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Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers
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We study nonequilibrium Josephson effect and phase-dependent conductance in three-terminal diffusive
interferometers with short arms. We consider strong proximity effect and investigate an interplay of dissipative
and Josephson currents coexisting within the same proximity region. In junctions with transparent interfaces,
the suppression of the Josephson current appears at rather large velWag®, and the current vanishes at
eV=A. Josephson current inversion becomes possible in junctions with resistive interfaces, where it occurs
within a finite interval of the applied voltage. Due to the presence of considerably large and phase-dependent
injection current, the critical current measured in a current biased junction does not coincide with the maximum
Josephson current, and remains finite when the true Josephson current is suppressed. The voltage dependence
of the conductance shows two pronounced peaks, at the bulk gap energy and at the proximity gap energy; the
phase oscillation of the conductance exhibits qualitatively different form at small vatdge\, and at large
voltageeV>A.

DOI: 10.1103/PhysRevB.68.134506 PACS nuniber74.25.Fy, 74.45tc, 73.23-b
[. INTRODUCTION dreev staté$ induced by the current injection leads to a
full-scale variation of the Josephson current with the applied
Multiterminal superconductor—normal-metal—super-voltage and to the inversion of the current direction. Similar

conductor(SNS junctions are interesting devices where antransistor effect has been also investigated in diffusive
interplay between the dissipative normal electron current anitinctionst’~2°
nondissipative Josephson current can be studied. The sim- Most of the experiments with multiterminal junctions
plest device of this type consists of two superconducting{Iave been done using diffusive metallic bridges, whose
reservoirs and one normal reservoir connected by a smalndth was large compared to the superconducting coherence
normally conducting T-shaped bridge, see Fig)1A meso-  length &. In such long junctions, the proximity effect is
scopic size of the bridge is essential to keep the coherence 8fPPressed, which results in small amplitude of the conduc-
the current transport over the whole device. During the lastance oscillationtypically few percents of the full conduc-
decade, a large amount of interesting experiments have beé#ce valug and small magnitude of the Josephson current.
done with such kind of device$or the review see Ref. 1 and In theoretical analysis of the interferometer effect in diffu-
references therein, further references can be found in Ref. 2Sive junctions, the presence of the Josephson current is usu-
Nonequilibrium state in multiterminal SNS junctions ex- a_llly ignored. Similarly, theltgeorencal_ studies of the nonequi-
hibits two closely related major phenomena: the interferomlibrium Josephson effej(,;t;l jare restricted to the regime of
eter effect, which concerns the dependence of normal conWweak” proximity effect,”“*““when the induced gap in the
ductance of the device on the phase difference between tHormal bridge is much smaller than those in the supercon-
superconducting reservoit@nd the Josephson transistor ef-
fect, which concerns the dependence of the Josephson cur- N — -
rent on the current injected from the normal reser{dithe | ‘ v
interferometer effect gives rise to a number of so-called a) - b) —
- g
Josephson-like effecfs’ s
The interferometer effect has received most of the atten-
tions; it has been extensively studied experimentdiignd Tl"
theoretically>'? and presently, this effect is rather well un- _ -
derstood. The proximity of the superconducting reservoirs jt R
leads to a modification of the density of states and transport S S
properties of the normal bridgéroximity effecy, which o 0 51 % c)
therefore become sensitive to the phase difference at the res-
ervoirs, and exhibit oscillating behavior as the function of —
the phase difference. FIG. 1. Sketch of three-terminal SNS interferometer: T-shape
The Josephson transistor effect has been also observed diffusive metallic wire with short arm&haded regionis connected
experiment®? The nonequilibrium Josephson effect hasto superconductingS) and normal(N) reservoirs(a), flux bias
been first predictétiand then theoretically studied in the bal- setup for measuring current-phase relatids, and current bias
listic junctions™®*1>2Nonequilibrium population of the An- setup for measuring critical currefa).
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ducting reservoirs. Such a regime is relevant for long diffu-absence of true Josephson current in the weak proximity

sive junctions and for junctions with high-resistance NS in-regime®

terfaces. In addition, the nonequilibrium Josephson current The structure of the paper is the following. After introduc-

was calculated for specific four-terminal circuit geometriesing a basic formalism in Sec. Il, we discuss the spectral

where the dissipative normal current and the Josephson cuiunctions in Sec. lll, and the distribution functions in Sec. IV.

rent were spatially separated. Sections V and VI are devoted to a discussion of the non-
Meanwhile, it is conceptually interesting to investigate the€quilibrium Josephson effect; the interferometer effect is

problem of interplay of dissipative and Josephson current§onsidered in Sec. VII.

flowing in the same diffusive lead under a strong proximity

effect. In this paper, we address this problem by studying the Il. BASIC EQUATIONS

nonequilibrium Josephson effect in three-terminal SNS inter-

ferometers with short arms, whose lengths smealler than

the coherence length,.

