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Atomic scattering factor for a spherical wave and near-field effects
in x-ray fluorescence holography

Jianming Bai
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
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A formula for calculating the atomic scattering factor for spherical x-ray waves is derived and used to solve
the near field effects problem in x-ray fluorescence holography theory. A rigorous formalism to calculate the
x-ray fluorescence hologram is then given so that quantitative structural information can be obtained from these
holographic measurements.
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I. INTRODUCTION

Atomic scattering factors~ASF’s! are used in numerou
crystallographic calculations. Their values are tabulated
the International Tables for X-ray Crystallography. These
ASF’s are defined under the assumption that both the x
source and the detector are far away from the scatterer
that both the incident and scattered x-ray can be represe
by plane waves. This assumption is valid for most x-r
scattering experiments until the emergence of x-ray fluo
cence holography~XFH! in recent years.1–3 XFH, because of
its unique view point, is a new technique with great poten
in exploring the local arrangements of atoms. However
needs further developments in two respects. First, becau
the low signal/background ratio~typically 1024 to 1023), it
takes several days to collect data on a single hologram e
with synchrotron radiation. The bottleneck is not the x-r
intensity but rather the detector speed. This problem w
eventually be solved with the development of high-spe
detectors. Secondly, the XFH is not yet a quantitative met
because the real space field intensity image reconstru
using the well-known Barton algorithm4 is deviated from the
real electron charge density. This deviation may be cause
the angular dependence of the scattering power of atoms
spherical wave. One way to solve this problem is to us
nonlinear least-square-fitting algorithm to accurately rec
struct the atomic arrangement; this requires a rigorous
forthright formalism to calculate the hologram. It is the o
ject of this paper to derive the required formalism. In XF
the fluorescence atoms inside the sample are used eith
sources~in direct XFH! or as detectors@in inverse XFH, also
called multiple energy x-ray holography~MEXH!#. The dis-
tance between the radiation source and scatterer, or the
terer and the detector, is comparable to the size of the e
tron distribution of the scatterer. In this case, atom
scattering factors for a spherical wave should be used in
quantitative analysis for XFH. In most of the earlier wor
involving XFH calculation, a first-order approximation ha
been used.5 This approximation assumes that the size of
core electron distribution of the scatterer is much sma
than the radius of the incident spherical wave front and
thus valid only for a pointlike scatterer. Tegze and Fai
investigated this problem by first formulating the hologra
of a single electron and then calculating the hologram of
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atom using numerical integrals over the charge density a
ciated with the atom.6 In this way they correctly calculated
the effect of the wave front curvature at expense of
simple form of hologram equation as in Ref. 5. With co
rectly defined and calculated ASF for a spherical wave,
will be demonstrated in this paper, we can retain the sim
form, which is simply a sum of products of the precalculat
ASF and an exponential phase factor of the atoms contri
ing to the hologram, and include the effect of curved wa
front. In the following section, the formula of the ASF for
spherical wave is first derived for a scalar field. The on
assumption is that the source~or detector! is outside of the
electron distribution of the scatterer, which is always sa
fied in XFH experiments. A method to calculate the spheri
wave ASF from the electron density distribution or fro
tabulated plane wave ASF’s is developed. Its dependenc
the atomic radii of the scatterer, the source-scatterer
scatterer-detector distance and the wavelength is then ex
ined in the example calculations. Given the similarity b
tween the definitions of x-ray and electron ASF, the sa
scheme can also be used to calculate the spherical wave
for electrons in the high-energy regime, which can be use
correct the ‘‘small atom approximation’’ in photoelectro
spectroscopy.7 In the third section, a XFH formula is derive
from the theory of a vectorial field. A generalized form fa
tor, which includes the near-field effects originates from bo
the vector nature of the electromagnetic field and the cur
wave front, is obtained in terms of the spherical wave A
and its derivatives.

