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Bond order from disorder in the planar pyrochlore magnet
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We study magnetic order in the Heisenberg antiferromagnet on the checkerboard lattice, a two-dimensional
version of the pyrochlore network with strong geometric frustration. By employing the semiclassical (1/S)
expansion we find that quantum fluctuations of spins induce a long-range order that breaks the fourfold
rotational symmetry of the lattice. The ordered phase is a valence-bond crystal. We discuss similarities and
differences with the extreme quantum caseS51/2 and find a useful phenomenology to describe the bond-
ordered phases.
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I. INTRODUCTION

Frustrated magnets have attracted the attention of th
rists for several decades, beginning with the study of
Ising antiferromagnet on the triangular lattice.1 More re-
cently, new families of frustrated magnetic compounds h
become available for experimental studies reviving the in
est in their properties.2–4 By its very nature, a frustrated sys
tem has an extremely large classical degeneracy of
ground state. This degeneracy is very effective in suppr
ing classical spin order,5 thus providing a route to non-Ne´el
~quantum! ground states even for higher-dimensional s
tems. The nature of such ground states is far from obvio
the aforementioned degeneracy allows for a variety of
usual vacua. Among the possibilities are bond-ordered sta
in which pair averageŝSi•Sj&, rather than spinŝSi& them-
selves, form a periodic pattern;6,7 and spin liquids that break
no lattice symmetry but are distinguished by the unus
quantum numbers and statistics of their excitations.8

One of the most intensively studied frustrated system
the Heisenberg antiferromagnet on the pyrochlore lattice
has many experimental realizations that show rather rem
able magnetic behavior. For example, the spinel ZnCr2O4 is
the first frustrated magnet in which zero modes—spin wa
connecting degenerate ground states—have been obs
by neutron scattering.9 Not long ago, it was shown10,11 that a
coupling between spins and lattice vibrations leads to a s
Peierls phase transition in this manifestly three-dimensio
spin system. This effect, also observed12 in ZnCr2O4, is clas-
sical in nature in the sense that it is not parametrically sm
in 1/S. Therefore it is expected to dominate the more sub
quantum effects for large values of spin.

Effects of frustration in quantum pyrochlore antiferr
magnets, particularly in the limit of a small spinS, are draw-
ing quite a bit of interest. Finding answers in this case m
0163-1829/2003/68~14!/144422~17!/$20.00 68 1444
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provide clues to the unusual behavior of underdoped cup
superconductors, where frustration of the spin system
achieved through the motion of doped charges. Although
placing dynamic frustration with geometric one somewh
simplifies the problem, it is still far from trivial. An exac
solution forS51/2 is not available and is not expected in t
immediate future. Numerical diagonalizations are hampe
by the quick growth of the Hilbert space with the lattice si
in three dimensions. Several research groups are attac
the problem from various solvable limits: largeS,13 large
N,14 and weakly coupled spin clusters.15–19 Because it is not
even obvious that extrapolations from these limits will le
to a converging answer, it seems highly desirable to
these approaches on a similar problem for which numer
answers are available.

Most recently, a two-dimensional version of the pyr
chlore network, the checkerboard lattice20 ~also known as the
planar pyrochlore and the square lattice with crossings!, has
become a focus of analytical21–23and numerical24–27studies.
Lower dimensionality of this system makes it an easier tar
for numerical approaches; at the same time, it has the lo
coordination of the pyrochlore lattice: magnetic bonds fo
a network of corner-sharing tetrahedra with spins at the v
tices. It is therefore hoped that studies of the Heisenb
antiferromagnet on the checkerboard lattice can shed ligh
the behavior of its three-dimensional analog.

The planar pyrochlore latticedoesdiffer from the pyro-
chlore proper in one fundamental aspect: not all bonds o
tetrahedra are equivalent—because no symmetry of the
tice turns first neighbors~horizontal and vertical bonds! into
second~diagonal!. Even if the corresponding exchange co
plingsJ1 andJ2 are set equal, spin correlations between fi
and second neighbors tend to be different, as evidence
both analytical and numerical results. A lack of such symm
try compels one to look at the general case withJ1ÞJ2.
©2003 The American Physical Society22-1
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In this work, we study the checkerboard antiferromag
in the limit of large spinS, which allows for a systematic
perturbation theory in powers of 1/S.28 We then compare ou
answers to the available numerical results for the oppo
limit, S51/2, and find a simple phenomenology that d
scribes both rather well. Our understanding of the chec
board antiferromagnet has been greatly helped by three
cent ideas:

~a! Henley’s ‘‘gauge symmetry’’ relating degenerate co
linear ground states in a frustrated magnet.13

~b! Casting of the problem in terms of bond—rather th
spin—variables, which were introduced a decade ago
Harris et al.6

~c! A realization of the potential significance of theq53
Potts model to bond-ordered states on the pyrochlore
checkerboard.

Because this paper is long and technical, the reader
find it helpful to peruse an informal introduction to the su
ject written by one of us.29 That paper states our reasons
pursue the large-S route to strongly frustrated quantum ma
nets, explains the challenges of that approach, and points
ways to overcome them. It also contrasts the results obta
for different two-dimensional analogs of the pyrochlore l
tice ~the checkerboard is one of them!.

The ground state of a classical (S5`) Heisenberg mag-
net is found by minimizing its energy

E05(̂
i j &

Ji j Si•Sj5O ~S2! ~1!

with respect to classical spin variablesSi . Exchange cou-
pling is J1 on horizontal and vertical bonds, andJ2 along
diagonals. For weaker diagonal bonds,J2,J1, classical en-
ergy minimization gives a unique ground state~modulo a
global rotation of all spins!. The ground state, shown in Fig
2~a!, is the same as that of the simple square latticeJ2
50).

In the regionJ2>J1, the classical ground state becom
continuously degenerate. For stronger diagonal bondsJ2
.J1, the system can be viewed as a collection of cri
crossing chains running along diagonals of the lattice~Fig.
1!. Let us choose north-east to be our positiveĵ direction,
and north-west to beĥ. Classically, each chain has perfe
Néel order at zero temperature, however, directions of s
gered magnetizationsn̂i of different chains are completel
independent at the classical level. In anL3L lattice with
periodic boundary conditions classical ground states can
parametrized byL unit vectorsn̂i . The classical degenerac
increases even further in the case of equal exchangeJ2
5J1.30,31

The first-order~in 1/S) correction to the classical energ
comes from the zero-point quantum fluctuations of s
waves,

E15(
k

\uvku/25O ~S!, ~2!
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where $vk% are eigenfrequencies of classical spin wav
about a given ground state obtained from the equations
motion

\Ṡi5(
j

Ji j Si3Sj . ~3!

It has been established previously that, quite generally, qu
tum fluctuations select ground states with collinear spins~as-
suming such classical ground states exist!.32,33

For a fixed global directionn̂, the problem thus reduces t
a minimization of the zero-point energy~2! over a discrete
set of collinear Ne´el states. Thus selected ground states
be characterized in the thermodynamic limit with the aid
some order parameters. In addition to violating the sp
rotation symmetry O~3!, these ground states can also bre
some discrete lattice symmetries. For instance, when
ground states are not symmetric underp/2 rotations of the
plane, one expects an order parameter with the structureZ2
3S2. For a given direction of the Ne´el vector, there should
then betwo degenerate ground states.~See, e.g., the work by
Chandraet al.34 on the square lattice with a large secon
neighbor coupling.! Contrary to these expectations, we fin
that for J2.J1 the ground state isfourfold degenerate with
an order parameterZ23Z23S2. The extra degeneracy turn
out to be related to a gaugelike symmetry~proposed by
Henley13! that exists at the order 1/S in the semiclassica
expansion. This dynamical symmetry is responsible for
even higher degeneracy of the ground state at the most
trated pointJ15J2. In that case, the Ne´el order is destroyed
and the order parameter is reduced toZ23Z23S2/Z2 ~two

FIG. 1. Heisenberg antiferromagnet on the checkerboard lat
Shown is a generic classical ground state for a model in which
second-neighbor couplingJ2 exceeds the nearest-neighbor coupli
J1. At the level of the classical approximation, the Ne´el order pa-

rameters of individual chainsn̂i are uncorrelated. The directionn̂i is
defined as that of spinSi at the left edge.
2-2
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BOND ORDER FROM DISORDER IN THE PLANAR . . . PHYSICAL REVIEW B 68, 144422 ~2003!
Ising orders and a director!. At J15J2 the planar pyrochlore
is a valence-bond solid with two independent bond ord
and a nematic spin order.

