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Theory of weak continuous measurements in a strongly driven quantum bit

Anatoly Yu. Smirnov
D-Wave Systems Inc., 320-1985 West Broadway, Vancouver, British Columbia, V6J 4Y3, Canada
~Received 11 June 2003; revised manuscript received 25 July 2003; published 17 October 2003!

Continuous spectroscopic measurements of a strongly driven superconducting qubit by means of a high-
quality tank circuit~a linear detector! are under study. Output functions of the detector—namely, a spectrum of
voltage fluctuations and an impedance—are expressed in terms of the qubit spectrum and magnetic suscepti-
bility. The nonequilibrium spectrum of the current fluctuations in the qubit loop and the linear response
function of the driven qubit coupled to a heat bath are calculated with Bloch-Redfield and rotating-wave
approximations. Back-action effects of the qubit on the tank and the tank on the qubit are analyzed quantita-
tively. We show that the voltage spectrum of the tank provides detailed information about the frequency and
decay rate of Rabi oscillations in the qubit. It is found that both an efficiency of spectroscopic measurement
and measurement-induced decoherence of the qubit demonstrate a resonant behavior as the Rabi frequency
approaches the resonant frequency of the tank. We determine conditions when the spectroscopic observation of
the Rabi oscillations in the flux qubit with the tank circuit can be considered as a weak continuous quantum
measurement.

DOI: 10.1103/PhysRevB.68.134514 PACS number~s!: 85.25.Cp, 03.67.Lx, 03.65.Ta, 03.65.Yz
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I. INTRODUCTION

Quantum electrical engineering treats electrical circuits
macroscopic quantum systems. Some of these system
approximately characterized by two states and, therefore,
be considered as prototypes of a quantum bit, a main elem
of quantum computers. Recently, the existence of two qu
tum states has been proved experimentally in electrical
cuits based on Josephson junctions;1–7 in so doing, coheren
oscillations between macroscopically different states h
been measured both in a free-evolution regime~quantum
beatings! and in the presence of a resonant driving fie
~Rabi oscillations!. In the majority of the experiments
detector—for example, a dc superconducting quantum in
ference device~SQUID!—was strongly coupled to the qub
during the measurement that resulted in a fast collapse o
circuit into one of its eigenstates. For mapping a whole e
lution of the qubit the measurements were repeated th
sands times with the same conditions to gather a statis
ensemble. An alternative procedure has been employed i
experiment7 where continuous measurements of Rabi os
lations in a three-Josephson-junction~3JJ! flux qubit have
been performed. In this experiment the qubit is inductiv
coupled to a high-quality tank circuit that serves as a lin
detector. Rabi oscillations reveal themselves in a spectrum
voltage fluctuations in the tank as the Rabi frequency of
qubit, VR , passes through the resonant frequency of
tank,vT . It should be noted that the approach undertaken
Ref. 7 can be considered as an experimental realizatio
weak continuous measurements that have been studied
retically in Refs. 8–13. Previously the effect of a which-pa
detector on electron dephasing in a double-path interfer
eter was demonstrated experimentally in Refs. 14 and
Weak coupling between the qubit and the detector~tank!
does not yield complete information about the state of
qubit before and during the measurement while not introd
ing severe decoherence into the quantum system. Becau
the last reason, the qubit can be monitored continuously w
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an extraction of useful spectroscopic information abo
quantum processes going on in the system. Among o
things, a Rabi frequency (VR/2p56.284 MHz! and a life-
time of Rabi oscillations (tRabi52.5 ms) in the strongly
driven qubit have been measured in Ref. 7. We interpret
qubit as a strongly driven system if the frequency of Ra
oscillations,VR , exceeds significantly the damping rate
the qubit,G, VR@G, while being much less than the fre
quency of quantum beatings. Here we have to mention so
distinctions between the theoretical analysis of the we
quantum measurements given in Refs. 8 and 9 and the
perimental implementation.7 An assumption made in the
theory that a characteristic time of the detector is mu
shorter than the period of measured oscillations is not v
for the tank ~detector! with the resonant frequencyvT of
order of the Rabi frequencyVR which is measured in the
experiment. This discrepancy is cleared up with a repla
ment of a local-in-time response coefficient of the detec
by a nonlocal response function of the tank. In the out
spectrum we will have now a product of the qubit spectru
and a Lorentzian that describes a susceptibility of the tan~a
Fourier transform of the tank response function!. The next
distinction is related to the fact that the analysis performed
Refs. 8 and 9 is aimed at continuous measurements of q
tum beatings which are determined by the equilibrium sp
trum of the qubit. This spectrum has a peak at the freque
of quantum oscillations between degenerate states of the
bit. By contrast, the experimental setup deployed in Ref
deals with a strongly nonequilibrium situation when the me
sured quantum system is driven by an external microw
field. In this case the output spectrum of voltage fluctuatio
in the tank~detector! depends on the nonequilibrium curre
~flux! noise in the qubit loop and has a peak at the R
frequency which is much lower than the frequency of qua
tum beatings but much higher than the decay rate of
qubit. Emission and absorption spectra of the driven ato
~two-level systems! have been investigated by Mollow16 in
the Markov approximation. It was shown that in the presen
©2003 The American Physical Society14-1
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of a strong driving field a single line-shape function of t
atom bifurcates into two Lorentzians shifted from the us
resonant frequency of the atom by the Rabi frequency wh
is proportional to the amplitude of the driving field. Th
signals from the atom can be detected by means of h
frequency spectroscopic devices only. The two-level sys
measured in Ref. 7 produces also a low-frequency ou
that can be associated with biasing of the qubit from
degeneracy point.17 We suppose as well that relaxation a
decoherence rates cannot be introduced into the qubit e
tions phenomenologically as was done by Mollow for t
atomic system. The results of the experiment6 are indicative
of a pronounced dependence of the qubit damping rate
the amplitude of the driving force. In particular, a decay tim
of Rabi oscillations,tRabi.150 ns, measured in Ref. 6,
significantly different both from a dephasing time (tw

520 ns) and from a relaxation time (t relax5900 ns) of the
undriven flux qubit. It is shown theoretically18 that well-
known formulas for the dephasing and relaxation times19,20

are no longer valid for the strongly driven qubit. In this ca
relaxation and dephasing are mixed and determined by
spectrum of the heat bath fluctuationsS(v) taken at the Rab
frequency as well as at combinations of the energy splitt

of the qubit, vc5AD21«2, and the Rabi frequency
VR : vc6VR . Here D and « are the tunneling rate of th
qubit and bias, respectively. Besides that, the driven qub
no longer in thermodynamic equilibrium with the heat ba
as evidenced by the zero value of a steady-state popula
difference between the qubit energy levels.18 Because of this,
we cannot resort to the Callen-Welton fluctuation-dissipat
theorem21 to find the spectrum of qubit fluctuations.

This paper is devoted to a detailed consideration of n
equilibrium fluctuations and decoherence in a strongly driv
qubit coupled to a linear detector~a high-quality tank!. To
accomplish these ends we apply a formalism of quan
stochastic equations proposed and developed in Refs. 22
Our quantitative analysis is motivated by rece
experiments6,7 and based on the assumption of a weak int
action between the qubit and detector. This assumption
fail near the point of exact resonance between the qubit
cillations and electromagnetic oscillations in the tank, in p
ticular at the pointVR5vT . We define conditions whereb
the measurements of Rabi oscillations in the flux qubit p
formed in Ref. 7 with a high-qualityLC circuit ~a tank! fall
into the category of weak quantum measurements.8,9 With
this aim in mind we calculate the spectrum of voltage flu
tuations in the tank as well as the contribution of the detec
to the decoherence rate of the qubit. The experimental s
implemented in Ref. 7~so-called impedance measureme
technique! can also monitor the effective impedance of t
system ‘‘qubit1tank’’ by applying a small ac currentI bias to
the tank with a subsequent measurement of the angle
tween the tank voltage and ac current.25,26 This angle is de-
termined by the magnetic susceptibility of the qubit provid
that the frequency of the ac current coincides with the re
nant frequency of the tank. Here we calculate the magn
susceptibility of the strongly driven qubit together with i
decay rates, taking into account detuning between the h
frequency source and qubit.
13451
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The present paper is organized as follows. Dynamics
fluctuations in the linear detector~a tank circuit! coupled to
the qubit are under study in Sec. II. We derive expressi
for the averaged voltage in the tank and for the angle
tween the voltage and ac current, as well as for the spect
of voltage fluctuations in terms of the magnetic susceptibi
of the qubit and the spectrum of qubit fluctuations. In Sec.
we derive Heisenberg-Langevin equations for the driven
bit interacting with the tank and with its internal heat ba
which is responsible for qubit decoherence in the absenc
a tank. These equations are subsequently simplified usi
rotating-wave approximation for the qubit that is weak
coupled to its environment—i.e., to the tank and to the int
nal bath. The decay rates of the qubit depending on the
plitude of the driving force and on its detuning from ener
splitting of the qubit are derived in Sec. III. The dissipati
evolution of the probability to find a qubit in the excited sta
as well as the evolution of the averaged current in the qu
loop is considered in Sec. IV. In the same section lin
response functions of the driven two-level system are ca
lated together with parameters which are required for
impedance measurement technique~IMT !. The nonequilib-
rium spectrum of qubit fluctuations is found in Sec. V for th
case of zero detuning. The output of the line
detector—namely, the spectrum of voltage fluctuations in
tank—and the contribution of the measuring device into q
bit decoherence are presented also in Sec. V. In the App
dixes we outline our approach to the theory of an open qu
tum system~Appendix A! and explain in more detail the
derivation of collision terms~Appendix B! and spectra of
fluctuation forces~Appendix C!.

