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Theory of second-harmonic generation from multilayer systems based on electric point-dipole
radiation: Application to magnetic multilayers
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A complete and comprehensive theory of the propagation of second-harmonic~SH! field generated within
arbitrary multilayer systems is presented. The theory is based on the radiation of point dipoles whose strength
is determined by the distribution of the fundamental field interrogating the multilayer structure. The theory is
applied to the study of magnetic-induced second-harmonic generation~MSHG! where the SH field is generated
at the interfaces of the multilayer structure as a consequence of the local symmetry breaking, not only due to
the structural asymmetry but also the local magnetization. In comparison with the already existing theory based
on radiation of an infinitesimally thin polarization sheet, the approach based on the point-dipole radiation
presented in this work is more general since it can be applied to the study of systems whose susceptibility
tensors, which describe the nonlinear properties of the media, exhibit arbitrary spatial variations. It is shown
that the Fourier transform of such variations is closely related to the angular variation of the observable
intensity of the far-field SH. Due to the point-dipole nature of the approach used, the theory presented here can
be employed in the analysis of MSHG from systems with~buried! magnetic domains with sizes comparable to
the wavelength of the second harmonic light, magnetic nanostructures, and others. In addition to the formalism
itself, a number of numerical examples is provided and discussed in detail. It is shown that our results are in
agreement with those published in the literature for simpler systems. Further capabilities of the theory are
demonstrated on a system containing a buried ferromagnetic layer with periodic magnetic domains.
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I. INTRODUCTION

Magnetization-induced second-harmonic generat
~MSHG! has recently been attracting the attention of ma
theoretical and experimental studies.1–11 This is mostly due
to the fact that it provides a unique experimental tool
studying the magnetic properties of interfaces in ultrat
magnetic structures.

As follows from various experimental evidence, themain
contribution to the second-harmonic~SH! field generated in
a multilayer system comprised of centrosymmetric mater
originates at the layer interfaces, where the local point sy
metry of the structure is broken. The model which provid
the theoretical background and is widely used for the an
sis of the MSHG experiments carried out on such syste
was developed by Wierengaet al.1 The model introduces an
infinitely thin polarization sheet which acts as a source of
SH field. The sheet is located at an interface of layers co
prising the multilayer structure and is considered to be s
rounded by infinitely thin vacuum layers. The polarization
the sheet is determined solely by the fundamental elec
field at the interface, i.e.,

P(2v)5x ^ E(v)E(v). ~1!
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In this expression,E(v) denotes the complex amplitude of th
electric field at the fundamental frequencyv at the interface,
and x is the third rank nonlinear susceptibility tensor~the
elements of the tensorx are denoted byx i jk) which phenom-
enologically describes the origins of the electromagne
~EM! field at 2v.

From the classical EM theory it follows that the introdu
tion of such a polarization sheet implies a discontinuity
the tangential components of the EM field across the in
face. Applying this fundamental step along with the mat
formalism relating the EM field across the multilayer syste
to that outside of the structure, the model developed
Wierengaet al.1 is able to relate the radiated SH field to th
intrinsic nonlinear properties of the interface, which are e
countered in the values of the susceptibility tensorx i jk .

The main assumption of the model is that it considers
source of the SH field in the form of an infinitely thin,co-
herentlyand homogeneouslypolarized sheet. Although this
assumption is justifiable in many cases investigated exp
mentally, it is not sufficiently general. Moreover, it is bas
on a macroscopic like description of the source of the
field, which does not provide a direct physical insight in
the processes involved in the SHG phenomena.

In our model, we look at the problem of the SHG from
different point of view, which can be better related to t
©2003 The American Physical Society01-1
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microscopic description of the origin of the SH field. W
consider that the SH field is generated by apoint electric
dipole oscillating at an angular frequency 2v. Although the
dipole can be positioned arbitrarily throughout the multilay
structure, we assume that it is placedat the layer interface.
This is closely related to the symmetry considerations u
in the macroscopic models like that discussed above.

The complex amplitude and the orientation of the po
dipole are derived from the fundamental EM field at the
terface in a similar manner as in Eq.~1!, i.e.,

m(2v)5x̃ ^ E(v)E(v). ~2!

This is justified by the fact that our microscopic descriptio
which is based on this equation, should be consistent w
the macroscopic description based on Eq.~1!.

This approach to the SHG has some advantages. In
ticular, once the EM field generated by the point dipole~2! is
known, it can be used to evaluate the SH field genera
from a system witharbitrarily spatially distributed dipoles
Furthermore, as it is based on a well understood microsc
quantity ~an elementary dipole!, it can be more directly re-
lated to a quantum-mechanical description of the SHG.

In the models describing the SHG, the symmetry of
interfaces generating the SH field plays a fundamental r
In particular, one can deduce zero and nonzero elemen
the nonlinear susceptibility tensorx i jk from symmetry con-
siderations of the interface microscopic structure. Furth
more, if the local magnetization of the interface is taken in
account, the symmetry of the interface is lowered, result
in an increased number of nonzero elements ofx i jk . The
details of this analysis are thoroughly studied in t
literature.12,13 To adopt the symmetry considerations in o
description, we assume that the symmetry properties of
tensorx̃ i jk in Eq. ~2! are identical to those ofx i jk in Eq. ~1!.
In other words, the microscopic point dipolem(2v), which is
the fundamental quantity considered in our analysis, ha
fulfill the same symmetry-induced constraints as the mac
scopic quantityP(2v) used in the previously developed mo
els. Due to this formal equivalence, the tilde inx̃ i jk will be
omitted throughout this work.

The analysis in this paper proceeds as follows. In Sec
we present a complete and comprehensive theory of pr
gation of radiation generated by point electric dipoles e
bedded within an arbitrary multilayer system. Since the a
of this work is to develop a concise formalism, the deriv
tions start at the very basics of the electromagnetic the
i.e., the Maxwell equations. Firstly, we introduce the s
calledq space in which our problem can be solved in a rat
elegant way. We derive a matrix formalism which allows
to obtain analytical expressions for the fundamental field
each interface of the multilayer system. These express
are then applied in an evaluation of point electric dipo
which generate the second harmonic field. In a subseq
part of the paper, we provide a detailed study of the bou
ary conditions that the electromagnetic field must fulfill
the vicinity of a point electric dipole. We show how the
conditions can be expressed in the above mentionedq space,
and how they can be incorporated into the matrix formali
14440
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describing the propagation of the second harmonic fi
across the multilayer structure. The theoretical analysis
minates at the point where the expressions for the ang
distribution of the observable SH intensity are derived.
schematic block diagram depicting the flow of the develop
formalism is shown in Fig. 1.

In Sec. III we illustrate the theory in a number of nume
cal examples which are closely related to the magne
induced second harmonic generation, which is the main
plication field of the theory presented in this paper. The fi
remarks and conclusions are summarized in Sec. IV.

II. THEORY

A. Basic assumptions and conventions

A typical configuration of a SHG experiment carried o
on a multilayer system is shown in Fig. 2~a!. It employs a
fundamental (v) beam which impinges from the superstra
onto a sample at an incident angleu0

(v) . The reflected and
transmitted fundamental light beams are observed in the
perstrate and substrate at anglesu0

(v) and uM11
(v) , respec-

tively. The SH (2v) field generated within the sample
radiated into the superstrate and substrate, where it ca
observed at anglesu0

(2v) and uM11
(2v) , respectively. The pur-

pose of the following analysis is to find a relation betwe
the incident fundamental field and the radiated SH field a
function of the incident and observation anglesu0

(v) and
u0

(2v) ~or/anduM11
(2v) ), respectively.

Throughout the paper, we accommodate the follow
conventions. Without a loss of generality, we assume a
ordinate system in which the incident light beam at the fu
damental frequencyv propagates in they-z plane, as shown
in Fig. 2. Thex axis is perpendicular to they andz axes in
such a way that they form a right-handed system of coo
nates. The unity vectors in the direction of thex, y, and z

axes are denoted byx̂, ŷ, and ẑ, respectively. Furthermore
the time dependence of the field is considered in the form
exp@2iv0t#, wherev05v andv052v for the fundamental
and SH fields, respectively.

The evaluation of the SH field generated within t
multilayer system consists of two parts. First, the fundam
tal field at each interface of the multilayer system is calc
lated. This field is then used to ‘‘generate’’ a point dipo
oscillating at a frequency 2v in a manner described by ex
pression~2!. Subsequently, the radiation of such a dipo
within the multilayer structure is determined. Finally, the t
tal SH field radiated into the substrate and superstrate is
tained as a sum of the single dipole contributions, which
integrated over the illuminated area and summed over
interfaces.

B. Maxwell equations

In order to find the spatial distribution of the field radiate
by a point electric dipole, one needs to solve the Maxw
equations. Considering the above mentioned convention
the time-variations of the electromagnetic field, these eq
tions can be written in the following form:
1-2
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FIG. 1. A schematic diagram
of the developed SHG formalism
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¹•D(v0)5r (v0) ~a!, ¹3E(v0)5 iv0B(v0) ~b!,

¹•B(v0)50 ~c!, ¹3H(v0)5 j(v0)2 iv0D(v0) ~d!.

~3!

In these equations, all the quantities are considered to
functions of the position in the direct space, i.e.,E(v0)

[E(v0)(r), H(v0)[H(v0)(r), etc.
The optical properties of the medium can be described

the permittivity, e (v0), and permeability,m (v0), where v0
5v andv052v for the fundamental and SH fields, respe
tively. These quantities relate the field vectors asD(v0)

5e0e (v0)E(v0) and B(v0)5m (v0)H(v0), where e0 is the
vacuum permittivity ande (v0) is, in general, a tensor whos
elements can be complex numbers~see below for more de
14440
be

y

-

tails!. On the other hand, all the media in this article a
assumed to be magnetically inactive within the frequen
range ~optical frequencies! considered in this paper, an
therefore the permeability is taken to be equal to the vacu
permeability, i.e.,m (v0)[m0.

The quantitiesr (v0) and j(v0) describe the spatial densit
of free charges and currents, respectively. For the fundam
tal frequency,v05v, both quantities are considered to b
zero everywhere. On the other hand, these quantities are
sidered to be zero only almost everywhere forv052v, i.e.,
they act as sources of the SH field.14 More details on where
exactly these quantities are nonzero and how this determ
the spatial distribution of the SH electromagnetic field w
be provided later on.
1-3
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C. Multilayer structure

The structure under consideration is a multilayer syst
consisting ofM layers surrounded by a semi-infinite su
strate and superstrate, as depicted in Fig. 2~b!. Optical prop-
erties of the layers are assumed to be uniform in the lat
directions, i.e., described by the permittivity tensorse i j ,n

(v0) ,
n50, . . . ,M11, which do not vary with the lateral (x andy)
coordinates. Throughout the paper, the values of the per
tivity tensors are assumed to be normalized to the vacu

FIG. 2. ~a! A diagram of a typical experimental configuration fo
measuring the second harmonic generation~SHG! from a sample
illuminated by a beam at fundamental frequencyv. ~b! A schematic
diagram of the multilayer structure under consideration, which c
sists ofM homogeneous layers surrounded by a semifinite subs
and superstrate. The positions of the interfaces are characterize
zn , n51, . . . ,M11. The thick arrow symbolizes a point dipol
located at the (n11)th interface and oscillating at an angular fr
quency 2v.
14440
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permittivity e0. Since the elements of the permittivity tenso
are generally complex, the analysis presented in this w
can cover a very broad range of materials, e.g., isotropic
anisotropic dielectrics, absorbing media, metals, a
magneto-optical materials.

The interfaces between the layers are assumed to be
nar and parallel to thex-y plane. They are located at pos
tions z1 , z2 , . . . ,zM11, which can be calculated from th
thicknesses of the layers aszn5z11t11•••1tn21 , n
51, . . . ,M11, as shown in Fig. 2~b!.

It is important to note that themacroscopicoptical re-
sponse of the layers comprising the multilayer system is c
sidered to belinear at both the fundamental and SH freque
cies. That is to say that the fundamental and SH vector fie
present in the multilayer structure propagate according to
laws dictated by the spatial distribution of the permittivi
tensorse (v0) ~Ref. 15! and the linear relation between th
vectorsD(v0) and E(v0), i.e., D(v0)5e0e (v0)E(v0), for both
the fundamental (v05v) and second harmonic (v052v)
fields. The existence of the SH field in such media is solel
consequence of themicroscopicproperties of the layerinter-
faces, which exhibit nonlinearity as described in Sec. I. Th
nonlinearity is, however, described separately, i.e., as a p
erty inherent to the interfaces rather than to the media c
prising the multilayer systems. In particular, the nonline
properties of each interface are characterized by the non
ear susceptibility tensorx i jk ,n , where the subscriptn refers
to the interface located atzn @see Fig. 2~b!#.

Each nonlinearity tensor can be decomposed into p
x i jk ,n

(o) andx i jk ,n
(e) , which are odd and even in magnetizatio

respectively. The exact form of the tensors, namely, wh
elements are zero or nonzero, can be derived when both
structural microscopic symmetry and the local magnetizat
at each interface are considered. This analysis was t
oughly studied and reported in the literature for various m
croscopic structures,12,13 and the results will be used later o
in a section providing numerical examples.

In summary of this section, in this work we consid
multilayer structures comprised of parallel layers whose
tical properties~i.e., permittivity tensors! are laterally homo-
geneous but whose interfaces are characterized by pos
laterally inhomogeneous nonlinearity tensorsx i jk ,n
[x i jk ,n(x,y). Such situations can be encountered
multilayer structures with magnetic domains, spin wav
etc. Other interesting situations include, for example, la
ally designed arrays of magnetic nanostructures for wh
the above mentioned assumptions~the lateral homogeneity
of the optical properties! are fulfilled, such as arrays of dot
designed e.g. by~i! uniform He ion irradiation through a
mask, which maintains the planarity far below on
nanometer,16 ~ii ! focused Ga ion beam irradiation, where do
are separated by paramagnetic irradiated sharp and qu
netched lines,17,18 or ~iii ! magnetic film deposition on a
weakly patterned substrate.19

D. Decomposition of the fundamental field in a homogeneous
unbound medium

The principle aim of the analysis of the field distributio
across a multilayer structure is to find functionsE(v0)(r) and

-
te
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H(v0)(r) describing the fundamental (v05v) and SH (v0
52v) electric and magnetic fields in the direct (r) space,
respectively. However, due to the properties of the Fou
transform, a satisfactory description, which is in fact mo
advantageous for the description of the SHG experime
described above, is achieved by finding the functio
E(v0)(k(v0)) andH(v0)(k(v0)) describing the electric and
magnetic fields in the Fourier (k) space, respectively. For th
purpose of clarity, the superscriptv0 will be omitted in the
following derivations, unless absolutely necessary. The fi
descriptions in the direct and Fourier spaces, which in
following analysis are called ther space and thek space,
respectively, are related by the inverse Fourier transfo
i.e.,

E~r!5
1

~2p!3

1

~k0
u!3E E E d3kE~k!exp@ ik•r#, ~4!

and similarly forH(r).20 In this equation, the factor (1/k0
u)3

has been formally inserted in order to equalize the units
the fields in ther and k spaces. It can be, in principle, an
constant with units m3, but in this work (1/k0

u)35(c0 /v)3,
wherec0 is the speed of light in vacuum, is opted for. Th
integrand in Eq.~4! represents a plane wave propagating
the direction of the wave vectork. Because we will treat the
electromagnetic field in materials characterized in genera
anisotropic and complex permitivity tensors, all the comp
nents of thek vector are also considered to be genera
complex. As follows from the properties of the generaliz
Fourier transform, Eq.~4! describesanydistribution of elec-
tric field E(r) in an unbound medium, e.g., constant fie
field oscillating at different frequencies, and propagating
different directions, or even fields containing discontinuit
or sungularities of the type of the Diracd function or their
derivatives. Consequently, both near and far fields, and e
the field at the position of the radiating dipole, are includ
in the analysis.