The paper is organized in the following way. In most of
~Secs. II–V! we study the lowest-order—O (1/S)—quantum
corrections to the degenerate classical limit. We first expl
the case where the second-neighbor couplingJ2 dominates
and the system can be viewed as a set of weakly cou
antiferromagnetic chains. The interchain couplingJ1 is frus-
trated and has no effect at the classical level. We show
Sec. II that, in line with the standard arguments,32,33quantum
fluctuations favor collinear spin states. By usingJ1 /J2 as a
small parameter, we derive an effective interaction betw
the chains generated by quantum fluctuations. This pote
is minimized byfour distinct classical states. In Sec. III w
prove that this degeneracy remains intact for allJ1,J2 and
trace its origins to Henley’s gauge symmetry. Section
presents our findings in the strongly frustrated case of eq
exchange couplings. This time, a much larger degenerac
the ground state kills the Ne´el order ~replacing it with a
nematic order!, but the bond order survives. A summary
the large-S results is given in Sec. V. Finally, in Sec. VI w
explore the connection of these large-S results to theS
51/2 phase diagram obtained in numerical studies
speculate on a phenomenology of the bond order in thS
51/2 case.

II. WEAKLY COUPLED CHAINS: J1™J2

For J150, the magnet is reduced to a collection of ind
pendent antiferromagnetic chains running along the dia
nals~Fig. 1!. In a classical ground state, each chain has p
fect antiferromagnetic order. For this reason, there is
coupling between intersecting chains at the classical leve
even in the presence of a finite interchain couplingJ1,J2.

Quantum fluctuations disrupt the perfect Ne´el alignment
of adjacent spins and thus enable the chains to interact. F
weak interchain couplingJ1!J2, one can use a systemat
perturbation theory inJ1 /J2 ~staying at the same order i
1/S) developed by Shender.35

A. Effective interactions between chains

To the lowest nontrivial order inJ1 /J2, the interchain
coupling generates a potential that selects collinear spin
figurations. For Ne´el magnetizations of individual chain
n̂m ,

E(2)52
42p

2p

J1
2S

J2
(

crossings
~ n̂m•n̂n!2. ~4!

This interaction—coupling any two chains intersecting ov
a tetrahedron—is minimized when all staggered magnet
tions point along a common axis,n̂m56n̂. The tendency of
spins to align is the standard outcome of the order-fro
disorder scenario.32,33 See the Appendix for a derivation o
Eq. ~4!.

Collinear Néel states can be characterized by a collect
of Ising variables:sm561 for chains running along the di
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rection ĵ and tm561 for chains alongĥ, see Fig. 1. Given
a global orientation of spinsn̂, these numbers determine th
staggered magnetizations of individual chains,n̂m5smn̂ or
tmn̂, respectively. To the fourth order inJ1 ~but still to the
first order in 1/S) we obtain the correction to the classic
energy of the ground state

E(4)5
2J1

4S

J2
3 (

k51

`

(
l 51

`

(
m

(
n

~A2ksmsm12k1A2l tmtm12l

2B2k21,2l 21smsm12k21tntn12l 21!, ~5!

where the positive coefficientsAl and Bkl are computed in
the Appendix. Note that there is no pairwise interaction b
tween adjacent parallel chains~nor, for that matter, between
any parallel chains an odd distance apart!. As a result of that,
the effective interaction~5! is invariant under the transforma
tion

sm°~21!msm , tn°~21!ntn , ~6!

which flips the spins on every other diagonal chain.

B. Ground states

The largest term in Eq.~5! is the interaction of four chains
intersecting around an empty plaquette:

2
2J1

4S

J2
3 (

m
(

n
B1,1smsm11 tntn11 ~7!

~see the Appendix for details!. It is minimized by ground
states of two distinct kinds:

sm5sm11 , tn5tn11 @Figs. 2~b! and 2~c!#, ~8!

sm52sm11 , tn52tn11 @Figs. 2~d! and 2~e!#. ~9!

Curiously, the two types of ground states~8! and ~9! are
related to each other by the staggering transformation~6!,
rather than by any symmetry of the lattice. They remain
generate even upon the inclusion of all two- and four-ch
interactions in Eq.~5!. The origin of this dynamical symme
try will be discussed in Sec. III.

C. Long-range spin order

It is natural to ask whether there is a long-range spin or
in the system. Quantum effects turn out to be rather subtl
this case. On the one hand, quantum fluctuations tend
destroy the long-range order found on classical chains.
the other, they create interchain coupling and make the
tem two dimensional, thereby making spin order more like
Which tendency wins?

To answer this question one can compute the expecta
values of local magnetization̂Sr& in one of the ground state
@Figs. 2~b!–2~e!#. The classical value (0,0,6S) is reduced by
quantum fluctuations of spins. A naive evaluation of th
quantity at the first order in 1/S gives a divergent negative
correction suggesting that the order is destroyed. This, h
ever, is an artifact of a low-order approximation. The ma
2-3
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FIG. 2. ~Color online!~a! The classical ground
state for J1.J2. ~b!–~e! are the four classica
ground states at the order 1/S for J1<J2. Frus-
trated bonds~those with two parallel spins! are
shown in color dashed lines. Bottom figures sho
the lattice of tetrahedra; the primary colors~red,
green, and blue! encode the location of frustrate
bonds. See Fig. 3 for more details.
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non spectrum is given by the frequencies ofclassicalspin
waves, which know nothing about the interchain couplin
As a result, the magnon spectrum containslines of zero
modes along the diagonal directions (pj50,p and ph
50,p). The abundance of soft modes leads to a destruc
of the long-range spin order.

At the next level of approximation,O (1/S2), magnon in-
teractions modify the spin-wave spectrum lifting the ze
modes to finite frequencies~with the exception of isolated
points in the Brillouin zone!.36 The spin excitations becom
two-dimensional and the infrared divergence of the corr
tion to local magnetization is removed. Long-range order
survive.

Alternatively, the hardening of the spin-wave spectru
~specifically of the zero modes! can be evaluated already
the orderO(1/S) by adding to the Heisenberg Hamiltonian
phenomenological biquadratic exchange term33,37

Vbi52K(
r ,r8

~Sr•Sr8!
2 ~10!

that couples spins at the intersections of chains. The stre
of this interactionK5O(J1

2/J2S3) is chosen so as to mimic
14442
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at the classical level, the energy of zero-point fluctuatio
The latter is given, to the lowest order inJ1, by Eq. ~A24!.
The spin-wave spectrum is then computed from the class
equations of motion for the spins.

By performing a calculation along these lines~to be re-
ported elsewhere38! we find that indeed the zero modes a
quire energies of orderJ1AS. The renormalized magnon fre
quency vanishes at the points

~pj ,ph!5~0,0! and~p,p! ~11!

only, as required by the Goldstone theorem. The aver
local magnetization reads

^Sz&5S22ln
J2AS

J1
1regular terms. ~12!

The correction to the classical valueS is a remnant of the
logarithmic divergence in one dimension that has been re
larized by an infrared cutoffvmin5O (J1AS) brought about
by the interchain coupling~10!. The argument of the loga
rithm is the ratio of the maximum magnon frequencyvmax
5O (J2S) to the infrared cutoff.
2-4
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BOND ORDER FROM DISORDER IN THE PLANAR . . . PHYSICAL REVIEW B 68, 144422 ~2003!
Taking this formula at face value we estimate that
Néel order is present if the interchain exchange exceed
critical value

J1c5O ~J2ASe2S/2!. ~13!

Note that the ordering is a truly collective effect since ind
pendent spin chains possess no long-range order. This fe
makes the order-by-disorder problem rather different from
higher-dimensional analog where each individual unit~say,
spin plane in a canonical example of two interpenetrat
square lattices! is ordered even in the absence of frustrati
interunit interactions. Finally, Eq.~13! indicates that at a
largeS there is a narrow region of ratiosJ1 /J2 without Néel
order. This result is in agreement with a weak-coupli
renormalization-group analysis of theS51/2 problem by one
of us19 who argued in favor of a gapless sliding Lutting
liquid ground state in a wide interval 0<J1 /J2<0.8.

