PHYSICAL REVIEW B 68, 134514 (2003

Theory of weak continuous measurements in a strongly driven quantum bit
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Continuous spectroscopic measurements of a strongly driven superconducting qubit by means of a high-
quality tank circuit(a linear detectgrare under study. Output functions of the detector—namely, a spectrum of
voltage fluctuations and an impedance—are expressed in terms of the qubit spectrum and magnetic suscepti-
bility. The nonequilibrium spectrum of the current fluctuations in the qubit loop and the linear response
function of the driven qubit coupled to a heat bath are calculated with Bloch-Redfield and rotating-wave
approximations. Back-action effects of the qubit on the tank and the tank on the qubit are analyzed quantita-
tively. We show that the voltage spectrum of the tank provides detailed information about the frequency and
decay rate of Rabi oscillations in the qubit. It is found that both an efficiency of spectroscopic measurement
and measurement-induced decoherence of the qubit demonstrate a resonant behavior as the Rabi frequency
approaches the resonant frequency of the tank. We determine conditions when the spectroscopic observation of
the Rabi oscillations in the flux qubit with the tank circuit can be considered as a weak continuous quantum

measurement.
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[. INTRODUCTION an extraction of useful spectroscopic information about

guantum processes going on in the system. Among other

Quantum electrical engineering treats electrical circuits ashings, a Rabi frequency(}g/27=6.284 MH2 and a life-
macroscopic quantum systems. Some of these systems &mme of Rabi oscillations fga,i=2.5 uS) in the strongly
approximately characterized by two states and, therefore, cairiven qubit have been measured in Ref. 7. We interpret the
be considered as prototypes of a quantum bit, a main elemequbit as a strongly driven system if the frequency of Rabi
of quantum computers. Recently, the existence of two quamsscillations,)g, exceeds significantly the damping rate of
tum states has been proved experimentally in electrical cirthe qubit,I", Qg>T", while being much less than the fre-
cuits based on Josephson junctidnsin so doing, coherent quency of quantum beatings. Here we have to mention some
oscillations between macroscopically different states havéistinctions between the theoretical analysis of the weak
been measured both in a free-evolution regifn@antum quantum measurements given in Refs. 8 and 9 and the ex-
beating$ and in the presence of a resonant driving fieldperimental implementatioh.An assumption made in the
(Rabi oscillations. In the majority of the experiments a theory that a characteristic time of the detector is much
detector—for example, a dc superconducting quantum intershorter than the period of measured oscillations is not valid
ference devicéSQUID)—was strongly coupled to the qubit for the tank(detectoy with the resonant frequency, of
during the measurement that resulted in a fast collapse of therder of the Rabi frequencf)g which is measured in the
circuit into one of its eigenstates. For mapping a whole evoexperiment. This discrepancy is cleared up with a replace-
lution of the qubit the measurements were repeated thoument of a local-in-time response coefficient of the detector
sands times with the same conditions to gather a statisticély a nonlocal response function of the tank. In the output
ensemble. An alternative procedure has been employed in apectrum we will have now a product of the qubit spectrum
experiment where continuous measurements of Rabi oscil-and a Lorentzian that describes a susceptibility of the tank
lations in a three-Josephson-junctié®JJ flux qubit have  Fourier transform of the tank response funcjionhe next
been performed. In this experiment the qubit is inductivelydistinction is related to the fact that the analysis performed in
coupled to a high-quality tank circuit that serves as a lineaRefs. 8 and 9 is aimed at continuous measurements of quan-
detector. Rabi oscillations reveal themselves in a spectrum atim beatings which are determined by the equilibrium spec-
voltage fluctuations in the tank as the Rabi frequency of therum of the qubit. This spectrum has a peak at the frequency
qubit, Q, passes through the resonant frequency of thef quantum oscillations between degenerate states of the qu-
tank, w. It should be noted that the approach undertaken irbit. By contrast, the experimental setup deployed in Ref. 7
Ref. 7 can be considered as an experimental realization afeals with a strongly nonequilibrium situation when the mea-
weak continuous measurements that have been studied thessred quantum system is driven by an external microwave
retically in Refs. 8—13. Previously the effect of a which-pathfield. In this case the output spectrum of voltage fluctuations
detector on electron dephasing in a double-path interferomn the tank(detectoy depends on the nonequilibrium current
eter was demonstrated experimentally in Refs. 14 and 15flux) noise in the qubit loop and has a peak at the Rabi
Weak coupling between the qubit and the deted¢tank)  frequency which is much lower than the frequency of quan-
does not yield complete information about the state of theum beatings but much higher than the decay rate of the
qubit before and during the measurement while not introducegubit. Emission and absorption spectra of the driven atoms
ing severe decoherence into the quantum system. Because (ofio-level systemshave been investigated by Molldfvin
the last reason, the qubit can be monitored continuously witlthe Markov approximation. It was shown that in the presence
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of a strong driving field a single line-shape function of the The present paper is organized as follows. Dynamics and
atom bifurcates into two Lorentzians shifted from the usualfluctuations in the linear detect¢a tank circuij coupled to
resonant frequency of the atom by the Rabi frequency whiclthe qubit are under study in Sec. Il. We derive expressions
is proportional to the amplitude of the driving field. The for the averaged voltage in the tank and for the angle be-
signals from the atom can be detected by means of hightween the voltage and ac current, as well as for the spectrum
frequency spectroscopic devices only. The two-level systerof voltage fluctuations in terms of the magnetic susceptibility
measured in Ref. 7 produces also a low-frequency outputf the qubit and the spectrum of qubit fluctuations. In Sec. llI
that can be associated with biasing of the qubit from thewe derive Heisenberg-Langevin equations for the driven qu-
degeneracy poirlt. We suppose as well that relaxation and bit interacting with the tank and with its internal heat bath
decoherence rates cannot be introduced into the qubit equehich is responsible for qubit decoherence in the absence of
tions phenomenologically as was done by Mollow for thea tank. These equations are subsequently simplified using a
atomic system. The results of the experiniare indicative  rotating-wave approximation for the qubit that is weakly
of a pronounced dependence of the qubit damping rates atoupled to its environment—i.e., to the tank and to the inter-
the amplitude of the driving force. In particular, a decay timenal bath. The decay rates of the qubit depending on the am-
of Rabi oscillations,rg,pi=150 ns, measured in Ref. 6, is plitude of the driving force and on its detuning from energy
significantly different both from a dephasing timer,( splitting of the qubit are derived in Sec. Ill. The dissipative
=20 ns) and from a relaxation timer,{;,,=900 ns) of the evolution of the probability to find a qubit in the excited state
undriven flux qubit. It is shown theoreticalff that well-  as well as the evolution of the averaged current in the qubit
known formulas for the dephasing and relaxation tithé% loop is considered in Sec. IV. In the same section linear
are no longer valid for the strongly driven qubit. In this caseresponse functions of the driven two-level system are calcu-
relaxation and dephasing are mixed and determined by thiated together with parameters which are required for the
spectrum of the heat bath fluctuatio®@y) taken at the Rabi impedance measurement techniqlidT). The nonequilib-
frequency as well as at combinations of the energy splittingium spectrum of qubit fluctuations is found in Sec. V for the
of the qubit, w.=\A2+&2, and the Rabi frequency Case of zero detuning. The output of the linear
Qg 0. *Qg. HereA ande are the tunneling rate of the detector—namely, the spectrum of voltagg fluctue_ltlons in the
qubit and bias, respectively. Besides that, the driven qubit i§2hk—and the contribution of the measuring device into qu-
no longer in thermodynamic equilibrium with the heat bathPit decoherence are presented also in Sec. V. In the Appen-
as evidenced by the zero value of a steady-state populatidi*€S we outline our approach to the theory of an open quan-
difference between the qubit energy levEl&ecause of this, UM system(Appendix A and explain in more detail the
we cannot resort to the Callen-Welton fluctuation-dissipatiorflefivation of collision termgAppendix B and spectra of

theorend to find the spectrum of qubit fluctuations. fluctuation forcesAppendix Q.

This paper is devoted to a detailed consideration of non-
equilibrium fluctuations and decoherence in a strongly driven Il. LC CIRCUIT INDUCTIVELY COUPLED
qubit coupled to a linear detectga high-quality tank To TO THE QUBIT

accomplish these ends we apply a formalism of quantum . 8 1 .
stochastic equations proposed and developed in Refs. 22—2f4. We con5|_der a 3‘]‘]. flux q_uBth driven by a strong h'.gh'.
requency field and inductively coupled to a tank circuit.

