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A complete and comprehensive theory of the propagation of second-har(&didield generated within
arbitrary multilayer systems is presented. The theory is based on the radiation of point dipoles whose strength
is determined by the distribution of the fundamental field interrogating the multilayer structure. The theory is
applied to the study of magnetic-induced second-harmonic genetBt®HG) where the SH field is generated
at the interfaces of the multilayer structure as a consequence of the local symmetry breaking, not only due to
the structural asymmetry but also the local magnetization. In comparison with the already existing theory based
on radiation of an infinitesimally thin polarization sheet, the approach based on the point-dipole radiation
presented in this work is more general since it can be applied to the study of systems whose susceptibility
tensors, which describe the nonlinear properties of the media, exhibit arbitrary spatial variations. It is shown
that the Fourier transform of such variations is closely related to the angular variation of the observable
intensity of the far-field SH. Due to the point-dipole nature of the approach used, the theory presented here can
be employed in the analysis of MSHG from systems wiitbried magnetic domains with sizes comparable to
the wavelength of the second harmonic light, magnetic nanostructures, and others. In addition to the formalism
itself, a number of numerical examples is provided and discussed in detail. It is shown that our results are in
agreement with those published in the literature for simpler systems. Further capabilities of the theory are
demonstrated on a system containing a buried ferromagnetic layer with periodic magnetic domains.
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[. INTRODUCTION In this expressiorE(®) denotes the complex amplitude of the
electric field at the fundamental frequeneyat the interface,
Magnetization-induced  second-harmonic  generatiorand y is the third rank nonlinear susceptibility tensne
(MSHG) has recently been attracting the attention of manyelements of the tensqr are denoted by;;) which phenom-
theoretical and experimental studfes? This is mostly due enologically describes the origins of the electromagnetic
to the fact that it provides a unique experimental tool for(EM) field at 2w.
studying the magnetic properties of interfaces in ultrathin  From the classical EM theory it follows that the introduc-
magnetic structures. tion of such a polarization sheet implies a discontinuity of
As follows from various experimental evidence, tinain  the tangential components of the EM field across the inter-
contribution to the second-harmonigH) field generated in  face. Applying this fundamental step along with the matrix
a multilayer system comprised of centrosymmetric material$ormalism relating the EM field across the multilayer system
originates at the layer interfaces, where the local point symto that outside of the structure, the model developed by
metry of the structure is broken. The model which provideswierengaet al? is able to relate the radiated SH field to the
the theoretical background and is widely used for the analyintrinsic nonlinear properties of the interface, which are en-
sis of the MSHG experiments carried out on such systemsountered in the values of the susceptibility tenggy .
was developed by Wierengg al! The model introduces an The main assumption of the model is that it considers the
infinitely thin polarization sheet which acts as a source of thesource of the SH field in the form of an infinitely thiop-
SH field. The sheet is located at an interface of layers comherently and homogeneouslyolarized sheet. Although this
prising the multilayer structure and is considered to be surassumption is justifiable in many cases investigated experi-
rounded by infinitely thin vacuum layers. The polarization of mentally, it is not sufficiently general. Moreover, it is based
the sheet is determined solely by the fundamental electrion a macroscopic like description of the source of the SH
field at the interface, i.e., field, which does not provide a direct physical insight into
the processes involved in the SHG phenomena.
In our model, we look at the problem of the SHG from a
Po) =y @ E(@E(), (1)  different point of view, which can be better related to the
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microscopic description of the origin of the SH field. We describing the propagation of the second harmonic field
consider that the SH field is generated bya@int electric  across the multilayer structure. The theoretical analysis cul-
dipole oscillating at an angular frequencyw2 Although the  minates at the point where the expressions for the angular
dipole can be positioned arbitrarily throughout the multilayerdistribution of the observable SH intensity are derived. A
structure, we assume that it is placadthe layer interface. schematic block diagram depicting the flow of the developed
This is closely related to the symmetry considerations usefbrmalism is shown in Fig. 1.
in the macroscopic models like that discussed above. In Sec. lll we illustrate the theory in a number of numeri-
The complex amplitude and the orientation of the pointcal examples which are closely related to the magnetic-
dipole are derived from the fundamental EM field at the in-induced second harmonic generation, which is the main ap-
terface in a similar manner as in EQ), i.e., plication field of the theory presented in this paper. The final
remarks and conclusions are summarized in Sec. IV.

po) =3 @E@E®), 2)

This is justified by the fact that our microscopic description, Il. THEORY
which is based on this equation, should be consistent with
the macroscopic description based on Eqg. . ] )

This approach to the SHG has some advantages. In par- A typical configuration of a SHG experiment carried out
ticular, once the EM field generated by the point dip@gis ~ ONn @ multilayer system is shown in Fig(a2 It employs a
known, it can be used to evaluate the SH field generatefindamental p) beam which impinges from the superstrate
from a system witharbitrarily spatially distributed dipoles. onto a sample at an incident angl§” . The reflected and
Furthermore, as it is based on a well understood microscopigansmitted fundamental light beams are observed in the su-
quantity (an elementary dipojeit can be more directly re- perstrate and substrate at angi&’ and 6{;) ,, respec-
lated to a quantum-mechanical description of the SHG.  tively. The SH (2v) field generated within the sample is

In the models describing the SHG, the symmetry of theradiated into the superstrate and substrate, where it can be
interfaces generating the SH field plays a fundamental roleobserved at angleg?®) and 6{2), , respectively. The pur-
In particular, one can deduce zero and nonzero elements pbse of the following analysis is to find a relation between
the nonlinear susceptibility tensqf;, from symmetry con-  the incident fundamental field and the radiated SH field as a
siderations of the interface microscopic structure. Furtherfunction of the incident and observation anglég“) and

more, if the local magnetization of the interface is taken intog(2%) (or/and 6{2%),), respectively.

account, the symmetry of the interface is lowered, resulting Throughout the paper, we accommodate the following
in an increased number of nonzero elementsy@f. The  conventions. Without a loss of generality, we assume a co-
details of this analysis are thoroughly studied in thegrdinate system in which the incident light beam at the fun-
literature:>** To adopt the symmetry considerations in our damental frequency propagates in thg-z plane, as shown
description, we assume that the symmetry properties of thg, Fig. 2. Thex axis is perpendicular to thg andz axes in
tensor}}i]—k in Eq. (2) are identical to those ing'k in Eg.(1).  such a way that they form a right-handed system of coordi-
In other words, the microscopic point dipglé?®), which is  nates. The unity vectors in the direction of tkey, and z
the fundamental quantity considered in our analysis, has tgxes are denoted by, y, andz, respectively. Furthermore,
fulfill the same symmetry-induced constraints as the macrothe time dependence of the field is considered in the form of
scopic quantity?*) used in the previously developed mod- ex —jwt], wherew,=w and wo=2w for the fundamental
els. Due to this formal equivalence, the tildef), will be  and SH fields, respectively.
omitted throughout this work. The evaluation of the SH field generated within the
The analysis in this paper proceeds as follows. In Sec. Imultilayer system consists of two parts. First, the fundamen-
we present a complete and comprehensive theory of propaal field at each interface of the multilayer system is calcu-
gation of radiation generated by point electric dipoles emdated. This field is then used to “generate” a point dipole
bedded within an arbitrary multilayer system. Since the ainoscillating at a frequency @ in a manner described by ex-
of this work is to develop a concise formalism, the deriva-pression(2). Subsequently, the radiation of such a dipole
tions start at the very basics of the electromagnetic theorywithin the multilayer structure is determined. Finally, the to-
i.e., the Maxwell equations. Firstly, we introduce the so-tal SH field radiated into the substrate and superstrate is ob-
calledq space in which our problem can be solved in a rathetained as a sum of the single dipole contributions, which are
elegant way. We derive a matrix formalism which allows usintegrated over the illuminated area and summed over all
to obtain analytical expressions for the fundamental field ainterfaces.
each interface of the multilayer system. These expressions
are then applied in an evaluation of point electric dipoles
which generate the second harmonic field. In a subsequent
part of the paper, we provide a detailed study of the bound- In order to find the spatial distribution of the field radiated
ary conditions that the electromagnetic field must fulfill in by a point electric dipole, one needs to solve the Maxwell
the vicinity of a point electric dipole. We show how these equations. Considering the above mentioned convention for
conditions can be expressed in the above mentignguhce, the time-variations of the electromagnetic field, these equa-
and how they can be incorporated into the matrix formalisnmtions can be written in the following form:

A. Basic assumptions and conventions

B. Maxwell equations
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V.Do=pl@) (g), VXE©)={g,B(*0) (b), tails). On the other hand, all the media in this article are

(o) (0g)  (0g) _; (w0) assumed to be magnetically inactive within the frequency
V.-B“0’=0 (€), VXHWI=j1*0—iwD? (d). range (optical frequencies considered in this paper, and
(3 therefore the permeability is taken to be equal to the vacuum

In these equations, all the quantities are considered to Peermeability, _'-_e-#(wO)E/LO_- _ _ _
functions of the position in the direct space, i.&\“0 The quantitiesp(*® andj(“o) describe the spatial density
=E@d(r), H@d=H()(r), etc. of free charges and currents, respectively. For the fundamen-
The optical properties of the medium can be described byl frequency,w,=w, both quantities are considered to be
the permittivity, €0 and permeability,u(“’o), where w, zero everywhere. On the other hand, these quantities are con-
=w andwy=2w for the fundamental and SH fields, respec-sidered to be zero only almost everywhere dgy=2w, i.e.,
tively. These quantities relate the field vectors B0  they act as sources of the SH fiéfdMore details on where
= egel®IE@0) and B(@o=(@H(®0) where ¢, is the exactly these quantities are nonzero and how this determines
vacuum permittivity anc(“? s, in general, a tensor whose the spatial distribution of the SH electromagnetic field will
elements can be complex numbésge below for more de- be provided later on.
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fundamental (®) SHG 2w) permittivity 5. Since the elements c_)f the permitti\{ity tensors
field in field out are generally complex, the analysis presented in this work
N 4 can cover a very broad range of materials, e.g., isotropic or
AN (@ // anisotropic dielectrics, absorbing media, metals, and
N6 g funda.mental (®) magneto-optical materials.
\0 4 field out The interfaces between the layers are assumed to be pla-

} multilayer structure

e(w)

\ M+1

>« fundamental (o)
\\ field out

SHG (2w)
field out

(a)

superstrate

Z L

x
— mult_i_layer structure —

M+1

substrate

(b)

nar and parallel to th&-y plane. They are located at posi-
tions z,, z,,...,Zy+1, Which can be calculated from the
thicknesses of the layers ag,=z;+t;+---+t, 4, v
=1,...M+1, as shown in Fig. ®).

It is important to note that thenacroscopicoptical re-
sponse of the layers comprising the multilayer system is con-
sidered to bdinear at both the fundamental and SH frequen-
cies. That is to say that the fundamental and SH vector fields
present in the multilayer structure propagate according to the
laws dictated by the spatial distribution of the permittivity
tensorse(®?) (Ref. 15 and the linear relation between the
vectorsD(“0 and E(“0), i.e., D(“0)= ¢ye(®DE(“)), for both
the fundamental ¢y=w) and second harmonicw=2w)
fields. The existence of the SH field in such media is solely a
consequence of thaicroscopicproperties of the layeinter-
faces which exhibit nonlinearity as described in Sec. I. This
nonlinearity is, however, described separately, i.e., as a prop-
erty inherent to the interfaces rather than to the media com-
prising the multilayer systems. In particular, the nonlinear
properties of each interface are characterized by the nonlin-
ear susceptibility tensoy;jy,,, , where the subscript refers
to the interface located at, [see Fig. 2b)].

Each nonlinearity tensor can be decomposed into parts
X, andx{7 ,, which are odd and even in magnetization,
respectively. The exact form of the tensors, namely, which
elements are zero or nonzero, can be derived when both the
structural microscopic symmetry and the local magnetization
at each interface are considered. This analysis was thor-
oughly studied and reported in the literature for various mi-
croscopic structure¥:**and the results will be used later on
in a section providing numerical examples.

In summary of this section, in this work we consider
multilayer structures comprised of parallel layers whose op-
tical propertieqi.e., permittivity tensorsare laterally homo-

FIG. 2. (a) A diagram of a typical experimental configuration for 9EN€OUS but whose interfaces are characterized by possibly

measuring the second harmonic generaliBHIG) from a sample  laterally —inhomogeneous  nonlinearity  tensorsijy,
illuminated by a beam at fundamental frequelcy(b) A schematic = Xijk,,(X,¥). Such situations can be encountered in
diagram of the multilayer structure under consideration, which conmultilayer structures with magnetic domains, spin waves,
sists ofM homogeneous layers surrounded by a semifinite substratetc. Other interesting situations include, for example, later-
and superstrate. The positions of the interfaces are characterized jly designed arrays of magnetic nanostructures for which
z,, v=1,... M+1. The thick arrow symbolizes a point dipole the above mentioned assumptioftise lateral homogeneity
located at the £+ 1)th interface and oscillating at an angular fre- of the optical propertigsare fulfilled, such as arrays of dots
quency 2. designed e.g. byi) uniform He ion irradiation through a
mask, which maintains the planarity far below one
nanometet? (ii) focused Ga ion beam irradiation, where dots
The structure under consideration is a multilayer systenare separated by paramagnetic irradiated sharp and quasiu-
consisting ofM layers surrounded by a semi-infinite sub- netched lines/® or (iii) magnetic film deposition on a
strate and superstrate, as depicted in Fig).Optical prop-  weakly patterned substrat.
erties of the layers are assumed to be uniform in the lateral
directions, i.e., described by the permittivity tensef§°)
v=0,... M+1, which do not vary with the Iaterak(andy)
coordlnates. Throughout the paper, the values of the permit- The principle aim of the analysis of the field distribution
tivity tensors are assumed to be normalized to the vacuuracross a multilayer structure is to find functide&o(r) and

C. Multilayer structure

D. Decomposition of the fundamental field in a homogeneous
unbound medium
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H(@o(r) describing the fundamentalf=w) and SH @, tivity €, the integration is performed over a complex sphere
=2w) electric and magnetic fields in the direat) (space, of a complex radius k(“® = \k(©0). k®D = /e(wy/cy),
respectively. However, due to the properties of the Fouriewhere Rek(“0))>0 is assumed. In a more general case, i.e.,
transform, a satisfactory description, which is in fact morefor an anisotropic medium characterized by the permittivity
advantageous for the description of the SHG experimenttensor ¢;;, the situation is more complicated because the
described above, is achieved by finding the functiondength of the vectok also depends on the direction of tke
£@d(kl®a)y and H(“0) (ko)) describing the electric and vector and the polarization of the propagating light. In any
magnetic fields in the Fouriek) space, respectively. For the case, it can be said that due to monochromaticity of the field,
purpose of clarity, the superscripty, will be omitted in the  thek,, k,, andk, components of th& vector are related to
following derivations, unless absolutely necessary. The fiel&¢ach other. Consequently, thg-component can be ex-
descriptions in the direct and Fourier spaces, which in theressed as a function of the remainkygandk, components,
following analysis are called the space and th& space, angular frequency, and material parameters, i.e.,
respectively, are related by the inverse Fourier transform,

ie., kz,p,dEkz,p,d(kx1kyaw0-5ij)v ()

wherek, andk, are generally complex. The indgx which
1 1 f f f PrE(K ik 4 takes the values 1 or 2, represents the fact that there exist two
(2m)? (KY)2 (Kjexdik-r],  (4) orthogonally polarized modes whog&g can be, in general,
different. Furthermore, the indekrepresents the direction
of the k vector. In this work, we usel=+ andd=— to
flenote modes propagating in the positjRee(k,)>0] and
negative] Re(k,) <0] z directions, respectively. In summary,
for given values ok, , k,, andw,, there exist four modes of
the electromagnetic field propagating in the medium charac-
terized by the permittivity tensog;. The corresponding
vector modal amplitudes will be denoted &g, 4(k), where