III. CROSSED CHAINS: J1ËJ2

The four vacua@Figs. 2~b!–2~e!# found in the limit of
weakly coupled chains,J1!J2, remain the ground states o
the system for all finite ratiosJ1 /J2,1. To confirm this, we
have computed numerically spin-wave spectra of all col
ear classical ground states for a lattice 16316 with periodic
boundary conditions. Modulo the global O~3! spin symmetry,
there are 216565 536 spin configurations to consider. Th
energy of zero-point motion~2! is indeed minimized by the
four Néel states Eqs.~8! and ~9!. In fact, not only they re-
main degenerate~with numerical accuracy!, their spin-wave
spectra are identical. That surely means that there is a hid
symmetry at work.

The observed fourfold degeneracy is caused by a spe
gaugelike symmetry discovered by Henley.13 It exists when-
ever a lattice can be split into corner-sharing units~tetrahedra
on the pyrochlore lattice, second-neighbor pairs in
present case! with total zero spin in any ground state.Non-
zero eigenfrequencies of such a system can be obtained
solving the equations of motions for the transverse com
nents of the total spins of these units (Resa ,Imsb), which
have the following simple form:30,31

i ṡa5 (
bÞa

JabSabsb . ~14!

HereSab is the ordered~longitudinal! component of the spin
shared by unitsa andb. It can now be seen that whenev
two ground states are related by an Ising gauge transfor
tion

Sab8 5LaSabLb
21 , La561, ~15!

their nonzero modes are also related,

sa85Lasa , ~16!

and have identical frequency spectra. Therefore gau
equivalent ground states have the same zero-point ener

In the current context, sitesa of the dual lattice are ‘‘tet-
rahedra’’ ~squares with crossings! of the original checker-
14442
e
a

-
ure
s

g

-

en

ial

e

by
-

a-

e-
.

board lattice. For equal exchangesJ25J1, a unit contains
four spins whose total spin vanishes in a ground state.
strong diagonal chains (J2.J1), the total spin must vanish
on both diagonal bonds separately, so that there are two u
on every site of the dual lattice: the diagonal linksj andh.
The resulting equations for a collinear Ne´el state read

i ṁ r5Sr ,r1 ĵ~J2m r1 ĵ1J1n r1 ĵ !1Sr ,r2 ĵ~J2m r2 ĵ1J1n r2 ĵ !,

i ṅ r5Sr ,r1ĥ~J1m r1ĥ1J2n r1ĥ!1Sr ,r2ĥ~J1m r2ĥ1J2n r2ĥ!,
~17!

wherer are coordinates of a tetrahedron. A spin labeledSrr 8
is shared by the tetrahedra located atr and r 8. Finally, m r
andn r are transverse spin components of its units:

Sm21/2,n1Sm11/2,n5~Remmn ,Immmn ,0!,

Sm,n21/21Sm,n11/25~Renmn ,Imnmn ,0! ~18!

in the notations of Fig. 1.
Transformation~15!, ~16! does not actually reflect a loca

symmetry: applied to a single unita, it flips the spinsSab
shared bya with other unitsb. These other units acquire
nonzero total spin and violate the ground-state conditi
Therefore the transformations must be made on a numbe
dual sites~an infinite one for an infinite lattice!. For J2
.J1, entire diagonal chains of spins must be flipped. It c
be checked that the two ground states shown in Figs. 2~b!
and 2~d! are related through such a gauge transformat
flipping spins on every other diagonal chain in both dire
tions.

In addition to breaking the spin O~3! symmetry, the four
ground states also violate the spatial symmetry of the che
erboard lattice. This leads to interesting consequences.
though the spin symmetry must be restored at any finite t
perature~the Mermin-Wagner theorem!, the discrete lattice
symmetries need not. In such a case, the low-tempera
phase can have a long-range spin-Peierls~bond! order. An
example of such behavior was discovered by Chandraet al.34

for the Heisenberg antiferromagnet on the square lattice w
large second-neighbor coupling.

To see the pattern of bond order in the proposed sp
Peierls states one can look at the bond averages^Si•Sj& in
the ground states of Figs. 2~b!–2~e!. We have shown the
frustrated bonds~those with parallel spins! in color depend-
ing on the bond orientation: red for vertical and green
horizontal ones. The lower part shows the dual lattice
‘‘tetrahedra,’’ each painted in the corresponding color. Us
this language, the ground states can be described in a si
manner:secondneighbors on the dual lattice have the sam
color. In fact, if the dual sublattice is divided into two su
lattices, each sublattice exhibits ‘‘ferromagnetic’’ Isin
order—in terms of these color variables—independently
the other sublattice. Hence a fourfold degeneracy mentio
above.

An ordered state thus can be completely characterized
a composite order parameterZ23Z23S2: two independent
Ising variables and a Ne´el vector. The Ising order paramete
2-5
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TCHERNYSHYOV, STARYKH, MOESSNER, AND ABANOV PHYSICAL REVIEW B68, 144422 ~2003!
f 25^~Sr ,r1 ĵ2Sr ,r2 ĵ !•~Sr ,r1ĥ2Sr ,r2ĥ!&, ~19!

has a counterpart in the frustrated antiferromagnet on
square lattice with a second-neighbor coupling.34 However,
we will find a richer structure of ground states because
order parameter is, in fact, a component of a doublef
5( f 1 , f 2), defined for every tetrahedron:

f 15
^~S11S2!•~S31S4!22~S1•S21S3•S4!&

A12
,

f 25
^~S12S2!•~S32S4!&

2
~20!

@Fig. 3~a!#. The other component,f 1, comes into play when
the vertical and horizontal bonds become~nearly! equivalent
to the diagonal ones, a situation encountered on the th
dimensional pyrochlore lattice.11

IV. PLANAR PYROCHLORE: J1ÄJ2

This is a point with a very largeclassicaldegeneracy.30,31

Only the total spin of a ‘‘tetrahedron’’ must vanish in
ground state, but not necessarily the spins of seco
neighbor pairs separately. To the next order,O (1/S), numeri-
cal comparison of zero-point fluctuation energies in collin
Néel states still reveals a large degeneracy—much la
than in the previously discussed caseJ2.J1. The ground
states of Figs. 2~b!–2~e! become degenerate with the Ne´el
state of the simple square lattice@Fig. 2~a!# and many others
numbering 2L in total. Apparently this multitude of degene
ate ground states kills the long-range Ne´el order. On the
other hand, it will be seen that the bond order survives.

To proceed, we present an explicit construction of all c
linear ground states degenerate at the 1/S level, and identify
a short-range interaction that selects these ground state
turns out that the most economical description of these st
is obtained in terms of the bond—rather than spin
variables.

FIG. 3. ~Color online! Bond variablesf5( f 1 , f 2) for a single
tetrahedron in a ground state( i 51

4 Si50. See Eq.~20! for a defini-
tion of f. ~a! Classical spins.~b! S51/2. In both cases, primary
colors denote the pure states with two frustrated bonds~parallel
classical spins or a spin triplet!. Secondary colors mark the pur
states with two satisfied bonds~antiparallel spins or a spin singlet!.
The triangle and the circle delineate the domains of attainable
ues.
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A. Gauge-equivalent collinear states

For equal exchanges, Eq.~14! holds for quartets of spins
on ‘‘tetrahedra’’ of the checkerboard lattice~squares with
crossings!. As far as collinear Ne´el states are concerned
there are now three distinct possibilities: parallel spins can
found on vertical, horizontal, and now also diagonal bon
which we encode, respectively, as red, green, and blue s
of a tetrahedron. In the Ne´el state of the simple square lattic
@Fig. 2~a!# all diagonal bonds have parallel spins, so that t
state is uniformly blue. After casting Henley’s gauge pri
ciple in bond language, we will readily reproduce all colli
ear Néel states degenerate with the blue vacuum. The f
ground states found in theJ2.J1 case@Figs. 2~b!–2~e!# are
among these.

As before, a gauge transformation on a tetrahedron
volves flipping all its spins. Parallel spins are found on t
same bonds before and after the transformation, therefore
color of that tetrahedron remains unchanged; it is the co
of its neighbors that are affected. Therefore, gauge trans
mations can be doneseparately and independentlyon the
two sublattices of tetrahedra.

Flipping the four spinsSab on tetrahedrona from sublat-
tice A takes four adjacent tetrahedrabPB out of the ground
state. To fix this problem, for eachb we must perform at
least one more gauge transformation on one ofits neighbors
gPA. The following are the rules for gauge transformatio
performed on sublatticeA.

~a! For every tetrahedronbPB, the number of gauge
transformationsLa521 on adjacent tetrahedraaPA can
be 0, 2, or 4.