Our quantitative analysis is motivated by recent_ . o . - )
q y y This coupling is proportional to the coefficient of qubit-tank

experiment‘%7 and based on the assumption of a weak inter- Lind yLLe I h d
action between the qubit and detector. This assumption cafjutual inductancéyLqLy as well as to the product of cur-

fail near the point of exact resonance between the qubit od€NtS in the tank and in the qubit loop,. Herek is a
cillations and electromagnetic oscillations in the tank, in par-dimensionless coupling parametef, andLy are the induc-
ticular at the point)g=wy. We define conditions whereby tances of the qubit loop and tank, respectively, &xds the
the measurements of Rabi oscillations in the flux qubit perf@NK capacitance. In the quantum case the operator of the

formed in Ref. 7 with a high-quality.C circuit (a tank fall ~ qubit current is determined by the, matrix, =140,

into the category of weak quantum measurem@ptgvith ~ which corresponds to two directions of the persistent current
this aim in mind we calculate the spectrum of voltage fluc-in the qubit loop. An operator of the current in th€ circuit
tuations in the tank as well as the contribution of the detectoftank is defined in terms of creation-annihilation operators
to the decoherence rate of the qubit. The experimental setu@f photons in the tank having a resonance frequengy
implemented in Ref. Tso-called impedance measurement=1/\/L;Cy: i1=hw/2L7(a+a"), [a,a’]_=1. For the
techniquée can also monitor the effective impedance of theHamiltonian of the total “qubit-tank” system we have the
system “qubit-tank” by applying a small ac curremf;,sto  expression

the tank with a subsequent measurement of the angle be-

tween the tank voltage and ac curréht® This angle is de- A P

termined by the magnetic susceptibility of the qubit provided H= 5 0xT 507~ 0o ,F coswt

that the frequency of the ac current coincides with the reso-

nant frequency of the tank. Here we calculate the magnetic —0(Qo+f+N1)+Hr+Hgg, (1)

susceptibility of the strongly driven qubit together with its _ _ o _
decay rates, taking into account detuning between the higtwhereA is the tunneling rate of the qubit, is the bias, and
frequency source and qubit. A=klg\L4L+ is the coupling coefficient between the qubit
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and tank. The operatd®, describes the internal dissipative  In the presence of a time-dependent bias curkgni(t),
environment of the qubifwithout the tank, andH g is the  Eq. (3) for the operator of the tank voltage can be rewritten
to all sources of external flux noise which are additional to

the noise created by the tafik®° In particular, the flux qubit 2 1.

( + C‘)T Q(0)+ )\wTO'z —I bias-
to its decoherence and dephasifig?We also introduce here Cr ®
f(t), a small external force that is required for a calculation
tion spectrum of the qubit. In its turn, the tank driven by ah qubit operator, on the right-hand side of Eq8) func-
bias current;,s is characterized by the Hamiltonia; , tionally depends on the tank voltag . For a small qubit-

Hr=hor(a’a+1/2)—(a+a")Qy— Ll tlpiast Hra, by the formula

2

. ) . . Oy U'z ot —
interacts with the tank. That heat bath, having a free Hamil- Lt of(ty)
tons y7 *, as well as for a finite quality factor of the tank, Here we take into account the relatiod/ ¢1 ) =\ (4/ 5f), as
Qr=w1/2yr. well as the equationy=V/L;. Fluctuations of the term
=i \/ﬁwT/ZCT(aT—a) obey the equationisrzf/T/LT and qubit, Qq, only, so that the operatdrzvo has no correlations
with the heat batl®,, coupled directly to the tank. The func-

Hamiltonian of this heat bath. The heat b&} corresponds in the form of a simple stochastic equation
is coupled to nuclear and impurity spins that can contribute a2 + YTdt
of the magnetic susceptibility and, in particular, the absorp-
tank interaction this dependence is approximately described
whereQy, is a variable of another heat bath which directly : A f dt1< So,(t )>VT( ty). 9)
tonianH+g, is responsible for the finite lifetime of the pho-
Operators of the tank currerity and tank voltageVy  ¢,q, (¢,0)=0, are determined by the internal bath of the
2w tional derivative( 6o,(t)/6f(t")) has the magnetic suscepti-
Qb+)\wT0'z Iblas ©) e< 1M )> 9 P

i + ‘”T bility of the qubit, y,{w), as its Fourier transform;
From here on we put=1 andszl. For a small coupling
between the tank and its own bath and/or for the case of da (1) _ %e"‘"(‘ )y, @) (10)
Gaussian fluctuations of free variables of this heat bath, Sf(t") 2 Xz '

QY the total operatof,(t) has the form
These functions describe the behavior of the qubit current,
Qb(t):ng)(t)jL‘/zLT/wa dt,op(t,t)i(ty), @)  (lg=l(o), induced by variations of the time-dependent
external flux, which can be created by the tank,
with =ky/Lgl qZ/LT®rf(t). Taking into account a qubit back-action
on the tank we obtain the following equation for the tank
ep(t,t) =([QF(), QP (t)]-)o(t—t)) (5  voltage:

being a linear response function of the bath. Hg(e€) is the

2
Heaviside step function, an@{”)=0. f dtl[(d_2+ yr—+ 0| S(t—ty)
To characterize this heat bath thoroughly we introduce dt dt
also a correlation function of the unperturbed varial¢¥ , A2 o (1)
; -
—— i =) |V(ty)
Myt t) =((12[QP1,Q%(t)]1,),  (®) Ly T< 5f<t1>> o
together with a corresponding spectral funci®yfw) which [ 2o7. (0) 2 1.
represents a Fourier transform ™(7). In the case of = Vo Qv Thotozef C_le‘as‘ 1D

Ohmic dissipation in the tank with a resistarRethe imagi-

nary part of the susceptibility,(w), corresponding to the  Thg yoltageV;(t)—or, more precisely, its average value and
response functiop,(t—ty), is proportional to the frequency cqrrelation functions — serves as a meter in the process of
: Xp(@)=(yr/207)w and to the linewidth of the tankr  qubit measurements. Averaging of Ed1) over the initial
=1(RCy) with ¢@p(7)=—(y7/2w7)(d/d7)5(7). Accord-  state of the qubit and over the equilibrium fluctuations of all
ing to the fluctuation-dissipation theorem for the spectrumyjssipative environments allows us to find the average tank
Sp(w) we obtain voltage (V+(t))=V7cos @t+0O) induced by the time-
_ dependent bias currehfizs(t) =1, Coswt. In the framework

Sol@) = (yrf207) e coth(w/2T), @ of the IMT,2>%® an imaginary part of the total impedance of
where T is the equilibrium temperature of the heat baththe system “qubit-tank,” defined by a voltage-current phase
coupled to the tank. We suppose that this initial temperaturshift ©, is studied as a function of qubit parameters, such as
is equal to the equilibrium temperature of the bath interacting bias, etc. Matching the coefficients befage'“! in the
with the qubit. averaged equatiofil) gives the result
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. A2 |
VTe'®=—iw[ w2 1—L—X;Z(w) —w? S;dw)= J d(t—t")e'tt )<§[0'z(t)-0'z(t,)] >
T
)\2 2 —1| (17)
—io| yr+ ﬂx'z'z w) ] _ac (12 incorporates a Fourier transfor®,,q(w) of the correlator
wby Cr (U o,0(t),0,0(t")]+), which originates from qubit cou-

Here () and () are the real and imaginary parts of plmg to its internal heat bathQ,, together with a contribu-

the qubit magnetic susceptibilitjt0). At resonant conditions tion S, 1(w), resulting from the qubit-tank interaction. This

when the frequency of the bias current is exactly equal to thgontribution has been built into the left-hand side of Bd).
resonance fr?aquen)::y of the tank=w-, the am{)litﬁde of It follows from Eg.(16) that the total spectrum of voltage

P . . . fluctuations in the tankS,(w), Eg. (15), contains a contri-
the voltage oscillations is determined by the equation bution of the thermal nois&, (), Eq. (7) which is comple-

| mented by nonequilibrium noise generated by the qubit,
Vr=g AL gl qorxid on)1? Sz0(@):

2 2
+[7T+ k2|_q|ngszfz(wT)]2}fll2_ (13) Sv(w)zwzg Zsb((w_);‘k t;linzsizo(w) (19)
T O Ea ) YT

