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Evolution of a cool phonon pulse propagating in superfluid helium

I. N. Adamenko,1 K. E. Nemchenko,1 V. A. Slipko,1 and A. F. G. Wyatt2
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We derive the system of equations which describes the evolution of a cool phonon pulse during its propa-
gation in superfluid helium. Solutions are found both for longitudinal deformation of the pulse along the pulse
axis and for the transverse evolution perpendicular to the pulse axis. It is shown that the longitudinal motion
of the pulse is described by a simple running wave, and the transverse evolution is similar to the expansion of
a gas in a vacuum. From these solutions, the angular distribution of phonon-energy density is calculated at
various distances from the source. We discuss the very unusual evolution of the phonon pulse and compare it
to experimentally observed phenomena.
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I. INTRODUCTION

Phonon pulses created by a heater in superfluid helium
strongly anisotropic and nonuniform systems.1–3 They pos-
sess many unique properties, one of which is the creatio
high-energy phonons~h-phonons! by a propagating pulse o
low-energy phonons~l-phonons! in liquid helium.1–3 This
phenomenon is explained by theory,4,5 and new ones are
predicted.6–8 However, a number of experimental observ
tions remain unexplained. It is found thath-phonons are cre
ated at large distances from the source.3 The distances are
much greater than those calculated assuming geometrica
pansion of the transverse dimensions of the pulse,9 which
causes rapid cooling of thel-phonons which essentially stop
the creation ofh-phonons within a short distance from th
heater.

The measured angular dependence of the dete
signal,2,10 its development with distance, and its depende
on input power and pulse length show that its evolution
complex, and is not consistent with the model of geome
expansion.

To understand the experimental data it is necessar
develop a theory of the evolution of a phonon pulse dur
its propagation from a heater to a detector. In this paper
assume that there is instantaneous three-phonon relaxa
We then obtain equations for thel-phonon energy density
and find a number of solutions that describe the evolution
a relatively cool pulse ofl-phonons during its motion in su
perfluid helium.

II. THE EQUATIONS THAT DESCRIBE THE EVOLUTION
OF A PHONON PULSE

A pulse of phonons in superfluid helium, as any oth
quasiparticle system, can be described completely by
quasiclassical distribution functionn(p,r ,t) which deter-
mines the number of phonons at timet in phase volume
element (2p\)3 which includes the point of six-dimensiona
phase spacep,r . The temporal evolution of the phonon puls
is described by the kinetic equation,
0163-1829/2003/68~13!/134507~12!/$20.00 68 1345
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Here I 3PP ,I 4PP are collision integrals which change th
number of phonons in the quantum state in unit time due
three-phonon and four-phonon processes, respectively.
phonon energy« can be written as

«5cp@11C~p!#, ~2!

where p is the phonon momentum and the functionC(p)
describes the deviation of the phonon energy-momentum
lation from a linear dependence. In superfluid helium t
deviation is small@C(p)!1#, nonetheless it determines th
various mechanisms of phonon relaxation.11,12

At the saturation vapor pressure, the functionC(p,pc
5«c /¢) is positive~anomalous dispersion! for phonons with
«,«c510 K.11–13 With this dispersion, three-phonon pro
cesses are allowed and the collision integralI 3PP is nonzero.
At «.«c, the functionC(p) is negative~normal dispersion!.
In this case three-phonon processes are not allowed as
ergy and momentum cannot be conserved.14,15 So for high
energy phonons with («.«c) the most rapid processes a
four-phonon processes,16 which in Eq. ~1! are described by
the collision integralI 4PP .

The lifetime due to three-phonon processest3PP is calcu-
lated with the Landau Hamiltonian in first-order perturbati
theory,17,18 and the lifetime due to four-phonon process
t4PP is calculated in second-order perturbation theory.19 This
is the reason for the strong inequality

t3PP!t4PP , ~3!

which is confirmed by numerous experiments.
According to inequality~3!, phonons in superfluid helium

form two subsystems with substantially different relaxati
times. The first subsystem is low-energy phonons~l-
phonons! with «,«c , in which equilibrium is attained in-
stantaneously on the scale of all other relevant times.
second subsystem is high-energy phonons~h-phonons! with
«.«c , in which equilibrium is attained relatively slowly.

Using the result of Ref. 20 the initial distributionn0 of
phonons that form the pulse can be written as
©2003 The American Physical Society07-1
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n05n~p,r ,t50!5
h~pez /p2cosu3PP!

exp@«/T0~r !#21
, ~4!

whereh is the step function, which is equal to unity or ze
for positive or negative values of the argument respectiv
andez is the unit vector, directed along thez axis. The initial
distribution ~4! describes a pulse of phonons, localized
space, where the temperatureT0(r ) is greater than zero. Ac
cording to Eq.~4!, such a pulse is an anisotropic phon
system in which the momenta of all phonons lie within
narrow cone of angleu3PP which is of order of the typical
angle for three-phonon processes. Att50, the axis of the
cone is directed along thez axis at every point inside the
pulse. The strongly anisotropic and nonuniform system
phonons studied here was observed in experiments1–3,10 in
superfluid helium at such a low temperature that the ther
excitations of helium can be neglected. Such superfluid
lium can be considered to be a ‘‘superfluid vacuum’’
which the phonons propagate. At timet50 the heater create
a phonon pulse with the initial distribution~4!. The size of
the pulse along thex andy axes is determined by the size
the heater and the pulse durationtp .

The evolution of a phonon pulse as a function of tim
during its motion in the superfluid vacuum can be describ
by the equations that express the conservation of energy
momentum. These equations are obtained by multiplying
~1! by energy or momentum and then integrating with
spect to momentum:

]E~r ,t !