II. ATOMIC SCATTERING FACTOR
FOR A SPHERICAL WAVE

The x-ray fluorescence hologram is formed by the int
ference of the reference wave and the object waves. In di
XFH, the reference wave is the fluorescence radiation fr
the emitter atom and the object waves are the scattered
rescence radiations from the surrounding atoms. In ME
the reference wave is the incident plane-wave and the ob
waves are scattered from the atoms surrounding the fluo
cence emitter. The intensity of the fluorescence is a recor
the interference pattern. In classical electrodynamics,
normalized x-ray fluorescence hologram is written as
©2003 The American Physical Society09-1
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x~k!52r e(
i
E dr

r~ ur2r i u!
r

ei (kr2k"r )1c.c., ~1!

wherer e is the classical electron radius andr~r ! is the elec-
tron charge density. Ther is centered at the fluorescenc
emitter; r i ’s are the centers of the scatterers and c.c. is
complex conjugation of the first term. To concentrate on
near-field effects caused by the atomic scattering factors
consider here only the scalar wave equation. The near-
effects caused by the vectorial nature of electromagn
wave will be explored later. Letu5r2r i and assume tha
u!r i , such thatr'r i in the denominator andr'r i1r i
•u/r i in the phase term. We obtain the commonly used fi
approximation

x~k!'2r e(
i

f i~si !

r i
ei (kri2k"r i )1c.c., ~2!

with f i(si)5*dur i(u)e2 i (k2ki )•u, si5uk2k i u, and k i
5kr i /r i .

Here f i is just the ASF for plane wave x rays. This a
proximation does not take the curvature of the spher
wave front into account and is valid only whenr i is much
larger than the radius of the scattering atom. This assump
is generally invalid for near neighbor atoms; a more accu
formula is needed.

We define the spherical ASF as

f i
S~u i ,r i !5r ie

2 ikr i1 ik"r iE dr
r~ ur2r i u!

r
ei (kr2k"r )

5r ie
2 ikr iE dur~u!

eikr

r
e2 ik"u. ~3!

By replacing thef i(si) in Eq. ~2! with f i
S(u i ,r i), one obtains

the exact expression as given in Eq.~1!.
The spherical wave termeikr /r can be expanded with

spherical harmonics8

eikr

r
5 i4pk(

l
~21! l 1mj l~ku,!hl

(1)~ku.!

3(
m

Yl
m~V r i

!Yl
2m~Vu!, ~4!

and the plane wave term expanded as

e2 ik"u54p (
l 8,m8

~2 i ! l 8~21!m8 j l 8~ku!Yl 8
2m8~Vu!Yl 8

m8~Vk!.

~5!

Inserting Eqs.~4! and ~5! into Eq. ~3!, we have
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S~u i ,r i !5~4p!2r ikie2 ikr i(

l ,m
i l~21!mYl

m~V r i
!Yl

2m~Vk!

3E
0

`

u2 j l~ku! j l~ku,!hl
(1)~ku.!r~u!du

54pr ikie2 ikr i(
l

~2l 11!i l Pl~cosu i !

3Fhl
(1)~kri !E

0

r i
j l
2~ku!r~u!u2du

1 j l~kri !E
r i

`

j l~ku!hl
(1)~ku!r~u!u2duG . ~6!

Hereu i is the angle betweenr i andk. With knowledge of the
atomic electron density, Eq.~6! can be calculated for anyr i
value. However, in practice, it is more interesting to consid
the situation when the source is outside of the electron
tribution of the scattering atom. In this case, the second
tegration in Eq.~6! is zero. The plane wave ASF can b
expanded with Legendre polynomial as

f ~ uk82ku!54p(
l

~2l 11!Pl~cosu!E
0

`

j l
2~ku!r~u!u2du,

~7!

with u defined as the angle betweenk and k8, Eq. ~6! be-
comes

f i
S~u i ,r i !5

kri

2
e2 ikr i(

l
~2l 11!i l 11Pl~cosu i !hl

(1)~kri !

3E
0

p

Pl~cosu! f i@2k sin~u/2!#sinudu. ~8!

One can easily verify Eq.~8! by assuming thatr i is very
large or thatr(u) is a delta function~so f i5z), in both the
cases f i

S(u i ,r i) will degenerate intof i(si). The physical
meaning of Eq.~8! is that the scattering power of an atom f
a spherical wave can be represented by a weighted sum
plane wave ASF with the same wavelength in all directio

