A further dis-
cussion of the meaning a&f . is to be found in Ref. 6. In the
mean-field approximation,Y .(T) is approximated by
YMF(T)=23ddyrM/d32, where r¥F=|ay|/(BsB) is the
mean-field value of the quantity,, defined in Eq(15). Y ¢

is shown in Ref. 6 to drop discontinuously to zerdlgi(B).

_ 2007g’(B.T)

2
G (T) 31/4d

(25)
Besides the frequency-dependent conductivity, it is some-
times of interest to compute thirtegrated fluctuation con-
ductivity, y,, defined by®

2. Dynamical quantities 1 (=

The wave-number- and frequency-dependent conductivity 7’2—;J0 do’og ("), (26)
of the vortex system can be computed using the Kubo for- o
mula. If the frequencies» satisfy the conditioiw<kgT,  With the use of Eq(24), y, can be simplified to
one may use the Kubo formula in the classical liMit: 2

G (T)UOnX 2
V2= (O, (27)
y'vz

1 ) o
UMV(q,w)me dtf d3xd3x’e'q‘(X*X)*'wt

X(J (X D] ,(X,0)).

Here j ,(x,t) is the uth component of the current density,
ando,,(q,w) is the uvth component of the complex con-
ductivity tensor for a wave numbey and frequency, and

(---) denotes an average over the thermal noise distributi

where 7(0) is given by Eq.(22).

19
Ill. RESULTS

We have solved the Langevin equatiqig) numerically
using a second order Runge-Kutta algorithm. In this algo-
offithm, F is correct throughO(€?) in the time stepe.*® In

In the present work, we have considered only the conduc0St Of our simulations, we used=0.19,; a smaller time

tivity componenta,, which requires only the-axis current  SteP 0f€=0.0%, was found to give similar results but to
density. Within the Lawrence-Doniach model, this currentr®duire more computer time. The real and imaginary parts of

density, forz in the region between thath and f+ 1)th
layer, is

fiq
m.d

() = im0 ()], (20
If we expandy(r) using the representatid), we find that

J()=(1N)Z fd?rj(r,t) is

ChqLtm
J(1)= m—cd|¢o| J), (21)
where
1 *
Jt)= N Im k§‘a Xy 14Cnk - (22

the noise tern¥;, (7) in Eq. (11) are chosen from Gaussian
distributions with a mean zero and a variane® e where
o?=2/n,g?(B,T)]. This choice insures that these terms
have mean and variance which satisfy E4®) and (13).

In most cases, we have started our simulations from the
low-temperature Abrikosov phase, then gradually increased
T, taking the initial state for a high€F as the equilibrium
state for the previous slightly lowdr. We have verified that
our results exhibit only a little hysteresis—that is, we obtain
the same equilibrium and nearly the same dynamical results,
whetherT,,(B) is approached from below or from above.
We have found that our choice of initial state generally has
little effect on dynamics, providing we “anneal” our sample
for a long enough time as described in the next paragraph.
We have confirmed this lack of effect by obtaining similar
results for various calculated dynamical quantities whether
we begin by choosing an Abrikosov or a liquidlike initial
state.

Note that this current density includes only the Josephson Eq; each temperature considered, we have allowed the
currents between the layers, and not any additional normagystem to equilibrate for a period ranging from31@® 4

currents which may be flowing in parallel.
The corresponding real fluctuation conductiviiy 1(w)
=Rq 0..(q=0,0)] follows from the Kubo formula19):

2N12

2N [
7o)~ g | BHCOL(IA0I(0)).

(23

Upon using Eq(21), it takes the form

O'C,l(wl) _ N

0o

2 o]
an (T)fo drcog ' 7){(J(7)J(0)),
’ (24

where o= 0%to| o|?/m., 0’ =wty, and

x 10° time steps, before starting to compute averages, the
larger number corresponding to temperatures closg,fo

We then run the dynamics for an additionat 30°*—1 time

steps at this temperature, and use these results to compute the
averages.

