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Hysteretic I -V curves of superconducting nanowires

M. Tinkham,* J. U. Free,† C. N. Lau,‡ and N. Markovic§
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~Received 23 May 2003; published 17 October 2003!

ExperimentalI -V curves of superconducting MoGe nanowires show hysteresis for the thicker wires and
none for the thinner wires. A rather quantitative account of these data for representative wires is obtained by
numerically solving the one-dimensional heat flow equation to find a self-consistent distribution of temperature
and local resistivity along the wire, using the measuredlinear resistanceR(T) as input. This suggests that the
retrapping current in the hystereticI -V curves is primarily determined by heating effects, and not by the
dynamics of phase motion in a tilted washboard potential as often assumed. Heating effects and thermal
fluctuations from the low-resistance state to a high-resistance, quasinormal regime appear to set independent
upper bounds for the switching current.
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I. INTRODUCTION

The I -V curves of superconducting MoGe nanowires
the order of a few hundred nanometers long, with diame
greater than;10 nm and critical currents exceeding a fra
tion of a microampere, are strongly hysteretic, while thinn
wires show relatively small nonlinearities and no hystere
An improved understanding of this hysteretic behavior is
primary objective of this paper.

Such a hysteresis is also seen inmacroscopic supercon-
ducting filaments, where it has been explained in terms
self-heating hotspots, which can be used as the basis
hot-electron bolometers.1 Hysteresis is also found in unde
damped Josephson junctions, where it stems from the
away and retrapping of the phase point in the tilted wa
board potential of the Josephson junction~without regard to
heating!.2 A superconducting nanowire forms a sort of hybr
case, in which phase-slip centers act qualitatively like we
link Josephson junctions in series with the rest of the w
but in which heating effects are especially important beca
of the difficulty in removing Joule heat through a long th
free-standing filament. That is, the quantum phase-slip p
cess governs the local resistance of an element of the wi
a given currentI and local temperatureT, but classical hea
flow determines the local temperature distribution genera
by this heating by phase-slip processes. Thus, we must fi
self-consistent solution for the generation and removal
heat.

The extent of hysteresis whether in a Josephson junc
or nanowire is characterized by the difference between
switching current Isw , and theretrapping current Ir . The
switching current is the current level at which, with increa
ing bias current, the junction switches from a very low vo
age state~with resistance due only to thermally activated
quantum tunneling phase slippage! to a more or less Ohmic
resistive regime at higher current. The retrapping curren
that at which, on decreasing current, the device switc
back down to the zero~or low! voltage regime. The retrap
ping current is quite accurately reproduced from sweep
sweep, since it reflects the minimum current level at wh
the Ohmic resistive state is stable. The switching current
the other hand, can be somewhat different on each succe
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sweep, reflecting the stochastic nature of a fluctuati
induced switching process, but it has a reasonably w
defined average value. The switching current is sometim
referred to as the critical current, but we reserve the nota
I co for the maximum supercurrent allowed by the Ginzbu
Landau equations, without regard to stability. According
I sw,I co .

II. A SIMPLE MODEL FOR HEATING-CONTROLLED
RETRAPPING CURRENT

Employing only classical heat-flow analysis together w
the linear electrical resistanceR(T) measured with infini-
tesimal current in the resistive transition of a nanowire, o
can construct a model for the heating-determined hyster
of the wire at high current levels. Note that the use of t
measured R(T) in this way eliminates the need for any m
croscopic model of the phase-slip or other processes pro
ing the heat; we simply assume that the local resistivity
primarily a function of the localT, independent of whetherT
is controlled externally or by internal heating. This assum
tion can be justified to some extent by the fact thatT ranges
from ;Tc/3 all the way up to aboveTc , while the barrier to
phase-slip only varies by at most a factor of;2 for the range
of currents belowI sw , above which the system is near
normal. Thus, theT dependence should be stronger than
explicit I dependence. In general, this model can be wor
through only by computer modeling, and that will be dem
onstrated in Sec. III. However, an approximate analytic
lution can be found for the limiting case of wires thic
enough to have an abrupt transition of the local resistiv
from the full normal value to zero, as in a macroscopic wi
when the localT falls throughTc . We give this solution here
to serve as an introduction to the general numerical solut
which is required for wires thin enough to have a broaden
resistive transition.

