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Evolution of a cool phonon pulse propagating in superfluid helium
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We derive the system of equations which describes the evolution of a cool phonon pulse during its propa-
gation in superfluid helium. Solutions are found both for longitudinal deformation of the pulse along the pulse
axis and for the transverse evolution perpendicular to the pulse axis. It is shown that the longitudinal motion
of the pulse is described by a simple running wave, and the transverse evolution is similar to the expansion of
a gas in a vacuum. From these solutions, the angular distribution of phonon-energy density is calculated at
various distances from the source. We discuss the very unusual evolution of the phonon pulse and compare it
to experimentally observed phenomena.
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|. INTRODUCTION M an ge
E+Ea_p:|3PP+I4PP- 1)

Phonon pulses created by a heater in superfluid helium are
strongly anisotropic and nonuniform systetnd They pos- Here Izpp,l4pp are collision integrals which change the
sess many unique properties, one of which is the creation gfumber of phonons in the quantum state in unit time due to
high-energy phonong-phonons by a propagating pulse of three-phonon and four-phonon processes, respectively. The
low-energy phonongl-phonons in g?il;id heliumi=3 This ~ phonon energy can be written as
phenomenon is explained by thedry,and new ones are
predicted® =8 However, a number of experimental observa- e=cpl1+¥(p)], )
tions remain unexplained. It is found thaphonons are cre- wherep is the phonon momentum and the functit(p)
ated at large distances from the soutcEhe distances are describes the deviation of the phonon energy-momentum re-
much greater than those calculated assuming geometrical ebation from a linear dependence. In superfluid helium this
pansion of the transverse dimensions of the plladich  deviation is smal[ W (p)<1], nonetheless it determines the
causes rapid cooling of tHephonons which essentially stops various mechanisms of phonon relaxatidn?
the creation ofh-phonons within a short distance from the At the saturation vapor pressure, the functidp<p.
heater. =¢g./¢) is positive(anomalous dispersigrior phonons with
The measured angular dependence of the detected<e=10 K.**"**With this dispersion, three-phonon pro-
signal®>'?its development with distance, and its dependencé&esses are allowed and the collision integak is nonzero.
on input power and pulse length show that its evolution isAt £>&c, the function¥ (p) is negative(normal dispersion
complex, and is not consistent with the model of geometridn this case three-phonon processes are not allowed as en-
expansion. ergy and momentu_m cannot be conserngcf.So for high
To understand the experimental data it is necessary t§N€rdy phonons withe(>¢) the most rapid processes are
develop a theory of the evolution of a phonon pulse during@ur-Phonon processeS,which in Eq. (1) are described by
its propagation from a heater to a detector. In this paper wd€ collision integral ;pp. ,
assume that there is instantaneous three-phonon relaxatiqgt;;'svilp;]ei'hrgel_gl:ﬁ;ﬁ E:]zr:r:r?i-l'?ohnoiggri‘npacrjscfsz?sr Iser?cilr(l:)l:i-tion
We then obtain equations for tHephonon energy density 17.18 e P
and find a number of solutions that describe the evolution O*heorly, and th? liigtime due o four-phpnon Processes
. o T 74pp is calculated in second-order perturbation thedihis
a relatively cool pulse of-phonons during its motion in su-

perfluid helium is the reason for the strong inequality

T3pp<T4pp, )
II. THE EQUATIONS THAT DESCRIBE THE EVOLUTION which is confirmed by numerous experiments.
OF A PHONON PULSE According to inequality(3), phonons in superfluid helium

form two subsystems with substantially different relaxation

A pulse of phonons in superfluid helium, as any othertimes. The first subsystem is low-energy phonotis
quasiparticle system, can be described completely by thphonong with e<e, in which equilibrium is attained in-
quasiclassical distribution function(p,r,t) which deter- stantaneously on the scale of all other relevant times. The
mines the number of phonons at timen phase volume second subsystem is high-energy phon@mphonon$ with
element (27%)2 which includes the point of six-dimensional &>¢., in which equilibrium is attained relatively slowly.
phase spacp,r. The temporal evolution of the phonon pulse  Using the result of Ref. 20 the initial distributiom, of
is described by the kinetic equation, phonons that form the pulse can be written as
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7(pe,/p—Ccosbzpp)
exdelTo(r)]—1 °

no=n(p,r,t=0)= 4
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Ill. THE CHOICE OF THE SOLUTION
OF THE KINETIC EQUATION

The distribution functiom appearing in Eqg7)—(10) is a

where is the step function, which is equal to unity or zero so|ytion of the integro-differential equatiol) with initial
for positive or negative values of the argument respecnvelycondition(4)_ Taking into account that the three-phonon re-

ande, is the unit vector, directed along tleaxis. The initial

laxation is fast, the required solution can be written as fol-

distribution (4) describes a pulse of phonons, localized injgys:

space, where the temperaturg(r) is greater than zero. Ac-

cording to Eq.(4), such a pulse is an anisotropic phonon
system in which the momenta of all phonons lie within a

narrow cone of angl#,pp which is of order of the typical
angle for three-phonon processes.tAt0, the axis of the
cone is directed along the axis at every point inside the

pulse. The strongly anisotropic and nonuniform system o

phonons studied here was observed in experimetitSin
superfluid helium at such a low temperature that the therm
excitations of helium can be neglected. Such superfluid h

lium can be considered to be a “superfluid vacuum” in

which the phonons propagate. At tirre O the heater creates
a phonon pulse with the initial distributio@). The size of
the pulse along thg andy axes is determined by the size of
the heater and the pulse duratign