]t
1

]QE~r ,t !

]r
50, ~5!

]Pi~r ,t !

]t
1

]Qi j ~r ,t !

]r j
50, ~6!

where

E~r ,t !5E «n
d3p

~2p\!3
~7!

is the phonon density energy,

QE~r ,t !5E «
]«

]p
n

d3p

~2p\!3
~8!

is vector of the energy density flux,

P~r ,t !5E pn
d3p

~2p\!3
~9!

is the phonon momentum density,

Qi j ~r ,t !5E pi

]«

]pj
n

d3p

~2p\!3
~10!

is the tensor of phonon-momentum density flux.
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III. THE CHOICE OF THE SOLUTION
OF THE KINETIC EQUATION

The distribution functionn appearing in Eqs.~7!–~10! is a
solution of the integro-differential equation~1! with initial
condition ~4!. Taking into account that the three-phonon r
laxation is fast, the required solution can be written as f
lows:

n~p,r ,t !5nV~p,r ,t !1nI~p,r ,t !, ~11!

wherenV(p,r ,t) is the local equilibrium distribution func-
tion, which makes the collision integralsI 3PP , I 4PP equal to
zero, andnI(p,r ,t) is the additional term which is small fo
small values of the timest3PP andt4PP .

If we do not consider the dissipative relaxation in t
phonon pulse, we retain only the first term in Eq.~11!. This
is a good approximation for three-phonon processes wh
describe the most important phenomena taking place in
pulse. The four-phonon processes result in an intensive
ation of h-phonons and a loss of energy from thel-phonon
subsystem, in highly-anisotropic phonon systems.5 If we
omit the second term in Eq.~11!, this process will not be
considered.

In this paper we retain only the first term in Eq.~11!. In
this approximation only the evolution ofl-phonon pulse will
be described and the contribution ofh-phonons to all pro-
cesses will be ignored. Obviously, this approximation is o
correct for sufficiently cool pulses. For hot pulses, this a
proximation is only valid from the time when thel-phonon
pulse has become so cold that the creation ofh-phonons can
be neglected.

We now discuss the choice of the local equilibrium fun
tion. As is known, such a function is the Bose-Einstein d
tribution function with parameters that depend on time a
spatial coordinates. Here one must take into account
strong anisotropy of the phonon pulse and the fast thr
phonon processes. These instantaneously~on the scale of all
typical times in the problem! provide equilibrium in a cone
with small angleu3PP , which is typical for the three-phonon
processes. When the isotropic phonon system was consid
in Ref. 21 it was supposed that the parameters of the Bo
Einstein distribution function depended on direction. Such
approximation needsu3PP50.

For a strongly anisotropic phonon system this approxim
tion is not acceptable, since the finite value of angleu3PP
explains several phenomena2,10,22 that take place in phonon
pulses.

For one variant of the solution of our problem, consid
the Bose-Einstein local equilibrium function that includes t
hydrodynamic velocityu(r ,t):

nV~p,r ,t !5
h~pez /p2cosu3PP!

exp@~«2pu!/T#21
. ~12!

Substituting Eq.~12! into relations~5!–~10! gives the system
of four equations for the four desired functionsu(r ,t) and
T(r ,t), which, according to Eq.~4!, satisfy the initial condi-
tions

u~r ,t50!50; T~r ,t50!5T0~r !. ~13!
7-2
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From the solution of this system of four equations, with in
tial conditions~13!, it follows that after a time of order of the
length of the heat pulsetp ~which creates the phonon puls
with sizeL5tpc moving along the axisz) the z component
of the hydrodynamic velocity becomes so close toc that
function ~12! becomes strongly anisotropic inside the co
with angleu3PP . This anisotropy results from the fact th
after a timetp almost all phonons will move along the axisz,
and the number of phonons moving at the angleu3PP to the
z axis will be small. This solution contradicts the collisio
integral I 3PP , since it describes three-phonon process
which practically instantaneously~in time t3PP!tp) destroy
this anisotropy within a cone of angleu3PP .

The solution that does not have this inconsistency can
written in the form

nV~p,r ,t !5
h~ps/p2cosu3PP!

exp~«/T!21
, ~14!

where the unit vectors(r ,t) determines the direction of th
axis of the cone with angleu3PP , at any moment of timet
and at any spatial pointr inside the pulse.

Substituting Eq.~14! into relation~5!–~10! gives a system
of four equations for three functions since

s251. ~15!

As will be shown below, this system of four equations is n
independent and gives a system of three independent e
tions for the three required functions of temperatureT(r ,t)
and any two functions that determine the direction of vec
s(r ,t). These, according to Eq.~4!, should satisfy the initial
condition:

s~r ,t50!5ez and T~r ,t50!5T0~r !. ~16!

Solution ~14! determines the nonuniform and anisotrop
phonon system, in which the instantaneous equilibrium ta
place in the cone directed along the vectors and with angle
u3PP which is equal to the typical angle for three-phon
processes.

It should be noted that the angleu3PP depends on the
typical momenta of phonons taking place in three-phon
processes. This causesu3PP to be a function of temperature
Moreover, according to estimates made first in Ref. 23
frequent three-phonon collisions result in the diffusion
phonons in angular space. Later this problem for the cas
small deviation from equilibrium was studied in detail
Ref. 24. Such a diffusion results in an explicit dependence
u3PP on time. In order to obtain the full dependences
temperature and time, one should solve a sufficiently co
plete nonlinear mathematical problem. To avoid this we h
restrict ourselves to a solution with a constant value ofu3PP .