Specifically, we consider a one-dimensional wire sam
that is superconducting near the ends, where it is conne
to presumably well-cooled electrodes at bath tempera
Tb,Tc , but is normal in a self-heated central portion furth
from the electrodes. We take the superconducting regio
havezero resistance, even though our data show that to b
©2003 The American Physical Society15-1
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far from the truth for the thinner wires, to which this simp
fied version of the analysis definitely does not apply.

We take the wire to be of lengthL, with a normal region
of length, in the center; we define the normal fraction to
x5,/L. The normal resistance of the whole wire is deno
Rn . If a current I is applied, the total dissipated power
I 2Rnx. This heat must be conducted to the electrod
through the superconducting segments on either side of
normal zone in the center. The lengths of these supercond
ing segments isL(12x)/2, and the temperature differenc
across them is (Tc2Tb) since the interface occurs whereT
5Tc . Equating the heat generated with that conducted aw
we obtain our basic equation

x~12x!5
4KsA~Tc2Tb!

LI 2Rn
[b, ~1!

whereKs is the~average! thermal conductivity in the super
conducting region, andA is the cross-sectional area of th
wire. The solution to this quadratic equation is

x5
16A124b

2
. ~2!

Clearly this has noreal solution unlessb<1/4, which cor-
responds via Eq.~1! to a lower limit for I . In other words, for
any current below this limit, there is no solution with a no
mal metal resistive center, and the entire wire is superc
ducting. This current we identify as the retrapping currentI r ,
so that

I r54AKsA~Tc2Tb!

LRn
. ~3!

We can then write the voltage asV5IRnx, or explicitly as

V5RnbI 1AI 22I r
2

2 c, I .I r , ~4!

FIG. 1. Plot of theI -V curve~solid curve! predicted by Eq.~4!,
based on a simplified heating model. The retrapping currentI r is the
lowest current at which a self-heating normal region can be s
tained. At this point,V drops discontinuously to zero from half th
normal value~dotted line!. The dashed line illustrates extrapolatio
to an ‘‘excess current’’ from a current several times greater thanI r .
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which is plotted in Fig. 1. This expression has a discontinu
between 0 andRnI r /2 at I r , above which it asymptotically
approaches the normal valueV5IRn . This is a reasonably
good description of what is typically observed experime
tally for the thicker wires, for which the approximation o
zero resistance in the superconducting state is reason
good. That is, upon reducing the current from well aboveI c ,
the voltage slowly drops below the full normal value, a
then drops to zero rather sharply from a voltage which
proximatesRnI r /2, i.e., half the fully normal voltage at tha
current, as predicted by Eq.~4!, and shown in Fig. 1.

We should recall, however, that this result is not ex
even for the assumed discontinuous resistive transition
low current because, in this calculation, only the therm
resistance of the superconducting domain is taken into c
sideration, neglecting that within the normal region. Also,Ks
and Kn depend quite strongly onT, so the average value
would be difficult to estimate,a priori. These limitations of
the model can be largely rectified in a more detailed com
tational model, described in Sec III. That model computat
accounts naturally for the fact that hysteresis is not obser
in nanowires that are narrow enough to have linear resista
which is nearly independent of temperature.@Representative
R(T) curves can be seen in Fig. 2 of Ref. 3.#

A final qualitative remark: One can also study the nonl
ear resistivity by measuringdV/dI vs I . An increase inI
causes an increase in Joule heating and hence an increa
local T. Thus, if R(T) increases withT ~‘‘superconducting
behavior’’!, it will also increase withI , and the reverse for
‘‘insulating’’ samples for whichdR/dT is negative. This
simple observation correctly describes the sign of the ini
change indV/dI with increasing bias current for man
samples.4

