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Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics
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We study the nucleation mechanism of the defects responsible for plastic floéd@0afcc perfect single

crystal submitted to a shock wave. In the large-scale nonequilibrium molecular dynamics simulation, small
dislocation loops are created from thermal fluctuations just behind the shock front, in a narrow region of a few
lattice parameters width. Their critical size is measured. The activation energy for the formation of an edge
dipole, under high pressure, is computed within the Peierls framework. The elastic constants and the general-
ized stacking fault energy are computed from the interatomic potential. This model enables a qualitative
discussion of the influence of material parameters such as intrinsic and unstable stacking faults versus elastic
energy release.
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[. INTRODUCTION the elastic limit. Several criteria are developed to select the
atoms which belong to the region of localized slip, therefore
The propagation of a shock wave involves the displaceenabling a detailed study of the structure of the defects. The
ment of an interface between the initial materiebld and  second part is dedicated to the measure of the relevant pa-
relaxed and the highly compressed final state. Above a cerfameters for the nucleation: critical defect size, temperature,
tain shock strength, the unaixially compressed material iglucleation rate, propagation velocity. The third part focuses
unstable and relaxes to a hydrostatically compressed state, @ the potential-energy barrier for nucleation. The Peierls
general, by a plasticity mechanism. This occurs under &nodel is combined with finite elements to deal with the spe-

stress one or two orders of magnitude higher than the engfificS of high-pressure plasticity. This semiquantitative
neering yield streséhe deformation is of the order of 10% model separates the elastic contribution to the energy barrier

and under extreme strain rates corresponding to shock Vér_.om th_e npnlinear excess energy reIaFed to the displacement
locities of the order of km/s, i.e., nm/ps. Srritroposed a discontinuity across the slip plane. It is used to analyze the

mechanism where yielding occurs in a narrow region behinc?{”vmg forces for the nucleation and propagation of plastic-

. ) y at high pressure in terms of a limited number of param-
the sho_ck front _by way of a two-dlmen5|on(a_2[_)) array of eters: the resolved shear deformation, the intrinsic stacking
dislocations. This array follows the front annihilating the lat-

. . L fault, and the unstable stacking fault at different uniaxial
tice mismatch between the initial state and the hydrOStat'éompressions.

cally compressed final state.
Recently, atomic scale simulations have addressed this || pjRECT MD SIMULATION OF SHOCK-INDUCED
problem in defect free single crystdfor a review, see Ref. PLASTICITY
2). Nonequilibrium molecular dynamiddNEMD) using em-
pirical interatomic potentials is well adapted because it gives
the dynamics on a time scale compatible with the extreme We used NEMD computer simulaticht study a(100)
strain rate. Previous wotkhas shown that in th¢100) di-  fcc single crystal composed of 5464x 100 unit cells (1.2
rection, the shear stress is released by the formation of a 3® 10° particles. The influence of the cross-sectional dimen-
mesostructure involving slippage aloggl1) planes. A fas- sions on plasticity has been evaluated in a previous work
cinating, but still not fully understood, variety of plastic be- using box sizes up to 100100 fcc unit cells We have
havior has been found in th@10) and(111) directions? It ~ checked that the results we obtain are in agreement with
reveals the complexity of the crystal response, even in théhose obtained on bigger systems. The choice of a smaller
case where no initial defects are present. system was made here because we are interested in the struc-
In this work, we study the nucleation of crystalline defectsture of lattice defects in the first stages of plasticity and not
at the shock front, or at its immediate rear, in 00 in the stationary shock structure. A limited number of par-
perfect single crystals. From earlier wdtk, seems to be the ticles, even if it involves more noise in the shock wave pro-
simplest deformation mechanism, giving MD simulations thefiles, is easier to handle. This work will show that the size of
opportunity to reach an atomic description of the transitionthe system is large enough to limit the influence of the
between the elastic wave of the first moments of propagatioboundaries on the nucleation of plasticity.
and the steady plastic wave. In the first part, we perform Periodic boundary conditions are applied in thandy
large-scale NEMD simulations of shock propagation abovelirections. Boundaries are free in thélirection, except that

A. Technique
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a shock wave is created by giving the same veloeity, to  placement fields. It is therefore quite intriguing to check how
all atoms and imposing a momentum mirrorzt 0. The the defects rearrange in the steady state to avoid such incom-
initial temperature is given to the crystal by superimposing gatibilities. Therefore, the first criterion that we used detects
random thermal velocity on every particle according to athe “blocs” of matter which are translated. To decrease the
Maxwell distribution. The particles interact via a Lennard- thermal noise, the positions are averaged over a few vibra-
Jones(LJ) 6-12 pair potential. The range of the interactionstional periods (10Qt, where At=0.00%, is the NEMD

is 2.3 (second and third neighbors contribute about 10% otime step. Every atom with a transverse displacement higher
the cohesive energf. each, while fourth and fifth have than a threshold is preselected. Then, its first neighbors are
negligible contribution tdE;). The units ares (bond energy,  tested. If more than one-half of its first neighbors are dis-
ro (bond distancge and m (the mass of the particlefrom placed by roughly the same amount, the atom is considered
which the unit of timetozro\/m_/e is determined. The main as belonging to a sheared bloc of matter and printed to the
quantities measured during the simulation are the pressure k¢reen. The result is a map of the areas of homogeneous
the z direction P,,, the shear stres§r=31[P,,—3(Pyy shear displacemerithe compression in the direction does
+Py,)]), the density profilep, and the transverse tempera- not influence the criterionwhich should highlight disloca-
ture (kT,). This temperature is the mean kinetic energy intion emission in the first moments of plasticity.

