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Bond order from disorder in the planar pyrochlore magnet
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We study magnetic order in the Heisenberg antiferromagnet on the checkerboard lattice, a two-dimensional
version of the pyrochlore network with strong geometric frustration. By employing the semiclassigpl (1/
expansion we find that quantum fluctuations of spins induce a long-range order that breaks the fourfold
rotational symmetry of the lattice. The ordered phase is a valence-bond crystal. We discuss similarities and
differences with the extreme quantum c&e1/2 and find a useful phenomenology to describe the bond-
ordered phases.

DOI: 10.1103/PhysRevB.68.144422 PACS nunider75.10.Hk

I. INTRODUCTION provide clues to the unusual behavior of underdoped cuprate
superconductors, where frustration of the spin system is
Frustrated magnets have attracted the attention of the@chieved through the motion of doped charges. Although re-
rists for several decades, beginning with the study of theplacing dynamic frustration with geometric one somewhat
Ising antiferromagnet on the triangular latticéVlore re-  simplifies the problem, it is still far from trivial. An exact
cently, new families of frustrated magnetic compounds havesolution forS=1/2 is not available and is not expected in the
become available for experimental studies reviving the interimmediate future. Numerical diagonalizations are hampered
est in their propertie$:* By its very nature, a frustrated sys- by the quick growth of the Hilbert space with the lattice size
tem has an extremely large classical degeneracy of thia three dimensions. Several research groups are attacking
ground state. This degeneracy is very effective in suppresshe problem from various solvable limits: largg*® large
ing classical spin orderthus providing a route to non-dé N, and weakly coupled spin clustels*° Because it is not
(quantum ground states even for higher-dimensional sys-even obvious that extrapolations from these limits will lead
tems. The nature of such ground states is far from obviouso a converging answer, it seems highly desirable to test
the aforementioned degeneracy allows for a variety of unthese approaches on a similar problem for which numerical
usual vacua. Among the possibilities are bond-ordered statesnswers are available.
in which pair average¢S - S;), rather than spinéS) them- Most recently, a two-dimensional version of the pyro-
selves, form a periodic pattefri;and spin liquids that break chlore network, the checkerboard latfi¢éalso known as the
no lattice symmetry but are distinguished by the unusuaplanar pyrochlore and the square lattice with crossinigas
quantum numbers and statistics of their excitatfons. become a focus of analyti¢ar?®*and numericaf*~2’ studies.
One of the most intensively studied frustrated systems i ower dimensionality of this system makes it an easier target
the Heisenberg antiferromagnet on the pyrochlore lattice. Ifor numerical approaches; at the same time, it has the local
has many experimental realizations that show rather remarlcoordination of the pyrochlore lattice: magnetic bonds form
able magnetic behavior. For example, the spinel 20¢is  a network of corner-sharing tetrahedra with spins at the ver-
the first frustrated magnet in which zero modes—spin wavesices. It is therefore hoped that studies of the Heisenberg
connecting degenerate ground states—have been observadtiferromagnet on the checkerboard lattice can shed light on
by neutron scatteringNot long ago, it was showfi''thata  the behavior of its three-dimensional analog.
coupling between spins and lattice vibrations leads to a spin- The planar pyrochlore latticdoesdiffer from the pyro-
Peierls phase transition in this manifestly three-dimensionathlore proper in one fundamental aspect: not all bonds of its
spin system. This effect, also obserleh ZnCr,Q,, is clas-  tetrahedra are equivalent—because no symmetry of the lat-
sical in nature in the sense that it is not parametrically smaltice turns first neighborghorizontal and vertical bongénto
in 1/S. Therefore it is expected to dominate the more subtlesecond(diagonal. Even if the corresponding exchange cou-
guantum effects for large values of spin. plingsJ; andJ, are set equal, spin correlations between first
Effects of frustration in quantum pyrochlore antiferro- and second neighbors tend to be different, as evidenced by
magnets, particularly in the limit of a small spare draw-  both analytical and numerical results. A lack of such symme-
ing quite a bit of interest. Finding answers in this case mayry compels one to look at the general case wiitk J,.
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In this work, we study the checkerboard antiferromagnet
in the limit of large spinS, which allows for a systematic
perturbation theory in powers of3/8 We then compare our
answers to the available numerical results for the opposite
limit, S=1/2, and find a simple phenomenology that de-
scribes both rather well. Our understanding of the checker-
board antiferromagnet has been greatly helped by three re-
cent ideas:

(a) Henley’s “gauge symmetry” relating degenerate col-
linear ground states in a frustrated magfet.

(b) Casting of the problem in terms of bond—rather than
spin—variables, which were introduced a decade ago by
Harris et al®

(c) A realization of the potential significance of tije=3
Potts model to bond-ordered states on the pyrochlore and
checkerboard.

Because this paper is long and technical, the reader may
find it helpful to peruse an informal introduction to the sub-
ject written by one of ug® That paper states our reasons to
pursue the larg& route to strongly frustrated quantum mag-  F|G. 1. Heisenberg antiferromagnet on the checkerboard lattice.
nets, explains the challenges of that approach, and points 08hown is a generic classical ground state for a model in which the
ways to overcome them. It also contrasts the results obtaineskcond-neighbor coupling, exceeds the nearest-neighbor coupling
for different two-dimensional analogs of the pyrochlore lat-J,. At the level of the classical approximation, thé éllerder pa-
tice (the checkerboard is one of them rameters of individual chaing are uncorrelated. The directionis

The ground state of a classicéd< ) Heisenberg mag- defined as that of spi§; at the left edge.
net is found by minimizing its energy

where {w,} are eigenfrequencies of classical spin waves

about a given ground state obtained from the equations of

Eo:% JiS-S=(S%) (1 motion

with respect to classical spin variabl&s. Exchange cou-
pling is J; on horizontal and vertical bonds, aldd along
diagonals. For weaker diagonal bonds<J,, classical en-

ergy minimization gives a unique ground stdtaodulo a . . .
global rotation of all spins The ground state, shown in Fig. It has been established previously that, quite generally, quan-

. . ; tum fluctuations select ground states with collinear sfaiss
2(a), is the same as that of the simple square lattide : .
:(0)) Pie sq ( suming such classical ground states exist*

continuously degenerate. For stronger diagonal bodgs, & Minimization of the zero-point enerd®) over a discrete
>\]1, the System can be viewed as a collection of Criss_set of collinear Nel states. Thus selected ground states can

crossing chains running along diagonals of the latieig. ~ 0€ characterized in the thermodynamic limit with the aid of
1). Let us choose north-east to be our posit@i/elirection, some order parameters. In addition to violating the spin-
- ] ; rotation symmetry CB), these ground states can also break
and north-west to bey. Classically, each chain has perfect some giscrete lattice symmetries. For instance, when the
Neel order at zero te[nperature, however, directions of Stagground states are not symmetric undsf2 rotations of the
gered magnetizations; of different chains are completely plane, one expects an order parameter with the strure
independent at the classical level. In BIXL lattice with  x S?. For a given direction of the & vector, there should
periodic boundary conditions classical ground states can bgen betwo degenerate ground statéSee, e.g., the work by
parametrized by unit vectorsn;. The classical degeneracy Chandraet al>* on the square lattice with a large second-
increases even further in the case of equal exchadges neighbor coupling. Contrary to these expectations, we find
=J,.3031 that for J,>J; the ground state ifourfold degenerate with
The first-order(in 1/S) correction to the classical energy an order parametet, X Z,x S?. The extra degeneracy turns
comes from the zero-point quantum fluctuations of spinout to be related to a gaugelike symmetproposed by
waves, Henley®) that exists at the order 3/in the semiclassical
expansion. This dynamical symmetry is responsible for an
even higher degeneracy of the ground state at the most frus-
E1=2 filwgll2= (), 2) trated pointJ;=J,. In that case, the N order iszdestroyed
K and the order parameter is reducedzZtp< Z,X S/Z, (two
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Ising orders and a directorAt J,=J, the planar pyrochlore  rection andt,,= 1 for chains alongy, see Fig. 1. Given
is a valence-bond solid with two independent bond order% global orientation of spins, these numbers determine the

and a nematic spin order. o s N -
The paper is organized in the following way. In most of it staAggered magnetizations of individual chaing=s,n or