To calculate the quantity of interest, we include in the
averages only the results obtained in evly time steps,
whereNg is chosen as explained below. If this procedure is
used, then, according to Ref. 20, the consecutive values in-
cluded in the average become nearly statistically indepen-
dent. We choos@l, using a criterion involving the so-called
self-correlator. This self-correlator is defined by the relation
Clk) = ({Xi410) = (X)) ((XF) = (x;)?), where x; is the
physical quantity of interest at théh time step, and- - - ) is
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@ the c direction. The coupling between the layers is chosen as
184 7/g|=0.02. We emphasize that our calculations are intended
to probe a range of physically reasonable parameters, rather
164 4 B4/ Ba than to describe any specific superconductor. In Ref|d|
was estimated to vary from 0.0078BSCCO to 0.30
144 lrab/r%f (YBCO) in typical cuprate superconductors at temperatures

and magnetic fields where the LLL approximation is likely to
be valid; our choice falls well within this range.

Figure Xa) displays the generalized Abrikosov factor
BalBx [EQ. (14)] and the quantity 5, [Eq. (15)] as a func-
tion of g [Eq. (9)]. These results are similar to previous re-
sults obtained using the Monte Carlo metHold. Fig. 1(b)
we show the calculateg/u™F [Eq. (16)] versus|g|. The
sharp drop inu/uMF near|g|~4 is clearly visible. Although
our sample sizes are quite small, the calculated equilibrium
quantities still show the expected behavior of larger samples,
though somewhat broadened by the substantial finite-size ef-
fects.

Also shown in Fig. 1b) is the interlayer coupling strength
parameteC(T) [Eq. (17)] and the helicity modulus compo-
nentY .(T), both plotted as functions ¢§|. Both of these
quantities(which are sensitive t@-axis coherengeshow a
drop near|g|~4, but C(T) is expected to vary smoothly
through this region ofg|, while Y .(T) is expected to drop
discontinuously to zero in the thermodynamic limit; some
. ] . . evidence of this distinction can be seen in the figure. The

5 4 6 8 simultaneous drop in/uMF and Y (T) nearT,, suggests
lgl that there is simultaneous flux lattice melting in tdeplane
and interlayer decoupling in the direction, nearT=T,,,

FIG. 1. (a) Ratio of the mean-square gap, [Eq. (15)] to its  consistent with previous calculations in clean systems?
mean-field valug}y , and the ratio of the generalized Abrikosov  Next, we turn to the dynamics of the system. We have
factor B4 [Eqg. (14)] to its valueg, in a triangular lattice, plotted as  calculated(J,(t/t5)J,(0)) as a function of various system
a function of|g| [Eq. (9)]. (b) The calculated ratios of the shear parameters. In Fig. 2, we plot this correlation function as a
mOdU'US,lL and thec-axis heIICIty mOdU'USYCC to their mean-field function of t/to for several values Ofgl both above and
valuesuy e andYQ"CF, as obtained from Langevin dynamical simu- pelow the expected melting point, denotiegy|. (|gu|~4
lations, plotted as a function ¢f|. Also shown isC(T) [Eq.(17)].  for |attices of this size and our choice of parameféys.
The lattice used containd,=6x6 vortices in the ab-plane and cearly, the decay rate slows considerably as melting is ap-
N,=12 layers in thet direction, with periodic boundary conditions; 44 hed from higher temperatures, i.e., from smaller values
Fhe '.merlayer Cou.p"ng is chosen so thyig| =0.02. Th.e error bars of |g|. However, the decay rate is rapid and only weakly
in this and later figures represent the standard deviations of resun&ependent or119| in the vortex lattice phas¢g|>|g |
from about five Langevin dynamical simulations run for equal ; M- .
lengths of time. . To make th|§|g| dependence more apparent, we plot in