the transverse directic{r%(vfpL vf,)]. It is an indicator of the This criterion s designed to .Chefk for”dlsplacement In-
compatibilities; it does not provide “clean” pictures of the

transformation of the uniaxial kinetic energgros) into  gisiocation line. It can also lead to very high numbers of
thermal kinetic energy. The local compressioelevant for  atoms selected in the case of high dislocation densities.
the characterization of the onset of plastitity difficult to  Therefore, a complementary criterion is needed. We modified
measure because the denSity fluctuations are hlgh behind tkﬂ% “Centrosymmetry parameter” deve|0ped by Ke|ch§]er,

shock front. Nevertheless, the average c_ompression can Rghich we call the “modified centrosymmetry parameter”
determined from the mass flux balance in a steady, plangmcp). Its value at the atomic sitieis

(one-dimensionalshock: pous= p(us—Uup), wherepg is the

initial density of unshocked material,is the final(shockedl -

density,u,, is the piston, or particle velocity behind the shock Ci=2 Iy +rj.6l? (1)
front, which propagates at velocity . For a shock in the fcc .

(100 direction, with a short-range LJ potential, Germann,, e Fj and Fj+6 are the positions at time of the first

et al.” have measured'an elastic limit of QZchh corre- neighbors of atoni at timet,, which att=0 formed oppo-
sponds to a compression of 14%, the typical deformation we, .z - . . .
deal with in this paper. site pairs (;=—rj¢). In our simulation, the crystal is per-

fect at timety, but the parameter can be used if the box
contains initial defects, too. This criterion allows us to track
the nucleation and propagation of any type of defgctint
One method widely used for the detection of dislocationsgefects, dislocations For example, after the passage of a
in atomic scale simulations in fcc materials is the identifica-perfect dislocation, the crystal shows no trace except that the
tion of local hep configurations. These stacking faults are theyeighbors of the atoms of tHd 11} planes above and below
traces left by the movement of Shockley partial dislocationsthe glide plane are no longer the same as before. They will
The method is based on the “common neighbor analysis” have high MCP values. Therefore, the modified centrosym-
which can distinguish these structures by the difference imetry parameter allows us to follow the “trajectory” of the
bonding between the common first neighbors of a pair ofjefects, without knowing their natuge priori.
atoms. In brief, we have used criteria specific to large elastic
Another method which provides quantitative information compressions, which require no prior knowledge of the de-
about the dislocation structure and position is proposed ifiect structure and are computationally very simple, for an
Ref. 7. The measure of the slip distribution along the glideefficient implementation in large-scale NEMD simulations.
plane gives the Burgers vectbr Moreover, its gradient ex-
hibits a peak at the position of the dislocation line, enabling
a precise localization of the defect. This method can be used
to characterize a slip defect when its nature is not precisely We performed NEMD simulations at piston velocities just
known, but, unfortunately, it requires too much work to beabove the elastic limitu,=1.7 and 1.9 in reduced LJ units
done “on the fly,” if one has no ideaa priori, on which  (y/e/m). At these velocities, the density of defects is low
plane slip will occur. enough to enable a detailed study of the first few moments of
If we consider an ideal edge dislocation, at zero externatheir creation.
stress, constructed by including an excess half plane on one At the scale of the whole sample, plasticity can be de-
side of the glide plane, its displacement will involve thetected by following the time evolution of the shear stress
propagation of a long-range displacement field of vahie profile. Figure 1 shows three profiles at different times. The
even far away in the direction normal to the glide plane. Inshock wave propagates from the left to the right in the lon-
the case of plasticity induced by a shock wave in a perfecgitudinal directionz. As previously reported,shock propa-
crystal, the nucleation and propagation of such dislocationgation is elastic during a relaxation time before the shear
should be done without incompatibility between their dis-stress decreases to a steady nonzero value. The first defects

B. Defect detection

C. Structural model
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FIG. 1. Uniaxial and shear pressure profiles in reduced units, at
three different times. The longitudinal direction i$200 direction.