Since the plane waves are eigensolutions of the w
equations which can be derived from the Maxwell equatio
~3!, we will also refer to them as the eigenmodes, or j
modes. In this context,E(k) represents the vector amplitud
of the mode characterized by the direction of propagat
equal tok and will therefore be called thevector modal am-
plitude. It should be noted that bothE(r) andE(k) are as-
sumed to be generally complex three-dimensional~3D! vec-
tors, as a consequence of both a complex representatio
the time dependance21,22and a generally complex form of th
permittivity tensors describing the optical properties of t
involved media.

The general equation~4! can be simplified if the field is
assumed to be monochromatic, i.e., oscillating at a sin
frequencyv0. In this case, the integration over the ent
three-dimensional complexk space is reduced to the integr
tion over a two-dimensional complex areak(v0), wherev0
is a constant. This area is determined by the optical pro
ties of the material in which the field propagates and can
found by solving the Maxwell equations. For example, in
isotropic medium characterized by a scalar dielectric perm
14440
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tivity e, the integration is performed over a complex sphe
of a complex radius k(v0)5Ak(v0)

•k(v0)5Ae(v0 /c0),
where Re(k(v0)).0 is assumed. In a more general case, i
for an anisotropic medium characterized by the permittiv
tensor e i j , the situation is more complicated because
length of the vectork also depends on the direction of thek
vector and the polarization of the propagating light. In a
case, it can be said that due to monochromaticity of the fi
the kx , ky , andkz components of thek vector are related to
each other. Consequently, thekz-component can be ex
pressed as a function of the remainingkx andky components,
angular frequency, and material parameters, i.e.,

kz,p,d[kz,p,d~kx ,ky ,v0 ,e i j !, ~5!

wherekx andky are generally complex. The indexp, which
takes the values 1 or 2, represents the fact that there exis
orthogonally polarized modes whosekz can be, in general
different. Furthermore, the indexd represents thez direction
of the k vector. In this work, we used51 and d52 to
denote modes propagating in the positive@Re(kz).0# and
negative@Re(kz),0# z directions, respectively. In summary
for given values ofkx , ky , andv0, there exist four modes o
the electromagnetic field propagating in the medium char
terized by the permittivity tensore i j . The corresponding
vector modal amplitudes will be denoted asEk,p,d(k), where
the subscriptk indicates that the amplitudes are expressed
the k space.

1. Definition of the q space

As discussed above, the consequence of the monochro
ticity is thatkz is not a free parameter. Thus a particularlight
mode~propagating in a given material and oscillating at
given frequency! is fully described by a two-dimensiona
generally complex vectorq5@kx ,ky#. Such a light mode
consists of four plane waves, each propagating in a direc
given bykp,d5@q,kz,p,d#. Thus, an arbitrary spatial distribu
tion of the monochromatic electric fieldE(r) can be ex-
pressed as an integral over all light modes, each parametr
by a single vectorq[@kx ,ky#, i.e.,

E~r!5
1

~2p!2

1

~k0
u!2E E d2q (

p51,2
(

d56
Eq,n,p,dexp@ iq•r#,

~6!

where r[@x,y#. This equation provides the description
the field in the newly definedq space. The subscriptq in the
vector modal amplitudesEq,n,p,d indicates that these quant
ties are expressed in thisq space.

It is important to realize that these vector amplitudes
pend explicitly on thez coordinate, which is clear from a
direct comparison of Eqs.~4! and ~6!. In this paper we dea
with a multilayer system with interfaces located at positio
zn . Consequently, we have chosen to use the subscriptn in
Eq,n,p,d to denote the vector modal amplitude of the fie
inside thenth layer at the location infinitesimally close to th
nth interface, i.e., at the locationz5zn1e wheree→0, as
depicted in Fig. 3. The only exception is the vector mod
amplitudeEq,0,p,d in the superstrate (n50), which corre-
1-5
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sponds to the field in the superstrate in the vicinity of the fi
interface, as there is no zeroth interface. In the follow
analysis, the Maxwell equations together with the bound
conditions will be treated in theq space, as it matches ex
actly the characteristics of a space in which the field pro
gating across a multilayer system should be considered.

~i! The q space is monochromatic, meaning that it pr
vides a framework for the description of the field oscillati
at one single frequencyv.

~ii ! Theq space comprises a 2D Fourier space, obtaine
a Fourier image of thex-y plane, and a 1D direct space in th
z direction. Hence theq space reflects the fact that the optic
properties of the multilayer system vary only in thez direc-
tion.

~iii ! As follows from the properties of the Fourier tran
form, theq space allows the description ofanyspatial distri-
bution of complexE(r) in a multilayer structure~for mono-
choromatic field!. For example, a field corresponding
plane waves or a field with discontinuities and singularit
can be described. Thus, similarly to thek space, theq space
provides a framework for the description of the field radia
by an electric point dipole in both near and far fields.

~iv! The propagation of a particular light mode is ful
characterized by a single, generally complex vectorq
5@kx ,ky#. To each vectorq corresponds a set of four plan
waves, each characterized by a different value ofkz given by
Eq. ~5!. Amplitudes of these waves are described by fo
generally complex, vector modal amplitudesEq,n,p,d . For
example, as will be shown later~Sec. II D 3 a!, if only one
light mode is present in the multilayer structure~such as in a
case of a light wave entering the multilayer structure a
single angle of incidence!, these four amplitudes are propo
tional to Diracd functions, each of them located in the sam
point of theq space. On the other hand, if the light is prop
gating through the multilayer system in many directio
~such as in a case of the radiation of an electric point dip
as discussed in Sec. II F!, the vector modal amplitudes ar
described by smooth functions in thekx andky coordinates.

~v! It will be shown later that the radiation originatin

FIG. 3. A schematic diagram depicting an oscillating point
pole located inside an infinitesimally thin vacuum layer inserted
the position of thenth interface. Note the position~dark point! of
the vectorAn

(2v)5@En,1,1
(2v) ,En,1,2

(2v) ,En,2,1
(2v) ,En,2,2

(2v) ,#T which is defined
to be located inside thenth layer in the vicinity of thenth interface.
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from an electric point dipole can be in theq space described
by a smooth function@see Eq.~67!#, in contrast to thek
space, where the radiated field is described by a diverg
function.23,24

Since all the quantities will be considered in theq space,
the subscriptq will be often omitted. In the subsequent der
vations, the vector modal amplitudesEn,p,d will be consid-
ered in one of the following forms:

En,p,d[F Ex,n,p,d

Ey,n,p,d

Ez,n,p,d

G[En,p,dên,p,d . ~7!

The quantitiesEn,p,d and ên,p,d , where uên,p,du51, will be
referred to as themodal magnitudeand themodal polariza-
tion, respectively. In this context it is important to distinguis
between the subscriptz, which denotes thez component of
the vector modal amplitude, andn, which corresponds to the
location of theq space atz5zn1e, e→0.

The vector modal amplitudesEn,p,d will often appear as a
sum over either the polarization indexp or the direction in-
dex d, or both. Therefore, it will become useful to introduc
the ‘‘summing index’’S as follows:

En,p,S5 (
d56
En,p,d ,

En,S,d5 (
p51,2
En,p,d , ~8!

En,S,S5 (
d56

(
p51,2
En,p,d .

For example,En,S,S , being the sum of all vector modal am
plitudes, represents the electrical field at positionzn ex-
pressed in theq space, as follows from Eq.~6!. Applying the
properties of the Fourier transform and definition~6!, En,S,S
can be calculated from the field distribution in the dire
space using the equation

En,S,S~q,zn!5~k0
u!2E E d2r E~r,zn!exp@2 i r•q#. ~9!

2. Relation between the q and k spaces in an isotropic medium

As follows from the comparison of Eqs.~4! and ~6!, the
relation between thek andq spaces is obtained by the inte
gration overkz . For a mode in theq space one can write

En,S,S5
1

2p

1

k0
uE dkzEk~k!exp@ ikzzn#. ~10!

As mentioned earlier, the EM field is assumed to be mo
chromatic, i.e., oscillating at a frequencyv0. In the context
of Eq. ~10! this means that the functionEk(k) in thek space
can be written as

Ek~k!5 (
p51,2
Ek,p~k!d~ṽ2v0!v0 . ~11!

t

1-6
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In other words, the vector modal amplitude of the pla
waves is nonzero only for such angular frequenciesṽ (ṽ
denotesall possible frequencies! for which the equationṽ
5v0 is valid. The factorv0 in Eq. ~11! was inserted in orde
to make the units of the vector amplitudes at the left-ha
and right-hand sides equal.

A more suitable form of the relation between the vec
modal amplitudes expressed in thek space and theq space is
obtained when the integration overkz is carried out. We re-
call that during this integration the following relations shou
be carefully considered.

~a! In thek space, the conditionṽ5v0 is fulfilled for four
values ofkz , namely those expressed by Eq.~5!. In the case
of an isotropic medium characterized by a scalar permittiv
en , these four values are reduced to two. In particular,
values of kz,n,p,d are equal for both polarization statesp
51,2, and have opposite signs for the direction indicesd
51 andd52, i.e.,

kz,n,p,656kz,n , ~12!

where

kz,n5Akn
22kx

22ky
2, kn5Aenk0

(v0)
5Aen~v0 /c0!.

~13!

In the general case of an anisotropic medium, the situatio
more complicated, but since we are interested in the rela
between thek andq spaces only in an isotropic medium, th
issue will not be dealt with in detail here.

~b! The termṽ2v0 in the argument of thed function can
be formally rearranged as25

ṽ2v05
ṽ22v0

2

ṽ1v0

5
c0

Aen

k22kn
2

k1kn
5

c0

Aen

kz
22kz,n,p,d

2

k1kn
.

~14!

In this equation,k andkz representall possible values of the
magnitude andz component of thek vector, respectively, and
are related toṽ through expressionsṽ/c05k/Aen and kz

2

5k22kx
22ky

2 . The last step in Eq.~14! is of particular im-

portance as it provides a relation betweenkz and ṽ which
appear in Eqs.~10! and ~11!, respectively.

Considering relations~11! and ~14!, integration~10! can
be performed and the relation between the vector modal
plitudes in theq andk spaces can be written as

En,p,6[Eq,n,p,6

5
1

2p
Aen

k0
(v0)

k0
u

kn

kz,n,p,6
Ek,p~kn,p,6!exp@6 ikz,nzn#,

~15!

where the vectorkn,p,6 is defined as

kn,p,65@kx ,ky ,kz,n,p,6#, ~16!

and itsz componentkz,n,p,6 is given by Eq.~12!. Applying
the same steps as above, similar relations can be found fo
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other field quantities, i.e., forD, H andB, whose equivalents
in the q space are denoted asD, H, andB, respectively.

3. Some useful properties of the q space

In the following sections, we will find a solution to th
Maxwell equations~3! which corresponds to a source takin
the form of an electric point dipole oscillating at an angu
frequencyv052v. Since the point dipole will be describe
by means of the Diracd function, it is necessary to study th
properties of theq space in the broader sense, i.e., in t
sense of distributions~generalized functions!.

From the fundamental properties of the Fourier transfo
it follows that anarbitrary two-dimensional distribution of
the field across thex-y plane located atz5zn , i.e., the func-
tion E(x,y,zn), can be described in theq space by the cor-
responding functionEn,p,d(q). The word ‘‘arbitrary’’ refers
to the fact that even if the field in the direct 2D space co
tains discontinuities or even singularities of the type of t
Dirac d functions or its derivatives, its description in theq
space can always be found. Below, we demonstrate a
examples which will be relevant in the analysis presented
the following sections.

~a! Monochromatic plane wave.A monochromatic plane
wave propagating in the direction of the wave-vectork0
5@kx0 ,ky0 ,kz0# is described in the direct space asE(r)
5E0exp@ikx0x1iky0y1ikz0z#. Inserting this expression into
Eq. ~6!, one can find the following:~i! If kz0.0, i.e.,
kz,n,p,1[kz0, then the vector modal amplitude
in the q space are equal toEn,S,15E0d(q2q0)
(2pk0

u)2exp@ikz0zn# and En,S,250. ~ii ! If kz0,0, i.e.,
kz,n,p,2[kz0, then the vector modal amplitudes are equal
En,S,25E0d(q2q0)(2pk0

u)2exp@ikz0zn# and En,S,150. In
both of these expressions,q05@kx0 ,ky0# was taken.

~b! Field with discontinuities/singularities in the x dimen
sion.A field distribution which contains a discontinuity an
singularities of the type of the Diracd-function and its de-
rivatives in thex dimension can be written as

E~x,y,zn!5DEq~x2x0!1Ed

1

k0
u
d~x2x0!

1E]d

1

~k0
u!2

]

]x
d~x2x0!1•••, ~17!

whereq(x2x0) is the Heaviside step function with a ste
located atx5x0. Consequently, the vector modal amplitud
in the q space can be written as

En,S,S52p
~k0

u!2

ikx
d~ky!exp@2 ikxx0#

3S DE1Ed

ikx

k0
u

1E]dS ikx

k0
u D 2

1••• D , ~18!

as follows from Eq.~6! and the properties of the Fourie
transform. This case could straightforwardly be generaliz
to a case where the discontinuities and singularities
present at more than one point as well as in both thex andy
dimensions.

In Eq. ~18!, the dependence of the vector modal amplitu
En,S,S on z is given by the dependence of the quantitiesDE,
1-7
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Ed , E]d , etc., onz. For every value ofz, the field distribu-
tions which contain discontinuities or singularities in thex
dimension, such as that given by Eq.~17!, are expressed by
continuousfunction in the correspondingkx space. Similar
conclusion can be drawn for the field distributions contain
discontinuities or singularities in they dimension. Since the
integration over thez dimension is not performed in Eq.~6!,
the discontinuities/singularities in thez dimension arecon-
servedduring the transformation between ther space and the
q space, and thus need to be treated separately, as s
below.

~c! Field with a discontinuity/singularity in the z dimen
sion. A field distribution containing a discontinuity and
d-type singularity located at the position of thenth interface,
i.e., atz5zn , can be written as

E~r,z!5$E~r,z!%1DEq~z2zn!1Ed

1

k0
u
d~z2zn!,

~19!

where$E(r,z)% denotes the smooth part of the function a
r[@x,y#. The quantitiesDE and Ed represent the magni
tudes of the discontinuity and singularity, respectively.

If the discontinuity and singularity are constant with r
spect to thex andy coordinates, Eq.~19! can be transformed
into theq space as

En,S,S5$En,S,S%1DE~2pk0
u!2q~z2zn!d~q!

1Ed~2p!2k0
ud~z2zn!d~q!. ~20!

If the discontinuity/singularity is not constant with respect
x andy, the result is formally the same as in Eq.~20! but the
term d(q) is changed accordingly to the variation of th
discontinuity/singularity in thex andy directions.

Comparing Eqs.~19! and ~20!, one can find that the dis
continuity of the field around the planez5zn , i.e.,

E~r,zn1e!2E~r,zn2e!5DE, ~21!

wheree→0, is transformed into theq space as

En1e,S,S2En2e,S,S5~2pk0
u!2DEd~q!, ~22!

where En6e,S,S denotes the vector modal amplitude e
pressed in theq space located atz5zn6e. This equation
implies that the discontinuity of the field distribution acro
z5zn is maintained also in theq space and such a discont
nuity is not affected by the presence of a singularity in thez
dimension located atz5zn in the direct space.