The junction we are going to investigate is sketched in
Fig. 1(a). It consists of two superconducting reservoirs and a

Coexistence of dissipative and nondissipative currents iﬁlorma_l reservoir connected by mesoscopic T-shap_e dlffusw_e
metallic bridge. Such a geometry can be realized in experi-

the same proximity region makes it difficult to identify the ment, e.g., by using nanowire technolddyThe supercon-

Josephson current component. In equilibrium, the total CUr cting reservoirs are assumed to have equal potentials. and
rent flowing through a proximity lead is the Josephson cur-,[hu ng ) n\é Itin h u differen Vb t\?vu npth rl r'v ir
rent, which is entirely determined by the supercurrent spec- € superconaucting phase diiterence between the reservoirs

tral density and the population numbers of the relevant® ¢. The distance between the superconductots(2 d

states. The presence of the normal injection current and re§X<d)’ and the length of the injection lead, (O<y

lated gradients of the distribution functions violates the IocaI<L)_' are assumed to be s_mall compargd to th? supercon-
conservation of the supercurrent component which varie§ucting coherence lengtti,= VAD/A (D is the diffusion

along the lead, and hence its direct connection to the JosepfO€fficient, however, the relation between these lengths can
son current is lost. Nevertheless, as we will show in theP® arbitrary. For simplicity, we assume the cross sections and
paper, a simple picture of the nonequilibrium Josephson efaormal conductivities of all wires to be equal, and the current
fect as the result of nonequilibrium population of the statedrom the voltage-biased normal reservoir to be injected in the

with the same current spectral density as in equilibrium cainiddle of the SNS junction. o
be justified for some particular casésee also Ref. 12 Neglecting spatial variations of all quantities across the

However, a general situation seems to be more complex. 1€2ds, we use one-dimensional static equatibfr the 4
In the short-arm SNS interferometers, the proximity effectX4 matrix Keldysh-Green’s functio@ in the normal leads,

is strong when the interfaces are transparent, but it also maf which we neglect the inelastic collision term

be strong when the interfaces are highly resistive. The mea- 5 L .

sure of the strength of the proximity effect is the magnitude [o,E,G]=inDdd, I=GoG, G°=1, 1)

of the induced energy gap, which is comparable with the

superconducting energy gap in the reservoirs. Consequently, 5 QR GK L
there are full-scale variations of the Josephson current and G= N GK=gRf—fg" 2)
the normal conductance with the applied voltage and the 0 g

phase difference. ~RA , .
In short diffusive junctions with transparent interfaces, theHereg™" are the retarded and advanced Green’s functions,

Josephson current is solely carried by the Andreev statek=f, +o,f_ is the matrix distribution function, and de-
whose energies are smaller than the superconducting energptes spatial derivative. At the junction node, the matrix cur-
gap, which is similar to the short ballistic junctioff® Con-  rentJ obeys the Kirchhoff’s rufé®
sequently, in these junctions, the Josephson current can be
suppressed to zero but never be reversed. The Josephson
current reversion becomes possible in the junctions with re-
sistive interfaces due to the negative contribution of theThe Keldysh componerﬁK of the matrix current] deter-
states with energies above the bulk energy gap. Moreover, ifines the electric currents in the leads,
contrast to weak proximity regini€,the current reversion
exhibits a fine structure similar to the one theoretically dis- o (= sk O [
cussed for ballistic junction's,and recently demonstrated in 1= Ef dETro,J =gf dEI_(E), (4)
the experiment with long diffusive junctiod. 0 0

The interplay of the injected and Josephson currents in th@hereo is the normal conductivity. The current spectral den-
strong proximity regime is important for the interpretation of sjty | _(E) in Eq. (4) has three components,
experiments with current biased junctions, Figc)l The
magnitude of the nonequilibrium critical Josephson current | =(UDTro, =D _af _+1f.—1,0f, . (5)
measured with this setup is different, as we will show, from
the one derived from the current-phase relation measured bihe first term in Eq(5) describes a dissipative current which
an rf superconducting quantum interference de{8@UID), provides usual Drude conductivity in the normal state. The
Fig. 1(b). This phenomenon has been earlier noticed in thesecond term gives conventional Josephson current in equilib-

Jee o= e sotIy= 0. 3
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rium, while the third term, the anomalous curréhgppears ond term describes depairing caused by the time-reversal
in nonequilibrium superconducting junctions. Another diag-symmetry breaking due to supercurrent flow.

onal component 0§, The solution of Eqs(11) and (12) reads
= K — O(E, X
| =(UHTrI=D_ of , +1f_+14.0f_, (6) . = (Ex)  dé  x=xy, 13
has the meaning of the net quasiparticle curgém¢ sum of b0 VR(E, 0)
the electron and hole probability current&xplicit equations
for the spectral characteristics of the juncti@h, , I, and %i
lan, are conveniently written in terms of the following pa- W(EXi) = thot| fo v2(E,z)’ (14)

rametrization of the matrig:

. _ _ R(E,8)=C+ (4E/ifD)coshé— (1/sinh#)?, (15

g=utv=outexpio)iow, ui-v?=1. (7

) ) ] ) ) where C(E) is the integration constant, ary and ¢, are

The functionu is related to the quasiparticle density of statesihe gpectral functions at the junction node. The boundary
(DOS), normalized by its value in the normal stal{E.X)  conditions for Eqs(11) and(12) are imposed by the conser-
=Reu®(E,x), while the functiorw is related to the spectral \ation law for the matrix current in Ed3),
density of the condensate. The complex phés@ppears in
the presence of a supercurrent. In these notations, the diffu- 330 x= —0= 050y 10+ ay9|y=0, (16)

sion coefficients read o . )
and similar equation for the functiog. At the normal elec-

D.=(1/4Tr(1—uRuAFoRo?) trode, the current turns to zero, which means tha&0
N R 1 Ri2 R along the injection lead, and therefogd€y)=const. Hence,
=(1/2)[1+|u|*F|v"[“cosi2 Im y7)]. (8 the derivative ofy is continuous in the horizontal lead,