(Secs_ ||_\J we Study the |owest_orderé(1/5)_quantum tmn, respectively. To the fourth order LB]]_ (but still to the
corrections to the degenerate classical limit. We first explordirst order in 15) we obtain the correction to the classical
the case where the second-neighbor couplinglominates ~€nergy of the ground state

and the system can be viewed as a set of weakly coupled

4 o] o]
antiferromagnetic chains. The interchain couplings frus- (@)_ 2915
trated and has no effect at the classical level. We show in = 32 gl .Zl %: En: (A2SmSm+ 21+ Azitmlms 21
Sec. Il that, in line with the standard argumetfts®quantum
fluctuations favor collinear spin states. By usifg/J, as a —Bok—1,2-1SmSm+2k—1tntn+21-1), )

small parameter, we derive an effective interaction betwee
the chains generated by quantum fluctuations. This potenti

IS m|n|$|zt(icri]'bydfour distinct class'lcal. sttat(;,-sf. In HS:?]C' i dwe tween adjacent parallel chaifisor, for that matter, between
prove that this degeneracy remains intact forJah-J, an any parallel chains an odd distance apas a result of that,

trace its origins to Henley's gauge symmetry. Section IVtE}e effective interactioi) is invariant under the transforma-

here the positive coefficients, and By, are computed in
e Appendix. Note that there is no pairwise interaction be-

presents our findings in the strongly frustrated case of equgly,
exchange couplings. This time, a much larger degeneracy o
the ground state kills the ™ order (replacing it with a S—=>(—1)"s,,  ty—=(—1)M,, (6)
nematic order, but the bond order survives. A summary of i . ) )

the largeS results is given in Sec. V. Finally, in Sec. VI we Which flips the spins on every other diagonal chain.
explore the connection of these lar§eresults to theS

=1/2 phase diagram obtained in numerical studies and B. Ground states
speculate on a phenomenology of the bond order inShe  The |argest term in Eq(5) is the interaction of four chains
=1/2 case. intersecting around an empty plaquette:
Il. WEAKLY COUPLED CHAINS:  J,<J, 2318
. . . - 3 E 2 Bl,lsmsm+1tntn+l (7)
For J;=0, the magnet is reduced to a collection of inde- J; mon

pendent antiferromagnetic chains running along the diago(See the Appendix for detajlslt is minimized by ground
nals(Fig. 1). In a classical ground state, each chain has persiates of two distinct kinds:

fect antiferromagnetic order. For this reason, there is no
coupling between intersecting chains at the classical level—
even in the presence of a finite interchain couplingJ,.

Quantum fluctuations disrupt the perfectellalignment Sm=—Sm+1, th=—ths1 [Figs.ad)and 2e)]. (9)
of adjacent spins and thus enable the chains to interact. For
weak interchain coupling;<J,, one can use a systematic
perturbation theory inJ;/J, (staying at the same order in
1/S) developed by Shendét.

Sm=Sm+1, th=thy1 [Figs.db)and Z0)], 8

(?uriously, the two types of ground staté®) and (9) are
related to each other by the staggering transformatn
rather than by any symmetry of the lattice. They remain de-
generate even upon the inclusion of all two- and four-chain
o ) ) interactions in Eq(5). The origin of this dynamical symme-
A. Effective interactions between chains try will be discussed in Sec. IlI.
To the lowest nontrivial order in;/J,, the interchain
coupling generates a potential that selects collinear spin con- C. Long-range spin order

fJguratlons. For Nel magnetizations of individual chains It is natural to ask whether there is a long-range spin order

N> in the system. Quantum effects turn out to be rather subtle in
5 this case. On the one hand, quantum fluctuations tend to
E@_ _ 4—1 E A A2 (4) destroy the long-range order found on classical chains. On

m n

the other, they create interchain coupling and make the sys-
tem two dimensional, thereby making spin order more likely.
This interaction—coupling any two chains intersecting overwhich tendency wins?
a tetrahedron—is minimized when all staggered magnetiza- To answer this question one can compute the expectation
tions point along a common axis,,= =n. The tendency of values of local magnetizatiof$;) in one of the ground states
spins to align is the standard outcome of the order-from{Figs. 2b)—2(e)]. The classical value (0,8,S) is reduced by
disorder scenarit?>® See the Appendix for a derivation of quantum fluctuations of spins. A naive evaluation of this
Eq. (4). quantity at the first order in $/gives a divergent negative
Collinear Neel states can be characterized by a collectioncorrection suggesting that the order is destroyed. This, how-
of Ising variabless,,= =1 for chains running along the di- ever, is an artifact of a low-order approximation. The mag-

27 J 2 crossings
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FIG. 2. (Color onling(a) The classical ground
state forJ;>J,. (b)—(e) are the four classical
ground states at the orderSlfor J;<J,. Frus-
trated bondgthose with two parallel spinsare
shown in color dashed lines. Bottom figures show
the lattice of tetrahedra; the primary coldred,
green, and blueencode the location of frustrated
bonds. See Fig. 3 for more details.

(d)

non spectrum is given by the frequenciesotdssicalspin  at the classical level, the energy of zero-point fluctuations.

waves, which know nothing about the interchain coupling.The latter is given, to the lowest order Jp, by Eq. (A24).

As a result, the magnon spectrum contalimes of zero  The spin-wave spectrum is then computed from the classical

modes along the diagonal directiong.E0,m and p,  equations of motion for the spins.

=0,m7). The abundance of soft modes leads to a destruction By performing a calculation along these linée be re-

of the long-range spin order. ported elsewheré) we find that indeed the zero modes ac-
At the next level of approximation?(1/S?), magnon in-  quire energies of ordeTl\/g. The renormalized magnon fre-

teractions modify the spin-wave spectrum lifting the zeroquency vanishes at the points

modes to finite frequencie@vith the exception of isolated

points in the Brillouin zong®® The spin excitations become (p¢,p,)=(0,0 and(r,m) 11

two-dimensional and the infrared divergence of the correc-

tion to local magnetization is removed. Long-range order carf T
local magnetization reads

nly, as required by the Goldstone theorem. The average

survive.

Alternatively, the hardening of the spin-wave spectrum 3,\S
(specifically of the zero modggan be evaluated already at ()= S—2In2"4 regular terms. (12)
the orderO(1/S) by adding to the Heisenberg Hamiltonian a Ji

phenomenological biquadratic exchange e The correction to the classical valigis a remnant of the

logarithmic divergence in one dimension that has been regu-
Vpi=—K> (S-S1)? (100 Jlarized by an infrared cutofé;,=7(J;\/S) brought about
nr’ by the interchain coupling10). The argument of the loga-
that couples spins at the intersections of chains. The strengtithm is the ratio of the maximum magnon frequensy,.,
of this interactionk = 0(J2/J,S°%) is chosen so as to mimic, =¢(J,S) to the infrared cutoff.
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Taking this formula at face value we estimate that theboard lattice. For equal exchangés=J,;, a unit contains
Neel order is present if the interchain exchange exceeds four spins whose total spin vanishes in a ground state. For
critical value strong diagonal chainsl¢>J,), the total spin must vanish

on both diagonal bonds separately, so that there are two units
Jie=(I\Se ). (13)  on every site of the dual lattice: the diagonal linksind 7.