For the voltage-current phase shift we obtain the expression
Here w+ is the resonant frequency of the tank shifted in the
wrXe{ OT) presence of the qubit,
tan® = — k2L |2 e T . (19
T+ KL 1 20 XoAo7) - 2] 12
T algTAZZ T o= 0rV1-KLglox;{ 07), (19
Measurements of the angle between the average voltage Iy~ is the tank linewidth having regard to the qubit con-
the tank and the bias current give us immediate mformauoq D :
. : ..~ tribution to the tank damping,
about the real part of the qubit magnetic susceptibility
Xa{@7) ta}kgn at the resonance frequency of the tamk', . ;T: 7T+k2Lq|éwTX,z,z(wT)- (20)
The sensitivity of the impedance measurement technique is
adversely affected by the qubit contribution to the tankThe frequency shift of the tank and the correction to the tank
damping rate which is proportional to the imaginary part ofdamping rate depend on the total susceptibility of the qubit,
the qubit susceptibility) (7). XzA @), which should be calculated with consideration for
It follows from the stochastic part of E411) that a cor-  all mechanisms of qubit dissipation.
relator of the voltage fluctuatiori® cumulant functiof

Ill. QUANTUM LANGEVIN EQUATIONS

My(t,t")=((L/2)[V+(1),V1(t)]+) In this section we derive Heisenberg-Langevin equations
do , with the subsequent goal of finding the nonequilibrium spec-
= f 2—e*""(t*t )S(w), (15  trum S,{w) of the qubit together with its magnetic suscep-
™ tibility x,{w). To do that we consider a two-state syst@m
satisfies the equation quantum pﬂ inFe-racting with a heat bat) in Fhe presence of
a harmonic driving forcé-(t) =F coswqt. This heat bath in-
d2 A2 o (1) corporates a contribution of the internal qubit bafy, as
j dtl[ W+7Tﬁ+w$ 5(t—t1)—L—w$< 5f(zt )H well as a contribution of currentflux) fluctuations in the
T ! tank, N11: Q=Qu+\l7. An interaction with this bath,
d2 d Hin:=— Qo,, has been integrated into the Hamiltonidn.
XJ’ dtp| | —+yr—— T o7 | ot —ty) We suppose that the frequency of the external fielg,
dt'2 d can be different from the energy splitting of the qulail,
) = JA%+ &2, with small detunings= wy— w,,d<w,. In the
AT L[ doy(t) rotating frame of reference the qubit is described by the op-
Ty o7 My(ty,t5)
Lt of(ts) erators
A €
_ & [szM (t,t") X= 0.t oo
dtdt' [ Cr ’ ¢
1 Y t+ A © ) i t
=g, CO0S —0,— — sinwt,
+A2w$<E[az,o<t),az,o<t'>]+> ] (16) Ty e T2 w7 ST
; A
The total spectrum of the qubit,S,{w)=S,,qw) Zz(—oz— igx) coswot— gy Sinwot, (21)
+S,;1(w), We © O
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which have usual commutation rulgs,Y]_=2iZ, .... In  the equilibrium spectrun$(w) is proportional to the imagi-
terms of these operators the Hamiltonian of the system canary part of the heat bath susceptibiljg/(w).
be rewritten as Following the method outlined in Appendix A we can

A A rewrite the Heisenberg equatiof®3) in the form of quan-
w & i i
H=—"X— 5Z—|—(Zcoswet+Y sinwt) + —X|Q tum Langevin equations,

2 2 [OR e

X=AY+L+ &+ fy,

+Hg, (22
whereA is proportional to the amplitude of the driving force, Y=6Z—AX+ Ly+ &+ 1y,
A=(AF/w.). Here we resort to the rotating-wave approxi-
mation(RWA) and neglect fast oscillating terms. Taking into Z=—6Y+L,+E,+1, (28)

account the explicit time dependence of the operatoasd
Z we derive the following Heisenberg equations=(1kg  with the collision terms
=1):

2A ~
. A Lx(t)=—2—f dt;{M(t,t1)i[ Y(1) coswot —Z(t) Sinwgt,
X=AY+2w—(YCOSw0t—Z sinwet)(Q+1), W
Cc

AZ(tl) COSa)Otl-i- AY(tl) sin (1)0t1+ SX(tl)]_

. A e
Y=6Z—AX—-2| —X COSwot—w—Z
C

We

(Q+1), + o(t,t)(L/2)[ Y (1) coSwot — Z(t) Sinwot,
AZ(ty) coswgt;+AY(t1) Sinwgt;+eX(ty)] 1},

Z=—68Y+2 Ax:e,inwot—i\( (Q+f). (23 5
@e @e Ly(t)=— —zf dt,{M(t,t,)i[AX(t) coswgt —£Z(t),
In the case of a Gaussian statistics of free heat bath variables @e
Q© or for a weak qubit-bath interaction the response of the AZ(ty) coswot; +AY(ty) sinwpt; +eX(ty)]-
heat bath on the action of the qubit is determined by the
expressioff + o(t,t1) (1/2[AX(t) coswot — eZ(1),

AZ(tl) COSthl-I— AY(tl) Sinwotl+ Sx(tl)]+},
Q()=Q(t)+ f dtye(t,ty) oy(ty), (24)

2 ~ : :
where Lz(t)=?f dt{M(t,t1)i[AX(t) sinwet—eY(1),
Cc
Uz:wﬁ[z COSw0t+YSInwot]+ wix (25) AZ(tl) COSthl-I-AY(tl) Slnwotl-i-sX(tl)],
¢ ¢ +o(t,t)((L/[AX(t) sinwt— e Y(t),
As in Sec. Il, the retarded Green function of the )
free heat bath is denoted byo(t,t;), o(t.t;) AZ(ty) coswot; +AY(ty) sinwoty +eX(ty) ]},
=(i[QO(1),Q)(t,)]_)6(t—t;), with a respective Fourier (29)

transform(a susceptibility y(w). This susceptibilityy(w) _
= xo(w) + x7(w) incorporates a parky(w) that is due to M(7)=M(7)6(7), 7=t—t;, and the fluctuation sources
internal mechanisms of qubit decoherence, together with &, &,, §,. Definitions and correlation functions of these

resonant contribution of the tank;(w), forces, &m(t) ={Q©(t) A(t)} (m=1,2,3), are presented in

Appendix A [see Eq.(A8)]. Hereafter the digital indices

o 12 w% 1,2,3 correspond to the indicgsy,z, respectively. The qubit
xt(@)=kKbLglg——F5—— (26) operators4,,(t) are defined as followgsee also Eq923)]:

o0 —iwyr

Besides that, the free heat bath is characterized by A .

a  correlation  function M(t,t;), M(t,t;)=((1/2) Ax(t) =2 (Y coswet —Z sinwot),

X[QO)(1),Q(t,)].) and by the spectrum of equilibrium ¢

fluctuationsS(w) with temperatureT, A e

Ay(t)= —2(—X COSwot — —Z) ,
We We

S(w)= f dTei“’TM(T):X"(w)COth(%' (27)
) €
This spectrumS(w)=So(w)+ S;(w) contains a part that Az(t)=2(w—CXSlnwot—w—cY)- (30

originates from the qubit interaction with its own heat bath,
So(w), as well as a parSr(w), related to qubit coupling to We also introduce the effective forcefs,f,,f,,: f (1)
the tank. According to the fluctuation-dissipation theofém, =.A4,(t)f(t), which are necessary for calculating the linear
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response functions and susceptibilities of the qubit. After thevhere for nonzero elements of the matfix we havell,,

calculations the auxiliary forcé(t) should be set equal to =—1II,;=—A andIl,3=—1II;,=— . The collision coeffi-

zero. cientsI",,(7) are presented in Appendix B. For steady-state
The non-Markovian stochastic equatio@$) can be sim-  parametersy, = v, , v,= vy and v3= v, we obtain the fol-

plified in the approximation of weak coupling between the|gying expressions:

qubit and heat battiBloch-Redfield approximation With

nonzero detuning+ 0, the free evolution of the driven qubit AZ[ A% 5\*
(without coupling to a heat bakhs described by the equa- =T 2l 0zZX (‘”0)+§ 1- QOn X"(@o+Qg)
tions (r=t—t,) cLTR
52+A2 sQ) A +11+52//( Q)
Cco T A ~ wo— ’
X(1)=X(ty) R Y (ty)—sinQgr 2077 Qg X TR
Or Qg
2 2
1- cosllgr V=g | 2= X (0 =X (QR)]= = 2’ (@0)
+Z(t1)A59—§, Qr| Qg 0f Or 0§
A o + a* 1+ 5) ! Qg)
Y(t):Y(tl) COSQRT_ X(tl)_SinQRT+Z(t1)_SimRT, 2(1)5 QR X (wo R
Qg Qg
AZ
A%+ 5% cosQRrT 5 . - 2(1_Q_)X’(w0+QR)},
Z(t)=Z(ty) . Y(ty)~—sinQgr 2w; R
02 Qr
2 2
1— cosQgT 1/3=i 28—2)("(QR)+ 2 A—2)(”(600)
+X(tl)A5 Qé ’ (31) QR (O QR we
. . . . A2 2
where(Qy is the effective Rabi frequency of the qubit, T ﬁ( 1— Q_) Y (0o+ Q)
AF)\?2 o "
Qr= VA%+ %= \/(— +(wo— w)?. (32 A? z
we 5.2 1+Q_R X" (wo—Qg)|. (34)
Cc