In conclusion, we derived two important properties of t
q space in this section. We showed that discontinuiti
singularities of the field distribution in thex and y dimen-
sions of ther space do not affect the boundary conditio
expressed in theq space, and that the boundary conditions
the q space are not affected by the presence of a singula
of the type of Diracd function or its derivatives in thez
dimension but only by the presence of a field discontinuity
the z direction of the direct space. These properties will
useful in Sec. II F 2 where the boundary conditions in t
presence of a radiating point dipole are derived.
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E. Distribution of the fundamental field
across the multilayer system

Before the SH field generated within the multilayer stru
ture can be found, the fundamental field across the en
multilayer structure has to be evaluated. We assume tha
fundamental field is produced by an outside source in a fo
of a plane electromagnetic wave impinging on the multilay
system in they-z plane at an angleu0

(v) , as shown in Fig.
2~a!. To find the distribution of the field across the multilay
system resulting from such an input condition, the Maxw
equations~3! need to be solved. To do this, we adopt a we
known 434 matrix formalism which has been reported
the literature.26–28

Since the fundamental field is assumed to originate fr
an outside source, the charge and current densities a
fundamental frequency are considered to be identically z
everywhere in the multilayer structure, i.e.,r (v)[0 and
j(v)[0 in Eqs.~3a! and~3d!. Since each layer comprising th
multilayer system is assumed to be homogeneous, the
composition given by Eq.~4! can be carried out separate
for each layer. Furthermore, due to the monochromaticity
the light, the decomposition given by Eq.~6!, where the vec-
tor modal amplitudes in thek andq spaces are related by Eq
~15!, can also be performed separately for each layer.

In the following derivations, normalized wave vectors d
fined asN(v)[k(v)/k0

(v) , wherek0
(v)5v/c0, will be used, as

it is more convenient from the point of view of the formalis
employed. The normalized wave vector in thenth layer will
be denoted byNn

(v)[kn
(v)/k0

(v) . Due to the coordinate system
used, only they and z components of the normalized wav
vector of the fundamental field are nonzero, and will be d
noted byNy,n

(v) andNz,n
(v) , respectively.

1. Wave equation

When the field vectors in the form of Eq.~6! are substi-
tuted into the Maxwell equations~3!, the well-known wave
equation can be derived. In thenth layer characterized by th
permittivity tensore i j ,n

(v) , the wave equation for the electri
field takes the form27

@Ni ,n
(v)Nj ,n

(v)1e i j ,n
(v) #Eq

(v)5~Nn
(v)!2Eq

(v) . ~23!

An equivalent equation can be derived for all other fie
vectors. In this equation,Ni ,n

(v) denotes thei th component of
the normalized wave vectorNn

(v) . The norm of this vector,
which is denoted byNn

(v) , can be calculated from (Nn
(v))2

5(Ny,n
(v))21(Nz,n

(v))2. It is important to notice that the un
knowns in the wave equation~23! are the vector modal am
plitudes expressed in theq space, which is indicated explic
itly by the subscriptq. This subscript will be, however
omitted in the following derivations. The superscript (v)
indicates that Eq.~23! is the wave equation for the funda
mental field.

It should be noted that the form of the wave equation~23!
for the vector modal amplitudeEq expressed in theq space is
the same as the well-known wave equation for the vec
modal amplitudeEk expressed in thek space, as can be
1-8
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found in the literature.21,22,27This is no surprise since thes
two quantities are directly proportional, as derived in S
II D 2, Eq. ~15!.

From the mathematical point of view, Eq.~23! is an
eigenvector-eigenvalue problem that can be solved by me
of linear algebra. A detailed analysis of such a probl
reveals27 that for a given value ofNy,n

(v) ~we recall thatNx,n
(v) is

assumed to be zero! there exist four independent solution
i.e., four different eigenvectorsEn,p,d

(v) and their correspond
ing eigenvalues (Nn,p,d

(v) )2. The two pairs of these solution
are characterized by the opposite values of thez component
of the normalized wave vectorNn,p,d

(v) . This is the reason for
the introduction of the direction indexd56, whered51
andd52 correspond to the light propagating in the positi
(Nz,n,p,1

(v) .0) and negative (Nz,n,p,2
(v) ,0) z directions, re-

spectively. Furthermore, the two eigenvectors correspond
to a given pair characterized by the same value ofd are
orthogonal, i.e., corresponding to two orthogonal polari
tion states of the field. This is the reason for the introduct
of the polarization indexp.

When the form of the permittivity tensore i j ,n
(v) is general,

the solution of the wave equation~23! leads to finding the
roots of the fourth degree polynomial. In this case, an a
lytical solution is very complicated and thus the solution
determined numerically. For the purpose of clarity in t
subsequent derivations, we maintain thep andd indices and
denote the eigenvectors asEn,p,d

(v) and the corresponding e
genvalues as (Nn,p,d

(v) )2.

2. Field distribution across thenth layer

As follows from Eq.~6!, the field in ther space within
any layer of the multilayer system can be expressed as a
~integral! of modes in theq space. However, we will look in
more detail at one single mode characterized by a partic
value of q. To be more precise, due to the normalizati
introduced above and the choice of the coordinate sys
(Nx,n

(v)50), we will deal in the following analysis with a
mode characterized by a particular value ofNy,n

(v) , i.e., q
5k0

(v)@0,Ny,n
(v)#.

The electric field in thenth layer corresponding to such
mode can be written as

En
(v)~y,z!5 (

p51,2
(

d56
En,p,d

(v) ên,p,d
(v)

3exp@ ik0
(v)~Ny,n

(v)y1Nz,n,p,d
(v) ~z2zn!!#,

~24!
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where Nz,n,p,d
(v) 5A(Nn,p,d

(v) )22(Ny,n
(v))2, and (Nn,p,d

(v) )2 is the
eigenvalue corresponding to the eigenvectorEn,p,d

(v) , as men-
tioned earlier. In order to describe the field distribution in t
superstrate~layer n50) correctly,z05z1 has to be consid-
ered in Eq.~24!.

The expression for the magnetic field in thenth layer can
be derived from the Maxwell equation~3b! using the expres-
sion ~24! for the electric field. After some simple algebra
manipulation, one arrives at the formula

Hn
(v)~y,z!5 (

p51,2
(

d56
Hn,p,d

(v) ĥn,p,d
(v)

3exp@ ik0
(v)~Ny,n

(v)y1Nz,n,p,d
(v) ~z2zn!!#,

~25!

where Hn,p,d
(v) 5(Nn,p,d

(v) /h0)En,p,d
(v) and ĥn,p,d

(v) 5(Nn,p,d
(v)

3ên,p,d
(v) )/Nn,p,d

(v) , in which h05Am0 /e0 is the vacuum im-
pedance.

3. Boundary conditions and the matrix formalism

To obtain the profile of the fundamental EM field throug
out the entire multilayer structure, the boundary conditio
have to be applied. They can be derived from the Maxw
equations ~3!, as shown in the textbooks o
electromagnetism.21,22,29 In the absence of surface charg
and currents, the boundary conditions require that the
gential ~i.e., x and y) components of the electric and ma
netic fields be continuous at each interface. When exp
sions~24! and ~25! are considered, the boundary conditio
at the (n11)th interface can be written in a compact matr
form as26,27,30

Dn
(v)Pn

(v)An
(v)5F Ex,n112e

(v)

h0Hy,n112e
(v)

Ey,n112e
(v)

h0Hx,n112e
(v)

G5F Ex,n111e
(v)

h0Hy,n111e
(v)

Ey,n111e
(v)

h0Hx,n111e
(v)

G
5Dn11

(v) An11
(v) , n51, . . . ,M11, ~26!

whereh05Am0 /e0 is the vacuum impedance. The quantiti
Ea,n116e andHa,n116e , wherea5x,y ande→0, are thex
and y components of the electric and magnetic fields j
under ~subscriptn111e) and above~subscriptn112e)
the (n11)th interface. The matricesDn

(v) and Pn
(v) are, re-

spectively, the dynamic and propagation matrices given
Dn
(v)5S ên,1,1

(v)
• x̂ ên,1,2

(v)
• x̂ ên,2,1

(v)
• x̂ ên,2,2

(v)
• x̂

Nn,1,1
(v) ĥn,1,1

(v)
• ŷ Nn,1,2

(v) ĥn,1,2
(v)

• ŷ Nn,2,1
(v) ĥn,2,1

(v)
• ŷ Nn,2,2

(v) ĥn,2,2
(v)

• ŷ

ên,1,1
(v)

• ŷ ên,1,2
(v)

• ŷ ên,2,1
(v)

• ŷ ên,2,2
(v)

• ŷ

Nn,1,1
(v) ĥn,1,1

(v)
• x̂ Nn,1,2

(v) ĥn,1,2
(v)

• x̂ Nn,2,1
(v) ĥn,2,2

(v)
• x̂ Nn,2,2

(v) ĥn,2,2
(v)

• x̂
D ~27!

and
1-9



JAROSLAV HAMRLE, L’UBOŠ POLERECKÝ, AND JACQUES FERRE´ PHYSICAL REVIEW B 68, 144401 ~2003!
Pn
(v)5S exp@ ik0

(v)Nz,n,1,1
(v) tn# 0 0 0

0 exp@ ik0
(v)Nz,n,1,2

(v) tn# 0 0

0 0 exp@ ik0
(v)Nz,n,2,1

(v) tn# 0

0 0 0 exp@ ik0
(v)Nz,n,2,2

(v) tn#

D . ~28!
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The vectorAn
(v) in Eq. ~26! is defined using the modal mag

nitudesEn,p,d
(v) as

An
(v)[@En,1,1

(v) ,En,1,2
(v) ,En,2,1

(v) ,En,2,2
(v) #T, ~29!

wherexT denotes the transposition of the vectorx. It denotes
the vector of the modal magnitudes inside thenth layer in the
vicinity of the nth interface, as depicted in Fig. 3.

In the derivation of Eq.~26!, the relationNy,0
(v)5Ny,1

(v)

5•••5Ny,M11
(v) was considered. This corresponds to t

well-known Snell’s law on the conservation of the tangen
component of the wave vector across the multilayer str
ture. Because of this relation, allNy,n

(v)’s will be denoted by a
single variableNy

(v) . This step is important since it binds th
modes of the different layers of the multilayer structure in
a single mode of theentire multilayer system, which is pa
rametrized by a single parameterNy

(v) .
As mentioned above, the wave equation~23! has four

solutions which cannot be, in general, expressed in a sim
analytical way. However, for an isotropic nonmagnetic m
dium characterized by a permittivity tensor in a diagon
form e i j ,n

(v) [en
(v)d i j , whered i j is the Kroneckerd symbol,

the solutions can be found easily. One possible set of s
tions corresponds to two pairs ofs- ~TE! andp- ~TM! polar-
ized modes, one propagating in the positive and the othe
the negativez directions. Due to this interpretation, the inde
p denoting the polarization state of the modes can be con
ered to take valuesp5s,p, as opposed top51,2 considered
in the previous, more general case. The magnitude of
d

G
th
i

14440
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normalized wave vector is equal toNn,p,d5Nn
(v)5Aen

(v) for
all combinations of indicesp andd, and the correspondingz
component is evaluated as

Nz,n,s,6
(v) 5Nz,n,p,6

(v) 5Nz,n,6
(v) [6Nz,n

(v)[6Aen
(v)2~Ny

(v)!2

~30!

for the modes propagating in the positive (1) and negative
(2) z directions.

The vector modal amplitudes can be written in the for

En,s,6
(v) 5En,s,6

(v) ên,s,6
(v) , En,p,6

(v) 5En,p,6
(v) ên,p,6

(v) , ~31!

where the respective unity vectors characterizing thes andp
polarization directions are given by

ên,s,6
(v) 5@1,0,0#,

ên,p,6
(v) 5@0,Nz,n,6

(v) ,2Ny
(v)#/Nn

(v) . ~32!

Combining Eqs.~31! and~32!, the dynamic and propagatio
matrices~27! and~28! for the isotropic nonmagnetic medium
can be written as

Dn
(v)5S 1 1 0 0

Nz,n,1
(v) Nz,n,2

(v) 0 0

0 0 Nz,n,1
(v) /Nn

(v) Nz,n,2
(v) /Nn

(v)

0 0 2Nn
(v) 2Nn

(v)

D ,

~33!

and
Pn
(v)5S exp@ ik0

(v)Nz,n,1
(v) tn# 0 0 0

0 exp@ ik0
(v)Nz,n,2

(v) tn# 0 0

0 0 exp@ ik0
(v)Nz,n,1

(v) tn# 0

0 0 0 exp@ ik0
(v)Nz,n,2

(v) tn#

D . ~34!
con-
tly,

ple
f
be
Furthermore, the vectorAn
(v) , whose general form is define

in Eq. ~29!, can be written as

An
(v)[@En,s,1

(v) ,En,s,2
(v) ,En,p,1

(v) ,En,p,2
(v) #T. ~35!

As mentioned earlier, a typical configuration of the SH
experiments involves a fundamental beam interrogating
multilayer system, and the SHG field which is observed
e
n

either the superstrate or the substrate@see Fig. 2~a!#. In the
majority of cases, both the superstrate and the substrate
sist of isotropic and nonmagnetic materials. Consequen
the field in those media can be decomposed into thes- and
p-polarized modes.

Typically, the fundamental beam impinges on the sam
at a defined incident angleu0

(v) . This determines the value o
Ny

(v) , which is conserved across the multilayer system, to
1-10
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given by

Ny
(v)5Ae0

(v) sinu0
(v)5AeM11

(v) sinuM11
(v) . ~36!

Furthermore,E0,s,1
(v) andE0,p,1

(v) , representing the magnitude
of the s- andp-polarized components of the incident bea
can be considered as given parameters.

To derive the expression relating the modal amplitudes
the field in the substrate and thenth layer, one has to recur
sively apply Eq.~26!. This procedure results in the expre
sion

A0
(v)5Ln

(v)An
(v) , ~37!

where the matrixLn
(v) can be calculated from the definition

Ln
(v)[@D0

(v)#21D1
(v)@P1

(v)#21
•••Dn21

(v) @Pn21
(v) #21

3@Dn21
(v) #21Dn

(v) . ~38!

In this definition, L0
(v)[1 is considered. The relation be

tween the modal amplitudes of the field in the superstr
and substrate can subsequently be written as

A0
(v)5LM11

(v) AM11
(v) . ~39!

Due to the fact that there is no light incident from th
substrate side of the sample@see Fig. 2~a!#, the modal mag-
nitudesEM11,s,2

(v) andEM11,p,2
(v) are identically equal to zero

Consequently, the modal amplitudes of the transmitted fi
EM11,s,1

(v) and EM11,p,1
(v) can be calculated from Eq.~39!, in

whichA0
(v) is given by Eq.~35! with n50. Subsequently, the

vectorAM11
(v) is evaluated as

AM11
(v) 5@EM11,s,1

(v) ,0,EM11,p,1
(v) ,0#T. ~40!

After some simple algebraic manipulations, one can de
the expression between the transmitted and incident fi
magnitudes in the explicit form

FEM11,s,1
(v)

EM11,p,1
(v) G5S L11,M11

(v) L13,M11
(v)

L31,M11
(v) L33,M11

(v) D 21FE0,s,1
(v)

E0,p,1
(v) G . ~41!

Having calculated the components of the vectorAM11
(v) from

Eq. ~41!, one can evaluate the magnitudesEn,p,d
(v) for each of

the layersn51, . . . ,M by simply substituting the corre
spondingAn

(v) defined in Eq.~29! into Eqs. ~37! and ~39!,
i.e., from the expression

An
(v)5~Ln

(v)!21LM11
(v) AM11

(v) . ~42!

In the following section, the fundamental fieldat the layer
interface will be required for the calculation of the poi
dipole. To derive explicit formulas for the field at thenth
interface, we use expression~24!. For the particular value o
Ny

(v) , the components of the vectorsên,p,d
(v) are calculated

from the wave equation~23!, and the magnitudesEn,p,d
(v)

forming the vectorAn
(v) are evaluated from Eq.~42!.