II. LC CIRCUIT INDUCTIVELY COUPLED
TO THE QUBIT

We consider a 3JJ flux qubit27,28 driven by a strong high-
frequency field and inductively coupled to a tank circu
This coupling is proportional to the coefficient of qubit-tan
mutual inductancekALqLT as well as to the product of cur
rents in the tankI T and in the qubit loopI q . Here k is a
dimensionless coupling parameter,Lq andLT are the induc-
tances of the qubit loop and tank, respectively, andCT is the
tank capacitance. In the quantum case the operator of
qubit current is determined by thesz matrix, Î q5I qsz ,
which corresponds to two directions of the persistent curr
in the qubit loop. An operator of the current in theLC circuit
~tank! is defined in terms of creation-annihilation operato
of photons in the tank having a resonance frequencyvT

51/ALTCT: Î T5A\vT/2LT(a1a†), @a,a†#251. For the
Hamiltonian of the total ‘‘qubit-tank’’ system we have th
expression

H5
D

2
sx1

«

2
sz2szF cosv0t

2sz~Q01 f 1l Î T!1HT1HqB , ~1!

whereD is the tunneling rate of the qubit,« is the bias, and
l5kIqALqLT is the coupling coefficient between the qub
4-2
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THEORY OF WEAK CONTINUOUS MEASUREMENTS IN A . . . PHYSICAL REVIEW B68, 134514 ~2003!
and tank. The operatorQ0 describes the internal dissipativ
environment of the qubit~without the tank!, andHqB is the
Hamiltonian of this heat bath. The heat bathQ0 corresponds
to all sources of external flux noise which are additional
the noise created by the tank.29,30 In particular, the flux qubit
is coupled to nuclear and impurity spins that can contrib
to its decoherence and dephasing.31,32We also introduce here
f (t), a small external force that is required for a calculati
of the magnetic susceptibility and, in particular, the abso
tion spectrum of the qubit. In its turn, the tank driven by
bias currentI bias is characterized by the HamiltonianHT ,

HT5\vT~a†a11/2!2~a1a†!Qb2LTÎ TI bias1HTB ,
~2!

whereQb is a variable of another heat bath which direc
interacts with the tank. That heat bath, having a free Ham
tonianHTB , is responsible for the finite lifetime of the pho
tons gT

21 , as well as for a finite quality factor of the tan
QT5vT/2gT .

Operators of the tank currentÎ T and tank voltageV̂T

5 iA\vT/2CT(a†2a) obey the equationsÎ̇ T5V̂T /LT and

S d2

dt2
1vT

2D V̂T5A2vT

CT
Q̇b1lvT

2ṡz1
1

CT
İ bias . ~3!

From here on we put\51 andkB51. For a small coupling
between the tank and its own bath and/or for the case
Gaussian fluctuations of free variables of this heat ba
Qb

(0) , the total operatorQb(t) has the form

Qb~ t !5Qb
(0)~ t !1A2LT /vT E dt1wb~ t,t1! Î T~ t1!, ~4!

with

wb~ t,t1!5^ i @Qb
(0)~ t !,Qb

(0)~ t1!#2&u~ t2t1! ~5!

being a linear response function of the bath. Hereu(t) is the
Heaviside step function, and̂Qb

(0)&50.
To characterize this heat bath thoroughly we introdu

also a correlation function of the unperturbed variablesQb
(0) ,

Mb~ t,t1!5^~1/2!@Qb
(0)~ t !,Qb

(0)~ t1!#1&, ~6!

together with a corresponding spectral funcionSb(v) which
represents a Fourier transform ofMb(t). In the case of
Ohmic dissipation in the tank with a resistanceRT the imagi-
nary part of the susceptibilityxb(v), corresponding to the
response functionwb(t2t1), is proportional to the frequenc
v: xb9(v)5(gT/2vT)v and to the linewidth of the tankgT

51/(RTCT) with wb(t)52(gT/2vT)(d/dt)d(t). Accord-
ing to the fluctuation-dissipation theorem for the spectr
Sb(v) we obtain

Sb~v!5~gT/2vT!v coth~v/2T!, ~7!

where T is the equilibrium temperature of the heat ba
coupled to the tank. We suppose that this initial tempera
is equal to the equilibrium temperature of the bath interact
with the qubit.
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In the presence of a time-dependent bias currentI bias(t),
Eq. ~3! for the operator of the tank voltage can be rewritt
in the form of a simple stochastic equation

S d2

dt2
1gT

d

dt
1vT

2D V̂T5A2vT

CT
Q̇b

(0)1lvT
2ṡz1

1

CT
İ bias .

~8!

A qubit operatorṡz on the right-hand side of Eq.~8! func-
tionally depends on the tank voltageV̂T . For a small qubit-
tank interaction this dependence is approximately descri
by the formula

ṡz5ṡz,01
l

LT
E dt1K dsz~ t !

d f ~ t1! L V̂T~ t1!. ~9!

Here we take into account the relation (d/dI T)5l(d/d f ), as

well as the equationÎ̇ T5V̂T /LT . Fluctuations of the term
ṡz,0 , ^ṡz,0&50, are determined by the internal bath of th
qubit, Q0, only, so that the operatorṡz,0 has no correlations
with the heat bathQb coupled directly to the tank. The func
tional derivative^dsz(t)/d f (t8)& has the magnetic suscept
bility of the qubit,xzz(v), as its Fourier transform:

K dsz~ t !

d f ~ t8!
L 5 E dv

2p
e2 iv(t2t8)xzz~v!. ~10!

These functions describe the behavior of the qubit curre

^ Î q&5I q^sz&, induced by variations of the time-depende
external flux, which can be created by the tank,f
5kALqI q

2/LTF r f (t). Taking into account a qubit back-actio
on the tank we obtain the following equation for the ta
voltage:

E dt1F S d2

dt2
1gT

d

dt
1vT

2D d~ t2t1!

2
l2

LT
vT

2K dsz~ t !

d f ~ t1! L G V̂T~ t1!

5A2vT

CT
Q̇b

(0)1lvT
2ṡz,01

1

CT
İ bias . ~11!

The voltageV̂T(t)—or, more precisely, its average value a
correlation functions — serves as a meter in the proces
qubit measurements. Averaging of Eq.~11! over the initial
state of the qubit and over the equilibrium fluctuations of
dissipative environments allows us to find the average t
voltage ^V̂T(t)&5VT cos (vt1Q) induced by the time-
dependent bias currentI bias(t)5I ac cosvt. In the framework
of the IMT,25,26 an imaginary part of the total impedance
the system ‘‘qubit1tank,’’ defined by a voltage-current phas
shift Q, is studied as a function of qubit parameters, such
a bias, etc. Matching the coefficients beforee2 ivt in the
averaged equation~11! gives the result
4-3
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ANATOLY YU. SMIRNOV PHYSICAL REVIEW B 68, 134514 ~2003!
VTe2 iQ52 ivH vT
2F12

l2

LT
xzz8 ~v!G2v2

2 ivFgT1
l2vT

2

vLT
xzz9 ~v!G J 21 I ac

CT
. ~12!

Herexzz8 (v) andxzz9 (v) are the real and imaginary parts
the qubit magnetic susceptibility~10!. At resonant conditions
when the frequency of the bias current is exactly equal to
resonance frequency of the tank,v5vT , the amplitude of
the voltage oscillations is determined by the equation

VT5
I ac

CT
$@k2LqI q

2vTxzz8 ~vT!#2

1@gT1k2LqI q
2vTxzz9 ~vT!#2%21/2. ~13!

For the voltage-current phase shift we obtain the expres

tanQ52k2LqI q
2

vTxzz8 ~vT!

gT1k2LqI q
2vTxzz9 ~vT!

. ~14!

Measurements of the angle between the average voltag
the tank and the bias current give us immediate informa
about the real part of the qubit magnetic susceptibi
xzz8 (vT) taken at the resonance frequency of the tank,vT .
The sensitivity of the impedance measurement techniqu
adversely affected by the qubit contribution to the ta
damping rate which is proportional to the imaginary part
the qubit susceptibilityxzz9 (vT).

It follows from the stochastic part of Eq.~11! that a cor-
relator of the voltage fluctuations~a cumulant function!,

MV~ t,t8!5^~1/2!@V̂T~ t !,V̂T~ t8!#1&

5 E dv

2p
e2 iv(t2t8)SV~v!, ~15!

satisfies the equation

E dt1F S d2

dt2
1gT

d

dt
1vT

2D d~ t2t1!2
l2

LT
vT

2K dsz~ t !

d f ~ t1! L G
3E dt2F S d2

dt82
1gT

d

dt8
1vT

2D d~ t82t2!

2
l2

LT
vT

2K dsz~ t8!

d f ~ t2! L GMV~ t1 ,t2!

5
d2

dtdt8
H 2vT

CT
Mb~ t,t8!

1l2vT
4K 1

2
@sz,0~ t !,sz,0~ t8!#1L J . ~16!