The evolution of a phonon pulse as a function of time
during its motion in the superfluid vacuum can be describeq
by the equations that express the conservation of energy a

momentum. These equations are obtained by multiplying E
(1) by energy or momentum and then integrating with re
spect to momentum:

JE(r,t) N dQE(r,t) ~0

ot ar ' ®
aP;(r,t) dQ(r,t)
" ar; -0 ©)
where
Ero= | &b ™
rt)= n——
N 2mh)®
is the phonon density energy,
Qutro= [ e &b ®)
rt)=| e—n
F i (27h)3
is vector of the energy density flux,
P~ | o ©
r,t)=1, pn
P (27h)3
is the phonon momentum density,
Qur)= [ prasn 2P 10
! Pop;" 2

is the tensor of phonon-momentum density flux.

e_

n

n(p,r,t)an(p,r,t)+n|(p,r,t), (11)

whereng(p,r,t) is the local equilibrium distribution func-
tion, which makes the collision integrdlgpp, | 4pp €qual to
zero, andn(p,r,t) is the additional term which is small for

{small values of the times;pp and 74pp .

If we do not consider the dissipative relaxation in the

aﬁ)honon pulse, we retain only the first term in Efyl). This

IS a good approximation for three-phonon processes which
describe the most important phenomena taking place in the
pulse. The four-phonon processes result in an intensive cre-
ation of h-phonons and a loss of energy from thphonon
subsystem, in highly-anisotropic phonon systéms$.we
omit the second term in Eq11), this process will not be
considered.

In this paper we retain only the first term in Ed1). In
Eis approximation only the evolution défphonon pulse will
pe described and the contribution lefphonons to all pro-

%esses will be ignored. Obviously, this approximation is only

correct for sufficiently cool pulses. For hot pulses, this ap-
proximation is only valid from the time when tHegphonon
pulse has become so cold that the creatioh-phonons can
be neglected.

We now discuss the choice of the local equilibrium func-
tion. As is known, such a function is the Bose-Einstein dis-
tribution function with parameters that depend on time and
spatial coordinates. Here one must take into account the
strong anisotropy of the phonon pulse and the fast three-
phonon processes. These instantaneo(gsiythe scale of all
typical times in the problejnprovide equilibrium in a cone
with small angledspp, Which is typical for the three-phonon
processes. When the isotropic phonon system was considered
in Ref. 21 it was supposed that the parameters of the Bose-
Einstein distribution function depended on direction. Such an
approximation needé;pp=0.

For a strongly anisotropic phonon system this approxima-
tion is not acceptable, since the finite value of anéigp
explains several phenomérd??that take place in phonon
pulses.

For one variant of the solution of our problem, consider
the Bose-Einstein local equilibrium function that includes the
hydrodynamic velocityu(r,t):

o (Dur 1) = n(pe,/p—Ccosbspp)
oY= e puiT]—1°

Substituting Eq(12) into relations(5)—(10) gives the system
of four equations for the four desired functionér,t) and
T(r,t), which, according to Eq4), satisfy the initial condi-
tions

(12

u(r,t=0)=0; T(r,t=0)=Ty(r). (13
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From the solution of this system of four equations, with ini- small paramete¥, we obtain

tial conditions(13), it follows that after a time of order of the

length of the heat pulsg, (which creates the phonon pulse 3!2w§(4)ké .

with sizeL=t,c moving along the axig) the z component E(r)= ————=— (T +x=Tx"), (17

of the hydrodynamic velocity becomes so closectthat (2mhic)

function (12) becomes strongly anisotropic inside the conewhere¢(m) is Riemann zeta function,

with angle 6;pp. This anisotropy results from the fact that

after a timet, almost all phonons will move along the axis {p=1—CoSO3pp, (18)

and the number of phonons moving at the anygp to the

z axis will be small. This solution contradicts the collision 1 % e3de

integral I3pp, since it describes three-phonon processes, x=x(T)= mf ‘I’(S)W, (19

which practically instantaneous{in time 73pp<<t,) destroy ' 0

this anisotropy within a cone of angipp . and the primed function denotes the derivative with respect

The solution that does not have this inconsistency can b& the argument.

written in the form Let us estimate the numerical value of the nondimensional

function x/T4, which is included to Eq(17). According to
no(pir 1) = 7(ps/p—COSbspp) (14 Ref. 5, a good approximation for the deviation of the phonon
alP.T, expe/T)—1 ° energy-momentum relation from a linear dependence can be

written as follows:

where the unit vectos(r,t) determines the direction of the

axis of the cone with anglé;pp, at any moment of time e\2 e \2
and at any spatial point inside the pulse. V(e)= '}’d(s_) {1—(8—> : (20
Substituting Eq(14) into relation(5)—(10) gives a system ¢ ¢
of four equations for three functions since where
2=1. (15) C—delp|s=,,
= 21
As will be shown below, this system of four equations is not Yd 2c D

independent and gives a system of three independent equg- . . B 1

tions for the three required functions of temperatili(e,t) Gsmg th?lexperlmental values=238 ms =, 88/&p|§=8c
and any two functions that determine the direction of vector=189 ms = we haveyq=0.103. Substituting E¢(20) into
s(r,t). These, according to E¢4), should satisfy the initial  Ed. (19) gives

condition:
XM v T T
S(rt=0)=¢, and T(rt=0)=To(r). (16 T 3iga | PO FTTHE® L) (@2

Solution (14) determines the nonuniform and anisotropic ysing the numerical values ofy and known values of
phonon system, in which the instantaneous equilibrium takeRiemann zeta function§z(4)=1.082, ¢(6)=1.017, and

place in the cone directed along the vec@nd with angle £(8)=1.004] we get at typical temperatufe= 1 K1-3.10
0spp Which is equal to the typical angle for three-phonon

processes. ¥(T)
It should be noted that the anglpp depends on the 2 lt—1 k=0.011. (23
typical momenta of phonons taking place in three-phonon T

processes. This causégsp to be a function of temperature. Value (23) is close to the numerical value f,, which,