The piston velocity isi,=2.3 Jeim. FIG. 3. Slip distribution of the defect represented in Fig. 2. The

uniaxial compression is compensated. The reference axes are those
are detected close to the shock front at tirpéFigs. 1 and  of Fig. 2c).
2). In the following paragraph, they will be identified as . )
high-pressure Shockley dislocation loops. They are formegdible to get detailed structural data about a defect subjected
homogeneously in a thin slice of about fiy@00+ planes ©nly to weaker elastic interactions. FigurPis a top view
moving with the shock front. The MCP shows that the Of such a loop as revealed by the MCP criterion. The normal
slipped region in the glide plane is a small plate with thet0 the defectis 4111 direction (Y axis). X is the direction
shape of an ellipséFig. 2. Once initiated, a slipped region Of easy glide in the fcc structure, name{}t12) andZ is a
expands in all directions in its glide plane, which involves (110 direction[Fig. 2b)]. The displacement field around
the shearing of the elastically compressed crystal at the badke defect is represented by the atom’s position on a trans-
of the nucleation zone, and a propagation of the defect toverse cut perpendicular to theaxis (Figs. 2c) and 2d)].
gether with the shock front. No “macroscopic” shear releaseTwo {220 planes are projected on the cut plameite and
is measured on the shear profile in these first mom@gs ~ black atomg The elastic uniaxial compression-4%) has
1). When these defects get wide and dense enough, thd}een compensated to highlight the defect position. The hori-
intersect and form a cellular mesostructirethich can be  zontal axis is the longitudingl100) direction of the crystal,
associated with a shear stress rele@sg. 1, timets). i.e., the compression axis. The stacking fault corresponding
It happens that the first loop reaches a noticeable sizt0 the slipped region is clearly visible. As expected for a

before the smaller ones can intersect it. It is therefore posshear defect, the plane of the stacking fault is strongly in-
clined with respect to the compression axis. A close look at

the picture will reveal the elastic bending of the planes above
and below the stacking fault.

The essential characteristic of this kind of slip defect is its
Burgers vector: the amplitude of slip in the slipped region of
the glide plane far from the dislocation line. It can be mea-
sured from the slip distribution&, , 8., , 8,) (),

X Y

- - ©

(a)
S (x)=ul"(x) — ul(x), )

>

UL L XL XY XX XXX XX XX XL XXX X L)

where u; is the displacement in the planeparallel to the
glide plane. Figure 3 gives the slip distribution in tRedi-
rection corresponding to the configuration[Bfg. 2(c)]. The
{111 plane immediately below the stacking fault is labeled
0 (i is positive for the planes wheré=0). The slip distri-
bution shows that, in the inner part of the defect, the slip is
0.45, which is the value of the translation used to create a
stacking fault (1/6112)) in the uniaxially compressed crys-
tal (see Sec. Y. The defect is therefore a Shockley partial
@ dislocation loop. The transverse cut in Figc2 perpendicu-

© lar to the edge segments, can be viewed as a pair of edge

FIG. 2. Detail of a quasi-isolated defesnapshat The normal ~ Shockley partial dislocations, of same glide plane, but oppo-
to the slip planY) and the slip directioriX) are presented ife), ~ SIt€ SIgn, spontar_1eous|y formed ina perfect crystal under
whereY and X are, respectivelyf111) and (112 directions. The high pressure. It is not easy to define the excess planes on
orientation of ,Y) with respect to the longitudinal directiaty is  this figure because the bending of the planes perpendicular to
shown in(b). Transverse cuts along(Y), real (c) and schematic the glide plane is not localized in the vicinity of the disloca-
(d), highlight the displacement discontinuity —u~ across the slip  tion line. This configuration is the one proposed by Orowan
plane.agpeq, is the resolved shear in the glide directios)( in his early model of local gliding:1° This model gives a
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different picture of the displacement of matter after the pas- & ' ¥
sage of a dislocation, compared to Polanyi and Taylor lattice ‘ . ’

B

dislocation!®*! In the first case, the dislocation “cures” the
shear displacement imposed on the crystal by the external
forces. As a consequence, the displacement of the atoms,
with respect to the presheared lattice is limited to the vicinity
of the glide plane. In Taylor's model, the edge dislocation is
represented in an unstrained lattice, and the excess plane can
be clearly identified. The defect displacement involves the
relative translation of the entire half crystal above and below
the slip plane. If the external shear is small, the two models
converge. In the simulation, we have confirmed that the dis-
placement of the atoms on twWd 11 planes on each side of

the glide plane rapidly converges to a constant value, inde-
pendent of the atom position with respect to the core of the
loop, when the distance between the planes increases. Fur-
thermore, the shear displacement field shows only coopera-
tive translations on the first four planes in the vicinity of the
loop. This confirms the adequacy of Orowan’s model. The
specificity of this high-pressure defect is that its elastic strain
field is localized in theY direction and uniformly distributed
along the stacking fault, instead of being mainly localized
around the dislocation line. It is also clear that there are
neither strong interactions between the defects because of
displacement field incompatibilities nor between the defects (@ (b)
and the shock front or the periodic boundary conditions, at
least when the loop radius is small.