The total spectrum of the qubit,Szz(v)5Szz,0(v)
1Szz,T(v),
13451
e
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Szz~v!5 E d~ t2t8!eiv(t2t8)K 1

2
@sz~ t !,sz~ t8!#1L ,

~17!

incorporates a Fourier transformSzz,0(v) of the correlator
^1/2@sz,0(t),sz,0(t8)#1&, which originates from qubit cou-
pling to its internal heat bath,Q0, together with a contribu-
tion Szz,T(v), resulting from the qubit-tank interaction. Th
contribution has been built into the left-hand side of Eq.~16!.

It follows from Eq.~16! that the total spectrum of voltag
fluctuations in the tank,SV(v), Eq. ~15!, contains a contri-
bution of the thermal noise,Sb(v), Eq. ~7! which is comple-
mented by nonequilibrium noise generated by the qu
Szz,0(v):

SV~v!5v2
vT

CT

2Sb~v!1k2LqI q
2vTSzz,0~v!

~v̄T
22v2!21v2ḡT

2
. ~18!

Here v̄T is the resonant frequency of the tank shifted in t
presence of the qubit,

v̄T5vTA12k2LqI q
2xzz8 ~vT!, ~19!

and ḡT is the tank linewidth having regard to the qubit co
tribution to the tank damping,

ḡT5gT1k2LqI q
2vTxzz9 ~vT!. ~20!

The frequency shift of the tank and the correction to the ta
damping rate depend on the total susceptibility of the qu
xzz(v), which should be calculated with consideration f
all mechanisms of qubit dissipation.

III. QUANTUM LANGEVIN EQUATIONS

In this section we derive Heisenberg-Langevin equatio
with the subsequent goal of finding the nonequilibrium sp
trum Szz(v) of the qubit together with its magnetic susce
tibility xzz(v). To do that we consider a two-state system~a
quantum bit! interacting with a heat bathQ in the presence of
a harmonic driving forceF(t)5F cosv0t. This heat bath in-
corporates a contribution of the internal qubit bath,Q0, as
well as a contribution of current~flux! fluctuations in the
tank, l Î T : Q5Q01l Î T . An interaction with this bath,
Hint52Qsz , has been integrated into the Hamiltonian~1!.

We suppose that the frequency of the external field,v0,
can be different from the energy splitting of the qubit,vc

5AD21«2, with small detuningd5v02vc ,d!vc . In the
rotating frame of reference the qubit is described by the
erators

X5
D

vc
sx1

«

vc
sz ,

Y5sy cosv0t1S D

vc
sz2

«

vc
sxD sinv0t,

Z5S D

vc
sz2

«

vc
sxD cosv0t2sy sinv0t, ~21!
4-4
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which have usual commutation rules:@X,Y#252iZ, . . . . In
terms of these operators the Hamiltonian of the system
be rewritten as

H5
vc

2
X2

A

2
Z2F D

vc
~Z cosv0t1Y sinv0t !1

«

vc
XGQ

1HB , ~22!

whereA is proportional to the amplitude of the driving forc
A5(DF/vc). Here we resort to the rotating-wave approx
mation~RWA! and neglect fast oscillating terms. Taking in
account the explicit time dependence of the operatorsY and
Z we derive the following Heisenberg equations (\51,kB
51):

Ẋ5AY12
D

vc
~Y cosv0t2Z sinv0t !~Q1 f !,

Ẏ5dZ2AX22S D

vc
X cosv0t2

«

vc
ZD ~Q1 f !,

Ż52dY12S D

vc
X sinv0t2

«

vc
YD ~Q1 f !. ~23!

In the case of a Gaussian statistics of free heat bath varia
Q(0) or for a weak qubit-bath interaction the response of
heat bath on the action of the qubit is determined by
expression22

Q~ t !5Q(0)~ t !1E dt1w~ t,t1!sz~ t1!, ~24!

where

sz5
D

vc
@Z cosv0t1Y sinv0t#1

«

vc
X. ~25!

As in Sec. II, the retarded Green function of th
free heat bath is denoted byw(t,t1), w(t,t1)
5^ i @Q(0)(t),Q(0)(t1)#2&u(t2t1), with a respective Fourie
transform~a susceptibility! x(v). This susceptibilityx(v)
5x0(v)1xT(v) incorporates a partx0(v) that is due to
internal mechanisms of qubit decoherence, together wi
resonant contribution of the tank,xT(v),

xT~v!5k2LqI q
2

vT
2

vT
22v22 ivgT

. ~26!

Besides that, the free heat bath is characterized
a correlation function M (t,t1), M (t,t1)5^(1/2)
3@Q(0)(t),Q(0)(t1)#1& and by the spectrum of equilibrium
fluctuationsS(v) with temperatureT,

S~v!5 E dteivtM ~t!5x9~v! cothS v

2TD . ~27!

This spectrumS(v)5S0(v)1ST(v) contains a part tha
originates from the qubit interaction with its own heat ba
S0(v), as well as a part,ST(v), related to qubit coupling to
the tank. According to the fluctuation-dissipation theorem21
13451
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the equilibrium spectrumS(v) is proportional to the imagi-
nary part of the heat bath susceptibilityx9(v).

Following the method outlined in Appendix A we ca
rewrite the Heisenberg equations~23! in the form of quan-
tum Langevin equations,

Ẋ5AY1Lx1jx1 f x ,

Ẏ5dZ2AX1Ly1jy1 f y ,

Ż52dY1Lz1jz1 f z , ~28!

with the collision terms

Lx~ t !5
2D

vc
2 E dt1$M̃ ~ t,t1!i @Y~ t ! cosv0t2Z~ t ! sinv0t,

DZ~ t1! cosv0t11DY~ t1! sinv0t11«X~ t1!#2

1w~ t,t1!~1/2!@Y~ t ! cosv0t2Z~ t ! sinv0t,

DZ~ t1! cosv0t11DY~ t1! sinv0t11«X~ t1!#1%,

Ly~ t !52
2

vc
2 E dt1$M̃ ~ t,t1!i @DX~ t ! cosv0t2«Z~ t !,

DZ~ t1! cosv0t11DY~ t1! sinv0t11«X~ t1!#2

1w~ t,t1!~1/2!@DX~ t ! cosv0t2«Z~ t !,

DZ~ t1! cosv0t11DY~ t1! sinv0t11«X~ t1!#1%,

Lz~ t !5
2

vc
2 E dt1$M̃ ~ t,t1!i @DX~ t ! sinv0t2«Y~ t !,

DZ~ t1! cosv0t11DY~ t1! sinv0t11«X~ t1!#2

1w~ t,t1!^~1/2!@DX~ t ! sinv0t2«Y~ t !,

DZ~ t1! cosv0t11DY~ t1! sinv0t11«X~ t1!#1%,

~29!

M̃ (t)5M (t)u(t), t5t2t1, and the fluctuation source
jx , jy , jz . Definitions and correlation functions of thes
forces,jm(t)5$Q(0)(t)Am(t)% (m51,2,3), are presented in
Appendix A @see Eq.~A8!#. Hereafter the digital indices
1,2,3 correspond to the indicesx,y,z, respectively. The qubit
operatorsAm(t) are defined as follows@see also Eqs.~23!#:

Ax~ t !52
D

vc
~Y cosv0t2Z sinv0t !,

Ay~ t !522S D

vc
X cosv0t2

«

vc
ZD ,

Az~ t !52S D

vc
X sinv0t2

«

vc
YD . ~30!

We also introduce the effective forcesf x , f y , f z ,: f m(t)
5Am(t) f (t), which are necessary for calculating the line
4-5
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response functions and susceptibilities of the qubit. After
calculations the auxiliary forcef (t) should be set equal to
zero.

The non-Markovian stochastic equations~28! can be sim-
plified in the approximation of weak coupling between t
qubit and heat bath~Bloch-Redfield approximation!. With
nonzero detuningdÞ0, the free evolution of the driven qub
~without coupling to a heat bath! is described by the equa
tions (t5t2t1)

X~ t !5X~ t1!
d21A2 cosVRt

VR
2 1Y~ t1!

A

VR
sinVRt

1Z~ t1!Ad
12 cosVRt

VR
2 ,

Y~ t !5Y~ t1! cosVRt2X~ t1!
A

VR
sinVRt1Z~ t1!

d

VR
sinVRt,

Z~ t !5Z~ t1!
A21d2 cosVRt

VR
2 2Y~ t1!

d

VR
sinVRt

1X~ t1!Ad
12 cosVRt

VR
2 , ~31!

whereVR is the effective Rabi frequency of the qubit,

VR5AA21d25AS DF

vc
D 2

1~v02vc!
2. ~32!

In the Bloch-Redfield approximation we can reduce
qubit operators taken at the momentt to the operators
at the momentt1 using Eqs.~31! and, thereafter, calcu
late ~anti!commutators of the simultaneous qubit ope
tors using the usual commutation rules@X(t1),Y(t1)#2

52iZ(t1), @X(t1),Y(t1)#150, . . . ~see Appendix B!. Ne-
glecting fast oscillating terms in the collision integrals~29!
we derive the following equations for the qubit operato
X15X, X25Y, X35Z in the rotating frame of referenc
(m,n51,2,3):

Ẋm1(
n

PmnXn1(
n
E dt1Ḡmn~ t2t1!Xn~ t1!

5jm1 f m1nm , ~33!
t

o

13451
e

e

-

where for nonzero elements of the matrixP we haveP12
52P2152A and P2352P3252d. The collision coeffi-
cientsḠmn(t) are presented in Appendix B. For steady-sta
parametersn15nx , n25ny and n35nz we obtain the fol-
lowing expressions:

n152
D2

vc
2 F A2

VR
2 x9~v0!1

1

2 S 12
d

VR
D 2

x9~v01VR!