Moreover, according to est_lmates made_ﬂrst n Ref. .23 th%ccording to Refs. 2 and 20 , is equal to 0.02. This result is
frequent three-phonon collisions result in the diffusion of

. ) tural because the value gf, as well as functior{23), is
phonons in angular space. Later this problem for the case o , o

o Ao o .~._ determined by the small deviation of the phonon energy-
small deviation from equilibrium was studied in detail in

Ref. 24. Such a diffusion results in an explicit dependence O?wom_entum rela_tlon frqm Ilnearlty. S0 In the fqllowmg cal
. . culations, we will consider only linear terms with respect to
O3pp ON time. In order to obtain the full dependences on i ;
; - these two small parametexgT* and {,, which have equal
temperature and time, one should solve a sufficiently com- . p
lete nonlinear mathematical problem. To avoid this we hereomIerS of magnitude.
P P j Relations(2), (8)—(10) in this approximation give

restrict ourselves to a solution with a constant valuéf. .

314(4)kgd, o)y
IV. EVOLUTION EQUATIONS FOR THE PARAMETERS Qe(r,t)= 3.3 1- > T =2x1s (24)
OF THE LOCAL EQUILIBRIUM (2mc)“h
DISTRIBUTION FUNCTION
Using the dispersi i 314(4)kg, Zp
g the dispersion law2) for the energy density of P(rit)=————| | 1—- 22| T~ Ty' |5 (25)
I-phonong(7) in the linear approximation with respect to the (2m)2h3c* 2
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317(4)ki¢ ¢ known, such a problem has no solution algorithm and needs
Qij(r,H)= Z—BZ[_" 4 i an individual approach in every special case and it is math-
(2m)2(hc)l 2 ematically hard. In this situation one can consider various

limiting cases, which simplifies the full system, so that the
) (26) problem can be solved completely.

In this section we consider the case where all the desired
functions depend on the variableandt. The solution of this
problem gives the evolution of a phonon pulse in théi-
rection. Clearly this approximation is valid for sufficiently
wide pulses in thexy plane where edge effects can be ne-

J’_

3¢
1- Tp] T4_ 3)() SiSj

Substituting relation§l7), (24)—(26) into Egs.(5) and(6)
we get in the linear approximation with respect to small pa
rameters, and y/T* the following system of three indepen-
dent equations:

glected.
In this case, from the initial condition80) and the sym-
aT? Ty"—2y' |9T* 9 metry of the problem, it follows that
74‘ 1—%4'—)( 3)( (9_+(3_(T45x)
¢ AT z X s(zt)=0 and sy(z,t)=0 (31)
d 19 and the system of Eq$27)—(29) results in one equation for
4 402, 2\1—0-
+@(T Sy)— EE[T (8x+5))]1=0; 27 function T(z,t), which can be rewritten as follows
ap ap
J 9 d l op P _
7 Ta 7 14 O Talsp 2 +c =0, (32
cot (T + (9Z(T S+ X T 2 +S5 ot P oz
3 where the function
T4 _n-
+ ay(T SxSy)=0; (28 p=T* (33
P g 3 ¢ can be called density, as according to ELy) it determines
—(T*s))+ —(T*sy)+—| T* _p+s2) the density of the phonon energy as a function of time and
cat 9z ay 2 coordinate,
+ L (Tss,)=o0; 29 g
- (T75¢8)=0; (29 c,=c{1-5+¢, (34
where we introduce the general notatiop=x, r,=y, ry  and
=2, $1=S,, =Sy, andsz=s,. ,
This system of three equations for the three desired func- @ :E i X_' (35)
tions T(r,t), s(r,t), ands,(r,t) is completed by the initial P4 dT T2

conditions
The Riemann solution of Eq32) with initial condition
(30) is the function

P(Zat):PO(Z_Cpt), (36)

During the derivation of Eqg27)—(29) we take into account where the function
that, from the initial condition¢30) for s, ands, and the .
system of Eqgs(5) and(6), the valuess, ands, are small and po(Z—c,t)=Tp(z—c,t) (37)
are of order/¢,. In the calculations presented below we find is determined by the initial distribution
thats, ,s,~ \/Z:,)/_Zz 0.1.
It is easy to check that Ed6), for i=3 rewritten in the T(z,t=0)=Ty(2). (38
same approximation as Eq7)—(29), coincides with Eq. ) o ]
(27), which expresses the conservation of energy. As a result Solution (36) indirectly determines the phonon energy

the system of four equations becomes a system of three iflensity in various points of the pulse at any moment of time.
dependent equations. According to Eq.(36), each value of the density of the

pulse moves in space with its own constant velocity In

this sense solutiofB6) is a running wave and is often called

a simple wave(see, for example, Ref. 25Solution (36)

describes the result of the summation of two motions: the
The phonon pulse, propagating in superfluid vacuum Henotion of the phonon pulse in space with velocityl

Il, cannot be described even approximately in a model where- {,/2) and the relative motion of different values @fwith

the deviation from equilibrium is weak. So, one should solvevelocity ce,, .

the nonlinear system of three differential EG27)—(29) in An explicit expression for the functioqap:@p(p:T“) is

partial derivatives with the initial condition§30). As is  derived from relation22) and(35) and looks as follows:

Sx(r,t=0)=0; sy(r,t=0)=0; T(r,t=0)=To(r).
(30

V. EVOLUTION OF THE PHONON PULSE
IN THE DIRECTION OF ITS MOTION

134507-4
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T2
— —7110£(8)
8C

_ va [5'9 T4
¢0= 3174y | 2 ¢

2
8C
=0.09T%-0.081%. (39

According to Eq.(39), the function ¢,(T) monotonically

decreases on both sides from its maximum value, which is

equal to 0.025 and occurs @&=0.75 K. At temperatured
=0 andT=1.06 K the functione, becomes equal to zero.
At T>0.75 K, ¢, decreases and according to E84) the

PHYSICAL REVIEW B 68, 134507 (2003

ct=5 mm

ct=10 mm
T4
A
® o04f

Z/2L,

velocity of motion decreases when the density increases.

This result is opposite to the standard situation in hydrody-

namics, which takes place in our problemiat 0.75 K. The
small numerical values of the functign,<1 show that the
velocity of relative motion, due to different valuesDin the
pulse, has a relatively small value.

Solution(36) is valid while the functiorp(z,t), given by
relations(34) and(36), remains a single-valued function of

FIG. 1. The evolution of the initial density in the frame of co-

ordinate~z=zfc(1f§p/2)t that moves relative to the laboratory
frame with velocity c(1—{,/2). The numerical valuesc
=238 mst, {,=2x10 2 Ty=1 K, andL,=0.012 mm are typi-
cal experimental values.

cause phonons in the pulse have different directions, and

The multiple-valued solution, which appears because differsecond, because phonons with different momenta have dif-

ent values of density move with different velocitiesc,

ferent group velocities. In spite of the small values of func-

=c,(p), has no physical sense and results in the creation dfon ¥<1, the group velocitiegis/Jp for I-phonons with

a breaking wavésee, for example, Ref. 25In the region of

different momenta may differ from one another by

the multiple-valued solution, the coordinate of the wave-~10 msfl-_ 210 o _
break can be found from the conservation law, according to In experiment§'°the initial pulseTy(z) is not exactly

which at any moment of time

+
f p(z,t)dz=const. (40

At the break, which appears at the pomy, relation (40)
becomes
zp—0 +o

f de—I—f
—®© Zp+0

Taking the derivative of Eq41) with respect to time we find
the velocity of the break

dzy,  PLp(zy+0) ]~ Pp(25,—0)]
dt p(Zp+0)—p(zp,—0)

where ®(p) is the indefinite integral of the functior,
=c,(p), defined in Eq(34).
From relation(41) it follows that the line of the break in

pdz=const. (412)

(42

rectangular, Eq(43), because of the timét, to reach equi-
librium. In experimentsste~20 ns is usually less than the
pulse duratiort, . Figure 1 shows an example of a modeled
phonon pulse witht,= 10" s and Oteq=1,/4. Comparing
the pulses att=0 and at ct=10 mm, we see that the pulse
is significantly deformed after propagating 10 mm, which is
a typical distance for experimentts®>'°As yet this phenom-
enon has not been seen but it should be possible in the future
to design experiments to measure such changes in the pulse
shape. However, it will be showhthat the pulse presented
in Fig. 1, formed by weakly interacting phonons is deformed
even more strongly and so should be more easily detected.
It was first suggested in the Ref. 1 that the preservation of
the rectangular pulse shape, by the bulk of the pulse during
propagation, could be explained by three-phonon interac-
tions. The calculations presented in this section confirm this
proposal.

the multiple-valued region divides the area bounded by the/I. INITIAL EVOLUTION OF THE PULSE IN THE PLANE

multiple-valued linep(z) and the line of the break, into two
equal parts.

PERPENDICULAR TO THE DIRECTION
OF ITS MOTION

These results enable us to explain the deformation of any

initial distribution T(z). According to solution(36) and re-
lation (42) the initial rectangular pulse with length_2 and
height T, which is described by the initial distribution

To(2)=Ton(L,—|2]), (43

We now consider the case when the required functions,
including Egs.(27)—(29), depend only on the coordinate
and timet. The solution of this problem allows us to study
the evolution of a phonon pulse along thélirection, which
is perpendicular to the direction of propagation. This ap-
proximation is valid for sufficiently large pulses in thand

moves as a whole not changing its form with velocity, whichy girections, where the dependences in these directions can

is equal toc within the uncertainties of the experiments:1°

This result follows from the instantaneous three-phonon re-

laxation and accords with experiment. It should be noted th

be neglected.
In this case the initial condition80) and symmetry of the

3broblem give

for a pulse of weakly interacting phonons the result is quite

different, Ref. 26: an initial rectangular pulse of phonons will

become rounded. There are two reasons for this: first, be-

5,(x,1)=0, (44)

134507-5



ADAMENKO, NEMCHENKO, SLIPKO, AND WYATT

Equation(29) becomes an identity, and EqR7) and (28)
give one-dimensional equations

dp dpv
atx O &
du N | JP 46
Pl ] T 49
where, in accordance with E33)
p=T" (47
is the density,
V=CS, (48
is a velocity of motion along the axig
P=cip (49)
is the analog of pressure, and
Cy=C\{pl2 (50

is the analog of sound velocity which is determined by the
angle d;pp Of the cone, in which the phonons are in equilib-

rium.
The system of Eqgs(45) and (46) should be completed

with the initial conditions, which can be written in the fol-

lowing form:
p(x,t=0)=pon(Ly—[x|) and v(x,t=0)=0. (51)