Fig. 3 the half-lifery,, of this correlation function versyg|
a time average. With this definitiog,(0)=1; also,C,(k) for two different system sizes, normalized byty. 745 iS
decreases dsincreases. The optimum choicelofo be used defined as the time at whicf,(t/ty)J,(0)) has fallen to
in the simulations(i.e., the optimum number of steps be- half its 7=0 value. Consistent with Fig. 2Z;, is relatively
tween those included in the averapés that which makes small in both the solid and the liquid phases far fray|; it
C,(k) as small as possible, typically less than 0.05. For ouincreases noticeably agy| is approached from the liquid
simulations, we find that this optimum value k&Ny is  but not from the solid phase. Despite this increase, we be-
typically between 20 and 50. In general, we find that collecdieve thatry, will not diverge at|gy|, becausegy| corre-
tive properties such as conductivity require much longer runsponds to a first-order melting transition, with no dynamical
than single-particle properties suchrgg; the optimum ratio ~ critical phenomena such as a diverging correlation time.
of collective to single-particle running times itself depends Figures 4a) and(b) showo, ("), as obtained from Eq.
on the system size. (23) for several values o', and for two different system

As a test of our numerical algorithm, we have computedsizes. The lines simply connect the calculated points. The
several equilibrium properties of the system which have beemelting value|gy|~4, as estimated from Fig.(H). For o’
previously evaluated using Monte Carlo meth6d©ur re- =0.004 and 0.008¢ (@) increases strongly agy| is
sults are shown in Fig. 1. For these calculations, the latticepproached from the liquid side. There is a smaller increase
used contained 8 6 vortices in theab plane and 12 layers in  at higherw’, because the transition primarily affects fluctua-

()
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1 1
0.8 0.8
06 lgl=74 06 lgl=3.8
0.4 04
0.2 0.2 ) . .
) ) FIG. 2. Normalized correlation function
_ Cy(7)={( A7) T(0))/{J(0)?) plotted as a func-
& 0 02040608 1 12 14 0 05 115 2 25 3 33 tion of 7 for several values o as indicated in
S I the figure. The freezing transition occurs |gt
0.8 0.8 ~4 for this lattice size. Note the expanded hori-
05 lgl= 2.8 06 lgl= 1.8 zontal scale. The lattice used here has 16 vortices
in each plane, and 16 planes (466 lattice, and
0.4 04
we chooser|g|=0.05.
02 0.2
0 0 -~ A
0 05 I 15 2 25 3 35 0 02 04 06 08 1 12 14
T /10° T /10°

tions on a lower frequency scale. In the solid phase, there isamic (large size limit. As previously, the full lines simply
little evidence of fluctuations irr¢,(w"), which remains connect the calculated points. Note that/[ 0oG%(T)] is
very small at nonzero frequencies for | >|gy| studied. approximately|g| independent in the liquid phase, because
At fixed |g| in the liquid phase neatg,|, we expect of the way it is normalized G2=g?).

o.1(w") to decrease monotonically with increasiag; we
ascribe any deviation from monotonic behavior in Fig. 4 is to @

numerical uncertainties. Similarly, although ;(w’) some- 41
times seems to peak at a value|gf slightly smaller than s’ =0.004
|gul|, we believe that this behavior also lies within our nu- -~ s’ =0.008
merical uncertainties. I A e’ =0.01
In Fig. 5 we show the total integrated fluctuation conduc- Iy *xw' =0.02
tivity v, [Eq. (27)], in units of 0,G?(T), plotted as a func- <27
tion of |g| for two lattice sizes. We have computegd using S
the equilibrium expression E@27), which is equivalent to 14+
the frequency integral of the quantity shown in Fig&)4r
(b). As |gy| is approached from the liquid sidey, falls ol .
sharply at|gy|, to a small value in the vortex lattice phase. J 5 3 4 5 6 7 s
This drops is expected to be discontinuous in the thermody- gl
b
5 -
P s’ =0.004
20+ o sw' =0.008
. aJ6x 10 %5 :z:fgg;
2 =16x 16 < '
kS S 27
Ty
(9 L
0+
1 2 3 4 5 6 7 8
F4)
|g| FIG. 4. (a) The real part of the fluctuation conductivity,