~b! If this number is 0 or 4,b remains blue.
~c! For two gauge transformations, the twoa cannotbe

on opposite sides ofb ~e.g., northeast and southwest!.
~d! If both a are north ofb ~or both are south ofb), b

becomes red. If botha are east~west! of b, it turns green.
By using these rules, we can now construct an arbitr

ground state starting with the blue one. As the ground sta
a direct product of independent ground states on sublatt
A andB, we will construct a ground state of sublatticeB by
making gauge transformations on sublatticeA. Suppose, for
definiteness, that there is a red tetrahedron on sublatticB
and that the two gauge transformations were made north
@Fig. 4~a!#. If no other gauge transformations were made, t
state would violate rule~a!: the two B tetrahedra shown in
black are not in their ground states. Additional gauge tra
formations cannot be made around the original red site, fo
will become blue@Fig. 4~b!#, contrary to the initial assump
tion. The only remaining possibility is shown in Fig. 4~c!:
additional gauge transformations are made on the same
zontal line. Continuing the process we find a line of r
tetrahedra extending over the entire sublatticeB in the hori-
zontal direction@Fig. 4~d!#. Thus a generic ground state o
one sublattice consists of horizontal red and blue stripes
arbitrary widths@Figs. 4~e,f!# or of vertical green and blue
stripes@Fig. 4~g!#.

The process is then repeated with the roles of the sub
tices reversed: sublatticeA is colored via gauge transforma

l-
2-6
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BOND ORDER FROM DISORDER IN THE PLANAR . . . PHYSICAL REVIEW B 68, 144422 ~2003!
tions on sublatticeB ~whose colors are unchanged!. A sample
ground state is shown in Fig. 4~h!.

Now it is easy to count the number of degenerate gro
states on anL3L checkerboard lattice with periodic bound
ary conditions. On a single sublattice of tetrahedra, there

FIG. 4. ~Color online! Construction of ground states at the ord
1/S for J15J2. The secondary color magenta is an equal-part m
ture of red and blue; similarly, cyan is an equally weighted aver
of green and blue. The letter G marks the locations ofZ2 gauge
transformations. Filled triangles represent tetrahedra not in a gro
state.
14442
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232L/221 red-and-blue ground states: the exponential
flects the number of ways to place horizontal domain wa
separating red and blue stripes; the prefactor accounts f
duplicate set of states with red and blue domains exchan
In addition, there is an equal number of green-and-b
states, bringing the total to 2L/21121 per sublattice.~The
blue state has been counted twice.! The total degeneracy o
the ground state~including both sublattices of tetrahedra! is
therefore of order 2L.

B. Long-range bond order

Is there a spontaneously broken symmetry? There is d
nitely no long-rangevector order. It is easy to see that tw
spins located on the same diagonal can be parallel and
parallel with an equal probability: they are parallel if there
an even number of nonblue tetrahedra in between, antipa
lel if the number is odd. By construction~Fig. 4!, the prob-
abilities of these outcomes are equal and^Sr•Sr8&50 for
these two spins: there is not even a short-range order.
argument can be extended to~almost! any other direction.
~Exceptions are the vertical and horizontal directions: th
are long-range correlations of spins along the horizonta
vertical lines of bonds in the cyan and magenta states.!

The only remnant of the spin order is the collinearity
spins: (Sr•Sr8)

25S4 in any ground state for any pair o
spins. Thus one can conclude that the ground state is a
nematic whose order parameter is adirector (S2/Z2).

In addition, the system has long-rangebondorder. Indeed,
if one tetrahedron on sublatticeA is colored red, there are n
green tetrahedra anywhere on the same sublattice—and
versa. Thus the symmetry between red and green colors~the
symmetry between vertical and horizontal bonds! is sponta-
neously broken. The average color of a given tetrahedro
magenta~red and blue stripes! or cyan ~green and blue!.
Each sublattice finds itself in the cyan or magenta pha
Figs. 4~i,j!. In the cyan phase, the vertical~‘‘red’’ ! bonds
feature antiparallel spins; in the magenta phase, antipar
spins are found on horizontal~‘‘green’’ ! bonds. The colors of
the sublattices areindependentat order 1/S.

This argument can be made more precise by turning to
bond order parameterf 2 ~20!. As shown in Fig. 3~a!, f 2 is
positive, zero, and negative in the red, blue, and green sta
respectively. Averaging over the entire ground state manif
gives^ f 2(r )&50 for any tetrahedron. The reasoning put fo
ward in the previous paragraph suggests that^ f 2(r ) f 2(r 8)&
5S4/2.0 even asur2r 8u→` ~as long as the tetrahedrar
andr 8 reside on the same sublattice!. Thus a long-range bond
order is present.39

The long-range order is thus similar to the caseJ1,J2,
with one exception: the Ne´el vector in the composite orde
parameter is replaced with a director that defines a colline
ity axis. The order parameter now has the structureZ23Z2
3S2/Z2: two Ising order parameters in addition to a sp
nematic. The spin-nematic order breaks a continuous r
tional symmetry and therefore will be lost at any finite tem
perature. The remaining Ising ordersZ23Z2 are expected to
survive up to a finite temperatureO (JS).
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TCHERNYSHYOV, STARYKH, MOESSNER, AND ABANOV PHYSICAL REVIEW B68, 144422 ~2003!
C. Effective spin interaction

One may wonder what kind of a Hamiltonian gives rise
a strongly degenerate set of ground states described abov
fact, it can be derived following Henley’s method.13 The
quantum correction of order 1/S to the ground-state energ
~2! is obtained by rewriting Eq.~14! for the eigenmodes:

\2v2sa5J2 (
b(a)

(
g(b)

SabSbgsg54J2S2sa

1J2 (
b(a)

(
g(b)Þa

SabSbgsg . ~21!

The notationb(a) indicates that tetrahedronb is a neighbor
of tetrahedrona ~they share spinSab). Following Henley,
we introduce an adjacency matrix,

Tag52
1

4S2 (
b(a,g)

SabSbg , ~22!

whose matrix elements are nonzero when tetrahedraa andg
have a common neighborb. The sum over nonzero eigen
frequences can now be expressed in terms of the matrixT,

(
n

\uvnu
2

5JSTrA12T5JSTrS 12
T

2
2

T2

8
2••• D .

~23!

This expansion converges rather slowly~eigenvalues ofT
extend all the way up to 1! and cannot be used for quantit
tive purposes. Nevertheless, it provides correct qualita
answers, as will be seen shortly.

Because Taa50, the first spin-dependent correctio
comes from the second-order term,

2
JS

8
TrT252

3JSL2

64
2

J

128S3 (
abgd

SabSbgSgdSda .

~24!

~In the last sum, all tetrahedra are distinct.! This spin-
dependent term can be considered as a four-body intera
of spins or as a two-body interaction of bond variables.
deed, the interaction2SabSbgSgdSda is minimized when the
number of down spins is even, which can be cast in bo
language as

SabSbg5SgdSda56S2, ~25!

i.e., when thevertical bonds of tetrahedrab andd simulta-
neously have parallel or antiparallel spins. All such bo
configurations are shown in the top row of Fig. 5. Altern
tively, this four-spin term can be considered as a bond in
action between tetrahedraa and g, which is minimized
when

SdaSab5SbgSgd56S2, ~26!

i.e., when theirhorizontalbonds simultaneously have para
lel or antiparallel spins. These ground states are shown in
bottom part of Fig. 5.
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Note that the bond interaction generated by the ter
2TrT2 is between tetrahedra of the same sublattice. High
order spin loops2TrTn can also be represented as an int
action betweenn tetrahedra of the same sublattice. In term
of bond variables, there is no coupling between differe
sublattices at the order 1/S.

Before deriving the three-body interaction, it makes se
to check for the ground states of the two-body bond Ham
tonian that we have just obtained: the energy is21 for states
shown in Fig. 5 and11 for the remaining states. More con
cisely, For tetrahedra on the same sublattice, nearest ne
bors in the horizontal direction need to be both red or neit
red; in the vertical direction both green or neither green.

It is easy to see that this rule gives precisely all the grou
states found in the beginning of this section by means
Henley’s gauge argument—and no other states.

It is quite remarkable that a crude two-body approxim
tion,

TrA12T'Tr~12T/22T2/8!, ~27!

correctly reproduces all the ground states. This fact seem
indicate that the neglectedn-body interactions~which are by
no means small! can be expressed in terms of the two-bo
potentials identified above. If this is the case, the many-b
interactions shift all ground states by the same amount w
out breaking their degeneracy.~We have checked that the 3
and 4-body interactions are indeed reducible.!