E(r)=

and similarly forH(r).?° In this equation, the factor (&§)>
has been formally inserted in order to equalize the units o
the fields in ther andk spaces. It can be, in principle, any
constant with units m, but in this work (1kg)3=(co/w)?,
wherecy is the speed of light in vacuum, is opted for. The
integrand in Eq(4) represents a plane wave propagating in
the direction of the wave vectéx. Because we will treat the the subscripk indicates that the amplitudes are expressed in
electromagnetic field in materials characterized in general the Ks acep P P
anisotropic and complex permitivity tensors, all the compo- pace.
nents of thek vector are also considered to be generally
complex. As follows from the properties of the generalized
Fourier transform, Eq4) describesany distribution of elec- As discussed above, the consequence of the monochroma-
tric field E(r) in an unbound medium, e.g., constant field, ticity is thatk, is not a free parameter. Thus a particlight
field oscillating at different frequencies, and propagating inmode (propagating in a given material and oscillating at a
different directions, or even fields containing discontinuitiesgiven frequency is fully described by a two-dimensional,
or sungularities of the type of the Dirat function or their ~ generally complex vectog=[k, k,]. Such a light mode
derivatives. Consequently, both near and far fields, and evegpnsists of four plane waves, each propagating in a direction
the field at the position of the radiating dipole, are includedgiven byk, 4=[q,k;, 4]. Thus, an arbitrary spatial distribu-
in the analysis. tion of the monochromatic electric fiel&(r) can be ex-
Since the plane waves are eigensolutions of the wavg@ressed as an integral over all light modes, each parametrized
equations which can be derived from the Maxwell equationdy a single vectog=[k, k], i.e.,
(3), we will also refer to them as the eigenmodes, or just

1. Definition of the g space

modes. In this contex€(k) represents the vector amplitude 1 1 2 .
of the mode characterized by the direction of propagation EB(r)= (27)2 (KY)2 d qulz dzi Eq.,pa®XHiq- pl,
equal tok and will therefore be called theector modal am- 0 ' (6)

plitude It should be noted that both(r) and £(k) are as-
sumed to be generally complex three-dimensidB8l) vec-  where p=[x,y]. This equation provides the description of
tors, as a consequence of both a complex representation tife field in the newly defined space. The subscriptin the
the time dependanék??and a generally complex form of the vector modal amplitude€&, , , 4 indicates that these quanti-
permittivity tensors describing the optical properties of theties are expressed in thisspace.
involved media. It is important to realize that these vector amplitudes de-
The general equatio) can be simplified if the field is pend explicitly on thez coordinate, which is clear from a
assumed to be monochromatic, i.e., oscillating at a singlelirect comparison of Eq$4) and (6). In this paper we deal
frequencywg. In this case, the integration over the entire with a multilayer system with interfaces located at positions
three-dimensional complekspace is reduced to the integra- z,. Consequently, we have chosen to use the subseript
tion over a two-dimensional complex arkéw,), wherew, &, pq t0 denote the vector modal amplitude of the field
is a constant. This area is determined by the optical propeinside thevth layer at the location infinitesimally close to the
ties of the material in which the field propagates and can be'th interface, i.e., at the locatior=z,+ ¢ wheree—0, as
found by solving the Maxwell equations. For example, in andepicted in Fig. 3. The only exception is the vector modal
isotropic medium characterized by a scalar dielectric permitamplitude €0, 4 in the superstrate =0), which corre-
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from an electric point dipole can be in tigespace described
by a smooth functiorfsee Eq.(67)], in contrast to thek
space, where the radiated field is described by a diverging
function 324

Since all the quantities will be considered in thspace,
the subscript will be often omitted. In the subsequent deri-
vations, the vector modal amplitud&s, , 4 will be consid-

ered in one of the following forms:

Ex,v,p,d
gv,p,dE EYnypyd Egv,p,dev,p,d' (7)

gZ,V,p,d

The quantitiesS, , 4 ande, , 4, wherele, , 4|=1, will be
FIG. 3. A schematic diagram depicting an oscillating point di- referred to as thenodal magnitudeand themodal polariza-
pole located inside an infinitesimally thin vacuum layer inserted ation, respectively. In this context it is important to distinguish
the position of thevth interface. Note the positiofdark poin} of between the subscrig which denotes the component of
the vectorA??=[£%0) ,£20)  £20) £22) 1T which is defined  the vector modal amplitude, and which corresponds to the
to be located inside theth layer in the vicinity of thevth interface.  |gcation of theq space at=z,+ ¢, e—0.

N . L ! The vector modal amplitude&, , 4 will often appear as a
sponds to the field in the superstrate in the vicinity of the firsty 1y over either the polarization indgyor the direction in-

interface, as there is no zeroth interface. In the followingyey 4 or hoth. Therefore, it will become useful to introduce
analysis, the Maxwell equations together with the boundary;,, “summing index"S. as follows:

conditions will be treated in thg space, as it matches ex-
actly the characteristics of a space in which the field propa-
gating across a multilayer system should be considered. 5V,p,z:d2+ €, pd

(i) The q space is monochromatic, meaning that it pro- o
vides a framework for the description of the field oscillating
at one single frequency. Exa= 2 Evpds )

(ii) Theq space comprises a 2D Fourier space, obtained as p=12
a Fourier image of thg-y plane, and a 1D direct space in the
zdirecti_on. Hence thq.space reflects the fact that thg optical E,xs= 2 2 Evpd-
properties of the multilayer system vary only in thélirec- d=* p=12
tion.

(iii) As follows from the properties of the Fourier trans-
form, theq space allows the description afy spatial distri-
bution of complexE(r) in a multilayer structuréfor mono-
choromatic fielg For example, a field corresponding to
plane waves or a field with discontinuities and singularitie
can be described. Thus, similarly to tkespace, the) space
provides a framework for the description of the field radiated
by an electric point dipole in both near and far fields. 5V,z,z(qyzp)=(k3)2f f d®p E(p.z,)exd —ip-ql. (9)

(iv) The propagation of a particular light mode is fully
characterized by a single, generally complex vectpr
=[Kky,ky]. To each vectoq corresponds a set of four plane _
waves, each characterized by a different valuk,afiven by As follows from the comparison of Eq¢4) and (6), the
Eqg. (5). Amplitudes of these waves are described by four,relat_lon between th& andq spaces is obtained by the_ inte-
generally complex, vector modal amplitudés,, .. For gration overk,. For a mode in the space one can write
example, as will be shown latéGec. 11 D 33, if only one 11
light mode is present in the multilayer structyseich as in a _ o+ 4 -
case of a light wave entering the multilayer structure at a f"‘V'E'E_er ng' dkEi(k)exrikzz, ] (10
single angle of incidengethese four amplitudes are propor- ) _ o
tional to Diracé functions, each of them located in the same/AS mentioned earlier, the EM field is assumed to be mono-
point of theq space. On the other hand, if the light is propa-chromatic, i.e., oscillating at a frequenay,. In the context
gating through the multilayer system in many directionsOf EQ. (10) this means that the functiofi(k) in thek space
(such as in a case of the radiation of an electric point dipole¢an be written as
as discussed in Sec. I)Fthe vector modal amplitudes are
described by smooth functions in the andk, coordinates. E(k)= > Evp(K) 80— wg) wp. (12)

(v) It will be shown later that the radiation originating p=1,2

For example£, s s, being the sum of all vector modal am-
plitudes, represents the electrical field at positipn ex-
pressed in the space, as follows from E@6). Applying the
properties of the Fourier transform and definiti@, £, s s
can be calculated from the field distribution in the direct
Sspace using the equation

2. Relation between the g and k spaces in an isotropic medium
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In other words, the vector modal amplitude of the planeother field quantities, i.e., fdb, H andB, whose equivalents
waves is nonzero only for such angular frequencie¢w  in the g space are denoted &, H, and B, respectively.

denotesall possible frequenci¢gor which the equationw

= wq is valid. The factomwg in Eq.(11) was inserted in order

to make the units of the vector amplitudes at the left- han%
and right-hand sides equal.

A more suitable form of the relation between the vector
modal amplitudes expressed in thepace and thg space is
obtained when the integration ovky is carried out. We re-
call that during this integration the following relations should gonce of distributionégeneralized functions

be carefully considered. ~ From the fundamental properties of the Fourier transform
(@) In thek space, the conditiod = wy, is fulfilled for four it follows that anarbitrary two-dimensional distribution of
values ofk,, namely those expressed by Ef). In the case the field across thg-y plane located az=z,, i.e., the func-
of an isotropic medium characterized by a scalar permittivitytion E(X,y,z,), can be described in tm;space by the cor-
€,, these four values are reduced to two. In particular, theesponding functior€, , 4(d). The word “arbitrary” refers
values ofk,, ,q are equal for both polarization statgs to the fact that even it the field in the direct 2D space con-
=1,2, and have opposite signs for the direction indides tains discontinuities or even singularities of the type of the
=+ andd=—, i.e., Dirac ¢ functions or its derivatives, its description in the
space can always be found. Below, we demonstrate a few
Ky, pp==*Kg,, (12 examples which will be relevant in the analysis presented in
the following sections.
where (8) Monochromatic plane wavéd monochromatic plane
wave propagating in the direction of the wave-veckgr
Ky, = VK=K —kj, k= Ve k= Ve (wo/cy). =[kyo,Kyo,kzo] is described in the direct space &§r)
(13 = Egexdik,oX+ikyoy+ikgz]. Inserting this expression into

. . . .. .Eqg. (6), one can find the following:(i) If k,,>0, i.e.,
In the general case of an anisotropic medium, the situation i rvpi=kpo then the vector modal amplitudes

more complicated, but since we are interested in the relatio _ =
between thé andq spaces only in an isotropic medium, this 2 Iihizegp[nfz?(]:e anz?jreg Z\quflo t()(ci‘i«')y,zl,f+ kEOOqu iqg)
V. 14 - Z| ’ Rl ]

3. Some useful properties of the q space

In the following sections, we will find a solution to the
axwell equationg3) which corresponds to a source taking
the form of an electric point dipole oscillating at an angular
frequencywy=2w. Since the point dipole will be described
by means of the Diraé function, it is necessary to study the
properties of theq space in the broader sense, i.e., in the

issue will not be dealt with in detail here. _ Kz.,.p.— =Kz, then the vector modal amplitudes are equal to
(b) The termw — wg in the argument of thé function can E,s  =Eod(q— o) (2kE)%exlikz,] and €, s . =0. In
be formally rearranged &5 both of these expressiong,=[kyo,k,o] Was taken.
- » 2 0 o (b) Field with discontinuities/singularities in the x dimen-
~ w°—wy  Co k“=k; ¢ kz—kz,v,p,d sion. A field distribution which contains a discontinuity and
WT@eT =" o+ wg \/— k+k, _\/T k+k, singularities of the type of the Diraé-function and its de-

(14) rivatives in thex dimension can be written as

In this equationk andk, representll possible values of the
magnitude anad component of th& vector, respectively, and
are related tow through expressions/co=k/ /e, and k2
L2212 . . . e g
ke—Kks ky.. The I_ast step in !Eq(14) is of pamEuIar _|m +E,, 2 S(x—xg)+ - 17
portance as it provides a relation betwdgnand » which (k“)2 X

appear in Eqs(10) and (11), respectively. where 9(X—Xg) is the Heaviside step function with a step

Considering relation11) and (14), integration(10) can located atx=x,. Consequently, the vector modal amplitudes
be performed and the relation between the vector modal am- the q spaceocan be written és

plitudes in theq andk spaces can be written as

1
E(x,Y,z,) =AE3(X—Xq) + Egﬁ S(X—Xp)
0

( “)2
Eup==Equp,= E, s s=2m———d(ky)ex —ik,Xo]
(wo) 2
_ iky iky
= €, & p(Ky p, ) exd Tiky 2, ], AE+E5—+E35 +...|, (198
Z v,p, =
: Ko ko
(19 as follows from Eq.(6) and the properties of the Fourier
where the vectok. . .. is defined as transform. This case could straightforwardly be generalized
np= to a case where the discontinuities and singularities are
==Ky, Ky Ky pp ], (16)  Present at more than one point as well as in bothxtady
Ko, b= dimensions.
and itsz componenk, , , - is given by Eq.(12). Applying In Eq.(18), the dependence of the vector modal amplitude

the same steps as above, similar relations can be found for &, s v onzis given by the dependence of the quantities,
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Es, E;s, etc., onz. For every value of, the field distribu- E. Distribution of the fundamental field
tions which contain discontinuities or singularities in the across the multilayer system

dimension, such as that given by Kfj7), are expressed by a  Before the SH field generated within the multilayer struc-
continuousfunction in the corresponding, space. Similar  tyre can be found, the fundamental field across the entire
conclusion can be drawn for the field distributions containingmultilayer structure has to be evaluated. We assume that the
discontinuities or singularities in ti‘yedimension. Since the fundamental field is produced by an outside source in a form
integration over the dimension is not performed in E¢6),  of a plane electromagnetic wave impinging on the multilayer
the discontinuities/singularities in tredimension arecon- system in they-z plane at an angl@g‘*’), as shown in Fig.
servedduring the transformation between thepace and the  2(q). To find the distribution of the field across the multilayer
q space, and thus need to be treated separately, as showstem resulting from such an input condition, the Maxwell
below. equationg3) need to be solved. To do this, we adopt a well-
(c) Field with a discontinuity/singularity in the z dimen- nown 4x4 matrix formalism which has been reported in
sion. A field distribution containing a discontinuity and a the |iterature?®-28
o-type singularity located at the position of thth interface, Since the fundamental field is assumed to originate from
i.e., atz=z,, can be written as an outside source, the charge and current densities at the
fundamental frequency are considered to be identically zero
everywhere in the multilayer structure, i.@(“=0 and
j“Y=0in Egs.(3a) and(3d). Since each layer comprising the
(199  multilayer system is assumed to be homogeneous, the de-
, composition given by Eq(4) can be carried out separately
where{E(p,2)} denotes the smooth part of the function and¢ gach layer. Furthermore, due to the monochromaticity of
p=[x.y]. The quantitiesAE and E; represent the magni- ¢ jight, the decomposition given by E@), where the vec-
tudes of the discontinuity and singularity, respectively. tor modal amplitudes in thie andq spaces are related by Eq.