In the Bloch-Redfield approximation we can reduce the
qubit operators taken at the momentto the operators
at the momentt; using Egs.(31) and, thereafter, calcu-
late (antijcommutators of the simultaneous qubit opera-
tors using the usual commutation ruléX(t,),Y(ty)]- o
=2iZ(ty), [X(t,),Y(t)]. =0, ... (see Appendix B Ne- Xi(1) =2, Gmn(1)X,(0)
glecting fast oscillating terms in the collision integréd9) n

we derive the following equations for the qubit operators

Here ¥’ (w) and x"(w) are real and imaginary parts of the
heat bath susceptibility(w).
A formal solution of Eq.(33) has the form

X1=X, X,=Y, X3=Z in the rotating frame of reference +2jdtlemn(t—tl)[gn(tl)Jrfn(t1)+ il
(m,n=1,2,3): n
(35
Xm"'; Hman+;f Aty mn(t—1t1)Xn(ty) where the last constant term describes the steady-state values
of the average qubit variableX; ;=Xo=(6/Qg)Pq, X3
=&t Tt vm, (33 =Yo=0, andX3o=Zo=(A/Qg) Py, with polarization

_4(eAIAPX"(QR) +(Qr— 8)°X"(wo+ Qr) = (Qrt 8)*x" (0o~ Qr)

o 2 2 2 (36
4(eAIA)*S(QR) +(Qr—8)S(wo+ Qg) + (Qr+ 6)°S(wo— QR)

For an exact resonance,=w., 6=0, between the fre- detunings+0.
qguency of driving forcawy and energy splitting of the qubit Here we consider the case of strong driving when the

w.=JA%+¢&?, the steady-state polarizatidp, is positive  Rabi frequencyQg, Eq. (32), is much more than qubit's
for the Ohmic or super-Ohmic heat batly’(w)~w",  relaxation rates. Then, for Fourier transfor@s,(w) of the

r=1. However, P, can be negative at nonzero Green functiongmn(r) incorporated into Eq.35) we obtain
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Gu(w)=(6°~0?)/D(w), Gylw)=—w?’/D(w),
Gag @) =(A?~ w?)/D(w),
G w)=—Gy(w)=~1wA/D(w),
Gi3(@)=Ggy(w)=6A/D(w),

Goi(w)=—G3w)=—iwd/D(w), (37

with the denominator

2 A?

A
I'(w)= w—gg—é[S(w+QR)+S(w—QR)]+m

2

PHYSICAL REVIEW B8, 134514 (2003

D(w)=i[w+iT(w)][w?—Q%+iwl ()]
=i[o+iT (w)][w—Qr+iT(w)/2]
X[w+Qr+il(w)/2]. (39)

The coefficientsl’,(w) and I'(w), derived with Eqs.(B2)

and (B3) from Appendix B, play the role of frequency-
dependent relaxation rates. These relaxation rates are even
functions ofw, I',(—w)=T",(w), I'(— w)=I'(w), and they

are determined by the spectral density of the heat I&{th)

Eq. (27):

F) 2
Qg

A? 5
wc QR
82 A2 82 52|:< QR QR
Nw)=2— —SS(w)+2— —||1-—|S(wo+Qg)+| 1+ —|S(w—QR)
: 0F :0f w w
A? 5\? 2 A% A? Qg
+ﬁ 1_Q_R S(w+ wg) + 1+— S(w—wg) |+ 202 1—: [S(w+ wet+QR)+S(w—wgt+QR)]
A% A? Qr
—l-z—wgﬂ—gz 1+: [S(o—wg—QRr)+S(w+ wy—QR)]. (40

We omit here frequency shifts of the qubit resulting from its
interaction with the heat bath. With Eq&7) we can calcu-

late the retarded Green functioEs,,n(r) defined atr>0:

o 52 2
Gu(T)=—e "7+ —e T cosOgr,
QR R
_ _ A
Gyy(7)=—Gyu(1)= —e "?sinQgr,
Qg
_ _ SA
Gy 7)=G,(1)= §(effzf— e '"2cosQg7),
R
Gyy(1)=e "2 cosQgr,

g —I'7/2 o
Gy T)=— G,y T)= Q—e sSinQgr,

A? 52
_ -, —I'7/2
G, 7)= —2 e + —ée CcoSO) R, (42

whereG,,(0)= 8yn. The decay rateE, andI" are equal to
the functionsl’,(w) andI'(w), Egs.(39) and(40), taken at
zero frequency and at the Rabi frequency, respectively:

&2 A2 A2 52
r,=r,0)= Z—Q—S(Q )+ [(1—Q—> S(wot+QR)

wg R

S 2

1+_ S(wO R)i (42)

A? A?
(0)+2w 2S(wo) (43)

g2 52
I‘IT(QR)ZFZ+4
wc R

The decay ratd’/2 is related to the rat&; * from Ref. 18,

the notation fol", remains the same. It should be noted also
that the heat bath operat@(t) defined in the present paper
differs from the same operatd@ from the papéef by the
factor 1/2(see also Ref. 33Because of this, to compare our
results with results of the above-mentioned article we have to
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divide our spectral function of the heat baf(w) and our  (0|X(0)|0)=—-1 and (0|Y(0)|0)=(0|Z(0)|0)=0, the
susceptibilityy(w) by 4 to get the spectral function and the probability to find the qubit in the excited statBg=(1

susceptibility of the heat bath used in Ref. 18. +(X))/2,
1 ) 8 AZ
IV. DISSIPATIVE DYNAMICS AND A LINEAR RESPONSE Pe(t)==| 1+ =—Pyl|| 1— _zefl“zt_ _Zefl"tIZ CcosQ it
OF THE QUBIT 2 Q Qg Qg
It follows from Eqg.(35) that the evolution of the averaged SA? L
qubit operator X, (t)), m=1,2,3, from its initial condition B 293R(e 7-e T coshgl), (45)

(Xn(0)) to the steady-state valu¢,,, is governed by the

corresponding Green functioi®,,(t), Eq. (41): oscillates with the Rabi frequendyy, Eq.(32), and relaxes
to the steady-state vall®: = (1/2)[ 1+ (5/Qg)Po]. In the

o case of resonant driving whe#,=w., 6=0, the energy
(Xm(t)>=xm‘0+2 Gmn(D[(Xn(0))—X,0l. (44  levels of the qubit are populated equally in the steady state,
n Pe = 1/2. At the same initial conditions the averaged cur-

rent in the qubit Ioop(Tq(t)>= l4(o4(1)), oscillates not only

In particular, if the qubit starts from the ground sté®® of  with the Rabi frequenc§ly, but also with the frequency of

the HamiltonianHy=(A/2)oy+ (e/2)o,=(w/2)X, where the driving forcew,, as well as with frequenciesy* Qg:

A2 2
PO( 1- Q—ée‘rzt— Q—ae‘r”zcosQRt) -

1)
1+ — PO) (e Td—g T2 cosQRt)}
R

T4(t))= - A|
( q(t)>_w_cQ_R q COSw,t Q

Or

AA - -rti2_ £ ’ It ? T2
+— o—lgsinwet sinQgte™ " "o——1 | 1+ —Py A4+ ——e 12cosOpt

we O we Qg Qée Q3
e 6 _[A?
T o-TtR2 _
wcquRPO —Q—QR(e e cosQgt) 1}. (46)

The qubit starts with an initial curreri,(0))= —(¢/w.)l,  functional derivative(so(t)/6f(t)) or its Fourier trans-
corresponding to the ground state with a nonzero biand ~ form, a magnetic susceptibility, (), Eq. (10). With Eq.
ends at>T, 1,21 with the steady-state current oscillating (25 We obtain the following expression:

with the frequency of the driving forcey:

<6a’z(t)> A < 5Z(t)> o s < 5Y(t)> o

= —_— w i w

(T(1)s=14Po wﬁﬂicowowii). @\t weleftn] T e st/ T
C R

we Q)
) & < 5X(t)>
+— . (48)