Note that the ordering is a truly collective effect since inde-The resulting equations for a collinear Nestate read

pendent spin chains possess no long-range order. This feature.

makes the order-by-disorder problem rather different from its | 4r=Str+#(J2tr+ 2+ J1v )+ S d(Jopr -3+ d1ve3),
higher-dimensional analog where each individual sy, _

spin plane in a canonical example of two interpenetratingiv,=S; ;. ;(J1ur+ 5+ Iovri5) + S -5 (Japtr— 5+ v —3),
square latticesis ordered even in the absence of frustrating (17)
interunit interactions. Finally, Eq(13) indicates that at a ) )
large S there is a narrow region of ratidk /J, without Neel ~ Wherer are coordinates of a tetrahedron. A spin labeigd
order. This result is in agreement with a weak-coupling’s Shared by the tetrahedra locatedrandr’. Finally, u,
renormalization-group analysis of tie- 1/2 problem by one ~and v are transverse spin components of its units:

of ust® who argued in favor of a gapless sliding Luttinger

liquid ground state in a wide interval<0J,/J,<0.8. Sm-12nF S+ 1720= (R€Umn, 1My, 0),

lll. CROSSED CHAINS:  J,<J, Sn-1/2F S+ 172= (R€vpp, Imvp, 0) (18)

The four vacuaFigs. 2b)—2(e)] found in the limit of  in the notations of Fig. 1.
weakly coupled chainsl;<J,, remain the ground states of ~ Transformation(15), (16) does not actually reflect a local
the system for all finite ratiod, /J,<1. To confirm this, we ~Symmetry: applied to a single unit, it flips the spinsS,,
have computed numerically spin-wave spectra of all collin-shared bya with other unitsg. These other units acquire a
ear classical ground states for a latticexti with periodic ~ nonzero total spin and violate the ground-state condition.
boundary conditions. Modulo the global® spin symmetry, Therefore the transformations must be made on a number of
there are 3=65536 spin configurations to consider. The dual sites(an infinite one for an infinite lattioe For J,
energy of zero-point motiof®) is indeed minimized by the >J;, entire diagonal chains of spins must be flipped. It can
four Neel states Eqs(8) and (9). In fact, not only they re- be checked that the two ground states shown in Figs). 2
main degeneratéwith numerical accurady their spin-wave and 2d) are related through such a gauge transformation
spectra are identical. That surely means that there is a hidddlipping spins on every other diagonal chain in both direc-
symmetry at work. tions.

The observed fourfold degeneracy is caused by a special In addition to breaking the spin(@) symmetry, the four
gaugelike symmetry discovered by Henféyt exists when-  ground states also violate the spatial symmetry of the check-
ever a lattice can be split into corner-sharing uftigrahedra  erboard lattice. This leads to interesting consequences. Al-
on the pyrochlore lattice, second-neighbor pairs in thehough the spin symmetry must be restored at any finite tem-
present casewith total zero spin in any ground statdon-  perature(the Mermin-Wagner theoremthe discrete lattice
zero eigenfrequencies of such a system can be obtained b§ymmetries need not. In such a case, the low-temperature
solving the equations of motions for the transverse compophase can have a long-range spin-Peiéstsnd order. An

nents of the total spins of these units (Relma ), which ~ example of such behavior was discovered by Chaetled>*
have the following simple form®3! for the Heisenberg antiferromagnet on the square lattice with

large second-neighbor coupling.
- To see the pattern of bond order in the proposed spin-
! ‘Ta:;a JapSapTp - (14 peierls states one can look at the bond averggess;) in
the ground states of Figs.(t8—2(e). We have shown the
HereS,; is the orderedlongitudina) component of the spin  frustrated bondgthose with parallel spinsn color depend-
shared by unitgr and 8. It can now be seen that whenever ing on the bond orientation: red for vertical and green for
two ground states are related by an Ising gauge transformaorizontal ones. The lower part shows the dual lattice of
tion “tetrahedra,” each painted in the corresponding color. Using
this language, the ground states can be described in a simple
Sip=NaSaphp’, A=7*1, (19  manner:secondneighbors on the dual lattice have the same
color. In fact, if the dual sublattice is divided into two sub-
lattices, each sublattice exhibits “ferromagnetic” Ising
(16) order—in terms of these color variables—independently of
the other sublattice. Hence a fourfold degeneracy mentioned
and have identical frequency spectra. Therefore gaugesbove.
equivalent ground states have the same zero-point energy. An ordered state thus can be completely characterized by
In the current context, siteg of the dual lattice are “tet- a composite order parametgpxXZ,XS,: two independent
rahedra” (squares with crossingf the original checker- Ising variables and a N vector. The Ising order parameter,

their nonzero modes are also related,

r—
o,=A,0,,
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A. Gauge-equivalent collinear states

For equal exchanges, E(.4) holds for quartets of spins
on “tetrahedra” of the checkerboard lattigsquares with
crossings As far as collinear Nel states are concerned,
there are now three distinct possibilities: parallel spins can be
found on vertical, horizontal, and now also diagonal bonds,
which we encode, respectively, as red, green, and blue states
of a tetrahedron. In the Néstate of the simple square lattice
[Fig. 2(a)] all diagonal bonds have parallel spins, so that this
state is uniformly blue. After casting Henley's gauge prin-
ciple in bond language, we will readily reproduce all collin-
FIG. 3. (Color onling Bond variablest=(f,,f,) for a single  ear Nel states degenerate with the blue vacuum. The four
tetrahedron in a ground stak'_,S=0. See Eq(20) for a defini- ground states found in thi>J, case[Figs. 2b)—2(¢)] are
tion of f. (a) Classical spins(b) S=1/2. In both cases, primary among these.
colors denote the pure states with two frustrated boipdsallel . .
classical spins or a spin trip)etSecondary colors mark the pure As beforg, a gguge .transformatlon .on a tetrahedron in-
states with two satisfied bondantiparallel spins or a spin singlet volves flipping all its spins. Parallel spins ar_e found on the
The triangle and the circle delineate the domains of attainable vasame bonds before and after the transformation, therefore the
ues. color of that tetrahedron remains unchanged; it is the colors
of its neighbors that are affected. Therefore, gauge transfor-
fo= (S 2= S 2 (Sre)=Su i) (190  Mations can be donseparately and independentn the
two sublattices of tetrahedra.
has a counterpart in the frustrated antiferromagnet on the Flipping the four spinsS, ; on tetrahedrom from sublat-
square lattice with a second-neighbor coupfifigiowever, tice A takes four adjacent tetrahedgas B out of the ground
we will find a richgr s'tructure of ground states because OUgLiate To fix this problem, for each we must perform at
order parameter is, in fact, a component of a doubblet a5t one more gauge transformation on onésofieighbors
=(f1,f5), defined for every tetrahedron: yeA. The following are the rules for gauge transformations

_ performed on sublatticé.
+ . + . —+ .
f1:<(31 $) (S3+5)—2(5- S+ S4)>’ (a) For every tetrahedroBe B, the number of gauge

V12 transformationsA ,= —1 on adjacent tetrahedr@ae A can

be 0, 2, or 4.
A(S1=9) ($3—%)) (b) If this number is 0 or 43 remains blue.
fo= (20 .
2 (c) For two gauge transformations, the twiocannotbe

on opposite sides g8 (e.g., northeast and southwpest

(d) If both « are north of3 (or both are south of), 8
Q_ecomes red. If botlx are easfwes) of B, it turns green.

By using these rules, we can now construct an arbitrary
ground state starting with the blue one. As the ground state is
a direct product of independent ground states on sublattices
A andB, we will construct a ground state of sublattiBeby

This is a point with a very largelassicaldegeneracy®®!  making gauge transformations on sublatticeSuppose, for
Only the total spin of a “tetrahedron” must vanish in a definiteness, that there is a red tetrahedron on sublditice
ground state, but not necessarily the spins of secondand that the two gauge transformations were made north of it
neighbor pairs separately. To the next ordefl/S), numeri-  [Fig. 4(@]. If no other gauge transformations were made, this
cal comparison of zero-point fluctuation energies in collinearstate would violate ruléa): the two B tetrahedra shown in
Neel states still reveals a large degeneracy—much largeslack are not in their ground states. Additional gauge trans-
than in the previously discussed ca¥e>J;. The ground formations cannot be made around the original red site, for it
states of Figs. ®)—2(e) become degenerate with the' @le will become blugFig. 4(b)], contrary to the initial assump-
state of the simple square lattifieig. 2@] and many others tion. The only remaining possibility is shown in Fig(ck
numbering 2 in total. Apparently this multitude of degener- additional gauge transformations are made on the same hori-
ate ground states kills the long-range éNerder. On the zontal line. Continuing the process we find a line of red
other hand, it will be seen that the bond order survives.  tetrahedra extending over the entire sublatici the hori-

To proceed, we present an explicit construction of all col-zontal direction[Fig. 4(d)]. Thus a generic ground state of
linear ground states degenerate at tHf&lg¥el, and identify  one sublattice consists of horizontal red and blue stripes of
a short-range interaction that selects these ground states.dtbitrary widths[Figs. 4e,f)] or of vertical green and blue
turns out that the most economical description of these statestripes[Fig. 4(g)].
is obtained in terms of the bond—rather than spin— The process is then repeated with the roles of the sublat-
variables. tices reversed: sublattick is colored via gauge transforma-

[Fig. 3(@]. The other component,, comes into play when
the vertical and horizontal bonds becoimearly equivalent
to the diagonal ones, a situation encountered on the thre
dimensional pyrochlore latticg.