In the normal stateD .. turn to unity. whereasf(x) has a kink atx=0. In what follows, we con-
The spectral densities of the supercurrent and anomalouider Symmetric junction, in whichi(x) is even, andj(x) is
current are given by the equations odd function. In this case, the phage together with the
anomalous currenit,,, turns to zero at the junction node,
l=(1/4)Tr o (0RIDR—0Aa0™) = — Im(v2ay)R, (93 and th|e kink in 6(x) is symmetric, 65=0dy0|y- 0
- - é’xﬁ Xx=—0"
| = (1D TrosRoA= —|uR2sinh 2 Im 4R)/2.  (9b The boundary conditions at the NS interfaces depend on
an=(LATro07y [ sinft v (ob) the interface resistance. Below we analyze the two different
In Egs. (8) and (9), the relations @,v)"=—(u,v)® and situations related to perfect and high-resistive interfaces, re-

"= yR* are used, which follow from the general relation- spectively.

ship §A= - UZQRTUZ 28

Calculation of the electric current in E¢4) involves the A. Transparent interfaces

two steps: first one has to solve the Usadel equations for the If the interface electric resistand@ys is much smaller

; O ARA ineti : i
Green's functiong™", and then to solve the kinetic equa- {han the normal resistan@, of the horizontal lead, one can

tions to find the distribution functions. assume the spectral functions to be continuoug=at-d,
namely, (£d) =+ ¢/2 and 6( = d) = 6g=arctanhA/E); at
IIl. SPECTRAL FUNCTIONS the normal electrod®=0. In this limit, the second term in

the rhs of Eq(15) can be neglected due to large gradients of
the spectral functions along the leads, which results in linear
change of along the injection leadd(E,y) = 6,(1—y/L),
2Ev=i%D[d(udv —vdu)—uv(dy)?], (10) and the boundary condition in E¢L6) takes the form

The Green’s function components of Ed) represent the
Usadel equations for the spectral functiéfs,

v2ay=I, (12) 6o=26,L. (17)

where the spatial constarE) is related to the supercurrent  The analytical expressions for the spectral functions in the

spectral density in E¢9), 1s=—Im 1. In terms of the spec-  horizontal lead within this approximation have been found in
tral angle 6 related to the spectral functions as=coshf,  Ref. 20. In the right lead, they are given by

v=sinh#, Eq. (10) takes the form

520=(2E/ihD)sinho+I2cosho/siniPe.  (12) U(E,X) =Uocosia+Ax/d), (18
The two terms on the right-hand sidehs) of Eq. (12) are #(E,x)=arctafiv, ‘tani a+ Ax/d)]—p. (19)
related to two different depairing mechanisms, which pro-

vide spatial decrease @ftowards the middle of the junction. The solution in the left lead is obtained by the change of the
The first term is associated with the dephasing between thgigns ofx, ¢, «, andp. The spatial constants in Eq&l8)
electron and hole wave functions at finite enekgyThe sec- and(19) can be parametrized as
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N(E,0)

FIG. 2. The density of state®y(E,0), at the device nodén),
and the supercurrent spectral densi{E) at ¢= /2 (b), at several
values of the ratid_/d, calculated by using numerical solution of
Eq. (23.

Uo Us )
|=—A, A=arccosh——arccosh=—, (20

d Uo Uo
Uo=coshfy=U, cosha=ug(E,A), (21)

Uo=Ug(E,A), E=Ecosp, A=A cog ¢/2+p),

(22)

whereug(E,A)= E/\JE?— AZ, and expressed via a single pa-
rameterp, which is to be evaluated from the equation fol-
lowing from Eq.(17),

UoA sinp=ad,. (23

The magnitude of the parametpris controlled by the

PHYSICAL REVIEW B68, 134506 (2003

potential well formed by the junction. However, this result is
only correct to zero approximation with respect to the small
parameted/&,.2°

B. Opaque interfaces

The effect of the interface becomes important when the
interface resistancy s exceeds the resistance of the normal
conductor Ry=2d/o, r=Rys/Ry>1. In particular, the
magnitude of the Josephson current is determined bRR{fze
rather than byRy in the limit r>1. At the same time, as we
will see below, the suppression of the proximity effect is
governed by much smaller parametgd/&,)?><r, and the
proximity effect can be strong even wheg 1.

A high-resistive interface can be modeled by an effective
tunnel barrier characterized by its resistaigg; in the nor-
mal state, which results in the following boundary conditions
for the Green’s functior8 at x=d:

URNS&0N=UNUSCOS(¢/2— ¢N)_USUN1 (263)

URNslzvNUSsirK¢/2_ l/fN), |=vﬁ,&¢rN, (26b)

and similar forx=—d (the indicesN and S refer to the
normal and superconducting sides of the interface

In the limit r>1, the spatial variation of the spectral
phase is strongly nonhomogeneous: the phase drops at the
barriers and is small in the normal regiafy<1, along with
the spectral current. The spatial variation of the spectral
function u is small and can be approximated by a weakly
varying parabolic function,

U(E,x)=Uo[1+(B/2)(x/d)?]. (27)
In Eqg. (27), we neglected the effect of the injection lead,

parameten=d/2L. Whena decreases, i.e., the resistance of2SSUming its resistance to be larger tii&gs, 1/a>r. The

the injection lead increases turns to zero, according to Eq.
(23), and the spectral functions approach their values i
closed short SNS junctions. In the lindt=0, DOS has the
proximity gap|A,|, whereA ,=A cos@/2), and reveals a
BCS-like singularity at the gap edge,

N(E,00=E®(E— |A¢|)/\/E2—A7,

where® (x) is the Heaviside step function. The supercurren
spectral densityl(E) spreads over the regiopA 4)|<E

(24)

<A, and has the singularity at the proximity gap edge a

well, 28

T AGO(E-[Ay])

N=ar

In a general cas@+ 0, the proximity of the normal res-

I(E)= 55 O(A—E). (25)

ervoir leads to finite DOS at all energies, as shown in Fig

2(a), though it is noticeably suppressed B |A | for L
=d. The supercurrent spectral density at firgié. extends
over the whole subgap regidmsee Fig. 2b)], while at E
>A, bothlg andl,, turn to zero. Thus, in short diffusive

éahase,zp(E,x)~|x/v3~r‘ .

coefficient3<1 is to be found from Eq(15), in which the

relectron-hole dephasing effect has to be taken into account

because it now becomes comparable with the small current-
induced depairing,

3

€o

In Eqg. (14), we may neglect spatial variations of the inte-

20(2) Id\?