IV. EVOLUTION EQUATIONS FOR THE PARAMETERS
OF THE LOCAL EQUILIBRIUM

DISTRIBUTION FUNCTION

Using the dispersion law~2! for the energy density o
l-phonons~7! in the linear approximation with respect to th
13450
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small parameterC, we obtain

E~r ,t !5
3!2pz~4!kB

4

~2p\c!3
zp~T41x2Tx8!, ~17!

wherez(m) is Riemann zeta function,

zp512cosu3PP , ~18!

x5x~T!5
1

3!z~4!
E

0

`

C~«!
«3d«

exp~«/T!21
, ~19!

and the primed function denotes the derivative with resp
to the argument.

Let us estimate the numerical value of the nondimensio
function x/T4, which is included to Eq.~17!. According to
Ref. 5, a good approximation for the deviation of the phon
energy-momentum relation from a linear dependence can
written as follows:

C~«!5gdS «

«c
D 2F12S «

«c
D 2G , ~20!

where

gd5
c2]«/]pu«5«c

2c
. ~21!

Using the experimental valuesc5238 ms21, ]«/]pu«5«c

5189 ms21 we havegd50.103. Substituting Eq.~20! into
Eq. ~19! gives

x~T!

T4
5

gd

3!z~4! S 5!z~6!
T2

«c
2

27!z~8!
T4

«c
4D . ~22!

Using the numerical values ofgd and known values of
Riemann zeta functions@z(4)51.082, z(6)51.017, and
z(8)51.004] we get at typical temperatureT51 K1–3,10

x~T!

T4
uT51 K50.011. ~23!

Value ~23! is close to the numerical value ofzp , which,
according to Refs. 2 and 20 , is equal to 0.02. This resu
natural because the value ofzp , as well as function~23!, is
determined by the small deviation of the phonon ener
momentum relation from linearity. So in the following ca
culations, we will consider only linear terms with respect
these two small parametersx/T4 andzp , which have equal
orders of magnitude.

Relations~2!, ~8!–~10! in this approximation give

QE~r ,t !5
3!z~4!kB

4zp

~2pc!2\3 F S 12
zp

2 DT422xGs; ~24!

P~r ,t !5
3!z~4!kB

4zp

~2p!2\3c4 F S 12
zp

2 DT42Tx8Gs; ~25!
7-3
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Qi j ~r ,t !5
3!z~4!kB

4zp

~2p!2~\c!3 Fzp

2
T4d i j

1S H 12
3zp

2 J T423x D sisj G . ~26!

Substituting relations~17!, ~24!–~26! into Eqs.~5! and~6!
we get in the linear approximation with respect to small p
rameterszp andx/T4 the following system of three indepen
dent equations:

]T4

c]t
1F12

zp

2
1

Tx922x8

4T3 G]T4

]z
1

]

]x
~T4sx!

1
]

]y
~T4sy!2

1

2

]

]z
@T4~sx

21sy
2!#50; ~27!

]

c]t
~T4sx!1

]

]z
~T4sx!1

]

]x FT4S zp

2
1sx

2D G
1

]

]y
~T4sxsy!50; ~28!

]

c]t
~T4sy!1

]

]z
~T4sy!1

]

]y FT4S zp

2
1sy

2D G
1

]

]x
~T4sxsy!50; ~29!

where we introduce the general notationr 15x, r 25y, r 3
5z, s15sx , s25sy , ands35sz .

This system of three equations for the three desired fu
tions T(r ,t), sx(r ,t), andsy(r ,t) is completed by the initial
conditions

sx~r ,t50!50; sy~r ,t50!50; T~r ,t50!5T0~r !.
~30!

During the derivation of Eqs.~27!–~29! we take into accoun
that, from the initial conditions~30! for sx and sy and the
system of Eqs.~5! and~6!, the valuessx andsy are small and
are of orderAzp. In the calculations presented below we fin
that sx ,sy;Azp/250.1.

It is easy to check that Eq.~6!, for i 53 rewritten in the
same approximation as Eqs.~27!–~29!, coincides with Eq.
~27!, which expresses the conservation of energy. As a re
the system of four equations becomes a system of three
dependent equations.

V. EVOLUTION OF THE PHONON PULSE
IN THE DIRECTION OF ITS MOTION

The phonon pulse, propagating in superfluid vacuum
II, cannot be described even approximately in a model wh
the deviation from equilibrium is weak. So, one should so
the nonlinear system of three differential Eqs.~27!–~29! in
partial derivatives with the initial conditions~30!. As is
13450
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known, such a problem has no solution algorithm and ne
an individual approach in every special case and it is ma
ematically hard. In this situation one can consider vario
limiting cases, which simplifies the full system, so that t
problem can be solved completely.

In this section we consider the case where all the des
functions depend on the variablesz andt. The solution of this
problem gives the evolution of a phonon pulse in thez di-
rection. Clearly this approximation is valid for sufficientl
wide pulses in thexy plane where edge effects can be n
glected.

In this case, from the initial conditions~30! and the sym-
metry of the problem, it follows that

sx~z,t !50 and sy~z,t !50 ~31!

and the system of Eqs.~27!–~29! results in one equation fo
function T(z,t), which can be rewritten as follows

]r

]t
1cr

]r

]z
50, ~32!

where the function

r5T4 ~33!

can be called density, as according to Eq.~17! it determines
the density of the phonon energy as a function of time a
coordinate,

cr5cS 12
zp

2
1wrD ~34!

and

wr5
1

4

d

dT

x8

T2
. ~35!

The Riemann solution of Eq.~32! with initial condition
~30! is the function

r~z,t !5r0~z2crt !, ~36!

where the function

r0~z2crt !5T0
4~z2crt ! ~37!

is determined by the initial distribution

T~z,t50!5T0~z!. ~38!