III. NUMERICAL MODELING OF HEAT-INDUCED
HYSTERESIS

In this section we describe numerical simulations p
formed to model more accurately heat-induced hysteresi
superconducting nanowires. We use the relaxation metho
which the wire is broken up into a finite number of segme
and the one-dimensional heat-flow equation is replaced b
finite-difference equation for each segment. Equating
heat generated with that conducted away, the fin
difference equation for segmenti is

I 2R~Ti !
Dx

L
5

Ks~Ti !A@2Ti2Ti 212Ti 11#

Dx
, ~5!

whereR(Ti) is the measured linear resistance of the wire
length L at Ti , Ks(Ti) is the local thermal conductivity o
the material in the wire atTi , A is the cross-sectional area o
the wire ~assumed to be uniform!, and Dx is the length of
each segment. The wire is divided intoN segments, and the
end segments0 andN11 are used to impose the bounda
conditions by fixing these two segments at the bath temp
ture Tb , i.e., at the temperature of the large area film el
trodes at either end.5

s-
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FIG. 2. Comparison ofI -V characteristics measured atTb'1.5 K ~solid curve! and simulated~dashed curve! of four representative
superconducting nanowires of different length and cross-sectional area@proportional to (Rn /L)21]. Sample~a! is the thickest and sample~d!
is the thinnest wire. Note the trend to less hysteresis with thinner nanowires, which stems from the weaker temperature depende
linear resistance of the thinner wires, which are only weakly superconducting. The dotted curve in~a! is the prediction of the analytic mode
Eq. ~4!, which is only applicable to thick wires. The values ofRn and I r fitted to the data are quoted in the second inset box.
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Since we do not knowKs(Ti) directly, we first use the
Wiedemann-Franz law to express thenormalelectronic ther-
mal conductivity asKn(Ti)5L0Ti /rn whereL0 is the Lor-
entz number. Thus,Kn(Ti)5L0TiL/ARn , whereRn is inde-
pendent of temperature for an amorphous metal in the
temperature range. AtTc , Ks(Tc) must be the same a
Kn(Tc). For temperatures belowTc , Ks is less thanKn ,
because there are fewer quasiparticles to carry the heat.
crude approximation we assume a linear interpolation
tween the fully normal and fully superconducting value
Ks /Kn5T/Tc . ~In making this estimate, we neglect he
conduction by phonons in both the nanowire and the car
nanotube substrate, assuming large thermal interfacial re
tance between wire and nanotube.! With this model the
finite-difference equation becomes

I 2R~Ti !
Dx

L
5

L0Ti
2L

RnTc
F2Ti2Ti 212Ti 11

Dx G . ~6!

Formally solving this equation forTi and normalizing the
temperatures toTc , we have

t i5
@ t i 211t i 111I 2R~ t i !Rn~Dx/L !2/~L0t i

2!#

2
, ~7!
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wheret5T/Tc andL/Dx5N, the number of segments in th
wire. This equation can be solved by iteration, putting thet i

values for one iteration in the right hand side to compute
values for the next iteration, and continuing until stable v
ues are obtained. For the resistance,R(t i), we use the
measured3 low-current resistance att i as a look-up table. For
the strongly superconducting samples, such as the sam
shown in Fig. 2~a!, the low-current resistance becomes u
observably small at a temperature above the base temp
ture Tb . For these samples we used an analytical extrap
tion to the data as a look-up table for temperatures be
those for which measured data were available. Once the
crete functiont i has been worked out for a given currentI
and given boundary condition temperatureTb , we can cal-
culate the total resistance and hence the voltageV(I ,Tb)
across the wire by summing the resistanceR(t i)/N for each
segment.

We have considered 9 samples from Ref. 3. Figure
shows data atTb'1.5 K from four representative sample
chosen to cover the range of cross-sectional areas. For
sample, we show the simulatedV(I ) as a dashed curve, a
well as the~solid! measuredV(I ) curve. For each simulation
the wire was divided into 80 segments and the current s
was 1 or 2 nA. The simulations were performed for both
5-3
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and down current sweeps. For the down current sweeps
started the simulation with the temperature in the wire n
Tc so the wire would be in the quasinormal state. Likewi
for the up sweeps, we started the simulation with the te
perature of the wire at the base temperature so that the
would be in the superconducting or low-resistance state.
also show the result of the analytic approximation~4! as a
dotted curve in Fig. 2~a!, which shows data for the thickes
wire, for which Eq.~4! should be most nearly applicable.