If the discontinuity ar_ld singularity are constant with re- (15), can also be performed separately for each layer.
spect to thecandy coordinates, Eq19) can be transformed |, the following derivations, normalized wave vectors de-

E(p.z)={E<p,z>}+AEﬁ<z—zy)+E% z-2,),
0

into the g space as fined asN(¥ =k(“)/k{”) , wherek{”) = w/c,, will be used, as
_ n W29/, it is more convenient from the point of view of the formalism
Evx3={8x s+ ARk H(2-2,)5(Q) employed. The normalized wave vector in thid layer will
+Es(2m)%ki8(z—2,) 8(q). (200 be denoted bjN{*)=k{)/k{*) . Due to the coordinate system

. L . . used, only they andz components of the normalized wave
If the discontinuity/singularity is not constant with respect to,,actor of the fundamental field are nonzero. and will be de-
x andy, the result is formally the same as in Eg0) but the | .4 byN§,‘f’3 andN@

, respectively.
term 8(qg) is changed accordingly to the variation of the zv P y
discontinuity/singularity in thex andy directions.

Comparing Eqs(19) and (20), one can find that the dis- 1. Wave equation

continuity of the field around the plaree=z,, i.e., When the field vectors in the form of E¢6) are substi-
tuted into the Maxwell equation@), the well-known wave
E(p.z,+€)—E(p,z,— €)=AE, (21)  equation can be derived. In th¢h layer characterized by the

permittivity tensore(®), the wave equation for the electric

wheree— 0, is transformed into thg space as ; ij, v
- 4sp field takes the for

Epress &, e33=(2mkg)*AES(Q), (22 ,

where £,..s s denotes the vector modal amplitude ex- [Ni(vV)NJ('I/)+€i(J’3f]gg '=(N) £<(1 ). (23
pressed in they space located at=z,* €. This equation . ) i i
implies that the discontinuity of the field distribution acrossAn €quivalent equation can be derived for all other field
z=z, is maintained also in thg space and such a disconti- Vectors. In this equatior(*) denotes théth component of
nuity is not affected by the presence of a singularity in the the normalized wave vectdd!*”). The norm of this vector,
dimension located a=z, in the direct space. which is denoted byN{*), can be calculated fromN(®)?

In conclusion, we derived two important properties of thez(N§f’3)2+(N§f"V))2. It is important to notice that the un-
g space in this section. We showed that discontinuitiesknowns in the wave equatior23) are the vector modal am-
singularities of the field distribution in the andy dimen-  plitudes expressed in thespace, which is indicated explic-
sions of ther space do not affect the boundary conditionsitly by the subscriptq. This subscript will be, however,
expressed in thg space, and that the boundary conditions inomitted in the following derivations. The superscripb)(
the g space are not affected by the presence of a singularitindicates that Eq(23) is the wave equation for the funda-
of the type of Diracé function or its derivatives in the  mental field.
dimension but only by the presence of a field discontinuity in It should be noted that the form of the wave equati®s)
the z direction of the direct space. These properties will befor the vector modal amplitud€, expressed in thg space is
useful in Sec. Il F2 where the boundary conditions in thethe same as the well-known wave equation for the vector
presence of a radiating point dipole are derived. modal amplitude&, expressed in thd space, as can be
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found in the literaturé:?**'This is no surprlse since these where NE2) = V(NG )2 (N(‘U))2 and (N'°) )2 is the

IID 2, Eqg. (19). tioned earlier. In order to describe the field distribution in the

. From the mathematical point of view, E@23) is an g erstratdlayer v=0) correctly,zy=2, has to be consid-
eigenvector-eigenvalue problem that can be solved by meansaq in Eq.(24)

of linear algebra. A detailed analysis of such a problem The expression for the magnetic field in tht layer can

7 () (o)
et 15 bo Sahere et our naspendont siions, b€ derved fom the Maxwell cquatid@b using he expres-
P sion (24) for the electric field. After some simple algebraic

(@) - . . .
i.e., four different (el;)g]egvectors ‘n.d and their correspond manipulation, one arrives at the formula
ing eigenvalues N, 4)°. The two pairs of these solutions
are characterized by the opposne values ofzltemponent

of the normalized wave vecthV b.d- This is the reason for H{(y,2)= E 2 H(ng d (ng d
the introduction of the direction indest= +, whered= +
andd= — correspond to the |I?ht propagating in the positive X exp ik{(N@y+ N - (z—2z,)],
(N(“’) +>0) and negative N,/ , _<0) z directions, re- v P
spectlvely Furthermore, the two e|genvectors corresponding (25
to a given pair characterized by the same valueddre (w) _ (@) ) (a)) _(N(@)
orthogonal, i.e., correspondlng to two orthogonal polarlza—\’\/h?re H( i =N, p',d/%)g(V pa_and  h5q=(N, pd
tion states of the field. This is the reason for the introduction™ & p.d )/Ny“,’p,m in which 7o=Juo/€o is the vacuum im-
of the polarization index. pedance.

When the form of the permittivity tensas®), is general, N _ _
the solution of the wave equatio@3) leads to finding the 3. Boundary conditions and the matrix formalism

roots of the fourth degree polynomial. In this case, an ana- To obtain the profile of the fundamental EM field through-
lytical solution is very complicated and thus the solution isout the entire multilayer structure, the boundary conditions
determined numerically. For the purpose of clarity in thehave to be applied. They can be derived from the Maxwell
subsequent derivations, we maintain thendd indices and  equations (3), as shown in the textbooks on
denote the eigenvectors &) ; and the corresponding ei- electromagnetis:?>?° In the absence of surface charges
genvalues asM(V“’g P and currents, the boundary conditions require that the tan-
gential (i.e., x andy) components of the electric and mag-
netic fields be continuous at each interface. When expres-
As follows from Eq.(6), the field in ther space within ~ sions(24) and (25 are considered, the boundary conditions
any layer of the multilayer system can be expressed as a su@ the v+ l)'fh interface can be written in a compact matrix
(integra) of modes in they space. However, we will look in  form as®
more detail at one single mode characterized by a particular

2. Field distribution across thevth layer

value of g. To be more precise, due to the normalization E§<wV)+1—f EX vtlte
introduced above and the choice of the coordinate system 770H§“’3+1 . 770Hy V+1+e
(N{=0), we will deal in the following analysis with a D{P{IAl = E() =l gw

mode characterized by a particular value N§*), i.e., g ywtl-e Joreise
— KSITON]. noH 1] L moH 1

The electrlc flgld in thesth layer corresponding to such a _ D(“fr)lA(Vai)ly v=1,.. M+1, 26)
mode can be written as v
whereng= g/ €q is the vacuum impedance. The quantities
E)(y,z)= > > g(yw) (ngd Eavi1:ca@ndH, 41+, Wwherea=x,y ande—0, are thex
p=i2d=e P and y components of the electric and magnetic fields just
under (subscriptr+ 1+ ¢€) and above(subscriptv+1—¢€)
the (v+1)th interface. The matrice®{® and P{*) are, re-

(29 spectively, the dynamic and propagation matrices given by

xexlik§?(NSDy+N&) | ((z—2,))]1,

€% #x #dex EYs

o | MR MR Nswgmgm NGDRED -

STl ey Ey dy 20
NGDAGD. S NG RGD NGDLRGD NG R

and
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expIkEING, 1, 0 o ;
p(e) = 0 exn:ikgw)Ng?ly),lﬁtv] 0 0 o8
: 0 0 expik§NG, 1] 0
0 0 0 expik{ING), t,]

The vectorA(V“’) in Eq. (26) is defined using the modal mag- normalized wave vector is equal M, , 4= N(@) = \/e(v‘”) for
nitudesE(Vf”g'd as all combinations of indicep andd, and the correspondirg
component is evaluated as

Ng‘)v),st = Nguu),p,t = Nguy),i == Nng ==*y eyw _(Nyw )2

wherex' denotes the transposition of the vectoiit denotes ’ (30)
the vector of the modal magnitudes inside iltle layer in the
vicinity of the vth interface, as depicted in Fig. 3.

In the derivation of Eq.(26), the relation N{%=N{%
=.--=N{%; was considered. This corresponds to the
well-known Snell’s law on the conservation of the tangential g, =g$}ws)+é5}w$)+ , 85,‘”3 . :5(;»3 +é§}wg L, (3D
component of the wave vector across the multilayer struc- T B T R
ture. Because of this relation, alll(yf”y)’s will be denoted by a where the respective unity vectors characterizingsthadp

single variabld\|§,‘”). This step is important since it binds the polarization directions are given by

A=, 8. ST (@)

14

for the modes propagating in the positivé \ and negative
(=) zdirections.
The vector modal amplitudes can be written in the forms

modes of the different layers of the multilayer structure into &) =11,0,0]

a single mode of thentire multilayer system, which is pa- meE LT

rametrized by a single paramets(®) . o) [N | — NN 32)
v,p,E "Nz, £ y v o

As mentioned above, the wave equati®#@B) has four o . ]
solutions which cannot be, in general, expressed in a simpleombining Eqs(31) and(32), the dynamic and propagation
analytical way. However, for an isotropic nonmagnetic me-matrices(27) and(28) for the isotropic nonmagnetic medium
dium characterized by a permittivity tensor in a diagonalcan be written as
form e{”)=€{")3;, where §; is the Kroneckers symbol, 1 1 0 0
the solutions can be found easily. One possible set of solu-

tions corresponds to two pairs sf (TE) andp- (TM) polar- D) Nguv),+ Ngf",,),_ 0 0
ized modes, one propagating in the positive and the other in =» — 0 0 Ng‘”y) +/N(Vw) Nng) JN(Vw) '
the negativez directions. Due to this interpretation, the index v () o ()
p denoting the polarization state of the modes can be consid- 0 0 —-N, —N;
ered to take valuep=s,p, as opposed tp= 1,2 considered (33
in the previous, more general case. The magnitude of thand
exik§INE L t,] 0 0 0
0 exfik{”N) t,] 0 0
P = MO 34
0 0 expiky”Ny5 L t,] 0
0 0 0 expik{?N) _t,]

Furthermore, the vectdk(y‘”), whose general form is defined either the superstrate or the substrigtee Fig. 28)]. In the

in Eg. (29), can be written as majority of cases, both the superstrate and the substrate con-
sist of isotropic and nonmagnetic materials. Consequently,
Al=[ge)  da) ,g(yf"g,+ ,ggj‘,‘g‘_]T_ (35 the field in those media can be decomposed intosthend

p-polarized modes.
As mentioned earlier, a typical configuration of the SHG  Typically, the fundamental beam impinges on the sample
experiments involves a fundamental beam interrogating thet a defined incident angk”) . This determines the value of
multilayer system, and the SHG field which is observed inN§“’), which is conserved across the multilayer system, to be
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given by face. On the other hand, the problem arises as to which value
of the field’sz component should be used, since theom-
N = Vel sin gl = \Je{e) | sin6{¢) ;. (36)  ponent is not continuous across the layer interface. In prin-

ciple, there has been two approaches to this problem used in
the literature®*2In one of them, the value of thecompo-
'nent of the field at the interface is taken as the average of the
alues immediately below and above the interface. Employ-
ng the formalism developed above, this approach leads to
the expression for the total field at theh interface corre-
sponding to the mode characterized My in the form

Furthermore£5?), and&f?), . representing the magnitudes
of the s- and p-polarized components of the incident beam
can be considered as given parameters.

To derive the expression relating the modal amplitudes o
the field in the substrate and theh layer, one has to recur-
sively apply Eq.(26). This procedure results in the expres-

sion
A= LIVALY, 37 E(Y.2)= 5 EW.(y.2, )+ EW,(y.2,+ €]
where the matrix.{*) can be calculated from the definition
L=[D{]~ 1D P L. .. D@, [ple) -1 = % 2, 2 (B0 p
x [Ds’ai)l]_lDS’w) ' (38) X exp[ikg")Ngf"V), l,p,dtvfl]
: i (0) 1 : : )
twoen the modal ampltuces of the feld in the Superstate +e A gealikg Ny, @3

and substrate can subsequently be written as where the subscripts+ e and v— e correspond to the elec-

Al [ (0 Alw) 39 tric fielq expressed just under and above itk interface,
0 M+17M +1 (39 respectively.

Due to the fact that there is no light incident from the I the other approach, an infinitesimally thin vacuum
substrate side of the samisee Fig. 23)], the modal mag- layer is inserted in place of the interface and zle®mponent
nitudes&(®) , . and Mw)+1p _ are identically equal to zero. of the field at the interface is taken simply as theompo-

Consequently, the modal amplitudes of the transmitted field@€nt of the field in this vacuum layer. Using this approach,
& 1ss and &), can be calculated from Eq¢39), in ::mz:gf:atlcla?igfdag th(%th é':r?rgaec\?vﬁt?;fzgondmg to the mode,
which A{) is given by Eq(35) with »=0. Subsequently, the Wy~
vectorA{¥) , is evaluated as
E@) (y 7 )= 0 20 Vexd iK@N@yT
AL 1=[ER) 15+ 0EW 1p,4 01T, (40) (2= 20 20 (Bl oSisep ) LIKGNGY]
. . . . . 44
After some simple algebraic manipulations, one can derive “4

the expression between the transmitted and incident fielgthe magnitudesg\(,‘;gypd comprise the vectorAl®)

magnitudes in the explicit form =&l o) glo) &) o._1T which can be
WS+ L1
w)
M+1s+

vac,v,S,— ! vac,v,p,+’
-1
_(La‘m“ Laz?w) &,
Pass]_
)

obtained from
Wipe] LS L8Maa) 1E504]

Having calculated the components of the vedff) ; from |, this expression, the matri@{®) is given by Eq.(33), in

EqQ. (41), one can evaluate the magnitucé,ﬁ}d for each of | hich substitutionsN\(,“’)=1 and Ng“:,) L=+ 1—(N(®)2
the layersy=1,... M by simply substituting the corre- lied. Th ac is of th = o Y "
spondingA(‘“) defined in Eq.(29) into Egs.(37) and (39) are appiied. 1he components of the vVeclgjz, 4 are ca

. v : ’ culated from Eq.(32) where the same substitutions are ap-
i.e., from the expression

plied. The matrix product preceding the vect” in Eq.