Solution ~36! indirectly determines the phonon energ
density in various points of the pulse at any moment of tim
According to Eq.~36!, each value of the densityr of the
pulse moves in space with its own constant velocitycr. In
this sense solution~36! is a running wave and is often calle
a simple wave~see, for example, Ref. 25!. Solution ~36!
describes the result of the summation of two motions:
motion of the phonon pulse in space with velocityc(1
2zp/2) and the relative motion of different values ofr with
velocity cwr .

An explicit expression for the functionwr5wr(r5T4) is
derived from relations~22! and ~35! and looks as follows:
7-4
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wr5
gd

3!z~4! S 5!9

2
z~6!

T2

«c
2

27!10z~8!
T4

«c
4D

50.09T220.08T4. ~39!

According to Eq.~39!, the functionwr(T) monotonically
decreases on both sides from its maximum value, whic
equal to 0.025 and occurs atT50.75 K. At temperaturesT
50 andT51.06 K the functionwr becomes equal to zero
At T.0.75 K, wr decreases and according to Eq.~34! the
velocity of motion decreases when the density increa
This result is opposite to the standard situation in hydro
namics, which takes place in our problem atT,0.75 K. The
small numerical values of the functionwr!1 show that the
velocity of relative motion, due to different values ofT in the
pulse, has a relatively small value.

Solution~36! is valid while the functionr(z,t), given by
relations~34! and~36!, remains a single-valued function ofz.
The multiple-valued solution, which appears because dif
ent values of densityr move with different velocitiescr

5cr(r), has no physical sense and results in the creatio
a breaking wave~see, for example, Ref. 25!. In the region of
the multiple-valued solution, the coordinate of the wav
break can be found from the conservation law, according
which at any moment of time

E
2`

1`

r~z,t !dz5const. ~40!

At the break, which appears at the pointzbr , relation ~40!
becomes

E
2`

zbr20

rdz1E
zbr10

1`

rdz5const. ~41!

Taking the derivative of Eq.~41! with respect to time we find
the velocity of the break

dzbr

dt
5

F@r~zbr10!#2F@r~zbr20!#

r~zbr10!2r~zbr20!
, ~42!

where F(r) is the indefinite integral of the functioncr

5cr(r), defined in Eq.~34!.
From relation~41! it follows that the line of the break in

the multiple-valued region divides the area bounded by
multiple-valued liner(z) and the line of the break, into two
equal parts.

These results enable us to explain the deformation of
initial distribution T0(z). According to solution~36! and re-
lation ~42! the initial rectangular pulse with length 2Lz and
heightT0, which is described by the initial distribution

T0~z!5T0h~Lz2uzu!, ~43!

moves as a whole not changing its form with velocity, whi
is equal toc within the uncertainties of the experiments.1–3,10

This result follows from the instantaneous three-phonon
laxation and accords with experiment. It should be noted
for a pulse of weakly interacting phonons the result is qu
different, Ref. 26: an initial rectangular pulse of phonons w
become rounded. There are two reasons for this: first,
13450
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cause phonons in the pulse have different directions,
second, because phonons with different momenta have
ferent group velocities. In spite of the small values of fun
tion C!1, the group velocities]«/]p for l-phonons with
different momenta may differ from one another b
;10 ms21.

In experiments1–3,10 the initial pulseT0(z) is not exactly
rectangular, Eq.~43!, because of the timedteq to reach equi-
librium. In experimentsdteq'20 ns is usually less than th
pulse durationtp . Figure 1 shows an example of a model
phonon pulse withtp51027 s anddteq5tp/4. Comparing
the pulses atct50 and at ct510 mm, we see that the puls
is significantly deformed after propagating 10 mm, which
a typical distance for experiments.1–3,10As yet this phenom-
enon has not been seen but it should be possible in the fu
to design experiments to measure such changes in the p
shape. However, it will be shown26 that the pulse presente
in Fig. 1, formed by weakly interacting phonons is deform
even more strongly and so should be more easily detect

It was first suggested in the Ref. 1 that the preservation
the rectangular pulse shape, by the bulk of the pulse du
propagation, could be explained by three-phonon inter
tions. The calculations presented in this section confirm
proposal.

VI. INITIAL EVOLUTION OF THE PULSE IN THE PLANE
PERPENDICULAR TO THE DIRECTION

OF ITS MOTION

We now consider the case when the required functio
including Eqs.~27!–~29!, depend only on the coordinatex
and timet. The solution of this problem allows us to stud
the evolution of a phonon pulse along thex direction, which
is perpendicular to the direction of propagation. This a
proximation is valid for sufficiently large pulses in thez and
y directions, where the dependences in these directions
be neglected.

In this case the initial conditions~30! and symmetry of the
problem give

sy~x,t !50. ~44!

FIG. 1. The evolution of the initial density in the frame of co

ordinate z̃5z2c(12zp/2)t that moves relative to the laborator
frame with velocity c(12zp/2). The numerical valuesc
5238 ms21, zp5231022,T051 K, andLz50.012 mm are typi-
cal experimental values.
7-5
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Equation~29! becomes an identity, and Eqs.~27! and ~28!
give one-dimensional equations

]r

]t
1

]rv
]x

50, ~45!

rH ]v
]t

1v
]v
]xJ 52

]P

]x
, ~46!

where, in accordance with Eq.~33!

r5T4 ~47!

is the density,

v5csx ~48!

is a velocity of motion along the axisx,

P5cu
2r ~49!

is the analog of pressure, and

cu5cAzp/2 ~50!

is the analog of sound velocity which is determined by
angleu3PP of the cone, in which the phonons are in equili
rium.

