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Hysteretic 1-V curves of superconducting nanowires
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Experimentall -V curves of superconducting MoGe nanowires show hysteresis for the thicker wires and
none for the thinner wires. A rather quantitative account of these data for representative wires is obtained by
numerically solving the one-dimensional heat flow equation to find a self-consistent distribution of temperature
and local resistivity along the wire, using the measuneelar resistancdr(T) as input. This suggests that the
retrapping current in the hysteretieV curves is primarily determined by heating effects, and not by the
dynamics of phase motion in a tilted washboard potential as often assumed. Heating effects and thermal
fluctuations from the low-resistance state to a high-resistance, quasinormal regime appear to set independent
upper bounds for the switching current.
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[. INTRODUCTION sweep, reflecting the stochastic nature of a fluctuation-
induced switching process, but it has a reasonably well-
The |-V curves of superconducting MoGe nanowires ofdefined average value. The switching current is sometimes
the order of a few hundred nanometers long, with diametergeferred to as the critical current, but we reserve the notation
greater than~10 nm and critical currents exceeding a frac- | co for the maximum supercurrent allowed by the Ginzburg-
tion of a microampere, are strongly hysteretic, while thinnerbandau equations, without regard to stability. Accordingly,
wires show relatively small nonlinearities and no hysteresisl sw<lco-
An improved understanding of this hysteretic behavior is the
primary objective of this paper. _ Il. A SIMPLE MODEL FOR HEATING-CONTROLLED
Such a hysteresis is also seenniacrescopic supercon- RETRAPPING CURRENT
ducting filaments, where it has been explained in terms of
self-heating hotspots, which can be used as the basis for Employing only classical heat-flow analysis together with
hot-electron bolometersHysteresis is also found in under- the linear electrical resistanc®(T) measured with infini-
damped Josephson junctions, where it stems from the ruriesimal current in the resistive transition of a nanowire, one
away and retrapping of the phase point in the tilted washcan construct a model for the heating-determined hysteresis
board potential of the Josephson junctiovithout regard to  of the wire at high current levels. Note that the use of the
heating.? A superconducting nanowire forms a sort of hybrid measured RT) in this way eliminates the need for any mi-
case, in which phase-slip centers act qualitatively like weakcroscopic model of the phase-slip or other processes produc-
link Josephson junctions in series with the rest of the wirejng the heat; we simply assume that the local resistivity is
but in which heating effects are especially important becausgrimarily a function of the locaTl, independent of whethar
of the difficulty in removing Joule heat through a long thin is controlled externally or by internal heating. This assump-
free-standing filament. That is, the quantum phase-slip protion can be justified to some extent by the fact thatnges
cess governs the local resistance of an element of the wire fiom ~T./3 all the way up to abové,, while the barrier to
a given current and local temperatur€, but classical heat phase-slip only varies by at most a factor-e2 for the range
flow determines the local temperature distribution generatedf currents belowls,,, above which the system is nearly
by this heating by phase-slip processes. Thus, we must findreormal. Thus, th& dependence should be stronger than the
self-consistent solution for the generation and removal oexplicit | dependence. In general, this model can be worked
heat. through only by computer modeling, and that will be dem-
The extent of hysteresis whether in a Josephson junctionnstrated in Sec. Ill. However, an approximate analytic so-
or nanowire is characterized by the difference between th&ution can be found for the limiting case of wires thick
switching current },,, and theretrapping current }. The  enough to have an abrupt transition of the local resistivity
switching current is the current level at which, with increas-from the full normal value to zero, as in a macroscopic wire,
ing bias current, the junction switches from a very low volt- when the locall falls throughT.. We give this solution here
age statdwith resistance due only to thermally activated orto serve as an introduction to the general numerical solution,
guantum tunneling phase slippade a more or less Ohmic which is required for wires thin enough to have a broadened
resistive regime at higher current. The retrapping current isesistive transition.
that at which, on decreasing current, the device switches Specifically, we consider a one-dimensional wire sample
back down to the zer¢or low) voltage regime. The retrap- that is superconducting near the ends, where it is connected
ping current is quite accurately reproduced from sweep tdo presumably well-cooled electrodes at bath temperature
sweep, since it reflects the minimum current level at whichT,<T,, but is normal in a self-heated central portion further
the Ohmic resistive state is stable. The switching current, ofrom the electrodes. We take the superconducting region to
the other hand, can be somewhat different on each successikiave zero resistanceeven though our data show that to be
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304 which is plotted in Fig. 1. This expression has a discontinuity
between 0 andR,!,/2 atl,, above which it asymptotically
257 approaches the normal valde=IR,,. This is a reasonably
20 good description of what is typically observed experimen-
- tally for the thicker wires, for which the approximation of
o 1.5 zero resistance in the superconducting state is reasonably
> good. That is, upon reducing the current from well abbyve
1.0+ ) the voltage slowly drops below the full normal value, and
s then drops to zero rather sharply from a voltage which ap-
05 et proximatesR,l,/2, i.e., half the fully normal voltage at that
0.0—---"","' current, as predicted by E¢), and shown in Fig. 1.