D. Effective bond interaction

The four-spin interaction~24! can also be written in terms
of the bond variables~20!. Adjacent tetrahedraa and g of
the same sublattice~Fig. 5! interact with energy

Eag52
JS

64 S 1

3
1

fa•n̂ag

S2A3
D S 1

3
1

fg•n̂ag

S2A3
D . ~28!

The unit vectorn̂ag points in the red direction@Fig. 3~a!# for
neighbors alongx̂ and in the green direction for neighbo
alongŷ. The one-body piece can be viewed as a ‘‘magnet
field for the two-component ‘‘spin’’fa that points in the cyan
or magenta direction. Once we sum over all neighbors o
given tetrahedron, the resulting ‘‘magnetic field’’ has the bl
color and the magnitudeJ/32S3A3. The two-body potential
couples ferromagnetically the red or green components
neighboring ‘‘spins’’ depending on the direction.

FIG. 5. ~Color online! Ground states of Henley’s four-spin in
teraction, Eq.~24!. Frustrated bonds are shown in color. Parame
zation in terms of bond~rather than spin! variables decouples tetra
hedra of one sublattice (a,g) from those of the other (b,d).
2-8
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BOND ORDER FROM DISORDER IN THE PLANAR . . . PHYSICAL REVIEW B 68, 144422 ~2003!
It is worth noting that a very similar interaction has be
obtained for the quantum caseS51/2 by Tsunetsugu.16,17We
will return to this point later in Sec. VI.

V. LARGE S: A BRIEF SUMMARY

Our study of the ground state of the Heisenberg chec
board antiferromagnet to order 1/S establishes the existenc
of a long-range bond order in this system. The bond or
breaks a mirror symmetry of the lattice exchanging the v
tical and horizontal directions~the green and red colors i
our notation!. The discrete (Z2) nature of the broken sym
metry assures survival of the long-range bond order to fi
temperatures. It is instructive to trace the evolution of
ground state as the ratio of the first- and second-neigh
exchange couplings varies.

For J2 /J1,1, the ground state is unique~up to a global
rotation of all spins!: it is the Néel state of the simple squar
lattice (J250). Although the global O~3! spin symmetry is
broken atT50, it is restored at any finite temperature. T
Z2 symmetry is manifest.

For J2 /J1.1, we find a fourfold degeneracy as each su
lattice independently chooses one of the two ground st
with collinear spins. In the red state,parallel spins are found
on vertical bonds~and antiparallel spins on all other bonds!.
In the green state, parallel spins are found on horizo
bonds~Fig. 2!.

The pointJ2 /J151 is special: there areO (2L) degenerate
ground states on anL3L lattice to order 1/S. There is no
Néel order even at zero temperature. Still, long-range b
order is present: if a single tetrahedron is put in the red st
there are no green tetrahedra on the same sublattice. By
eraging over all red-and-blue states~Fig. 4! one obtains a
magenta phase in whichantiparallel spins, ^Si•Sj&52S2,
are found on horizontal bonds.~For the rest of first and sec
ond neighbors,̂Si•Sj&50.! The cyan phase, wherêSi•Sj&
52S2 on vertical bonds and 0 on the rest, is obtained
averaging over the green-and-blue states.

The independent ordering of the two sublattices of te
hedra is probably accidental: the quantum correction of or
1/S ~23! couples bond variables of the same sublatti
Higher-order corrections may well produce intersublatt
couplings locking the sublattice order parameters.

As we have shown forJ2 /J151, parametrization of the
four-spin interaction~24! in color terms gives a Potts-like
model withq53 states and direction-dependent interactio
~Fig. 5!. Small deviations of the differenceJ2 /J1 from 1
amount to adding a magnetic fieldh promoting or suppress
ing the blue state. ForJ2 /J1,1 ~blue field!, it is advanta-
geous to placeparallel spins on the weaker diagonal bon
making the entire lattice blue. ForJ2 /J1.1, the field points
in the opposite—yellow—direction suppressing the b
state and forcing the system to choose between the red
green states. Lastly,J2 /J15` is the regime of decoupled
diagonal chains. The phase diagram is shown schematic
in Fig. 6~a!.
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VI. QUANTUM LIMIT: SÄ1Õ2

It is interesting to compare our large-S answers to the
numerical results forS51/2 obtained recently.25–27 For J1
5J2 they have found a bond-ordered state in which the pr
ability of finding a spin singlet is enhanced on half of th
squares without crossings, the ‘‘quadrumer’’ phase in F
6~b!. A similar plaquette state has appeared in the analyse
the quantum dimer model for the planar pyrochlore23 and the
Shastry-Sutherland lattice.40 In our terminology, this
plaquette state corresponds to the magenta-cyan vac
@Fig. 6~a!#: the spin correlationŝSi•Sj& are more negative
on vertical bonds for one sublattice of tetrahedra and on h
zontal bonds for the other. TheS51/2 ground-state quantum
wave function, however, cannot be expressed as a sim
product of single tetrahedron configurations.

Although the large-S andS51/2 answers are the same
equal couplings, there are also important differences that

FIG. 6. ~Color online! ~a! Ground states computed to order 1S
as a function ofJ2 /J1. The two sublattices of tetrahedra are color
independently of each other.~b! Ground states forS51/2 ~Refs.
19,25–27!. The secondary colors~cyan, magenta, and yellow! en-
code the location of satisfied bonds~those with antiparallel spins!.
They are the opposites of the primary-color states~respectively, red,
green, and blue!.
2-9
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TCHERNYSHYOV, STARYKH, MOESSNER, AND ABANOV PHYSICAL REVIEW B68, 144422 ~2003!
come apparent when we compare the results forJ1ÞJ2. In
the large-S phase diagram@Fig. 6~a!#, the magenta-cyan stat
is a single point sandwiched between the blue and red-a
green phases. ForS51/2, it is found in a finite range o
ratiosJ2 /J1 around 1. The phase diagram forS51/2 inferred
from the works of Lhuillieret al. is shown in Fig. 6~b!.

The S51/2 case does not lend itself to a straightforwa
analytical treatment. Nevertheless, we have found a us
phenomenological approach that sheds some light onto
phase diagram. The bond variablesf, which we have intro-
duced previously for classical spins~20!, can be defined in
the same way for any spin valueS. The ground states of a
isolated tetrahedron with a Heisenberg interaction betw
its four spins are 2S11 degenerate singlets. The operato
f̂5( f̂ 1 , f̂ 2),

f̂ 15
~S11S2!•~S31S4!22~S1•S21S3•S4!

A12
,

f̂ 25
~S12S2!•~S32S4!

2
~29!

leave this manifold of states invariant. In this Hilbert spa
they act as Hermitian matrices (2S11)3(2S11).41 In par-
ticular, forS51/2 they are proportional to the Pauli matrice
One can choose a basis in which

f̂ 15
A3

2
tx , f̂ 25

A3

2
tz . ~30!

If the interaction between the bond variables on differ
tetrahedraa andb were of the pure Potts form, it would b
proportional to the scalar productfa•fb . In theS51/2 case,

fa•fb5 3
4 ~taxtbx1taztbz!. ~31!

However, as we have seen in Sec. IV C, the interaction h
more complicated form. It is direction dependent and
asymmetric in the Potts flavors: red and green are diffe
from the blue even whenJ15J2. The crudest way to reflec
this asymmetry is to write an interaction of the for
K1f a1f b11K2f a2f b2 with K1ÞK2. In addition, there can be
a ‘‘magnetic field’’ coupling 2h fa1 that selects the blue
states~for J2!J1) or the red and green states (J2@J1) in the
classical case

H5 (
^ab&

@Kxx~Rab!taxtbx1Kzz~Rab!taztbz#2h(
a

tax .

~32!

Here we assume for simplicity that the potentialsKxx and
Kzz depend on the distance between tetrahedra, but no
the direction. Our findings in the preceding section indic
that the second-neighbor coupling is ferromagnetic (K,0).
Numerical results of Fouetet al.25 suggest that the neares
neighbor interaction is antiferromagnetic (K.0). The fact
that the Ising order parameter is always related to the c
ponentf 2 points to the dominance of theKzz coupling over
14442
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Kxx . In this case we can neglect theKxx terms altogether
without changing the critical properties in any significa
way:

H5 (
^ab&

K~Rab!taztbz2h(
a

tax . ~33!