Al = (@) =1 (@) Alo) (42) (45 represents the transmission of the field from tita

layer to the vacuum layer inserted in place of tkth inter-
In the following section, the fundamental fidtithe layer ~ face.

interface will be required for the calculation of the point In summary of this section, we derived explicit formulas
dipole. To derive explicit formulas for the field at theh  for the fundamental electric field at each interface of the
interface, we use expressié®4). For the particular value of Mmultilayer system. The field can be expressed as a sum of the
N§/w)' the components of the vectoé‘”gd are calculated plgge electromagnetic Wav®0de$, each characterize;j by
from the wave equatior(23), and the fnagnitudes?(“’) Ny*'. For a particular mode, i.e., for a given valuel‘dijm ,

v,p,d . H H —
forming the vectorA(V“’) are evaluated from Eq42). the field at thevth interface(i.e., atz=z,) can be formally

In the process of evaluation of the field at the layer inter-ertten as

face, thex andy components of the fundamental field do not (@) =(0) /ni(®) (@)
impose any problem as they are continuous across the inter- EvindY.Z,) =Ey(Ny”)exdlikg” Ny*y],  (46)

(41

A, =[D{2 DAL, (45

vac,v
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as follows from expression@3) and (44). In this equation, Assumption(i) allows us to deaseparatelywith the two
El(N{)) denotes the vectamplitudeof the fundamental ~Main problems imposed by the presence of the point dipole
field at thevth interface ay=0, while the exponential term at the interface. In par_tlculgr, it allows us to deal first .VYIth
determines the distribution of tihaseat the interface. The the influence of the point dipole on the boundary conditions
amplitude is defined either in E¢43) or (44), depending on  at th_e dlp(_)le Ioc_atlon inside the ultrathin layer, i.e., at the
which approach to the choice of the fieldscomponent is Iocatl_o_n with no m_terface, and then to analyze the boundary
opted for. conditions at the mterfaces_between the uItrath_ln Iayer_ and
In the numerical calculations, we use the approach basdie layers surrogn(_jlng the dllpolle. These steps will effectlvely
on Eq.(43) to calculate the electric field at the interface. This!€ad to a description of radiation produced by a dipole lo-
is because the profile of the permittivity tenserin real ~ cated at an interface. Assumptidin) allows us to directly
structures is not steplikéas in an idealized stratified struc- combine the fields produced by each individual dipole and
ture), but is continuous across the interface. As a conse€valuate the grand total SH field produced by the entire
quence, the electrical field across the interface is continuou®ultilayer structure.
as well and thus the fieldt the interface can be assumed to
be an average of the values immediately above and below
the interface. On the other hand, using the second approach As mentioned above, the SH field is assumed to be gen-
together with the renormalization of some tensor elementgrated by a point electric dipole oscillating at frequenay. 2
Xijk,» Would lead to the same point dipole amplituﬂéz‘“) To enable the use of some previously mentioned equations,
and thus to the same radiated intensity. In this sense, thergse denote this frequency asy, keeping in mind thatw,
fore, the two approaches are interchangeable. =2 whenever it appears in the context of the SH field. The
dipole is assumed to be located rgt=[x,,Y,,z,], which
will later on correspond to a location at theh interface.
F. Second-harmonic field generated by a single point dipole In Maxwell equations(3), it is the current density(“o

As mentioned in the introductory section, the SH field is@nd the charge densipf“? that act as the source of the EM
assumed to be generatatithe interfaces of the layers com- field. The current density is obtained as the time deriva-
prising the multilayer system, as a consequence of microtive of the electric dipole densityp(r,t)zp(v“"))&(r
scopic symmetry breaking. In the context of the formalism—r )exd —iwgt] and can be written agr,t)=du(r,t)/ot
employed in this paper this means that the point electric=j(“0exg —iwgt], wheré>??
dipoles, which act as sources of the SH field, are assumed to
be located at the layer interfaces. j(wo) = —iwo/uff”(’) o(r—r,). 47

Before we can proceed with some general distribution of ) ) ) ) ) )
point dipoles across the interfaces, it is necessary to descridB this equation, the complex amp“tUV‘éV of the dipole is
the SH radiation produced by single point dipole. This is  given by Eq.(2), where the fundamental field is calculated
done using the following assumptions. from Eq. (46).

(i) An infinitesimally thin layer of isotropic and lossless ~ With regard to the charge densipf®), we assume for a
dielectric material characterized by scalar permittivefy/® ~ moment that the point dipole is parallel to thexis and is
is inserted in place of the dipole location, i.e., at thia not oscillating. Such a dipole consists of a positive and a

interface, and the location of the oscillating dipole is kept'l(:“g"’ltlve pomi charge, denotgd @sand —Q, Iocated.alz

- . - &0 | =Z,—€ gnd z=2z,+ €, respectively. The c'harge density cor-
inside this layer, as shown in Fig. 3. The valueef® is  responding to such a charge constellation can be formally
unknown, however, we will assume that the layer is com-expressed as

1. Definition of the source of the SH field

prised of vacuum, i.e;f,w°)=1.1’33 The choice of this spe- _

cific value does not prevent the calculations to be general. p=Q6(x—x,,)5(y—y,,)Ilino[é(z—(zy— €))

This can be understood by realizing that the relation between ¢

the fundamental and radiat¢8H) fields, which is affected —8(z—(z,+€)]. (48)
- (wo)

by the value ofe,™, also depends on the values of the Since the dipole strength is equal fo,=2Qe, a simple

nonlinear susceptibility tensgyr, . Hence, the same relation- o dification of Eq.(48) leads to the expression
ship between the fundamental and radia®#) fields can be

obtained for any value o?f}‘”o’ by renormalizing the ele- B d
ments of the tensoste’ pP= Mzﬁ(x Xv)ﬁ(y yv)azé(z Zv)' (49)

(ii) The radiating dipole, namely, its complex vector am- . . . -
litude and the frequency of oscillations. is not affected b Considering a general orientation of the point dipole and the
P o d y A ' -0 DYact that it oscillates, the above expression for the charge
the radiation generated by this dipole or by the rad|at|ondensit can be generalized to(r.t)= p(“Dexd —imd]
generated by any other of the radiating dipoles. In other Y 9 pir.h=p @otl;

words, we assume that E¢R) is valid independently for V"™

every dipole located at any position on the interface, with the (00) = — (@0 .y §(r—r 50
vector of the electric field being expressed at the dipole P Ky ( - 50
position. In this equationV § denotes the gradient of th&function.
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2. Boundary conditions in the presence =_ MAE (v _ = Y
of an electric point dipole V- D={V DI+ Fo(X=x,,y=y,) + (D1 e D2y

In this section, we analyze the influence of an oscillating
dipole on the normal and transversal components of the field
vectors. Although a similar analysis was reported in the
literaturé”, it cannot directly be used here since the authors = —;u(“’O)~V5(r—rV), (53)
dealt with the conditions around a homogeneous and infini-
tesimally thin polarizatiorsheetrather than a point dipole. WhereGD(z z,) containes higher order terms proportional
Nevertheless, the formalism developed there can advantée ¢"8(z—z,)/9z", n>1, which are not explicitly spelled

geously be applied in our analysis. out. In this equationFp(x—x,,y—Y,) denotes the terms
Initially, we carry out the analysis in the space. The containing the discontinuities and singularities of the type of
expressions will subsequently be transformed into the the Diracés function and its derivatives in theandy dimen-
space where they can be directly incorporated into the matrixjons located at the point dipole position, i.e. ratr,. Since
formalism describing the propagation of light in the these terms do not contribute to the boundary conditions in

multilayer structure. the q space, as already discussed in Sec. Il D 3, the explicit
Let us consider a functiohwhich contains discontinuities form of this function can be omitted in the following calcu-

and singularities of the type of the Dirat function or its  |ations.
derivatives at a location generally denoteckas, wherex,, Comparing the terms with the same order of the deriva-

Xp, andx correspond to, y, andz coordinates, respectively. i ag of 5(z—z,), the boundary conditions for the vectdr
Such a function can be written in the form in the r space can be written as

X 6(z— z)+D 5(2 z,)+ +G, o(z—z,)

z&ku 0z

1 {v-D}=0,
fOx)={f} +ATH(X—X; ) +Fs — oK =X ,)+ -
Ko _ _ (0g) d8(X—X,)
(51) Dy e Dy = — 0 Sy =Y ) —
Employing a well-known treatment of such a functi§ri> () ao(y—y,)
its derivative can be written as T Hy, y O(x=x,) ay (54)
of [ &f] D,.5= — i Okga(x—x,) 8y —y,).
_ f VIS — X
ax; | ox T X =T D 1OX X0 0) The first equation implies the continuity of the normal com-

p ponent of the vectoD everywhere except at the location of
S =X ) (520  the point dipolé!?* This is equivalent to the well-known
ku IX; ’ boundary condition for the medium containing no free
charges. The influence of the point dipole is described by the

where{Jf/ax;} denotes the derivative of the function almost second and third equations. In particular, the discontinuity of
everywhere and(x; ,-.) is the value of the function at; the z component of the field at the location of the point
=x; ,= €, e—0. The factor I§ in Egs.(51) and(52) was dipole is determined by the right-hand side of the second
added in order to ensure thﬁ(x) and f ;s have the same equation. Furthermore, ttiecomponent of the vectdd con-

units. tains a singularity which is expressed by the right-hand side
In the context of the following analysis, the functibnan  of the third equation.
be any of the components of the field vectors. Equat&i The form of the boundary conditiort§4) in ther space is

has an important implication: Since the sources of the SHiot very convenient for further mathematical treatment due
field in the Maxwell equationé3) contain singularities of the to the presence of thé function and its derivative. On the
type of the Diracs function and its derivatives, as shown in other hand, the boundary conditions can be elegantly ex-
Egs. (47) and (50), the field vectors must contain disconti- pressed in the space. In particular, using the properties of
nuities as well as singularities of the same type. the g space discussed in Sec. Il $ee Eqs(17) and(18)],

In the following derivations, we add an overbar above allthe second equation in E¢54) can be written as
variables which are related to the electromagnetic waves in-

side the thin sheet placed at théh interface, e.g.e"” AD; 5 35=Dzp+e335  Drp-exs
N(@0)  wo) ATw ) ® .
N, e 2., y§+, D, D, etc., in order to distinguish (—I,u,i oy |,u(y VO) y)(kg)zexp[—lq-pv],

between the variables inside the thin sheet located aetthe 55)
interface and those inside theh layer. (

() Boundary conditions foD. Considering the expres- Where the vectop, has been defined g5=[x,,y,]. This
sion (50) for the charge density, the Maxwell equati(ds) ~ €quation provides an explicit expression for the magnitude of
can be expressed¥s the discontinuity of thez component of the vectdD,, s 5 .
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The third equation in Eq54) implies that, in addition to  The first equation implies the continuity of the tangential
the discontinuity az=z,, thez component of the vectdd  components of the vectdd everywhere except at the loca-

contains also a singularity that can be written as tion of the point dipolé!?2 This is equivalent to the well-
_ (00) - known boundary condition for the medium containing no
Do=—p, 0 8(r=r,)z. (56)  free charge currents. The influence of the point dipole is

However, as mentioned in the discussion after @8), such described by the second and third equations. In particular, the

a singularity does not affect boundary conditi@$). On the ~ discontinuities of thex andy components of the fieléi at

other hand, this singularity will affect the boundary condi- the location of the point dipole are determined by the right-

tions for the fields€ and 7. as will be shown below. hand sides of the second and third equations, respectively.
(b) Boundary conditions foB. The boundary condition Due to the fact that the right-hand side of &8d) does not

— . __contain terms proportional t@"5(z—z,)/9z", where n
for the vectorB can be derived from the Maxwell equation prop ( )

(30 usi alent d for th Son th =1,2,..., thefield vectorH does not contain any singulari-
©) using an equivalent procedure as forthe VeLIoin € o' of the type of the Dira@d function or its derivatives at
r space, the condition can be written as

the position of the oscillating point dipole.
= 5 _ When boundary condition§60) are expressed in thg
BZ,V+E BZ v e_o' (57) : H .
space, the following equations are found:
In the g space, the boundary condition takes the form

AB,,s3=By,iexs—Bryexs=0. (58

This expression means that theomponent of the vectds ——iw M(wO)(k )2exd —iq-p,],
is continuous around the position of the point dipole. ’
(c) Boundary conditions foH. The boundary conditions
for the field vectoH can be derived from the Maxwell equa-

tion (3d), where the current density is given by E@7).
Assuming that the field distribution contains discontinuities
and singularities of the type of the Diratfunction and its
derivatives, the left-hand side of E@d) can be expressed as
These equations provide explicit expressions for the magni-

A,}_(X,V,E,EE”-(X v+eX, E_HX v—¢€,3,3

Aﬁy,V,E,EEﬁy,V+s 33 ﬁy,v—s,E,E
o0%exd —ig-p,]. (61

=i woﬂ(wo)

O(X—X,) tudes of the discontinuities of theandy components of the
VXH={VXH}+Fny(x—X,,y—y,)+| 8Yy=Y,) vectorH, s s -
8(z—1z,) (d) Boundary conditions foE. The boundary condition
_ for the vectorE can be derived from the Maxwell equation
X(H,—H, )+Gu(z-2,), (59 (3p). However, before the equations are explicitly written,

whereG. (z—2,) containes higher order terms proportional the following comments need to be made. Even though the
0 S H /5 =1, h'gh i i 5 P lled treatment of the point dipole is done in the microscopic level,
0 (z-2,)/62" n which are not explicitly spelled e medium surrounding the dipole is considered in the mac-
out. In this equationFy(x—x,,y—y,) denotes the terms roscopic level, i.e., described by the dielectric permittivity
containing the discontinuities and singularities of the type Of_(wo) and the magnetic permeability is in this work assumed

the Diracé function and its derivatives in theandy dimen- to be equal to the vacuum permeability. This means that

sions located at the point dipole position, i.e.;atr,. Since
these terms do not contribute to the boundary conditions nInhe relations between the palrs of the electric and magnet|c

SOE
the q space, as already discussed in Sec. 11 D 3, the explicitield vectors take the formB= eoe}"”'E and B= uoH,
form of this function can be omitted in the following calcu- Spectively. These equations are vaéubrywhereLe., even at
lations. the location ofihe point dipole. The former relation imBIies
In the evaluation of the right-hand side of E@d), the  that the vectolE contains a singularity. Since the vectér
singularity of thez component of the vectdd given in Eq. can be written asE={E}+AE¥(z—z,)+E4ky) 18(z
(56) has to be taken into account. Comparing the terms with_, )+ .., as mentioned in Eq(51) the smgularmesE&
the same order of the derivatives &fz—z,), the boundary

and D5 are related by equalltﬁg— D, /(eo?“"))) whereD5
conditions for the vectoH in ther space can be written as

is given by Eq.(56). The latter equation implies that since

(VX g}: i wo{a} the vectorH contains no singularities at the dipole position,
the vectorB does not contain any either.
O ) _ (@o) When the above equations are taken into account and sub-
H —H - S(x—x,)8(y— 60 . . . .
xrre Moo= Tloouy , 0(X=X,) 6y =y,), (60 stituted into the Maxwell equatio(Bb), the comparison of
— — () the terms with the same order of the derivatives &t
Hy e Hy - e=ioou, )  6(X=x,)6(y—y,). —z,) leads to the following set of equations:
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{VXE}=in{§}, Agx,v,E,EEZX,V'FE,E,E_gX,V_E,Z,E

_ _ 9 . wo .
_ —_ (@0) oy v Y =—ik —u, Cexd—ig-p,],
EX,V+E EX,V*G 60_(6Vw0) 'LLZ,V 5()( XV) 0—,y 5(y yv)1 X 6065} o) Tz

J
ax

A&y s s=E e s Eyv-exs

uy2
(ko) (»0)
Eoz(wo) /"LZ, v

14

1 w
Ey,v+e_ Ey,er: ) /’L;VO)(S(y_yv) 5(X_XV)‘
6061}

(62)
In the calculations leading to these equations, the identity

—ik

) exf-igp,]. (63

These equations provide explicit expressions for the magni-
tudes of the discontinuities of theandy components of the
vector€, s » at the location of the oscillating dipole.

was used. Furthermore, the terms containing the discontinui-
ties and singularities of the type of the Diracfunction in
the x andy dimensions were omitted since they do not con-
tribute to the boundary conditions, as discussed in Sec.