Uo

E

Up

brand which results in a linear spatial dependence of the

1

By making use of Eqs(27) and(28), the boundary con-
ditions in Egs.(26) give the equation for the spectral func-

tionsuy andoy,

Ug _ i ’}/E Us ¢ 2 _ 2
u—N— A vNCOSE rgn,  y=2r(dlé&)s, (29
and the expression for the spectral current
_ UNUs ¢
| = oRue N>, (30

in which we omitted the small phasg, from the trigono-

junctions with transparent interfaces, the supercurrent is cametric functions. Equatio29) describes three mechanisms
ried exclusively by the bound Andreev states confined to thef depairing. The first term in the rhs represents the electron-
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It is interesting to note that the expression for the equilibrium
Josephson current obtained from KE83),

Asing

jszTRNSdein(cb/Z)D, y<1l (T=0) (34

s

(K is the elliptic integral, can be reproduced with the argu-
ments of the scattering theory, similar to the case of perfect
diffusive SNS junctior?? by applying the transmissivity dis-
—— L T T — tribution for a normal symmetric double-barrier structtite.
E/a Ea Such a possibility is explained by the absence of electron-
hole dephasing in this limit.

FIG. 3. Variations in the density of statés, and in the super- The_prOXImlty gap 1 Strqngly SUPPress fA °’.“y in
current spectral densii§) with the phase difference in SINIS junc- the limit of very large barrier strengthy> l_' Th_'s IS the
tion, calculated from Eqg31) and(32) at y=1: ¢=0.1r (dotted effect of enhancgd (_electron—hole (_jephasmg, similar 'go _the
lines), 0.67 (solid lines, and 0.9+ (dashed lines case of a long diffusive SNS junction, where the proximity
gap is also reduced due to the dephasing effect and closes at

hole dephasing within the normal metal. The parameter ¢= . This situation is qualitatively different from the case

determines the magnitude of the energy @ap-A/(1+ ) of the tunnel junction with a single barrier, giving the Jo-

in the spectrum of the horizontal ledsee below The sec- sephson current in junctions with two strong barriers,

ond term describes suppression of the condensate function .

vy due to rapid change of the spectral phase across the tun- jo= Asing n 4y

nel barrier. This effect is similar to the mechanism which * 2eRysy [cog¢/2)|’
roduces the Andreev bound states in the vicinity of the tun-

gel junction in the ballisti®® as well as diffusivépf]oseph- to be much smaller than the result of the tunnel mddel.

son structures. The third term is caused by the supercurrent

flow through the normal lead. Neglecting this small IV. KINETIC EQUATIONS

~r—1 i i . . . L. .
(~r ") term, we obtain the solution of EQ9), In the absence of inelastic collisions, the kinetic equations
- in each lead have the form of conservation laws for the spec-

A < A
vN=———, A(E,$)= ¢ . (31) tral currentsl . (E),
E2_A2 1+ AZ_EZ/A
E _A 7 Di’afi_l_lsfiiIanﬁfIEIt(E):COnSt. (36)

According to Eq(31), the energy gaf,(¢) in the spectrum
of the junction is to be determined by the equatibg

= |Z(Eg,¢)|, whose solution can be well approximated by a

simple relationEg=|A 4|/(1+ ). IL=1R4 Vv, (37)
Thus, the regime of strong proximity effect with the prox- -

imity gap being of the order of [Fig. 3(@)] persists in short where the indiced, R, andV refer to the left, right, and

junction despite of high-resistive interfaceR, >Ry, as injection leads, respectively. At the transparent interfaces, the

long as the conditiory=<1 holds. In this case, the supercur- distribution functions are determined by the local-

v=>1 (T=0), (35

At the junction node, the conservation law for the matrix
currents in Eq(3) imposes the boundary condition

rent spectral density equilibrium population in the reservaoirs,
i E
IS(E,¢)=—ImI=—Sm(¢/2)I Avn(E, ¢) 32) f+(id):tanhﬁ (E>A), f_(+d)=0, (389
oRys JVEZ— A2
extends over all quasiparticle states above the proximity gap, 1 E+eV E-eV
including the continuum states above the bulk energy/yap fe(L)=n.=7 tanh—=—=tanh—=—. (38b

wherel ((E) is negativg Fig. 3(b)]. In the limit y<1 (recall

that we nevertheless assume here the interface resistance/AbE<A, the quasiparticle population in the leads is discon-
be large,r>1), the dephasing effect becomes negligibly Nected from the superconducting reservoirs due to complete
small and the energy gap approacHIA%L similar to the _Andreev r_eflectlon, and the q_ua5|part|cle density funcfion
perfect SNS junction discussed above. However, the shape &t determined by the condition of the absence of the net
the supercurrent spectral density essentially differs from Egprobability currentl . =0. Due to the conservation law in