IV. PLANAR PYROCHLORE: J;=J,
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2x 24271 red-and-blue ground states: the exponential re-
flects the number of ways to place horizontal domain walls
separating red and blue stripes; the prefactor accounts for a
duplicate set of states with red and blue domains exchanged.
In addition, there is an equal number of green-and-blue
states, bringing the total to"271—1 per sublattice(The

blue state has been counted twjcehe total degeneracy of
the ground statéincluding both sublattices of tetrahedlia
therefore of order 2

B. Long-range bond order

Is there a spontaneously broken symmetry? There is defi-
nitely no long-rangevector order. It is easy to see that two
spins located on the same diagonal can be parallel and anti-
parallel with an equal probability: they are parallel if there is
an even number of nonblue tetrahedra in between, antiparal-
lel if the number is odd. By constructiaifrig. 4), the prob-
abilities of these outcomes are equal a®l-S;/)=0 for
these two spins: there is not even a short-range order. The
argument can be extended talmos) any other direction.
(Exceptions are the vertical and horizontal directions: there
are long-range correlations of spins along the horizontal or
vertical lines of bonds in the cyan and magenta states.

The only remnant of the spin order is the collinearity of
spins: 6-S./)?=S* in any ground state for any pair of
spins. Thus one can conclude that the ground state is a spin
nematic whose order parameter isligector (S%/Z,).

In addition, the system has long-rangendorder. Indeed,
if one tetrahedron on sublattideis colored red, there are no
green tetrahedra anywhere on the same sublattice—and vice
versa. Thus the symmetry between red and green c@lues
symmetry between vertical and horizontal bongssponta-
neously broken. The average color of a given tetrahedron is
magenta(red and blue stripgsor cyan (green and blue
Each sublattice finds itself in the cyan or magenta phase,
Figs. 4i,j). In the cyan phase, the verticéfred” ) bonds
feature antiparallel spins; in the magenta phase, antiparallel
spins are found on horizontéigreen”) bonds. The colors of
the sublattices arsndependenat order 15.

This argument can be made more precise by turning to the
bond order parametdt, (20). As shown in Fig. &), f, is
positive, zero, and negative in the red, blue, and green states,
respectively. Averaging over the entire ground state manifold
gives(f,(r))=0 for any tetrahedron. The reasoning put for-
ward in the previous paragraph suggests tHatr)f,(r’))

FIG. 4. (Color onling Construction of ground states at the order 284/2>0_ even agr—r'[— (ag long as the tetrahedra
1/S for J,=J,. The secondary color magenta is an equal-part mix-2ndr’ reside on the same sublattic&hus a long-range bond
ture of red and blue; similarly, cyan is an equally weighted averag@'der is present’

of green and blue. The letter G marks the locationZ gfgauge _The Iong—range order,is thus Sim"ar to the C3§6<Jz,
transformations. Filled triangles represent tetrahedra not in a groun@ith one exception: the Mg vector in the composite order
state. parameter is replaced with a director that defines a collinear-

ity axis. The order parameter now has the strucy& Z,
tions on sublattic® (whose colors are unchanged sample X S?Z,: two Ising order parameters in addition to a spin
ground state is shown in Fig(H). nematic. The spin-nematic order breaks a continuous rota-

Now it is easy to count the number of degenerate groundional symmetry and therefore will be lost at any finite tem-
states on ah X L checkerboard lattice with periodic bound- perature. The remaining Ising ordetsx Z, are expected to
ary conditions. On a single sublattice of tetrahedra, there arsurvive up to a finite temperature(Js).
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C. Effective spin interaction e [

One may wonder what kind of a Hamiltonian gives rise to |X[ ]E X[ ]E |Z[ ]E X[ ]E M

-n
i}
N

a strongly degenerate set of ground states described above.

N

& JE’
X

fact, it can be derived following Henley’s methdtThe
guantum correction of order 3/to the ground-state energy K E JZ
(2) is obtained by rewriting Eq(14) for the eigenmodes: . 2

N
A
N

h2w?a,=32Y, >, S.sSp,0,=43°F0,

B(a) v(B) FIG. 5. (Color online Ground states of Henley’s four-spin in-
teraction, Eq(24). Frustrated bonds are shown in color. Parametri-
+J22 E S.5Ss,T - (22) zation in terms of bondrather than spinvariables decouples tetra-
Ble) y(B)#a hedra of one sublatticen(, ) from those of the otherg, §).
The notationB(«) indicates that tetrahedrgh is a neighbor Note that the bond interaction generated by the term
of tetrahedrona (they share spirg,;). Following Henley, —TrT? is between tetrahedra of the same sublattice. Higher-
we introduce an adjacency matrix, order spin loops-TrT" can also be represented as an inter-

action betweem tetrahedra of the same sublattice. In terms
1 of bond variables, there is no coupling between different
Tay=— 1 ﬁ(; ) SupSpy (22 sublattices at the orderd/
7 Before deriving the three-body interaction, it makes sense
whose matrix elements are nonzero when tetrahedzady ~ t0 check for the ground states of the two-body bond Hamil-
have a common neighbg@. The sum over nonzero eigen- tonian that we have just obtained: the energy i for states

frequences can now be expressed in terms of the migigrix  shown in Fig. 5 andt-1 for the remaining states. More con-
cisely, For tetrahedra on the same sublattice, nearest neigh-

il wp| T T? bors in the horizontal direction need to be both red or neither
; 5 —IST1-T=JSTr{1-5—-&~—"- red; in the vertical direction both green or neither green.
23) It is easy to see that this rule gives precisely all the ground

states found in the beginning of this section by means of
This expansion converges rather slowligenvalues off  Henley’s gauge argument—and no other states.
extend all the way up to)land cannot be used for quantita- It is quite remarkable that a crude two-body approxima-
tive purposes. Nevertheless, it provides correct qualitativgion,
answers, as will be seen shortly.

BecauseT,,=0, the first spin-dependent correction Try1-T=Tr(1-T/2—-T?8), (27
comes from the second-order term, correctly reproduces all the ground states. This fact seems to

indicate that the neglectedbody interactiongwhich are by
B J—ST T2 38 ) S S.,5,.5.,5 no means smallcan be expressed in terms of the two-body
Y 12833 agys  APTBYTyoT0ar potentials identified above. If this is the case, the many-body
(24)  interactions shift all ground states by the same amount with-
out breaking their degeneradyVe have checked that the 3-

(In the last sum, all tetrahedra are distincthis spin-  and 4-body interactions are indeed reducible.
dependent term can be considered as a four-body interaction

of spins or as a two-body interaction of bond variables. In- D. Effective bond interaction
deed, the interactior saﬁsﬁysws&a is minimized when the
number of down spins is even, which can be cast in bond

The four-spin interactiof24) can also be written in terms
of the bond variable$20). Adjacent tetrahedra and y of

|
anguage as the same sublatticéFig. 5 interact with energy
= =+S? N
SC!BS.BV 87585“ +S (29 JS fa nay 1 f7' Nay
i.e., when thevertical bonds of tetrahedrg and § simulta- Eay=" 52\/— SZ\/§ ' 29

neously have parallel or antiparallel spins. All such bond
configurations are shown in the top row of Fig. 5. Alterna- The unit vectornay points in the red directioEFig 3(a)] for
\?v%“eonn between tetrahedra and y, which is minimized alongy. The one-body piece can be viewed as a “magnetic”
field for the two-component “spint,, that points in the cyan
S. S .=S, S =+ 26 or magenta direction. Once.we sum over QII neighbors of a
daaf T =py=ys 26 given tetrahedron, the resulting “magnetic field” has the blue
i.e., when theithorizontalbonds simultaneously have paral- color and the magnitud@/325%\/3. The two-body potential
lel or antiparallel spins. These ground states are shown in theouples ferromagnetically the red or green components of
bottom part of Fig. 5. neighboring “spins” depending on the direction.
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It is worth noting that a very similar interaction has been |
obtained for the quantum caSe= 1/2 by Tsunetsugtf*’ We
will return to this point later in Sec. VI.
h

V. LARGE S: A BRIEF SUMMARY

Our study of the ground state of the Heisenberg checker- Neel | coupled chains Jjjl
board antiferromagnet to orderSLéstablishes the existence 4 4 4
of a long-range bond order in this system. The bond order A M
breaks a mirror symmetry of the lattice exchanging the ver- /— >< >< y {
tical and horizontal directiongthe green and red colors in A J
our notation. The discrete Z,) nature of the broken sym- 4 M 4
metry assures survival of the long-range bond order to finite * ) ] X ’
temperatures. It is instructive to trace the evolution of the - 4
ground state as the ratio of the first- and second-neighbo @

exchange couplings varies.