In the process of evaluation of the field at the layer int
face, thex andy components of the fundamental field do n
impose any problem as they are continuous across the i
14440
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face. On the other hand, the problem arises as to which v
of the field’sz component should be used, since thez com-
ponent is not continuous across the layer interface. In p
ciple, there has been two approaches to this problem use
the literature.1,31,32In one of them, the value of thez compo-
nent of the field at the interface is taken as the average of
values immediately below and above the interface. Empl
ing the formalism developed above, this approach lead
the expression for the total field at thenth interface corre-
sponding to the mode characterized byNy

(v) in the form

En, int
(v) ~y,zn![

1

2
@En2e

(v) ~y,zn2e!1En1e
(v) ~y,zn1e!#

5
1

2 (
p51,2

(
d56

~En21,p,d
(v) ên21,p,d

(v)

3exp@ ik0
(v)Nz,n21,p,d

(v) tn21#

1En,p,d
(v) ên,p,d

(v) !exp@ ik0
~v!Ny

(v)y#, ~43!

where the subscriptsn1e andn2e correspond to the elec
tric field expressed just under and above thenth interface,
respectively.

In the other approach, an infinitesimally thin vacuu
layer is inserted in place of the interface and thez component
of the field at the interface is taken simply as thez compo-
nent of the field in this vacuum layer. Using this approa
the total field at thenth interface corresponding to the mod
characterized byNy

(v) , can be written as

En, int
(v) ~y,zn!5 (

p5s,p
(

d56
~Evac,n,p,d

(v) êvac,p,d
(v) !exp@ ik0

(v)Ny
(v)y#.

~44!

The magnitudes Evac,n,p,d
(v) comprise the vectorAvac,n

(v)

[@Evac,n,s,1
(v) ,Evac,n,s,2

(v) ,Evac,n,p,1
(v) ,Evac,n,p,2

(v) #T which can be
obtained from

Avac,n
(v) 5@Dvac

(v)#21Dn
(v)An

(v) . ~45!

In this expression, the matrixDvac
(v) is given by Eq.~33!, in

which substitutionsNvac
(v)51 and Nz,vac,6

(v) 56A12(Ny
(v))2

are applied. The components of the vectorsêvac,p,d
(v) are cal-

culated from Eq.~32! where the same substitutions are a
plied. The matrix product preceding the vectorAn

(v) in Eq.
~45! represents the transmission of the field from thenth
layer to the vacuum layer inserted in place of thenth inter-
face.

In summary of this section, we derived explicit formula
for the fundamental electric field at each interface of t
multilayer system. The field can be expressed as a sum o
plane electromagnetic waves~modes!, each characterized b
Ny

(v) . For a particular mode, i.e., for a given value ofNy
(v) ,

the field at thenth interface~i.e., atz5zn) can be formally
written as

En, int
(v) ~y,zn![Ẽn, int

(v) ~Ny
(v)!exp@ ik0

(v)Ny
(v)y#, ~46!
1-11
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as follows from expressions~43! and ~44!. In this equation,
Ẽn, int

(v) (Ny
(v)) denotes the vectoramplitudeof the fundamental

field at thenth interface aty50, while the exponential term
determines the distribution of thephaseat the interface. The
amplitude is defined either in Eq.~43! or ~44!, depending on
which approach to the choice of the field’sz component is
opted for.

In the numerical calculations, we use the approach ba
on Eq.~43! to calculate the electric field at the interface. Th
is because the profile of the permittivity tensore in real
structures is not steplike~as in an idealized stratified struc
ture!, but is continuous across the interface. As a con
quence, the electrical field across the interface is continu
as well and thus the fieldat the interface can be assumed
be an average of the values immediately above and be
the interface. On the other hand, using the second appr
together with the renormalization of some tensor eleme
x i jk ,n would lead to the same point dipole amplitudemn

(2v)

and thus to the same radiated intensity. In this sense, th
fore, the two approaches are interchangeable.

F. Second-harmonic field generated by a single point dipole

As mentioned in the introductory section, the SH field
assumed to be generatedat the interfaces of the layers com
prising the multilayer system, as a consequence of mic
scopic symmetry breaking. In the context of the formalis
employed in this paper this means that the point elec
dipoles, which act as sources of the SH field, are assume
be located at the layer interfaces.

Before we can proceed with some general distribution
point dipoles across the interfaces, it is necessary to desc
the SH radiation produced by asingle point dipole. This is
done using the following assumptions.

~i! An infinitesimally thin layer of isotropic and lossles
dielectric material characterized by scalar permittivityēn

(v0)

is inserted in place of the dipole location, i.e., at thenth
interface, and the location of the oscillating dipole is ke
inside this layer, as shown in Fig. 3. The value ofēn

(v0) is
unknown, however, we will assume that the layer is co
prised of vacuum, i.e.,ēn

(v0)
51.1,33 The choice of this spe

cific value does not prevent the calculations to be gene
This can be understood by realizing that the relation betw
the fundamental and radiated~SH! fields, which is affected
by the value ofēn

(v0) , also depends on the values of th
nonlinear susceptibility tensorxn . Hence, the same relation
ship between the fundamental and radiated~SH! fields can be
obtained for any value ofēn

(v0) by renormalizing the ele-
ments of the tensorxn .33

~ii ! The radiating dipole, namely, its complex vector a
plitude and the frequency of oscillations, is not affected
the radiation generated by this dipole or by the radiat
generated by any other of the radiating dipoles. In ot
words, we assume that Eq.~2! is valid independently for
every dipole located at any position on the interface, with
vector of the electric field being expressed at the dip
position.
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Assumption~i! allows us to dealseparatelywith the two
main problems imposed by the presence of the point dip
at the interface. In particular, it allows us to deal first wi
the influence of the point dipole on the boundary conditio
at the dipole location inside the ultrathin layer, i.e., at t
location with no interface, and then to analyze the bound
conditions at the interfaces between the ultrathin layer
the layers surrounding the dipole. These steps will effectiv
lead to a description of radiation produced by a dipole
cated at an interface. Assumption~ii ! allows us to directly
combine the fields produced by each individual dipole a
evaluate the grand total SH field produced by the en
multilayer structure.

1. Definition of the source of the SH field

As mentioned above, the SH field is assumed to be g
erated by a point electric dipole oscillating at frequency 2v.
To enable the use of some previously mentioned equati
we denote this frequency asv0, keeping in mind thatv0
52v whenever it appears in the context of the SH field. T
dipole is assumed to be located atrn5@xn ,yn ,zn#, which
will later on correspond to a location at thenth interface.

In Maxwell equations~3!, it is the current densityj(v0)

and the charge densityr (v0) that act as the source of the EM
field. The current density is obtained as the time deri
tive of the electric dipole densitym(r,t)5mn

(v0)d(r
2rn)exp@2iv0t# and can be written asj(r,t)[]m(r,t)/]t
5 j(v0)exp@2iv0t#, where21,22

j(v0)52 iv0mn
(v0)d~r2rn!. ~47!

In this equation, the complex amplitudemn
(v0) of the dipole is

given by Eq.~2!, where the fundamental field is calculate
from Eq. ~46!.

With regard to the charge densityr (v0), we assume for a
moment that the point dipole is parallel to thez axis and is
not oscillating. Such a dipole consists of a positive and
negative point charge, denoted asQ and 2Q, located atz
5zn2e andz5zn1e, respectively. The charge density co
responding to such a charge constellation can be form
expressed as

r5Qd~x2xn!d~y2yn! lim
e→0

@d„z2~zn2e!…

2d„z2~zn1e!…#. ~48!

Since the dipole strength is equal tomz52Qe, a simple
modification of Eq.~48! leads to the expression

r52mzd~x2xn!d~y2yn!
]

]z
d~z2zn!. ~49!

Considering a general orientation of the point dipole and
fact that it oscillates, the above expression for the cha
density can be generalized tor(r,t)5r (v0)exp@2iv0t#,
where

r (v0)52mn
(v0)

•¹d~r2rn!. ~50!

In this equation,¹d denotes the gradient of thed function.
1-12
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2. Boundary conditions in the presence
of an electric point dipole

In this section, we analyze the influence of an oscillat
dipole on the normal and transversal components of the fi
vectors. Although a similar analysis was reported in
literature34, it cannot directly be used here since the auth
dealt with the conditions around a homogeneous and in
tesimally thin polarizationsheetrather than a point dipole
Nevertheless, the formalism developed there can adva
geously be applied in our analysis.

Initially, we carry out the analysis in ther space. The
expressions will subsequently be transformed into theq
space where they can be directly incorporated into the ma
formalism describing the propagation of light in th
multilayer structure.

Let us consider a functionf which contains discontinuities
and singularities of the type of the Diracd function or its
derivatives at a location generally denoted asxi ,n , wherex1 ,
x2, andx3 correspond tox, y, andz coordinates, respectively
Such a function can be written in the form

f ~xi !5$ f %1D f q~xi2xi ,n!1 f d

1

k0
u
d~xi2xi ,n!1•••.

~51!

Employing a well-known treatment of such a function,34,35

its derivative can be written as

] f

]xi
5H ] f

]xi
J 1@ f ~xi ,n1e!2 f ~xi ,n2e!#d~xi2xi ,n!

1 f d

1

k0
u

]

]xi
d~xi2xi ,n!1•••, ~52!

where$] f /]xi% denotes the derivative of the function almo
everywhere andf (xi ,n6e) is the value of the function atxi

5xi ,n6e, e→0. The factor 1/k0
u in Eqs. ~51! and ~52! was

added in order to ensure thatf (x) and f d have the same
units.

In the context of the following analysis, the functionf can
be any of the components of the field vectors. Equation~52!
has an important implication: Since the sources of the
field in the Maxwell equations~3! contain singularities of the
type of the Diracd function and its derivatives, as shown
Eqs. ~47! and ~50!, the field vectors must contain discont
nuities as well as singularities of the same type.

In the following derivations, we add an overbar above
variables which are related to the electromagnetic waves
side the thin sheet placed at thenth interface, e.g.,ēn

(v0) ,

N̄n
(v0) , ê̄n,s,6

(v0) , ê̄n,p,6
(v0) , D̄, D̄, etc., in order to distinguish

between the variables inside the thin sheet located at thenth
interface and those inside thenth layer.

~a! Boundary conditions forD̄. Considering the expres
sion ~50! for the charge density, the Maxwell equation~3a!
can be expressed as36
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¹•D̄5$¹•D̄%1F̄D~x2xn ,y2yn!1~D̄z,n1e2D̄z,n2e!

3d~z2zn!1D̄z,d

1

k0
u

]

]z
d~z2zn!1ḠD~z2zn!

52mn
(v0)

•¹d~r2rn!, ~53!

whereḠD(z2zn) containes higher order terms proportion
to ]nd(z2zn)/]zn, n.1, which are not explicitly spelled
out. In this equation,F̄D(x2xn ,y2yn) denotes the terms
containing the discontinuities and singularities of the type
the Diracd function and its derivatives in thex andy dimen-
sions located at the point dipole position, i.e., atr5rn . Since
these terms do not contribute to the boundary conditions
the q space, as already discussed in Sec. II D 3, the exp
form of this function can be omitted in the following calcu
lations.

Comparing the terms with the same order of the deri
tives of d(z2zn), the boundary conditions for the vectorD̄
in the r space can be written as

$¹•D̄%50,

D̄z,n1e2D̄z,n2e52mx,n
(v0)d~y2yn!

]d~x2xn!

]x

2my,n
(v0)d~x2xn!

]d~y2yn!

]y
, ~54!

D̄z,d52mz,n
(v0)k0

ud~x2xn!d~y2yn!.

The first equation implies the continuity of the normal com
ponent of the vectorD̄ everywhere except at the location o
the point dipole.21,22 This is equivalent to the well-known
boundary condition for the medium containing no fr
charges. The influence of the point dipole is described by
second and third equations. In particular, the discontinuity
the z component of the fieldD̄ at the location of the point
dipole is determined by the right-hand side of the seco
equation. Furthermore, thez component of the vectorD̄ con-
tains a singularity which is expressed by the right-hand s
of the third equation.

The form of the boundary conditions~54! in the r space is
not very convenient for further mathematical treatment d
to the presence of thed function and its derivative. On the
other hand, the boundary conditions can be elegantly
pressed in theq space. In particular, using the properties
theq space discussed in Sec. II D 3@see Eqs.~17! and~18!#,
the second equation in Eq.~54! can be written as

DD̄z,n,S,S[D̄z,n1e,S,S2D̄z,n2e,S,S

5~2 imx,n
(v0)kx2 imy,n

(v0)ky!~k0
u!2exp@2 iq•rn#,

~55!

where the vectorrn has been defined asrn5@xn ,yn#. This
equation provides an explicit expression for the magnitude
the discontinuity of thez component of the vectorD̄n,S,S .
1-13
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The third equation in Eq.~54! implies that, in addition to
the discontinuity atz5zn , the z component of the vectorD̄
contains also a singularity that can be written as

D̄d52mz,n
(v0)d~r2rn!ẑ. ~56!

However, as mentioned in the discussion after Eq.~22!, such
a singularity does not affect boundary condition~55!. On the
other hand, this singularity will affect the boundary cond
tions for the fieldsĒ andH̄, as will be shown below.

~b! Boundary conditions forB̄. The boundary condition
for the vectorB̄ can be derived from the Maxwell equatio
~3c! using an equivalent procedure as for the vectorD̄. In the
r space, the condition can be written as

B̄z,n1e2B̄z,n2e50. ~57!

In the q space, the boundary condition takes the form

DB̄z,n,S,S[B̄z,n1e,S,S2B̄z,n2e,S,S50. ~58!

This expression means that thez component of the vectorB̄
is continuous around the position of the point dipole.

~c! Boundary conditions forH̄. The boundary conditions
for the field vectorH̄ can be derived from the Maxwell equa
tion ~3d!, where the current density is given by Eq.~47!.
Assuming that the field distribution contains discontinuit
and singularities of the type of the Diracd function and its
derivatives, the left-hand side of Eq.~3d! can be expressed a

¹3H̄5$¹3H̄%1F̄H~x2xn ,y2yn!1F d~x2xn!

d~y2yn!

d~z2zn!
G

3~H̄n1e2H̄n2e!1ḠH~z2zn! , ~59!

whereḠH(z2zn) containes higher order terms proportion
to ]nd(z2zn)/]zn, n>1, which are not explicitly spelled
out. In this equation,F̄H(x2xn ,y2yn) denotes the terms
containing the discontinuities and singularities of the type
the Diracd function and its derivatives in thex andy dimen-
sions located at the point dipole position, i.e., atr5rn . Since
these terms do not contribute to the boundary condition
the q space, as already discussed in Sec. II D 3, the exp
form of this function can be omitted in the following calcu
lations.

In the evaluation of the right-hand side of Eq.~3d!, the
singularity of thez component of the vectorD̄ given in Eq.
~56! has to be taken into account. Comparing the terms w
the same order of the derivatives ofd(z2zn), the boundary
conditions for the vectorH̄ in the r space can be written a

$¹3H̄%52 iv0$D̄%,

H̄x,n1e2H̄x,n2e52 iv0my,n
(v0)d~x2xn!d~y2yn!, ~60!

H̄y,n1e2H̄y,n2e5 iv0mx,n
(v0)d~x2xn!d~y2yn!.
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The first equation implies the continuity of the tangent

components of the vectorH̄ everywhere except at the loca
tion of the point dipole.21,22 This is equivalent to the well-
known boundary condition for the medium containing
free charge currents. The influence of the point dipole
described by the second and third equations. In particular,

discontinuities of thex and y components of the fieldH̄ at
the location of the point dipole are determined by the rig
hand sides of the second and third equations, respectiv
Due to the fact that the right-hand side of Eq.~3d! does not
contain terms proportional to]nd(z2zn)/]zn, where n

51,2, . . . , thefield vectorH̄ does not contain any singular
ties of the type of the Diracd function or its derivatives at
the position of the oscillating point dipole.

When boundary conditions~60! are expressed in theq
space, the following equations are found:

DH̄x,n,S,S[H̄x,n1e,S,S2H̄x,n2e,S,S

52 iv0my,n
(v0)

~k0
u!2exp@2 iq•rn#,

DH̄y,n,S,S[H̄y,n1e,S,S2H̄y,n2e,S,S

5 iv0mx,n
(v0)

~k0
u!2exp@2 iq•rn#. ~61!