For all the samples, the simulated slope of the linear s
tion of the V(I ) curve is somewhat smaller than the me
sured value. This could be due to our rigid boundary con
tion, which sets the end segments to the bath tempera
Tb , rather than letting the temperature rise spread out
the film at the two ends.5 Alternatively, our determination o
the normal resistance of the wire from theR(T) measure-
ments at the point where the film went superconducting m
introduce a small systematic error. Since our focus is on
hysteretic behavior, we do not consider this discrepancy
be a significant feature.

The sample shown in Fig. 2~a! has the largest cross
sectional area and, thus, is the most strongly supercond
ing, with a resistance that drops off quickly belowTc . In all
the strongly superconducting samples studied, the predi
retrapping currents were close to the measured value, as
in this figure. Further, we found that we could force t
retrapping currents to agree completely with the data
making fairly modest adjustments in the estimated para
eters such as the superconducting thermal conducti
Qualitatively, this curve can be understood as follows: in
upsweep below the switching currentI sw the resistance is
low because the temperature is low, so heating is sm
forming a self-consistent situation, but on the downswe
the resistance is high, and provides more heating, which s
consistently sustains the highly resistive~quasi-normal! state
down to a lower current valueI r .

The samples shown in Figs. 2~b! and 2~c! have a narrower
hysteretic region in theV(I ) curve, and our simulation als
shows similar hysteretic behavior. Again, by modest adju
ment of the estimated superconducting thermal conductiv
the simulations could be brought into better agreement w
the measurements.

The sample shown in Fig. 2~d! has the smallest cross
sectional area and a completely nonhystereticV(I ) curve.
The simulatedV(I ) curve is also nonhysteretic, and gene
ally follows the measured curve.

Summing up, we have shown that the appearance of
teresis in all the larger cross-sectional samples, and its
sence in the thinner wires, can be explained rather quan
tively by static heating effects, using only themeasured
linear R(T) as input data. Specifically, this analysis gives
good account of the measured retrapping currentsI r , and a
reasonable account of the switching currents. We now tur
a more detailed consideration of the switching currents.

IV. ESTIMATION OF SWITCHING CURRENTS

The theoretical critical current density in Ginzbur
Landau~GL! theory is proportional toHc /l. Applied to a
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filament thinner thanl and j, so that the current density i
uniform, the critical current is simply proportional to th
cross-sectional area, i.e., toL/Rn . Numerically, this GL
value can be transformed6 into the form

I co~0!'92mA3@LTc /Rnj~0!#, ~8!

using standard relations of GL and BCS theory@for the
‘‘dirty limit’’ ( l ,jo)]. This expression conveniently gives
theoretical estimate of the critical current atT'0 in terms of
the measured lengthL, normal resistanceRn , transition tem-
peratureTc , and coherence lengthj~0!, the latter being esti-
mated fromHc2 measured on similar material. For furthe
numerical work, we insert representative valuesj(0)
57 nm andTc55 K, leading to

I co~0!'66mA3~L/Rn!, ~8a!

with L/Rn in units of nm/V.
Next, we need to adjust this to account for the fact th

our lowest temperature data are taken atT'1.5 K, or t
5T/Tc'0.3, not T50. This temperature scaling is no
straightforward, since Eq.~8! itself is only semiquantitative
because its derivation involves combining GL relation
strictly valid only nearTc , with BCS expressions forT'0.
If we scaleI co by the ‘‘two-fluid’’ temperature dependence o
Jc;Hc /l, this introduces a factor of (12t2)A12t4, leading
to a prefactor of 60mA in Eq. ~8a!. @If we scaled by the
leading order in (12t) of the GL temperature dependenc
valid nearTc , the numerical prefactor would be reduced
a factor of (12t)3/2 to 39 mA, but it seems inappropriate to
use this form so far belowTc .] If instead, we make the
smaller scaling up fromt50 to t'0.3 by replacingj~0! by
j(T)5j(0)/(12t)1/2, the numerical prefactor becomes 5
mA. The differences among these various estimates give
sense of their approximate nature. For concreteness, in
ther numerical work we take the value 55mA, based on the
coherence length, as a representative value. For any of t
prefactor values, however, the experimental switching c
rents I sw in the nanowires shown in Fig. 3 are found to b
systematically considerably lower than the theoretical criti
currentsI co , which are the maximum supercurrents that c
be carried according to GL theory.