When Eq.~8! is applied to a very smallr i with tabulated
plane wave ASF values, e.g., whenr i equals 2.4825 Å,
which is the nearest neighbor distance in a bcc iron crys
the series in Eq.~8! is not convergent. This is because f
free atoms the electron density continues beyond the nea
neighbor distance in their crystal form. From Fig. 1, one c
see that for an iron atom a small part of the electron dis
bution in the 4s shell is outside of its first neighbor distanc
in the crystal. Therefore, the simple form of spherical wa
ASF in Eq.~8! is not valid in this case since the first integr
in Eq. ~6! cannot be extended to infinity. Calculations sho
that Eq.~8! can be safely used forr i greater than twice the
nearest neighbor distance for most elements. Spherical w
ASF can be calculated from Eq.~6! if the radial electron
density is known. Even though the radial atomic electr
densities can be very well calculated based on the s
model of atoms, their values are not conveniently availab
9-2
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ATOMIC SCATTERING FACTOR FOR A SPHERICAL . . . PHYSICAL REVIEW B 68, 144109 ~2003!
It will be useful to have a formalism to calculate the sphe
cal ASF with plane wave ASF values which are experim
tally measurable physical parameters. It is well known t
the plane ASF is simply a three-dimensional Fourier ima
of the atomic electron distribution. For a spherical rad
electron density model, we have

f ~s!54pE
0

`

r~r !
sin~sr!

sr
r 2dr ~9!

and

r~r !5
1

2p2r E0

`

f ~s!sin~sr!sds. ~10!

The tabulated ASF values in theInternational Tables for
Crystallography9 are only available in the range ofs/4p
from 0.0 to 6.0 Å21. Evaluation of an accurate electron di
tribution requires a widers range. However, what we nee
for evaluating the spherical ASF from Eq.~6! is the tail of
the atomic electron density far from its nucleus which
determined by the lows values off (s). We can calculate a
partial electron density by constructing a partial ASF,f c(s),
which is defined as

f c~s!5ae2bs2
for s<sc and f c~s!5 f ~s! for s.sc .

~11!

Heresc is the cutoff value ofs. Thea andb are defined by
setting the value and first derivative off c(s) equal to those
of f (s) at the cutoffsc :

a5 f ~sc!e
bsc

2
, b52

f 8~sc!

2scf ~sc!
. ~12!

The f c(s) as defined corresponds only to the electron den

FIG. 1. Partial electron distributions of atom iron calculat
with Eq. ~13!. The plane wave ASF for iron used here is based
an analytical interpolation of one-electron wave functions built
approximate the solution to Hartree-Fock equationsand is valid
the entire range ofs ~Ref. 14!. For a cutoffs of 30 Å21, the partial
electron distribution calculated~solid line! is describes almost com
pletely the full electron distribution of atomic iron.
14410
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close to the nucleus so that the partial electron density gi
by

rp~r !5
1

2p2r E0

sc
@ f ~s!2 f c~s!#sin~sr!sds

5
1

2p2r E0

`

@ f ~s!2 f c~s!#sin~sr!sds ~13!

will give the correct electron density for larger ’s. Figure 1
shows that the partial electron density calculated with a c
off sc/4p51.9 Å21 accurately represents the entire 4s elec-
tron distribution for an iron atom. The partial ASFf c(s)
represents only the electron distribution very close to
nucleus and can now be used in Eq.~8!. The partial electron
density which can be calculated with Eq.~13! with known
plane wave ASF up tos5sc can be used in Eq.~6! to ac-
count for the contributions to the spherical ASF other th
those fromf c(s). Now the spherical wave ASF is given a

f i
S~u i ,r i !5

kri

2
e2 ikr i(

l
~2l 11!i l 11Pl~cosu i !cl~k,r i !

~14!

and

cl~k,r i !5hl
(1)~kri !E

0

p

Pl~cosu! f cF2k sinS u

2D Gsinudu

18pS hl
(1)~kri !E

0

r i
j l
2~ku!rp~u!u2du

1 j l~kri !E
r i

`

j l~ku!hl
(1)~ku!rp~u!u2duD . ~15!