Relation (51) describes a rectangular pulse @&t 0 with

length 4., and heightpy=const. We should note, that ac-

cording to the initial conditiong51) and the symmetry of the
problem

v(x=01)=0. (52)
Equations(45) and (46) together with conditiong51) and

PHYSICAL REVIEW B 68, 134507 (2003

T4
7y
TO

FIG. 2. The dependence of the relative dengity,=T/T;
(curve ) and relative velocityw/c=s, (curve 2 on the relative
coordinatex/L, at the time momerit, =L ,/2c,, when the pulse has
gone a distance along the az®qual toL,, =ct;=2.5 mm, using
typical experimental value,=0.5 mm, c=238 ms?!, and {p
=2x10"2

As a result we obtain for the density

(52) describe the expansion of a layer of gas into a vacuumang for the velocity
Such an expansion results in the formation of two waves of

rarefaction(see, for example, Ref. 2Avhich during the time
interval

Osts<L,/c, (53

will propagate in the unperturbed gas, symmetrically to the

left (x<<0) and right &>0) (see Fig. 2

=T4
Po when O<|x|sL,—ct
| poexd (Ly—|x|—cgt)/ct] when [x|=L,—c,t,
(55)
v=CS,
0 when Os|x|<L,—ct
[ sgnx)(|x| —Lyt+cgt)/t  when |x|=L,—cyt.
(56)

Using dimensional analysis this motion can be described

by automodel solutionésee, for example, Ref. 25n which
the functions do not depend on the two variablesdt, but
only on one variable;, = x;(X,t). In our case

:l—x_|x|
t t

(54

The dependence ¢f(x;) andv(X;) on only one variable
allows us to transform the system of two equations, E£4fS.

Figure 2 shows the plots of these functigs$) and(56)
at the moment,=L,/2c,, when the pulse has gone the dis-
tance along the axisequal toL,,=ct;=2.5 mm, calculated
with typical experimental data.>° Figure 2 shows that at
sufficiently long values ofx|/L, the valuels,| is not a very
good small parameter. However, according to Fig. 2 and so-
lution (55), at such large values ¢k|/L,, the relative den-
sity is exponentially small. This satisfies all the derivations
made with a quadratic approximation with respect to the

and (46), in partial derivatives, into a system of two equa- small parametes, .

tions in full derivatives, which has a known algorithm for

obtaining the solution.

Discussion of the results obtained in this section with ex-
perimental data will be made in Sec. IX.
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VIl. LATER EVOLUTION OF PHONON PULSES T T T e T T T T
IN THE PLANE PERPENDICULAR Sy T_(;t S
TO THE DIRECTION OF MOTION 03
03 ;
Solution (55) and (56) are only valid at all values ok ) . , )
during time interval determined by the inequalitié&s). At
the time - + .
tl': LX/CQ, (57)
02 f 02] J

the rarefaction wave reaches the point with 0. After that
time two reflected waves appear, one each on the left anc
right. From now on we will consider only the region with i 1 ]
positive valuesx>0 since, by symmetry, the solution far
<0 is the same as for>0.

The solution that includes the reflected wave p,(x,t) 01 F 011 .
andv =wv,(x,t) at momentg>t, will apply in the region

0=x=<x,, (58 +

where for times sufficiently close tp, we have, from gen-
eral considerations,

-5 -4 -3 -2 -1 0 1 2 3 4 5

X, =Cp(t—1t,) at t—t <t,. (59 x/L,
The expression fox, at arbitraryt>t, will be derived below FIG. 3. The dependence of the relative dengityo=T4T;
during the solution of the problem. (curve ) and relative velocityv/c=s, (curve 3 on the relative

In the regionx=x, at time t>t, the solution forp length x/L, at the time moment,=2L,/c,, when the pulse has
=p(x,t) andv=uv(x,t) is determined by relation&5) and gone the distance along the azisqual toL,=ct,=10 mm, using
(56). At the pointx=x, the solution that includes the re- typical experimental values,=0.5 mm, c=238 ms %, and ¢,
flected waves should be joined to solutitgs) and (56) for ~ =2X10°2.

the rarefaction wave to make the function continuous. The ) ) o
derivatives are discontinuousee Fig. 3. That is why the sions(45) and (46), which describe the reflected wave, it is

point x, is “called a point of weak break.” Resul59) ex-  useful to introduce new variables and 8, which are con-
presses the known fact that a weak break moves through €cted to the old variablesandt by relations(see the Ap-

the stationary gas at the sound velocity. pendi
As is known the solution that includes the reflected wave
is not an automodel one. So, the search for the solution in t= lﬁefafﬁ i+ i—ZF) (60)
region(58) is a hard mathematical problem which needs the 4 cy da  dp ’
derivation of a general solution of the systé#®) and (46).
This is a classical problem of mathematical physics, which Ly _._ 1\ oF
has been discussed many times in the scientific literature, X=5¢€ (0‘_ B 5) Ja
(see, for example, Refs. 25,27)2@&here it was noted that in
the one-dimensional case there exists an exact analytical so- 1\ oF
lution. An analytical expression for the solution of E¢45) tla=p+ P ﬁ_z(“_ﬂ)':}' (61)

and(46) with initial conditions(51) is only presented in Ref.
29 as far as we know. However a numerical analysis of thavhere the functiorF(«,8) satisfies equatiofA1l) of hy-
solution proposed in Ref. 29 has shown that this solutiorperbolic type with constant coefficients. The general solution
violates the integral conservation law, which follows from of this equation includes two arbitrary functions, which are
Eq. (45). Unfortunately, in Ref. 29 the derivation of this re- determined from equality52) and the condition of joining
sult was not presented, but only described. So we cannot finidie general solution to solutiori§5) and(56) at the point of
the reason of this violation. the weak breakk, . As the result, we gefisee Eqs(Al12),