D 3. As mentioned earlier, equationB=epe "”E and B
The first equation in Eq62) implies the continuity of the =, \H are valid everywhere in the medium characterized by

tangential components of the vectreverywhere except at the macroscopic permittivitg'® . Using the latter equation

the location of the point dipole. This is equivalent to the ;4 the Maxwell equatiori3b), one can derive a relation

well-known boundary condition for the medium containing = — .
no free charge currents. The influence of the point dipole ig)etween the vector modal amplitud€s;s 4 andH, s ¢ I

described by the second and third equations. In particular, th&€ form N, , 4X&, s 4= 70H, s 4. In an isotropic me-
discontinuities of thec andy components of the fielet at the ~ dium, which is considered here, the wave vectiys, 4 are
location of the point dipole are determined by the right-hancequivalent for both polarization statgs=1,2, as follows

VX8(r—r,)z

i S J B 0
7y (r—r,), x (r=r,),

3. Matrix representation of the boundary conditions
in the q space

sides of the second and third equations, respectively.

When boundary condition§62) are expressed in thg

space, the following equations are found:

from Eq.(30)._C0nsgquentIy, the boundary conditions for the

field vectors€ andH expressed in thg space can be writ-

ten in a compact matrix forfi

A&,ss o1 1 0 0 0 0 I[Ag,s+]
10AHy, 5 5 Ngfufl Nifi",)f 0 0 NGO NG Ay
moAHyxs | | ~NGO =N NG NG 0 0 L
mAss| |00 NP SN NG NG| AG s
A& ,ss 0 0 1 1 0 AE, s -
A& ,x s L O 0 0 0 1 L oJlag,s ]
e
-
— ikl (kY)2 . 0
_ W exd—ig-p,] Mi,?’,?)?ywo) , (64)
Nl
N N |

where A?XVVYE‘J:E—XYVJFGYEVJ:—?ny,eygvi , and similarly for they and z components. Equatiof64) provides an important
result: it shows explicitly the relation between the discontinuities of the vector modal amplitudes at the location of the point
dipole, i.e., atr=r,, and the strength of the point dipg, V“’°) for a mode characterized by the vectpr ké“’o)[NX Ny

The 6X 6 matrix in Eq.(64) is singular and thus the equation cannot be solved in the form as it stands now. This agrees with
the fact that the, y, andz components of the vecto&, s ., and thus the vectoiS€, v ., are not independent of each other.
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In particular, if we consider the andp-polarized modes with the corresponding magmtﬁ@sé) andg 0) and assume that
the x component of the normalized wave vecta""o) is equal to zero, then thg and z components of the vector modal
amplitudesE, , .. are not independent but relateda(;é" &L = (N(“’O) _(“’0)) as follows from Eqgs(30)—(32)

v,p, £ TzZ,v,p, + zZ,v, +
wherew is substituted byw,=2w. Considering this relation and removing all Imearly dependent columns and rows of the
6X 6 matrix in Eq.(64), the boundary conditions can be written as

[ A& [ 1 0 0 7. —
A& s e AE,..
_ g o &
70AHy, 13,3 Nowv N 0 0 A&, -
— = Two) 1 (wo)  lwg) (@) o
Agy,y'gyg 0 0 NZVVO,‘*'/NV ° NZ,VO,—/NV ° AEV p,+
7oA Hy, 13,5 0 0 —NE}‘”O) _stwo) AEV .
0
_ |ké‘°0)(k8)2 . _(wo)Mino)
v €, v
N(‘”O) (wp)

ZV

This equation can already be solved since theddmatrix is regular. This matrix is the dynamic ma'@((;’(’) defined in Eq.
(33) which binds the modal magnitudes with the tangential components of the electrical and magnetic field. Taking into
account thaﬁg"v‘?)+ = —Ni‘”yol =N§f”y°) , as shown in Eq(30), the result is

- _(wo) -
_ S5 (e
Ngo e
_ “Two)
AEV,S,+ éV M(wo)
Alwg) A, s - ikg)w())(kg)z . Ngv"O) "
AA Y= =—————exgd —iq-p,] (66)
v —wo) Py (wo)
A€, & 2¢ Ve N 0
v v ﬁ(wo)lu(wo) N®o Y M(wo)
AZ, N e
(wp)
N
_ N(wo) () \glwp) Y (wg)
NV ,U,y'V NV N(‘”O)'LL
L z,v -

Considering again Eq930)—(32), the components of the in the matrix formalis_m describing the propagation of the SH
vectorAA"“? defined in Eq/(66) can be rewritten in a more field across the multilayer system.

compact and general forms as 4. Propagation of the dipole-generated SH field

(00) across the multilayer structure
—ikp? k™

vt ey +N<wo>

(p (00) "gfwo) Yexd —iq-p,] In the previous section, we derived the boundary condi-

s - tions in the presence of an oscillating point electric dipole
located at the position=r,. In this section we incorporate

the obtained formulas into the matrix formalism describing

2 (wp)
AF _i(kg)® ko (o A('wo) exd—ig-p,] the propagating of the SH field across the multilayer struc-
W= e _,_N(wo) q ol ture.
(67) As mentioned at the beginning of Sec. Il F, it is assumed
that the oscillating point dipole is located inside an infinitesi-
This is the final result of this section. It provides explicit mally thin vacuum layefi.e., €“ O):fvac—l) which is in-

formulas for the discontinuities of the magnitudes of the ggrted at the location of theth mterface as shown in Fig. 3.
andp-polarized modes expressed in thepace at the posi- \jithin this layer, the EM field can be decomposed isind

tion of the point dipole(i.e. at the pointr=r,) inside the | modes. The magnitudes of these modes at the position
medium of permittiwty?‘”") This result will be used later immediately below and above the dipole locatidmut still
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inside the thin vacuum shgetre contained in the vectors L@ 0 L%, o
denoted byAl?®) andAl2*) | respectively, as shown in Fig. 3. L) 1 Lew 0
Using this notation, the discontinuity of the field at the loca- K(29) = 221"‘"“ 2;”"\"*1 (75)
tion of the point dipole can be written as L@, 0 L., o
LG 0 LED,, -1
KS}Z;)G)_KS}{LUE):AKSJZOJ) , (68) 41M+1 (;j,)M +1

The subscript “spd” of the vectoA; ¢y, which is defined in
where AA?) is given by Eqs(66) and (67). The overbar Eq. (73), refers to the fact that the vector represents the ra-
refers to the fact that these variables are inside the thifliated SH field generated by tisingle point dipole Using
vacuum sheet. This also has to be reflected in FBf.and  Ed. (73), one can obtain the modal magnitudes of the SH
(67) where all the quantities depending on the permittivityf'e|d propagating in the superstrate and substrate by taking

(2“)) . .
—wo) wg)  Two) “twp) .~ the elements of the vectdk;’q,q with subscripts 0 andv
€, name_ly,NZYV AN ande, )", should be substi- +1, respectively.
tuted by their corresponding vacuum equivalents. Equation(73) is parametrized bW§2w) . as follows from

Applying the matrix formalism developed in Sec. Il E, the the quantities contained therein. More specifically, it pro-
vectorsA'?®) are related to the vecto&s®”) andA(??) by  vides the expression for the magnitudes of theand

[refer to Egs(37) and(39) and Fig. 3 p-polarized SH modes propagating in the surrounding media
in a particular direction characterized b@z“’), i.e., at par-
AR = 2o) p(20)]-1p(2e) A(20) (69 ticular anglesd?*) and 3%, [see Fig. ®)]. These angles

can be calculated from

N§2w): 502‘” Sinﬁgzw):\/fl\fﬁlsinﬁg\nzﬁ)l' (76)

and

AL =[DEIT D EILEI] LEAGY, (70) o
G. Total second-harmonic far field

where the matrices?”), D* andD{2% are calculated in

=1 } vac ! In the previous section, we derived the expressions for the
a similar way as t_helr fundamental counterparts in Sec. |l ESH radiation produced by a single point dipole located at a
upon the substitutiom — 2w. particular point at thesth interface of the multilayer system.
Combining Eqs(68)—(70), we can write Now, we exploit these results and derive the expressions for
the SH field generated by the dipoles distributed oakr
AR =L 29 ARZY), — LoD~ 1pREDAALE) interfacesof the multilayer system.
(71 Before the derivation proceeds, we look closer at expres-

) o . o ) sion (2) for the point dipole generated by the fundamental
This equation is a crucial result of our analysis since it pro<ie|d. Equation(46) suggests that the total fundamental field
vides an explicit relation between the magnitudes of theyt the position of the dipolé.e., at thevth interface is a
modes of the SH field propagating in the superst(a®-  function of the lateral coordinatg This function has a fac-
tained in the vectoA?)) and substratécontained in the torized formE(“),(y) = B (N() exlik{N(y], where the

(20) y i illati i i LT . . . .
vectorAyty) in the presence of an oscillating point electric \qqtq amplitudéE(“}), is parametrized by the direction of the

dipole located at=r, . This equation is also a generalization i igent fundamental beam, which is characterizedNgy .
of formula (39), which is valid only in a charge-free g exponential function describes the variation offihase
multilayer system. of the fundamental field with the lateral coordingtenhich

Because the SH field is géanerated 20nly within - thejs due to the propagation of the fundamental field along the
multilayer structure, the vecton%g ) and Aﬁ,l $)l must take  multilayer structure.

the forms As follows from expression2), another quantity deter-
mining the amplitude of the point dipole is the nonlinear
AFI=[05) ,0£5) ], susceptibility tensoy, . In general, each element of this ten-
sor can have, due to various reasons which will be discussed
A(Nzloi)lz[5(1\/2|$)1,3+,0/5(m)1,p,+]- (720 in detail at the end of this section, a unique dependence on

the lateral coordinate.
Thus the relationship between the modal magnitudes of the Although, in general, the dependence on batland y
radiated SH field and the discontinuihA2) [see Eq(66)]  Should be considered, we restrict ourselves to the case where

can be written as the susceptibility tensor depends only yri.e., x,(y). This
is mainly due to the fact that only the light beams propagat-
AL0) _ gl20) £20) g20) g(2wj]T= (20) A AL20) ing in they-z p!ane are treated in this paper. To facilitate the
v,spd— LEM+1s+ 1%0s— 1 “M+1p+=0p v L general case, i.e., to include the dependencg,ain bothx
(73 and y, the three-dimensional description of the SH field
where the matrixX®* is defined as the product would have to be employed. This would involve introducing
Y a nonzerox component of the normalized wave vector for the
X(20)=[ K (20) ]-1L 20 p(2)]-1p (20) (74y ~ SH field, N{?*)#0. It would lead to more elaborate expres-
sions for the solution of the wave equatid23), i.e.,
and the matrixk 2%, is defined as 2Ol (N2 NP, NZ) (NP) NPy, and thus to
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more complicated expressions for the dynamic medix) ggz (y=0) expl 1k(2‘°)N‘2“’)y0] SH far-field
and the matrix_{?*). On the other hand, formulé67) rep- ® \\
resenting the boundary conditions in the presence of a radi- 8‘2“’)( 0) P4 0 8(2‘“’(y =)
ating point dipole is correct even foi(>*)#0, although it 8 A 18, 0
was determined foN{Z*)=0. X .

Considering that the susceptibility tensgrs do not de- Y ow )

o o 20) ; 1, (y=0) u,o(y=y,)
pend onx, the variation of the point d|polpc(v in Eq. (2), 0
with respect toy, can be written as z
0 Yo

7= (xu(y) NS exif 2ikEINGIy T, (77) | _
FIG. 4. Geometrical demonstration of the argument that the con-

where tributions to the SH far-field intensity originating from point dipoles
at y=0 andy=y, are phase shifted by ) =k{*INZy,,
w2 (x,(y), N(“’)) X (y)®Ef,“’|21t(N(“’))E( Int(N(“’)). where N(?*) characterizes the direction of propagation "of the SH

(79) field [see Eq(76)].

The first term in Eq.(77) represents the variation of the

2w %) 2w
dipole complex amplitudewhich is due to the lateral varia- AL x(y) NS NG
tion of the susceptibility tensor. The secolekponential " " " N "
term in Eq.(77) represents the variation of the dipgibase =XZI(NPZ))- A AR (x,(y), NG NGZ),
which is due to the variation of the phase of the incident (82)

fundamental field.
J20) and‘(zw) are  andthe matrixX?*)(N{?*)) is defined in Eq(74). Equation

In expressior(67), the unity vectorse, . .
parametrized by the direction of observation of the SH field, (82) is ?w)c ompa%;[“]‘)orm of Eq£73)., _where thg dependgnces
ony, Ny andN;"* of the quantities contained therein are

which is characterized by{** . This follows from Eq(32), . "
where w is substituted by @. When the dependence of written exphcnly. :
' To obtain the formula for the complex amplitude of the

pZ) on 'y and N{*) expressed by Eq(78) is taken into gy field radiated by the point dipoles distributed along the
account, the quantitieA&, s+ andA€&, , + in Eq. (67) can  vth interface, one has to integrate the single dipole contribu-

be written as tions (8) over the region where the dipoles are generated. In
_ - practical situations, the SH field is detected in the far-field
AE, 5+ =AE, o+ (x,(y), NI NZ)exd 2ik§INGy], configuration. This means that one usually measures the in-

(79 tensity of a plane SH wave propagating in the direction char-
acterized byN{*”) [see Eq(76)]. Due to the dependence of
the phase of the fundamental field grisee Eq.(46)], the

AZ},&i(Xv(y)aN)(/w) ,N§,2‘”)) integration over thevth interface has to be performed with

care.
(kU) k(Zw) ~ 20) (o) “T20) x1(20) As can be seen from Fig. 4, the contribution to the far-
2e +N(2w)”v (x(Y),Ny™) - €78 (N™),  field electric field originating from a dipole at=0 exhibits
0 a phase shift ofA ¢®*)=kF*IN{**)y, with respect to the
(80 contribution originating from a dipole at=y,. In order to

. _ _ _ take this into account, one has to consider the phase shift
and similarly for the magnitudes of the-polarized field.  , 4(2u) yhen integrating the point dipole contributions along

Consequently, the vectonAl?*) defined in Eq. (66) the vth interface.
can be written asAARY)=AAR)(y (), N{) NG In this analysis, the dipoles are assumed to be oscillating

(@) (@) ~120) () coherently, i.e., there is no disruption of the phase of the
X(%)F[Z'k Ny”y], where the vectorAA,"(x,(y),Ny™, dipole oscillations along. Furthermore, the magnitude of
Ny ) is obtalned from Eq(66) in such a way that each

the fundamental field is assumed to be constant alongtthe
elen(wer;t is substituted by its corresponding quantity given bYnierface, which corresponds to the illumination of the
Eq. (80).