1
1

2 S 11
d

VR
D 2

x9~v02VR!G ,
n25

A

VR
F2

d

VR

«2

vc
2@x8~0!2x8~VR!#2

d

VR

D2

vc
2 x8~v0!

1
D2

2vc
2 S 11

d

VR
Dx8~v02VR!

2
D2

2vc
2S 12

d

VR
Dx8~v01VR!G ,

n35
A

VR
F2

«2

vc
2 x9~VR!1

d

VR

D2

vc
2 x9~v0!

1
D2

2vc
2 S 12

d

VR
D 2

x9~v01VR!

2
D2

2vc
2S 11

d

VR
D 2

x9~v02VR!G . ~34!

Here x8(v) and x9(v) are real and imaginary parts of th
heat bath susceptibilityx(v).

A formal solution of Eq.~33! has the form

Xm~ t !5(
n

Ḡmn~ t !Xn~0!

1(
n
E dt1Ḡmn~ t2t1!@jn~ t1!1 f n~ t1!1nn#,

~35!

where the last constant term describes the steady-state v
of the average qubit variables,X1,05X05(d/VR)P0 , X2,0
5Y050, andX3,05Z05(A/VR)P0, with polarization
P05
4~«A/D!2x9~VR!1~VR2d!2x9~v01VR!2~VR1d!2x9~v02VR!

4~«A/D!2S~VR!1~VR2d!2S~v01VR!1~VR1d!2S~v02VR!
. ~36!
the

For an exact resonancev05vc , d50, between the fre-
quency of driving forcev0 and energy splitting of the qubi
vc5AD21«2, the steady-state polarizationP0 is positive
for the Ohmic or super-Ohmic heat bath,x9(v);v r ,
r>1. However, P0 can be negative at nonzer
detuningdÞ0.
Here we consider the case of strong driving when

Rabi frequencyVR , Eq. ~32!, is much more than qubit’s
relaxation rates. Then, for Fourier transformsGmn(v) of the
Green functionsḠmn(t) incorporated into Eq.~35! we obtain
4-6
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G11~v!5~d22v2!/D~v!, G22~v!52v2/D~v!,

G33~v!5~A22v2!/D~v!,

G12~v!52G21~v!52 ivA/D~v!,

G13~v!5G31~v!5dA/D~v!,

G23~v!52G32~v!52 ivd/D~v!, ~37!

with the denominator
its

13451
D~v!5 i @v1 iGz~v!#@v22VR
21 ivG~v!#

. i @v1 iGz~v!#@v2VR1 iG~v!/2#

3@v1VR1 iG~v!/2#. ~38!

The coefficientsGz(v) and G(v), derived with Eqs.~B2!
and ~B3! from Appendix B, play the role of frequency
dependent relaxation rates. These relaxation rates are
functions ofv, Gz(2v)5Gz(v), G(2v)5G(v), and they
are determined by the spectral density of the heat bath,S(v)
Eq. ~27!:
Gz~v!5
«2

vc
2

A2

VR
2@S~v1VR!1S~v2VR!#1

D2

4vc
2 S 12

d

VR
D 2

@S~v1v01VR!1S~v2v02VR!#

1
D2

4vc
2 S 11

d

VR
D 2

@S~v1v02VR!1S~v2v01VR!#, ~39!

G~v!52
«2

vc
2

A2

VR
2 S~v!12

«2

vc
2

d2

VR
2F S 12

VR

v
DS~v1VR!1S 11

VR

v
DS~v2VR!G

1
D2

2vc
2 F S 12

d

VR
D 2

S~v1v0!1S 11
d

VR
D 2

S~v2v0!G1
D2

2vc
2

A2

VR
2S 12

VR

v
D @S~v1v01VR!1S~v2v01VR!#

1
D2

2vc
2

A2

VR
2S 11

VR

v
D @S~v2v02VR!1S~v1v02VR!#. ~40!
lso
r

r
e to
We omit here frequency shifts of the qubit resulting from
interaction with the heat bath. With Eqs.~37! we can calcu-
late the retarded Green functionsḠmn(t) defined att.0:

Ḡxx~t!5
d2

VR
2 e2Gzt1

A2

VR
2 e2Gt/2 cosVRt,

Ḡxy~t!52Ḡyx~t!5
A

VR

e2Gt/2 sinVRt,

Ḡxz~t!5Ḡzx~t!5
dA

VR
2~e2Gzt2e2Gt/2 cosVRt!,

Ḡyy~t!5e2Gt/2 cosVRt,

Ḡyz~t!52Ḡzy~t!5
d

VR
e2Gt/2 sinVRt,
Ḡzz~t!5
A2

VR
2 e2Gzt1

d2

VR
2 e2Gt/2 cosVRt, ~41!

whereḠmn(0)5dmn . The decay ratesGz andG are equal to
the functionsGz(v) andG(v), Eqs.~39! and ~40!, taken at
zero frequency and at the Rabi frequency, respectively:

Gz5Gz~0!52
«2

vc
2

A2

VR
2 S~VR!1

D2

2vc
2 F S 12

d

VR
D 2

S~v01VR!

1S 11
d

VR
D 2

S~v02VR!G , ~42!

G5G~VR!5Gz14
«2

vc
2

d2

VR
2 S~0!12

D2

vc
2

A2

VR
2 S~v0!. ~43!

The decay rateG/2 is related to the rateT1
21 from Ref. 18,

the notation forGz remains the same. It should be noted a
that the heat bath operatorQ(t) defined in the present pape
differs from the same operatorQ from the paper18 by the
factor 1/2~see also Ref. 33!. Because of this, to compare ou
results with results of the above-mentioned article we hav
4-7
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divide our spectral function of the heat bath,S(v) and our
susceptibilityx(v) by 4 to get the spectral function and th
susceptibility of the heat bath used in Ref. 18.

IV. DISSIPATIVE DYNAMICS AND A LINEAR RESPONSE
OF THE QUBIT

It follows from Eq.~35! that the evolution of the average
qubit operator̂ Xm(t)&, m51,2,3, from its initial condition
^Xm(0)& to the steady-state valueXm,0 is governed by the
corresponding Green functionsḠmn(t), Eq. ~41!:

^Xm~ t !&5Xm,01(
n

Ḡmn~ t !@^Xn~0!&2Xn,0#. ~44!

In particular, if the qubit starts from the ground stateu0& of
the HamiltonianH05(D/2)sx1(«/2)sz5(vc/2)X, where
g

i
si

at
c

it
of
t

13451
^0uX(0)u0&521 and ^0uY(0)u0&5^0uZ(0)u0&50, the
probability to find the qubit in the excited state,PE5(1
1^X&)/2,

PE~ t !5
1

2 S 11
d

VR
P0D S 12

d2

VR
2 e2Gzt2

A2

VR
2 e2Gt/2 cosVRt D

2
dA2

2VR
3 ~e2Gzt2e2Gt/2 cosVRt !, ~45!

oscillates with the Rabi frequencyVR , Eq. ~32!, and relaxes
to the steady-state valuePE,st5(1/2)@11(d/VR)P0#. In the
case of resonant driving whenv05vc , d50, the energy
levels of the qubit are populated equally in the steady st
PE,st51/2. At the same initial conditions the averaged c
rent in the qubit loop,̂ Î q(t)&5I q^sz(t)&, oscillates not only
with the Rabi frequencyVR , but also with the frequency o
the driving forcev0, as well as with frequenciesv06VR :
^ Î q~ t !&5
D

vc

A

VR
I q cosv0tFP0S 12

A2

VR
2 e2Gzt2

d2

VR
2 e2Gt/2 cosVRt D 2

d

VR
S 11

d

VR
P0D ~e2Gzt2e2Gt/2 cosVRt !G

1
D

vc

A

VR
I q sinv0t sinVRte2Gt/22

«

vc
I qS 11

d

VR
P0D S d2

VR
2 e2Gzt1

A2

VR
2 e2Gt/2 cosVRt D

2
«

vc
I q

d

VR
P0F A2

VR
2 ~e2Gzt2e2Gt/2 cosVRt !21G . ~46!
of
d
s
.
les

it
The qubit starts with an initial current^ Î q(0)&52(«/vc)I q
corresponding to the ground state with a nonzero bias« and
ends att@Gz

21 ,2/G with the steady-state current oscillatin
with the frequency of the driving force,v0:

^ Î q~ t !&st5I qP0S D

vc

A

VR
cosv0t1

«

vc

d

VR
D . ~47!

Interestingly, there are no signs of the Rabi frequency
oscillations of the steady-state qubit current. We empha
that the relaxation of the population differencePE and the
decay of the qubit current̂Î q(t)& are determined by both
damping ratesGz and G/2, Eqs.~42! and ~43!. It is worth
noting, also, that zero-frequency fluctuations of the heat b
such as 1/f noise, which are described by the spectral fun
tion S(0), contribute to the decay rateG, Eq. ~43!, in the
case of nonzero detuningd and nonzero bias«.