In this situation we must solve this problem ourselves.(A15), (A18)]
Moreover, we use another method of solving which we con-
sider to be more useful. The general solution obtained in this @ p
paper, unlike the solution of Ref. 29, includes only single F(a,,8)=zfo (k=1)elo(2VB(a—K))dk
integrals and, therefore, has a simpler analytical form. Our
solution satisfies the integral conservation law. B "

The general solutions of equatiof#s) and (46) are also +2L (k=1)e lo(2Va(B—x))dx
applicable in other physical systems. Our derivation is given
in the Appendix. To obtain the general solutions of expres- —4I0(2@), (62
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\ dE,=Qgdodt=(Qgc0os0+ Qg,sind)dodt.  (66)

Then we substitute Eq24) into Eq. (66) and omit the
terms that involve the small parametefs<1 and XIT4
<1. As a result we get

aral dE, 3!(4kg  _, _
0 — dodt (2#C)2ﬁ3ng (x,z,t)[cosf+s,(X,z,t)siNA]
(67)

The arguments andz in expression67) should be con-
sidered equal to coordinates andz, of the elementlo, for
which we have

=0 t=f t=t, X,=Rsing, and z,=Rcosé, (68)

FIG. 4. The evolution of thé-phonon pulse during its travel to WhereR is the distance from the center of the pulse at the

the surface elemento. The dependence of the relative density in Momentt=0 to the elemendo (see Fig. 4. In this case the
the pulse on coordinate at timet=t, , curve 1 in Fig. 2, and at right hand side of Eq(67) differs from zero only during the

timet=t,, curve 1 in Fig. 3. time interval determined by the inequalities
wherel y is the modified Bessel function of zeroth order. The Zo tjgtsﬁ + t_p (69)
solution for the desired functionsandp as functions of the c 2 c 2

new variablese and 8 can be written as follows: ) i )
The amplitude of the signal on the elemeht is deter-

v T4 mined by the full energy flux through the surface element

—:Sx:‘/zfp(a—ﬂ) and ﬁ:_:eZ(wﬁ)_ (63) do, which can be obtained by integrating express{6i)

¢ Po To with respect to time in the limits obtained from inequalities
(69)

At x=0 Egs.(60)—(63) give

31L(4)k3 2, Ic+ty/2
B Cot T3 To I(R,0)= —ZE; pf " T4 Xy 124 ,t)
v=0 and L_X_FIO 2In? . (64) (27C)*h 2, /c—tp/2
_ _ X[cosf+ s, (X, ,Z,,t)sind]dt. (70
The time dependence of the coordinate of the weak break

looks like Taking into account the small values pfunder the integral
in Eq. (70) one can substitutewith z,/c, and approximate

Cot the dependence ar). with the stepz function. As the result
X, =Lyt|2 In(L—) —1licgt at t=L,/cy. (65 we obtain
X
Figure 3 shows the plot of solution&0)—(63) at |x| (RO T*(x=Rsing,t=Rcosd/c)

<x, and solutions(55)—(56) at |x|>x, at the moment, I(R,6=0) T4x=0t=R/c)

=2L,/c,, when the pulse has reached the distarize=10 ) )

mm along thez axis. The results obtained in this section will x[cosf+s,(x=Rsind,t=R cosb/c)sino].
be discussed in Sec. IX. (72

Figure 5 shows the dependence of the relative energy flux,
Eq. (71), on angled, which was obtained from the solution

In Refs. 2,10 are the results of measurements of the aref Egs. (55), (56), and (60)—(63). The numerical values of
gular dependence of the phonon beam. The pulse dhe parameters were taken from experiméntsThe de-
I-phonons is detected by a bolometer, which is at an afigle nhominator in expressioi71) is calculated using the rela-
with respect to the heater normal. tively simple expressiori64). The result is sensitive to the

In order to compare the theory presented in this papevalues of the angl@;,, (see comments at the end of Sec.
with experimental data® we calculate the flux of energy Ill). That is why in Fig. 5 we show three curves: curve 1 for
through the surface elemedtr, which is at an angl@ with O3pp=11.4° ({p=2X 10°2), curve 2 for 03pp=9°, and
respect to the direction of propagation of the pulse. The situeurve 3 for65,,=7°.
ation considered here is shown in Fig. 4, which reflects the The dashed curve 4, in Fig. 5, refers to the angular depen-

VIIl. ANGULAR DEPENDENCE OF THE ENERGY FLUX

experimental arrangemeht? dence of the relative flux71) calculated with the model of
The energy fludE, through the surface elemedé dur-  geometric broadening, considered in Refs. 30,9,7 Wi,
ing time dt is equal to =11.4°. In this model it is supposed that the pulse of
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L " L This change of the angular dependence of the signal am-
I(R0) plitude with increase of power and pulse length originates

from the unusual evolution of thiephonon pulse, which is
determined by solution$s5), (56), and (60)—(63). Let us
discuss the mechanism of such a change.

An increase in the input power causes a larger initial tem-
peratureT, of the [-phonon pulse. At sufficiently high tem-
peratures, the evolution of tHephonon pulse is determined
not only by the mechanism described by E@®), (56), and
(60)—(63), but also byh-phonon creation in the pulse of
I-phonong! which is not considered in this paper. However,
it is possible to give a qualitative explanation of the change
in evolution ofl-phonon pulse wheh-phonons are created.