Equation~15! can be used to calculate the spherical wa
ASF for any physically meaningfulr i values. The cutoff
valuesc/4p must be greater than 1/l and less than the highe
limit of the effective range of plane wave ASF value. Since
to 2.0 Å21 is the effective range of the widely used analy
cal representation of the plane wave ASF, the cutoff value
1.9 Å21 used in the above example is a good choice fo
rays of energies less than 23 keV. In a crystal, the outm
electron distribution of an atom will be redistributed due
the neighbor atoms. Thus, the spherical symmetry is o
approximately valid for the outmost electrons. Calculati
shows that the contribution from the electron distributi
outsider i , which is given by the second integration in E
~15!, is negligibly small~Fig. 2!, thus the error caused by th
spherical symmetry approximation should be small. It is w
established that for plane wave ASF the x-ray reflection
tensities are well represented by the free atom values of
form factors and are not very sensitive to the small redis
butions of the electrons.10

As an example, the spherical ASF’s were calculated for
iron atom with differentr i ~Fig. 3! and for different x-ray
energies~Fig. 4!. With the exception of the 40 kev curves,
cutoff sc/4p51.9 Å21 and the four-Gaussian analytical re
resentation of plane ASF by Doyle and Turner11 were used.
For the 40 keV curves, a cutoffsc/4p53.5 Å21 and the
five-Gaussian analytical representation of plane wave A
by Waasmaier and Kirfel,12 which has an effective rang
from 0 to 6.0 Å21, were used. The calculations show that t

n

r
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JIANMING BAI PHYSICAL REVIEW B 68, 144109 ~2003!
real parts~and the magnitude! of the spherical wave ASF’s
are about 10 to 20 % less than the plane wave ASFs for
first neighbor scatterers around the forward scattering di
tion (u i50) and approach the plane wave ASF values
high angles. This correction is mainly due to the curv
wave front. The plane wave ASF will reach the electr
numberZ in forward scattering because in this direction t
complete electron density distribution in the atom has
same phase. This will never happen for a spherical wa
The fact that the real part of the spherical wave correct
vanishes at higher angles can be understood by lookin
Eq. ~9!. The contribution to the ASF is mainly from electron
near the nucleus of the scattering atom for highs since the
function sin(sr)/sr acts as ad function for highs. The curved
wave front correction is small for inner shell electrons. T
imaginary part of the spherical ASF has a positive va
about 10 to 20 % of the atomic electron number and
proaches a small negative constant at higher angles.
correction is a combination of the curved wave front effe
and the 1/r dependence of the spherical wave amplitude. T
1/r weight in the electron distribution integration makes t
apparent scatterer position closer to the source. Hence
contributes a negative phase shift. This shift does not dep
on the scattering angle. The overall effect of the spher
wave ASF correction is that when the scatterer is between
source atom and the detector, it is 10 to 20 % less in sca
ing power and apparently shifts away from the source. W
the scatterer is on the opposite side of the source relativ
the detector, it has an apparent position shift towards
source. The curved wave front correction is larger for sho
source-scatterer distance~Figs. 2 and 3! and higher x-ray
energies~Fig. 4! as shown. Figure 2 shows the contributio
to the spherical ASF from the electrons beyondr i . The larg-
est contribution is for the first neighbor scatterers and is
than 0.03 electrons for iron at 8 keV. The outer shell elect
contribution is less for higher energies~not shown!.

FIG. 2. The imaginary~top! and real part~bottom! of the con-
tributions to the spherical wave ASF for iron from the electr
distributions beyond its first and second neighbor distance.
x-ray energy is 8 keV.
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III. NEAR FIELD EFFECTS DERIVED
FROM VECTOR THEORY

In addition to the near field effects caused by the spher
wave front, there are also near field effect terms caused
the vector property of the x-ray wave. In Ref. 5 these ter
were considered under the plane wave approximation. N
with the spherical ASF, we can give a more accurate exp
sion for these terms. In direct XFH, at the observation po
r far away from the object, the total electric wave field
given by13

E~r !5¹3¹3@g~r !p#2
r e

k2 ¹

3¹3E dr 8$g~ ur2r 8u!r~r 8!¹83¹83@g~r 8!p#%,

~16!

e

FIG. 3. ~Color online! The difference between the real part
the spherical wave ASF and the plane wave ASF~top! and the
imaginary part of the spherical wave ASF~bottom! for iron calcu-
lated with r i equal to its first, second, third and fourth neighb
distance at 8 keV.
9-4
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ATOMIC SCATTERING FACTOR FOR A SPHERICAL . . . PHYSICAL REVIEW B 68, 144109 ~2003!
whereg(r )5exp(ikr)/r andp is the electric dipole momen
at r50. Assumingr @r 8, we can simplify Eq.~16! to

E~r !5k2g~r !n3Fp2
r e

k2 (
i

e2 ik"r i¹i3¹i

3S E due2 ik"ur~u!g~ ur i1uu!pD G3n

5k2g~r !n3Fp2
r e

k2 (
i

e2 ik"r i¹i3¹i

3@h~r i ,u i !p#G3n. ~17!