The system of Eqs.~45! and ~46! should be completed
with the initial conditions, which can be written in the fo
lowing form:

r~x,t50!5r0h~Lx2uxu! and v~x,t50!50. ~51!

Relation ~51! describes a rectangular pulse att50 with
length 2Lx and heightr05const. We should note, that ac
cording to the initial conditions~51! and the symmetry of the
problem

v~x50,t !50. ~52!

Equations~45! and ~46! together with conditions~51! and
~52! describe the expansion of a layer of gas into a vacu
Such an expansion results in the formation of two waves
rarefaction~see, for example, Ref. 27!, which during the time
interval

0<t<Lx /cu ~53!

will propagate in the unperturbed gas, symmetrically to
left (x,0) and right (x.0) ~see Fig. 2!.

Using dimensional analysis this motion can be descri
by automodel solutions~see, for example, Ref. 25!, in which
the functions do not depend on the two variablesx andt, but
only on one variablext5xt(x,t). In our case

xt5
Lx2uxu

t
. ~54!

The dependence ofr(xt) andv(xt) on only one variable
allows us to transform the system of two equations, Eqs.~45!
and ~46!, in partial derivatives, into a system of two equ
tions in full derivatives, which has a known algorithm fo
obtaining the solution.
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As a result we obtain for the density

r5T4

5H r0 when 0<uxu<Lx2cut

r0exp@~Lx2uxu2cut !/cut# when uxu>Lx2cut,

~55!

and for the velocity

v5csx

5H 0 when 0<uxu<Lx2cut

sgn~x!~ uxu2Lx1cut !/t when uxu>Lx2cut.

~56!

Figure 2 shows the plots of these functions~55! and~56!
at the momentt15Lx/2cu , when the pulse has gone the di
tance along the axisz equal toLtr5ct152.5 mm, calculated
with typical experimental data.1–3,10 Figure 2 shows that a
sufficiently long values ofuxu/Lx the valueusxu is not a very
good small parameter. However, according to Fig. 2 and
lution ~55!, at such large values ofuxu/Lx , the relative den-
sity is exponentially small. This satisfies all the derivatio
made with a quadratic approximation with respect to
small parametersx .

Discussion of the results obtained in this section with e
perimental data will be made in Sec. IX.

FIG. 2. The dependence of the relative densityr/r05T4/T0
4

~curve 1! and relative velocityv/c5sx ~curve 2! on the relative
coordinatex/Lx at the time momentt15Lx/2cu , when the pulse has
gone a distance along the axisz equal toLtr5ct152.5 mm, using
typical experimental valuesLx50.5 mm, c5238 ms21, and zp

5231022.
7-6
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VII. LATER EVOLUTION OF PHONON PULSES
IN THE PLANE PERPENDICULAR
TO THE DIRECTION OF MOTION

Solution ~55! and ~56! are only valid at all values ofx
during time interval determined by the inequalities~53!. At
the time

t r5Lx /cu , ~57!

the rarefaction wave reaches the point withx50. After that
time two reflected waves appear, one each on the left
right. From now on we will consider only the region wit
positive valuesx.0 since, by symmetry, the solution forx
,0 is the same as forx.0.

The solution that includes the reflected waver5r r(x,t)
andv5v r(x,t) at momentst.t r will apply in the region

0<x<xr , ~58!

where for times sufficiently close tot r , we have, from gen-
eral considerations,

xr5cu~ t2t r ! at t2t r!t r . ~59!

The expression forxr at arbitraryt.t r will be derived below
during the solution of the problem.

In the region x>xr at time t.t r the solution for r
5r(x,t) andv5v(x,t) is determined by relations~55! and
~56!. At the point x5xr the solution that includes the re
flected waves should be joined to solution~55! and ~56! for
the rarefaction wave to make the function continuous. T
derivatives are discontinuous~see Fig. 3!. That is why the
point xr is ‘‘called a point of weak break.’’ Result~59! ex-
presses the known fact that a weak break moves throu
the stationary gas at the sound velocity.

As is known the solution that includes the reflected wa
is not an automodel one. So, the search for the solutio
region~58! is a hard mathematical problem which needs
derivation of a general solution of the system~45! and ~46!.
This is a classical problem of mathematical physics, wh
has been discussed many times in the scientific literat
~see, for example, Refs. 25,27,28!, where it was noted that in
the one-dimensional case there exists an exact analytica
lution. An analytical expression for the solution of Eqs.~45!
and~46! with initial conditions~51! is only presented in Ref
29 as far as we know. However a numerical analysis of
solution proposed in Ref. 29 has shown that this solut
violates the integral conservation law, which follows fro
Eq. ~45!. Unfortunately, in Ref. 29 the derivation of this re
sult was not presented, but only described. So we cannot
the reason of this violation.

In this situation we must solve this problem ourselv
Moreover, we use another method of solving which we c
sider to be more useful. The general solution obtained in
paper, unlike the solution of Ref. 29, includes only sing
integrals and, therefore, has a simpler analytical form. O
solution satisfies the integral conservation law.

The general solutions of equations~45! and ~46! are also
applicable in other physical systems. Our derivation is giv
in the Appendix. To obtain the general solutions of expr
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sions~45! and ~46!, which describe the reflected wave, it
useful to introduce new variablesa and b, which are con-
nected to the old variablesx and t by relations~see the Ap-
pendix!

t5
1

4

Lx

cu
e2a2bS ]F

]a
1

]F

]b
22F D , ~60!

x5
Lx

2
e2a2bF S a2b2

1

2D ]F

]a

1S a2b1
1

2D ]F

]b
22~a2b!F G , ~61!

where the functionF(a,b) satisfies equation~A11! of hy-
perbolic type with constant coefficients. The general solut
of this equation includes two arbitrary functions, which a
determined from equality~52! and the condition of joining
the general solution to solutions~55! and~56! at the point of
the weak breakxr . As the result, we get@see Eqs.~A12!,
~A15!, ~A18!#

F~a,b!52E
0

a

~k21!ekI 0„2Ab~a2k!…dk

12E
0

b

~k21!ekI 0„2Aa~b2k!…dk

24I 0~2Aab!, ~62!