This is the Hamiltonian of an Ising antiferromagnet in
transverse magnetic field, whose properties are well kno
At h50, it is a classical system with long-range orde
^tz&511 on one sublattice and21 on the other.~The tet-
rahedra form a square lattice, so that the interactions are
frustrated.! The Néel phase is preserved in a finite range
weak magnetic fieldsuhu&K. A strong ‘‘magnetic field’’h
@K induces fast quantum fluctuations that kill the Ne´el or-
der even at zero temperature, so that^tz&50. The zero-
temperature phase diagram is shown in Fig. 6~b!. System
~33! has an ‘‘antiferromagnetic’’ phase foruhu,hc , which
corresponds to the ‘‘quadrumer’’ state of Fouetet al.25 Quan-
tum critical points ath56hc separate this phase from th
quantum disordered regions with no bond order—the yell
and blue states in which the diagonal bonds are str
(^tx&.0) and weak̂ tx&,0, respectively.

Let us pause for a moment and take a critical look at t
phenomenology. From the viewpoint of bond variables,
some valueJ2 /J15 j c'1, which corresponds toh50, con-
ditions are ideal for a spin-Peierls state: quantum fluctuati
induced by the ‘‘transverse field’’h}J2 /J12 j c are absent,
so that bond order is robust. Going away from that po
increases quantum fluctuations off 2}tz and reduces the
bond order parameter until the bond order completely m
at a quantum critical point. If the critical behavior is a
equately described by the Ising model, the energy gap v
ishes at the critical point only. Both phases—bond orde
and bond disordered—are gapped.

This may or may not be the case. Consider in more de
the transition from the Ne´el phase of the simple square la
tice (J2 /J150) to the spin-Peierls phase atJ2 /J1'1. There
are three distinct possibilities.

~1! As J2 /J1 increases, first the spin order melts
J2 /J15 j s , then a bond order appears atJ2 /J15 j b. j s , see
Fig. 7~a!. The intermediate phase has neither spin, nor b
order. The critical behavior nearJ2 /J15 j b is adequately de-
scribed by our bond phenomenology.

~2! Magnetic order persists into the spin-Peierls pha
The spin and bond orders coexist42 in the rangej b,J2 /J1
, j s . In this case, the emergence of bond order atJ2 /J1
5 j b is more adequately described as a spin canting tra
tion, see Fig. 7~b!. The system is gapless on both sides of t
quantum phase transition.

~3! The spin order disappears simultaneously with the
set of the bond order atJ2 /J15 j s5 j b , as shown in Fig.
6~b!. One phase is gapped, the other is gapless.

As is the usual limitation of exact diagonalizations, t
numerical data of Sindzingreet al.26 were obtainable only
for moderately small lattices~up to 636). On the basis of
their data we are unable to tell whether or not the spin a
bond orders overlap. We feel, however, that all three po
2-10
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BOND ORDER FROM DISORDER IN THE PLANAR . . . PHYSICAL REVIEW B 68, 144422 ~2003!
bilities can be realized as a matter of principle, so the Is
phenomenology may be useful.

VII. CONCLUSION

In this paper, we have studied the ground state o
Heisenberg antiferromagnet with large spinsS on the check-
erboard lattice, also known as the planar pyrochlore. To
roth order in 1/S—the classical approximation—the magn
has an extremely large, continuous degeneracy of the gro
state. In the next order in 1/S, this accidental degeneracy
partially lifted by quantum fluctuations. The main achiev
ment of this work is a complete characterization of t
ground-state properties of this magnet to order 1/S.

The ground states with the lowest energy of zero-po
motion are found among the classical vacua with collin
spins. By using a special dynamical symmetry discovered
Henley,13 we have explicitly constructed all of these grou
states and shown that their number is of order 2L in a lattice
L3L. We have shown that there is no long-range Ne´el order:
in the ensemble of these ground states, spin correlat

FIG. 7. ~Color online! Transitions between the Ne´el and ‘‘qua-
drumer’’ states.~a! Spin order melts atJ2 /J15 j s , bond order ap-
pears atJ2 /J15 j b. j s . ~b! Spin order becomes noncollinear
J2 /J15 j b , then disappears atJ2 /J15 j s. j b .
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^Si•Sj& vanish beyond nearest neighbors. However, there
long-rangebondorder: ‘‘tetrahedra’’ of the checkerboard la
tice spontaneously pick up one of the two states, in which
nearest-neighbor correlations^Si•Sj& are uniformly2S2 for
vertical bonds and 0 for horizontal ones—or vice versa. T
bond order breaks the rotational symmetry of the lattice.

More precisely, the bond order parameter isZ23Z2: the
two sublattices of tetrahedra orderindependentlyof each
other, which is reminiscent of the Ashkin-Teller model. T
discrete character of the broken symmetry indicates that
bond order will likely survive at low temperatures. The cri
cal properties of the thermal transition between the bo
ordered and paramagnetic states remain an open questi

In addition to the bond order, there is anematic long-
range order: every spin points along a common direct

n̂-or its opposite2n̂.
Our large-S analysis is in reasonable agreement with n

merical results for theS51/2 planar pyrochlore antiferro
magnet obtained by Fouetet al.25 and Berget al.27 They find
a bond-ordered ground state ofalmostthe same kind as we
do. The ordering of the two sublattices of tetrahedra is
longer independent: opposite patterns of the bond order
chosen. The ground state atS51/2 appears to be a doubl
degenerate spin singlet. Numerical data suggest the pres
of a spin gap, which seems to rule out the presence of s
order of the Ne´el or nematic type. This brings up the que
tion of stability of the nematic order that we have found
large S. A recent calculation of Canals,43 based on the
Dyson-Maleev approximation, indicates that colline
ground states are locally stable at largeS but could become
unstable below some critical valueSc . Although the Dyson-
Maleev scheme is not a controlled approximation for sm
S, Canals’ scenario is consistent with the results repor
here and in Refs. 25–27.

A lack of symmetry between the first- and secon
neighbor bonds compels one to study a more general sys
with unequal first- and second-neighbor exchangesJ1ÞJ2.
For largeS, the deviation ofj 5J2 /J1 from the critical value
j c51 plays the role of a ‘‘magnetic field’’ in the three-sta
Potts model. The three flavors correspond to the three co
ear ground states of spins on a tetrahedron~modulo a global
rotation of the spins!. They can be labeled by the location o
frustrated bonds: diagonal, vertical, or horizontal. The ‘‘ma
netic field’’ h}J2 /J121 prefers the ‘‘diagonal’’ state when
J2,J1, in which case the ground state is unique and
lattice symmetries are intact. WhenJ2.J1, the ‘‘vertical’’
and ‘‘horizontal’’ states are favored, which leads to a spo
taneous breaking of the rotational symmetry of the latti
Still, even at the critical pointJ2 /J151 the symmetry be-
tween the three flavors is not restored: the diagonal bo
remain different from the horizontal and vertical ones, so t
the symmetry is stillZ2, rather than S3. Accordingly, the
order parameter is of the Ising, rather than the three-s
Potts, model. Put another way, only one component of
Potts order parameter is used: that which is orthogonal to
direction of the ‘‘magnetic field’’h.

At large S, Néel order is present on both sides of th
critical pointJ2 /J151, but not at the critical point itself. Fo
2-11
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J1,J2 ~diagonal chains with a weak frustrated coupling! the
Néel order is induced by quantum fluctuations of spin
There are signs that, for a sufficiently weak interchain c
pling, J1,J1c5O(J2ASe2S/2), the Néel order may be de-
stroyed. The fate of the bond order is unknown, althou
chances are that it is less susceptible to long-wavelength
fluctuations.

While it may be unreasonable to expect quantitative
formation about small spin values from a 1/S expansion, we
were tempted to make some general statements abou
observed behavior of theS51/2 system.25–27 It appears that
there is some family resemblance and that the ze
temperature phase diagrams for largeS @Fig. 6~a!# and for
S51/2 @Fig. 6~b!# can be understood in similar terms, as f
as bond order is concerned. We find it plausible that the b
operators~represented forS51/2 by 232 Pauli matrices!
behave as spins of an Ising antiferromagnet in a transv
magnetic field. The Ising order parameter is an expecta
value of tz ; the ‘‘magnetic field’’h couples totx . In zero
transverse field, there is a bond order of the antiferro type
observed by Fouetet al. A nonzero transverse field
h}J2 /J12 j c induces quantum fluctuations of the ‘‘spins
tz . At some critical value of the ‘‘field’’ the bond order melt
and the ordered phase has a finite extent, in agreement
the numerical work of Sindzingreet al.26

It is rather intriguing to find a valence-bond solid witho
Néel order in the limit of largeS. This result is probably no
unique to the planar pyrochlore and we intend to pursue
avenue further by studying other lattices. In particular,
would be interesting to solve a similar problem on the thr
dimensional pyrochlore lattice and determine the result
phase. In that case, theS3 symmetry of the Potts states
intact and the outcome should be different. There are fur
open questions. Are there lattices that contain valence-b
liquids at largeS? What happens at intermediate values ofS?
We look forward to finding out.
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APPENDIX: ORDER FROM DISORDER
IN THE CHAIN LIMIT

Here we derive the results presented in Sec. II.