Equations~35! averaged over the initial state of the qub
and over the thermodynamically equilibrium initial state
the heat bath allow us to calculate the linear response of
qubit on the action of a small external forcef (t): namely, a
n
ze

h,
-

he

functional derivative^dsz(t)/d f (t8)& or its Fourier trans-
form, a magnetic susceptibilityxzz(v), Eq. ~10!. With Eq.
~25! we obtain the following expression:

K dsz~ t !

d f ~ t8!
L 5

D

vc
K dZ~ t !

d f ~ t8!
L cosv0t1

D

vc
K dY~ t !

d f ~ t8!
L sinv0t

1
«

vc
K dX~ t !

d f ~ t8!
L . ~48!

The derivatives of the qubit operators in the rotating frame
reference,̂ dXm(t)/d f (t8)&, can be found from the average
equation~35! taking into account formulas for the force
f n(t): f n(t)5An(t) f (t), whereAn(t) are defined by Eqs
~30!. The mean values of the averaged qubit variab
^X&, ^Y& and ^Z& in Eqs. ~30! should be replaced in the
process by their steady-state valuesX05(d/VR)P0 , Y0
50, andZ05(A/VR)P0, where the polarizationP0 is given
by Eq.~36!. Then, for the magnetic susceptibility of the qub
we obtain the following result:
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xzz~v!52
«2

vc
2

A2

VR
2 P0S 1

v2VR1 iG/2
2

1

v1VR1 iG/2D
2

D2

4vc
2 P0F112

d~v1v0!

VR
2 1

d2

VR
2 G S 1

v1v02VR1 iG/2
2

1

v1v01VR1 iG/2D
2

D2

4vc
2 P0F122

d~v2v0!

VR
2 1

d2

VR
2 G S 1

v2v02VR1 iG/2
2

1

v2v01VR1 iG/2D . ~49!

The imaginary part of this susceptibility which defines the absorption properties of the driven qubit peaks at th
frequencyVR as well as at frequenciesv06VR :

xzz9 ~v!5
«2

vc
2

A2

VR
2 P0F G/2

~v2VR!21~G/2!22
G/2

~v1VR!21~G/2!2G
1

D2

4vc
2 P0S 11

d

VR
D 2F G/2

~v1v02VR!21~G/2!2 2
G/2

~v2v01VR!21~G/2!2G
1

D2

4vc
2 P0S 12

d

VR
D 2F G/2

~v2v02VR!21~G/2!22
G/2

~v1v01VR!21~G/2!2G . ~50!
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e
is
e
ts

nk
-

th

m

e-
he

he
al
l

a-
ev-

d in
e

The absorption of weak signal energy by the qubit is de
mined by the functionU(v)5vxzz9 (v).34 It is evident from
the formula~50! that U(v) can be negative at the positiv
frequencyv02VR . It means that a weak signal having th
frequency will be amplified by the strongly driven qubit. Th
low-frequency part of the qubit susceptibility which affec
the resonant frequency of the tank@see Eq.~19!# has the form

xzz8 ~v!52
«2

vc
2

A2

VR
2 P0F v2VR

~v2VR!21~G/2!2

2
v1VR

~v1VR!21~G/2!2G . ~51!

The angleQ between a voltage and a current in the ta
coupled to the qubit, Eq.~14!, is determined by the suscep
tibility of the qubit, Eqs.~50! and ~51!, taken at the tank
frequencyvT :

tanQ52k2LqI q
2 «2

vc
2

A2

VR
2 P0

VR2vT

~VR2vT!21~G/2!2

vT

ḡT

.

~52!

Here

ḡT5gT1k2LqI q
2 «2

vc
2

A2

VR
2 P0vT

G/2

~VR2vT!21~G/2!2

~53!

is an effective damping rate of the tank in the presence of
qubit.

V. NONEQUILIBRIUM SPECTRA OF THE QUBIT
AND TANK

Here we will calculate the total nonequilibrium spectru
of the qubit fluctuations,Szz(v), Eq. ~17!, for the case of
13451
r-

e

exact resonance between energy splitting of the qubit,vc

5AD21«2, and the frequencyv0 of the driving field: d
5v02vc50. Calculations of the spectrum for nonzero d
tuning are straightforward, but cumbersome enough. T
part of the qubit spectrumSzz,0(v), which results from in-
ternal decoherence mechanisms of the qubit~coupling to the
bath Q0), can be easily found from the expression for t
total spectrumSzz. To do that we have to replace the tot
spectrum of the bath,S(v), by the spectrum of the interna
bath, S0(v), in expressions~C2!–~C7! for the spectra of
fluctuation forces given in Appendix C. It should be emph
sized that the damping rates of the qubit are determined n
ertheless by the total spectrumS(v), Eq. ~27!, of the dissi-
pative environment.

In view of Eq. ~25! the correlator ofsz operators of the
qubit averaged over fast oscillations can be expresse
terms of qubit’s correlation functions in the rotating fram
(t5t2t8):

K 1

2
@sz~ t !,sz~ t8!#1L 5

«2

vc
2 K 1

2
@X~ t !,X~ t8!#1L

1
D2

2vc
2 H K 1

2
@Z~ t !,Z~ t8!#1L cosv0t

1 K 1

2
@Y~ t !,Y~ t8!#1L cosv0t

1 K 1

2
@Y~ t !,Z~ t8!#1L sinv0t

2 K 1

2
@Z~ t !,Y~ t8!#1L sinv0tJ .

~54!
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Correlators of the qubit variables in the rotating frame
determined by the correlation functions of the fluctuati
forces@see a stochastic part of Eq.~35!#,

K 1

2
@Xm~ t !,Xk~ t8!#1L 5 E dt1dt2 (

nl
Ḡmn~ t,t1!Ḡkl~ t,t2!

3K 1

2
@jn~ t1!,j l~ t2!#1L , ~55!

where the Green functionsḠmn(t) are defined by Eqs.~41!.
Fourier transforms of the qubit correlation functionsLmk(v)
and the correlator of the fluctuation forces,Knl(v),

K 1

2
@Xm~ t !,Xk~ t8!#1L 5 E dv

2p
e2 iv(t2t8)Lmk~v!,

K 1

2
@jn~ t !,j l~ t8!#1L 5 E dv

2p
e2 iv(t2t8)Knl~v!,

are related according to the equation

Lmk~v!5 (
lq

Gmn~v!Gkl~2v!Knl~v!, ~56!

with Gmn(v) from Eqs.~37!. The correlators of the fluctua
tion forces,̂ (1/2)@jn(t),j l(t8)#1&, are calculated accordin
to the procedure given in Appendix A@see Eq.~A11!#. The
expressions for spectral functions of the fluctuation forc
Knl(v), are presented in Appendix C.

For the spectrum of qubit fluctuationsSzz(v) we find
from Eqs.~17! and ~54!
13451
e

s,

Szz~v!5
«2

vc
2 Lxx~v!1

D2

4vc
2 @Lzz~v1v0!1Lyy~v1v0!

2 iLyz~v1v0!1 iLzy~v1v0!#

1
D2

4vc
2@Lzz~v2v0!1Lyy~v2v0!

1 iLyz~v2v0!2 iLzy~v1v0!#. ~57!

It follows from Eqs.~57! and~37! that the spectral functions
of the qubit operators in the rotating frame,Lmk(v)(m,k
5x,y,z), are determined by the spectra of the fluctuati
forcesKnl(v):

Lxx~v!5v2@v2Kxx~v!1VR
2Kyy~v!

22ivAKxy~v!#/uD~v!u2,

Lyy~v!5v2@VR
2Kxx~v!1v2Kyy~v!

22ivAKxy~v!#/uD~v!u2,

Lzz~v!5~v22VR
2 !2Kzz~v!/uD~v!u2,

Lyz~v!5 iv~VR
22v2!@AKxz~v!1 ivKyz~v!#/uD~v!u2,

~58!

with Lzy(v)52Lyz(v). Here

uD~v!u25@v21Gz
2~v!#@~v22VR

2 !21v2G2~v!# ~59!

is the modulus square of the Green function denomina
~38!. Combining Eqs.~57!–~59! with the formulas~C2!–
~C7! from Appendix C we obtain the nonequilibrium spe
trum of qubit fluctuationsSzz(v):
Szz~v!5
«2

2vc
2

WR~v!

~v22VR
2 !21v2G2~v!

1
D2

4vc
2

W~v01v!

~v1v0!21Gz
2~v1v0!

1

@~v1v0!22VR
2 #21v2G2~v1v0!

1
D2

4vc
2

W~v02v!

~v2v0!21Gz
2~v2v0!

1

@~v2v0!22VR
2 #21v2G2~v2v0!

. ~60!

