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Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers

E. V. Bezuglyi
B. Verkin Institute for Low Temperature Physics and Engineering, Kharkov 61103, Ukraine

V. S. Shumeiko and G. Wendin
Chalmers University of Technology and Go¨teborg University, S-41296 Go¨teborg, Sweden

~Received 20 March 2003; revised manuscript received 21 April 2003; published 6 October 2003!

We study nonequilibrium Josephson effect and phase-dependent conductance in three-terminal diffusive
interferometers with short arms. We consider strong proximity effect and investigate an interplay of dissipative
and Josephson currents coexisting within the same proximity region. In junctions with transparent interfaces,
the suppression of the Josephson current appears at rather large voltage,eV;D, and the current vanishes at
eV>D. Josephson current inversion becomes possible in junctions with resistive interfaces, where it occurs
within a finite interval of the applied voltage. Due to the presence of considerably large and phase-dependent
injection current, the critical current measured in a current biased junction does not coincide with the maximum
Josephson current, and remains finite when the true Josephson current is suppressed. The voltage dependence
of the conductance shows two pronounced peaks, at the bulk gap energy and at the proximity gap energy; the
phase oscillation of the conductance exhibits qualitatively different form at small voltageeV,D, and at large
voltageeV.D.
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I. INTRODUCTION

Multiterminal superconductor–normal-metal–sup
conductor~SNS! junctions are interesting devices where
interplay between the dissipative normal electron current
nondissipative Josephson current can be studied. The
plest device of this type consists of two superconduct
reservoirs and one normal reservoir connected by a s
normally conducting T-shaped bridge, see Fig. 1~a!. A meso-
scopic size of the bridge is essential to keep the coherenc
the current transport over the whole device. During the
decade, a large amount of interesting experiments have
done with such kind of devices~for the review see Ref. 1 an
references therein, further references can be found in Re!.

Nonequilibrium state in multiterminal SNS junctions e
hibits two closely related major phenomena: the interfero
eter effect, which concerns the dependence of normal c
ductance of the device on the phase difference between
superconducting reservoirs,3 and the Josephson transistor e
fect, which concerns the dependence of the Josephson
rent on the current injected from the normal reservoir.4,5 The
interferometer effect gives rise to a number of so-cal
Josephson-like effects.6,7

The interferometer effect has received most of the att
tions; it has been extensively studied experimentally8,1 and
theoretically,9,1,2 and presently, this effect is rather well un
derstood. The proximity of the superconducting reservo
leads to a modification of the density of states and trans
properties of the normal bridge~proximity effect!, which
therefore become sensitive to the phase difference at the
ervoirs, and exhibit oscillating behavior as the function
the phase difference.

The Josephson transistor effect has been also observ
experiment.10–12 The nonequilibrium Josephson effect h
been first predicted4 and then theoretically studied in the ba
listic junctions.13–15,2Nonequilibrium population of the An-
0163-1829/2003/68~13!/134506~11!/$20.00 68 1345
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dreev states16 induced by the current injection leads to
full-scale variation of the Josephson current with the appl
voltage and to the inversion of the current direction. Simi
transistor effect has been also investigated in diffus
junctions.17–20

Most of the experiments with multiterminal junction
have been done using diffusive metallic bridges, who
length was large compared to the superconducting coher
length j0. In such long junctions, the proximity effect i
suppressed, which results in small amplitude of the cond
tance oscillation~typically few percents of the full conduc
tance value!, and small magnitude of the Josephson curre
In theoretical analysis of the interferometer effect in diff
sive junctions, the presence of the Josephson current is
ally ignored. Similarly, the theoretical studies of the noneq
librium Josephson effect17–19 are restricted to the regime o
‘‘weak’’ proximity effect,9,21,22when the induced gap in th
normal bridge is much smaller than those in the superc

FIG. 1. Sketch of three-terminal SNS interferometer: T-sha
diffusive metallic wire with short arms~shaded region! is connected
to superconducting~S! and normal~N! reservoirs~a!, flux bias
setup for measuring current-phase relation~b!, and current bias
setup for measuring critical current~c!.
©2003 The American Physical Society06-1
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ducting reservoirs. Such a regime is relevant for long dif
sive junctions and for junctions with high-resistance NS
terfaces. In addition, the nonequilibrium Josephson cur
was calculated for specific four-terminal circuit geometr
where the dissipative normal current and the Josephson
rent were spatially separated.

Meanwhile, it is conceptually interesting to investigate t
problem of interplay of dissipative and Josephson curre
flowing in the same diffusive lead under a strong proxim
effect. In this paper, we address this problem by studying
nonequilibrium Josephson effect in three-terminal SNS in
ferometers with short arms, whose lengths aresmaller than
the coherence lengthj0.