FIG. 4. Defect nucleation at,=2.3ye/m. (a) and(b) are tilted
around thg(010) axis, (b) is a side view of the shocikhe propaga-
tion occurs towards the right

Ill. STUDY OF THE NUCLEATION MECHANISM
) ) ) ) o noticing that their number is small compared to the number
We perform MD simulations with piston velocities in the 4t small loops at the front. This is not related to an increase
range[1.9;2.9 on shorter but wider samples than before ot he nycleation rate in time, but shows that a large fraction

(90X 90x76 (100 unit celly. The aim is to localize the of the nuclei at the front do not propagate, but slip back to a

defects to gain some statistical information about the nucleperfect lattice configuration. The role of the temperature can

ation mechanisntnucleation rate, critical defect size, influ- pe stressed further by noticing that there is not any nucle-

ence of the temperature and of the shear stress ation at the back of the front, where the temperature profile
(Fig. 5 increases withg, even if the shear stress is high.

A. Localization of the nucleation Indeed, dislocations are still too few and have not propagated

. enough to cause a shear release.
We use the MCP to detect the formation of defects. A Therefore we can spatially decompose the plasticity pro-

small loop is considered as a nucleus if it contains at leatess: nucleation in a narrow zone behind the shock, where

one atom and its first neighbors. Let us r_ecall that the MCRpear and temperature are high, and propagation in the rela-
selects the atoms above and below the glide plane, so that &Jely cold but highly sheared region.

atom in the middle of a stacking fault will have six first
neighbors selected in tHd11} plane where it sits and three .
in the plane above or below. In this analysis, a defect is B. Critical defect

therefore a local glide involving at least nine atoms. Figure 4 The nucleation is analyzed within a moving window fol-
shows a typical image of an early time of plasticity. lowing the shock front. Only loops of limited size are con-

It is clearly visible in Fig. 4 that the small defects sidered &700 atomg Figure 6 presents the number of loops
(“small” will be related to a critical size in the following in this window as a function of time for four different shock
paragraph are localized in a thin zone of the order of 6  strength. For comparison, the maximum transverse tempera-
This is shown quantitatively in Fig. 5, where the loop distri- ture is also represented. This value is reached just behind the
bution is represented by two histograms: the number of loopshock front(Fig. 5).
and their average size as a function of the position of their The onset of plasticity is well correlated with the maxi-
center of mass. The comparison with the shear and temperaaum of the transverse temperature for the various shock
ture profiles shows that loops of under 50 atoms are nuclestrengths. However, the role of temperature is not straight-
ated just behind the shock front, where the shear and thiarward: there is no nucleation during the rise time for high
transverse temperature are maximum. Wider loops obviouslghock strength, even if the temperature is higher than what is
have a center of mass further behind the front, but it is wortmecessary for nucleation at low shock strength. This indicates
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oms from the instant when it appears,(¢ication. Atoms
FIG. 5. Localization of the nucleation of the loops. A histogram, involved in a local glide are detected every 2%0 There-
representing the number of loops as a function of the position of théore, the nucleation really takes place betwegp:ication
loop’s center of mass, is superimposed upon the shear pressure250At andt,,¢jeation Starting from configurations where
profile. The transverse temperature profile and the histogram of thgn|y a few atoms are displaced. The critical size is the maxi-
average loop size are presented below. The piston velocitiy is  mum size a loop can reach before it shrinks and disappears.
=2.3/e/m. We distinguish two populations: the undercritical and over-
critical defects. The average size of these populations is plot-
that the creation of nuclei requires the formation of slip fluc-ted as a function of timéFig. 7).
tuations which are not captured in detail by the transverse The bars represent the mean-square deviation. For the un-
temperature. dercritical population, the bars are small, which reflects that
Since we know(by comparing the number of large loops a large number of nuclei can reach 30 atoms in size and then
with the number of nuclgithat a large fraction of nuclei does disappear within 508t. Nevertheless, by taking the average
not propagate, we can look for a critical defect size. Foronly over the undercritical loops which have a bit longer
every defect, we measure the size evolutionomber of at- lifetime, the curve goes through a maximum close to 50 at-
oms: the critical size. The piston velocity does not seem to
‘ w19 have an influence on the critical defect size, but only on the
F V=V % . . L.
& 2001 —t 0221 lifetime of undercritical defects.

— up=2.3

C. Dislocation loop propagation

'
[\~

At high piston velocity, the nucleation rate drops as the
large loops propagate and release the shear gfags7). A
possible reason is that the region where the shear stress re-
mains high, behind the shock front, is too narrow for the
nuclei to reach the critical size before the shock front moves
and the defect sits in the partially relaxed region.

At low piston velocity(1.7 and 1.9 the defect density is
low enough to enable the study of the propagation of the
large loopg(Fig. 8). The velocity of the screw and edge loop
segments are measured as a function of the loop diameter.
We find that these values rapidly converge to constants.