Let us suppose that at the moment0 we have a
I-phonon pulse of rectangular form and distribution function
(4) with a relatively high value off such that high-energy
phonons can be created very intensiviely. These h-
phonons weakly interact with thiephonon pulse and have
group velocityv 4, <189 m/s, which is lower than the veloc-

20 _;6 _;2 8 4 0 4 8 12 16 20 ity of the I-phonon pulse. So, once created, tiphonons
g° will leave thel-phonon pulse through its back wall, and then
move relatively slowly to the detector.
FIG. 5. The dependence of the relative energy flux and signal \While the dependence of(x,y), throughout the cross
amplitude on the anglé between pulse cross-section and detectorgection of thd-phonon pulse, is close to a step functibn,
surface.(a). The angular dependence of the relative energy ﬂuxvphonons are radiated at each point along the back wall of the

calculated by equations Eq&5), (60)—(64), (71) (solid line) using
numerical valued ,=0.5 mm, R=17 mm, c=238 ms 1, which

are typical experimental valué.Lines 1, 2, and 3 are fobspp

=11.4° ({,=2X 1072), 9° and 7°, respectivelyb). The angular
dependence of the relative energy, calculated by(Ef). using the
model of geometrical broadening in a cone of anglg,=11.4°

(dashed curve 4

I-phonon pulse. This results in uniform cooling.

According to solution(55) the evolution of the outer re-
gions of thel-phonon pulse shows the temperature exponen-
tially decreasing from its maximum value to zero. The maxi-
mum value of temperature occurs in the region near the axis
of the pulse where it forms a “hot spottypically 1 K) (see
Figs. 2 and 4 The creation oh-phonons only takes place in
this central region and in the nearby parts of the outer re-

[-phonons, with fixed value of2,, uniformly occupies all X ) X
the volume inside the cone with the anglgnp, during its gions that are hot enough. This process causes this spot to
cool, but the outer regions of the pulse, which have a rela-

motion along the axis of the cone. It was assumed that ter vl q tenh d d
perature becomes instantaneously the same at all points flyely low temperature, do not createphonons and so do
the pulse, which is bounded by two planes separatedly 2

not cool significantly.
and the surface of the cone with the angle» with respect According to the result of calculations in Refs. 4,5,7 the
to the z axis.

creation ofh-phonons is intensive only in the regions with
In the model of geometric broadening the second term iff1® temperaturd>0.8 K. This process becomes very slow
the braces in Eq.71) is equal to zero and the angular depen-!

as soon as temperature decreases to the valu@ K. That
dence ati< fspp is given by the function co& is why the outer regions Wit <0.7 K will re_main.at_th(_a
We see that the curves 1, 2, and 3 in Fig. 5 have a similas@me tempgraturg, unlike the central hot region W|th_ initially
form to the experimental curves in Fig. 4 in Ref. 10, whereas' ~1 K. which will cool down toT~0.7 K by intensively
the dashed curve 4 is essentially different. creatmgh—phonons. As a result, .pyllses that are initially hot-
ter, cool over a wider area than initially cooler pulses, and so
have a temperature distribution that is flat over a larger
radius.
We only expect the theory presented in this paper to be However a cool-phonon pulse, which does not create
comparable with experimental results when the pulse lengtRhonons, will have a central hot spot for a typical tite

is sufficiently short and the input power sufficiently low so determined by equality57). During this time the pulse

IX. DISCUSSION

that h-phonon creation can be neglected. moves a distance
According to results in Ref. 10 at fixed pulse length
=5.10 8s, with increasing power the angular dependence \/7
of I-phonon amplitude signal becomes more flat. As the re- Ls=ct,= g_pLXZS mm (72)

sult, an increase in input power causes the shape of the curve

to change with an increase in the full width at half maxi- During the timet>t, , the pulse temperature, in the center of
mum. Similar changes in the angular dependence occur witthe pulse, monotonically decreases with the dependence
increasing pulse length at fixed power. given by Eq.(64), and the temperature at each point of the
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pulse decreases. This overall decrease in temperature gives aA separate, hard, and important problem is the creation
narrower angular dependence of the signal compared to a hand the subsequent evolution of thephonon pulse. This
pulse, in which most of the cooling takes place in the centeproblem was not even discussed in this paper, though the

region due to the creation ¢fphonons. data presented in Ref. 10 show it is important. The new
Value (72) can explain the large measured distance ovefxperimental data Ref. 10, together with earlier experimental
which thel-phonon pulse creatdsphonons: data, Refs. 2,22, is evidence of the nontrivial properties of

Let us discuss the possible reasons for the width of the fla@nisotropic phonon systems. Undoubtedly this will stimulate
angular dependence biphonon amplitude as a function of Selving the problems mentioned above and we expect to dis-
the pulse length of thephonon pulse, at fixed input power. COVEr néw phenomena in this field of quantum liquids
According to the results of Refs. 5,7 for pulses with the samé@YSICS:
initial temperature, longer pulses dfphonons radiate
h-phonons for a longer time. As a result, in londigrhonon ACKNOWLEDGMENTS

pulses the hot spot in the center of the pulse is cooled by \we would like to thank EPSRC for Grants Nos. GR/

creatingh-phonons for a longer time than in shorter pulses. 524855/01 and GR/N20225 and GFFI of Ukraine for Grant
Different temperature distributions in long and shortNo. 02.07/000372.