0.0 05 1.0 Ls 20 25 3.0 We should recall, how.ever, _that this rgsqlt is not exact
even for the assumed discontinuous resistive transition at
low current because, in this calculation, only the thermal
FIG. 1. Plot of thel -V curve(solid curve predicted by Eq(4), ~ fesistance of the superconducting domain is taken into con-
based on a simplified heating model. The retrapping cuteatthe ~ Sideration, neglecting that within the normal region. Alkg,
lowest current at which a self-heating normal region can be susand K, depend quite strongly oif, so the average value
tained. At this pointV drops discontinuously to zero from half the would be difficult to estimatea priori. These limitations of
normal value(dotted ling. The dashed line illustrates extrapolation the model can be largely rectified in a more detailed compu-
to an “excess current” from a current several times greater than  tational model, described in Sec Ill. That model computation
accounts naturally for the fact that hysteresis is not observed
far from the truth for the thinner wires, to which this simpli- in nanowires that are narrow enough to have linear resistance
fied version of the analysis definitely does not apply. which is nearly independent of temperatuUi@epresentative
We take the wire to be of length, with a normal region R(T) curves can be seen in Fig. 2 of Ref] 3.
of length< in the center; we define the normal fraction to be A final qualitative remark: One can also study the nonlin-
x={/L. The normal resistance of the whole wire is denotedear resistivity by measuringV/dl vs |. An increase inl
R,. If a currentl is applied, the total dissipated power is causes an increase in Joule heating and hence an increase in
I°Rx. This heat must be conducted to the electrodedocal T. Thus, if R(T) increases withT (“superconducting
through the superconducting segments on either side of theehavior”), it will also increase with, and the reverse for
normal zone in the center. The lengths of these superconductnsulating” samples for whichdR/dT is negative. This
ing segments id (1—x)/2, and the temperature difference simple observation correctly describes the sign of the initial
across them isT.—T,) since the interface occurs whefe change indV/dl with increasing bias current for many
=T,. Equating the heat generated with that conducted awagamples.
we obtain our basic equation

AKAT—Ty) 1. NUMERICAL MODELING OF HEAT-INDUCED
X(1—-x)= ;LIZE—EB, (1) HYSTERESIS
n

. o In this section we describe numerical simulations per-
whereKs is the (averagg thermal conductivity in the super- formed to model more accurately heat-induced hysteresis in
conducting region, and is the cross-sectional area of the superconducting nanowires. We use the relaxation method, in

wire. The solution to this quadratic equation is which the wire is broken up into a finite number of segments
and the one-dimensional heat-flow equation is replaced by a
(— 1xy1-4p @ finite-difference equation for each segment. Equating the

heat generated with that conducted away, the finite-

difference equation for segmenis
Clearly this has noeal solution unlesg3=<1/4, which cor-

responds via EqJ1) to alowerlimit for I. In other words, for
any current below this limit, there is no solution with a nor- 12R(T)) Ax_ K(TDALZTi = Ti g~ Tival , (5)
mal metal resistive center, and the entire wire is supercon- L Ax
ducting. This current we identify as the retrapping curtent
so that whereR(T;) is the measured linear resistance of the wire of
lengthL at T;, K¢(T;) is the local thermal conductivity of
KA(T,—Tp) the material in the wire af;, A is the cross-sectional area of
l=4\—r (3 the wire (assumed to be unifonrmand Ax is the length of
" each segment. The wire is divided imMtbsegments, and the
We can then write the voltage &=1Rx, or explicitly as end segment® andN+1 are used to impose the boundary
conditions by fixing these two segments at the bath tempera-
|+ ‘/|2—|r2 ture Ty, i.e., at the temperature of the large area film elec-
— | = (4)  trodes at either end.