oc1(w')I[a,G?(T)], plotted versusg| for several values ob’ for
FIG. 3. Half-life 7, characterizing the decay rate of a 4xX4X10=16xX10 lattice.(b) Same aga) except that the lattice
(J,(t/tp)J,(0)) plotted as a function ofg|. The full lines simply  size is 4<4x 16. Note the sharp increasedn ;(»") in the vortex
connect the calculated points. Error bars have the same meaning kguid phase near and belo\gy| for smallw’. The parameters are
in Fig. 1. The sizes of the lattice used are indicated in the figureghe same as in Fig. 2. For clarity, we do not show error bars; they
legend and the interlayer coupling is chosen so #jat=0.05. are comparable to those of Fig. 3.
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nonzerow’, even well belowT,,. Intuitively, one might
expect, since this phase is superconducting, with a finite he-
licity modulus in thec direction, thato. (»’) would be
large in this regime. However, this behavior is actually
physically reasonable; our picture of the underlying physics
is the following. We believe that ;(w’) corresponding to
our model dynamics is the sum of two parts: the fluctua-
tion conductivity shown in Figs.(4) and(b) (whose integral

is shown in Fig. 5; andii) a delta function at zero frequency,
corresponding to perfect conductivity. The delta function
does not appear in Figs(a& or (b) because those calcula-
tions are carried out at finite frequency, nor does it appear in
the integral shown in Fig. 5. The strength of this delta func-
gl tion is proportional to the helicity modulus shown in Fig.

FIG. 5. The integrated fluctuation conductiviipy /[ 0oG3(T)] 1(b), which vanishes forT>Ty, . Thus (’C’l(_‘”,)_ is small
plotted as a function ofg| for two lattice sizes as shown in the P€lOWTy simply because thuctuationcontributions to the

y2/(9 G*)

figure legend. The parameters are the same as in Fig. 2 conductivity are small in this temperature range; the system
is still phase coherent in the c-direction and still has a finite
IV. DISCUSSION helicity modulus belowT,, . Although it may seem strange

thato ;(w") is small forT<T,, and finitew’, this behavior

The present results are consistent with the scenario of & not unprecedented. For example, in |dws-wave super-
first-order melting transition al,(B), where long-range conductors, the existence of a finite gap belbumeans that
vortex order in theab planes, and in the direction, disap- ¢,(w)=0 for T<T, and foriw smaller than twice the en-
pear simultaneously. This interpretation is supported by thergy gap.
behavior of the helicity modulu¥ .(T) and shear modulus To our knowledge, no direct measurementsogfi(w")
w(T), both of which vanish at the same temperatliré\l- have been carried out in the cuprate superconductors in the
though the present calculations are limited to relatively smalhigh-field, clean-limit regime where our calculations might
samples(with fewer than 50 vortex pancakes per plane be applicable. We therefore comment briefly on an entirely
similar behavior has been observed in Monte Carlo simulasdifferent experiment in which the reported behavior some-

tions for considerably larger systers. what resembles that shown in Fig. 4. This is a recent
The behavior ofdynamicalproperties, such as;;(w'), study of the frequency-dependent conductivity of
is also consistent with first-order melting. For smalil, BiSr,CaCuQ;, swithin the ab plane at zero applied mag-