In Josephson junctions,2 such ‘‘premature switching’’ is
caused by a fluctuation which leads to a breakdown in
supercurrent and latching into a resistive state even aI
,I co . This only occurs if the junction is underdamped,
that the kinetic energy gained from running ‘‘down hill’’ in
the tilted-washboard potential is not all dissipated, b
enough remains to carry the representative point over
next ‘‘hill.’’ In other words, once the phase point gets over
hill by a fluctuation, it keeps running,provided that the
damping is below some critical value. It is not clear, how-
ever, to what extent this concept applies to our nanowi
because a metallic weak link junction is heavily damped a
hysteresis normally arises only through heating effects.
move forward, we assume that heating will maintain the h
voltage state once a fluctuation has allowed an initial ph
slip to occur. More carefully, some finite rate of phase s
may be required to reach a threshold amount of Joule hea
5-4
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HYSTERETIC I -V CURVES OF SUPERCONDUCTING . . . PHYSICAL REVIEW B68, 134515 ~2003!
sufficient to launch a self-sustaining latch into the resist
state. Such a refinement would only change the num
in a logarithm, and hence make only a modest change in
result.

Before giving a detailed analysis of this process, howe
we point out that stationary heating effects, as oppose
thermal fluctuations, can also cause ‘‘premature’’ switch
in nanowires. Especially for the thinner wires, there is s
nificant phase-slip resistance and hence heating even a
temperatures, so that the measuring current causes the
perature in the wire to rise aboveTb . This temperature rise
increases the phase-slip resistance, causing more dissip
which can lead to a thermal runaway process above a ce
current level, which would be identified asI sw . This possi-
bility is automatically included in the numerical simulation
and can give values ofI sw in agreement with experimen
which are much lower than those predicted by the mo
based on thermal fluctuations, as can be seen in Fig. 3.
numerical model used to simulate theI -V curves in Fig. 2
not only predicts the retrapping current into the low res
tance state, but it also implicitly serves to calculate a swit
ing onset triggered purely by these static heating effects
distinct from the fluctuations which will form the basis fo
Eq. ~11!. The results for the simulatedI sw and I r are plotted
in Fig. 3 along with the measured values for a number
samples, and found to agree rather well, thus reinforcing
evidence for the importance of heating in determining
I -V curves of these nanowires.

We now return to the fluctuation model, recognizing th
the observed Isw will be the lower of the values determined

FIG. 3. Comparison ofmeasured valuesof switching currentI sw

and retrapping currentI r for nine samples, with:~a! the values of
these two quantitiesnumerically simulatedusing Eq.~7!, and ~b!,
the theoretical maximum supercurrentI co(T) at T51.5 K and the
theoretically predicted ideal thresholdI sw(T) using Eq. ~11! for
premature switching induced by thermal noise in the absenc
heating and extrinsic noise. Equation~11! is expected to form an
upper bound to the observedI sw . The horizontal axis is propor
tional to (cross-sectional area)21.
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by stationary heating and by fluctuation effects. Ideally the
two should be treated together, but for computational s
plicity, we treat the fluctuation effect atTb , assuming that, in
this context, the static heating effect can be neglected.