For J,/J,<1, the ground state is uniguyap to a global
rotation of all spin it is the Neel state of the simple square
lattice (J,=0). Although the global @) spin symmetry is
broken atT=0, it is restored at any finite temperature. The
Z, symmetry is manifest.

ForJ,/J,>1, we find a fourfold degeneracy as each sub-
lattice independently chooses one of the two ground state: -
with collinear spins. In the red statgarallel spins are found Neel | "quadrumers” | uncoupled 7 i,
on vertical bondgand antiparallel spins on all other bonds 4 4 =
In the green state, parallel spins are found on horizontal ¢ ’/
bonds(Fig. 2). Tk ‘

The pointJ,/J;=1 is special: there ar€(2") degenerate ‘
ground states on ahXL lattice to order 1%. There is no ) 4
Neel order even at zero temperature. Still, long-range bond J
order is present: if a single tetrahedron is put in the red state (b)
there are no green tetrahedra on the same sublattice. By av-
eraging over all red-and-blue staté&ig. 4) one obtains a FIG. 6. (Color onling (a) Ground states computed to ordeS1/
magenta phase in whicantiparallel spins, (S - S;)=— 2, as a function of/J;. The two sublattices of tetrahedra are colored
are found on horizontal bond&or the rest of first and sec- independently of each othetb) Ground states foS=1/2 (Refs.

. o 19,25-27. The secondary color&yan, magenta, and yellgven-
ond neighbors(S - S;)=0.) The cyan phase, whe(&;- S;) i Y ‘ : .
— &2 on vertical bonds and O on the rest, is obtained b code the location of satisfied bon@those with antiparallel spins

: yThey are the opposites of the primary-color stdtespectively, red,
averaging over the green-and-blue states. green, and blue
The independent ordering of the two sublattices of tetra-

hedra is probably accidental: the quantum correction of order VI. QUANTUM LIMIT: S=1/2
1/S (23) couples bond variables of the same sublattice.

Higher-order corrections may well produce in'[ersublatticen rl;tllfi mlterrest:?g ft()sfoszparti ?:r dla;r@e:;[l%v!%rslz t(r) Jthe
couplings locking the sublattice order parameters. umerical resufts Tos= obtained recenty. orJs

_ o =J, they have found a bond-ordered state in which the prob-
As we have shown fod,/J;=1, parametrization of the .2 L - .
- : . . . ability of finding a spin singlet is enhanced on half of the
four-spin interaction(24) in color terms gives a Potts-like

del witha=3 d direction-d dent i .~ squares without crossings, the “quadrumer” phase in Fig.
mode withq= sta_te_s an |rect|on- ependent |nteract|on56(b)_ A similar plaquette state has appeared in the analyses of
(Fig. 5. Small deviations of the differencé,/J; from 1

) oy : the quantum dimer model for the planar pyrochfdend the
amount to adding a magnetic fiefpromoting or sUppress-  ghastry-Sutherland latti8. In our terminology, this

ing the blue state. Fad,/J;<1 (blue field, it is advanta- plaquette state corresponds to the magenta-cyan vacuum
geous to placgarallel spins on the weaker diagonal bonds [Fig. 6@)]: the spin correlationgS - S;) are more negative
making the entire lattice blue. Fds/J;>1, the field points  on vertical bonds for one sublattice of tetrahedra and on hori-
in the opposite—yellow—direction suppressing the bluezontal bonds for the other. TH&=1/2 ground-state quantum
state and forcing the system to choose between the red angave function, however, cannot be expressed as a simple
green states. Lastly],/J;=« is the regime of decoupled product of single tetrahedron configurations.

diagonal chains. The phase diagram is shown schematically Although the larges andS=1/2 answers are the same at

in Fig. 6(a). equal couplings, there are also important differences that be-
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come apparent when we compare the resultsJ{etJ,. In K,.x- In this case we can neglect tlg,, terms altogether
the largeS phase diagrarfFig. 6(a)], the magenta-cyan state without changing the critical properties in any significant
is a single point sandwiched between the blue and red-andvay:
green phases. Fd8=1/2, it is found in a finite range of
ratiosJ,/J, around 1. The phase diagram ¢ 1/2 inferred
from the works of Lhuillieret al. is shown in Fig. 60). H= 2 K(Rup)TazTsr— N2 Tux- (33
The S=1/2 case does not lend itself to a straightforward (ep) a
analytical treatment. Nevertheless, we have found a useful
phenomenological approach that sheds some light onto ithis is the Hamiltonian of an Ising antiferromagnet in a
phase diagram. The bond variabfesvhich we have intro- transverse magnetic field, whose properties are well known.
duced previously for classical spifi0), can be defined in At h=0, it is a classical system with long-range order:
the same way for any spin vall& The ground states of an (7,)=+1 on one sublattice ane-1 on the other(The tet-
isolated tetrahedron with a Heisenberg interaction betweerahedra form a square lattice, so that the interactions are not
its four spins are 8+1 degenerate singlets. The operatorsfrustrated. The Nesl phase is preserved in a finite range of
f=(1,,1.), weak magnetic fieldsh|<K. A strong “magnetic field”h
>K induces fast quantum fluctuations that kill theeNer-
) _ ) ) der even at zero temperature, so tiaf)=0. The zero-
(517%) (S5 5) ~2(S1- S+ S5 S“), temperature phase diagram is shown in Fifh).6System
V12 (33) has an “antiferromagnetic” phase fgh|<h., which
corresponds to the “quadrumer” state of Foeéeal 2° Quan-
. (S-5)(S—Sy) tum critical points ath=*h. separate this phase from the
fo= 5 (29 quantum disordered regions with no bond order—the yellow
and blue states in which the diagonal bonds are strong

leave this manifold of states invariant. In this Hilbert space({7x)>0) and weak(r,)<0, respectively.