Here the frequency-dependent damping ratesGz(v) andG(v) are defined by Eqs.~39! and ~40!. The functionsWR(v) and
W(v) are given by the expressions

WR~v!58VR
2 «2

vc
2 S~v!12v2

D2

vc
2 @S~v1v0!1S~v2v0!#

1
D2

vc
2 ~v2VR!2@S~v1v01VR!1S~v2v01VR!2P0x9~v1v01VR!2P0x9~v2v01VR!#

1
D2

vc
2 ~v1VR!2@S~v2v02VR!1S~v1v02VR!1P0x9~v2v02VR!1P0x9~v1v02VR!#, ~61!
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W~v!54v4
«2

vc
2 S~v!1v2VR

2 D2

vc
2 @S~v1v0!1S~v2v0!#

12
«2

vc
2 ~v22VR

2 !2@S~v1VR!2P0x9~v1VR!1S~v2VR!1P0x9~v2VR!#

1VR
2 D2

2vc
2 ~v2VR!2@S~v1v01VR!2P0x9~v1v01VR!#

1VR
2 D2

2vc
2 ~v1VR!2@S~v1v02VR!1P0x9~v1v02VR!#

1
D2

2vc
2 ~v2VR!2~2v1VR!2@S~v2v01VR!2P0x9~v2v01VR!#

1
D2

2vc
2 ~v1VR!2~2v2VR!2@S~v2v02VR!1P0x9~v2v02VR!#. ~62!
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It follows herefrom that the qubit spectrum is an even fun
tion of v: Szz(2v)5Szz(v). In the regime of strong driv-
ing, whenVR@G,Gz , the qubit spectrumSzz(v) taken at
positive frequencies consists of three Lorentzian peaks
tered at frequenciesVR , v02VR , and v01VR with line-
width G/2 each, withG5G(VR), Eq.~43!, complemented by
the additional peak located exactly at the frequency of
driving force,v0. In the present sectionv0 is equal to the
frequency of quantum beatings,vc . The additional peak ha
a different linewidth,Gz5Gz(0), Eq.~42!, and it is absent in
the absorption spectrum determined by the functionxzz9 (v),
Eq. ~50!. The current in the qubit loop is described by t
operatorÎ q5I qsz . Because of this, the spectrum of curre
fluctuations of the qubit,SI(v), is proportional to the
spectrum Szz(v): SI(v)5^(1/2)@ Î q(v), Î q#1&5I q

2Szz(v),
where I q is the value of the persistent current in the qu
loop.

In view of the facts—that v0@VR and WR(VR)
.4GVR

2 , W(0).2GzVR
4, and W(VR).2GVR

4—and con-
sidering a heat bath with temperature that is greater than
energy of a Rabi quantum,T@\VR , we find a simple for-
mula for the nonequilibrium spectrum of qubit fluctuation

Szz~v!52
«2

vc
2

VR
2G

~v22VR
2 !21v2G2 1

D2

2vc
2

Gz

~v1v0!21Gz
2

1
D2

2vc
2

Gz

~v2v0!21Gz
2

1
D2

2vc
2

G

@~v1v0!22VR
2 #21v2G2

1
D2

2vc
2

G

@~v2v0!22VR
2 #21v2G2 , ~63!

where the decay rates can be found from Eqs.~42! and ~43!
at zero detuningd50:
13451
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Gz52
«2

vc
2 S~VR!1

D2

vc
2 S~v0!,

G52
«2

vc
2 S~VR!13

D2

vc
2 S~v0!. ~64!

As for the driven atom16 the spectrum of our two-level sys
tem is double peaked at the frequenciesv06VR , but be-
sides that, we have a peak at the Rabi frequency with
intensity that is proportional to the bias squared,«2. The
low-frequency part of the spectrumSzz(v) gives a signifi-
cant contribution to the voltage spectrum of the tank,SV(v),
Eq. ~18!. We recall also that the internal heat bath on
should be taken into account in the process of calculating
spectra of fluctuation forcesKnl(v), Eqs. ~C2!–~C7!. It
means that in expressions~61! and ~62! for WR(v) and
W(v) we have to extract fluctuations of the tank from t
total heat bath spectrumS(v) and substitute this spectrum
for the spectrumS0(v) related to the internal bath. Th
damping ratesG andGz in the numerators of Eq.~63! origi-
nate exactly from the functionW(v), Eq. ~62!. For calculat-
ing the spectrumSzz,0(v) it is necessary to replace thes
rates by coefficients depending on the spectrum of the in
nal bath only—namely,Gz,0 and G0, where, for example,
G052(«2/vc

2)S0(VR)13(D2/vc
2)S0(v0). The decay rates

in the denominators of the spectrumSzz,0(v) remain the
same, because both the internal mechanisms and tank
tuations contribute to the linewidth of the qubit. As a resu
for the low-frequency part of the qubit spectrumSzz,0(v) we
find

Szz,0~v!52
«2

vc
2

VR
2G0

~v22VR
2 !21v2G2 . ~65!

It should be noted that all of these nuances with replac
S(v) with S0(v) andG with G0 in the spectrumSzz(v), Eq.
~63!, are important only when the contribution of the tan
into the fluctuations and decoherence of the qubit is qu
4-11
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significant. For weak qubit-tank inductive coupling a stro
influence of the tank on the qubit coherence can take p
only near the exact resonance between the Rabi frequ
VR and the resonance frequency of the tank,vT . It is nec-
essary to develop more rigorous theory to study the cl
proximity of this point.

The total spectrum of voltage fluctuations in the tan
SV(v), Eq. ~18!, incorporates a contribution of the tan
noise,SVT(v), together with a low-frequency contribution o
the driven qubit,SVQ(v): SV(v)5SVT(v)1SVQ(v). At
temperaturesT@vT the tank contribution to the voltag
spectrum is proportional to the spectral functionSb(v)
5TgT/vT , Eq. ~7!:

SVT~v!52
v2

CT

TgT

~v̄T
22v2!21v2ḡT

2
, ~66!

wherev̄T is the resonance frequency of the tank, Eq.~19!,
shifted due to qubit-tank coupling,

v̄T5vTA11k2LqI q
2 «2

vc
2P0

vT2VR

~vT2VR!21~G/2!2. ~67!

We use here Eq.~51! for the functionx8(vT). The linewidth
of the tank,ḡT , modified by the qubit, is defined therewit
by Eq. ~53!.

For the qubit part we find from Eqs.~18! and ~65!

SVQ~v!52
«2

vc
2 k2

LqI q
2

CT
v2G0

vT
2

~v̄T
22v2!21v2ḡT

2

3
VR

2

~v22VR
2 !21v2G2 . ~68!

Measurements of the voltage fluctuations are perform
within the linewidth of the tank:v.v̄T6gT . In this fre-
quency range the signal-to-noise ratio demonstrates a r
nant behavior as a function of the Rabi frequencyVR :

SVQ~v!

SVT~v!
U

v5vT

5
«2

vc
2 k2

LqI q
2

T

G0

gT

vT
2VR

2

~vT
22VR

2 !21vT
2G2 .

~69!

In this expression we have the ratio of the bare damping r
of the qubit, G0, and the tank,gT . Besides the partG0,
related to the contribution of the internal heat bath to qu
decoherence, the total decay rate of the qubitG, Eq. ~64!,
contains also a termGT , which describes the tank share
the qubit damping,G5G01GT , with

GT54k2LqI q
2 «2

vc
2 vT

2 TgT

~vT
22VR

2 !21VR
2gT

2 . ~70!

This rate reflects a back-action of the detector (LC circuit!
on the quantum bit that accompanies the acquisition of
information from the qubit. Both parametersSVQ /SVT and
GT reach maxima when the Rabi frequencyVR is about the
resonant frequency of the tank,vT . However, the signal-to-
noise ratio~69! as a function of Rabi frequencyVR has a
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linewidth that is determined by the damping rate of the qu
G, whereas the tank contribution to the qubit decoheren
Eq. ~70!, is localized in the narrower range of Rabi freque
cies which is of order of the tank linewidthgT , gT!G.
Measurements performed at the Rabi frequencies that are
of this range,VR.vT1gT or VR,vT2gT , can demon-
strate good efficiency,SVQ /SVT.1, without introducing
strong decoherence in the qubit. To observe the signatur
Rabi oscillations in the spectrum of voltage fluctuation
SV(v), the decay rateG and, all the more, the measuremen
induced rateGT should be appreciably less than the Ra
frequency VR.vT : GT /vT!1. For the flux qubit
measured in Ref. 7 we have the following set of pa
meters: Lq524 pH, I q.500 nA, QT5vT /2gT51850,
T510 mK, vT/2p56.284 MHz,\vT54.16310227J, so
that T/\vT533, LqI q

256310224J, LqI q
2/\vT51440, and

vT /gT53700. If we take a value of the coupling parame
squared,k2;1023, from Ref. 7 and suppose that«/D
.1/126, then for the measurement-induced damping rate
obtain the ratioGT/vT.0.831022 at the point whereVR
2vT.G/2.0.01vT . We use here the decay rateG
50.02vT!vT measured in Ref. 7. At these conditions t
signal-to-noise ratio~69! is of order 0.5, and the detecto
induced decoherence of the qubit,GT , as well as the total
rate G are much less than the Rabi frequency of the qu
VR . It means that the spectroscopic observation of R
oscillations7 can be classified as a weak continuous quant
measurement.