h vsis directly implies th | ultilayer system by an unbound plane wave. Consequently,
h The above ar?aly/sfl[shdlrzct):jlmr}les ¢ aél ever)é N emehnt Othe above geometrical argument implies that the SH far field
the vector on the left-hand side of EG3) depen o the  originating from the dipoles located at théh interface can
lateral coordinatey as well as on the quantitieN,”’ and

(20) (20) be calculated as
Ny~ . Therefore, the vectok; gqin Eq. (73) can be written
as

where

AR (N NG = f dyAPZ( x,(y), N N(2))
AP = A2 x,(y),NE NP ex 2ik Ny,

v,Sp

(81 XGXQZikg“’)N§,“’)y—ikgz“’)Ng,z“’)y]_
where @3
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The elements of the vectohZel (N{ N{>*)), which is w _
defined a¥ FIx (W= f dyx,(y)exdiuy], (87)
A e Eq. (83) can be rewritten as
E[ Nzlﬁ)l,sﬁr,ifacev O?s:ul,ifacw lvzlﬁ)l,p,ﬁiface’gg)%u,})f,iface]T7 As,?itfugce(Ny),N§2w)):f7[zsjz,;up)d](uuN§/w)1N§/2w))- (88)
(84  where
represent the magnitudes of tise and p-polarized modes u=2kg“’)(N§“’)—N(yz“’)). (89)

propagating in the superstratgubscript Q and the substrate B

(subscriptM +1) at the direction characterized BY{*’,  Using Eq.(82), the vectorFZ[AZ2)](u,N{ Ny in Eq.
and originating from the entireth interface(hence the sub- (88) is calculated as

script “iface”). Equation(83) provides the core result of the

analysis presented in this paper. f?[ﬂfggcﬂ(u,Ng‘“) ,N§2‘°))
The total radiated SH field, i.e., the SH field consisting of
contributions from all interfaces of the multilayer system, is =X(VZ"’)(N§2‘°)).fﬂAﬂzw)](u,Ngw) N,
calculated simply by summing all the interface contributions
(83, i.e., (90)
Va1 In this equation, the vectdF’Z[AZTf“’)](u,Ny) N con-

o) (@ ® ® sists of the quantities
AZD(NL NE)) = ;1 APl (N() NZ)). (85) q
FIAER) J(u, N N
Again, coherent radiation of the dipoles located at various P Y Y
interfaces was assumed in this step. In a similar way as for

the vectorAl%®) in Eq. (84), the elements of the vector

i(kg)® kf*

29 (N(Z)). FTT x,](u)

AZ2(NL) N which is defined &8 260 +NZY —
Agnzlgj)z[‘cf‘(lvzlﬁ)l,sﬁr,mlsvg(oz,st,uz,mls’ l\/2Iﬁ)l,p,Jr,mIs*‘c;g)?a,))f,mIs]T'86 ®E$f,0i¥1t(N§/w))E$ﬁ2“ N§/w))’ (91)

(86) as follows from Eqs(80) and(78) and definition(66).
represent the magnitudes of tiseand p polarized modes Equations(85)—(91) provide quite a remarkable result—
propagating in the superstragubscript 0 and the substrate they establish the theoretical grounds for the analysis of the
(subscriptM +1) at the direction characterized MZw), variation of the susceptibility tensor elements with the
and originating from the entire multilayer systéhence the €ral coordinate yfrom the measurement of trangular de-
subscript “mls”). pendencef the radiated SH far field. The importance of this

becomes even more apparent when one realizes that the in-
terface, which is the source of the SH field, can be lauy
ied interface of the multilayer system.

In Sec. Il G, we derived the expressions for the total SH Let us first assume thaioneof the elements of the non-
field generated within the multilayer system. It can be seetinear susceptibility tensors depend on i.e., xij,.(Y)
from Eqgs.(83) and(85) that the expressions for the SH field = x;jy ,(0) for all y and for everyv. Equation(87) implies
are parametrized bp\]§2‘*’), In other words, Egs(83) and that the Fourier transform of the tensor elements is propor-
(85) describe the angular dependence of the radiated SHonal to the Dirac 6 function, i.e., F7[ xij,.,](u)
field, as follows from Eq(76). In this section, we analyze = xijx,,(0)d(u). Consequently, after substituting the result
this angular distribution in greater detail. into Egs. (88)—(91), the elements of the vector

Equation (83) is the fundamental expression describing A% (N'” ,N{**)) and consequently the magnitudes of the
the angular dependence of the SH far field generated by thmodes of the SH far field are found to be proportional to
vth interface. This equation suggests that the quantities(N{*)—N{**)). A direct implication of this result is that the
Al20) e(N§w) ,N§2w)) and A(Zw)o(xy(y),Ny") ,N§2w)) are re- SH far field is nonzero only for such combinations of the

Jif , o . i
|a;éacby Fourier transformvss_p incident and observation angles that the equation

First, we note that k?“=2w/c,=2k{”. Second,
we recall that the dependence of the vector

z\f;"g((x,,(y),Ny’) ,N§,2“’)) ony is due to the lateral variation is satisfied. This agrees with a well-known experimental ex-
of the complex amplitude of the point dipole. This depen-perience that the angle at which the SH far-field intensity is
dence is due to the variation of the nonlinear susceptibilityobserved is the same as the incident angle of the fundamental
tensory, along the interface, as follows from E8). Con-  beam>®°®3 This is, of course, true only when the SHG is
sequently, if we define the Fourier transform of the tensoperformed in the reflection configuration within a nondisper-
x,(y) as® sive medium, i.e., when the fundamental beam enters the

H. Angular dependence of the second-harmonic far field

N{) = N (92
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multilayer structure from the same nondispersive medium agiven in Eq. (86). It should be recalled th j2png mis are

where the SH intensity is observed. If, for example, the fun-nonzero 0n|y for the combination of indic,';go' d=-— and
damental field enters from the superstrate and the SH field is=M + 1, d=+.

observed in the substrate, the angle of observadffty) Considering Eqs(6) and (93), the total SH electric field
=arcsin(\|§2‘”)/\/e(M2$51) could be different from the incident generated within the multilayer system and radiated into the
angle 95" = arcsin(\{"’/\/e§”) due to differences in the sub- surrounding media can be written as
strate and superstrate optical parameters, i.e.e\ft; L
#€3”) . Furthermore, even if the SH field is observed in the E(20) (r):_f f RqS £29)
. . . . J,2,%,mls Uy 2 q j,p,d,mls
same medium as that from which the fundamental field im- (27kg) p.d
pinges the multilayer system, the observation angle could

. . 2(1)
still be different from the incident one due to the material xexfip-q+ikZi(z—2z)]. (94)
dispersion, i.e., ifel?”)# i) or ejs s # €f) ;. To calculate this integral in the far-field, i.e., fos\(2),

As follows from Eqs.(87) and (88), more interesting re- we employ the well-known method of stationary ph&s®.
sults can be obtained when some of the elements of the nogve carry out integratiori94) in planar coordinates, in which
linear susceptibility tensorg; ., vary withy. This could be  one can write
due to various reasons. For example, in the area of magnetic-

induced second-harmonic generation, the susceptibility ten- X r sin,cose,
sor describing the nonlinear properties of some interface _ r=| y |=|rsingsing, |,
depends on the local magnetization. Thus, if the magnetic _ 0
medium neighboring this interface contains magnetic do- 272 rcose,
mains or any othe_r Iatergl variations of th_e magnetization K, k(29)sin §,cos@,
(such as propagating spin waves, magnetic nanostructures, (26)e )
etc., as discussed in Sec. I} Ghese variations will be di- ky | =| K*“’sinésingy |, (95
rectly reflected in the variations of the susceptibility tensor Kk k(29)cos6
z 0S0k

elementsy;; . This will, in turn, result in the dispersion n
f th t%’k'yo(y) in the Fourier d . P hich where[ 6, ,¢,] and[ 6, ,¢,] are the angles characterizing the
of the tensorF 7 xijk,v,](U) in the Fourier domain, which o ions of the andk®®=[q,k{>*)] vectors, respectively.

will eventually result in the modification of the angular dis- Considering Eq(95), the phase in the exponential factor in
tribution of the SH far field, as described by E¢85)—(91). Eq. (94) can be written as

O (r)=ik?)r{cog 6, — 6,)

The analysis presented in the previous sections dealt ex- +[cog ¢ — ) —1]sin6,sin by}, (96)
clusively with the expressions for the electromagnetic fieldand the differential #j takes the form %nzdkxdky
vectors expressed in tligspace. However, in order to obtain = (k(29))2cosé,sin 6,d6,dey .
results which could directly be compared with experimental Employing the reasoning of the stationary phase method,
data, we need to calculate the SH far-field intensity inrthe the main contributions to integral94) come from those
space. A typical SH experimental arrangement involves thgoints in theq space in which the phasg(r) is stationary,
measurement of the far-field intensity. Therefore, in this seci.e., for which 9®/96,=0 and d®/d¢p,=0 are fulfilled si-
tion we concentrate on the derivation of the far-field intensitymultaneously. Using Eq(96), these conditions are valid
radiated into the superstrate and substrate surrounding thghen g,= 6, and ¢,= ¢, , i.e., when the vectork®*) andr
multilayer system. are parallel. The Taylor expansion of the phds@) around

The fundamental relation between thespace, in which  this stationary point can consequently be written as
all the previous calculations were carried out, andrtepace

is provided by Eq(6). As mentioned in the discussion after (20 1 2 Sirf o, 2

this equation, it is important to realize that the vedfgy s s ®(r)=irk®) 1 206 2 (e,

[recall notation(8)] depends on the coordinate. In the case (97)

of_ the SH field propagating in t_he superstrate and substratgyhen this approximation is substituted into E§4), the

this dependence can be explicitly written as integration can be carried out. After rather lengthy calcula-
tions which incorporate the same steps as in the stationary
phase metho8:*°we arrive at

I. SH intensity in the far field

2w _ 20 ~(20 (2
Eaids™ Ed & hmE prexlikEd(z=2)], (93 o
' Ej,Z,d,mIs(r)|r>)\(2w)

wherej=0 andj=M+1 correspond to the superstrate and 2mk{®) 1 NG 20) o0

the substrate, respectively. In this equation, it was considered = w2 ir (zw)gj,E,d,mIseXFij rl,
20) 20) — u(20) ; : : : (27kg)= " N

that k3% = k7 "sa=Kza In an isotropic medium and the ]

polarization vectorg{®) are given by Eq(32) upon substi- (98)

tution ®—2w. Furthermore, the magnitude§’ s are  where we substituted?*)/N{?*) = cosé; .

].p.d
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To calculate the radiated SH intensity in the far-field, westrate is equal tol{>)/1{*)) = (N, /N;)3, which is in agree-
simply use the definitioni (r)=|(S(r))|. Since the time- ment with the results published elsewh&&urthermore, if
average of the Poynting vect&(r) is equal t6%%(S(r))  No=N;=N is assumed, i.e., if the dipole is considered to be
= (1/2)E(r) X H*(r), the SH intensity can be written as located in an homogeneous unbound medium of refractive

index N, then expressiofl00can be simplified to

1
(2w) —12w) /. p2w) (Qw)y (2w)| = (2w) 2
=107 o™ = 5N B} mis(1) NGo(k(2))3

| (2w)(r) =
3272€,r?

(n?“)cosh)?, (10D
2w)\2
:iwiNﬁzw”N(Zw)F o
210 (2mwkd)* r? ] z) which is the well-known cosinus law of radiation of
a free point dipole treated in most textbooks on
xS 829 (g2 99) elecf[romagn_etisrﬁl.’22 _ _
pSap | P P Finally, it is worth noting that the expression for the far-
field SH intensity was calculated for totally correlated point
This is a final result of this section. It provides an explicit dipoles. In our derivations, the correlation of the radiating
relation between the observable SH far-field intensitypoint dipoles is dictated by the correlation of the fundamen-
IJ(Z‘”)(r) and the quantitieé’j(yz,;‘fzj,mls(q) which are obtained tal field, since the complex vector amplitude of the elemen-
from the matrix formalism developed in Secs. Il E-Il G. tary dipoles is considered directly proportional to the funda-
Equation(99) also provides an explicit relation between the mental field. We considered that the dipoles were generated
measured intensity and the amplitude of the radiating poinby a plane wave, which is totally spatially correlated, and so
dipole. This explicit relationship can be used in tpganti-  the result in Eq(99) corresponds to totally correlated point
tative experimental determination of the amplitude of thedipoles. Due to the point-dipole based approach, however,
point dipoles,;u(f“’), which can be compared withb initio  the formalism developed here could also be expanded to-
calculations. wards uncorrelated or partially correlated dipoles. In prin-
A number of comments should be made with regard tcciple, one would only need to add an appropriate correlation
Eg. (99). First, it should be noted that since the amplitudesfunction describing the spatial correlation of the point di-
gﬁ;’g Q) are proportional to Kg)Z, as follows from Eqgs. poles into expression@3) and (85 and then use the result-
(66)—(67) and (82)—(86), the overall intensity is10t depen- ing formulas directly within the formalism of the theory of
dent on the arbitrary paramete}, as expected. Second, one optical cohe_renc%? The source of this partial correlation
should also observe that the intensity is proportional not onlyzould be various. For example, it could be due to a partially
to the quantitylé](,z;fé,ms(q)lz but rather to the product correlated fund_amgntal light generating the point dlpole_s.
|N(22w)51(2prj,mls(q)|2' The presence of the factlegzj‘“)lz Another possibility is that some decorrelation mechanism is

Y]' s . . .
originates from the fact that our formalism and consequentl nhe_rent in or enforced by an external |nflu_ence upon the
multilayer system or a specific layer or an interface. Even

. .2‘”) .
;{/Cee gi%?&frdégf(ipsd)'m{fér?i)c: rergégrgssstﬁcei Irglgt}‘t)?\psgtev.velzfen though steps in this direction would allow even further gen-
9t P eralization and possibly wider applicability of our model,

Fheq space and thg space, ZZ,“;‘ find thzat'm fact the far-field they will not be further pursued here as it would go beyond
intensity is proportional t¢8}ypyd'm|s(k)| , i.e., to the modu- o scope of this paper.

lus of the field magnitude expressed in thepace, which is
an expected result.