V=R,
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FIG. 2. Comparison of-V characteristics measured B~ 1.5 K (solid curve and simulateddashed curveof four representative
superconducting nanowires of different length and cross-sectionalpnasortional to R, /L) ~1]. Sample(a) is the thickest and sampld)
is the thinnest wire. Note the trend to less hysteresis with thinner nanowires, which stems from the weaker temperature dependence of the
linear resistance of the thinner wires, which are only weakly superconducting. The dotted c{@ve ihe prediction of the analytic model,
Eq. (4), which is only applicable to thick wires. The valuesRy{f and|, fitted to the data are quoted in the second inset box.

Since we do not knowK(T;) directly, we first use the
Wiedemann-Franz law to express th@mal electronic ther-

wheret=T/T. andL/Ax=N, the number of segments in the
wire. This equation can be solved by iteration, puttingtthe
mal conductivity ask,(T;)=LoT;/p, whereL, is the Lor-  values for one iteration in the right hand side to compute the
entz number. ThuK,(T;)=L,T;L/AR,, whereR, is inde-  values for the next iteration, and continuing until stable val-
pendent of temperature for an amorphous metal in the Hges are obtained. For the resistan&{t;), we use the
temperature range. AT, K4(T;) must be the same as measuredilow-current resistance &tas a look-up table. For
Kn(Tc). For temperatures beloW,, Ks is less thanK,,  the strongly superconducting samples, such as the sample
because there are fewer quasiparticles to carry the heat. Asown in Fig. 2a), the low-current resistance becomes un-
crude approximation we assume a linear interpolation be(‘)bservably small at a temperature above the base tempera-
tween the fully normal and fully superconducting values,, o 1 For these samples we used an analytical extrapola-
Ks/Kp=T/T.. (In making this estimate, we neglect heat i, 15 the data as a look-up table for temperatures below

conduction by phonons in b.Oth the nanowire gnd the' Carbo.fhose for which measured data were available. Once the dis-
nanotube substrate, assuming large thermal interfacial resiiate functiont: has been worked out for a given current
I

tance between wire and nanotub&Vith this model the and given boundary condition temperatdig, we can cal-

finite-difference equation becomes culate the total resistance and hence the voltd@eT,)
across the wire by summing the resistai{e¢;)/N for each
segment.

We have considered 9 samples from Ref. 3. Figure 2
shows data aff,~1.5 K from four representative samples,
chosen to cover the range of cross-sectional areas. For each
sample, we show the simulatdf(l) as a dashed curve, as
well as the(solid) measured/(1) curve. For each simulation

2Ti=Ti—1—Tixa
AX

Ax  LoTAL
- : (6)

2 ) —=
I R(TI) RnTC

Formally solving this equation fol; and normalizing the
temperatures td@., we have

t [ti—1+ i+ PR R(AX/L)/ (Lot?)]
i= )
2

()

the wire was divided into 80 segments and the current step
was 1 or 2 nA. The simulations were performed for both up
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and down current sweeps. For the down current sweeps, widament thinner thar\ and &, so that the current density is
started the simulation with the temperature in the wire neauniform, the critical current is simply proportional to the
T. so the wire would be in the quasinormal state. Likewisecross-sectional area, i.e., 1o/R,. Numerically, this GL
for the up sweeps, we started the simulation with the temvalue can be transform&éhto the form

perature of the wire at the base temperature so that the wire

would be in the superconducting or low-resistance state. We lco(0)~92uAX[LT/R,E(0)], (8)
also show the result of the analytic approximati@dn as a
dotted curve in Fig. @), which shows data for the thickest

wire, for which Eq.(4) ShOUId. be most nearly appllgable. theoretical estimate of the critical currentTat0 in terms of
For all the samples, the simulated slope of the linear 5€Che measured length, normal resistancR,,, transition tem-

tion of the V(1) curve Is somewhat sm'alller than the meafperatureTc, and coherence leng#{0), the latter being esti-

sured value. This could be due to our rigid boundary condi- d fromH d on similar material. Eor further

tion, which sets the end segments to the bath temperatupe}ate romFHc; measure o
; . . numerical work, we insert representative valuég0)

Ty, rather than letting the temperature rise spread out |nt0:7 dT.=5 K. leading t

the film at the two end3Alternatively, our determination of nm andfe » leading fo

the normal resistance of the wire from tR§T) measure- -~

ments at the point where the film went superconducting may 'co(0)=66uAX(LIR,), ®3

introduce a small systematic error. Since our focus is on thevith L/R, in units of nm£).