Interestingly, there are no signs of the Rabi frequency in wc \ 5f(t)
oscillations of the steady-state qubit current. We emphasize
that the relaxation of the population differenBg and the

decay of the qubit curren(tfq(t)> are determined by both The derivatives of the qubit operators in the rotating frame of

damping rated”, andI'/2, Eqgs.(42) and (43). It is worth  reference{ 5X,,(t)/5f(t’)), can be found from the averaged

noting, also, that zero-frequency fluctuations of the heat battgquation (35) taking into account formulas for the forces

such as ¥/noise, which are described by the spectral func-f,(t): f,(t)=A4,(t)f(t), where A,(t) are defined by Egs.

tion S(0), contribute to the decay rafg, Eq. (43), in the (30). The mean values of the averaged qubit variables

case of nonzero detuning and nonzero bias. (X}, {Y) and (Z) in Egs. (30) should be replaced in the
Equations(35) averaged over the initial state of the qubit process by their steady-state valugs=(56/Qg)Pq, Yo

and over the thermodynamically equilibrium initial state of =0, andZy,=(A/{g)P,, where the polarizatioR, is given

the heat bath allow us to calculate the linear response of thiey Eq.(36). Then, for the magnetic susceptibility of the qubit

qubit on the action of a small external for€&): namely, a we obtain the following result:
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A 5 1 1
Xed ©)= = 3 2Pl [T O T2 wr QatiTi2
A2 5 1+25(w+w0)+ 52

4ot ° 0F 0

1 1
wtog—Qr+il2 w+wy+ QR—HF/Z)

A? Sw—wy) 6

—_—— — —+ JRE—
T
The imaginary part of this susceptibility which defines the absorption properties of the driven qubit peaks at the Rabi
frequencyQg as well as at frequenciesy* Qg:

1 1
(w—wo—QRHF/Z_ w—w0+QR+iF/2)' (49

, &2 A 5 /2 /2
Xed @)= 2 02P0 (0 07+ (T127 (0t Q)2+ (1127
A2 o (1 2 r2 r2
T 202701 00 | (0F 00— QR ZF (1727 (0—wg+ Qr) 2+ (112)2

(50

Iz 2 }

A? S5\?
* Eﬁpo( 1= Q_R) (0—wo—Qr)Z+(T12)2 (w+wy+Qr) 2+ (I/2)2

The absorption of weak signal energy by the qubit is deterexact resonance between energy splitting of the quhit,
mined by the functiord (w) = wx,(w). % tis evident from  =.AZ+¢2, and the frequency, of the driving field: &

the formula(50) that U(w) can be negative at the positive = wo— w.=0. Calculations of the spectrum for nonzero de-
frequencywy—Qg. It means that a weak signal having this tuning are straightforward, but cumbersome enough. The
frequency will be amplified by the strongly driven qubit. The part of the qubit spectrur,,o(w), which results from in-
low-frequency part of the qubit susceptibility which affects ternal decoherence mechanisms of the q(dmtipling to the
the resonant frequency of the tafdee Eq(19)] has the form  bath Q,), can be easily found from the expression for the
total spectrumS,,. To do that we have to replace the total

' (@)=~ e’ A2 P w—Qg spectrum of the batt§(w), by the spectrum of the internal
Xz 02" (0= Qg2+ (T12)? bath, Sy(w), in expressiongC2)—(C7) for the spectra of
fluctuation forces given in Appendix C. It should be empha-
-~ w+Qg (51) sized that the damping rates of the qubit are determined nev-
(w+ Qg%+ (I'/2)? ertheless by the total spectruBiw), Eq.(27), of the dissi-

pative environment.

In view of Eq. (25) the correlator ofo, operators of the
qubit averaged over fast oscillations can be expressed in
terms of qubit’s correlation functions in the rotating frame

The angle® between a voltage and a current in the tank
coupled to the qubit, Eq14), is determined by the suscep-
tibility of the qubit, Egs.(50) and (51), taken at the tank

frequencyw-y: iy
2 A2 QR_wT wT
tan® = — k2L, |2 P d i)
w2 02 % Qr—wp?+(T/2)2 . 1 , 21 |
(52 SLoa(),0(t)]4 =2 SIX(0).X(t)].
Here i
_ £2 A? r/2 +g [Z(t) Z(t")], ) coswoT
y1=yr+K?Lgl5— =7 Poor 5 5
902 027" (Qp—wr)?+(T12)

(53 t),Y(t") ], > COSwoT

is an effective damping rate of the tank in the presence of the <
qubit. )
t),Z(t")]; ) SinwgT
V. NONEQUILIBRIUM SPECTRA OF THE QUBIT
AND TANK <

[Z(1),Y ()], > Sinwor].
Here we will calculate the total nonequilibrium spectrum
of the qubit fluctuationsS,(w), Eq. (17), for the case of (54
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Correlators of the qubit variables in the rotating frame are &2 A2
determined by the correlation functions of the fluctuation Szz(w)—7/\xx(w)+ _Z[Azz(‘lH' wg) + Ayy(@+ wg)
forces[see a stochastic part of E@®5)],

—iAy 0+ wg) +iA,(o+wg)]

1 _ _
<§[Xm(t),Xk(t’)]+>= f dtydt; 2 Gpn(t,ty)Gia(ttz) A2
n +_Z[Azz(w_w0)+Ayy(w_w0)
1 dowg
><<§[§n(t1),§|(tz)]+>, (55 FiAy (0= wg) —iA,(w+w)]. (57)

It follows from Eqgs.(57) and(37) that the spectral functions
of the qubit operators in the rotating fram&,,(w)(m,k
=X,Y,2), are determined by the spectra of the fluctuation
forcesK,(w):

where the Green functior@mn(r) are defined by Eqg41).
Fourier transforms of the qubit correlation functiokg, ()
and the correlator of the fluctuation forcés,(w),

1 , do ) 2
5 XD, X (1) ]+ ) = fﬁe A @), Ax(@) = 0] 0Ky @) + QEK (@)
—2iwAKyy(0)]/|D(w)]?,

1 d . ,
<5[§n<t>,§.<t')]+> - [ et Ok o), Ayy(@) = 07 QFK (0) + 0°Kyy(w)

—9i 2
are related according to the equation Z'wAny(w)]/|D(w)| '

A f0)=(0?—QF)*K,{w)/|D(w)|?,

Ayl w)=io(Qi— 0?)[AK, 0)+ioK,(0)]/|D(w)|?
(58)

Amk<w>=% G @)G(— 0)Kpy(w),  (56)

with G(w) from Egs.(37). The correlators of the fluctua- With Azf@)==Ay(w). Here

tion forces,((1/2)[ £x(1),&(t")]), are calculated according 2_r 2,72 2_02\2 212

to the procedure given in Appendix ee Eq.(All)]. The [D(@)*=[0*+ T3 ()][(0"~ 0"+ o"T ()] (59
expressions for spectral functions of the fluctuation forcesis the modulus square of the Green function denominator

K,i(w), are presented in Appendix C. (38). Combining Egs.(57)—(59) with the formulas(C2)—
For the spectrum of qubit fluctuatiorS,(w) we find (C7) from Appendix C we obtain the nonequilibrium spec-
from Eqgs.(17) and(54) trum of qubit fluctuationsS, (w):
g? Wg(w) A? W(wo+ ) 1
S;dw)=

_ + —
202 (0°— Q3%+ 0T (w) 402 (0+w)?+T 2w+ wg) [(w+we)?— Q3]+ 0 T2 (w+ wy)
A2 W(wo— w) 1

402 (00— w0)2+T2(w— wp) [(0—we)>— Q&%+ 0 T?(w— wg)

(60)

Here the frequency-dependent damping rdtgsy) andI'(w) are defined by Eqg39) and (40). The functionsWg(w) and
W(w) are given by the expressions

2 AZ
Wg(w)= 89 2S(w)+2w Z[S(a)-f—a)o)-i-S(w—wo)]
C
AZ
+F(O)_QR)2[S((I)+ (1)0+ QR)+S((U_(U0+ QR)_ Po)(”((,()+ (1)0+QR)_ POX”((l)_ 0)0+ QR)]
C
AZ
+;z(w+QR)2[S(w— wy— Q) +S(w+ wyg—QR)+Pox" (00— wy—Qg) +Pox"(w+ wg—QR) 1, (61
C
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g2 A?
W(w)=4w4w78(w)+w2Q2R;z[S(w+ wgo) +S(w—wg)]
C C