(25), Eq. (37), the subgap probability curredt, turns to zero
within the entire device.
sing A20(E— 1A,)O(A—E) In the energy regiorE_>A, where .the currentk; andllan
I(E)= 59R — (33)  turn to zero, and the diffusion coefficiebt, turns to unity,
oRns  JE?-ASVAZ-E the kinetic equations have a simple solution,
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g Mo—ny R n_ At zero temperature, it is possible to further extend the
= Ry """ TR TRV (39 analysis. By making use of a stepwise shape of the distribu-
- * - - tion functionsn. =0®[ = (E—eV)], we find that a trivial so-
Here the quantiteR,=d, RY=L, R_=d(1/D®"), and lution, f2 =0, f> =0, 1Y =0, satisfies Eq(44) and all the
RY=L(1/DY) play the role of effective resistances of the boundary conditions & >eV. Thus the dissipative current
leads for the spectral currents , and the angle brackets vanishes in this energy interval. On the other handEat
denote spatial averaging along the leads. The currents in th€eV, wheren, =0 andn_=1, Eqgs.(44) have a nontrivial
left lead are equal by magnitude but flow in opposite direc-solution, which implies that the dissipative current exists at
tions, |5 =—1IR} , and therefore the currents in the injection these energies, while the Josephson current is zero, according

+

lead are twice the currents in the left lead. Combining thiso EQ. (43). Thus at zero temperature the dissipative and
result with the re|ati0nf+(0)_nO:_R+|E, following nondissipative currents flow within the separate energy re-
from the kinetic equations, we find that in the limit of long 9ions, which do not overlap: The injection current spreads
injection lead the boundary condition at the junction nodeover the energy region<OE<eV,

becomes independent of applied voltage,

. N eV
f.(0)=ny, L>d, (40) 1V=?fo dEIY(E), (45)

which implies that the quasiparticles in horizontal leads argpije the supercurrent occupies the regivi< E< A
in equilibrium with the superconducting reservoirs. ’

Within the subgap energy regiok,<A, the situation is . on (A
more complex due to appearance of the curréptnd| ,,; js=0(A—eV) ?f dE I(E). (46)
the only simplification is due to the zero quasiparticle current ev

— ; vV _ e P
,I + _,0' By th!s rea_sonf+ —.con§t= n. within the entire in- The analysis for the subgap region also applies to the case
jection lead, including the junction node. Thus, the boundaryy rasistive interfaceg>1. However. at the energies

conditions for the distribution functions in the horizontal > A, the supercurrerit, and anomalous currehf,, are non-

leads read zero and give additional contribution to the Josephson cur-

f(0)=n,, f(0)=n_—RYIY, f_(xd)=0. rent in £q.(46).

(41)
. . V. NONEQUILIBRIUM JOSEPHSON CURRENT
Taking advantage of the symmetry of the quantities(x)
=D.(—x) andl,4(X)=—1,,(—X), we separate the even In equilibrium, the Josephson current is given by the sec-

and odd parts of the distribution functiong3(x)=[f(x)  ond term in Eq.(5), as it was mentioned in Sec. Il. Under
+f(—x)]/2, in Egs.(36), which then become split in the nonequilibrium conditions, this connection becomes ambigu-

two independent pairs of kinetic equations. One pair thaPus and needs reconsideration. The reason is that the appear-

couplesfS andf? , ance of the dissipative currents and related gradients of the
distribution functions in Eq(5) will lead to spatial variation

D ofS +1,f2 —1,,0f2=0, (423  of the supercurrent term along the horizontal lead. To find an

appropriate equation for the observable nonequilibrium Jo-

D_af2 +145 +1,,0fS =(1R+11)/2, (42  sephson current, we refer to a generic definition of the dc

h lutiofS — fa ) ith th Josephson effect, as a current flow through a junction with-
as a constant solutiofi, =n., , = =0, consistentwith the  ;+ 5y gissipation. In our case, the rate of the energy trans-

" v : _ (R
bmdndary conditions, which yields the relatibgn. =(I1Z  fer from a voltage source to the junction is given by the
+12)/2. As we will see later, Eq(48), the nonequilibrium  equation

Josephson currei has the formj=(jR+j%)/2, and taking

into account Eq(4), we arrive at the following resuft d o dv oL RUR

W=f dXj(x) g =1V IV (47
—d

. on (4

]S_?fo dE1(B)n.(B). “3) whereV- R are the voltage drops at the left/right leads. The

stationary Josephson effect assumes zero voltage drop be-

The second pair of kinetic equations couples the functionsween the superconducting electrodes+VR=0, thus the

f& andfs , nondissipative current component must satisfy the equation
js=jR=js. Combining this equation with the Kirchhoff's
D, af% +1f2 —14,0f° =0, (448 rule, we arrive at the following definition of the Josephson
current through the currents in the left, right, and injection
D_afS +14f2+1,0f2=—1Y/2. (44D |eads,

Since the source term and also the boundary conditions to
these equations, Eq41), depend onlY, these functions
determine the dissipative current. The solution to @4) in  Thus, in order to evaluate observable Josephson current in a

general case must be found numerically. general case, it is necessary to calculate the injection current

jER=jsxjvi2. (48)
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FIG. 4. Josephson current vs voltage at different phases: solid FIG. 5. Current-phase relations from E&0) at different volt-
lines represent =d and dashed line represents-d (a), and Jo-  age (a), and critical current vs voltagéo) at L>d. For a given
sephson current vs phase at several values of the lratidb). voltage, the current-phase relation follows the equilibrium law as

soon as the proximity gap edge is above the enedy but it is
and the current in one of the horizontal leads, and then applsignificantly suppressed when the gap edge is beldv
Eq. (48). In particular case of symmetric junction, this pro-
cedure leads to Eq43). acteristic,js(¢,V), at small phase and at large voltage. For