1. Notation

The starting pointJ150 corresponds to completely de
coupled chains running along the diagonal directionsĵ and
ĥ. For technical reasons, we will consider chains with
Ising anisotropy,
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H05J2(
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d@Si
xSi 11

x 1Si
ySi 11

y #1Si
zSi 11

z . ~A1!

Introduction of the anisotropy (0<d,1) helps stabilize the
collinear ground state of a single chain: at the Heisenb
point (d51) Néel order along the chain is destroyed b
quantum fluctuations. At the technical level, this is caused
a divergent 1/S correction to the staggered moment ford
51.44 Then, strictly speaking, the initial assumption of th
long-range Ne´el order on the chain breaks down. Therefo
we compute the effects of the interchain coupling atd,1
and then take the Heisenberg limitd→1. Unlike the stag-
gered magnetization, the energy of zero-point motion~2!
does not have an infrared divergence. This justifies approa
ing the Heisenberg limitd→1 from below.44 ~Note, how-
ever, that the interchain coupling is always taken to be of
isotropic, Heisenberg kind.!

At the Ising point,d50, the system has an extensiv
degeneracy: there are 2L ground states. We parametrize the
by introducing a single Ising variable61 for every chain.
Then, for example, on themth chain alongĵ—whose spins
have coordinates r5(n11/2,m)—we have Sr

z

5(21)n11sm S. We will use the Holstein-Primakoff trans
formation keeping the terms of ordersS,S1/2 and 1. For a
spin with Sz.0,

Sz5S2a†a,

S15A2SA12
a†a

2S
a5A2Sa1OS 1

AS
D ,

S25A2Sa†A12
a†a

2S
5A2Sa†1OS 1

AS
D .

For spins withSz,0 we rotate the reference frame about t
direction x̂ throughp. Then for a spin located on themth
chain running alongĵ we obtain

S Sr
x

Sr
y

Sr
z
D 5S 1 0 0

0 ~21!n11sm 0

0 0 ~21!n11sm

D
3S A2S

2
~ar1ar

†!

A2S

2i
~ar2ar

†!

S2ar
†ar

D , ~A2!

wherer5(n11/2,m).
The effective potential generated by quantum fluctuatio

is a function ofL Néel vectorsn̂m . Invariance under globa
spin rotations implies certain restrictions on the form of th
function. For instance, a pairwise potential coupling cha
with staggered magnetizationsn̂1 and n̂2 must be a function
of the scalar productn̂1•n̂2. In addition, symmetry of the
2-12
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lattice requires—for chains running in perpendicu
directions— that the coupling be invariant undern̂1°2n̂1,
so that it must depend on (n̂1•n̂2)2. With this in mind, we
will compute the lowest-order effect—O (J1

2)—as a function
of L(L21)/2 angles between staggered magnetizationsumn

5arccos(n̂m•n̂n). The pairwise nature of this potential a
lows us to tilt the spins uniformly on allh chains. It is
convenient to choosen̂1 as thez direction and letn̂2 lie in the
yz plane.

For potentials coupling more than two chains, one m
consider a general orientation of the staggered magne
tions involved. However, because the leading term~4! al-
ready selects collinear states, in higher orders we will w
with collinear configurations only.

Thus for the nth h chain—whose spins reside atr
5(n,m11/2)—we perform an additional uniform rotation i
the yz plane:

S Sr
x

Sr
y

Sr
z
D 5S 1 0 0

0 ~21!m11tncosu ~21!m11tnsinu

0 2~21!m11tnsinu ~21!m11tncosu
D

3S A2S

2
~ar1ar

†!

A2S

2i
~ar2ar

†!

S2ar
†ar

D . ~A3!

Naturally, the intrachain Hamiltonian is not affected by the
unitary rotations:

H05J2S(
r

@2ar
†ar1d~arar1 ĵ1ar

†ar1 ĵ
†

!# ~A4!

for the j chain. After a Fourier transform,

H05J2S(
p

@2ap
†ap1d cosp~apa2p1ap

†a2p
† !#, ~A5!

wherep is the lattice momentum along the chain directio
Thermal Green’s functions are given by

^a†~v,p!a~2v,2p!&5
v02 iv

v21ep
2

~A6!

^a~v,p!a~2v,2p!&52
v0gp

v21ep
2

, ~A7!

wherev is a bosonic Matsubara frequency and

v052J2S,

gp5d cosp,

ep5v0A12gp
2. ~A8!
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The perturbation term in the Hamiltonian~for which we
introduce no anisotropy!

V5(
n,m

J1~Sn21/2,m1Sn11/2,m!•~Sn,m21/21Sn,m11/2!

~A9!

couples linear combinations of spinsSn21/2,m1Sn11/2,m and
Sn,m21/21Sn,m11/2. Note that both linear combinations liv
on the same tetrahedron centered at (n,m). It is convenient
to introduce variablesjnm and hnm representing transvers
spin fluctuations on the respective diagonal links of the
rahedron. For a link alongĵ,

Sn21/2,m1Sn11/2,m52ASS jnm
x

sm~21!n11jnm
y

sm~21!n11jnm
z
D . ~A10!

By direct comparison to Eq.~A2! we obtain

jnm
x 5

1

2A2
~an21/2,m

† 1an21/2,m1an11/2,m
† 1an11/2,m!,

jnm
y 5

i

2A2
~an21/2,m

† 2an21/2,m2an11/2,m
† 1an11/2,m!,

jnm
z 50. ~A11!

The longitudinal componentjz is of order S21/2 and has
therefore been dropped at the current level of approximat
For h chains we similarly defineha fields via

hnm
x 5

1

2A2
~an,m21/2

† 1an,m21/21an,m11/2
† 1an,m11/2!,

hnm
y 5

i

2A2
~an,m21/2

† 2an,m21/22an,m11/2
† 1an,m11/2!,

hnm
z 50. ~A12!

The sum of the spins along anh link is then expressed
according to Eq.~A3!, as

Sn,m21/21Sn,m11/252ASS hnm
x

~21!m11tncosuhnm
y

~21!mtnsinuhnm
y

D .

~A13!

The interchain coupling~A9! now reads

V54J1S(
n,m

~jnm
x hnm

x 1 j̄nm
y h̄nm

y !, ~A14!

where we have introduced a shorthand notation

j̄nm
y 5~21!nsmjnm

y , h̄nm
y 5~21!mtncosuhnm

y .
~A15!
2-13
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To complete the preparation stage we work out Gree
functions of thej andh variables for uncoupled chains:

^jnm
a ~t!jn8m8

b
~t8!&5dmm8G

ab~t2t8,n2n8!, ~A16!

^hnm
a ~t!hn8m8

b
~t8!&5dnn8G

ab~t2t8,m2m8!,
~A17!

where indicesa andb take on valuesx andy. The space-time
Green’s functionsGab(t,n) are easily obtained in terms o
their Fourier transforms,

Gab~t,n!5
1

b (
v

E
2p

p dp

2p
Gab~v,p!e2 ivt1 ipn,

~A18!

which are given by the matrix

Ĝ~v,p!

5S v0~12gp! cos2~p/2!

v21ep
2

2 iv sin~p/2!cos~p/2!

v21ep
2

2 iv sin~p/2!cos~p/2!

v21ep
2

v0~11gp! sin2~p/2!

v21ep
2

D .

~A19!

Partial Fourier transformsGab(v,n) are real and satisfy the
following identities:

Gxx~v,n!5~21!nGyy~v,n!5Gxx~v,2n!,

Gxy~v,n!5Gyx~v,n!52Gxy~v,2n!,

Gxy~v,n!5~21!n11Gxy~v,n!. ~A20!

The last line suggests that the off-diagonal components v
ish for evendistancesn. At the Heisenberg point, the diago
nal components vanish forodd distances.

2. Order J1
2

The first nonvanishing correction to the free energy com
at the second order inJ1

2 and can be expressed as the seco
moment of the Eucledian action:

E(2)52
1

2!b K S E
0

b

dt VD 2L . ~A21!