2
e
+2?(w2—9§)2[5(w+QR)— Pox"(0+Qgr)+S(0—Qg)+Pox"(0—Qg)]
C
2

+Q§eﬁ(w_QR)2[S(w+ 0ot Qg)—Pox"(0+we+Qg)]
C

AZ
+0f 52 (0+ Q) [0+ wo— Q)+ Pox"(w+ wo— Q)]

c

AZ
+m(w_QR)2(2w+QR)2[S(w_wO+QR)_POX,,(w_wO+QR)]
Cc
AZ
+ﬁ(w+QR)2(2w—QR)Z[S(w—wo—QR)+Pox”(w—wo—QR)]- (62)
Cc
|
It follows herefrom that the qubit spectrum is an even func- &2 A2
tion of w: S,(—w)=S,{w). In the regime of strong driv- I';=27-5S(Qr) + —5S(wo),
ing, whenQg>T',T',, the qubit spectruns,(w) taken at ¢ ¢
positive frequencies consists of three Lorentzian peaks cen- 2 2
tered at frequencieQr, wg—Qg, and wy+ Qg with line- '=2—S(Qg)+3—%S(wp)- (64)
width I'/2 each, withl'=T'(Qg), Eq.(43), complemented by We e

the additional peak located exactly at the frequency of thexs for the driven atortf the spectrum of our two-level sys-
driving force, wq. In the present sectiot is equal to the  tem is double peaked at the frequencigs+Qg, but be-
frequency of quantum beatings. The additional peak has sjdes that, we have a peak at the Rabi frequency with an
a different linewidth I',=T",(0), Eq.(42), and itis absentin intensity that is proportional to the bias squared, The
the absorption spectrum determined by the funci$ffw),  low-frequency part of the spectrud®,{(w) gives a signifi-
Eq. (50). The current in the qubit loop is described by the cant contribution to the voltage spectrum of the tBlw),
operatorfqzlqaz. Because of this, the spectrum of currentEq. (18). We recall also that the internal heat bath only
fluctuations of the qubit,S(w), is proportional to the should be taken into account in the process of calculating the
spectrum S,(w): S(w)=((1/2)[14().14]:)=12S,{w),  SPectra of fluctuation force&, (), Egs. (C2—(CY). It
wherel is the value of the persigtent current in the qubitmeans that in expression§1) and (62) for Wr(w) and
loop. W(w) we have to extract fluctuations qf the tgnk from the
In view of the facts—thatw,>Qr and Wg(Qg)  total heat bath spectrur(w) and substitute this spectrum
=4TQ2%, W(0)=2T,0%, and W(QR):ZFQ‘Q—and con- for th_e spectrumSo(w)_ related to the internal bath: _The
sidering a heat bath with temperature that is greater than tHé&Mping rates” andI’; in the numerators of E¢63) origi-
energy of a Rabi quanturT;>#Qg, we find a simple for- nate exactly from the functiow(w), Eq.(62). For calculat-

mula for the nonequilibrium spectrum of qubit fluctuations: N9 the spectrun,;o(w) it is necessary to replace these
rates by coefficients depending on the spectrum of the inter-

&2 Q2r A2 I nal bath only—namelyl’,, and Iy, where, for example,
R z — 27, 2 27,2
S,(w)=2— oy ——————s I'g=2(e“1wg)So(QR) +3(A“/wg) So(wg). The decay rates
w; (0*=0R)*+ 0 T? 20 (0t wg)+17 in the denominators of the spectrusy,o(») remain the
A2 r same, because both the internal mechanisms and tank fluc-
— % tuations contribute to the linewidth of the qubit. As a result,
20¢ (0= wg) +17; for the low-frequency part of the qubit spectr8y, o(w) we
A2 r find
+ —_—
202 [(w+ wg)?— QR]%+ 0’T? 5 )_28_2 Q2T €5
A2 r 200 @)= w2 (02— Q7)%+ 0’T?
+ —_—
202 [(0— wg)°— Q5%+ 0’T?’ 3 It should be noted that all of these nuances with replacing

S(w) with Sp(w) andI” with I'j in the spectrung, (), Eq.
where the decay rates can be found from Ed48) and (43) (63), are important only when the contribution of the tank
at zero detuningg=0: into the fluctuations and decoherence of the qubit is quite
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significant. For weak qubit-tank inductive coupling a stronglinewidth that is determined by the damping rate of the qubit,
influence of the tank on the qubit coherence can take placE, whereas the tank contribution to the qubit decoherence,
only near the exact resonance between the Rabi frequendsd. (70), is localized in the narrower range of Rabi frequen-
QR and the resonance frequency of the tamk, It is nec- cies which is of order of the tank linewidth, yr<TI'.
essary to develop more rigorous theory to study the closdeasurements performed at the Rabi frequencies that are out
proximity of this point. of this range,Qg> w1+ y1 or Qg<wr—7y7, can demon-
The total spectrum of voltage fluctuations in the tank,Strate good efficiencySyq/Sy7>1, without introducing
Sy(w), Eq. (18), incorporates a contribution of the tank Strong decoherence in the qubit. To observe the signature of
noise,S, (), together with a low-frequency contribution of Rabi oscillations in the spectrum of voltage fluctuations,
the driven qubit,Syo(®): Sy(w)=Sy(®)+Syo(w). At _S\,(w), the decay raté and, all the more, the measurement-
temperaturesT> w; the tank contribution to the voltage induced ratel'r should be appreciably less than the Rabi
spectrum is proportional to the spectral functi®y(w)  frequency Qr=wr: I't/wy<1l. For the flux qubit

=Ty wr, EQ.(7): measured in Ref. 7 we have the following set of para-
meters: Ly=24 pH, 14=500 nA, Qt= wy/2y;=1850,
w2 Tyr T=10 mK, w1/27=6.284 MHz,iw1=4.16x10 7], so
Svi(w)=2+- (66)  that T/hwr=33,Lyl2=6x10"%4, Lyl3/hwr=1440, and
T Cr (02— 0?)?+w?y?’ T=59 Llg »Lalg/hoT '

w7/yr=3700. If we take a value of the coupling parameter
JR— 2 -
where o is the resonance frequency of the tank, Erp), ~ Sduared,k’~10"°%, from Ref. 7 and suppose that/A

shifted due to qubit-tank coupling, =1/126, then for the measurement-induced damping rate we
obtain the ratiol't/w7=0.8x10"2 at the point whereg
— o 12 g2 wr— Qg —wr=I/2=0.0lwr. We use here the decay ratE
or=wr\/1+k Lq'qypo(wT_QR)zﬂnz)z- (67 =0.02w;<w; measured in Ref. 7. At these conditions the
C

signal-to-noise ratid69) is of order 0.5, and the detector-
We use here Eq51) for the functiony’(w+). The linewidth  induced decoherence of the quHity, as well as the total
of the tank,y;, modified by the qubit, is defined therewith rateI’ are much less than the Rabi frequency of the qubit,

by Eq. (53). Qg. It means that the spectroscopic observation of Rabi
For the qubit part we find from Eq$18) and (65) oscillationg can be classified as a weak continuous quantum
measurement.
82 q 5 w-2|-
(w)=2—k>? T
Svo 170 Cr 0(;%_ 0?2+ w2y2 VI. CONCLUSIONS
Qé In this paper we have analyzed quantitatively a continu-
X (w2_9§)2+ W2 (68) ous spectroscopic measurement of Rabi oscillations in a flux