These equations provide explicit expressions for the ma
tudes of the discontinuities of thex andy components of the
vectorH̄n,S,S .

~d! Boundary conditions forĒ. The boundary condition
for the vectorĒ can be derived from the Maxwell equatio
~3b!. However, before the equations are explicitly writte
the following comments need to be made. Even though
treatment of the point dipole is done in the microscopic lev
the medium surrounding the dipole is considered in the m
roscopic level, i.e., described by the dielectric permittiv
ēn

(v0) and the magnetic permeability is in this work assum
to be equal to the vacuum permeabilitym0. This means that
the relations between the pairs of the electric and magn
field vectors take the formsD̄5e0ēn

(v0)Ē and B̄5m0H̄, re-
spectively. These equations are valideverywhere, i.e., even at
the location of the point dipole. The former relation implie
that the vectorĒ contains a singularity. Since the vectorĒ
can be written asĒ5$Ē%1DĒq(z2zn)1Ēd(k0

u)21d(z

2zn)1•••, as mentioned in Eq.~51!, the singularitiesĒd

andD̄d are related by equalityĒd5D̄d /(e0ēn
(v0)), whereD̄d

is given by Eq.~56!. The latter equation implies that sinc
the vectorH̄ contains no singularities at the dipole positio
the vectorB̄ does not contain any either.

When the above equations are taken into account and
stituted into the Maxwell equation~3b!, the comparison of
the terms with the same order of the derivatives ofd(z
2zn) leads to the following set of equations:
1-14
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$¹3Ē%5 iv0$B̄%,

Ēx,n1e2Ēx,n2e52
1

e0ēn
(v0) mz,n

(v0)d~x2xn!
]

]y
d~y2yn!,

Ēy,n1e2Ēy,n2e52
1

e0ēn
(v0) mz,n

(v0)d~y2yn!
]

]x
d~x2xn!.

~62!

In the calculations leading to these equations, the identit

¹3d~r2rn!ẑ5F ]

]y
d~r2rn!,2

]

]x
d~r2rn!,0G

was used. Furthermore, the terms containing the disconti
ties and singularities of the type of the Diracd function in
the x andy dimensions were omitted since they do not co
tribute to the boundary conditions, as discussed in S
II D 3.

The first equation in Eq.~62! implies the continuity of the
tangential components of the vectorĒ everywhere except a
the location of the point dipole. This is equivalent to t
well-known boundary condition for the medium containin
no free charge currents. The influence of the point dipole
described by the second and third equations. In particular
discontinuities of thex andy components of the fieldĒ at the
location of the point dipole are determined by the right-ha
sides of the second and third equations, respectively.

When boundary conditions~62! are expressed in theq
space, the following equations are found:
14440
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D Ēx,n,S,S[ Ēx,n1e,S,S2 Ēx,n2e,S,S

52 ikx

~k0
u!2

e0ēn
(v0) mz,n

(v0)exp@2 iq•rn#,

D Ēy,n,S,S[ Ēy,n1e,S,S2 Ēy,n2e,S,S

52 iky

~k0
u!2

e0ēn
(v0) mz,n

(v0)exp@2 iq•rn#. ~63!

These equations provide explicit expressions for the ma
tudes of the discontinuities of thex andy components of the
vector Ēn,S,S at the location of the oscillating dipole.

3. Matrix representation of the boundary conditions
in the q space

As mentioned earlier, equationsD̄5e0ēn
(v0)Ē and B̄

5m0H̄ are valid everywhere in the medium characterized
the macroscopic permittivityēn

(v0) . Using the latter equation
and the Maxwell equation~3b!, one can derive a relation
between the vector modal amplitudesĒn,S,d andH̄n,S,d in
the form N̄n,p,d3Ēn,S,d5h0Hn,S,d . In an isotropic me-
dium, which is considered here, the wave vectorsN̄n,p,d are
equivalent for both polarization statesp51,2, as follows
from Eq.~30!. Consequently, the boundary conditions for t
field vectorsĒ andH̄ expressed in theq space can be writ-
ten in a compact matrix form37
e point

es with
r.
3
D Ēx,n,S,S

h0DH̄y,n,S,S

h0DH̄z,n,S,S

h0DH̄x,n,S,S

D Ēy,n,S,S

D Ēz,n,S,S

4 53
1 1 0 0 0 0

N̄z,n,1
(v0) N̄z,n,2

(v0) 0 0 2Nx
(v0)

2Nx
(v0)

2Ny
(v0)

2Ny
(v0) Nx

(v0) Nx
(v0) 0 0

0 0 2N̄z,n,1
(v0)

2N̄z,n,2
(v0) Ny

(v0) Ny
(v0)

0 0 1 1 0 0

0 0 0 0 1 1

4 3
D Ēx,n,S,1

D Ēx,n,S,2

D Ēy,n,S,1

D Ēy,n,S,2

D Ēz,n,S,1

D Ēz,n,S,2

4
5

2 ik0
(v0)

~k0
u!2

ēn
(v0)e0

exp@2 iq•rn#3
Nx

(v0)mz,n
(v0)

2mx,n
(v0)ēn

(v0)

0

my,n
(v0)ēn

(v0)

Ny
(v0)mz,n

(v0)

Nx
(v0)mx,n

(v0)
1Ny

(v0)my,n
(v0)

4 , ~64!

whereD Ēx,n,S,6[ Ēx,n1e,S,62 Ēx,n2e,S,6 , and similarly for they and z components. Equation~64! provides an important
result: it shows explicitly the relation between the discontinuities of the vector modal amplitudes at the location of th
dipole, i.e., atr5rn , and the strength of the point dipolemn

(v0) for a mode characterized by the vectorq5k0
(v0)

@Nx ,Ny#.
The 636 matrix in Eq.~64! is singular and thus the equation cannot be solved in the form as it stands now. This agre

the fact that thex, y, andz components of the vectorsĒn,S,6 , and thus the vectorsDĒn,S,6 , are not independent of each othe
1-15
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In particular, if we consider thes- andp-polarized modes with the corresponding magnitudesĒn,s,6
(v0) andĒn,p,6

(v0) and assume tha

the x component of the normalized wave vectorN̄n,6
(v0) is equal to zero, then they and z components of the vector moda

amplitudesĒn,p,6 are not independent but related asĒy,n,p,6
(v0) / Ēz,n,p,6

(v0)
52(N̄z,n,6

(v0) /N̄y,n
(v0)), as follows from Eqs.~30!–~32!

wherev is substituted byv052v. Considering this relation and removing all linearly dependent columns and rows o
636 matrix in Eq.~64!, the boundary conditions can be written as

F D Ēx,n,S,S

h0DH̄y,n,S,S

D Ēy,n,S,S

h0DH̄x,n,S,S

G 5F 1 1 0 0

N̄z,n,1
(v0) N̄z,n,2

(v0) 0 0

0 0 N̄z,n,1
(v0) /N̄n

(v0) N̄z,n,2
(v0) /N̄n

(v0)

0 0 2N̄n
(v0)

2N̄n
(v0)

G F D Ēn,s,1

D Ēn,s,2

D Ēn,p,1

D Ēn,p,2

G
5

2 ik0
(v0)

~k0
u!2

ēn
(v0)e0

exp@2 iq•rn#F 0

2 ēn
(v0)mx,n

(v0)

ēn
(v0)my,n

(v0)

Ny
(v0)mz,n

(v0)

G . ~65!

This equation can already be solved since the 434 matrix is regular. This matrix is the dynamic matrixD̄n
(v0) defined in Eq.

~33! which binds the modal magnitudes with the tangential components of the electrical and magnetic field. Taki
account thatN̄z,n,1

(v0)
52N̄z,n,2

(v0)
5N̄z,n

(v0) , as shown in Eq.~30!, the result is

DĀn
(v0)

[F D Ēn,s,1

D Ēn,s,2

D Ēn,p,1

D Ēn,p,2

G5
2 ik0

(v0)
~k0

u!2

2ēn
(v0)e0

exp@2 iq•rn#3
2

ēn
(v0)

N̄z,n
(v0) mx,n

(v0)

ēn
(v0)

N̄z,n
(v0) mx,n

(v0)

2N̄n
(v0)my,n

(v0)
1N̄n

(v0)
Ny

(v0)

N̄z,n
(v0) mz,n

(v0)

2N̄n
(v0)my,n

(v0)
2N̄n

(v0)
Ny

(v0)

N̄z,n
(v0) mz,n

(v0)

4 . ~66!
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Considering again Eqs.~30!–~32!, the components of the
vectorDĀn

(v0) defined in Eq.~66! can be rewritten in a more
compact and general forms as

D Ēn,s,65
i ~k0

u!2

2e0

k0
(v0)

6N̄z,n
(v0) ~mn

(v0)
• ê̄n,s,6

(v0)
!exp@2 iq•rn#,

D Ēn,p,65
i ~k0

u!2

2e0

k0
(v0)

6N̄z,n
(v0) ~mn

(v0)
• ê̄n,p,6

(v0)
!exp@2 iq•rn#.

~67!

This is the final result of this section. It provides explic
formulas for the discontinuities of the magnitudes of thes-
andp-polarized modes expressed in theq space at the posi
tion of the point dipole~i.e. at the pointr5rn) inside the
medium of permittivityēn

(v0) . This result will be used late
14440
in the matrix formalism describing the propagation of the S
field across the multilayer system.

4. Propagation of the dipole-generated SH field
across the multilayer structure

In the previous section, we derived the boundary con
tions in the presence of an oscillating point electric dipo
located at the positionr5rn . In this section we incorporate
the obtained formulas into the matrix formalism describi
the propagating of the SH field across the multilayer str
ture.

As mentioned at the beginning of Sec. II F, it is assum
that the oscillating point dipole is located inside an infinite
mally thin vacuum layer~i.e., ēn

(v0)
5evac51) which is in-

serted at the location of thenth interface, as shown in Fig. 3
Within this layer, the EM field can be decomposed intos and
p modes. The magnitudes of these modes at the pos
immediately below and above the dipole location~but still
1-16
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inside the thin vacuum sheet! are contained in the vector
denoted byĀn1e

(2v) andĀn2e
(2v) , respectively, as shown in Fig. 3

Using this notation, the discontinuity of the field at the loc
tion of the point dipole can be written as

Ān1e
(2v)2Ān2e

(2v)5DĀn
(2v) , ~68!

whereDĀn
(2v) is given by Eqs.~66! and ~67!. The overbar

refers to the fact that these variables are inside the
vacuum sheet. This also has to be reflected in Eqs.~66! and
~67! where all the quantities depending on the permittiv

ēn
(v0) , namely,N̄z,n

(v0) , ê̄n,s,6
(v0) , and ê̄n,p,6

(v0) , should be substi-
tuted by their corresponding vacuum equivalents.

Applying the matrix formalism developed in Sec. II E, th
vectorsĀn6e

(2v) are related to the vectorsA0
(2v) and AM11

(2v) by
@refer to Eqs.~37! and ~39! and Fig. 3#

A0
(2v)5Ln

(2v)@Dn
(2v)#21Dvac

(2v)Ān2e
(2v) ~69!

and

Ān1e
(2v)5@Dvac

(2v)#21Dn
(2v)@Ln

(2v)#21LM11
(2v) AM11

(2v) , ~70!

where the matricesLn
(2v) , Dn

(2v) andDvac
(2v) are calculated in

a similar way as their fundamental counterparts in Sec.
upon the substitutionv→2v.

Combining Eqs.~68!–~70!, we can write

A0
(2v)5LM11

(2v) AM11
(2v) 2Ln

(2v)@Dn
(2v)#21Dvac

(2v)DĀn
(2v) .

~71!

This equation is a crucial result of our analysis since it p
vides an explicit relation between the magnitudes of
modes of the SH field propagating in the superstrate~con-
tained in the vectorA0

(2v)) and substrate~contained in the
vectorAM11

(2v) ) in the presence of an oscillating point electr
dipole located atr5rn . This equation is also a generalizatio
of formula ~39!, which is valid only in a charge-free
multilayer system.

Because the SH field is generated only within t
multilayer structure, the vectorsA0

(2v) and AM11
(2v) must take

the forms

A0
(2v)5@0,E0,s,2

(2v) ,0,E0,p,2
(2v) #,

AM11
(2v) 5@EM11,s,1

(2v) ,0,EM11,p,1
(2v) #. ~72!

Thus the relationship between the modal magnitudes of
radiated SH field and the discontinuityDĀn

(2v) @see Eq.~66!#
can be written as

An,spd
(2v) [@EM11,s1

(2v) ,E0,s2
(2v) ,EM11,p1

(2v) E0,p2
(2v) #T5Xn

(2v)DĀn
(2v) ,

~73!

where the matrixXn
(2v) is defined as the product

Xn
(2v)[@KM11

(2v) #21Ln
(2v)@Dn

(2v)#21Dvac
(2v) ~74!

and the matrixKM11
(2v) is defined as
14440
-

in

E

-
e

e

KM11
(2v) 5F L11,M11

(2v) 0 L13,M11
(2v) 0

L21,M11
(2v) 21 L23,M11

(2v) 0

L31,M11
(2v) 0 L33,M11

(2v) 0

L41,M11
(2v) 0 L43,M11

(2v) 21

G . ~75!

The subscript ‘‘spd’’ of the vectorAn,spd
(2v) , which is defined in

Eq. ~73!, refers to the fact that the vector represents the
diated SH field generated by thesingle point dipole. Using
Eq. ~73!, one can obtain the modal magnitudes of the S
field propagating in the superstrate and substrate by ta
the elements of the vectorAn,spd

(2v) with subscripts 0 andM
11, respectively.

Equation~73! is parametrized byNy
(2v) , as follows from

the quantities contained therein. More specifically, it p
vides the expression for the magnitudes of thes- and
p-polarized SH modes propagating in the surrounding me
in a particular direction characterized byNy

(2v) , i.e., at par-
ticular anglesu0

(2v) and uM11
(2v) @see Fig. 2~b!#. These angles

can be calculated from

Ny
(2v)5Ae0

(2v) sinu0
(2v)5AeM11

(2v) sinuM11
(2v) . ~76!

G. Total second-harmonic far field

In the previous section, we derived the expressions for
SH radiation produced by a single point dipole located a
particular point at thenth interface of the multilayer system
Now, we exploit these results and derive the expressions
the SH field generated by the dipoles distributed overall
interfacesof the multilayer system.

Before the derivation proceeds, we look closer at expr
sion ~2! for the point dipole generated by the fundamen
field. Equation~46! suggests that the total fundamental fie
at the position of the dipole~i.e., at thenth interface! is a
function of the lateral coordinatey. This function has a fac-
torized formEn, int

(v) (y)5Ẽn, int
(v) (Ny

(v))exp@ik0
(v)Ny

(v)y#, where the
vector amplitudeẼn, int

(v) is parametrized by the direction of th
incident fundamental beam, which is characterized byNy

(v) .
The exponential function describes the variation of thephase
of the fundamental field with the lateral coordinatey, which
is due to the propagation of the fundamental field along
multilayer structure.

As follows from expression~2!, another quantity deter
mining the amplitude of the point dipole is the nonline
susceptibility tensorxn . In general, each element of this te
sor can have, due to various reasons which will be discus
in detail at the end of this section, a unique dependence
the lateral coordinate.