Conceptually, the fluctuation-based switching currentI sw ,
is the current at which the barrier to phase-slip has b
reduced sufficiently by the current to allow a number
phase-slips adequate to launch self-sustaining heating to
cur during the time intervalDt the system spends near th
current value during the upsweep of current in a measu
ment of the ‘‘critical current.’’ This switching current is a
stochastic quantity, and its average value depends~logarith-
mically! on the sweep rate. To estimate it, we need to kn
how the barrier decreases with current, going to zero at
nominal unfluctuated critical currentI co . This issue is
treated in the classic paper of Langer and Ambegaokar.7 An
explicit result for the current-dependent energy barrier is
given, but by numerical solution of their equations~3.13! and
~3.23! it can be shown that the current-dependent bar
height can be approximated extremely well by the analy
expression

DF~ I !'DF~0!~12I /I co!
5/4, ~9!

where DF(0) is the barrier energy to phase slip for ze
current.@It is worth noting that the corresponding expressi
for the more thoroughly studied case of a Josephson junc
has the same form,2 but an exponent of 3/2 instead of 5/4
Qualitatively, the two cases are very similar.# Clearly, Eq.~9!
gives a linear decrease in barrier height for smallI , but for I
near I co in the ‘‘premature switching regime,’’ the barrie
goes to zero as the 5/4 power of (I co2I ). This 5/4 power
leads to the typical switching current^I sw& being depressed
below I co by the 4/5 power of (kBT/DF), with a logarithmic
factor depending on sweep rate. Specifically, adopting
expression for a Josephson junction,2 but changing the expo
nent as described above, we estimate that the average sw
ing current is given by

^I sw&5I co$12@„kBT/DF~0!…ln~vpDt/2p!#4/5%. ~10!

For a wire we replaceDF(0) by A6(\I co/2e).6 The attempt
frequency in a Josephson junction is the junction plas
frequencyvp . For a wire, it is probably better approximate
by the reciprocal of the Ginzburg-Landau time
(;1012 sec21) timesL/j ~to take account of the possibility
of phase slipanywherealong the wire, as was done by Mc
Cumber and Halperin8!. If macroscopic quantum tunneling i
important at low temperatures,kBT might need to be re-
placed by something more likekBTc , but that would only
change the magnitude of the correction by a factor of;2. In
any case, however, in comparing different wires of the sa
material at thesametemperature, the depression ofI sw below
I co is proportional toI co times (I co)

24/5, i.e., to (I co)
1/5. The

time intervalDt would depend on the sweep rate, but will b
of order 1 s, unless more frequent fluctuation-induced ph
slips are needed to generate sufficient heat to launch a
sustaining hot spot. Since all other factors in Eq.~10! depend
rather weakly on the nominal critical current, this implie

of
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that it should be possible to describe the measuredI sw in
terms of the theoretically expectedI co by the form

I sw5I co$12~ I 1 /I co!
4/5%5I co2I 1

4/5I co
1/5. ~11!

HereI 1 is a parameter that can be estimated using Eq.~10! to
be

I 15@kBT/A6~\/2e!# ln~Dt/tGL!. ~12!

The physical significance ofI 1 is that, apart from the loga
rithmic factor, it is roughly the current level which shifts th
barrier to phase slips by;kBT. Taking T51.5 K, and
(Dt/tGL)'1012, we getI 1'0.7mA. Since the factor involv-
ing attempt frequency, sweep rate, and the phase-slip
that might be needed to trigger a thermal latch appears
logarithm, our crude estimate of these values could be of
several orders of magnitude without significant effect co
pared to other uncertainties.

Because the 1/5 power varies so slowly, the subtrac
term in Eq. ~11! varies by only a factor of;1.2 over the
entire range of samples shown in Fig. 3, and the result lo
roughly like subtracting a constant fromI co to get I sw . In-
spection of theI sw data in Fig. 3, compared with the plotte
theoretical estimate ofI co(T) from ~8a! ~using the estimated
temperature-corrected prefactor of 55 nA! shows that such a
dependence gives a rather quantitativeupper boundfor the
switching currents found experimentally. This makes sen
since Eq.~11! considers only the effect of ideal thermal noi
atTb without heating, whereas switching to the resistive st
could be triggered at alower current by heating or by any
sort of extrinsic noise. Similarly, if quantum phase slips a
important, the effect would be similar to an increased te
perature, and would also lower the observedI sw .