Heren5r /r , h(r i ,u i)5g(r i) f i
S(u i ,r i), and the sum is ove

all surrounding atoms. This leads to an expression for
hologram

FIG. 4. ~Color online! X-ray energy dependence of the ASF f
a spherical wave. Top: real part of the spherical ASF minus
plane ASF. Bottom: imaginary part.
14410
e

x~k!5(
i

x i~k!

with x i~k!52
r e

k2 e2 ik"r i¹i3¹i3@h~r i ,u i !p#•pn /p"pn

1c.c. ~18!

Here pn5n3p3n5p2(n"p)n. After some tedious but
straightforward vector algebra, we have

x i~k!52
r e

k2 e2 ik"r iH 2p"pn¹ i
2h~r i ,u i !

1~p"r&i !~pn• r&i !
]2

]r i
2 h~r i ,u i !1@~p"r&i !~pn•u& i !

1~pn• r&i !~p• û i !#
]

]r i
S 1

r i

]

]u i
Dh~r i ,u i !

1~p• û i !~pn• û i !
1

r i
S ]

]r i
1

1

r i

]2

]u i
2Dh~r i ,u i !

1~p•ŵ i !~pn•ŵ i !
1

r i
S ]

]r i

1
1

r i tan~u i !

]

]u i
Dh~r i ,u i !J Y p"pn1c.c. ~19!

For direct XFH, the electric dipole momentp is averaged in
4p solid angles since the fluorescence radiation is unpo
ized. So we now have

x i~k!52r ee
2 ik"r iH h~r i ,u i !~11cos2 u i !/2

1
1

2k2 F3 cos2 u i21

r i

]

]r i
h~r i ,u i !

1
cos~2u i !

r i
2

]2

]u i
2 h~r i ,u i !

1
sin~2u i !

r i

]2

]r i]u i
h~r i ,u i !

1
123 sin2 u i

r i
2 tanu i

]

]u i
h~r i ,u i !G J 1c.c. ~20!

In deriving Eq.~20!, we note that the functionh(r i ,u i) sat-
isfies the Helmholtz differential equation¹ i

2h1k2h50. The
derivatives ofh(r i ,u i) can be calculated using Eq.~8!. For
example, ]h(r i ,u i)/]u i 5 k/2( l(2l 11)i l 11Pl

1(cosui)hl
(1)

(kri)*0
pPl(cosu)fi@2ksin(u/2)#sinudu. Here Pl

1(cosui) is an
associated Legendre polynomial of orderl and degree 1.

For MEXH, we assume the incident x-ray wave is pola
ized and theE vector is perpendicular tok and surface nor-
mal of the sample, as in the case of synchrotron radiat
then we have

e

9-5
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JIANMING BAI PHYSICAL REVIEW B 68, 144109 ~2003!
x i~k!52r ee
2 ik"r iH h~r i ,u i !~12sin2 u i cos2 w i !

1
1

k2 F123 sin2 u i cos2 w i

r i

]

]r i
h~r i ,u i !

1
cos~2u i !cos2 w i

r i
2

]2

]u i
2 h~r i ,u i !

1
sin~2u i !cos2 w i

r i

]2

]r i]u i
h~r i ,u i !

1
12cos2 w i~113 sin2 u i !

r i
2 tanu i

]

]u i
h~r i ,u i !G J 1c.c.

~21!

If the incident beam is unpolarized, Eq.~21! needs to be
averaged overw i and will be the same as Eq.~20!. In Eqs.
~20! and ~21!, the x i(k)’s dependence on the direction ofk
is throughu i , which is the angle betweenk andr i ; andw i ,
the angle betweenp andr i2(n"r i)n. They can be expresse
in terms of the spherical coordinates ofk ~u, w! and
r i(u i8 ,w i8) in a coordinator system fixed on the sample

cosu i5cosu cosu i81sinu sinu i8 cos~w2w i8!,

cosw i5sin~w2w i8!sinu i8/sinu i . ~22!