Although, in general, the dependence on bothx and y
should be considered, we restrict ourselves to the case w
the susceptibility tensor depends only ony, i.e., xn(y). This
is mainly due to the fact that only the light beams propag
ing in they-z plane are treated in this paper. To facilitate t
general case, i.e., to include the dependence ofxn on bothx
and y, the three-dimensional description of the SH fie
would have to be employed. This would involve introducin
a nonzerox component of the normalized wave vector for t
SH field,Nx

(2v)Þ0. It would lead to more elaborate expre
sions for the solution of the wave equation~23!, i.e.,
ên,p,d

(2v) (Nx
(2v) ,Ny

(2v)), Nz,n,p,d
(2v) (Nx

(2v) ,Ny
(2v)), and thus to
1-17
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more complicated expressions for the dynamic matrixDn
(2v)

and the matrixLn
(2v) . On the other hand, formula~67! rep-

resenting the boundary conditions in the presence of a r
ating point dipole is correct even forNx

(2v)Þ0, although it
was determined forNx

(2v)50.
Considering that the susceptibility tensorsxn do not de-

pend onx, the variation of the point dipolemn
(2v) in Eq. ~2!,

with respect toy, can be written as

mn
(2v)5m̃n

(2v)~xn~y!,Ny
(v)!exp@2ik0

(v)Ny
(v)y#, ~77!

where

m̃n
(2v)~xn~y!,Ny

(v)![xn~y! ^ Ẽn, int
(v) ~Ny

(v)!Ẽn, int
(v) ~Ny

(v)!.

~78!

The first term in Eq.~77! represents the variation of th
dipole complex amplitude, which is due to the lateral varia
tion of the susceptibility tensor. The second~exponential!
term in Eq.~77! represents the variation of the dipolephase,
which is due to the variation of the phase of the incide
fundamental field.

In expression~67!, the unity vectorsê̄n,s,6
(2v) and ê̄n,p,6

(2v) are
parametrized by the direction of observation of the SH fie
which is characterized byNy

(2v) . This follows from Eq.~32!,
where v is substituted by 2v. When the dependence o
m̃n

(2v) on y and Ny
(v) expressed by Eq.~78! is taken into

account, the quantitiesD Ēn,s,6 andD Ēn,p,6 in Eq. ~67! can
be written as

D Ēn,s,65D Ẽ̄n,s,6~xn~y!,Ny
(v) ,Ny

(2v)!exp@2ik0
(v)Ny

(v)y#,

~79!

where

D Ẽ̄n,s,6~xn~y!,Ny
(v) ,Ny

(2v)!

[
i ~k0

u!2

2e0

k0
(2v)

6N̄z,n
(2v)

m̃n
(2v)~xn~y!,Ny

(v)!• ê̄n,s,6
(2v) ~Ny

(2v)!,

~80!

and similarly for the magnitudes of thep-polarized field.
Consequently, the vectorDĀn

(2v) defined in Eq. ~66!

can be written as DĀn
(2v)5D Ã̄n

(2v)(xn(y),Ny
(v) ,Ny

(2v))

3exp@2ik0
(v)Ny

(v)y#, where the vectorD Ã̄n
(2v)(xn(y),Ny

(v) ,
Ny

(2v)) is obtained from Eq.~66! in such a way that each
element is substituted by its corresponding quantity given
Eq. ~80!.

The above analysis directly implies that every elemen
the vector on the left-hand side of Eq.~73! depends on the
lateral coordinatey as well as on the quantitiesNy

(v) and
Ny

(2v) . Therefore, the vectorAn,spd
(2v) in Eq. ~73! can be written

as

An,spd
(2v) 5Ãn,spd

(2v) ~xn~y!,Ny
(v) ,Ny

(2v)!exp@2ik0
(v)Ny

(v)y#,
~81!

where
14440
i-

t

,

y

f

Ãn,spd
(2v) ~xn~y!,Ny

(v) ,Ny
(2v)!

[Xn
(2v)~Ny

(2v)!•D Ã̄vac
(2v)~xn~y!,Ny

(v) ,Ny
(2v)!,

~82!

and the matrixXn
(2v)(Ny

(2v)) is defined in Eq.~74!. Equation
~82! is a compact form of Eq.~73!, where the dependence
on y, Ny

(v) andNy
(2v) of the quantities contained therein a

written explicitly.
To obtain the formula for the complex amplitude of th

SH field radiated by the point dipoles distributed along t
nth interface, one has to integrate the single dipole contri
tions ~8! over the region where the dipoles are generated
practical situations, the SH field is detected in the far-fie
configuration. This means that one usually measures the
tensity of a plane SH wave propagating in the direction ch
acterized byNy

(2v) @see Eq.~76!#. Due to the dependence o
the phase of the fundamental field ony @see Eq.~46!#, the
integration over thenth interface has to be performed wit
care.

As can be seen from Fig. 4, the contribution to the f
field electric field originating from a dipole aty50 exhibits
a phase shift ofDf (2v)5k0

(2v)Ny
(2v)y0 with respect to the

contribution originating from a dipole aty5y0. In order to
take this into account, one has to consider the phase
Df (2v) when integrating the point dipole contributions alon
the nth interface.

In this analysis, the dipoles are assumed to be oscilla
coherently, i.e., there is no disruption of the phase of
dipole oscillations alongy. Furthermore, the magnitude o
the fundamental field is assumed to be constant along thenth
interface, which corresponds to the illumination of th
multilayer system by an unbound plane wave. Conseque
the above geometrical argument implies that the SH far fi
originating from the dipoles located at thenth interface can
be calculated as

An, iface
(2v) ~Ny

(v) ,Ny
(2v)!5E

2`

`

dyÃn,spd
(2v) ~xn~y!,Ny

(v) ,Ny
(2v)!

3exp@2ik0
(v)Ny

(v)y2 ik0
(2v)Ny

(2v)y#.

~83!

FIG. 4. Geometrical demonstration of the argument that the c
tributions to the SH far-field intensity originating from point dipole
at y50 and y5y0 are phase shifted byDf (2v)5k0

(2v)Ny
(2v)y0,

whereNy
(2v) characterizes the direction of propagation of the S

field @see Eq.~76!#.
1-18
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The elements of the vectorAn, iface
(2v) (Ny

(v) ,Ny
(2v)), which is

defined as38

An, iface
(2v)

[@EM11,s,1, iface
(2v) ,E0,s,2, iface

(2v) ,EM11,p,1, iface
(2v) ,E0,p,2, iface

(2v) #T,

~84!

represent the magnitudes of thes- and p-polarized modes
propagating in the superstrate~subscript 0! and the substrate
~subscriptM11) at the direction characterized byNy

(2v) ,
and originating from the entirenth interface~hence the sub-
script ‘‘iface’’ !. Equation~83! provides the core result of th
analysis presented in this paper.

The total radiated SH field, i.e., the SH field consisting
contributions from all interfaces of the multilayer system,
calculated simply by summing all the interface contributio
~83!, i.e.,

Amls
(2v)~Ny

(v) ,Ny
(2v)!5 (

n51

M11

An, iface
(2v) ~Ny

(v) ,Ny
(2v)!. ~85!

Again, coherent radiation of the dipoles located at vario
interfaces was assumed in this step. In a similar way as
the vectorAn, iface

(2v) in Eq. ~84!, the elements of the vecto
Amls

(2v)(Ny
(v) ,Ny

(2v)), which is defined as38

Amls
(2v)[@EM11,s,1,mls

(2v) ,E0,s,2,mls
(2v) ,EM11,p,1,mls

(2v) ,E0,p,2,mls
(2v) #T,

~86!

represent the magnitudes of thes and p polarized modes
propagating in the superstrate~subscript 0! and the substrate
~subscriptM11) at the direction characterized byNy

(2v) ,
and originating from the entire multilayer system~hence the
subscript ‘‘mls’’!.

H. Angular dependence of the second-harmonic far field

In Sec. II G, we derived the expressions for the total
field generated within the multilayer system. It can be se
from Eqs.~83! and~85! that the expressions for the SH fie
are parametrized byNy

(2v) . In other words, Eqs.~83! and
~85! describe the angular dependence of the radiated
field, as follows from Eq.~76!. In this section, we analyze
this angular distribution in greater detail.

Equation ~83! is the fundamental expression describi
the angular dependence of the SH far field generated by
nth interface. This equation suggests that the quanti
An, iface

(2v) (Ny
(v) ,Ny

(2v)) and Ãn,spd
(2v) (xn(y),Ny

(v) ,Ny
(2v)) are re-

lated by Fourier transforms.
First, we note that k0

(2v)[2v/c052k0
(v) . Second,

we recall that the dependence of the vec
Ãn,spd

(2v) (xn(y),Ny
(v) ,Ny

(2v)) on y is due to the lateral variation
of the complex amplitude of the point dipole. This depe
dence is due to the variation of the nonlinear susceptib
tensorxn along the interface, as follows from Eq.~78!. Con-
sequently, if we define the Fourier transform of the ten
xn(y) as39
14440
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FT@xn#~u![E
2`

`

dyxn~y!exp@ iuy#, ~87!

Eq. ~83! can be rewritten as

An, iface
(2v) ~Ny

(v) ,Ny
(2v)!5FT@Ãn,spd

(2v) #~u,Ny
(v) ,Ny

(2v)!, ~88!

where

u52k0
(v)~Ny

(v)2Ny
(2v)!. ~89!

Using Eq.~82!, the vectorFT@Ãn,spd
(2v) #(u,Ny

(v) ,Ny
(2v)) in Eq.

~88! is calculated as

FT@Ãn,spd
(2v) #~u,Ny

(v) ,Ny
(2v)!

5Xn
(2v)~Ny

(2v)!•FT@D Ã̄n
(2v)#~u,Ny

(v) ,Ny
(2v)!.

~90!

In this equation, the vectorFT@D Ã̄n
(2v)#(u,Ny

(v) ,Ny
(2v)) con-

sists of the quantities

FT@D Ẽ̄n,p,6
(2v) #~u,Ny

(v) ,Ny
(2v)!

5
i ~k0

u!2

2e0

k0
(2v)

6N̄z,n
(2v)

ê̄n,p,d
(2v) ~Ny

(2v)!•FT@xn#~u!

^ Ẽn, int
(v) ~Ny

(v)!Ẽn, int
(v) ~Ny

(v)!, ~91!

as follows from Eqs.~80! and ~78! and definition~66!.
Equations~85!–~91! provide quite a remarkable result—

they establish the theoretical grounds for the analysis of
variation of the susceptibility tensor elements with thelat-
eral coordinate yfrom the measurement of theangular de-
pendenceof the radiated SH far field. The importance of th
becomes even more apparent when one realizes that th
terface, which is the source of the SH field, can be anybur-
ied interface of the multilayer system.

Let us first assume thatnoneof the elements of the non
linear susceptibility tensors depend ony, i.e., x i jk ,n(y)
5x i jk ,n(0) for all y and for everyn. Equation~87! implies
that the Fourier transform of the tensor elements is prop
tional to the Dirac d function, i.e., FT@x i jk ,n#(u)
5x i jk ,n(0)d(u). Consequently, after substituting the res
into Eqs. ~88!–~91!, the elements of the vecto
An, iface

(2v) (Ny
(v) ,Ny

(2v)) and consequently the magnitudes of t
modes of the SH far field are found to be proportional
d(Ny

(v)2Ny
(2v)). A direct implication of this result is that the

SH far field is nonzero only for such combinations of t
incident and observation angles that the equation

Ny
(v)5Ny

(2v) ~92!

is satisfied. This agrees with a well-known experimental
perience that the angle at which the SH far-field intensity
observed is the same as the incident angle of the fundame
beam.5,8,9,31 This is, of course, true only when the SHG
performed in the reflection configuration within a nondisp
sive medium, i.e., when the fundamental beam enters
1-19
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JAROSLAV HAMRLE, L’UBOŠ POLERECKÝ, AND JACQUES FERRE´ PHYSICAL REVIEW B 68, 144401 ~2003!
multilayer structure from the same nondispersive medium
where the SH intensity is observed. If, for example, the fu
damental field enters from the superstrate and the SH fie
observed in the substrate, the angle of observationuM11

(2v)

5arcsin(Ny
(2v)/AeM11

(2v) ) could be different from the inciden
angleu0

(v)5arcsin(Ny
(v)/Ae0

(v)) due to differences in the sub
strate and superstrate optical parameters, i.e., ifeM11

(2v)

Þe0
(v) . Furthermore, even if the SH field is observed in t

same medium as that from which the fundamental field
pinges the multilayer system, the observation angle co
still be different from the incident one due to the mater
dispersion, i.e., ife0

(2v)Þe0
(v) or eM11

(2v) ÞeM11
(v) .

As follows from Eqs.~87! and ~88!, more interesting re-
sults can be obtained when some of the elements of the
linear susceptibility tensorsx i jk ,n vary with y. This could be
due to various reasons. For example, in the area of magn
induced second-harmonic generation, the susceptibility
sor describing the nonlinear properties of some interfacen0
depends on the local magnetization. Thus, if the magn
medium neighboring this interface contains magnetic
mains or any other lateral variations of the magnetizat
~such as propagating spin waves, magnetic nanostruct
etc., as discussed in Sec. II C! these variations will be di-
rectly reflected in the variations of the susceptibility tens
elementsx i jk ,n0

(y). This will, in turn, result in the dispersion

of the tensorFT@x i jk ,n0
#(u) in the Fourier domain, which

will eventually result in the modification of the angular di
tribution of the SH far field, as described by Eqs.~85!–~91!.

I. SH intensity in the far field

The analysis presented in the previous sections dealt
clusively with the expressions for the electromagnetic fi
vectors expressed in theq space. However, in order to obta
results which could directly be compared with experimen
data, we need to calculate the SH far-field intensity in thr
space. A typical SH experimental arrangement involves
measurement of the far-field intensity. Therefore, in this s
tion we concentrate on the derivation of the far-field intens
radiated into the superstrate and substrate surrounding
multilayer system.

The fundamental relation between theq space, in which
all the previous calculations were carried out, and ther space
is provided by Eq.~6!. As mentioned in the discussion afte
this equation, it is important to realize that the vectorEq, j ,S,S
@recall notation~8!# depends on thez coordinate. In the case
of the SH field propagating in the superstrate and substr
this dependence can be explicitly written as

Eq, j ,S,S
(2v) 5(

p,d
Ej ,p,d,mls

(2v) êj ,p,d
(2v) exp@ ikz, j ,d

(2v)~z2zj !#, ~93!

where j 50 and j 5M11 correspond to the superstrate a
the substrate, respectively. In this equation, it was conside
that kz, j ,p,d

(2v) 5kz, j ,s,d
(2v) [kz, j ,d

(2v) in an isotropic medium and th

polarization vectorsêj ,p,d
(2v) are given by Eq.~32! upon substi-

tution v→2v. Furthermore, the magnitudesEj ,p,d,mls
(2v) are
14440
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given in Eq. ~86!. It should be recalled thatEj ,p,d,mls
(2v) are

nonzero only for the combination of indicesj 50, d52 and
j 5M11, d51.

Considering Eqs.~6! and ~93!, the total SH electric field
generated within the multilayer system and radiated into
surrounding media can be written as

Ej ,S,S,mls
(2v) ~r!5

1

~2pk0
u!2E E d2q(

p,d
Ej ,p,d,mls

(2v)

3exp@ i r•q1 ikz, j ,d
(2v)~z2zj !#. ~94!

To calculate this integral in the far-field, i.e., foruru@l (2v),
we employ the well-known method of stationary phase.21,40

We carry out integration~94! in planar coordinates, in which
one can write

r[F x

y

z2zj

G5F r sinu rcosw r

r sinu rsinw r

r cosu r

G ,

F kx

ky

kz

G5F k(2v)sinukcoswk

k(2v)sinuksinwk

k(2v)cosuk

G , ~95!

where@u r ,w r # and@uk ,wk# are the angles characterizing th
directions of ther andk(2v)5@q,kz

(2v)# vectors, respectively
Considering Eq.~95!, the phase in the exponential factor
Eq. ~94! can be written as

F~r!5 ik (2v)r $cos~u r2uk!

1@cos~w r2wk!21#sinu rsinuk%, ~96!

and the differential d2q takes the form d2q5dkxdky
5(k(2v))2cosuksinukdukdwk .

Employing the reasoning of the stationary phase meth
the main contributions to integral~94! come from those
points in theq space in which the phaseF(r) is stationary,
i.e., for which ]F/]uk50 and]F/]wk50 are fulfilled si-
multaneously. Using Eq.~96!, these conditions are valid
whenuk5u r andwk5w r , i.e., when the vectorsk(2v) andr
are parallel. The Taylor expansion of the phaseF(r) around
this stationary point can consequently be written as

F~r!' irk (2v)F12
1

2
~uk2u r !