—
)

32kTand kT, ()

18
=3
uu

<

ZPshearv/Ne

2000 4000 6000 :
Time (MD steps, At=0.001,) These are 3.2 and 2(4J unit9 for edge and screw compo-

nents, measured by averaging over 40 large loops of the type

FIG. 6. Time evolution of the number of small loops fop presented in Fig. 8. This explains why the loops develop in
between 1.9e/m and 2.5/e/m. The surface section is 90 the shape of an ellipse, the long axis being perpendicular to
X 90(100 unit cells. the edge component. The measure is not precise enough to
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@ (b)

(d

® (h) @)

FIG. 8. The pictures, taken every 25f{At=0.001,), show the propagation of a loofd), (e), and(f): A small defect, lying in the same
plane, is absorbed.

see the influence af,, directly, but it can be estimated from  The nucleation of dislocation loops in perfect crystals has
Fig. 7 by assuming thais ey~ 0.8Ucqqe, Whatever the pis- been discussed in the framework of the elastic theory of
ton velocity. Then the time evolution of the number of atomsdislocations'? The energy needed to create a loop of radius
involved in the local glide is a parabolic function of has two contributions: the elastic energy stored in the crystal
—thucleation With the prefactor O.Gﬁdge_ because of the dislocation and the work done by the external
Previous studiéshave shown that, in this crystallographic shear stress. The shear release obtained by the expansion of
orientation, the “plastic wave” can catch up with the elastic the loop (~ wr?ab) compensates the excess elastic energy
front. We now know that because the nucleation rate is smalfgelated to the dislocation line. By optimization of the total
the steady plastic wave is caused by the same loops, followenergy with respect to the radius of the loop, one obtains the
ing the shock front and organized in the mesostructure recritical radius and the activation barrier that the loop has to
ported in Ref. 3. overcome. Any smaller defect will shrink back to a perfect
We have shown that plasticity in thegl00) direction is  crystal. It is shown that the applied shear stress should be
initiated by a nucleation process in a narrow, uniaxially com-close to the theoretical elastic limig(30, far from the do-
pressed zone, under high temperature, just behind the shoskain of validity of linear elasticity for activating such a
front. We have not discussed the specificity of this crystallo-mechanism, which is two orders of magnitude higher than
graphic orientation. In the following section, we compute thethe experimental yield point of ductile materials at low de-
activation energy in the Peierls framework and discuss thérmation rates. In the shock wave simulation, however, the
influence of the(100) uniaxial compression on the nucle- stress levels are high and the classical homogeneous nucle-

ation process. ation is likely to be relevant for predicting the onset of plas-
ticity.

IV. DRIVING FORCES FOR THE ACTIVATION OF One drawback of the elasticity analysis is the core cutoff

NUCLEATION (several Burgers vectotts) that is used, because this is the

order of magnitude of the critical radius we have to deal

As we have detected the nuclei at the back of the shockiith. The Peierls-Nabarro concept can be used to overcome
front in the elastically compressed material, we simplify thethis difficulty, as Nabarro did to study the creation of a dis-
problem by considering the homogeneous nucleation in ocation dipolé® and Rice!® more recently, to study disloca-
uniformly deformed crystal. The defects appear, for this crystion emission at a crack tip. This model has been revisited by
tal orientation, only in a thin slice of matter in the vicinity of Bulatov and Kaxiras* who have shown with careful com-
the front. There should be an influence of the stress gradienparison to fully atomistic calculations that it can be used to
but we will not consider this in our first approach to the compute the core structure of dislocatidnsn this section,
problem. we build a semicontinuous model, coherent with the MD
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atomistic calculations, and based on the Peierls-Nabarro comhe vicinity of the defect so that the stored energy does not
cept. Following classical nucleation theory, this model isdiverge, contrary to an isolated dislocation. Therefore, we
used to compute the critical radiug for the creation of compute the stored elastic energy in a finite rectangular box
Orowan'’s glide defects, as a function of the predeformatioraround the dipole, using finite elemerfsE). The defect is

of the crystal, limited for this calculation to a resolved sheamo longer viewed as a dipole, but as an Orowan local glide,
in the slip direction. The interest of such a model is thecharacterized by a slip distributidr;}.

natural separation of the energy between an elastic part com- The displacement of the atoms above and below the slip
ing from the bending of the planes normal to the glide planeplane,u™(x) andu™ (x), has to be specified to characterize
[Figs. 2c) and 2d)] and the excess energy due to the dis-the slip discontinuity. We chose to use the variable)
placement discontinuity across the glide plane. It highlights=u™(x) —u~(x) instead ofu™ (x), because of its relation to
the driving forces for the onset of plasticity: the barrier as-the GSF.aspe, iS the preshear deformation in the glide di-
sociated with the unstable stacking fault and the elastic enrection[ X, Fig. 2d)]. Because th¢100) uniaxial compres-

ergy release distributed all along the stacking fault. sion is contained in the plane composed of the normal to the
glide plane and the slip directiorX(Y), there is no defor-
A. Dislocation model mation out of that plane. Therefore, the problem is two di-

mensional. The preshear deformation is related to the
uniaxial compression in the last paragraph, where the influ-
ence of the other components of the resolved deformation are