’fl:

they act as Hermitian matrices $2 1) (2S+1).*! In par- Let us pause for a moment and take a critical look at this
ticular, for S= 1/2 they are proportional to the Pauli matrices. Phénomenology. From the viewpoint of bond variables, at
One can choose a basis in which some valuel,/J,;=j.~1, which corresponds tb=0, con-
ditions are ideal for a spin-Peierls state: quantum fluctuations
N NG induced by the “tran_sverse fieldhochzlJl—jC are absent,.
f1:77-x, f2:77-2_ (30) so that bond order is robust. Going away from that point

increases quantum fluctuations 6§« 7, and reduces the
If the interaction between the bond variables on differenthond order parameter until the bond order completely melts
tetrahedrae and 8 were of the pure Potts form, it would be at a quantum critical point. If the critical behavior is ad-
proportional to the scalar produt}-f5. In theS=1/2 case, equately described by the Ising model, the energy gap van-
ishes at the critical point only. Both phases—bond ordered
fo-fp= %(Taxrﬂx+ TazTp2)- (3D and bond disordered—are gapped.
This may or may not be the case. Consider in more detail
However, as we have seen in Sec. IV C, the interaction has e transition from the Nal phase of the simple square lat-
more complicated form. It is direction dependent and istice (J,/J,;=0) to the spin-Peierls phasest/J;~1. There
asymmetric in the Potts flavors: red and green are differerdre three distinct possibilities.
from the blue even whed,=J,. The crudest way to reflect (1) As J,/J; increases, first the spin order melts at
this asymmetry is to write an interaction of the form j,/3,=j. then a bond order appearsiat/J,;=j,>|s, see
Kifarf g1+ Kaf oof g2 With Ky # Ky, In addition, there can be  Fig. 7(a). The intermediate phase has neither spin, nor bond
a “magnetic field” coupling —hf,; that selects the blue order. The critical behavior neds/J,=j, is adequately de-
stategfor J,<J,) or the red and green statek$J;) inthe  scribed by our bond phenomenology.
classical case (2) Magnetic order persists into the spin-Peierls phase.
The spin and bond orders coeffsin the rangej,<J,/J;
<js. In this case, the emergence of bond ordedat),
H_WE/;) [Kod Rap) TaxTpx + KZZ(R&ﬁ)TaZTBZ]_h% Tax: =], is more adequately described as a spin canting transi-
(32)  tion, see Fig. ). The system is gapless on both sides of this
quantum phase transition.
Here we assume for simplicity that the potenti&lg, and (3) The spin order disappears simultaneously with the on-
K,, depend on the distance between tetrahedra, but not et of the bond order at,/J;=j<=]j,, as shown in Fig.
the direction. Our findings in the preceding section indicates(b). One phase is gapped, the other is gapless.
that the second-neighbor coupling is ferromagnekie<Q). As is the usual limitation of exact diagonalizations, the
Numerical results of Fouedt al?® suggest that the nearest- numerical data of Sindzingret al?® were obtainable only
neighbor interaction is antiferromagnetiK $0). The fact for moderately small lattice@up to 6x6). On the basis of
that the Ising order parameter is always related to the contheir data we are unable to tell whether or not the spin and
ponentf, points to the dominance of th€,, coupling over  bond orders overlap. We feel, however, that all three possi-
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(S-S;) vanish beyond nearest neighbors. However, there is a
long-rangebondorder: “tetrahedra” of the checkerboard lat-
tice spontaneously pick up one of the two states, in which the
nearest-neighbor correlatiogs; - S;) are uniformly — S? for
vertical bonds and O for horizontal ones—or vice versa. The
bond order breaks the rotational symmetry of the lattice.
More precisely, the bond order parameteZis< Z,: the

Neel | disordered | spin—Peierls  J,lJ,

y Y two sublattices of tetrahedra orderdependentlyof each
A M other, which is reminiscent of the Ashkin-Teller model. The
>< >< discrete character of the broken symmetry indicates that the
] bond order will likely survive at low temperatures. The criti-
4 M cal properties of the thermal transition between the bond-
>< >< ordered and paramagnetic states remain an open question.
- In addition to the bond order, there isrematiclong-
@ range order: every spin points along a common direction

n-or its opposite—n.

Our largeS analysis is in reasonable agreement with nu-
merical results for thes=1/2 planar pyrochlore antiferro-
magnet obtained by Fouet al?® and Berget al?’ They find
a bond-ordered ground state @mostthe same kind as we
do. The ordering of the two sublattices of tetrahedra is no
— longer independent: opposite patterns of the bond order are
spin—Peierls J,/J, chosen. The ground state 8 1/2 appears to be a doubly
degenerate spin singlet. Numerical data suggest the presence
of a spin gap, which seems to rule out the presence of spin

h

>< >< order of the Nel or nematic type. This brings up the ques-
£ \ tion of stability of the nematic order that we have found at
5 4 € M large S A recent calculation of Canafs, based on the
>< >< Dyson-Maleev approximation, indicates that collinear
\ - ground states are locally stable at lagéut could become
(b) unstable below some critical val& . Although the Dyson-

] Maleev scheme is not a controlled approximation for small
FIG. 7. (Color onling Transitions between the Meand “qua- g Canals’ scenario is consistent with the results reported
drumer” states(a) Spin order melts af,/J,;=]s, bond order ap- pere and in Refs. 25—-27.
pears al_tJ2/J1=jb.>jS. (b) Spin ord_er pecomes noncollinear at A lack of symmetry between the first- and second-
J2/31=]p, then disappears d/J,=js>]p- neighbor bonds compels one to study a more general system
with unequal first- and second-neighbor exchanggs J,.
bilities can be realized as a matter of principle, so the Ising=or |argeS the deviation of = J,/J; from the critical value

phenomenology may be useful. jc=1 plays the role of a “magnetic field” in the three-state
Potts model. The three flavors correspond to the three collin-
VIl. CONCLUSION ear ground states of spins on a tetrahedrandulo a global

rotation of the spins They can be labeled by the location of

In this paper, we have studied the ground state of drustrated bonds: diagonal, vertical, or horizontal. The “mag-
Heisenberg antiferromagnet with large sp&ien the check- netic field” hecJ,/J;—1 prefers the “diagonal” state when
erboard lattice, also known as the planar pyrochlore. To zed,<J,, in which case the ground state is unique and the
roth order in 15—the classical approximation—the magnet lattice symmetries are intact. Whel3>J,, the “vertical”
has an extremely large, continuous degeneracy of the grourghd “horizontal” states are favored, which leads to a spon-
state. In the next order in 8/ this accidental degeneracy is taneous breaking of the rotational symmetry of the lattice.
partially lifted by quantum fluctuations. The main achieve-Still, even at the critical poin,/J;=1 the symmetry be-
ment of this work is a complete characterization of thetween the three flavors is not restored: the diagonal bonds
ground-state properties of this magnet to ord&. 1/ remain different from the horizontal and vertical ones, so that

The ground states with the lowest energy of zero-pointhe symmetry is stillZ,, rather than § Accordingly, the
motion are found among the classical vacua with collineaorder parameter is of the Ising, rather than the three-state
spins. By using a special dynamical symmetry discovered byotts, model. Put another way, only one component of the
Henley™ we have explicitly constructed all of these ground Potts order parameter is used: that which is orthogonal to the
states and shown that their number is of ordeirRa lattice  direction of the “magnetic field"h.
L X L. We have shown that there is no long-rangeNeder: At large S, Neel order is present on both sides of the
in the ensemble of these ground states, spin correlationsitical pointJ,/J; =1, but not at the critical point itself. For
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J;<J, (diagonal chains with a weak frustrated couplitige
Neel order is induced by quantum fluctuations of spins. Ho=3,2 S[SS. 1 +5,,]+SS,;. (A1)
There are signs that, for a sufficiently weak interchain cou- '
pling, J;<J;.=0(J,y/Se ¥?), the Neel order may be de- Introduction of the anisotropy @ 5<1) helps stabilize the
stroyed. The fate of the bond order is unknown, althouglcollinear ground state of a single chain: at the Heisenberg
chances are that it is less susceptible to long-wavelength sppoint (6=1) Neel order along the chain is destroyed by
fluctuations. qguantum fluctuations. At the technical level, this is caused by
While it may be unreasonable to expect quantitative in-a divergent 1$ correction to the staggered moment fér
formation about small spin values from &léxpansion, we =1.* Then, strictly speaking, the initial assumption of the
were tempted to make some general statements about theng-range Nel order on the chain breaks down. Therefore
observed behavior of the=1/2 systent>~2’ It appears that we compute the effects of the interchain couplingdat1
there is some family resemblance and that the zeroand then take the Heisenberg lindit—=1. Unlike the stag-
temperature phase diagrams for laig¢Fig. 6(@] and for  gered magnetization, the energy of zero-point moti@h
S=1/2[Fig. 6(b)] can be understood in similar terms, as far does not have an infrared divergence. This justifies approach-
as bond order is concerned. We find it plausible that the bonghg the Heisenberg limi—1 from below* (Note, how-
operators(represented foS=1/2 by 2x2 Pauli matrices  ever, that the interchain coupling is always taken to be of the
behave as spins of an Ising antiferromagnet in a transverssotropic, Heisenberg king.
magnetic field. The Ising order parameter is an expectation At the Ising point, =0, the system has an extensive
value of 7,; the “magnetic field”h couples tor,. In zero  degeneracy: there aré ground states. We parametrize them
transverse field, there is a bond order of the antiferro type, alsy introducing a single Ising variable 1 for every chain.
observed by Fouetetal. A nonzero transverse field Then, for example, on theth chain alongi—whose spins

he«J,/J,—] induces quantum fluctuations of the “spins” 5ve  coordinates r=(n+12m)—we  have &
7,. At some critical value of the “field” the bond order melts _ —1)"*1s.S. We will use the Holstein-Primakoff trans-

and the ordered phase has a finite extent, in agreement Wit mation keeping the terms of orde®&SY2 and 1. For a
the numerical work of Sindzingret al?®