An implication of Eq.~11! is that, for I co,I 1 , it would
yield a negativevalue of I sw . Presumably this nonphysica
result implies that there is no premature switching or hys
esis for wires thin enough to have values ofI co smaller than
this crossover value. This is qualitatively consistent with o
observations that hysteresis is only seen in the thicker wi
Using the estimate ofI 1 found from Eq.~12!, this criterion
yields I co'0.7mA for this crossover current. Given th
crudeness of our numerical estimates, this is certainly in
sonable agreement with the empirical value below which
wires in Fig. 3 are not hysteretic, i.e., haveI sw'I r .
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†Permanent address: Eastern Nazarene College, Quincy, Mass
setts 02170, USA.
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land 21218, USA.
1The basic hot-spot model is outlined in W. J. Skocpol, M.

Beasley, and M. Tinkham, J. Appl. Phys.45, 4054 ~1974!. A
representative recent paper from the hot-electron bolomete
erature@H. F. Merkel et al., IEEE Trans. Microwave Theory
Tech.48, 690 ~2000!# uses a detailed thermal balance model
obtain the hot-spot length profile, and uses this to predictI -V
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V. CONCLUDING SUMMARY

We have examined the effect of Joule heating in long t
superconducting nanowires on theirI -V characteristics by
solving a one-dimensional heat-flow equation for a range
sample parameters. This was done using both a simple
lytic approximation for a limiting case and a numerical s
lution for the general case. We have compared these sim
tions with measuredI -V curves, and found generally goo
agreement. The thicker wires show hysteresis and the thin
wires do not. The difference stems from the differentlinear
R(T) dependences, which in turn reflect the dependenc
the phase-slip rate on wire thickness. Because the phase
rate dependsexponentiallyon wire thickness, this thicknes
dependence inR(T) dominates the simple linear thicknes
dependence of the thermal conductance. These classical
ing effects, based on measuredR(T) data instead of a micro
scopic model of phase-slip rates, appear to be able to acc
surprisingly well for the hysteretic nature of theI -V curves,
without explicit reference to the dynamics of phase motion
a tilted washboard potential as is used to discuss hysteres
underdamped Josephson junctions. Heating can accoun
rectly for the value of the retrapping current, below whi
there is insufficient Joule heat to sustain a temperature ab
;Tc . The switching current is bounded by the effect of th
mal fluctuations about the zero~or low! voltage state, but
may be further depressed by extrinsic noise, quantum tun
ing, or non-negligible Joule heating in the low-resistan
state. Joule heating probably provides the mechanism
latching into the resistive state. Quantitatively, our analy
accounts reasonably accurately for the depression of
measuredI sw and I r below the theoretically estimatedI co .
We infer that heating effects are important for understand
all aspects of the hysteresis found in theI -V curves of su-
perconducting nanowires.
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characteristics, conversion gain, and fluctuation noise. Ano
recent paper@D. W. Floet et al., Appl. Phys. Lett.73, 2826
~1998!# treats a Nb microbridge between Au contacts, in whi
the focus is on how proximity effect and Andreev reflectio
affect optimization as a heterodyne mixer. By contrast, the w
reported in the present paper is simplified by dealing with fre
suspended filaments with no thermal contact with the subst
~except at the ends!, but complicated by the fact that there is n
generally accepted theory for the role of quantum phase-slip
causing resistance in superconducting nanowires.

2M. Tinkham, Introduction to Superconductivity~McGraw-Hill,
New York, 1996!, pp. 202–210.

3C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M
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Tinkham, Phys. Rev. Lett.87, 217003~2001!, and unpublished
data on other samples.

4N. Markovic, C. N. Lau, and M. Tinkham, Physica C387, 44
~2003!.

5In a more precise analysis, this thermal boundary condition wo
be replaced by inserting a thermal ‘‘spreading resistance’’
tween the end of the wire and the assumed bath temperatureTb .
13451
ld
-

Since this effectively simply increases the length of the wire
an amount approximately equal to its width, we ignore this sm
correction in the interest of simplicity.
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