Within the Peierls framework a dislocation of Burgers
vector b is characterized by a distribution of displacement
discontinuitiess(x) across the slip planghe axes are those discussed
of Fig. 2d)]. To compute the elastic field, without core cut- The FE.mesh is rectangular and related to the atomic scale
off, the dislocation is considered to be composed of infini- o gu :
tesimal dislocations. The elementary Burgers vector at pospy the definition of the dimension of the elemt_antl&(
tion x' is =3rg,ly=(\/6/3)ro,1,=r,), each element containing two

atoms. The elastic constants, taken from the atomic potential,
5 are converted from energies per atoeigt) to energy den-
b’ (x")dx’ = (&) (x")dx’, (3) sities. Since the fcc cell contains four atoms, the conversion
implies a factor of (4;(8). With these length and energy
with scales, the stored elastic energy, obtained by integration over
Y the FE mesh, is consistent with MD. The system is separated
f b'(x")dx' =b. (4) in_t_o two parts, a_bove and below the glide plane. Border con-
o ditions are applied to each part. On the horizontal borders,

The analytical solution from elastic theory for screw andthrisﬂ'ggagﬁmoenn; ISSI dlgliosdeir?\:e;hs?ogIsopflétﬁimt?c?; (ijsuTa:oethe
edge dislocations in an unstrained lattice gives the field inP h | h field of th f hi 9
duced by the elementary dislocation. The stress in the g“dgnoug to neglect the stress_ leld of the de ?Ct on this bprder

andu™ oru~ on the other side. On the vertical borders, the

plane is obtained by integration over all elementary defects.

The stored elastic energy is the work done by the stress O%tresses imposed to simulate an infinite medium are

the surfaces of a cut when the dislocation is formed by the C c

14 1112 “1212
Volterra procedure. Bulatoet al.** developed an energy 0'=( Z)tanashear. (6)
functional which is composed of this elastic energy, plus a Ci212 Com

“core” energy related to the displacement discontinuity. ThisThe system is symmetric with respect to thaxis, so the FE

last term is estimated by mesh is the same above and below the glide plane; therefore
the same rigidity matrix can be used, but with different bor-
der conditions.
8(x))d 5
J 7(3))dS ® A configuration is therefore defined birepeanu™ (X),

where y is the generalized stacking fault energy surface®(X):Nc), wheren. is the number {111 planes above or
(GSP.1” The GSF is computed from atomistic models by below the glide plane that d.efmes the cutoff for the e_Iast|c
rigidly translating the crystal above the slip plane with re- calculation. The' total potential energy of the system is the
spect to the lower part by a uniform vectdr Both compo-  Sum Of the elastic energy and the core endajyained from
nents, elastic and core energy, are functior5@f). By dis- the G_SF;' The GSTF IS qomputed fr<_)m the atomistic potential.
cretizing 5(x) over the atomic rows, the dislocation structure The fields are discretized by taking their valges at _the FE
can be obtained by minimization of the functional with re- "°des. The structure and energy of a loop is obtained by
spect to{ 8. minimization of the numerlcal functlona}l with respgctuﬁ '
As a first approach, a shock-induced defect is describe@nd éi, Some nodes’ displacements being constrained to im-
by the simplest configuration: an edge dipole which correP0se the “radius” of the slip defect.aihear.Nc) are param-
sponds to the edge segments of the Shockley loop in Figters-
2(c). The energy of this dipole is computed following the
energy decomposition exposed above, but without making
reference to a distribution of dislocations. We know, from The excess energies coming from the mixed model and
elasticity, that the stress field around a dipole is confined ifrom atomistic calculations are first compared for simple

B. Uniform slip distribution
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3

of this work, which is dedicated to the qualitative discussion
of the driving forces for defect nucleation under high pres-
sure.
7 One of the driving forces is the shear release. In the case
of uniform {&;}, the mixed model shows that the elastic
bending of the planes normal to the glide plane relaxes the
preshear, contrary to the case at zero prestrain. Not only is
the energy at the unstable stacking fqWSF position low-
ered, but also the stacking fault enei@FE at the intrinsic
position is lowered. This means that the energy barrier is
lowered and that an infinite stacking fault is stabilized. This
o o is particularly striking here because the SFE is already low in
0 0.2 0.4 0.6 0.8 an unstressed crystéh drawback of the LJ pair potential
Displacement discontinuity (1) but this analysis shows that even in the case of a positive
SFE, the crystal could develop local glide defects, provided