. A . o spin with S>>0,
It is rather intriguing to find a valence-bond solid without

Neel order in the limit of largeS. This result is probably not ?=S—a'a,

unique to the planar pyrochlore and we intend to pursue this

avenue further by studying other lattices. In particular, it a’a 1
would be interesting to solve a similar problem on the three- St=2S/1- =—=a=2Sa+0 _) ,
dimensional pyrochlore lattice and determine the resulting 23 Vs

phase. In that case, tH& symmetry of the Potts states is

intact and the outcome should be different. There are further - R afa R 1
open questions. Are there lattices that contain valence-bond S =y2Sd\/1- 25~ V2sa' +0 TS .
liquids at largeS? What happens at intermediate valueSof

We look forward to finding out. For spins withS’<0 we rotate the reference frame about the

direction x through . Then for a spin located on thath
chain running along: we obtain
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APPENDIX: ORDER FROM DISORDER 2i ' '
IN THE CHAIN LIMIT S— a:ra,

Here we derive the results presented in Sec. Il. wherer=(n+1/2m).
The effective potential generated by quantum fluctuations

is a function ofL Neel vectorsn,,. Invariance under global
The starting pointJ;=0 corresponds to completely de- spin rotations implies certain restrictions on the form of that

coupled chains running along the diagonal directigrend ~ function. For instance, a pairwise potential coupling chains

7. For technical reasons, we will consider chains with anVith staggered magnetizations andn, must be a function
Ising anisotropy, of the scalar produch;-n,. In addition, symmetry of the

1. Notation
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lattice requires—for chains running in perpendicular The perturbation term in the Hamiltonidfor which we

directions— that the coupling be invariant undgr>—n,, introduce no anisotropy
so that it must depend om{-n,)2. With this in mind, we
will compute the lowest-order effect<(J%)—as a function V= nEm J1(Sh—12mt Sht12m) - (Shm=1/2F S m+ 172)

of L(L—1)/2 angles between staggered magnetizatins (A9)
=arccosfy,-n,). The pairwise nature of this potential al-
lows us to tilt the spins uniformly on ally chains. It is couples linear combinations of spi®§_1/,m+ Sy+1/2m and

convenient to choose, as thez direction and lef, lieinthe  Sh.m-127 Shm+112- Note that both linear combinations live
yz plane. on the same tetrahedron centeredmaing). It is convenient

For potentials coupling more than two chains, one must0 introduce variableg,, and 7, representing transverse
consider a general orientation of the staggered magnetiz&Pin fluctuations on the respective diagonal links of the tet-

tions involved. However, because the leading tédnal-  rahedron. For a link along,
ready selects collinear states, in higher orders we will work §
with collinear configurations only. Eam
Thus for the nth % chain—whose spins reside at n —2J8| s (—1)"tigy A10
= (n,m+ 1/2)—we perform an additional uniform rotation in S-2mt v 12m=2VS| Sl )an;m - (AL
the yz plane: Sm(—1)" &
By direct comparison to EqA2) we obtain
s\ /1 0 0 Y P 1A2)
Sl=(0 (-1)",cos6 (—1)™t,sing . ) .
s 0 —(-1)™1tsing (—1)™ 1t cosd bnm=5 T (2w B vz Bz Bneaizm),
2S gt i
—(a,+a
2 (@+a) §%m=m(aﬁfl/z,m—an7mm—a5+1/zm+an+1/z,m),
x| \2S P (A3)
o (&~ a) £ =0, (A11)
S-ala, The longitudinal componen¢? is of order S *2 and has

therefore been dropped at the current level of approximation.

Na}urally, thga intrachain Hamiltonian is not affected by theseFOr 7 chains we similarly define)? fields via
unitary rotations:

X _ t t
HO:JZSE [Za,Ta,Jr 5(arar+g+afa:+;§)] (A4) nnm_2\/§(an,m71/2+an,m—l/z""an,m+1/2+an,m+1/2):
r

for the £ chain. After a Fourier transform, i : ;
77¥m:_(an,m—1/2_ anm-12"8nm+12F 8nme172),
242

Ho=J,S> [2a]a,+ & cop(apa_p+ata’ )], (A5)
P

7hm=0. (A12)
wherep is the lattice momentum along the chain direction.the sum of the spins along an link is then expressed
Thermal Green’s functions are given by according to Eq(A3), as '
wo—iw 77X
(@' (w,pla(—w,—p))=—7—7 (AB) o
Wt €p Sum-12+ Sums12=2VS| (1) Htacostnyy,
(—1)Mt,sin 7y m
woY A13
(a(o,pa(—w,~p)=—— 3, (A7) (A13)
ot € The interchain couplingA9) now reads
wherew is a bosonic Matsubara frequency and o
V=438 (& Enmhm)- (A14)
wo= 23S, n.m
where we have introduced a shorthand notation
Yp= 6 cosp,
o= (=D "Spém, mhm=(—1)"tacoS0 7.
€p=wo\1— ’)/,2). (A8) (A15)
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To complete the preparation stage we work out Green'snagnetizationss,, are odd under reflections in any line of

functions of the¢ and » variables for uncoupled chains:

(BT (7)) = O G (7= 7',n—1"), (A16)
<77ﬁm(7') ng’m’(T,»: 5nn’Gab(T— ., m—m’),
(A17)

where indicesa andb take on valuex andy. The space-time
Green’s functionsG2°(r,n) are easily obtained in terms of
their Fourier transforms,

1 = d —
Gab(Tun):EZ f %Gab(w,p)e—lwr+lpn,

(A18)
which are given by the matrix
G(w,p)
wo(1—yp) cOS(p/2)  —iwsin(p/2)cog p/2)
_ w’+ 6'2) w’+ 6,23
—iwsin(p/2)cogp/2)  wo(1+y,) SiF(p/2)
w?+ 6’2) w’+ ES
(A19)

Partial Fourier transform&2°(w,n) are real and satisfy the
following identities:

G*w,n)=(—1)"G¥(w,n)=C*w,—n),
GY(w,n)=G¥*(w,n)=—G¥ w,—n),

GYw,n)=(—1)""1GY(w,n). (A20)

spins alongn. Therefore the only possibility is four com-
ponents:

<§¥m77%m§z/m’77)rq’m’>
=(—1)mFm +ntn Cogﬁsmsmrtntn’<§%m§ﬁ'm’>

X < n%mnﬁ’m’% (A23)
where we have used Gaussian statistics of the varigtdesl

7. It is evident that lattice pointsnfm) and (0'm’) must
belong to a¢ chain and any chain simultaneously, so that
they are the same point. This term therefore gives rise to a
contact interaction of crossing chains. The correction to the
energy of a ground state is found by taking the limit of zero
temperature g— ),

43,972 (d
g2 _ - ) f%[eyy(w,onz% cog
J3s ..
==1(8) 5~ 2 (N Ny, (A24)
2 mn

wheren,,, andn,, are the directions of staggered magnetiza-
tions on chains running in thé and % directions, respec-
tively; G(w,0) is the real-space Green’s functi@{w,n) at
distancen=0. The numerical constaih(s) is given here for
the Ising (6=0) and Heisenbergd=1) limits:

|(0)=%, 1(1)= (A25)

Equation (A24) constitutes an order-by-disorder effect:

The last line suggests that the off-diagonal components varsollinear spin configurationsn(,= =n,) minimize the en-

ish for evendistances. At the Heisenberg point, the diago-

nal components vanish fadd distances.