FIG. 3. The dependence of the relative densityr/r05T4/T0
4

~curve 1! and relative velocityv/c5sx ~curve 2! on the relative
length x/Lx at the time momentt252Lx /cu , when the pulse has
gone the distance along the axisz equal toLtr5ct2510 mm, using
typical experimental valuesLx50.5 mm, c5238 ms21, and zp

5231022.
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whereI 0 is the modified Bessel function of zeroth order. T
solution for the desired functionsv andr as functions of the
new variablesa andb can be written as follows:

v
c

5sx5A2zp~a2b! and
r

r0
5

T4

T0
4

5e2(a1b). ~63!

At x50 Eqs.~60!–~63! give

v50 and
cut

Lx
5

T0
2

T2
I 0S 2 ln

T0

T D . ~64!

The time dependence of the coordinate of the weak br
looks like

xr5Lx1F2 lnS cut

Lx
D21Gcut at t>Lx /cu . ~65!

Figure 3 shows the plot of solutions~60!–~63! at uxu
<xr and solutions~55!–~56! at uxu.xr at the momentt2
52Lx /cu , when the pulse has reached the distancect2510
mm along thez axis. The results obtained in this section w
be discussed in Sec. IX.

VIII. ANGULAR DEPENDENCE OF THE ENERGY FLUX

In Refs. 2,10 are the results of measurements of the
gular dependence of the phonon beam. The pulse
l-phonons is detected by a bolometer, which is at an angu
with respect to the heater normal.

In order to compare the theory presented in this pa
with experimental data,2,10 we calculate the flux of energ
through the surface elementds, which is at an angleu with
respect to the direction of propagation of the pulse. The s
ation considered here is shown in Fig. 4, which reflects
experimental arrangement.2,10

The energy fluxdEs through the surface elementds dur-
ing time dt is equal to

FIG. 4. The evolution of thel-phonon pulse during its travel to
the surface elementds. The dependence of the relative density
the pulse on coordinatex at time t5t1 , curve 1 in Fig. 2, and at
time t5t2, curve 1 in Fig. 3.
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dEs5QEdsdt5~QEzcosu1QExsinu!dsdt. ~66!

Then we substitute Eq.~24! into Eq. ~66! and omit the
terms that involve the small parameterszp!1 and x/T4

!1. As a result we get

dEs

dsdt
5

3!z~4!kB
4

~2pc!2\3
zpT4~x,z,t !@cosu1sx~x,z,t !sinu#

~67!

The argumentsx andz in expression~67! should be con-
sidered equal to coordinatesxs andzs of the elementds, for
which we have

xs5R sinu, and zs5R cosu, ~68!

whereR is the distance from the center of the pulse at
momentt50 to the elementds ~see Fig. 4!. In this case the
right hand side of Eq.~67! differs from zero only during the
time interval determined by the inequalities

zs

c
2

tp

2
<t<

zs

c
1

tp

2
. ~69!

The amplitude of the signal on the elementds is deter-
mined by the full energy flux through the surface eleme
ds, which can be obtained by integrating expression~67!
with respect to time in the limits obtained from inequaliti
~69!

I ~R,u!5
3!z~4!kB

4

~2pc!2\3
zpE

zs /c2tp/2

zs /c1tp/2

T4~xs ,zs ,t !

3@cosu1sx~xs ,zs ,t !sinu#dt. ~70!

Taking into account the small values oftp under the integral
in Eq. ~70! one can substitutet with zs /c, and approximate
the dependence onzs with the steph function. As the result
we obtain

I ~R,u!

I ~R,u50!
5

T4~x5R sinu,t5R cosu/c!

T4~x50,t5R/c!

3@cosu1sx~x5R sinu,t5R cosu/c!sinu#.

~71!

Figure 5 shows the dependence of the relative energy fl
Eq. ~71!, on angleu, which was obtained from the solutio
of Eqs. ~55!, ~56!, and ~60!–~63!. The numerical values o
the parameters were taken from experiments.2,10 The de-
nominator in expression~71! is calculated using the rela
tively simple expression~64!. The result is sensitive to the
values of the angleu3pp ~see comments at the end of Se
III !. That is why in Fig. 5 we show three curves: curve 1 f
u3pp511.4° (zp5231022), curve 2 for u3pp59°, and
curve 3 foru3pp57°.

The dashed curve 4, in Fig. 5, refers to the angular dep
dence of the relative flux~71! calculated with the model o
geometric broadening, considered in Refs. 30,9,7 withu3pp
511.4°. In this model it is supposed that the pulse
7-8
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l-phonons, with fixed value of 2Lz , uniformly occupies all
the volume inside the cone with the angleu3PP , during its
motion along the axis of the cone. It was assumed that t
perature becomes instantaneously the same at all poin
the pulse, which is bounded by two planes separated byLz
and the surface of the cone with the angleu3PP with respect
to thez axis.

In the model of geometric broadening the second term
the braces in Eq.~71! is equal to zero and the angular depe
dence atu,u3PP is given by the function cosu.

We see that the curves 1, 2, and 3 in Fig. 5 have a sim
form to the experimental curves in Fig. 4 in Ref. 10, where
the dashed curve 4 is essentially different.