22
sin2u r

2
~wk2w r !

2G .
~97!

When this approximation is substituted into Eq.~94!, the
integration can be carried out. After rather lengthy calcu
tions which incorporate the same steps as in the station
phase method,21,40 we arrive at

Ej ,S,d,mls
(2v) ~r!ur @l(2v)

5
2pkj

(2v)

~2pk0
u!2

1

ir

Nz, j
(2v)

Nj
(2v)
Ej ,S,d,mls

(2v) exp@ ik j
(2v)r #,

~98!

where we substitutedNz, j
(2v)/Nj

(2v)5cosuk,j .
1-20
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To calculate the radiated SH intensity in the far-field, w
simply use the definitionI (r)5u^S(r)&u. Since the time-
average of the Poynting vectorS(r) is equal to21,22 ^S(r)&
5(1/2)E(r)3H!(r), the SH intensity can be written as

I j
(2v)~r![I j

(2v)~r;u j
(2v) ,w j

(2v)!5
1

2h0
Nj

(2v)uEj ,S,d,mls
(2v) ~r!u2

5
1

2h0

~2pk0
(2v)!2

~2pk0
u!4

1

r 2
Nj

(2v)uNz, j
(2v)u2

3 (
p5s,p

uEj ,p,d,mls
(2v) ~q!u2. ~99!

This is a final result of this section. It provides an expli
relation between the observable SH far-field intens
I j

(2v)(r) and the quantitiesEj ,p,d,mls
(2v) (q) which are obtained

from the matrix formalism developed in Secs. II E–II G
Equation~99! also provides an explicit relation between t
measured intensity and the amplitude of the radiating p
dipole. This explicit relationship can be used in thequanti-
tative experimental determination of the amplitude of t
point dipoles,mn

(2v) , which can be compared withab initio
calculations.

A number of comments should be made with regard
Eq. ~99!. First, it should be noted that since the amplitud
Ej ,p,d,mls

(2v) (q) are proportional to (k0
u)2, as follows from Eqs.

~66!–~67! and ~82!–~86!, the overall intensity isnot depen-
dent on the arbitrary parameterk0

u , as expected. Second, on
should also observe that the intensity is proportional not o
to the quantity uEj ,p,d,mls

(2v) (q)u2 but rather to the produc
uNz, j

(2v)Ej ,p,d,mls
(2v) (q)u2. The presence of the factoruNz, j

(2v)u2

originates from the fact that our formalism and conseque
the magnitudesEj ,p,d,mls

(2v) (q) are expressed in theq space. If
we consider Eq.~15!, which provides the relation betwee
the q space and thek space, we find that in fact the far-fiel
intensity is proportional touEj ,p,d,mls

(2v) (k)u2, i.e., to the modu-
lus of the field magnitude expressed in thek space, which is
an expected result.

Before concluding this section, it is also useful to provi
some analytical results that could directly be compared w
formulas available in the literature. For this purpose, let
consider that the multilayer system consists only of one p
nar interface separating the substrate and the supers
whose refractive indices at the SH frequency are denoted
N0 andN1, respectively. Furthermore, let us assume that
fundamental field generates only asingle point dipole of
strengthm (2v) and orientation in they direction, i.e.,m(2v)

5m (2v)@0,1,0#. When such a simple case is considered,
calculations presented in Secs. II E–II G lead to the exp
sion

I j
(2v)~r!5

c0~k0
(2v)!4~m (2v)!2

8p2e0

~Nj !
3

r 2 S Nz,0Nz,1

N0
2Nz,11N1

2Nz,2
D 2

,

~100!

where j 50,1. This expression immediately implies that t
ratio of the intensities radiated into the superstrate and s
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strate is equal to (I 0
(2v)/I 1

(2v))5(N0 /N1)3, which is in agree-
ment with the results published elsewhere.24 Furthermore, if
N05N1[N is assumed, i.e., if the dipole is considered to
located in an homogeneous unbound medium of refrac
index N, then expression~100!can be simplified to

I (2v)~r!5
Nc0~k0

(2v)!4

32p2e0r 2
~m (2v)cosu!2, ~101!

which is the well-known cosinus law of radiation o
a free point dipole treated in most textbooks
electromagnetism.21,22

Finally, it is worth noting that the expression for the fa
field SH intensity was calculated for totally correlated po
dipoles. In our derivations, the correlation of the radiati
point dipoles is dictated by the correlation of the fundame
tal field, since the complex vector amplitude of the eleme
tary dipoles is considered directly proportional to the fund
mental field. We considered that the dipoles were genera
by a plane wave, which is totally spatially correlated, and
the result in Eq.~99! corresponds to totally correlated poin
dipoles. Due to the point-dipole based approach, howe
the formalism developed here could also be expanded
wards uncorrelated or partially correlated dipoles. In pr
ciple, one would only need to add an appropriate correlat
function describing the spatial correlation of the point d
poles into expressions~83! and~85! and then use the result
ing formulas directly within the formalism of the theory o
optical coherence.29 The source of this partial correlatio
could be various. For example, it could be due to a partia
correlated fundamental light generating the point dipol
Another possibility is that some decorrelation mechanism
inherent in or enforced by an external influence upon
multilayer system or a specific layer or an interface. Ev
though steps in this direction would allow even further ge
eralization and possibly wider applicability of our mode
they will not be further pursued here as it would go beyo
the scope of this paper.

III. NUMERICAL EXAMPLES

In this section, we apply the theory developed in Sec
for the calculation of the SH far-field intensity generated
various multilayer systems. Because the results of this w
are aimed at the analysis of magnetic-induced second
monic generation~MSHG!, in the following numerical ex-
amples we consider materials that are typically used in
MSHG experiments. Due to an enormous number of para
eters involved in the MSHG phenomena, it is not feasible
consider all possible configurations or combinations of
rameters. Therefore, we will focus on a few illustrative e
amples which demonstrate the features that one comes a
during the studies of the MSHG in magnetic multilayer sy
tems.

As mentioned in Sec. II, the nonlinear properties of t
nth interface of a multilayer system are described by
susceptibility tensorx i jk ,n . Although there are, in genera
27 independent elements of the tensorx i jk ,n , the symmetry
arguments applicable to thenth interface can reduce substa
1-21
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tially the number of its nonzero or independent elemen
This procedure was thoroughly studied by other authors
can be found in the literature.12,13

In MSHG, the local magnetizationMn of the nth inter-
face introduces breaking of the local symmetry, which has
be considered in addition to the restraints implied by
structural symmetry. In general, this results in an increa
number of nonzero elements of the tensorx i jk ,n . Further-
more, the susceptibility tensor can be decomposed into
parts, one being odd and the other even in magnetiza
i.e., x i jk ,n5x i jk ,n

(o) 1x i jk ,n
(e) . In the first order of the magneti

perturbation, the even part contains the structural contr
tion and can be considered as independent on magnetiz
while the odd part can be considered as proportional to
magnetization. Thus by studying the values of the ten
x i jk ,n

(o) via the second harmonic generation, one can probe
the local magnetization of thenth interface.

In Secs. II G–II H we derived that the SH intensity is
function of both the incident angleu i

(v) of the fundamental
beam and the observation angleuo

(2v) of the SH field. Due to
the above mentioned dependence of the susceptibility te
on magnetization, the SH intensity also depends on mag
tizationMn , i.e., I o

(2v)(u i
(v) ,uo

(2v) ,Mn). In this expres-
sion, i 50 or i 5M11, depending on whether the mediu
from which the fundamental field impinges on the multilay
system is the superstrate or substrate, respectively. Simil
o50 or o5M11, depending on whether the medium whe
the SH field is observed is the superstrate or substr
respectively.

In the area of MSHG, magnetic contrast is a conveni
parameter for a quantification of the variation of the o
served SH intensity with the magnetic field orientation. It
defined as

ro~u i
(v) ,uo

(2v)!

5
I o

(2v)~u i
(v) ,uo

(2v) ,Mn!2I o
(2v)~u i

(v) ,uo
(2v) ,2Mn!

I o
(2v)~u i

(v) ,uo
(2v) ,Mn!1I o

(2v)~u i
(v) ,uo

(2v) ,2Mn!
.

~102!

We will consider this parameter in our second numeri
example.

Before we show the results, it is worth summarizing t
steps that one needs to make in order to calculate the
intensity. First, the material parameters~i.e., the permittivity
tensors at the fundamental and SH frequencies and the
ceptibility tensors! of the media comprising the multilaye
structure must be known. Second, the distribution of the f
damental field across the multilayer system needs to be
culated. This can be done using Eqs.~43! or ~44! derived in
Sec. II E 3. Once the fundamental field is known, the dis
bution of point dipoles generating the SH field can be cal
lated from Eq.~2!. The electric field generated by a poi
dipole propagating in the surrounding media can be ca
lated from Eq.~81! and~82!, where the matrixXn

(2v) and the

vector D Ã̄n
(2v) are evaluated from Eqs.~74! and ~66! and

~67!, respectively. When this result is integrated over a p
ticular interface and summed over all interfaces, as show
14440
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Eqs. ~83! and ~85!, respectively, the total SH field is ob
tained. Finally, one should use Eq.~99! to obtain the angular
variation of the observable SH intensity.

It is clear from the above account that the calculation o
result involves a rather large number of steps. In order
facilitate the calculation, we designed a computer progr
that implements these steps. The results are presented b

A. SH intensity as a function of layer thickness

In this example we consider a structure consisting o
thin Au layer deposited on a Co substrate. We show t
when equivalent parameters describing the structure
used, the same results as those reported by Wierengaet al.1

are obtained.
The cross section of the structure is depicted in the in

of the graph in Fig. 5. The structure is illuminated by
fundamental beam (l (v)5532 nm) from air at the inciden
angle of u0

(v)50°. The magnetization is considered to b
zero. The optical parameters of the materials involved
taken from the literature.41

The symmetry analysis of the top air/Au~1! and buried
Au/Co ~2! interfaces implies that there are several nonz
elements of the tensorsx i jk ,1 and x i jk ,2 . However, for the
purpose of this example, most of the elements are consid
to be zero. The values of the non-zero elements are1 xyyy,2
51 andxyyy,3521.6, and they are considered to be ind
pendent of the lateral coordinatey. This means, as discusse
in Sec. II H, that the SH field is generated in such a direct
that Eq.~92! is satisfied. In this case it means that the S
field can be observed either in air atu0

(2v)50° or in the Co
substrate atu2

(2v)50°. As the observation of the SH fiel
radiated into the Co substrate is almost impossible, we a
lyze only the field radiated into the air superstrate.

FIG. 5. The dependence of the SH intensityI 0
(2v) on the thick-

ness of the Au layer. The SH field is observed in air at the an
u0

(2v)50°. The dashed and dash-dotted lines correspond to the
tributions originating from the top air/Au interface and the buri
Au/Co interface, respectively. The total SH intensity, given by t
combination of these two contributions, is depicted by the so
line. The structure under consideration is shown in the graph in
The graph in the inset shows the total SH intensity variation ove
extended range of thickness of the Au layer.
1-22
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Figure 5 shows the SH intensity observed in air as a fu
tion of the Au layer thickness, as calculated from Eq.~99!.
Due to the normal incidence and no magnetization involv
thes andp polarizations are interchangeable and thus do
need to be considered separately.

The contribution of the air/Au interface~depicted by a
dashed line! is increasing with the thickness of the Au laye
This is mainly due to the fact that the amplitude of the fu
damental field at this interface increases with the Au la
thickness. This is in contrast to the contribution of the Au/
interface ~depicted by a dash-dotted line! from which the
contribution decreases with increasing thickness of the
layer. This is again given by the rapid decrease of the fun
mental field at this interface for thicker Au layers due to
strong attenuation within the Au layer.

The solid line shows the variation of the total SH inte
sity. It firstly decreases and reaches a minimum at a Au la
thickness of about 2.5nm, and then monotonically increa
until it saturates~see the graph inset!. As can be seen, th
minimum intensity is reached at a thickness for which
separate contributions from each interface are relatively h
This is due to destructive interference effects taking pl
when the two contributions are considered together. In o
words, even though the contributions from each interface
relatively large, if their phases are opposite they can can
each other out.

B. MSHG intensity as a function of incident angle

In this example, we consider a structure consisting o
Au~3nm!/Co~3nm!/Au~25nm! trilayer deposited on a glas
substrate and covered by air. This structure was experim
tally studied in the literature.8,9,31

The fundamentalp-polarized beam (l (v)5632.8nm) in-
terrogates the structure from the glass substrate. The p
given by the beam propagation and its polarization vecto
parallel to they-z plane. The SH field is observed in th
glass substrate in the same plane. The optical paramete
the materials involved are taken from the literature.41

The Co layer is assumed to be homogeneously mag
tized in the transversal direction, i.e.,Muux̂. The nonlinear
properties of the air/Au, Au/Co, Co/Au, and Au/glass inte
faces are described by the susceptibility tensorsx i jk ,1 ,
x i jk ,2 , x i jk ,3 , andx i jk ,4 , respectively. Due to symmetry rea
sons, the susceptibility tensors of the top~2! and bottom~3!
Au/Co interfaces are related byx i jk ,252x i jk ,3 .

Similarly as in Sec. III A, most of the elements of th
susceptibility tensors are assumed to be zero. The non
elements considered in the calculations are summarize
Table I. As follows from the symmetry arguments,12,13 the
elementsxzyy,1 , xzyy,252xzyy,3 , xzyy,4 are nonmagnetic
while the elementsxyyy,252xyyy,3 change sign upon a re
versal of the magnetization of the Co layer.

The fundamental field impinges the multilayer system
an angleu4

(v) . We assume that the values listed in Table I a
constant along the corresponding interfaces, i.e., indepen
of on, y. Consequently, the SH field can be observed only
such a direction that Eq.~92! is satisfied, as discussed in Se
II H. This means that for a fundamental beam incident a
14440
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particular angleu4
(v) , there exists two SH beams, one prop

gating in the glass substrate atu4
(2v) and the other in the air

superstrate atu0
(2v) . These angles are related by Eqs.~92!,

~76!, and ~36!. Below, only the SH beam radiated into th
glass substrate is discussed.

The form of the susceptibility tensors implies that the S
field generated by the trilayer structure isp polarized. When
the SH intensity is evaluated for various incident anglesu4

(v)

of the fundamental field, the angular distribution looks
shown in Fig. 6. The figure also shows the correspond
magnetic contrast, which is calculated from Eq.~102!.

The variation of the SH intensity withu4
(2v) is determined

mainly by the dependence of the fundamental field at e
interface on the incident angleu4

(v) . That is, if they compo-
nent of the fundamental electric field was evaluated,42 its
variation with the incident angleu4

(v) would look very simi-
lar to that depicted in Fig. 6.

The angular range, for which the SH intensity is plotte
corresponds to the range of angles for which the surf
plasmon is excited by the fundamental field. This pheno

TABLE I. Values of the elements of the susceptibility tenso
considered in the calculations in Sec. III B. The values are given
two orientations of the Co layer magnetization. Elements which
not listed are identically zero.