Before concluding this section, it is also useful to provide IIl. NUMERICAL EXAMPLES
some analytical results that could directly be compared with | this section, we apply the theory developed in Sec. Il
formulas available in the literature. For this purpose, let Usqr the calculation of the SH far-field intensity generated by
consider that the multilayer system consists only of one playarious multilayer systems. Because the results of this work
nar interface separating the substrate and the superstrales aimed at the analysis of magnetic-induced second har-
whose refractive in_dices at the SH frequency are denoted by,gnic generatiorMSHG), in the following numerical ex-
No andN, respectively. Furthermore, let us assume that theyyples we consider materials that are typically used in the
fundamental field generates only single point dipole of  \SHG experiments. Due to an enormous number of param-
strengthu(**) and orientation in the direction, i.e..u®”  eters involved in the MSHG phenomena, it is not feasible to
= u(?)[0,1,0]. When such a simple case is considered, theonsider all possible configurations or combinations of pa-
calculations presented in Secs. Il E-II G lead to the expresrameters. Therefore, we will focus on a few illustrative ex-

sion amples which demonstrate the features that one comes across
o)ds (ern ) during the studies of the MSHG in magnetic multilayer sys-
20 )= Co(kg)* (N (ND® [ NNy tems.
i 872e, r2 NSNZ,1+ NiNz,z ' As mentioned in Sec. II, the nonlinear properties of the

(100 vth interface of a multilayer system are described by the
susceptibility tensory;ji , . Although there are, in general,

wherej=0,1. This expression immediately implies that the 27 independent elements of the tenggy ,, the symmetry

ratio of the intensities radiated into the superstrate and sutarguments applicable to theh interface can reduce substan-
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tially the number of its nonzero or independent elements.
This procedure was thoroughly studied by other authors and
can be found in the literaturg:*®

In MSHG, the local magnetizatiom, of the vth inter-
face introduces breaking of the local symmetry, which has to
be considered in addition to the restraints implied by the
structural symmetry. In general, this results in an increased
number of nonzero elements of the tensgy ,. Further-
more, the susceptibility tensor can be decomposed into two
parts, one being odd and the other even in magnetization,
ie., Xijk,V:Xi(jolz,V_l' X,(Jek)V In the first order of the magnetic
perturbation, the even part contains the structural contribu-
tion and can be considered as independent on magnetization
while the odd part can be considered as proportional to the
magnetization. Thus by studying the values of the tensor
Xi(j"k)v,, via the second harmonic generation, one can probe for
the local magnetization of theth interface. FIG. 5. The dependence of the SH intengi§§”) on the thick-

In Secs. Il G-Il H we derived that the SH intensity is a ness of the Au layer. The SH field is observed in air at the angle
function of both the incident angléi(“’) of the fundamental ¢{??>=0°. The dashed and dash-dotted lines correspond to the con-
beam and the observation an@g‘“’) of the SH field. Due to tributions originating from the top air/Au interface and the buried
the above mentioned dependence of the susceptibility tenséw/Co interface, respectively. The total SH intensity, given by the

on magnetization, the SH intensity also depends on magn@ombination of these two contributions, is depicted by the solid
tization M., i.e |£)2w)(9i(w) 95}2w) M.,). In this expres- line. The structure under consideration is shown in the graph inset.
yy LTy ) f v)-

The graph in the inset shows the total SH intensity variation over an
extended range of thickness of the Au layer.

(t ~ ) [rel. units]

(200
I0

te, [nm]

sion,i=0 ori=M+1, depending on whether the medium
from which the fundamental field impinges on the multilayer

system is the superstrate or substrate, respectively. Similarlygqs. (83) and (85), respectively, the total SH field is ob-

0=0 oro=M+1, depending on whether the medium wheretained. Finally, one should use E§9) to obtain the angular

the SH field is observed is the superstrate or substratggriation of the observable SH intensity.

respectively. . _ _ It is clear from the above account that the calculation of a
In the area of MSHG, magnetic contrast is a convenientesult involves a rather large number of steps. In order to

parameter for a quantification of the variation of the ob-fagilitate the calculation, we designed a computer program

served SH intensity with the magnetic field orientation. It iSthat implements these steps. The results are presented below.

defined as

(@) 4(20) A. SH intensity as a function of layer thickness
Po( ai ’ 00 ) . . ..
In this example we consider a structure consisting of a

1@ gle) g2 Aq ) —12)(6() 929 — ) thin Au layer deposited on a Co substrate. We show that
=), (@) a2a) 2a), (@) a2a) . when equivalent parameters describing the structure are
lo (0,05, M) 1577 (6,057, — M.,) used, the same results as those reported by Wierengt

(102  are obtained.
) ) ) ) ) The cross section of the structure is depicted in the inset
We will consider this parameter in our second numericalyf the graph in Fig. 5. The structure is illuminated by a
example. o o fundamental beam\(*)=532 nm) from air at the incident
Before we show the results, it is worth summarizing theangle of 6%)=0°. The magnetization is considered to be
steps that one needs to make in order to calculate the Skby, The optical parameters of the materials involved are
intensity. First, the material parametéi®., the permittivity  3xen from the literatur&t
tensors at the fundamental and SH frequencies and the sus- 1, symmetry analysis of the top air/A@) and buried
ceptibility tensors of the media comprising the multilayer a,/co (2) interfaces implies that there are several nonzero
structure must be known. Second, the distribution of the fungements of the tensong;,; and yi; .. However, for the
damental field across the multilayer system needs to be cahose of this example, most of the elements are considered
culated. This can bhe ciong using '?qu?i)dor (34) derlvr:ed cljn to be zero. The values of the non-zero elements gg, ,
Sec. Il E 3. Once the fundamental field is known, the distri-_ — : A
bution of point dipoles generating the SH field can be calcu-_1 andyyyys=—1.6, and they are considered to be inde
P P 9 ting .~ ~pendent of the lateral coordinage This means, as discussed
lated from Eq.(2). The electric field generated by a point i, gec || 4, that the SH field is generated in such a direction
dipole propagating in the surrounding me_dlazcan be calcug, Eq.(92) is satisfied. In this case it means that the SH
lated from Eq.(81) and(82), where the matrix(**) and the field can be observed either in air @£ =0° or in the Co

vector AA?®) are evaluated from Eqg74) and (66) and  substrate ap®?)=0°. As the observation of the SH field
(67), respectively. When this result is integrated over a parradiated into the Co substrate is almost impossible, we ana-
ticular interface and summed over all interfaces, as shown ifyze only the field radiated into the air superstrate.
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Figure 5 shows the SH intensity observed in air as a func- TABLE I. Values of the elements of the susceptibility tensors
tion of the Au layer thickness, as calculated from E@p). considered in the calculations in Sec. Ill B. The values are given for
Due to the normal incidence and no magnetization involvedtwo orientations of the Co layer magnetization. Elements which are
the s andp polarizations are interchangeable and thus do nofot listed are identically zero.
need to be considered separately.

The contribution of the air/Au interfac&epicted by a M Xzyyl Xyyy2™ ~ Xyyy3  Xzyy2™ = Xzyy3  Xzyy4
dashed lingis increasing with the thickness of the Au layer. [1,0,0] 1 1 _9 -1
This is mainly due to the fact that the amplitude of the fun- | _ g g 1 -1 _2 -1

damental field at this interface increases with the Au layet

thickness. This is in contrast to the contribution of the Au/Co

interface (depicted by a dash-dotted linédrom which the ) () )

contribution decreases with increasing thickness of the A@articular angleg;™ , there exists two SH beams, one propa-

layer. This is again given by the rapid decrease of the fundagating in the glass substrate @f“’ and the other in the air

mental field at this interface for thicker Au layers due to itssuperstrate ag{*®). These angles are related by E¢@2),

strong attenuation within the Au layer. (76), and (36). Below, only the SH beam radiated into the
The solid line shows the variation of the total SH inten- glass substrate is discussed.

sity. It firstly decreases and reaches a minimum at a Au layer The form of the susceptibility tensors implies that the SH

thickness of about 2.5nm, and then monotonically increasegeld generated by the trilayer structurepipolarized. When

until it saturates(see the graph insetAs can be seen, the the SH intensity is evaluated for various incident angig8

minimum intensity is reached at a thickness for which theyt he fundamental field, the angular distribution looks as

separate contributions from each interface are relatively hlgl’ghown in Fig. 6. The figure also shows the corresponding

This is due to des?ruc_tlve mterferenpe effects taking placq’nagnetic contrast, which is calculated from E£02).
when the two contributions are considered together. In other L . . e (20) .
The variation of the SH intensity with;”’ is determined

words, even though the contributions from each interface are

relatively large, if their phases are opposite they can cancépainly by the dgpe_ndence of g‘e fundgm_ental field at each
each other out. interface on the incident ang@‘ . That is, if they compo-

nent of the fundamental electric field was evaludfeits
variation with the incident anglé{”) would look very simi-
lar to that depicted in Fig. 6.

In this example, we consider a structure consisting of a The angular range, for which the SH intensity is plotted,
Au(3nm)/Co(3nm)/Au(25nm) trilayer deposited on a glass corresponds to the range of angles for which the surface
substrate and covered by air. This structure was experimemplasmon is excited by the fundamental field. This phenom-
tally studied in the literatur&®3!

The fundamentap-polarized beam X()=632.8nm) in-

B. MSHG intensity as a function of incident angle

terrogates the structure from the glass substrate. The plane 7_ 0.5' - ' . ' L
given by the beam propagation and its polarization vector is 613
parallel to they-z plane. The SH field is observed in the — £
glass substrate in the same plane. The optical parameters of é 5-50F N
the materials involved are taken from the literattire. 3 Lg
The Co layer is assumed to be homogeneously magne-  E 4 &
tized in the transversal direction, i.eM||x. The nonlinear A~ TSI a6 38 50
properties of the air/Au, Au/Co, Co/Au, and Au/glass inter- gq; B 6. [deg]
faces are described by the _susceptlblllty tensgg 1. gv 5l
Xijk,2» Xijk,3» andxijx 4, respectively. Due to symmetry rea- S
sons, the susceptibility tensors of the 1@ and bottom(3) -
Au/Co interfaces are related by »= — Xijk,3- i
Similarly as in Sec. lll A, most of the elements of the

|
susceptibility tensors are assumed to be zero. The nonzero @ 48
elements considered in the calculations are summarized in incident angle in substrate 6, [deg]
Table I. As follows from the symmetry arguments; the

elementSxzyy1, Xzyy2= ~ Xzyy3: Xzyys @r€ NONMAGNELc,  [iG. 6. variation of the intensity of the Si-polarized field
while the elementsyyy>=— xyyy,3s change sign upon a re- \ith the incident angleg) of the p-polarized fundamental field.
versal of the magnetization of the Co layer. The SH beam is observed at an angf#”) which is related ta9$”)

The fundamental field impinges the multilayer system atjia Eqs.(92), (76), and(36). The dependence was calculated for a
an angled{”) . We assume that the values listed in Table | aretrilayer system which is depicted in the graph inset and whose pa-
constant along the corresponding interfaces, i.e., independerameters are listed in Table I. The solid and dashed lines correspond
of on,y. Consequently, the SH field can be observed only ino the magnetization of the Co layer in thex and —x directions,
such a direction that Eq92) is satisfied, as discussed in Sec. respectively. The angular dependence of the magnetic contrast de-
[l H. This means that for a fundamental beam incident at dined in Eq.(102 is plotted in the graph inset.
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enon is accompanied by enhancement of the magnitude of cross-section:
the fundamental field at each interface at or around a particu-
lar incident angle. This is in close correlation with the ob-
served enhancement of the SH intensity at the corresponding
observation angl@f“’)~45.5°. These results agree with the
experimental observations reported in the literafti@

. A
top view of Co layer: S

T

—_—
P —

l

from a layer with magnetic domains

C. Angular distribution of SH intensity x Tl
[
z

In the previous two examples, we demonstrated the capa-
bilities of the model on structures that have already been (2)
dealt with previously. The obtained results were found to be
in agreement with those published in the literatt#&€:!In
this section, we show that the capabilities of our model go 0.10% 30 60 920

. . 2
observation angle in substrate 62 ©) [deg]

: S . L
beyond those discussed above. This is mainly due to the — - o 5]
model’s convenient formalism which culminates in E@5) é 0.08 - glass !‘\\ —
and(89). = i m=+1 1

. . —= 006 m=0g [\ -

As a model structure, we consider the same trilayer sys- = L \42 _
tem as in Sec. Ill B; however, in this case the Co layer con- o 004 V100x— | -
tains magnetic domains. The domains are assumed to be g (437654, | +3 1
separated by infinitely thin domain walls parallel to the £ 002FTTT ‘n 2.1 I‘\M .
plane. The magnetization of the domains is changing periodi- = 0.00 e TT’ Ll T‘,\ 1
cally between the saturated valudet'=[1,0,0] and M R i i o S L
=[—1,0,0] with a periodicityA, as shown in Fig. (@). In So° 0.04F 43 3“\m=-1 —
this example, we also consider the same values of the sus- 3~ r Y ]
ceptibility tensor elements as in Sec. Il B, which are sum- S 0021 T N
marized in Table 1. 0.00 —L | i .

A phenomenological treatment of the SHG originating o 30 60 90
from a thin magnetic film containing periodic magnetic do- observation angle in superstrate e(‘f“’) [deg]
main structures was already reported in the literattiré® It
was found that, in addition to the interface contributions, the ®)

SH field can also originate from the magnetic walls due to a g, 7, (a) A cross section and a top view of the structure con-

nonzero value of the magnetization gradi8htM in this  gjsting of a Au/Co/Au trilayer deposited on a glass substrate. The
region. This follows from the fact that the expansion of themagnetization of the Co layer varies periodically along yreoor-
magnetically active susceptibility tensgy;, in the magneti-  dinate with periodicityA. (b) The angular distribution of the SH
zation contains terms proportional ®A. As a conse- intensity (p-polarized light generated by p-polarized fundamental
quence of the periodicity of the domain structure, the generbeam. The fundamental beam illuminates the structure from glass at
ated SH field was found to exhibit a “diffractionlike” an incident angle ob$”)=45.5°. The normalized intensities, i.e.,
pattern, i.e., the illumination of the structure with a single1§*”(6“))/|a;, /2|2, observed at discrete angular positions are de-
fundamental beam could result in a diffraction pattern of thepicted by the solid-line spikes ended with the up triangles. The
SH beams. numbersm=0,+£1,=2,... refer to the diffraction orders. The SH
The model developed in Sec. Il neglects the contributiondeams observed in the glass substrate and the air superstrate are
to the SH field originating from locations other than those atplotted in the top and bottom graphs, respectively. The dashed line
the |ayer interfaces, such as those from the magnetic doma.ﬁﬁpict.s- the envelope of the angular distribution of the normalized
walls located in the layer bulk. Although it would be, in Intensites.
principle, possible to take such contributions into account by . , .
expanding the region of the integration of the point dip0|edescr!bed above, the magnet!cally active tensor elements are
contributions to more than just or(g) dimension[see Eq. described by a periodic function
(83)], it would go beyond the scope of this paper, and thus

will not be treated here. Instead, the possible contributions XyyydY) =~ Xyyya(y)

originating from the domain walls will be neglected. 1 for ye(— A+nA,;A+nA)
As can be seen from Table I, the elements,,, and = '
Xyyy.3» Which correspond to the top and bottom Au/Co inter- =1 for ye(3A+nA,3A+nA),

faces, respectively, are the only “magnetically active” com- (103
ponents of the susceptibility tensors involved in the calcula-

tion. Assuming that the variation of the magnetization atwheren=0,=1,=2,.... This function can be expressed in
these two Au/Co interfaces is the same as that of the Co layd¢he Fourier series as