Coexistence of dissipative and nondissipative current
the same proximity region makes it difficult to identify th
Josephson current component. In equilibrium, the total c
rent flowing through a proximity lead is the Josephson c
rent, which is entirely determined by the supercurrent sp
tral density and the population numbers of the relev
states. The presence of the normal injection current and
lated gradients of the distribution functions violates the lo
conservation of the supercurrent component which va
along the lead, and hence its direct connection to the Jos
son current is lost. Nevertheless, as we will show in
paper, a simple picture of the nonequilibrium Josephson
fect as the result of nonequilibrium population of the sta
with the same current spectral density as in equilibrium
be justified for some particular cases~see also Ref. 12!.
However, a general situation seems to be more complex

In the short-arm SNS interferometers, the proximity effe
is strong when the interfaces are transparent, but it also
be strong when the interfaces are highly resistive. The m
sure of the strength of the proximity effect is the magnitu
of the induced energy gap, which is comparable with
superconducting energy gap in the reservoirs. Conseque
there are full-scale variations of the Josephson current
the normal conductance with the applied voltage and
phase difference.

In short diffusive junctions with transparent interfaces, t
Josephson current is solely carried by the Andreev st
whose energies are smaller than the superconducting en
gap, which is similar to the short ballistic junctions.23,5 Con-
sequently, in these junctions, the Josephson current ca
suppressed to zero but never be reversed. The Josep
current reversion becomes possible in the junctions with
sistive interfaces due to the negative contribution of
states with energies above the bulk energy gap. Moreove
contrast to weak proximity regime,17 the current reversion
exhibits a fine structure similar to the one theoretically d
cussed for ballistic junctions,15 and recently demonstrated i
the experiment with long diffusive junctions.11

The interplay of the injected and Josephson currents in
strong proximity regime is important for the interpretation
experiments with current biased junctions, Fig. 1~c!. The
magnitude of the nonequilibrium critical Josephson curr
measured with this setup is different, as we will show, fro
the one derived from the current-phase relation measure
an rf superconducting quantum interference device~SQUID!,
Fig. 1~b!. This phenomenon has been earlier noticed in
13450
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absence of true Josephson current in the weak proxim
regime.6

The structure of the paper is the following. After introdu
ing a basic formalism in Sec. II, we discuss the spec
functions in Sec. III, and the distribution functions in Sec. I
Sections V and VI are devoted to a discussion of the n
equilibrium Josephson effect; the interferometer effect
considered in Sec. VII.

II. BASIC EQUATIONS

The junction we are going to investigate is sketched
Fig. 1~a!. It consists of two superconducting reservoirs an
normal reservoir connected by mesoscopic T-shape diffu
metallic bridge. Such a geometry can be realized in exp
ment, e.g., by using nanowire technology.24 The supercon-
ducting reservoirs are assumed to have equal potentials,
the superconducting phase difference between the reser
is f. The distance between the superconductors, 2d (2d
,x,d), and the length of the injection lead,L (0,y
,L), are assumed to be small compared to the superc
ducting coherence lengthj05A\D/D (D is the diffusion
coefficient!, however, the relation between these lengths
be arbitrary. For simplicity, we assume the cross sections
normal conductivities of all wires to be equal, and the curr
from the voltage-biased normal reservoir to be injected in
middle of the SNS junction.

Neglecting spatial variations of all quantities across
leads, we use one-dimensional static equations25 for the 4
34 matrix Keldysh-Green’s functionǦ in the normal leads,
in which we neglect the inelastic collision term

@szE,Ǧ#5 i\D] J̌, J̌5Ǧ]Ǧ, Ǧ251̌, ~1!

Ǧ5S ĝR ĜK

0 ĝA D , ĜK5ĝRf̂ 2 f̂ ĝA. ~2!

Here ĝR,A are the retarded and advanced Green’s functio
f̂ 5 f 11szf 2 is the matrix distribution function, and] de-
notes spatial derivative. At the junction node, the matrix c
rent J̌ obeys the Kirchhoff’s rule26

J̌x5205 J̌x5101 J̌y510 . ~3!

The Keldysh componentĴK of the matrix currentJ̌ deter-
mines the electric currents in the leads,

j 5
s

4eE0

`

dE Tr szĴ
K5

s

eE0

`

dE I2~E!, ~4!

wheres is the normal conductivity. The current spectral de
sity I 2(E) in Eq. ~4! has three components,22

I 2[~1/4!Tr szĴ
K5D2] f 21I sf 12I an] f 1 . ~5!

The first term in Eq.~5! describes a dissipative current whic
provides usual Drude conductivity in the normal state. T
second term gives conventional Josephson current in equ
6-2
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rium, while the third term, the anomalous current,22 appears
in nonequilibrium superconducting junctions. Another dia
onal component ofĴK,

I 1[~1/4!Tr ĴK5D1] f 11I sf 21I an] f 2 , ~6!

has the meaning of the net quasiparticle current~the sum of
the electron and hole probability currents!. Explicit equations
for the spectral characteristics of the junction,D6 , I s , and
I an , are conveniently written in terms of the following pa
rametrization of the matrixĝ:

ĝ5û1 v̂5szu1exp~ iszc!isyv, u22v251. ~7!