VI. CONCLUSIONS

In this paper we have analyzed quantitatively a contin
ous spectroscopic measurement of Rabi oscillations in a
qubit by means of a high-quality tank (LC circuit! which is
inductively coupled to the qubit loop. This circuit serves a
linear detector for measuring the spectrum of voltage fl
tuations in the tank as well as for monitoring the effecti
impedance of the system ‘‘qubit1tank.’’ Expressions for the
voltage spectrum and for the angle between the current
drives the tank and the averaged tank voltage have been
rived in terms of the spectrum of qubit fluctuations and t
qubit magnetic susceptibility. To find the spectrum of t
qubit and its magnetic response we have applied a forma
of non-Markovian Heisenberg-Langevin equations to
case of a strongly driven open quantum system. Combin
the Bloch-Redfield and rotating-wave approximations
have obtained formulas for the damping rates of the qu
and its magnetic susceptibility as functions of the amplitu
of the high-frequency driving field and detuning of this fie
from the qubit energy splitting. A dissipative evolution of th
averaged current in the qubit loop and the probability to fi
the driven qubit in the excited state have been descri
analytically. Contributions of the qubit to the damping ra
and the frequency shift of the tank have been calculated.
have presented also analytical formulas for the nonequ
rium spectrum of current fluctuations in the qubit loop
well as for the spectrum of voltage fluctuations in the ta
~detector! which contain information about the Rabi fre
quencyVR and about the decay rate of Rabi oscillationsG.
4-12
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THEORY OF WEAK CONTINUOUS MEASUREMENTS IN A . . . PHYSICAL REVIEW B68, 134514 ~2003!
It is shown that the ratio between the qubit contribution
the spectrum of voltage fluctuations and the thermal sp
trum of the tank is peaked when the Rabi frequency is ab
the resonant frequency of the tank,vT . It corresponds to the
maximal acquisition of information from the qubit. We hav
shown also that this effective measurement is accompa
by the maximal value of decoherence resulting from
back-action of the tank on the qubit. The signal-to-noise ra
as a function of a deviation between the Rabi frequency
frequency of the tank has a linewidth that is proportional
the qubit decay rateG, whereas measurement-induced de
herence of the qubit as a function of the same deviatio
determined by the linewidth of the tank,gT , which is much
less thanG. It allows us to find optimal conditions for a
efficient spectroscopic measurement of Rabi oscillations
strongly driven quantum bit.
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APPENDIX A: METHOD OF QUANTUM LANGEVIN
EQUATIONS

In this appendix we sketch out the basics of our appro
to the theory of open quantum systems which has been
posed in Ref. 22 and developed in Refs. 23 and 24. Form
for the collision termsLx , Ly , andLz Eq. ~29!, will be de-
rived in the process. Besides that, we give here explicit
pressions for the fluctuation sourcesjx , jy , andjz together
with a recipe for calculating their correlation functions.

The Heisenberg equations~23! incorporate the total hea
bath operatorQ(t), Eq.~24!, multiplied by an operator of the
qubit, say,A(t). These operators commute because they
long to the different physical systems. It is convenient
work with the symmetrized product of these operators. W
the expansion~24! in mind we obtain

1

2
@Q~ t !,A~ t !#15

1

2
@Q(0)~ t !,A~ t !#1

1 E dt1w~ t,t1!
1

2
@sz~ t1!,A~ t !#1 .

~A1!

The averaged value of the first parametric term in this
pression is determined by the quantum Furutsu-Novik
theorem22

K 1

2
@Q(0)~ t !,A~ t !#1L 5 E dt8M ~ t,t8!K dA~ t !

dQ(0)~ t8!
L
~A2!

whereM (t,t8) is the symmetrized correlator of unperturb
heat bath variables,M (t,t8)5^(1/2)@Q(0)(t),Q(0)(t8)#1&.
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This relation follows from the fact that due to the qubit-ba
interaction a Heisenberg operator of the qubit represen
functional of the bath variables $Q(0)%:A(t)
5A@$Q(0)%,(t)#, which can be expanded in a sum of vario
time-ordered products likeQ(0)(ta1

)Q(0)(ta2
)•••Q(0)(tan

).

The operators of the free heat bath,Q(0), obey the Wick
theorem. Because of this, the average value of the additi
operatorQ(0)(t) multiplied by the termQ(0)(ta1

)Q(0)(ta2
)

•••Q(0)(tan
) is reduced to the sum of pairings between t

external operatorQ(0)(t) and each operator from the abov
mentioned product:

^Q(0)~ t !•Q(0)~ ta1
!Q(0)~ ta2

!•••Q(0)~ tan
!&

5^Q(0)~ t !Q(0)~ ta1
!&^Q(0)~ ta2

!•••Q(0)~ tan
!&

1^Q(0)~ t !Q(0)~ ta2
!&^Q(0)~ ta1

!Q(0)~ ta3
!•••Q(0)~ tan

!&

1•••^Q(0)~ t !Q(0)~ tan
!&

3^Q(0)~ ta1
!Q(0)~ ta2

!•••Q(0)~ tan21
!&.

The operatorQ(0)(tak
), k51,•••,n, engaged with the opera

tor Q(0)(t) in the outside correlator̂ Q(0)(t)Q(0)(tak
)&

should be removed from the initial product. It corresponds
taking a functional derivative over this variable:

^Q(0)~ t !•Q(0)~ ta1
!Q(0)~ ta2

!•••Q(0)~ tan
!&

5 E dt8^Q(0)~ t !Q(0)~ t8!&

3K d

dQ(0)~ t8!
$Q(0)~ ta1

!Q(0)~ ta2
!•••Q(0)~ tan

!%L .

This equation together with a relationdQ(0)(ta)/dQ(0)(t8)
5d(ta2t8) results in the formula

^Q(0)~ t !A~ t !&5 E dt8^Q(0)~ t !Q(0)~ t8!&K dA~ t !

dQ(0)~ t8!
L .

~A3!

We notice that the position of the external operatorQ(0)(t)
with respect to the operatorA(t) is mapped onto the relative
order of operators in the commutator^Q(0)(t)Q(0)(t8)& in-
volved in Eq. ~A3!; in so doing, the average value of th
symmetrized product ofQ(0)(t) andA(t) @see Eq.~A1!# is
determined by the symmetrized correlator of the heat b
M (t,t8).

The functional derivative over the variableQ(0)(t8) is
equivalent to the derivative over the deterministic forcef (t8)
which is additive toQ(0)(t8) in the Hamiltonian~1!. In its
turn, the functional derivative of the qubit operatorA(t) over
the forcef (t8) is proportional to the commutator ofA(t) and
the qubit matrixsz(t8) that is conjugated to the forcef (t8)
in Eq. ~1!:
4-13
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dA~ t !

dQ(0)~ t8!
5

dA~ t !

d f ~ t8!
5 i @A~ t !,sz~ t8!#2u~ t2t8!. ~A4!

To show this we consider the Heisenberg operator of
qubit,A(t), in the interaction representation, when the int
action between the qubit and forcef (t) is described by the
term Hint52szf (t). Then, the evolution of the operato
A(t),

A~ t !5S†~ t !A (0)~ t !S~ t !, ~A5!

is determined by theS matrix S(t)5S(t,2`), with

S~ t,t0!5TH expF i E
t0

t

dt1sz
(0)~ t1! f ~ t1!G J . ~A6!

HereT is a time-ordering operator, andsz
(0)(t) andA (0)(t)

are the free qubit operators@without the interaction with the
force f (t)]. Then, for the functional derivative we obtain

dA~ t !

d f ~ t8!
5

dS†~ t !

d f ~ t8!
A (0)~ t !S~ t !1S†~ t !A (0)~ t !

dS~ t !

d f ~ t8!
,

where

dS~ t !

d f ~ t8!
5 iu~ t2t8!TH sz

(0)~ t8! expF i E
2`

t

dt1sz
(0)~ t1! f ~ t1!G J

5 iu~ t2t8!TH sz
(0)~ t8! expF i E

2`

t8
dt1sz

(0)~ t1! f ~ t1!G
3expF i E

t8

t

dt1sz
(0)~ t1! f ~ t1!G J

5 iu~ t2t8!TH expF i E
t8

t

dt1sz
(0)~ t1! f ~ t1!G J

3sz
(0)~ t8!TH expF i E

2`

t8
dt1sz

(0)~ t1! f ~ t1!G J
5 iu~ t2t8!S~ t,t8!sz

(0)~ t8!S~ t8!

5 iu~ t2t8!S~ t !S1~ t8!sz
(0)~ t8!S~ t8!

5 iu~ t2t8!S~ t !sz~ t8!,

and sz(t8) is the total Heisenberg operator. Here we ap
the relationS(t,t8)5S(t)S21(t8)5S(t)S†(t8), which fol-
lows from the fact thatS21(t8)5S†(t8) and

S~ t,t8!S~ t8!5S~ t,t8!S~ t8,2`!5S~ t,2`!5S~ t !.

Taking into account the derivative of the matr
S†,dS†(t)/d f (t8)52 iu(t2t8)sz(t8)S

†(t), we obtain Eq.
~A4! for the functional derivative of an arbitrary Heisenbe
operatorA(t).

In view of the Furutsu-Novikov theorem~A2! the opera-
13451
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tors like (1/2)@Q(t),A(t)#1 involved in the Heisenberg
equations~23! can be split into a fluctuation forcejA and a
collision termLA :

~1/2!@Q~ t !,A~ t !#15jA1LA , ~A7!

where the fluctuation force

jA~ t !5$Q(0)~ t !,A~ t !%

5
1

2
@Q(0)~ t !,A~ t !#12E dt8M ~ t,t8!

dA~ t !

d f ~ t8!

~A8!

has a zero average value^jA&50 and the collision term

LA~ t !5 E dt1M̃ ~ t,t1!i @A~ t !,sz~ t1!#2

1 E dt1w~ t,t1!
1

2
@A~ t !,sz~ t1!#1 ~A9!

incorporates contributions, both parametric fluctuations an
back-action of the heat bath. Here we introduce a cau
correlation function of the free heat bath,M̃ (t,t1)
5M (t,t1)u(t2t1), havingS̃(v) as a Fourier transform,

S̃~v!5 E dteivtM̃ ~t!5 E dv1

2p

i

v2v11 i e
S~v1!,

~A10!

with S(v) being the equilibrium spectrum of the heat ba
Eq. ~27!, ande→10.