o¢1(w") shows a strong increase @sapproached, from  netic field?! This experiment reports a rather sharp peak near
above. This behavior occurs because, in the solid phase, thg in the real part of the in-plane conductivity at about 0.2
vortex pancakes in adjacent layers lie above one another; 84Hz. This peak is thought to be due to fluctuations in the
a result, fluctuating currents between the layers are small. Ophase of the order parameter which are strongest Tigar
the other hand, when the lattice meftsw |g| or high T), and weaker both above and beldw. We believe that simi-
the vortex pancakes in adjacent layers no longer lie directlyar fluctuations(probably in the amplitude of the order pa-
above one another; hence fluctuating phase gradients beameter as well as the phasare producing the increase in
tween the layers increase the current fluctuations and the.,(w') in the present model nedry . These fluctuations
fluctuation conductivity. In the liquid phase;.;(w’) de-  are, we believe, limited in size because the melting transition
creases with decreasinfg|, becauser;, is becoming is first-order rather than continuous, and they are relatively
smaller. Howeverg, 1(w') once again appears to show a small forT<T, .
discontinuity rather than a divergence |afy|, consistent The present calculations may be relevantiaxis trans-
with the first-order nature of the transition. port atstrongmagnetic fieldgwhere the LLL approximation
Why doeso 1(w") in the liquid state, shown in Fig. 4 for is adequatein a clean high-T, superconducto(where a
several frequencies, decrease with increasing temper@turefirst-order vortex lattice melting is expeciedorovided a
above T,? We believe this decrease occurs because, dsangevin dynamics is appropriate. We have tried to estimate
shown in Fig. 3,7,, decreases with increasing By con-  the numerical value of our calculateq ;(w") [EQq. (24)] for
trast, the quantityy, /(0,G?), shown in Fig. 5, behaves dif- reasonable experimental parameters. B6<1 or wty<1,
ferently fromo,: it has a discontinuity affy, but varies o (w') has the same order of magnitude as the quantity
slowly in the liquid. The lack of any clear peak in
¥21(0¢G?) nearTy, can be understood from E(26), which 0oG?(T)=0q%ty(2dy/ m€°1?)ksgT(79)%g. (29
shows thaty, is independent ofry,, depending only on
equal-time current density fluctuationstat0. By contrast, All the quantities in this equation are easily determined ex-
oc1(w") is sensitive tory, especially for smalk’. ceptto. We attempt to estimaté, using an early paper
At this point, we briefly comment on a seemingly coun-by Schmid?® in which the time-dependent Ginzburg-
terintuitive feature of the dynamical results shown in Figs. 4 Landau equation is derived from the original BCS theory
namely, thato ;(w") is small in the vortex lattice phase for within the Gor’kov approximation. Schmid finds thag
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~h/[32KgT¢(1—T/T.)(1—B/Hs,)], where Ty is the  melting transition. In a real experiment, one might expect
mean-field superconducting transition temperatur8at0. some evidence of superheating or supercooling. This mini-
Taking T,o~80 K, T~60 K, we findt,~4x10 “sec ata mal amount of hysteresis may be due to the long annealing
field of 5 T. Substituting this value into E§28), and using time before we begin to calculate thermodynamic averages.
79=0.05, g>~20, and dy~5 A, we obtain 0,G?>~5 Because of this long annealing, our system can apparently
x 10 esu, or about 0.6 ' cm *. This conductivity is attain its thermodynamic state of minimum free enebgy
considerably smaller than the appareraxis conductivity in ~ fore we start computing averages.
the vortex liquid state, even in a very anisotropic material In summary, we have studied both the equilibrium and the
such as BiSiCaCuQy, 5.2 Thus it might be difficult to dynamical behavior of a layered superconductor in a strong
observe the fluctuation contribution in a clean anisotropionagnetic fields by solving the time-dependent Ginzburg-
superconductor, unless we have substantially underestimaté@ndau equations, in the lowest-Landau-level approxima-
to. Such an underestimate is possible, since the calculatioriion. The effects of fluctuations are incorporated by means of
of Schmid are based on a microscopic theory which may no@ Langevin noise term. The equilibrium properties are found
be directly applicable to the layered high-materials. to exhibit behavior similar that found in previous Monte

Few experiments appear to have measuredctheis re-  Carlo results™"**a first-order melting transition of the vor-
sistivity at the high fields where the LLL approximation tex lattice, with a simultaneous loss of in-plane and inter-
would be most accurate. Fucksal?® working at far lower  plane order. The dynamical properties show a strong, but not
fields (~25-200 Oe), have observed a simultaneous disapdivergent, increase in the-axis conductivity asTy, is ap-
pearance of resistivity in thab plane and in the direction ~ proached from above, with a corresponding increase, but no
(indicating a single phase transitiprand an abrupt increase divergence, in the half-lifer;, of the c-axis current fluctua-
in the c-axis resistivity at a temperature just above that trantions.
sition. However, their experiments are done at such frequen-
cies (=72 Hz) that the inductive contribution is very domi-
nant in the solid phase.

Finally, we briefly discuss the fact that our calculated hys- We gratefully acknowledge support through NSF Grant
teretic effects are very small in the vicinity of the first-order No. DMR01-04987.
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