FIG. 9. Excess energy per atom of the stacking fault plane, as g5t the defect and the preshear are large enough to induce a
function of the displacement discontinuity and foru™=0. The noticeable shear release

data obtained by MD are represented by symbols, those obtained by A finite-size glide defect would have a-distribution

the mixed model by “nes'. .The. agreement Is quantitative f_o r IOWspread over the entire spectrum. The inner part of a large
preshears (taag, .5, is specified in the legendbut only qualitative | ill fall in th h the SFE i ted b
when tanu,.,>0.025. oop will fall in the range where the IS compensated by

the shear release. Therefore the negative excess energy of the
inner part of the defect can compensate the high energy of
configurations where™ and 5 are uniform. In the atomistic  the dislocation line: the border between the slipped and the
calculations, the positions of the atoms of the first planes ominslipped portion of the glide plane, where most of the atoms
each side of the glide plan& &0) are fixed. The rest of the fall in the region which corresponds to the USF. This is,
system, within a cutoff distance is relaxed by quenched moegualitatively, the origin of the critical radius which is com-
lecular dynamic§QMD). A strain field is therefore induced puted below.

by the energy minimization constrained by the border condi-
tions.

When the defect is infinite, the cutoff has an important
influence on the value of the stored energy. Let us consider The configuration considered here is an edge dipole under
that the elastic field is the uniform shear: @dje.~=1/n;. high pressure. The critical separation of the dipole is com-
So, if n, becomes large, the shear goes to zero, and thputed using the mixed model, for preshears ranging from
configuration is the same as two half crystals translated, redanagne,~=0.02—0.055. We know from the uniform slip dis-
spectively, bys=1: the stored elastic energy decreases tdribution analysis that, above tan.,~=0.02, there are val-
zero and the excess energy reduces to the GSF. The cutafés ofu™ and § which involve an energy decrease. There-
has no real meaning here, but we set it arbitrarily t§ 201} ~ fore, it is possible to find the structure of a finiventually
planes, in order to have a nonzero stored elastic energlarge defect for shears higher than this value. The procedure
thereby enabling the discussion of the shear release. is the following.

The excess energi(d), for u*=0 andn,=20, as a (1) The initial configuration characterizes the width of the
function of the preshear (tan,.,) are presented in Fig. 9. defect: the inner dipole nodes are those whefeand 5 are
The QMD (symbols and mixed calculatior{lines) are in  setto nonzero values and are not constrained. All other nodes
excellent agreement fargp.,=0. The comparison with the in the glide plangouter dipole nodeshave fixed, zeroy™*

GSF shows how the elastic distortions add up to the sligand § values.
discontinuity to increase the energy barrier for slip nucle- (2) The energy is minimized with respect td and 6 of
ation. the inner dipole nodes.

When the crystal is prestrained, the comparison between (3) If a metastable configuration comes out of the mini-
the two models is still quantitative up to tag,.,~=0.02  mization, the defect width and the excess energy per inner
(Fig. 9 and only qualitative above. At tan,.,~0.054, loop atom are measured. If the configuration goes to zero,
which is close to the resolved shear at the MD elastic limitwhatever the initial values af " and g, the width that we try
we have checked that the difference is of the order of 30%to impose is below the dipole critical separatiqn
The elastic relaxation of the shear stress is overestimated. As The definition of a cutoff radius is critical for the elastic-

a consequence, the elastic limit obtained by the mixed modety calculation because the excess elastic energy is an inte-
should be too low. One reason for this is probably that thegral over a large region. A cutoff that is too short can lead to
prestraining is outside the range of validity of linear elastic-large errorg100%. It was defined here by taking a configu-
ity. The calculation of the energy of a sheared perfect crystatation and computing the energy as a function of the number
from atomistics already shows a discrepancy of the order ofiodes in the direction normal to the glide plakeThe cal-
30% with linear elasticity. Including higher-order terms culations show that the excess energy convergeblfequal
would probably improve the model, but it is out of the scopeto twice the number of inner loop nodes, which means that

— [\~

Excess energy (&/at)

¥

C. Local glide defect excess energy at high pressure
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FIG. 10. Excess energy per atom of the dipole configuration, as 0 0.2 0.4 0.6 0.8

a function of the separation between the dislocations. Displacement discontinuity (r,)

the stress field is negligible at distances higher than the di- FIG. 11. Influence of a uniaxial compression in {160 direc-
. . - . . tion on they surface.

pole separationl(~0.47,), in agreement with dislocation
elasticity theory. We expect similar results in the case of 3D o .
loops. It gives some confidence that the periodic boundar§/10(_)> compressmrﬁFlg. 1])‘. Yus 1S NOL affected, whereqs the
conditions should only have a limited influence on the nucle-?sf 'S largely negative, Wh'c.h Is in favor of th.e. formation of
ation and the first moments of propagation of the loops in thd'nY IOOPS'_OH the contrary, in the on-top position, the excess
NEMD simulations, as checked in Ref. 3. As long as their8N€r9y is increased by a factor 2. This has no effect here,
radius is noticeably smaller than the transverse dimensionRecause this part of the GSF is never explored during the slip
of the box, they do not interact with themselves. process. Neyertheless, itis an |n'd|cat|on that the predeforma-

The maximum excess energy at fixed,.,, found in this tion mlgh'g INCreaseyus and_ Yst if, contrary to the(100)
calculation is taken as the activation enerds, ) (Fig. 10. compression, t_he deformation out of the p_Iane composed by
The mixed model shows th&, (respectivelyr;) decreases fthe gllde Q|rectlon and thg normal to the slip pIar@z)(,QY_ .
linearly as a function of tafpe,, from 0.25/at (respec- N Fig. 2 is not zero. Th|s_ (_:ould increase the elastic limit
tively 916r,) at tanagpea=0.02 to 0.12/at at tanaghear even in shock directions vicinal §100.