144401-24



THEORY OF SECOND-HARMONIC GENERATION FROM.. .. PHYSICAL REVIEW B8, 144401 (2003

* o poles and evaluating the intensity at such a value of the ob-
Xyyy.2Y) == Xyyy3(Y) = E amcos< mTy>, servation angle that Eq107) is satisfied.
m=1 A similar interpretation can be considered for the higher
4 (—1)m1 SH diffraction orders |(n|=1). In this case, Eq(105) im-
=— (104 plies that there are twaonagnetically active point dipoles

mT_Tom_1 °
7 2m-1 “created” by the fundamental field. Both are located at po-
Consequently, the Fourier transfor(@7) takes the form sition characterized by the same valueydas the four mag-
_ netically inactive dipoles mentioned abo(&ich asy=0).
FoXyyy2l(W) == FI Xyyyal(U) The two magnetically active dipoles radiate anisotropically
“an 20 into the surrounding media with the angular distribution de-
zm;x > S u—mT , a9,=0. (10H scribed by Eq(82). The SH far-field intensity corresponding

to the diffraction ordem is subsequently obtained by sum-
As shown in Table I, the tensor elements, 1, Xzyy2 ming up thg field C_ontribytions of these two point dipoles
= — Xzyy3 and x,,.4 are magnetically inactive. This means @nd evaluating the intensity at such a value of the observa-
that even though the magnetization of the Co layer varie§ion angle that Eq(108) is satisfied. Moreover, the intensity
along they coordinate, these values remain independent of at this angle has to be multiplied by the factary,/2?, as
Consequently, their Fourier transforms are expressed as follows from Eq.(105).
The results discussed above imply that by studying the
FI Xzyyp)(W) = Xzyy(0)6(U),  »=1,2,3,4. (106 giffraction pattern of the SH field, one can gather informa-
When results(105 and (106) are substituted into Egs. tion about the domain structure of the burie_d magnetic inter-
(88)—(91), the far-field SH intensity is found to be comprised faces, or even the layers themselves, provided that the rela-
of two contributions. The first contribution originates from tion between the layer and interface magnetization is known.
the nonmagnetic part of the susceptibility tensors and is nonl'his is feasible only if the experimental configuration guar-

zero at such an angle that the equation antees that the conditions which justify the use of EY)
(20)  n(®) for the evaluation of the quantitfZ[ x;j,,]1(u) are fulfilled.
Ny™ =N, (109 These conditions require that the magnitude of the funda-

is fulfilled. The second contribution to the SH intensity origi- mental field across the area illuminated by the fundamental
nates from the magnetic part of the susceptibility tensorsbeam is uniform, and that the width of this area is much
Equation(105 implies that it is qualitatively different from greater than the domain periodicity. If these conditions are
the nonmagnetic contribution in such a way that the SH innot satisfied, Eq(87) would have to be slightly modified to

tensity is non-zero only at such angles that take into account not only the distribution of the phase of the
fundamental field but also the profile of the field magnitude

N(Ze) = N(w)+m£ K. = 2_7" m=+1+2 across the illuminated area. This would, however, go beyond
y.m Y kg)Zw) ' ATAC T the scope of this paper and therefore will not be dealt with in

(108 @ greater detail.

is satisfied. This means that, due to the presence of the magiJ ; ? V('j?sutﬁlk')ﬁi;:e cr)?s?rl]tg, dSISIfI:u?I’?t?E?]S?E/ OVSérYé?a?é%t tg; ?'

netic domains, the angular profile of the SH intensity com- : ) . .
prises a diffraction pattern of SH beams characterized by Q-polanzed fundamental beam ()= 632.8nm) _|IIu_m|nat-
diffraction orderm. This is in a qualitative agreement with N9 the structure from the glass substrate at an incident angle

the results reported in the literatufs° of 6{”’=45.5°. The results, which were calculated ftor
Comparing Eqs(107) and(109), the nonmagnetic contri- =10A?**)~3.2 um, are shown in Fig. (®). The spikes end-
bution to the SH field can be thought of as a zero diffractioning with the up triangles represent the angular positions of
order of the SH diffraction pattern. Therefore, studying thethe diffracted SH beams, each characterized by the diffrac-
zero order of the SH diffraction pattern can reveal informa-tion orderm.
tion about the nonmagnetic part of the susceptibility tensors, In order to make the graphical representation clearer, the
while the higher diffraction orders contain the information values of the SH intensities, which are represented by the
about the magnetic part of the susceptibility tensors. spikes length, are multiplied by the corresponding factors
The electrical fields corresponding to the diffraction or—|a|m‘/2|‘2 for |m|=1. Furthermore, to enable the visualiza-
ders can be evaluated employing E(8)—(91). Using the  tion of the zero diffraction order in the same scale as the
point-dipole approach to the SH problem, this evaluation carigher diffraction orders, its intensity was multiplied by a
be illustratively interpreted as follows. The fundamental fieldfactor of 1/100. In the following discussion, the intensity
“creates” four magnetically inactive point dipolessach values multiplied by the corresponding factaqm|/2|‘2 for
placed at one of the interfaces at the positions characterizdeh|=1 will be referred to as the normalized SH intensities.
by equal values ofy (such asy=0). These point dipoles When the scales of thgaxis of the graphs in Figs. 6 and
radiate anisotropically into the surrounding media. The an¥ are compared, it can be seen that the normalized intensities
gular distribution of the electric field radiated by each dipoleof the higher diffraction orders are considerably smaller than
is given by Eq(82). The SH far-field intensity corresponding that of the zero order. This difference is pronounced even
to the zero diffraction order is subsequently obtained bymore when the true values of the SH intensity, i.e., the nor-
summing up the field contributions of these four point di- malized intensities multiplied by the corresponding factors
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|ajm/2|?, are considered. This difference in the magnitude of 0.10 — T
the SH intensity is solely due to the numerical values of the L .
elements of the susceptibility tensors used in the calculation. 008k | 9;"’) =455° _
The dashed line in Fig.(B) represents the envelope of the g L |- 9@ — 40° 5% 1
angular profile of the normalized intensities of the diffracted 3 ‘(‘m) o
SH beams. It is determined by the radiation of two magneti- g 0061~ f-- 8,” =50 N
cally active point dipoles placed at the top and bottom Au/Co o i » T
interfaces, as explained above. This envelope is useful if one _8“ 0.04 —
is interested in the modification of the diffraction pattern of g L _
the SH beams implied by the change of the domain period- = 0.02 F=—e __ |
icity A, while all the other parameters remain unmodified. In | ,_._,_,_‘_,_,_,___T_f\ |
this case, the positions of the diffraction orddmpikes | | .
would be shifted so as to fulfill E4108), while the normal- 0.00) 35— 0 9%

ized intensitieglengths of the spikgswould follow the en-
velope which remains unchanged. The true values of the SH
intensities are then evaluated by multiplying the normalized (a)
values by the corresponding factc}a;}m‘/2|2.

It is important to note that the envelope varies with the
incident angle of the fundamental beam. This is due to the
fact that the magnetically active elementary dipoles, which
are generated by the fundamental field at the Au/Co inter-
faces, vary their magnitué®due to the dependence of the
fundamental field itself on the incident angle. This implies
that the normalized intensities of the diffracted SH beams
corresponding to different diffraction orders vary with the
incident angle of the fundamental beam. An example of this
variation is shown in Fig. @), where the envelopes depicted
by the solid, dashed, and dash-dotted lines correspond to the
incident angle of6{*)=45.5°, 40°, and 50°, respectively. ]
The graph demonstrates that the envelopes, and thus the nor- 0 35 40 45 50 55
malized intensities of the diffracted SH beams, can vary sub-
stantially even for as small variations of the incident angle as
+5°, (b)

Another interesting result follows from the analysis of the , ,
dependence of the SH intensity of a particular diffraction '_:'G' 8.@ EnveIOp?S _Of the SH ciu)ffractuon patterns plott_ed for
order on the incident or observation angle. The variation of10us values of the incident angkg”) of the fundamental field;
the incident angl&9(“’) of the fundamental beam implies that the solid, dashed and _dash-dotted lines correspordto=45.5°,

4 . 0° and 50°, respectively. The envelopes correspond to the SH
the angles, at which the diffracted SH beams are observe

. S . ) iffraction patterns generated by the structure shown in Fg. 7
vary. This variation is described by EQ.08) for the diffrac- (b) The dependence of the SH intensity of the diffracted SH beam

tion ordersim|=1 and by Eq(107) for the zero order. The g its observation anglé®*) . The dependence plotted in the graph
corresponding variation of the SH intensity can be calculateg 5 consequence of the variation of the incident arg@ of the
as discussed above, i.e., using E@5)—(91). fundamental beam in the range @) e(40°,50%. The solid,

Following these steps, the SH intensity of the diffractiongashed, and dash-dotted lines correspond to the zero, first, and
ordersm=0,=1 was calculated as a function of the corre- — 1%t diffraction orders, respectively. The spikes ending with the up

sponding observation angl@ﬁz“’) in the glass substrate. The triangles depict the angular positions and the corresponding inten-
result is shown in Fig. ). In the calculation, the incident sities of the diffracted SH beams corresponding/§t) = 45.5°.

angle of the fundamental field varies in the range of

65 e (40°,509. Consequently, the SH beams of the orderscussed in the literaturé:?**” Due to this anisotropy, differ-
m=1, 0, and —1 could be observed at angles ent orders of the diffracted SH beams, which propagate at
0% e (34.3°,43.35, 0% <(39.5°,48.85, and 6P  different angles, exhibit different angular dependences of
€(44.7°,55.13, as depicted by the dashed, solid, and dashtheir corresponding intensity.

dotted lines, respectively. In addition to the strong variation
of the magnitudeof the SH intensity between the different
diffraction orders, it is also the angular profile that varies
considerably between the diffraction orders. These differ- We developed a complete and comprehensive model and
ences are associated with the fact that the radiation of a poitils computer implementation which is suitable for a descrip-
dipole itself exhibits strong angular anisotropy due to thetion and evaluation of the second-harmonic generation
interaction with the surrounding multilayer system, as dis-(SHG from arbitrary multilayer systems. The model was

(ef"’) ) [rel. units]

Qo
I4

. . 2
observation angle in substrate O: ) [deg]

IV. CONCLUSION
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developed under the following fundamental assumptions. a uniformly distributed magnetization, is transformed into a
(i) The multilayer structure is assumed to consist of arbi-“diffraction pattern” of the SH beams with the angular spac-
trary homogenous materials, including lossy, anisotropic anéhg related to the domain periodicity. In addition to the an-
magneto-optic media. Optical properties of each ldgem-  gular spacing of the diffracted SH beams, the model is also
piex permittivity tensor, thickne$gare assumed to be con- able to predict the intensity of a particular diffraction order
stant in the lateral dimension. and its relation to the parameters characterizing the nonlinear
(i) The second-harmonic field is generated by a set op_roperties of the interface. Because the SH field can, in prin-
electric point dipoles located at the interfaces of theCiPle, be generated from any buried interface, the model can
multilayer structure, as a result of the local symmetry breakP€ used as the grounds for the analysis of the magnetic do-
ing. The complex amplitude of the dipoles is evaluated usind“a'riis. or other mfagnenc |nhom?ggne|iies .Of buriled Iayerz.
a phenomenological description of the surface nonlinearityd T IS 1S oné of many possme Implications that can be
i.e., by multiplying the square of the fundamental field with erived using the formgllsm deyeloped In th's. wori<. The
the susceptibiiity tensor assigned to each interface. number of parameters involved in the calculations is vast,

(iii) The total second-harmonic response of the multilayerWh'Ch can make the experimental realization of the implica-

structure is calculated by the summation of all the single-t'ons somewhat problematic. Nevertheless, the point dipole

dipole contributions over the entire multilayer structure. Inapproach and its conveniently formalized implementation

this process, an arbitrary spatial distribution of the susceptihavet"".(\r:i()t?]((ja ?f:%?l II/?SrgZSIgrnI'?]ga?]ndo?rri:iy:zg thﬁ :r)épteri;
bility tensor can be accounted for. ments | r i y rea wl

The point dipole approach proves to be very ConVenien?econd—harmonic generation from multilayer systems is of
and powerful, both from the formal and computational points'miritest' h the th ted in thi devel
of view. It can be applied in almost any situati@mploying oug € theory presented In this paper was devel-

planar geometrywhere the spatial distribution of the source oped while consider_ing several _restrictions, the conveni_ent
and compact formalism penetrating the work allows for its

of the SH field is known or to be studied. Due to the conve- ther straiahtforward expansion. The restriction to a one-
nient matrix formalism used, the treatment is also very com!@ 9 W xpansion. Ict

pact, elegant and can be easily implemented into a COmputéiimensional variation of the nonlinear susceptibility tensors
prog,ram can easily be removed by expanding the description of the

The model was applied in the area of magnetic-inducetjundamental and SH _fields _to three dir_ne_nsiomsy(—z), as
second-harmonic generatidVMSHG), where the SHG ex- opposed to the two-dimensional descriptign-£) presented
' here. The model also considers that the point dipoles gener-

eriments provide a useful tool for studying the magnetic ; _
groperties of interfaces. The model was used to study th@ted by the fundamental field radiate coherently. Due to the
oint-dipole nature of the model, this could also be expanded

dependence of the SH intensity on the thickness of one of thBOINt-CIB . )
layers and on the incident angle of the fundamental beanfC Situations where some mechamsm decprtelates_, either spa-
The systems under consideration employed interfaces witHa"éi ?r n igebtlme dorgaijn, the dtlpcc)jle raqtiatlon.IFmaIIy, tkie

constant values of the nonlinear susceptibility tensors. Tha0del could be expanded So as 1o describe noniinear Systems

obtained results were found to be in a complete agreememith arbitrarily spatially distributedsources of the SH field,
with those published in the literature as opposed to the hereby analyzed systems in which the SH

The elegance of the developed model becomes apparei’i?ld originates solely from the layer interfaces.

when the systems with an unhomogeneous distribution of the
susceptibility tensors along the interfaces are considered.
This can happen, for example, in the area of MSHG, where The authorgJ.H. and L.B.would like to thank the Lab-
the magnetization of the layers, and thus the interfaces, exratoire de Physique des Solides at the UniveRads-Sud
hibits variations in the lateral dimension due to, for examplejn Orsay, France, for their hospitality and for providing a
the presence of magnetic domains, propagating spin waveguitful working atmosphere. Professor @snovskyis grate-
magnetic nanostructures, etc., and where the optical propefully acknowledged for his advice and permanent encourage-
ties (layer thicknesses and permittivity tensocain be as- ment for this work. This research was supported through the
sumed to be laterally homogeneous. To demonstrate the c&uropeanCommunity Marie Curie Fellowship Contract No.
pabilities of the model, we considered a trilayer system inHPMT-CT-2000-00066L.P.) and benefitted from the grant
which one of the layers contained magnetic domains wittof the French Ministee des affaires teangees (J.H). This
periodically changing orientations. We found that the singlework has been supported by the Grant Agency of the Czech
beam of the SH field, which corresponds to the situation withrRepublic No. 202/03/0776.
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