Persistent current in a SQUID is the most fundamentakxample, atp=0.37, when the equilibrium Josephson cur-
manifestation of the Josephson effect. The Josephson curremint approaches about 0.7 of its critical vajye the switch-
in Eq. (48) coincides with the circulating current, and it can ing effect occurs within a small voltage intervafV
be directly measured by measuring the induced flux with an~0.1A/e. The current gain in this casegjs/dj"
external magnetometer. ~0.7j./G6V~T7(L/d), exceeds unity even for comparable

Let us first consider junctions with transparent interfaceslengths of the leads, and it can be further enhanced by mak-
where the nonequilibrium Josephson current is given by Eding the injection lead longer. The upper bound for the gain is
(46). Since the spectral density is positive in this case, as imposed by the condition of small quasiparticle dwelling
itis found from numerical solution of E423), and the popu- time L?/D, compared to the quasiparticle relaxation time
lation of the subgap states is depleted with increasing voltt 2/D< 7.
age, the injection will suppress the Josephson current and The nonequilibrium Josephson current-phase dependence
block it completely ateV>A [see Fig. 4a)]; however, the for the junctions with transparent interfaces and high-
current direction cannot be reversed. The Josephson currerdsistive injection lead is shown in Fig(ab for different
weakly depends on the applied voltage and is close to thepplied voltages. The kinks on the graphs correspond to the
equilibrium value as long as the voltage is smaller than thephase values, at which the applied voltage equals the prox-
proximity gap valueeV<|A,|. We note that this equilib- imity gap, ¢,(V)=2 arccos€V/A). At smaller phases, 0
rium value differs from that in closed SNS junctioffst is < ¢< ¢o(V), the current-phase dependence has an equilib-
reduced due to the proximity of the normal reservoir andrium form, while at larger phases it is considerably distorted.
therefore depends on the length of the injection lead, agorrespondingly, the critical curreft(V) remains indepen-
shown in Fig. 4b). At larger voltage, the Josephson current-dent of applied voltage untilso(V) exceeds the value,,
voltage dependencpy(V) becomes more steep, especially =1.97, at which the equilibrium supercurrent approaches its

for the small phase differences. maximum valuej o= j.(0)=0.66rA/2eR At larger volt-
For a long injection lead, Eq46) takes the form age,eV> A cos(®,/2)=0.55\, the critical current decreases
and turns to zero aV=A, as shown in Fig. &),
(V)= — deEL (49)
Il V)= EZoAZ (V) V),0 eV A
2eRuJ1ayl ET-AG IJ.C((O; = JS[(;SO((O)) ]:1'51T arccoshy. (52
At zero temperatgre, the integration in E49) can be ex- ¢ ¢
plicitly performed In junctions with resistive interfaces>1, the current-
, phase dependence is more interesting, because of the possi-
i(B,V)= 1+sin(¢/2) (50) bility of the Josephson current inversion and the crossover to
s 2eRN f(V)+ Vf2(V)—coS(4/2) ' the r-junction regime. This results from the negative contri-

bution of the energieE>A to the Josephson current which
f(V)=max{eV/A,cos ¢/2)], eV>|A¢|. (51) turns to zero before the voltage achieves the gap valwe,
=<A, when the positive and negative partsl gfE) compen-
This current-voltage dependence is shown in Fig) By  sate each other. At larger voltage the current becomes nega-
a dashed line. In this case, the Josephson curremVat tive, as shown in Fig.®). Detailed analysis of the crossover
<|A,| is constant and equal to the equilibrium value. region can be made for the junctions with high-resistive in-
To estimate the efficiency of the Josephson transistor, Igection lead,L/d>r>1, and at zero temperature. In this
us consider the most steep part of the current-voltage chacase, in the horizontal leads, the distribution functfonis
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FIG. 6. Inversion of the current-phase relatip¢) under ap-

plied voltage in a SINIS junction at=1. The voltage step between % 19
the curves in right panel is 16A/e. % 05

small, and the functiorf, is approximately constant and 0.0
approaches the equilibrium valug(E) =1 in the supercon-

ducting reservoifsee Eq(40)]. By these reasons, the small
dissipative and anomalous components can be omitted fron -1.0
the current spectral density ~1, which then becomes in-

-0.5

-1.0 05 00 05 10 -2 -1 0 1 2

dependent of the applied voltage &¥>A. This results in o/m a) evia
the following modification of Eq(46): ©)
- FIG. 7. Currentj; vs phase¢ at different injection voltages
js:_f dE I((E), (53) (2,0, and critical transport currefi min, j Tmax VS Voltage(b,d), at
€ Jmin(ev,A) L=d (a,n, andL=5d (c,d. Shaded regions correspond to zero

potential difference between the superconducting electrodes. In

wherel(E) is to be found from Eqs(.SZ) and (31). hich th oval-like regions, the Josephson current coexists with the normal
As follows from Eq.(53), the critical voltage at which the current; in shaded stripes@V> A, the Josephson current is absent

current turns to zero depends on the phase, and therefore thﬁ)sephsonlike regime

crossover extends over a certdin fact, rather small volt-

age interval, as shown in Fig(®. When the voltage ap- evaluation is reduced to the analysis of the phase dependence
proaches the critical region, a new current node in theof jR=js—jV/2 at a given voltage. The requirement of zero
current-phase dependence splits from the nodg=atr, then  potential difference between the superconducting electrodes
it moves towards smallep; the process ends where the extrais automatically fulfiled in our calculation (time-
node approache$=0. Such a fine structure of the Joseph-independent phase differencd-or simplicity, we consider
son current inversion has been observed experimentally ithe junction with perfect interfaces, where the currents are
long SNS junctiond! At very large interface resistancg,  given by Eqs(45) and(46).