2. Order J?

ergy of quantum fluctuations. There aré &uch collinear
states in arL X L lattice with periodic boundary conditions.
Their degeneracy is partially lifted at the ordé}, as we
discuss next.

The first nonvanishing correction to the free energy comes

at the second order i#¢ and can be expressed as the second

moment of the Eucledian action:

il o)

The perturbatiofV is given by Eq(A14). Its second moment
contains quartic averages

(A21)

<(§)r§m77§m+ g%mn%m)(g:’m’ nﬁlm’ + fﬁ!ml nﬁ/mr)>
(A22)

(Time variables are omitted for brevityDependence on the
staggered magnetizatiorss, andt,, and the tilting anglef
comes through thg components—see E@A15). Further-
more, terms containing twr and twoy components vanish
by symmetry: they have one factor sfonly and staggered

3. Order J}

In the remainder of this section we will consider collinear
vacua. Therefore the unitary transformation matrix in Eq.
(A3) becomes diagonal and E¢A13) acquires the same
form as Eq.(A10). The ground-state energy will depend on
the Ising variables andt. The first nontrivial correction to
the energy comes from the term of the fourth ordedin

E®=— i<

Y JdTV)4>.

The dependence_on_staggered magnetizaticarsdt comes
through the vertex? ¥ (A15). Symmetry arguments used in
the preceding calculation show th&tand t-dependent dia-

grams must contain exactly two vertic&s;* and two&” 7.
We obtain

(A26)
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G?(w,1)=0 for |I|>1. As a result, the effective potential
depends on the nearest-neighbor produs{s,.,; and

tnbme 1

1 J7s
El(giz\gz ﬁs\]_g %‘4 En: (Smsm+1+tntn+1_Smsm+1tntn+l).
2

(A30)

It is minimized by the ground staté9), in which staggered
magnetizations have opposite signs on neighboring parallel
chains. Such configurations minimize every term in Eq.
(A30).

FIG. 8. Computation of the quantum correction to the free en- b. Heisenberg limit

b yatO(Ji)' Filled dots represent Verﬂfﬁ'ﬁrln”rxnn' Open ones At the Heisenberg point, diagonédff-diagona) compo-
(gm”’#‘“' ;hetlat\tter C.ontgblif;fa?gﬁ(? S"‘t“hto the d'agra;n' nents of the propagat@A19) contain ever(odd harmonics
3 ,e st term in £q.t ) € diagram Nas a prefaclor  of the translation operatag'® only. In real-space terms, a
(=1)'tpthy- (b) The third term in Eq. (A27). Prefactor | di by k L lari
(—1)Nas .. magnon can travel an even distance by keeping its polariza-
memEk e tion, an odd distance by flipping it. Thus pairwise chain in-
teractions are induced for parallel chains with an even sepa-

4
£(4)_ —2><6><(4Jls) fd_w D [(—1)%SSmek ration; quartic ones involve pairs of parallel chains with an
41 ) 27 kimn odd separation:
XGY(w,1)GYY(w,k) G (w,— )G w,—k) b ©  ®
E<4>—2J132 S (A At

+(=D'tyths G0, GV (@,k)GYY(w,—1) = B aas s (A2kSmSm+ 2k T Azitmtm+ 21

X G (@, =K+ (= 1) St G (w)]) —Bok—1,2-1SmSm+2k—1tntnr21-1)- (A31)

X G 0,k)GY(w,— )G (w,—k)]. (A27)

The dimensionless coefficienésandB are given below. As
Feynman diagrams contributing to EGA27) consist of a  previously noted, this potential is invariant under a reversal
rectangular path formed by twé chains and twop chains  of spins on every other diagonal chai®). We discuss the
(Fig. 8. The factors X6 have a combinatorial origin. At origin of this dynamical symmetry in Sec. Ill and demon-
this order, the interchain couplin; generates a two-chain strate that it holds to an arbitrary orderJq.

interaction (between parallel chainsand a four-chain one The dominant term in Eq.(A31)—proportional to
(involving four crossing chains B, r—describes a coupling of four chains intersecting around
an open square. It is minimized by spin configurations in

2J1s which diagonal chains running in the same direction have
EW=— > 2 2 2 (ASmSmek T Attatos either constant staggered magnetizatié8ls or alternating
Jz 120k=0 m ones(9). These states—shown in Figs(bp-2(e)—are re-
— BiSmSm itntns1)- (A28) Iated by a staggering transformati(ﬁ). Therefore they re-
main degenerate even upon the inclusion of all two- and
Dimensionless couplings,=0 andB,,=0 are four-chain interactions in EqA31).

The second-largest term—a two-chain potential propor-
tional to A,—is minimized by Nel states of a different kind:
the ones with opposite staggered magnetizationsdoond
neighbor chains. Thus we obtain another viable candidate for
a ground state,

d
A=2(3,97° | 521 P, (60T

BkI:28(JZS)3J g—:[ny(w,k)]Z[ny(w,l)]z-

(A29) San=San+1= ~San+2= ~San+3, (A32)
They fall off quickly with the distance& and|. We have and similarly fort. _ _
used the properties of the Green’s functi¢A0) in deriv- Because the fourth-order energy correcti@jy contains
ing them. Below we discuss the Ising£0) and Heisenberg oscillating terms, it is best to evaluate the energies at order
(6—1) limits. J‘l1 exactly. We find that the energy of the stat8sand(9) is
indeed lower byCJ{S/J3 per spin, where
a. Ising limit

In the Ising limit, the magnong and » have an infinite C= \/_E_ fml 991x 103 (A33)

mass and are unable to move far along the chain. Therefore 4 128 '
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4. Coupling coefficientsA; and By Numerical values for the first few terms are

In what follows we specialize to the Heisenberg caSe,
=1. Coefficients(A29) of the two- and four-chain interac-
tion (5) are given in terms of the following integrals

A,=1.41x103, B;,;=6.86<10 3,

A,=1.63x10"4, B;3=3.47x107 %

pn
GX(w.n )__ M, Ag=3.84x107% B,s=B;,=5.29x1075. (A40)
- 72T 2+ wisirPp
Although these coupling constants fall off rather
= dp sinp €Pn quickly—as|l|~*and (k| +]I|) ~° at large distances—partial
GY(w,n)= (A34)  cancellations in Eq(A28) call for a careful comparison of

2
2 ’”277“’ + w03|n2p energies of the candidate ground states. In a state with equal

staggered magnetizations on all chai(®, all products

Introduce an auxiliary variabla, SmSm+ k= tmtm+1=21. The fourth-order correction to the en-

= wySinhu. (A35) ergy is
We find E(4) sl Z

Tt
N 22A2| EEsz 12-1

5n0_tanHU| “inul . spins ‘]2 I=

—Fe , h iseven (A41)

G*w,n)= 2wg
0, n is odd, per spin. The state with alternating staggered magnetizations

(A36) (9) is degenerate with it by virtue of the staggering symmetry
(6). In the (++ ——) state(A32), s,,Sm.k OScillates as a
function of m (and thus averages out to zgrfor an oddk

0, n is even and equals £ 1)"2 for an evenk. Hence the expression for

the correction to the ground-state energy at this order,

where 6, is the Kronecker delta;

G*¥(w,n)=4 tantu . A37
(e,1) e "lsgnn, n isodd, (A37) )
2w E® __ Jis
N = g X2, Aal(-1)' (A42)
2 tanHul spins Jz
[GY(w,n)]*= —5—. (A38) : .
o 8w2cosiu The energy difference is then
Substituting these into E4A29) produces the following ex- EW  _gM® J%s
. . . . ++—— ++++ 1
pressions for nonvanishing coupling constants in the effec- N =C—>0, (A43)
tive potential(A28): spins J3
fldx (1—x)3xll-12 _ where the constant is
=| =—m——, liseven,
02T  (1+x)* c fldx (1—x)%(1—4x+ x?)x?
“Jo2m 5 2
Lalx (1—x)4xlK+111-372 027 (1+x)%(1+x?)
= 5— , kandl are odd.
‘ f"z” (1+%)° _V2 45 1.991x 10°2, (A44)
(A39) 4 128
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