IX. DISCUSSION

We only expect the theory presented in this paper to
comparable with experimental results when the pulse len
is sufficiently short and the input power sufficiently low s
that h-phonon creation can be neglected.

According to results in Ref. 10 at fixed pulse lengthtp
55•1028s, with increasing power the angular dependen
of l-phonon amplitude signal becomes more flat. As the
sult, an increase in input power causes the shape of the c
to change with an increase in the full width at half ma
mum. Similar changes in the angular dependence occur
increasing pulse length at fixed power.

FIG. 5. The dependence of the relative energy flux and sig
amplitude on the angleu between pulse cross-section and detec
surface.~a!. The angular dependence of the relative energy fl
calculated by equations Eqs.~55!, ~60!–~64!, ~71! ~solid line! using
numerical valuesLx50.5 mm, R517 mm, c5238 ms21, which
are typical experimental values.10 Lines 1, 2, and 3 are foru3pp

511.4° (zp5231022), 9° and 7°, respectively.~b!. The angular
dependence of the relative energy, calculated by Eq.~71! using the
model of geometrical broadening in a cone of angleu3pp511.4°
~dashed curve 4!.
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This change of the angular dependence of the signal
plitude with increase of power and pulse length origina
from the unusual evolution of thel-phonon pulse, which is
determined by solutions~55!, ~56!, and ~60!–~63!. Let us
discuss the mechanism of such a change.

An increase in the input power causes a larger initial te
peratureT0 of the l-phonon pulse. At sufficiently high tem
peratures, the evolution of thel-phonon pulse is determine
not only by the mechanism described by Eqs.~55!, ~56!, and
~60!–~63!, but also byh-phonon creation in the pulse o
l-phonons,4 which is not considered in this paper. Howeve
it is possible to give a qualitative explanation of the chan
in evolution of l-phonon pulse whenh-phonons are created

Let us suppose that at the momentt50 we have a
l-phonon pulse of rectangular form and distribution functi
~4! with a relatively high value ofT0 such that high-energy
phonons can be created very intensively.4,5,7 These h-
phonons weakly interact with thel-phonon pulse and hav
group velocityvgr<189 m/s, which is lower than the veloc
ity of the l-phonon pulse. So, once created, theh-phonons
will leave thel-phonon pulse through its back wall, and the
move relatively slowly to the detector.

While the dependence ofT(x,y), throughout the cross
section of thel-phonon pulse, is close to a step function,h-
phonons are radiated at each point along the back wall of
l-phonon pulse. This results in uniform cooling.

According to solution~55! the evolution of the outer re
gions of thel-phonon pulse shows the temperature expon
tially decreasing from its maximum value to zero. The ma
mum value of temperature occurs in the region near the
of the pulse where it forms a ‘‘hot spot’’~typically 1 K! ~see
Figs. 2 and 4!. The creation ofh-phonons only takes place i
this central region and in the nearby parts of the outer
gions that are hot enough. This process causes this sp
cool, but the outer regions of the pulse, which have a re
tively low temperature, do not createh-phonons and so do
not cool significantly.

According to the result of calculations in Refs. 4,5,7 t
creation ofh-phonons is intensive only in the regions wi
the temperatureT.0.8 K. This process becomes very slo
as soon as temperature decreases to the value;0.7 K. That
is why the outer regions withT,0.7 K will remain at the
same temperature, unlike the central hot region with initia
T;1 K, which will cool down toT;0.7 K by intensively
creatingh-phonons. As a result, pulses that are initially ho
ter, cool over a wider area than initially cooler pulses, and
have a temperature distribution that is flat over a lar
radius.

However a cooll-phonon pulse, which does not createh-
phonons, will have a central hot spot for a typical timet r
determined by equality~57!. During this time the pulse
moves a distance

Ls5ctr5A 2

zp
Lx55 mm. ~72!

During the timet.t r , the pulse temperature, in the center
the pulse, monotonically decreases with the depende
given by Eq.~64!, and the temperature at each point of t

al
r
,
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pulse decreases. This overall decrease in temperature gi
narrower angular dependence of the signal compared to a
pulse, in which most of the cooling takes place in the cen
region due to the creation ofh-phonons.

Value ~72! can explain the large measured distance o
which thel-phonon pulse createsh-phonons.1

Let us discuss the possible reasons for the width of the
angular dependence ofl-phonon amplitude as a function o
the pulse length of thel-phonon pulse, at fixed input powe
According to the results of Refs. 5,7 for pulses with the sa
initial temperature, longer pulses ofl-phonons radiate
h-phonons for a longer time. As a result, in longerl-phonon
pulses the hot spot in the center of the pulse is cooled
creatingh-phonons for a longer time than in shorter pulse

Different temperature distributions in long and sho
pulses can be caused by their different developments a
thez axis with time. In Fig. 1 we see that as the pulse mo
along thez axis there is a decrease in the area that ha
sufficiently high temperature to createh-phonons. A long
pulse will have a constant temperature in the center ov
longer distance along thez axis, compared with a short puls
As a result, the relative change along thez axis for a long
pulse will be less than that for a short pulse and the ce
remains hotter over a larger distance. Hence the coolin
the hot spot of the long pulse, caused by the intensive
ation of h-phonons, results in a wider region of consta
temperature than for a short pulse.