>1, this fine structure becomes irresolvable because of the The numerical results of such analysis are shown in Fig.
fact that in this limit the phase dependencel {(E,¢) for ~ 7(a,0. They are obtained by solving numerically §g3) for
relevant energies is given by a prefactor gjrand therefore the spectral functions and E(B6) for the distribution func-

the compensation effect appears simultaneously at afions, which determine the magnitude of the injection cur-

phases’ rent. At eV<A, when the supercurrent is allowed to flow
through the junction, the current-phase relations are similar

VI. CRITICAL CURRENT IN CURRENT BIASED to that deplct.ed in F|g.(&). At these voltages, the Josephson

JUNCTION current coexists with the normal current flowing out of the

injection lead. At larger voltages,V> A, the supercurrent is

In experiment, the current bias setup is often employedlocked, however, the transport current still flows through
for investigation of the dc Josephson current, Fie).1In the junction without voltage drop across it, within a certain
equilibrium, the maximum value of the current flowing range of the current magnitudes determined by the amplitude
through the junction without creating a voltage drop coin-of the dependenci®(¢#). The existence of such Josephson-
cides with the maximum current in the current-phase deperiike regime without real Josephson current has been first
dence. This is not the case for a nonequilibrium junction withpointed out for a four-terminal SNS junction with opaque
current injection: the “critical” current is contributed by both interface
the nonequilibrium Josephson current and the injection cur- To understand this phenomenon, it is important to remem-
rent. ber that the injection current in NS interferometers is not

Suppose the voltage is applied between the injection eleainiquely determined by the bias voltage, but also depends on
trode and left superconducting electrode, Fige)1then the the superconducting phase. In principle, a similar regime
external transport currefit is equal to the currenjf® in the  with zero voltage drop across the junction may appear even
right lead. In this case, the problem of the critical currentfor normal reservoirs, at the transport currgnt jV(V)/2.
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2257 . spectral functions aE=|A,| become more pronounced,
g whereas the peak at the bulk gap edg¥=A, decreases
5 and vanishes at/L—0, as shown in Fig. ). Furthermore,

201 the conductance exhibits the reentrance effé&tV) ap-

proaches the valuéy= ¢/(d/2+L) in the normal state both

at small and large voltages, as it was predicted for NS point
contacts’’ We notice that the differential conductanGéV)
deviates fromGy in the short-arm interferometers at the

1.5

1 %

TR characteristic energy of the order df, in contrast to the
' ' “eVia long-arm SNS junctionsd>£,), where the conductance
b) peak appears at the Thouless endfgy=7%D/(2d)><A.*®

At zero phase difference}=0, the functionG(V) can be
found analytically. In this casé,=1,,=0, and the function
f_ obeys a simple equation _df _=1_ in each lead, with

. . . ) L the diffusion coefficients
This value is unique for the given injection voltage, and

FIG. 8. Differential conductanc& vs voltage at.=d (a) and
L=5d (b) for different phases.

therefore the corresponding dependepd®/) is represented RL 1+a|x|/d

by a straight line. In the superconducting junctions, such line DXt=coslt Reds(E) — 75| (543
broadens to a stripg;=jV(V,$)/2, due to the presence of

the free parametep: The phase adjusts the injection current 1-y/L

for given injection voltage and transport current to provide DY =coslt Reas(E)l— . (54b
zero voltage drop across the junction. The width of the stripe ta

is determined by the amplitude of the injection current oscil- £, Eqs.(45) and (54), we obtain

lation with the phase. A&V<A, this effect is hidden by the

presence of the true supercurrgtgrge shaded regions in G(V)=Gyn(eV) (¢=0), (55)
Figs. 1b,d], however, it is fully revealed aV>A, where

the supercurrent is suppress¢shaded stripes in Figs. n(E)=zarctantz™ !, z=(E/A)S"€-2) (56

7(b,d)]. In fact, at large voltage, the width of the shaded

stripes is determined by the amplitude of phase oscillations The oscillations of the conductance peakedt=A with

of the excess injection current. The qualitative difference bethe phase can be found from the following arguments. At this
tween the phase dependence of the excess curedht A)  energy, the diffusion coefficierd _ turns to infinity in the
and the Josephson currem\(<A) is clearly seen in Figs. horizontal lead, which therefore becomes nonresistive with
7(a,0. It is interesting that the “critical current” has different respect to the normal currem,_(A)=0. Thus, the differen-
sign for positive and negative voltagghe shaded stripes in tial conductance a&V=A is completely determined by the
Fig. 7(b,d) are differently oriented with respect to the straightresistance of the injection leaRY (A)=L tanhé,/6,],
line]. This is consistent with the fact that the excess currenivhere 6,=In cot(¢/4),

changes sign along with the applied voltage.

l+a b
Gmal #)=G(Ale,p)=Gy——=Incot—. (57)
VIl. INTERFEROMETER EFFECT e Ncog ¢/2) 4

In this section, we investigate the conductance of the in- According to Eq.(57), the peak height approach€g(1
jection lead as a function of the bias voltage and supercon+a) at ¢= . At this point, like at¢=0, the spectral den-
ducting phase focusing on its properties due to the strongities of the superconducting and anomalous current turn to
proximity effect. At small temperature3,<eV, the overall  zero, and only the resistancBs andRY are involved in the
voltage dependence of the differential conductance is givepalculation. Since the condensate function becomes com-
by Eq. (45), G(V,¢)=djV/dV=0c1" , where the injection pletely suppressed in the middle of the juncti®g=0, the
current! is to be calculated by numerical solution of Eq. injection lead behaves as a normal wire, and therefore the
(23) for the spectral functions and the kinetic equati®). resistanceRY approaches its normal valle Correspond-