hysteretic behavior, we do not consider this discrepancy to Next, we need to adjust this to account for the fact that

be a significant feature. our lowest temperature data are takenTat1.5K, ort

The sample shown in Fig.(® has the largest cross- =T/T,~0.3, not T=0. This temperature scaling is not
sectional area and, thus, is the most strongly superconducstraightforward, since Eg8) itself is only semiquantitative
ing, with a resistance that drops off quickly beldy. In all because its derivation involves combining GL relations,
the strongly superconducting samples studied, the predictestrictly valid only nearT,, with BCS expressions fof ~0.
retrapping currents were close to the measured value, as segfve scalel ., by the “two-fluid” temperature dependence of
in this figure. Further, we found that we could force theJ.~H_/\, this introduces a factor of (1t2) /1 —t*, leading
retrapping currents to agree completely with the data byto a prefactor of 6QuA in Eq. (8a). [If we scaled by the
making fairly modest adjustments in the estimated paramieading order in (+t) of the GL temperature dependence
eters such as the superconducting thermal conductivitwalid nearT,, the numerical prefactor would be reduced by
Quialitatively, this curve can be understood as follows: in thea factor of (1—t)%? to 39 uA, but it seems inappropriate to
upsweep below the switching currehy, the resistance is use this form so far belowl,.] If instead, we make the
low because the temperature is low, so heating is smalsmaller scaling up from=0 to t~0.3 by replacing4(0) by
forming a self-consistent situation, but on the downsweepg(T)=£(0)/(1—1t)¥? the numerical prefactor becomes 55
the resistance is high, and provides more heating, which selfA. The differences among these various estimates gives a
consistently sustains the highly resistigpiasi-normalstate  sense of their approximate nature. For concreteness, in fur-
down to a lower current valuk . ther numerical work we take the value o@\, based on the

The samples shown in Figs(f and Zc) have a narrower coherence length, as a representative value. For any of these
hysteretic region in th&/(1) curve, and our simulation also prefactor values, however, the experimental switching cur-
shows similar hysteretic behavior. Again, by modest adjustrents|,, in the nanowires shown in Fig. 3 are found to be
ment of the estimated superconducting thermal conductivitysystematically considerably lower than the theoretical critical
the simulations could be brought into better agreement witlturrentsl ., which are the maximum supercurrents that can
the measurements. be carried according to GL theory.

The sample shown in Fig.(@ has the smallest cross-  |n Josephson junctiorfssuch “premature switching” is
sectional area and a completely nonhyster&t¢) curve. caused by a fluctuation which leads to a breakdown in the
The simulatedv(l) curve is also nonhysteretic, and gener-supercurrent and latching into a resistive state eveh at
ally follows the measured curve. <l This only occurs if the junction is underdamped, so

Summing up, we have shown that the appearance of hyshat the kinetic energy gained from running “down hill” in
teresis in all the larger cross-sectional samples, and its alhe tilted-washboard potential is not all dissipated, but
sence in the thinner wires, can be explained rather quantit&nough remains to carry the representative point over the
tively by static heating effects, using only thmeeasured next “hill.” In other words, once the phase point gets over a
linear R(T) as input data. Specifically, this analysis gives ahjll by a fluctuation, it keeps runningprovided that the
good account of the measured retrapping curréntsand a  damping is below some critical valué is not clear, how-
reasonable account of the switching currents. We now turn tever, to what extent this concept applies to our nanowires,
a more detailed consideration of the switching currents.  pecause a metallic weak link junction is heavily damped and

hysteresis normally arises only through heating effects. To
IV. ESTIMATION OF SWITCHING CURRENTS move forward, we assume thgt heating will maintr_;\irj.the high
voltage state once a fluctuation has allowed an initial phase

The theoretical critical current density in Ginzburg- slip to occur. More carefully, some finite rate of phase slip
Landau(GL) theory is proportional tdH./\. Applied to a may be required to reach a threshold amount of Joule heating