We should note that the exact solutions~36!, ~55!, ~56!,
~60!–~63!, obtained in the framework of the theory present
in this paper, only partially reflect the experiment
situation.2,10 So, all the qualitative arguments presented
this section need quantitative development. This is only p
sible with the solutions of a number of hard problems:

~1! In experiments, the problem has nearly cylindric
symmetry as all parameters depend on the radiusr, and not
the flat problem considered here. It is not hard, using E
~27!–~29! to write the system of equations for the case
axial symmetry. However, so far we have not managed
find analytical solutions for this system. We have made o
preliminary investigations, which have shown that solutio
~55!, ~56!, ~60!–~63! qualitatively describe the case of axi
symmetry. So, for example, the velocity of propagation o
rarefying wave is the same as Eq.~50! and, hence, result~72!
does not change. However, the solution of the axially sy
metric problem is of great interest.

~2! It is necessary to understand how the dependenc
temperature on the coordinatez,changes the evolution of th
pulse in its crosssection. The answer to this question
only be obtained from the exact solution of the system
Eqs. ~27!–~29! which takes into account the term involvin
the partial derivatives with respect to different Cartesian
ordinates. However, this solution causes some difficult
which are not yet overcome.

~3! It is necessary to consider the evolution of t
l-phonon pulse which takes into account the creation
h-phonons. In order to do this, we should add to the sys
~27!–~29! the equations that describe the process
h-phonon creation, and then try to solve this system.
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A separate, hard, and important problem is the crea
and the subsequent evolution of theh-phonon pulse. This
problem was not even discussed in this paper, though
data presented in Ref. 10 show it is important. The n
experimental data Ref. 10, together with earlier experime
data, Refs. 2,22, is evidence of the nontrivial properties
anisotropic phonon systems. Undoubtedly this will stimula
solving the problems mentioned above and we expect to
cover new phenomena in this field of quantum liqui
physics.
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APPENDIX

Let us introduce the velocity potential

v5
]w

]x
~A1!

and the new function

w5cu
2ln

r

r0
. ~A2!

Then rewrite systems~45! and ~46! as follows:

]w

]t
1v

]w

]x
1cu

2 ]v
]x

50, ~A3!

]w

]t
1

v2

2
1w50. ~A4!

Now we make the godograph transformation~see, for ex-
ample, Ref. 25!, according to which we introduce new inde
pendent variablesv, w instead ofx, t. In accordance with the
Legendre transformation we introduce the functionm
5m(v,w) by the equality

m~v,w!5w2xv1tS w1
v2

2 D . ~A5!

In Eq. ~A5! valuesw, x, andt are supposed to be functions o
the new independent variablesv andw.

According to the Legendre transformations

t5
]m

]w
and x5v

]m

]w
2

]m

]v
. ~A6!

The equation for the functionm is obtained by division of
Eq. ~A3! by the Jacobian

]~w,v !

]~x,t !
, ~A7!

which for the general solution is not equal to zero. Let
note that for the automodel solution the Jacobian~A7! is
7-10
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equal to zero. That is why the automodel solution often
called the special solution unlike the general solution con
ered here. As the result from Eq.~A3! taking into account
Eq. ~A6! we get

cu
2 ]2m

]w2
2

]2m

]v2
1

]m

]w
50. ~A8!

Equation ~A8! can be simplified, if instead of the var
ablesw and v we introduce the variablesa and b by the
equalities

v52cu~a2b!, w52cu
2~a1b! ~A9!

and a new nondimensional function

F5
1

cuLx
ea1bm, ~A10!

for which, starting from Eq.~A8! we get the equation

]2F

]a]b
5F. ~A11!

The general solution of Eq.~A11! can be written as fol-
lows:

F5E
0

a

G1~k!I 0„2Ab~a2k!…dk

1E
0

b

G2~k!I 0„2Aa~b2k!…dk

1$G1~0!1G2~0!%I 0~2Aab!, ~A12!

whereG1(k) andG2(k) are arbitrary functions, andI 0(g) is
the modified Bessel function of zeroth order of argumentg.

From relations~A6!, ~A9!, and~A10!, we get

t5
Lx

4cu
e2a2bF]F

]a
1

]F

]b
22F G , ~A13!

x5
Lx

2
e2a2bF S a2b2

1

2D ]F

]a

1S a2b1
1

2D ]F

]b
22~a2b!F G . ~A14!
r,

o,

13450
s
-
Equalities ~A9!, ~A12!–~A14! give the general solution o
system~45! and ~46!.

The arbitrary functionsG1 and G2 including Eq. ~A12!
can be found from the boundary conditions of the particu
problem. The first boundary condition follows from equali
Eq. ~52!, taking into account Eqs.~A9!, ~A12!, and ~A14!
gives

G1~k!5G2~k!. ~A15!

The second boundary condition comes from joining t
general solutions~A9!, ~A12!–~A14! with the automodel so-
lution at the pointxr which is the point of transition from the
general solution to automodel one. Comparing the automo
solutions~55! and ~56! with Eq. ~A9! it is easy to see tha
these solutions can be joined only on the characteristica
50.

The solutions are joined by substituting in the automo
solution

x5Lx1~v2cu!t ~A16!

the expressionv, t, and x from solutions~A9!, ~A13! and
~A4!, taking into account Eq.~A15! at a50. This joining,
taking into account Eq.~A16! gives the following equation

S ]F

]b
2F D U

a50

52eb. ~A17!

Substituting Eq.~A12! into Eq. ~A17! and taking into ac-
count Eq.~A15! give an integral equation forG1, which by
differentiation gives a differential equation. The solution
this differential equation looks like

G1~k!52~k21!ek. ~A18!

Relations~A15! and ~A18! solve the problem of finding
the functionsG1 andG2 which occur in Eq.~A12!, using the
boundary conditions.

The coordinate of the break~65! is found by substituting
the value of the velocity at the break into Eq.~A16!. This
value is found by comparing the expressions for the veloc
which follow from relations~A9! and ~A13! at a50.
o,

k.

k.
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