As shown in Fig. 8, the conductance has two peaks, at voltingly, the resistance of each horizontal lead coincides with
ageseV=A andeV~|A 4| . The first peak is associated with the resistance of a short NS junction with the lendtiR -
enhanced transmissivity of the junction due to the DOS peak=d tanh(Refs)/Refs, and thereforeG(V) at ¢=m is

at the bulk gap edge. This peak has a logarithmic singularitgiven by

at $=0, and it becomes smeared and decreases while

departs from zero. The second peak manifests a rapid change _ _

in the spectral functions in the vicinity of the spectrum edge G(V)=C 1+alp(eV) (=m). (58

in a short SNS junctiofisee Fig. 2, and it can be interpreted

as a resonance transmission due to enhanced DOS at theln the limit of long injection leadd/L—0, its resistance
proximity gap edgeA 4. As soon ad. increases, this reso- RY =L tanh Ref,/Redy, 6p=arctanh ,/E) completely
nance becomes more sharp because the singularities in thetermines the injection current, and the voltage dependence
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5 rent spectral densitys(E) is negative above the bulk gap
& value.
S 4 In three-terminal interferometers, the supercurrent gener-
- ally coexists with the dissipative current flowing out from the
@ 3 injection electrode. In such situation, we defined the non-
» equilibrium Josephson curreft as the nondissipative com-
2 ponent of the current flowing between the superconducting
] . electrodes. In symmetric junctions, within the subgap energy
11 1 ' region, this component coincides with its intuitive represen-
. . ' 10— tation through the supercurrent spectral densityand the
o 1 2 3¢/n 4 o 1 2 3¢m 4 quasiparticle population imposed by nonequilibrium injec-
a) b) tion, because the Andreev reflection blocks quasiparticle ex-

change with equilibrium superconducting reservoirs. In junc-

FIG. 9. Differential conductance vs phaselatd and different  tions with transmissive interfaces the Josephson current
voItage:V:A_/e (@, V=0.7A/e [(b), solid ling], andV=1.2A/e becomes completely blocked avV=A at zero temperature,
[(b}, dashed ling while in junctions with high-resistive interfaces, the Joseph-
son current undergoes inversion @/<A, which spreads
over a finite voltage interval. At the energies above the bulk
energy gapE>A, the population in the junction arms is
basically determined by the equilibrium population in the
superconducting reservoirs. By this reason, the Josephson
current becomes voltage independengst-A.

We notice that spectroscopy of the supercurrent spectral
density at the subgap energies is possible at zero tempera-
ture, similar to the tunnel spectroscopyMfE), because the

of the differential conductance shown in Figb8is approxi-
mately described by Ed55), with |A 4| substituted forA in
the functionzn(eV).

The differential conductance exhibits full-scale
2m-periodic oscillations with the phase differenge (An-
dreev interferometer effectThe form of the oscillations is
qualitatively different for the subgap bias regiomy<A,
and foreV>A, as shown in Fig. ®). In the latter case, the
phase dependence & has a comparatively simple form, o :
with maxima a_t¢=27n and minima atp=(2n+1). At . gi”/\(lja\t/lyvies g:otggrt%?qs;ﬁgss(()g\gerrent over applied voltage,
eV<A, the differential conductance approaches minima "o critical currentj . of the three-terminal junction, de-

both at even and odd multiples af, which reflects the in- ¢4 o< the maximum value of the transport curigrilow-
terplay between the position and amplitude of the resonanci%g through the junction without creating a voltage drop,
ateV=|4,. does not coincide with the maximum jg( ¢). This is due to
the presence of phase-dependent injection curjéqi)
Vill. SUMMARY which contributes tq., along with the Josephson current,

We have developed a theory of the nonequilibrium Jo_and_adju_sts its magnitude providing zero voltage drop across
sephson effect in a three-terminal diffusive interferometefin® junction. Atlarge voltage, where the Josephson current is
with short SNS junction having the lengtfd Znuch smaller ~ SuPPressed, the domain of the Josephson-like regime is de-
than the superconducting coherence lenggthWe focused termlne(_j by th_e _am_plltude of phase oscillations of the excess
on the case of strong proximity effect, when the proximity CUrrent in the injection electrode.

energy gap in the normal region is of the ordetofFor the The behavior of the injection current is highly sensitive to
junction with transmissive NS interfaces, the density ofthe quasiparticle spectrum of the junction and can be used to

statesN(E), and the supercurrent spectral densigE) ex- detect the position of the phase-dependent proximity gap. In
tend over the whole subgap region<€<A, due to the particular, the differential conductance of the junction with
proximity to a normal reservoir, and exhibit a considerableP€rfect interfaces exhibits sharp peaks at the bulk gap value,

enhancement at the energy equal to the proximity |day) eV=A, and at the proximity gapeV=|A,|; the latter be-
— Alcos@/2)| in the spectrum of a closed SNS junction. The OMeS more pronounced as the resistance of the injection
supercurrent spectral density is positive at all relevant enel!_ead increases. Furthermore, the differential resistance exhib-

gies. We demonstrated a possibility of the strong proximity'tS full-scale oscillations with the phase difference; eat

effect in a junction with opaque interfaces whose resistancé 2+ the shape of the oscillations becomes rather complex,

Rys is much larger than the normal resistarRg of the due to the interplay between the position and amplitude of

junction arms. In such case, the suppression of the proximity/® Proximity gap resonance.

gap Eg($)~|A4/(1+y) is controlled by the parameter
=(2Rys/Ry) (d/£5)?, which could be small in short junc-
tions,d< &, even at large interface resistanBg,>Ry . In Support from VR and KVA(Sweden is gratefully ac-
contrast to the case of transmissive interfaces, the supercltnowledged.
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