using standard relations of GL and BCS thedfgr the
“dirty limit” ( 1<&,)]. This expression conveniently gives a
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I by stationary heating and by fluctuation effects. Ideally these
— Ico(T) theory . .
...... Isw(T) theory two should be treated together, but for computational sim-
o Isw experiment plicity, we treat the fluctuation effect &j,, assuming that, in
o Ir experiment this context, the static heating effect can be neglected.
e Isw simulation . L
a Ir simulation Conceptually, the fluctuation-based switching curigpt
is the current at which the barrier to phase-slip has been
reduced sufficiently by the current to allow a number of
phase-slips adequate to launch self-sustaining heating to oc-
cur during the time intervalt the system spends near that
current value during the upsweep of current in a measure-
ment of the “critical current.” This switching current is a
stochastic quantity, and its average value depdludgrith-
mically) on the sweep rate. To estimate it, we need to know
how the barrier decreases with current, going to zero at the
nominal unfluctuated critical current.,. This issue is
g LI o treated in the classic paper of Langer and AmbegabRar.
explicit result for the current-dependent energy barrier is not
30 40 50 60 70 80 90 given, but by numerical solution of their equatidi8sl3 and
R,/L (€/nm) (3.23 it can be shown that the current-dependent barrier

height can be approximated extremely well by the analytic
FIG. 3. Comparison afneasured valuesf switching currents,,  expression

and retrapping currerit. for nine samples, with(a) the values of
these two quantitieaumerically simulatedising Eq.(7), and (b), AE() ~AF 1—1/1..\5/4
the theoretical maximum supercurrdpt(T) at T=1.5K and the ) (0X Neo)™ ©

theoretically p_reﬁ_icteql (ijdealdtr;)res:olqw(]') using Eﬂ' (11i) for  \where AF(0) is the barrier energy to phase slip for zero
ﬁrerpature ;W'tf.'ng induce E y tt'(?lg;e'l noise lndt te f sence of rrent [It is worth noting that the corresponding expression
caling and extrinsic noise. Equat IS expected fo form an - ¢, the more thoroughly studied case of a Josephson junction
upper bound to the. Observefg‘”' The horizontal axis is propor- has the same forfput an exponent of 3/2 instead of 5/4.
tional to (cross-sectional are), Qualitatively, the two cases are very similatlearly, Eq.(9)

sufficient to launch a self-sustaining latch into the resistivedives a linear decrease in barrier height for srhatbut for|

state. Such a refinement would only change the numbei€arlc, in the “premature switching regime,” the barrier

in a logarithm, and hence make only a modest change in thgoes to zero as the 5/4 power df;{—1). This 5/4 power

result. leads to the typical switching currefis,,) being depressed
Before giving a detailed analysis of this process, howeverhelowl, by the 4/5 power of Kz T/AF), with a logarithmic

we point out that stationary heating effects, as opposed tfctor depending on sweep rate. Specifically, adopting the

thermal fluctuations, can aiso cause “premature” switchingeXpression for a Josephson junctoout changing the expo-

in nanowires. Especially for the thinner wires, there is sig-nent as described above, we estimate that the average switch-

nificant phase-slip resistance and hence heating even at [oWg current is given by

temperatures, so that the measuring current causes the tem-

perature in the wire to rise abovig,. This temperature rise <ISW>=I00{1—[(kBT/AF(O))In(prt/27-r)]4’5}. (10

increases the phase-slip resistance, causing more dissipation,

which can lead to a thermal runaway process above a certafor a wire we replacaF(0) by \/E(ﬁICOIZe).6 The attempt

current level, which would be identified &g,. This possi- frequency in a Josephson junction is the junction plasma

bility is automatically included in the numerical simulations, frequencyw,, . For a wire, it is probably better approximated

and can give values dfy,, in agreement with experiment, by the reciprocal of the Ginzburg-Landau time

which are much lower than those predicted by the mode(~ 10" sec !) timesL/¢ (to take account of the possibility

based on thermal fluctuations, as can be seen in Fig. 3. Th# phase slipanywherealong the wire, as was done by Mc-

numerical model used to simulate thev curves in Fig. 2 Cumber and Halperfh. If macroscopic quantum tunneling is

not only predicts the retrapping current into the low resis-important at low temperature&gT might need to be re-

tance state, but it also implicitly serves to calculate a switchplaced by something more likiegT., but that would only

ing onset triggered purely by these static heating effects, ashange the magnitude of the correction by a factor-@f In

distinct from the fluctuations which will form the basis for any case, however, in comparing different wires of the same

Eq. (12). The results for the simulated,, and|, are plotted material at thesametemperature, the depressionl g, below

in Fig. 3 along with the measured values for a number ofl ., is proportional td ., times (;,) ~*>, i.e., to (o) *>. The

samples, and found to agree rather well, thus reinforcing théme intervalAt would depend on the sweep rate, but will be

evidence for the importance of heating in determining theof order 1 s, unless more frequent fluctuation-induced phase