_ qubit by means of a high-quality tank C circuit) which is
Measurements of the voltage fluctuations are performeéhductively coupled to the qubit loop. This circuit serves as a

within the linewidth of the tankw=wr= y;. In this fre-  linear detector for measuring the spectrum of voltage fluc-
quency range the signal-to-noise ratio demonstrates a restations in the tank as well as for monitoring the effective
nant behavior as a function of the Rabi frequetiy: impedance of the system “qubitank.” Expressions for the
voltage spectrum and for the angle between the current that
Svo(®) e? LglgTo w203 drives the tank and the averaged tank voltage have been de-
Sy(@) o 02" T 7 (02— 022+ o2 rived in terms of the spectrum of qubit fluctuations and the
69) qubit magnetic susceptibility. To find the spectrum of the

qubit and its magnetic response we have applied a formalism
In this expression we have the ratio of the bare damping rate®f non-Markovian Heisenberg-Langevin equations to the
of the qubit,I'y, and the tank,yr. Besides the parf’, case of a strongly driven open quantum system. Combining
related to the contribution of the internal heat bath to qubithe Bloch-Redfield and rotating-wave approximations we
decoherence, the total decay rate of the qUhitEq. (64), have obtained formulas for the damping rates of the qubit
contains also a terfi+, which describes the tank share in and its magnetic susceptibility as functions of the amplitude

the qubit dampingl’=T'y+I'7, with of the high-frequency driving field and detuning of this field
from the qubit energy splitting. A dissipative evolution of the
o 2 g? 5 Tyr averaged current in the qubit loop and the probability to find
Fr=akLglg 0T — 57722 (70 the driven qubit in the excited state have been described
w; (07— QR+ QryT

analytically. Contributions of the qubit to the damping rate
This rate reflects a back-action of the detectoC(circuit)  and the frequency shift of the tank have been calculated. We
on the quantum bit that accompanies the acquisition of anyiave presented also analytical formulas for the nonequilib-
information from the qubit. Both paramete®& /Sy and  rium spectrum of current fluctuations in the qubit loop as
I't reach maxima when the Rabi frequeri@y, is about the well as for the spectrum of voltage fluctuations in the tank
resonant frequency of the tank; . However, the signal-to- (detectoy which contain information about the Rabi fre-
noise ratio(69) as a function of Rabi frequendfr has a  quency(y and about the decay rate of Rabi oscillatidhs
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It is shown that the ratio between the qubit contribution toThis relation follows from the fact that due to the qubit-bath

the spectrum of voltage fluctuations and the thermal spednteraction a Heisenberg operator of the qubit represents a

trum of the tank is peaked when the Rabi frequency is abouunctional of the bath  variables {Q(®}: A(t)

the resonant frequency of the tarnk; . It corresponds to the = A[{Q(®},(t)], which can be expanded in a sum of various

maximal acquisition of information from the qubit. We have time-ordered products lik@(©(t, )Qt,)---QXt, ).

shown also that this effective measurement is accompaniefiye gperators of the free heat bat(®), obey the Wick

by the maximal value of decoherence resulting from thheorem. Because of this, the average value of the additional

back-action of the tank on the qubit. The signal-to-noise ratigyperatorQ(©)(t) multiplied by the termQ©(t, )Q)t,,)

as a function of a deviation between the Rabi frequency and’ .QW(t, ) is reduced to the sum of pairi ! b 2 h

frequency of the tank has a linewidth that is proportional to “n pairings between the
quency brop (0)

the qubit decay ratE, whereas measurement-induced deco-eXternal operatoQ™™(t) and each operator from the above-

herence of the qubit as a function of the same deviation ignentioned product:

determined by the linewidth of the tank;, which is much

less thanl". It allows us to find optimal conditions for an (Q®(t)-Q¥(t, )Qt,,)---Qt, ))

efficient spectroscopic measurement of Rabi oscillations in a

strongly driven quantum bit. =(QV1QO(t, )N(QV(t,,)---Qt, )
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should be removed from the initial product. It corresponds to
APPENDIX A: METHOD OF QUANTUM LANGEVIN taking a functional derivative over this variable:
EQUATIONS

In this appendix we sketch out the basics of our approach (Q(t)-Q(t, )Q¥(t,,)---Qt, ))
to the theory of open quantum systems which has been pro-
posed in Ref. 22 and developed in Refs. 23 and 24. Formulas
for the collision termd.,, Ly, andL, Eq. (29), will be de-
rived in the process. Besides that, we give here explicit ex-
pressions for the fluctuation sourcgs, &,, and¢, together %
with a recipe for calculating their correlation functions. QO t")

The Heisenberg equatiori23) incorporate the total heat
bath operatoQ(t), Eq.(24), multiplied by an operator of the _ ) ) )
qubit, say,A(t). These operators commute because they beIhiS equation together with a relatiafQ(*)(t,)/ 5Q*(t")
long to the different physical systems. It is convenient to= o(t,—t') results in the formula
work with the symmetrized product of these operators. With

- [ av@@me@iy

{QOt, )QOxt,,)- -Q(O)(tan)}> .

the expansiori24) in mind we obtain (Q(O)(t)A(t))zf dt’(Q(O)(t)Q(O)(t’)>< &(:;t) >
Q1 t")
1 1
E[Q(t),A(t)h=§[Q(°)(t),A(t)]+ (A3)

1 We notice that the position of the external opera@sf)(t)
+ f dtye(t,ty)5[oa(ty), AD] . with respect to the operatot(t) is mapped onto the relative
order of operators in the commutato®®(t)Q®(t")) in-
(A1) volved in Eqg.(A3); in so doing, the average value of the
The averaged value of the first parametric term in this exSymmetrized product o®(?)(t) and A(t) [see Eq.(A1)] is
pression is determined by the quantum Furutsu-Novikowletermined by the symmetrized correlator of the heat bath,

theorens? M(tt").
The functional derivative over the variab@©)(t’) is
1 ) ) ) SA(t) equivalent to the derivative over the deterministic fof ¢€)
S [QT(, A ) = f dt'M(t,t’) W which is additive toQ(®)(t’) in the Hamiltonian(1). In its

turn, the functional derivative of the qubit operatdft) over
the forcef(t’) is proportional to the commutator of(t) and
whereM(t,t") is the symmetrized correlator of unperturbed the qubit matrixo,(t') that is conjugated to the fordgt’)
heat bath variablesM (t,t')=((1/2)[Q®(t),Q(t")].).  in Eq. (1)
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SA(Y)  SAt) tors like (1/2]Q(t),A(t)], involved in the Heisenberg
o =i[A(1),0,(t")]_0(t—t"). (A4)  equations23) can be split into a fluctuation forcg, and a
oY ) Sf(t') collision termL 4:
To show this we consider the Heisenberg operator of the
qubit, A(t), in the interaction representation, when the inter-

action between the qubit and for¢ét) is described by the (2[Q(1), AW ]+ =EatLa, (A7)
term H;,;= —o,f(t). Then, the evolution of the operator where the fluctuation force
A(t),

At)=S"() AO)S(t), (A5) £,4(0={QO(t), A1)}

is determined by th& matrix S(t) = S(t, — ), with SA()

of(t’)
(A8)

HereT is a time-ordering operator, and”)(t) and A°)(t)  has a zero average val¢é,)=0 and the collision term
are the free qubit operatofwithout the interaction with the

force f(t)]. Then, for the functional derivative we obtain

=—[Q<°>(t> AT+~ fdt M(t,t)———

S(t,to):T( exp| i ft dt; {0ty f(ty) ] (A6)
to

Lt = f LM (t LA, ot ]

SA(t)  8S'(t
(,) 20 a0msin+si a0 n 1
of(t")  of(t’) sf(t')’ + f dtip(t,t)5[A(),05(t)] (A9)
where incorporates contributions, both parametric fluctuations and a
back-action of the heat bath. Here we introduce a causal
S5t correlation function of the free heat bathM(t,t;)
t . ~ .
%ziﬁ(t—t’)T[ago)(t’)exp i f dt1<f§o)(tl)f(t1)H =M(t,t;) 6(t—t;), havingS(w) as a Fourier transform,
. [t - S dw i
=i0(t—t")T{ cO(t") ex |ft dt; ot f(t :f o= [ 2911
(t=t") [Uz (t)exp|i | dtioy (t)f(ty) S(w) dre' ™M (1) o oo wl+|65(w1)

(A10)
X exp

t
1l dtlo§°><tl>f<tl>”
t’

with S(w) being the equilibrium spectrum of the heat bath,

. Eq. (27), ande— +0.