Combing Eqs.~18!, ~20!, ~21!, and ~22!, the x-ray fluores-
cence holograms can be calculated with consideration
complete near field effects. Figure 5 shows a calcula
x i(u,w50) curve for a single emitter-scatterer pair of iro
atoms. The fluorescence emitter atom is at the origin w
the scatterer is at 2.4825 Å along thex axis ~e.g., u i85w i8
50). The calculation shows that at an x-ray energy of
keV, the corrections due to the two kinds of the near fi
effects are comparable. At x-ray energy of 20 keV, the c
rection due to the curved wave front is larger while the c
rection due to the near field effect caused by the vector fi
properties is smaller. This is because of the 1/k2 dependence
in Eq. ~20!.

A generalized atomic scattering factor can be defined
function of u i and r i for XFH or MEXH with unpolarized
incident beam

f g~r i ,u i !5 f i
S~r i ,u i !~11cos2 u i !/2

1
e2 ikr i

2k2 F ~3 cos2 u i21!
]

]r i
h~r i ,u i !

1
cos~2u i !

r i

]2

]u i
2 h~r i ,u i !

1sin~2u i !
]2

]r i]u i
h~r i ,u i !

1
123 sin2 u i

r i tanu i

]

]u i
h~r i ,u i !G . ~23!

With this generalized atomic scattering factor, the sim
14410
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scalar form as of Eq.~2! can be used to calculate the hol
gram in XFH or MEXH with unpolarized incident beam. Th
near field effect caused by curved wave front is contained
the spherical wave ASFf i

S(r i ,u i) while the near field effect
caused by the vector property is presented in the four te
in the squared parentheses. Figure 6 shows the real
imaginary part of the generalized ASF for iron atom at 6
keV as function ofu i with r i52.4825 Å. Since the genera
ized ASF is a slowly varying function ofr i andu i , it can be
stored in a two dimension array at incrementr i andu i val-
ues. When calculating the x-ray hologram, the values of
generalized ASF at anyr i andu i values can be retrieved b
interpolation. For MEXH with polarized incident beam@Eq.
~21!#, the generalized ASF can be divided into two partsf g

FIG. 5. ~Color online! X-ray fluorescence hologram curves for
single pair of iron atoms separated by 2.4825 Å. Top:E
56.4 keV. Bottom: E520 keV. Comparison is made with th
plane wave approximation of Ref. 5. The contributions from t
two kinds of the near field effects~NFE! to the hologram are also
shown in the plots.
9-6
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5fg
1(ri ,ui)1fg

2(ri ,ui)cos2 wi . In this paper we consider onl
the Thomson scattering. When x-ray energy is close to
absorption edge, the complex anomalous scattering fa
should be added to the generalized ASF.

IV. CONCLUSION

In conclusion, the formalism for calculating the spheric
wave ASFs from the radial electron distribution function
the tabulated plane wave ASF’s is derived. The example
culation shows that the curved wave front correction
ASF’s can be as large as 20 % of the plane wave ASF,
pends on the source-scatterer distance and x-ray energy.
correction should be considered in all XFH or MEXH calc

FIG. 6. The real and imaginary part of the generalized ASF w
r i52.4825 Å for iron atom and x-ray energy of 6.4 keV~Fe Ka

lines!. For comparison, the plane wave ASF multiplied by the p
larization factor (11cos2 ui)/2 is also plotted.
C.

B

14410
e
or

l

l-

e-
his

lation. In addition, the near-field effects due to the vec
property of the electromagnetic field is comparable to
curved wave front correction for low x-ray energies and m
also be included for most of XFH calculation. For both kin
of near-field effects, the rigorous expressions for both X
and MEXH are given. These expressions are essential
advanced reconstruction methods based on least-squ
fitting algorithms.

There are other approximations in XFH theory, i.e., t
single scattering approximation and the point dipole mom
source approximation for the fluorescence atoms. Un
photoelectron holography, in XFH the multiple scattering
fects are generally negligible due to the small cross sec
for x-ray scattering. On the other hand, since only the in
shell fluorescence is used for XFH experiment, the size
the radiation source is also negligible. For example, the
dius of the 1s shell of an Fe atom is 0.03 Å, which is onl
about 1.3 % of the nearest neighbor distance in a body c
tered cubic iron crystal and much smaller than the wa
length of iron Ka line. Therefore, the error caused by th
point dipole moment field approximation should be one m
nitude smaller than the corrections considered in this pa
Moreover, because of the spherical symmetry of thes-shell
electron distribution, the dipole moment size effect should
isotropic and hardly detectable in XFH measurements.
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