[-V curves of these nanowires. slips are needed to generate sufficient heat to launch a self-
We now return to the fluctuation model, recognizing thatsustaining hot spot. Since all other factors in Ed) depend

the observed J,, will be the lower of the values determined rather weakly on the nominal critical current, this implies

0.8 o

I~ (pA)

0.6 -

0.4 -

m O ®
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that it should be possible to describe the measuggdin V. CONCLUDING SUMMARY

terms of the theoretically expectég, by the form We have examined the effect of Joule heating in long thin

|SW:|CO{1_(|1/|Co)4/5}:|co_|‘11/5| éfo5 (12) supgrconducting nangwires on thewV chqracteristics by
solving a one-dimensional heat-flow equation for a range of
sample parameters. This was done using both a simple ana-
lytic approximation for a limiting case and a numerical so-
_ lution for the general case. We have compared these simula-

l1=lkeT/ \/E(ﬁlze)]ln(At/TGL)' (12 tions with measured-V curves, and found generally good
The physical significance df; is that, apart from the loga- agreement. The thicker wires show hysteresis and the thinner
rithmic factor, it is roughly the current level which shifts the wires do not. The difference stems from the differénear
barrier to phase slips by-kgT. Taking T=15K, and  R(T) dependences, which in turn reflect the dependence of
(At/76,)~10" we getl;~0.7 uA. Since the factor involv-  the phase-slip rate on wire thickness. Because the phase-slip
ing attempt frequency, sweep rate, and the phase-slip rafgie gependexponentiallyon wire thickness, this thickness
that might be needed to trigger a thermal latch appears in gependence ifR(T) dominates the simple linear thickness
logarithm, our crude estimate of these values could be off byjenendence of the thermal conductance. These classical heat-
several orders of magmtyde without significant effect COM+ng effects, based on measur@ET) data instead of a micro-
pared to other uncertainties. scopic model of phase-slip rates, appear to be able to account

Because the 1/5 power varies so slowly, the subtracted, rorisingly well for the hysteretic nature of thev curves,

term in Eq.(11) varies by only a factor of-1.2 over the \ithout explicit reference to the dynamics of phase motion in
entire range of samples shown in Fig. 3, and the result 100K tjjied washboard potential as is used to discuss hysteresis in

roughly like subtracting a constant frohg, to getls,. In-  ynderdamped Josephson junctions. Heating can account di-
spection of the ,, data in Fig. 3, compared with the plotted rectly for the value of the retrapping current, below which

theoretical estimate df.o(T) from (8a) (using the estimated here s insufficient Joule heat to sustain a temperature above
temperature-corrected prefactor of 55)rghows that such a1 The switching current is bounded by the effect of ther-
dependence gives a rather quantitatiygper boundor the  mga) fiyctuations about the zer@r low) voltage state, but
switching currents found experimentally. This makes sensepay he further depressed by extrinsic noise, quantum tunnel-
since Eq(11) considers only the effect of ideal thermal noise jhg " or non-negligible Joule heating in the low-resistance
atTy W|th0gt heating, whereas switching to the resistive stat&iate. Joule heating probably provides the mechanism for
could be triggered at &wer current by heating or by any |atching into the resistive state. Quantitatively, our analysis
sort of extrinsic noise. Similarly, '|f quantum phase slips arezccounts reasonably accurately for the depression of the
important, the effect would be similar to an increased teMyyeasured «w and |, below the theoretically estimatdd,.
perature, and would also lower the observegl. We infer that heating effects are important for understanding

_ An implication of Eq.(11) is that, forlc,<Iy, it would g aspects of the hysteresis found in th&/ curves of su-
yield anegativevalue ofl,,. Presumably this nonphysical perconducting nanowires.

result implies that there is no premature switching or hyster-
esis for wires thin enough to have valuesl gf smaller than
this crossover value. This is qualitatively consistent with our
observations that hysteresis is only seen in the thicker wires.
Using the estimate of; found from Eq.(12), this criterion The authors would like to thank Professor Alexey Bezrya-
yields 1.,~0.7 uA for this crossover current. Given the din for useful discussions and sharing of data prior to publi-
crudeness of our numerical estimates, this is certainly in reazation. This research was supported in part by NSF Grant
sonable agreement with the empirical value below which théNo. DMR-0072618, NSF NSEC Grant No. PHY-0117795,
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Herel , is a parameter that can be estimated using(Hg).to
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