=i g(t_t')T[ exp| i f dtlago)(tl)f(tl)“ The explicit form of the fluctuation sources allows us to
t find their correlation functions. To do that we have to take

pairings of all free heat bath variabl€$® with the heat bath
J dtlg(o)(tl)f(tl)H variables and the qubit operators belonging to other fluctua-

X Ot )T( exp| i / . )
tion forces. In the case of weak qubit-bath coupling we can

, , ' (0)er , take into account pairings between the free heat bath vari-
=i0(t=t")S(t,t") o (1) S(t") ables only. With this procedure we derive the following ex-
TR b (0) 47 , pressions for a correlator of fluctuation forcég(t) and
1S oz ST £a(D): (Ea(D&a(t))=(QU(1), QO ) AMB(Y'))

—iOt—t)S(D) o), and, for the symmetrized correlation function,

and o,(t") is the total Heisenberg operator. Here we apply 1 ) A ,
the relationS(t,t')=S(t)S(t')=S(t)S'(t'), which fol- S LEa(D),Ea(t")]1 ) =M(L,t){ 5 LA, B(t") ]+
lows from the fact thas *(t')=S'(t’) and

1
S(t,t)S(t") =S(t,t")S(t", =) =S(t, =) =§(t). RO )<2[A(t)’6(t )]>’
Taking into account the derivative of the matrix (A11)
ST, 8ST(t)/6f(t")=—i6(t—t")o,(t")S'(t), we obtain Eq.
(A4) for the functional derivative of an arbitrary Heisenbergwhere the antisymmetrized correlator of the heat bath,
operatorA(t). R(t,t")=((1/2Q©(t),Q(t")]_), has the spectral func-
In view of the Furutsu-Novikov theorerfA2) the opera- tion x”(w) as its Fourier transform.
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APPENDIX B: COLLISION INTEGRALS

Collision termsL,, Ly, andL,, Eq.(29), can be simpli-
fied in the approximation of weak coupling between the qu
bit and heat bath. In this cagenticommutators of the qubit
variablesX, Y, andZ taken at different moments of time are
calculated with free evolution operators of the qubit B1).
Here we present expressions fantjcommutators of qubit
operatorsX, Y, andZ involved in both the collision terms
and correlation functions of the fluctuation forces. With
Egs.(31) and the usual commutation rules we obtéiere
’T:t_tl)

i[X(t),X(t)]_= 22(tl)§sinQRT
R

oA
152

—2Y(t Vo2

(1— cosQg7),
2 2

—2'+ — COSQORT,

1
ZIXOXW =gzt 7

5% A2

Q_ﬁ cos() RT)

i[X(1),Y(ty)]-=—2Z(t)| —+
IX(1),Y(ty)] W g2

oA
+ ZX(tl)_Z(l_ COSQRT),
QR

1 1
S XV, Y(t) ]+ == 5[V, X(t) ]+ =~

QRSIHQRT,
|[Y(t),x(t1)],:22(tl) COS()RT_ 2Y(tl)Q_SinQRT,
R
2 A2
i = — —
|[X(t),Z(tl)], 2Y(t1) Q% Q%COSQRT)
2X(t )A inQ
- ——SIn ,
Y0r RT

1 1 _OA
2 X021, =5 [20.X(t) ) = g7 (1 c030%g)

A2

+
02" 02

52

|[Z(t),x(tl)],:_2Y(t1) 2 COSQRT)

é
—27(t, ) stRT

o
|[Y( Y(tl)],—ZZ(tl) S|mRT+2X(t1) S|n(2/RT

1
LY. Y(t)]. = coser,

134514-
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i[Y(1),Z(t)]-=—2X(ty) cosQrr—2Y(t l) A stRT

0 inQ
Q_RSI R7,

SA
- ZZ(tl)?(l— cosQg7),
R

1 1
SIY(0.2(t)]4 =~ 5120, Y(t)], =

Az 2

i[Z(1),Y(ty)]-=2X(ty) azt Q—éCOSQRT

1)
i[Z(1),Z(t)]-=2X(t) g SanRT
+2Y(t1) (1 cosQg7),
1 (AP 0
E[Z(t),Z(tl)L— Q_§+Q_2RCOS Rr). (B1)

Using these formulas we find the following expressions for
the collision coefficients involved in E¢33):

AZ_ 52
(1) = 23 M(T) COS()RT COSwoT

R

) . A2

+29—RsmworstRr+ Q—gCOSwOT ,

— — A% A _

ny( T) I‘Iyx( 7'):2_2 _M(T) SinQRTCOSwOT
wc QR

)
+ —(1— cosQRr7) SinwyT|,
Qg

2

— — A% A
Ly 1) =T ,(1)=2— =—M(7)| SinQg7SsiNwgT
wc QR

— —(1— c0osQRT7) COSwqyT|,
Qg

wosr)

— COSQRT
QR

2

g2 [ A?
22

52

QZ —+ QZRCOSQRT
52

_2_+
QR

Tyy(7)=2M(7)

AZ
+ —CO0SwoT
wC

I|

2
We QR
52

—+
2
QR

yZ(T Z))(T) 2M(7') —sinQg7

A2
Q_é cosQ Rt

AZ
—5SiNwo T
wC

+

I

15
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2
e . . . .
2= CcoSQgT Following to this procedure for all correlation functions of
(1)0

the fluctuation forces and taking corresponding Fourier trans-
forms we find for the spectral functions of fluctuation forces

[,An)=2M(n

A? 5 A? K [ q=
+w—§COSwOT Q—§+ Q—écosQRr) . (B2 a(@), 1,.a=xy.z,
In Fourier transforms of the collision coefficienI_snn(r), A?
Eq. (B2), Kxx(@)= =3[ S(@+ o)+ S(w—wo)]
[
'f‘ _ d iwrF A2
mil @)= | A7 el ), + 52lS(0F ot Qr)+ S(w—wg~ )
wC
are proportional to the causal spectrum of the heat bath +tS(0+ o= Q)+ S(0—wetQr)]
S(w), Eq. (A10). Frequency-dependent relaxation rates A2 , ,
I',(w) andI" (w), Eq.(39) and(40), defining relaxation and +552Pox (0= wo= Q) = x"(0+ 0o+ Q)
decoherence of the qubit are expressed in terms of the real ¢
and imaginary parts of the functiods, (o): X" (0+ 0= Qg) = X"(0—wo+Qg)], (C2
8 SA~ AZ_
TA0)= Gzl (@) + 22T (@) + ol sl w), Kyy(@) ==Ky o)
R R R 2
A2 ) 2. 5 __iZ_a)sﬂ_R[S(w+w0+QR)_S(w_wo_QR)
INw)=—I; +T +—I, +2—T7
(@) 02 wod @) F Ty (@) 02 A @)+ 2 Ty o) +S(w— wo+ Q) — S+ we— Q)]
A, SA-, A7 A ,
+2;FXy(w)—ZQ—§FXZ(w). (B3) +|271)CQ_RPO[X (w+ wy+QR)

+x"(w—wo—Qr)+ X" (0+ wy— Q)
APPENDIX C: CORRELATORS OF FLUCTUATION .o
FORCES X" (0= wot+Qgr)], (C3)

In this appendix we adduce formulas for the spectral func-
tions of fluctuation force¥X,(w) that eventually determine

K =K
the nonequilibrium spectrum of qubit fluctuatioSs(w), @) =Ko (@)

Eq. (57). Correlation functions of fluctuation force§,(t) A?

={QO(t), A(t)}, are calculated according to E@A9) =552 Q—R[S(er wo—Qr)+ S(0— wot+Qg)
with (anticommutators presented by E¢B1). For the spec- ¢

trumK, (), as an example, the corresponding correlator of —S(w+ wog+QR)—S(w—wyg—QR)]

the fluctuation forces{(1/2)[&,(t),é,(t")],), is obtained

2
from Eqg. (A9)with the operatorsd= A, (t),B(t")=A,(t"), A__ " _
Eq. (30)(? P y(1).B(t") = Ay(t") + 207 QRPo[)( (0t wo—Qp)
1 X" (00— wgtQr)+ x"(0+ we+QR)
<§[fv<‘)’fv<"”+> ~X'(0= 0o Qg)], (o)
A2 1
=27 ML) SX(0),X()]+ g2 A?
W Kyy(w)=4w7$(w)+ ﬁ[S(w-i-wo-l-QR)
1 Cc Cc
+R(t,t’)<§[X(t),X(t’)]_>] coswg(t—t") +S(w—wy—QRg)+S(w+ wy—OR)
g2 1 +S(w— 0o+ Qg)]
+4w—§(M(t,t )<§[Z(t),Z(t )]+> A2

. +ﬁP0[X"(w_wo_QR)_X"(w+w0+QR)
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Ky (w)=K,(w) g?
vl 2 Kzdw)=2—[S(w+Qp)+ S(0—Qg)
. AZ c
=—1 ng[s(aH— wo+ QR)_S((D— wO—QR) _ POX,’(w+QR)+ POXH(w_QR)]
AZ
+S(w+ wo—Qg)—S(0—wetQg)] + Ez[S(w—i—wo-l-QR)ﬁ-S(w—wo—QR)
A? ’
_i2w2 Polx"(w+ wo—QRg) +S(w+ we—Qg)+S(0—we+Qg)]
Cc
2
+X"(w_ (1)0+ QR)_XH(Q)JF (1)0+ QR) + Zg PO[X”(('U_ wO_QR)_X,/(w+ w0+QR)
—X"(0=w—QRg)], (C6) X" (0t 0e—Qr)—X"(0—we+Qg)].  (C7)
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