: . : The tendency of having a negative intrinsic stacking fault
=0.055(respectively 4/6r,). By extrapolation, we find that e . L )
E, is of the order of O.&/at for small defects f, energy with increasing compression is a well-known draw-

o : back of the Lennard- ial. E if we h h
~3./6r,). For a(100) uniaxial compression the resolved e Lennard-Jones potential. Even if we have shown

. : the important role played by, and yss, it is a nontrivial
shear tamshea is related to the compressionby task to try to reproduce these quantities withrabody po-

V2 (1420 (A —1) tential (such as embedded atom methéat a specific metal.
R — 7) Not only it requiresab initio data under uniaxial compres-
9 A sion, but it has been shown recently thgt under compres-

which gives\ ~0.85 for tana,;.,~0.064. This is the elas- Sion depends on long-range interactiohs.
tic limit given by the NEMD simulations. We give a quali-
tative estimate of the activation energy in 3D by considering
that the critical loop observed in MD involves 25 atoms,
each carrying ait, of 0.1e/at. The energy barrier is there- We have studied the plasticity mechanism in a perfect,
fore 2.5, of the same order of magnitude of the temperaturenfinite, (100 single crystal submitted to a moderate shock.
behind the shock (BT/2~2¢). A picture of the nucleation process, at the atomic scale, is
The mixed model gives a good order-of-magnitude esti-obtained by NEMD simulations. They show that the shear
mate for the excess energies compared to the NEMD simustress is partially released on the picosecond time scale by
lations. It enables a qualitative discussion of the importancéhe formation of Orowan’s local glide defects: a high-
of the GSF versus elastic distortions in the excess energy gfressure version of a dislocation loop with Burgers vector
the loops. The energy decomposition shows that the elastig(112. These loops are created by thermal fluctuations in a
energy is not negative for the tiny loops, as opposed to thearrow region of five lattice parameters width, just behind
large loops. For these configurations, thedistribution is  the front. In these early moments, the shear stress is high and
very steep with a plateau value (0y intermediate between the whole sample behind the shock is uniaxially compressed.
the unstable and the intrinsic stacking fault. Therefore, thédowever, there is no nucleation until the transverse tempera-
metastable configuration stems from a balance between tHare reaches its peak value, highlighting an activated process.
tendency to place the inner atoms as close as possible to tlhecareful investigation of the time evolution of the defect
intrinsic stacking fault configuration and the elastic distor-population gives evidence of a critical size, at an atomic
tions that it involves at the dislocation line. level, above which a loop expands with no possibility to slip
For the Lennard-Jones potential, the GSF is only weaklypack to a perfect configuration. Such defect is a 5
modified by the preshear, but more largely by the uniaxialx5 atont area of local glide.

tanaspear—

V. CONCLUSION
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The activation energy is estimated by a semiquantitativehe real systems where the initial microstructure probably
calculation of the formation energy of an edge dipole in theplays a crucial rolé® In single crystals, further work should
Peierls framework. The calculation shows a linear decreastcus on a quantitative calculation of the activation energy or
of E, with the resolved shear in the slip direction. By ex- critical stress for vicinal orientations, in order to test the
trapolation, we find an activation energy of 2r the criti-  orientation dependence of the elastic limit. In particular, the
cal defect, a value of the same order of magnitude as thgnergy saddle points corresponding to the tiny defects should
temperature (BT/2~2e¢) in the nucleation zone. The use of pe investigated by a more accurate method. Furthermore,
the Peierls model has shown that shear relaxation is the dri\previous Worﬁ has shown different p|asticity mechanisms

ing force for the propagation of large loops, but not for thefor (111) and(110 orientations, which still lack structural
formation of tiny loops. In this case, elastic distortions at theexplanationg®

dislocation line add up to the GSF. We have shown that both
the unstable and intrinsic stacking fault energies under high
pressure play an essential role in the formation of the critical
defect.

Further work should incorporate initial defects such as We wish to acknowledge Robb Thompson, Kai Kadau,
grain boundaries or impurity clusters and study the effects ond Jim HammerbergLos Alamos Nat. Labh. D.T. also
stress concentration on plastic flow initiation. This would bethanks Professor R. Fortuni¢Ecole des Mines de Saint-
an intermediate step between the perfect single crystals artetienng for his support for the elastic calculations.
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