pulses can be caused by their different developments along

the z axis with time. In Fig. 1 we see that as the pulse moves APPENDIX
along thez axis there is a decrease in the area that has a ] ] )
sufficiently high temperature to createphonons. A long Let us introduce the velocity potential
pulse will have a constant temperature in the center over a P
longer distance along theaxis, compared with a short pulse. v=— (A1)
As a result, the relative change along thexis for a long X
pulse will be less than that for a short pulse and the centesind the new function
remains hotter over a larger distance. Hence the cooling of
the hot spot of the long pulse, caused by the intensive cre- chzlnﬂ (A2)
ation of h-phonons, results in a wider region of constant " po’
temperature than for a short pulse.
We should note that the exact solutiof®6), (55), (56), Then rewrite systemg15) and(46) as follows:
(60)—(63), obtained in the framework of the theory presented ow ow .
in this paper, only partially reflect the experimental = g_zo, (A3)
situation?!? So, all the qualitative arguments presented in at - Ix IX
this section need quantitative development. This is only pos- 5
sible with the solutions of a humber of hard problems: ‘9_9"+ U_+W:0 (A%)
(1) In experiments, the problem has nearly cylindrical a2 '

symmetry as all parameters depend on the radiasd not ]
the flat problem considered here. It is not hard, using Eqs. Now we make the godograph transformatisee, for ex-
(27)—(29) to write the system of equations for the case ofample, Ref. .2‘,5 accorgllng to which we introduce new inde-
axial symmetry. However, so far we have not managed t@ehdent variables, wmstead ofx,. t. In accordance wnh the
find analytical solutions for this system. We have made only-€gendre transformation we introduce the functign
preliminary investigations, which have shown that solutions= #(v,W) by the equality

(55), (56), (60)—(63) qualitatively describe the case of axial
symmetry. So, for example, the velocity of propagation of a
rarefying wave is the same as E§0) and, hence, resu(f2)

does not change. However, the solution of the axially sym; Eq. (A5) valuese, X, andt are supposed to be functions of

me(t;;clfroblem s of gtreat |(rj\teretst.d how the d d tPe new independent variablesandw.
IS necessary 1o understand how the dependence o According to the Legendre transformations

temperature on the coordinatechanges the evolution of the
pulse in its crosssection. The answer to this question can
only be obtained from the exact solution of the system of t=— and x=v———. (AB)
Egs. (27)—(29) which takes into account the term involving
the.partial derivatives with respect to different Cartt_asjan €O~ The equation for the functiop is obtained by division of
ordmates. However, this solution causes some d|ff|cult|esEq_ (A3) by the Jacobian
which are not yet overcome.

(3) It is necessary to consider the evolution of the a(W,v)
[-phonon pulse which takes into account the creation of W' (A7)
h-phonons. In order to do this, we should add to the system ’
(27)—(29) the equations that describe the process ofwhich for the general solution is not equal to zero. Let us
h-phonon creation, and then try to solve this system. note that for the automodel solution the Jacobiad) is

2

v
pm(v,wW)=¢—xv+t W+? . (A5)
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equal to zero. That is why the automodel solution often isEqualities (A9), (A12)—(A14) give the general solution of
called the special solution unlike the general solution considsystem(45) and (46).

ered here. As the result from EEA3) taking into account
Eqg. (A6) we get

2 ﬁz,u 072,u

I
0. 2 25w 0
oW Jv

w0 (A8)

Equation(A8) can be simplified, if instead of the vari-
ablesw and v we introduce the variablea and g8 by the
equalities

v=2c4a—B), w=2c3a+p) (A9)

and a new nondimensional function
Fo ot A10
- Cnge My ( )

for which, starting from Eq(A8) we get the equation
9°F _r
dadB

(A11)

The general solution of EQA11) can be written as fol-
lows:

F= fael(Kﬂo(z\/m)dK

0

B
+ fo Gy(k)lg(2Va(B—k))dk

+{G1(0)+G,(0)}o(2Vep), (A12)

whereG, (k) andG,(«) are arbitrary functions, and(y) is
the modified Bessel function of zeroth order of argument
From relationg/A6), (A9), and(A10), we get

t= Lx gmamsp &F+&F 2F Al13
~c, ga o T (A13)
L 1\ oF
X=3¢e B3 %a
+ +1)—‘9F 2 F Al4
a=ptz| o5 2@ pF| (A4

The arbitrary functionsG; and G, including Eq.(A12)
can be found from the boundary conditions of the particular
problem. The first boundary condition follows from equality
Eqg. (52), taking into account Eq9A9), (A12), and (Al4)
gives

G1(k)=Ga(x). (A15)

The second boundary condition comes from joining the
general solutiongA9), (A12)—(A14) with the automodel so-
lution at the point, which is the point of transition from the
general solution to automodel one. Comparing the automodel
solutions(55) and (56) with Eq. (A9) it is easy to see that
these solutions can be joined only on the characterigtics
=0.

The solutions are joined by substituting in the automodel
solution

x=L,+ (v —Ccpyt (A16)
the expression, t, andx from solutions(A9), (A13) and
(A4), taking into account EqA15) at @=0. This joining,
taking into account EqA16) gives the following equation

5

Substituting Eq(A12) into Eq.(A17) and taking into ac-
count Eq.(A15) give an integral equation fd&,, which by
differentiation gives a differential equation. The solution of
this differential equation looks like

=2e”,
a=0

(AL7)

Gi(k)=2(k—1)e". (A18)

Relations(A15) and (A18) solve the problem of finding
the functionsG; andG, which occur in Eq(A12), using the
boundary conditions.

The coordinate of the breal5) is found by substituting
the value of the velocity at the break into Eg\16). This
value is found by comparing the expressions for the velocity
which follow from relations(A9) and (A13) at a=0.
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