M xzyy,1 xyyy,252xyyy,3 xzyy,252xzyy,3 xzyy,4

@1,0,0# 1 1 22 21
@21,0,0# 1 21 22 21

FIG. 6. Variation of the intensity of the SHp-polarized field
with the incident angleu4

(v) of the p-polarized fundamental field
The SH beam is observed at an angleu4

(2v) which is related tou4
(v)

via Eqs.~92!, ~76!, and~36!. The dependence was calculated for
trilayer system which is depicted in the graph inset and whose
rameters are listed in Table I. The solid and dashed lines corresp

to the magnetization of the Co layer in the1 x̂ and2 x̂ directions,
respectively. The angular dependence of the magnetic contras
fined in Eq.~102! is plotted in the graph inset.
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enon is accompanied by enhancement of the magnitud
the fundamental field at each interface at or around a part
lar incident angle. This is in close correlation with the o
served enhancement of the SH intensity at the correspon
observation angleu4

(2v)'45.5°. These results agree with th
experimental observations reported in the literature.8,9,31

C. Angular distribution of SH intensity
from a layer with magnetic domains

In the previous two examples, we demonstrated the ca
bilities of the model on structures that have already b
dealt with previously. The obtained results were found to
in agreement with those published in the literature.1,8,9,31 In
this section, we show that the capabilities of our model
beyond those discussed above. This is mainly due to
model’s convenient formalism which culminates in Eqs.~85!
and ~88!.

As a model structure, we consider the same trilayer s
tem as in Sec. III B; however, in this case the Co layer c
tains magnetic domains. The domains are assumed to
separated by infinitely thin domain walls parallel to thex-z
plane. The magnetization of the domains is changing peri
cally between the saturated valuesM↑[@1,0,0# andM↓

[@21,0,0# with a periodicityD, as shown in Fig. 7~a!. In
this example, we also consider the same values of the
ceptibility tensor elements as in Sec. III B, which are su
marized in Table I.

A phenomenological treatment of the SHG originati
from a thin magnetic film containing periodic magnetic d
main structures was already reported in the literature.43–45 It
was found that, in addition to the interface contributions,
SH field can also originate from the magnetic walls due t
nonzero value of the magnetization gradient¹M in this
region. This follows from the fact that the expansion of t
magnetically active susceptibility tensorx i jk in the magneti-
zation contains terms proportional to¹M. As a conse-
quence of the periodicity of the domain structure, the gen
ated SH field was found to exhibit a ‘‘diffractionlike
pattern, i.e., the illumination of the structure with a sing
fundamental beam could result in a diffraction pattern of
SH beams.

The model developed in Sec. II neglects the contributio
to the SH field originating from locations other than those
the layer interfaces, such as those from the magnetic dom
walls located in the layer bulk. Although it would be,
principle, possible to take such contributions into account
expanding the region of the integration of the point dipo
contributions to more than just one~y! dimension@see Eq.
~83!#, it would go beyond the scope of this paper, and th
will not be treated here. Instead, the possible contributi
originating from the domain walls will be neglected.

As can be seen from Table I, the elementsxyyy,2 and
xyyy,3 , which correspond to the top and bottom Au/Co int
faces, respectively, are the only ‘‘magnetically active’’ com
ponents of the susceptibility tensors involved in the calcu
tion. Assuming that the variation of the magnetization
these two Au/Co interfaces is the same as that of the Co l
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described above, the magnetically active tensor elements
described by a periodic function

xyyy,2~y!52xyyy,3~y!

5H 1 for yP^2 1
4 D1nD, 1

4 D1nD&

21 for yP~ 1
4 D1nD, 3

4 D1nD!,

~103!

wheren50,61,62, . . . . This function can be expressed
the Fourier series as

FIG. 7. ~a! A cross section and a top view of the structure co
sisting of a Au/Co/Au trilayer deposited on a glass substrate.
magnetization of the Co layer varies periodically along they coor-
dinate with periodicityD. ~b! The angular distribution of the SH
intensity (p-polarized light! generated by ap-polarized fundamenta
beam. The fundamental beam illuminates the structure from gla
an incident angle ofu4

(v)545.5°. The normalized intensities, i.e
I 0

(2v)(u (2v))/uaumu/2u2, observed at discrete angular positions are
picted by the solid-line spikes ended with the up triangles. T
numbersm50,61,62, . . . refer to the diffraction orders. The SH
beams observed in the glass substrate and the air superstra
plotted in the top and bottom graphs, respectively. The dashed
depicts the envelope of the angular distribution of the normali
intensities.
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xyyy,2~y!52xyyy,3~y!5 (
m51

`

amcosS m
2p

D
yD ,

am5
4

p

~21!m11

2m21
. ~104!

Consequently, the Fourier transform~87! takes the form

FT@xyyy,2#~u!52FT@xyyy,3#~u!

5 (
m52`

`
am

2 FdS u2m
2p

D D G , a0[0. ~105!

As shown in Table I, the tensor elementsxzyy,1 , xzyy,2
52xzyy,3 and xzyy,4 are magnetically inactive. This mean
that even though the magnetization of the Co layer va
along they coordinate, these values remain independent oy.
Consequently, their Fourier transforms are expressed as

FT@xzyy,n#~u!5xzyy,n~0!d~u!, n51,2,3,4. ~106!

When results~105! and ~106! are substituted into Eqs
~88!–~91!, the far-field SH intensity is found to be comprise
of two contributions. The first contribution originates fro
the nonmagnetic part of the susceptibility tensors and is n
zero at such an angle that the equation

Ny
(2v)5Ny

(v) ~107!

is fulfilled. The second contribution to the SH intensity orig
nates from the magnetic part of the susceptibility tenso
Equation~105! implies that it is qualitatively different from
the nonmagnetic contribution in such a way that the SH
tensity is non-zero only at such angles that

Ny,m
(2v)5Ny

(v)1m
KD

k0
(2v)

, KD[
2p

D
, m561,62, . . .

~108!

is satisfied. This means that, due to the presence of the m
netic domains, the angular profile of the SH intensity co
prises a diffraction pattern of SH beams characterized b
diffraction orderm. This is in a qualitative agreement wit
the results reported in the literature.43–45

Comparing Eqs.~107! and~108!, the nonmagnetic contri
bution to the SH field can be thought of as a zero diffract
order of the SH diffraction pattern. Therefore, studying t
zero order of the SH diffraction pattern can reveal inform
tion about the nonmagnetic part of the susceptibility tens
while the higher diffraction orders contain the informatio
about the magnetic part of the susceptibility tensors.

The electrical fields corresponding to the diffraction o
ders can be evaluated employing Eqs.~88!–~91!. Using the
point-dipole approach to the SH problem, this evaluation
be illustratively interpreted as follows. The fundamental fie
‘‘creates’’ four magnetically inactive point dipoles,each
placed at one of the interfaces at the positions character
by equal values ofy ~such asy50). These point dipoles
radiate anisotropically into the surrounding media. The
gular distribution of the electric field radiated by each dipo
is given by Eq.~82!. The SH far-field intensity correspondin
to the zero diffraction order is subsequently obtained
summing up the field contributions of these four point
14440
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poles and evaluating the intensity at such a value of the
servation angle that Eq.~107! is satisfied.

A similar interpretation can be considered for the high
SH diffraction orders (umu>1). In this case, Eq.~105! im-
plies that there are twomagnetically active point dipoles
‘‘created’’ by the fundamental field. Both are located at p
sition characterized by the same value ofy as the four mag-
netically inactive dipoles mentioned above~such asy50).
The two magnetically active dipoles radiate anisotropica
into the surrounding media with the angular distribution d
scribed by Eq.~82!. The SH far-field intensity correspondin
to the diffraction orderm is subsequently obtained by sum
ming up the field contributions of these two point dipol
and evaluating the intensity at such a value of the obse
tion angle that Eq.~108! is satisfied. Moreover, the intensit
at this angle has to be multiplied by the factoruaumu/2u2, as
follows from Eq.~105!.

The results discussed above imply that by studying
diffraction pattern of the SH field, one can gather inform
tion about the domain structure of the buried magnetic in
faces, or even the layers themselves, provided that the
tion between the layer and interface magnetization is kno
This is feasible only if the experimental configuration gua
antees that the conditions which justify the use of Eq.~87!
for the evaluation of the quantityFT@x i jk ,n#(u) are fulfilled.
These conditions require that the magnitude of the fun
mental field across the area illuminated by the fundame
beam is uniform, and that the width of this area is mu
greater than the domain periodicityD. If these conditions are
not satisfied, Eq.~87! would have to be slightly modified to
take into account not only the distribution of the phase of
fundamental field but also the profile of the field magnitu
across the illuminated area. This would, however, go bey
the scope of this paper and therefore will not be dealt with
a greater detail.

To visualize the results discussed above, we plot the
gular distribution of the SH intensity generated by
p-polarized fundamental beam (l (v)5632.8nm) illuminat-
ing the structure from the glass substrate at an incident a
of u4

(v)545.5°. The results, which were calculated forD
510l (2v)'3.2 mm, are shown in Fig. 7~b!. The spikes end-
ing with the up triangles represent the angular positions
the diffracted SH beams, each characterized by the diffr
tion orderm.

In order to make the graphical representation clearer,
values of the SH intensities, which are represented by
spikes length, are multiplied by the corresponding fact
uaumu/2u22 for umu>1. Furthermore, to enable the visualiz
tion of the zero diffraction order in the same scale as
higher diffraction orders, its intensity was multiplied by
factor of 1/100. In the following discussion, the intensi
values multiplied by the corresponding factoruaumu/2u22 for
umu>1 will be referred to as the normalized SH intensitie

When the scales of they axis of the graphs in Figs. 6 an
7 are compared, it can be seen that the normalized intens
of the higher diffraction orders are considerably smaller th
that of the zero order. This difference is pronounced ev
more when the true values of the SH intensity, i.e., the n
malized intensities multiplied by the corresponding facto
1-25
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uaumu/2u2, are considered. This difference in the magnitude
the SH intensity is solely due to the numerical values of
elements of the susceptibility tensors used in the calculat

The dashed line in Fig. 7~b! represents the envelope of th
angular profile of the normalized intensities of the diffract
SH beams. It is determined by the radiation of two magn
cally active point dipoles placed at the top and bottom Au/
interfaces, as explained above. This envelope is useful if
is interested in the modification of the diffraction pattern
the SH beams implied by the change of the domain per
icity D, while all the other parameters remain unmodified.
this case, the positions of the diffraction orders~spikes!
would be shifted so as to fulfill Eq.~108!, while the normal-
ized intensities~lengths of the spikes! would follow the en-
velope which remains unchanged. The true values of the
intensities are then evaluated by multiplying the normaliz
values by the corresponding factorsuaumu/2u2.

It is important to note that the envelope varies with t
incident angle of the fundamental beam. This is due to
fact that the magnetically active elementary dipoles, wh
are generated by the fundamental field at the Au/Co in
faces, vary their magnitude46 due to the dependence of th
fundamental field itself on the incident angle. This impli
that the normalized intensities of the diffracted SH bea
corresponding to different diffraction orders vary with th
incident angle of the fundamental beam. An example of t
variation is shown in Fig. 8~a!, where the envelopes depicte
by the solid, dashed, and dash-dotted lines correspond to
incident angle ofu4

(v)545.5°, 40°, and 50°, respectively
The graph demonstrates that the envelopes, and thus the
malized intensities of the diffracted SH beams, can vary s
stantially even for as small variations of the incident angle
65°.

Another interesting result follows from the analysis of t
dependence of the SH intensity of a particular diffracti
order on the incident or observation angle. The variation
the incident angleu4

(v) of the fundamental beam implies th
the angles, at which the diffracted SH beams are obser
vary. This variation is described by Eq.~108! for the diffrac-
tion ordersumu>1 and by Eq.~107! for the zero order. The
corresponding variation of the SH intensity can be calcula
as discussed above, i.e., using Eqs.~85!–~91!.

Following these steps, the SH intensity of the diffracti
ordersm50,61 was calculated as a function of the corr
sponding observation anglesu4

(2v) in the glass substrate. Th
result is shown in Fig. 8~b!. In the calculation, the inciden
angle of the fundamental field varies in the range
u4

(v)P^40°,50°&. Consequently, the SH beams of the ord
m51, 0, and 21 could be observed at angle
u4

(2v)P^34.3°,43.3°&, u4
(2v)P^39.5°,48.8°&, and u4

(2v)

P^44.7°,55.1°&, as depicted by the dashed, solid, and da
dotted lines, respectively. In addition to the strong variat
of the magnitudeof the SH intensity between the differen
diffraction orders, it is also the angular profile that vari
considerably between the diffraction orders. These dif
ences are associated with the fact that the radiation of a p
dipole itself exhibits strong angular anisotropy due to
interaction with the surrounding multilayer system, as d
14440
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cussed in the literature.23,24,47Due to this anisotropy, differ-
ent orders of the diffracted SH beams, which propagate
different angles, exhibit different angular dependences
their corresponding intensity.

IV. CONCLUSION

We developed a complete and comprehensive model
its computer implementation which is suitable for a descr
tion and evaluation of the second-harmonic generat
~SHG! from arbitrary multilayer systems. The model wa

FIG. 8. ~a! Envelopes of the SH diffraction patterns plotted f
various values of the incident angleu4

(v) of the fundamental field;
the solid, dashed and dash-dotted lines correspond tou4

(v)545.5°,
40° and 50°, respectively. The envelopes correspond to the
diffraction patterns generated by the structure shown in Fig. 7~a!.
~b! The dependence of the SH intensity of the diffracted SH be
on its observation angleu4

(2v) . The dependence plotted in the grap
is a consequence of the variation of the incident angleu4

(v) of the
fundamental beam in the range ofu4

(v)P^40°,50°&. The solid,
dashed, and dash-dotted lines correspond to the zero, first,
21st, diffraction orders, respectively. The spikes ending with the
triangles depict the angular positions and the corresponding in
sities of the diffracted SH beams corresponding tou4

(v)545.5°.
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THEORY OF SECOND-HARMONIC GENERATION FROM . . . PHYSICAL REVIEW B68, 144401 ~2003!
developed under the following fundamental assumptions
~i! The multilayer structure is assumed to consist of ar

trary homogenous materials, including lossy, anisotropic
magneto-optic media. Optical properties of each layer~com-
plex permittivity tensor, thickness! are assumed to be con
stant in the lateral dimension.

~ii ! The second-harmonic field is generated by a se
electric point dipoles located at the interfaces of t
multilayer structure, as a result of the local symmetry bre
ing. The complex amplitude of the dipoles is evaluated us
a phenomenological description of the surface nonlinea
i.e., by multiplying the square of the fundamental field w
the susceptibility tensor assigned to each interface.

~iii ! The total second-harmonic response of the multila
structure is calculated by the summation of all the sing
dipole contributions over the entire multilayer structure.
this process, an arbitrary spatial distribution of the susce
bility tensor can be accounted for.

The point dipole approach proves to be very conveni
and powerful, both from the formal and computational poi
of view. It can be applied in almost any situation~employing
planar geometry! where the spatial distribution of the sourc
of the SH field is known or to be studied. Due to the conv
nient matrix formalism used, the treatment is also very co
pact, elegant and can be easily implemented into a comp
program.

The model was applied in the area of magnetic-indu
second-harmonic generation~MSHG!, where the SHG ex-
periments provide a useful tool for studying the magne
properties of interfaces. The model was used to study
dependence of the SH intensity on the thickness of one of
layers and on the incident angle of the fundamental be
The systems under consideration employed interfaces
constant values of the nonlinear susceptibility tensors.
obtained results were found to be in a complete agreem
with those published in the literature.

The elegance of the developed model becomes appa
when the systems with an unhomogeneous distribution of
susceptibility tensors along the interfaces are conside
This can happen, for example, in the area of MSHG, wh
the magnetization of the layers, and thus the interfaces,
hibits variations in the lateral dimension due to, for examp
the presence of magnetic domains, propagating spin wa
magnetic nanostructures, etc., and where the optical pro
ties ~layer thicknesses and permittivity tensors! can be as-
sumed to be laterally homogeneous. To demonstrate the
pabilities of the model, we considered a trilayer system
which one of the layers contained magnetic domains w
periodically changing orientations. We found that the sin
beam of the SH field, which corresponds to the situation w
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‘‘diffraction pattern’’ of the SH beams with the angular spa
ing related to the domain periodicity. In addition to the a
gular spacing of the diffracted SH beams, the model is a
able to predict the intensity of a particular diffraction ord
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This is one of many possible implications that can
derived using the formalism developed in this work. T
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which can make the experimental realization of the implic
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