The perturbationV is given by Eq.~A14!. Its second momen
contains quartic averages

^~jnm
x hnm

x 1 j̄nm
y h̄nm

y !~jn8m8
x hn8m8

x
1 j̄n8m8

y h̄n8m8
y

!&.
~A22!

~Time variables are omitted for brevity.! Dependence on the
staggered magnetizationssm and tn and the tilting angleu
comes through they components—see Eq.~A15!. Further-
more, terms containing twox and twoy components vanish
by symmetry: they have one factor ofs only and staggered
14442
’s

n-

s
d

magnetizationssm are odd under reflections in any line o
spins alongh. Therefore the only possibility is foury com-
ponents:

^j̄nm
y h̄nm

y j̄n8m8
y h̄n8m8

y &

5~21!m1m81n1n8cos2usmsm8tntn8^jnm
y jn8m8

y &

3^hnm
y hn8m8

y &, ~A23!

where we have used Gaussian statistics of the variablesj and
h. It is evident that lattice points (nm) and (n8m8) must
belong to aj chain and anh chain simultaneously, so tha
they are the same point. This term therefore gives rise
contact interaction of crossing chains. The correction to
energy of a ground state is found by taking the limit of ze
temperature (b→`),

E(2)52
~4J1S!2

2! E dv

2p
@Gyy~v,0!#2(

mn
cos2u

52I ~d!
J1

2S

J2
(
mn

~ n̂m•n̂n!2, ~A24!

wheren̂m and n̂n are the directions of staggered magnetiz
tions on chains running in thej and h directions, respec-
tively; G(v,0) is the real-space Green’s functionG(v,n) at
distancen50. The numerical constantI (d) is given here for
the Ising (d50) and Heisenberg (d51) limits:

I ~0!5
1

4
, I ~1!5

42p

2p
. ~A25!

Equation ~A24! constitutes an order-by-disorder effec
collinear spin configurations (n̂m56n̂n) minimize the en-
ergy of quantum fluctuations. There are 2L such collinear
states in anL3L lattice with periodic boundary conditions
Their degeneracy is partially lifted at the orderJ1

4, as we
discuss next.

3. Order J1
4

In the remainder of this section we will consider colline
vacua. Therefore the unitary transformation matrix in E
~A3! becomes diagonal and Eq.~A13! acquires the same
form as Eq.~A10!. The ground-state energy will depend o
the Ising variabless and t. The first nontrivial correction to
the energy comes from the term of the fourth order inJ1,

E(4)52
1

4!b K S E dt VD 4L . ~A26!

The dependence on staggered magnetizationss and t comes
through the vertexj̄yh̄y ~A15!. Symmetry arguments used i
the preceding calculation show thats- and t-dependent dia-
grams must contain exactly two verticesjxhx and twoj̄yh̄y.
We obtain
2-14
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E(4)522363
~4J1S!4

4!b E dv

2p (
k,l ,m,n

@~21!ksmsm1k

3Gxy~v,l !Gyy~v,k!Gyx~v,2 l !Gxx~v,2k!

1~21! l tntn1 l Gxx~v,l !Gxy~v,k!Gyy~v,2 l !

3Gyx~v,2k!1~21! l 1ksmsm1ktntn1 lG
xy~v,l !

3Gyx~v,k!Gxy~v,2 l !Gyx~v,2k!#. ~A27!

Feynman diagrams contributing to Eq.~A27! consist of a
rectangular path formed by twoj chains and twoh chains
~Fig. 8!. The factors 236 have a combinatorial origin. A
this order, the interchain couplingJ1 generates a two-chai
interaction ~between parallel chains! and a four-chain one
~involving four crossing chains!:

E(4)5
2J1

4S

J2
3 (

l .0
(
k.0

(
m

(
n

~Aksmsm1k1Altntn1 l

2Bklsmsm1ktntn1 l !. ~A28!

Dimensionless couplingsAl>0 andBkl>0 are

Ak527~J2S!3E dv

2p
@Gxx~v,k!#2(

l
@Gxy~v,l !#2,

Bkl528~J2S!3E dv

2p
@Gxy~v,k!#2@Gxy~v,l !#2.

~A29!

They fall off quickly with the distancesk and l. We have
used the properties of the Green’s functions~A20! in deriv-
ing them. Below we discuss the Ising (d50) and Heisenberg
(d→1) limits.

a. Ising limit

In the Ising limit, the magnonsj and h have an infinite
mass and are unable to move far along the chain. There

FIG. 8. Computation of the quantum correction to the free
ergy at O(J1

4). Filled dots represent verticesjmn
x hmn

x , open ones
jmn

y hmn
y ; the latter contribute a factor (21)m1nsmtn to the diagram.

~a! The first term in Eq.~A27!. The diagram has a prefactor
(21)l tntn1 l . ~b! The third term in Eq. ~A27!. Prefactor
(21)k1 lsmsm1k tntn1 l .
14442
re

Gab(v,l )50 for u l u.1. As a result, the effective potentia
depends on the nearest-neighbor productssmsm11 and
tmtm11:

EIsing
(4) 5

1

128

J1
4S

J2
3 (

m
(

n
~smsm111tntn112smsm11tntn11!.

~A30!

It is minimized by the ground states~9!, in which staggered
magnetizations have opposite signs on neighboring par
chains. Such configurations minimize every term in E
~A30!.

b. Heisenberg limit

At the Heisenberg point, diagonal~off-diagonal! compo-
nents of the propagator~A19! contain even~odd! harmonics
of the translation operatoreik only. In real-space terms,
magnon can travel an even distance by keeping its polar
tion, an odd distance by flipping it. Thus pairwise chain
teractions are induced for parallel chains with an even se
ration; quartic ones involve pairs of parallel chains with
odd separation:

E(4)5
2J1

4S

J2
3 (

k51

`

(
l 51

`

(
m

(
n

~A2ksmsm12k1A2l tmtm12l

2B2k21,2l 21smsm12k21tntn12l 21!. ~A31!

The dimensionless coefficientsA andB are given below. As
previously noted, this potential is invariant under a rever
of spins on every other diagonal chain~6!. We discuss the
origin of this dynamical symmetry in Sec. III and demo
strate that it holds to an arbitrary order inJ1.

The dominant term in Eq.~A31!—proportional to
B1,1—describes a coupling of four chains intersecting arou
an open square. It is minimized by spin configurations
which diagonal chains running in the same direction ha
either constant staggered magnetizations~8!, or alternating
ones ~9!. These states—shown in Figs. 2~b!–2~e!—are re-
lated by a staggering transformation~6!. Therefore they re-
main degenerate even upon the inclusion of all two- a
four-chain interactions in Eq.~A31!.

The second-largest term—a two-chain potential prop
tional toA2—is minimized by Ne´el states of a different kind
the ones with opposite staggered magnetizations forsecond-
neighbor chains. Thus we obtain another viable candidate
a ground state,

s4n5s4n1152s4n1252s4n13 , ~A32!

and similarly fort.
Because the fourth-order energy correction~5! contains

oscillating terms, it is best to evaluate the energies at or
J1

4 exactly. We find that the energy of the states~8! and~9! is
indeed lower byCJ1

4S/J2
3 per spin, where

C5
A2

4
2

45

128
'1.99131023. ~A33!

-
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4. Coupling coefficientsAl and Bkl

In what follows we specialize to the Heisenberg cased
51. Coefficients~A29! of the two- and four-chain interac
tion ~5! are given in terms of the following integrals

Gxx~v,n!5
v0

2 E
2p

p dp

2p

sin2p eipn

v21v0
2sin2p

,

Gxy~v,n!5
v

2i E2p

p dp

2p

sinp eipn

v21v0
2sin2p

. ~A34!

Introduce an auxiliary variableu,

v5v0sinhu. ~A35!

We find

Gxx~v,n!5H dn02tanhuuu
2v0

e2unuu, n is even

0, n is odd,
~A36!

wheredmn is the Kronecker delta;

Gxy~v,n!5H 0, n is even

tanhu

2v0
e2unuu sgn n, n is odd,

~A37!

(
n

@Gxy~v,n!#25
tanhuuu

8v0
2cosh2u

. ~A38!

Substituting these into Eq.~A29! produces the following ex-
pressions for nonvanishing coupling constants in the ef
tive potential~A28!:

Al5E
0

1 dx

2p

~12x!3 xu l u21/2

~11x!4
, l is even,

Bkl5E
0

1 dx

2p

~12x!4 xuku1u l u23/2

~11x!3
, k andl are odd.

~A39!
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