The explicit form of the fluctuation sources allows us
find their correlation functions. To do that we have to ta
pairings of all free heat bath variablesQ(0) with the heat bath
variables and the qubit operators belonging to other fluct
tion forces. In the case of weak qubit-bath coupling we c
take into account pairings between the free heat bath v
ables only. With this procedure we derive the following e
pressions for a correlator of fluctuation forcesjA(t) and
jB(t): ^jA(t)jB(t8)&5^Q(0)(t), Q(0)(t8)&^A(t)B(t8)&
and, for the symmetrized correlation function,

K 1

2
@jA~ t !,jB~ t8!#1L 5M ~ t,t8!K 1

2
@A~ t !,B~ t8!#1L

1R~ t,t8!K 1

2
@A~ t !,B~ t8!#2L ,

~A11!

where the antisymmetrized correlator of the heat ba
R(t,t8)5^(1/2)@Q(0)(t),Q(0)(t8)#2&, has the spectral func
tion x9(v) as its Fourier transform.
4-14
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APPENDIX B: COLLISION INTEGRALS

Collision termsLx , Ly , andLz , Eq. ~29!, can be simpli-
fied in the approximation of weak coupling between the q
bit and heat bath. In this case~anti!commutators of the qubi
variablesX, Y, andZ taken at different moments of time ar
calculated with free evolution operators of the qubit Eq.~31!.
Here we present expressions for~anti!commutators of qubit
operatorsX, Y, and Z involved in both the collision terms
and correlation functions of the fluctuation forces. W
Eqs. ~31! and the usual commutation rules we obtain~here
t5t2t1)

i @X~ t !,X~ t1!#252Z~ t1!
A

VR
sinVRt

22Y~ t1!
dA

VR
2 ~12 cosVRt!,

1

2
@X~ t !,X~ t1!#15

d2

VR
21

A2

VR
2 cosVRt,

i @X~ t !,Y~ t1!#2522Z~ t1!S d2

VR
21

A2

VR
2 cosVRt D

12X~ t1!
dA

VR
2 ~12 cosVRt!,

1

2
@X~ t !,Y~ t1!#152

1

2
@Y~ t !,X~ t1!#15

A

VR
sinVRt,

i @Y~ t !,X~ t1!#252Z~ t1! cosVRt22Y~ t1!
d

VR
sinVRt,

i @X~ t !,Z~ t1!#252Y~ t1!S d2

VR
21

A2

VR
2 cosVRt D

22X~ t1!
A

VR
sinVRt,

1

2
@X~ t !,Z~ t1!#15

1

2
@Z~ t !,X~ t1!#15

dA

VR
2 ~12 cosVRt!,

i @Z~ t !,X~ t1!#2522Y~ t1!S A2

VR
21

d2

VR
2 cosVRt D

22Z~ t1!
d

VR
sinVRt,

i @Y~ t !,Y~ t1!#252Z~ t1!
A

VR
sinVRt12X~ t1!

d

VR
sinVRt,

1

2
@Y~ t !,Y~ t1!#15 cosVRt,
13451
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i @Y~ t !,Z~ t1!#2522X~ t1! cosVRt22Y~ t1!
A

VR
sinVRt,

1

2
@Y~ t !,Z~ t1!#152

1

2
@Z~ t !,Y~ t1!#15

d

VR
sinVRt,

i @Z~ t !,Y~ t1!#252X~ t1!S A2

VR
2 1

d2

VR
2 cosVRt D

22Z~ t1!
dA

VR
2 ~12 cosVRt!,

i @Z~ t !,Z~ t1!#252X~ t1!
d

VR
sinVRt

12Y~ t1!
dA

VR
2 ~12 cosVRt!,

1

2
@Z~ t !,Z~ t1!#15S A2

VR
2 1

d2

VR
2 cosVRt D . ~B1!

Using these formulas we find the following expressions
the collision coefficients involved in Eq.~33!:

Ḡxx~t!52
D2

vc
2M̃ ~t!F S 11

d2

VR
2 D cosVRt cosv0t

12
d

VR
sinv0t sinVRt1

A2

VR
2 cosv0tG ,

Ḡxy~t!52Ḡyx~t!52
D2

vc
2

A

VR
M̃ ~t!F sinVRt cosv0t

1
d

VR
~12 cosVRt! sinv0tG ,

Ḡxz~t!5Ḡzx~t!52
D2

vc
2

A

VR
M̃ ~t!F sinVRt sinv0t

2
d

VR
~12 cosVRt! cosv0tG ,

Ḡyy~t!52M̃ ~t!F2
«2

vc
2 S A2

VR
21

d2

VR
2 cosVRt D

1
D2

vc
2 cosv0tS d2

VR
2 1

A2

VR
2 cosVRt D G ,

Ḡyz~t!52Ḡzy~t!52M̃ ~t!F2
«2

vc
2

d

VR
sinVRt

1
D2

vc
2sinv0tS d2

VR
2 1

A2

VR
2 cosVRt D G ,
4-15
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Ḡzz~t!52M̃ ~t!F2
«2

vc
2 cosVRt

1
D2

vc
2 cosv0tS d2

VR
2 1

A2

VR
2 cosVRt D G . ~B2!

In Fourier transforms of the collision coefficientsḠmn(t),
Eq. ~B2!,

G̃mn~v!5 E dteivtḠmn~t!,

are proportional to the causal spectrum of the heat b
S̃(v), Eq. ~A10!. Frequency-dependent relaxation rat
Gz(v) andG (v), Eq. ~39! and~40!, defining relaxation and
decoherence of the qubit are expressed in terms of the

and imaginary parts of the functionsG̃mn(v):

Gz~v!5
d2

VR
2 G̃xx8 ~v!12

dA

VR
2 G̃xz8 ~v!1

A2

VR
2 G̃zz8 ~v!,

G~v!5
A2

VR
2 G̃xx8 ~v!1G̃yy8 ~v!1

d2

VR
2 G̃zz8 ~v!12

d

v
G̃yz9 ~v!

12
A

v
G̃xy9 ~v!22

dA

VR
2 G̃xz8 ~v!. ~B3!

APPENDIX C: CORRELATORS OF FLUCTUATION
FORCES

In this appendix we adduce formulas for the spectral fu
tions of fluctuation forcesKnl(v) that eventually determine
the nonequilibrium spectrum of qubit fluctuationsSzz(v),
Eq. ~57!. Correlation functions of fluctuation forces,jm(t)
5$Q(0)(t),Am(t)%, are calculated according to Eq.~A9!
with ~anti!commutators presented by Eqs.~B1!. For the spec-
trum Kyy(v), as an example, the corresponding correlato
the fluctuation forces,̂ (1/2)@jy(t),jy(t8)#1&, is obtained
from Eq. ~A9!with the operatorsA5Ay(t),B(t8)5Ay(t8),
Eq. ~30!:

K 1

2
@jy~ t !,jy~ t8!#1L
52

D2

vc
2 H M ~ t,t8!K 1

2
@X~ t !,X~ t8!#1L

1R~ t,t8!K 1

2
@X~ t !,X~ t8!#2L J cosv0~ t2t8!

14
«2

vc
2 H M ~ t,t8!K 1

2
@Z~ t !,Z~ t8!#1L

1R~ t,t8!K 1

2
@Z~ t !,Z~ t8!#2L J . ~C1!
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Following to this procedure for all correlation functions
the fluctuation forces and taking corresponding Fourier tra
forms we find for the spectral functions of fluctuation forc
Klq(v), l ,q5x,y,z,

Kxx~v!5
D2

vc
2 @S~v1v0!1S~v2v0!#

1
D2

2vc
2 @S~v1v01VR!1S~v2v02VR!

1S~v1v02VR!1S~v2v01VR!#

1
D2

2vc
2 P0@x9~v2v02VR!2x9~v1v01VR!

1x9~v1v02VR!2x9~v2v01VR!#, ~C2!

Kxy~v!52Kyx~v!

52 i
D2

2vc
2

A

VR
@S~v1v01VR!2S~v2v02VR!

1S~v2v01VR!2S~v1v02VR!#

1 i
D2

2vc
2

A

VR
P0@x9~v1v01VR!

1x9~v2v02VR!1x9~v1v02VR!

1x9~v2v01VR!#, ~C3!

Kxz~v!5Kzx~v!

5
D2

2vc
2

A

VR
@S~v1v02VR!1S~v2v01VR!

2S~v1v01VR!2S~v2v02VR!#

1
D2

2vc
2

A

VR
P0@x9~v1v02VR!

2x9~v2v01VR!1x9~v1v01VR!

2x9~v2v02VR!#, ~C4!

Kyy~v!54
«2

vc
2 S~v!1

D2

2vc
2 @S~v1v01VR!

1S~v2v02VR!1S~v1v02VR!

1S~v2v01VR!#

1
D2

2vc
2 P0@x9~v2v02VR!2x9~v1v01VR!

1x9~v1v02VR!2x9~v2v01VR!#, ~C5!
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Kyz~v!5Kzy~v!

52 i
D2

2vc
2@S~v1v01VR!2S~v2v02VR!

1S~v1v02VR!2S~v2v01VR!#

2 i
D2

2vc
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Kzz~v!52
«2

vc
2 @S~v1VR!1S~v2VR!

2P0x9~v1VR!1P0x9~v2VR!#

1
D2

2vc
2@S~v1v01VR!1S~v2v02VR!

1S~v1v02VR!1S~v2v01VR!#

1
D2

2vc
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