The functionu is related to the quasiparticle density of sta
~DOS!, normalized by its value in the normal state,N(E,x)
5ReuR(E,x), while the functionv is related to the spectra
density of the condensate. The complex phasec appears in
the presence of a supercurrent. In these notations, the d
sion coefficients read

D65~1/4!Tr~12ûRûA7 v̂Rv̂A!

5~1/2!@11uuRu27uvRu2cosh~2 ImcR!#. ~8!

In the normal state,D6 turn to unity.
The spectral densities of the supercurrent and anoma

current are given by the equations

I s5~1/4!Tr sz~ v̂R] v̂R2 v̂A] v̂A!52Im~v2]c!R, ~9a!

I an5~1/4!Tr szv̂
Rv̂A52uvRu2sinh~2 ImcR!/2. ~9b!

In Eqs. ~8! and ~9!, the relations (u,v)A52(u,v)R* and
cA5cR* are used, which follow from the general relatio
ship ĝA52szĝ

R†sz .25

Calculation of the electric current in Eq.~4! involves the
two steps: first one has to solve the Usadel equations for
Green’s functionsĝR,A, and then to solve the kinetic equa
tions to find the distribution functions.

III. SPECTRAL FUNCTIONS

The Green’s function components of Eq.~1! represent the
Usadel equations for the spectral functions,27

2Ev5 i\D@]~u]v2v]u!2uv~]c!2#, ~10!

v2]c5I , ~11!

where the spatial constantI (E) is related to the supercurren
spectral density in Eq.~9!, I s52Im I R. In terms of the spec-
tral angleu related to the spectral functions asu5coshu,
v5sinhu, Eq. ~10! takes the form

]2u5~2E/ i\D!sinhu1I 2coshu/sinh3u. ~12!

The two terms on the right-hand side~rhs! of Eq. ~12! are
related to two different depairing mechanisms, which p
vide spatial decrease ofu towards the middle of the junction
The first term is associated with the dephasing between
electron and hole wave functions at finite energyE. The sec-
13450
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symmetry breaking due to supercurrent flow.

The solution of Eqs.~11! and ~12! reads

xi5E
u0

u(E,xi ) du

AR~E,u!
, xi5x,y, ~13!

c~E,xi !5c01I E
0

xi dz

v2~E,z!
, ~14!

R~E,u![C1~4E/ i\D!coshu2~ I /sinhu!2, ~15!

whereC(E) is the integration constant, andu0 and c0 are
the spectral functions at the junction node. The bound
conditions for Eqs.~11! and~12! are imposed by the conse
vation law for the matrix current in Eq.~3!,

]xuux5205]xuux5101]yuuy50 , ~16!

and similar equation for the functionc. At the normal elec-
trode, the currentI turns to zero, which means thatI[0
along the injection lead, and thereforec(y)[const. Hence,
the derivative ofc is continuous in the horizontal lead
whereasu(x) has a kink atx50. In what follows, we con-
sider symmetric junction, in whichu(x) is even, andc(x) is
odd function. In this case, the phasec, together with the
anomalous currentI an , turns to zero at the junction node
and the kink in u(x) is symmetric, u08[]xuux510

52]xuux520.
The boundary conditions at the NS interfaces depend

the interface resistance. Below we analyze the two differ
situations related to perfect and high-resistive interfaces,
spectively.

A. Transparent interfaces

If the interface electric resistanceRNS is much smaller
than the normal resistanceRN of the horizontal lead, one ca
assume the spectral functions to be continuous atx56d,
namely,c(6d)56f/2 andu(6d)5uS[arctanh(D/E); at
the normal electrodeu50. In this limit, the second term in
the rhs of Eq.~15! can be neglected due to large gradients
the spectral functions along the leads, which results in lin
change ofu along the injection lead,u(E,y)5u0(12y/L),
and the boundary condition in Eq.~16! takes the form

u052u08L. ~17!

The analytical expressions for the spectral functions in
horizontal lead within this approximation have been found
Ref. 20. In the right lead, they are given by

u~E,x!5ũ0cosh~a1Lx/d!, ~18!

c~E,x!5arctan@ ṽ0
21tanh~a1Lx/d!#2p. ~19!

The solution in the left lead is obtained by the change of
signs ofx, f, a, andp. The spatial constants in Eqs.~18!
and ~19! can be parametrized as
6-3
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I 5
ṽ0

d
L, L5arccosh

uS

ũ0

2arccosh
u0

ũ0

, ~20!

u0[coshu05ũ0 cosha5uS~Ẽ,D̃ !, ~21!

ũ05uS~E,D̃ !, Ẽ5E cosp, D̃5D cos~f/21p!,
~22!

whereuS(E,D)5E/AE22D2, and expressed via a single p
rameterp, which is to be evaluated from the equation fo
lowing from Eq.~17!,

ũ0L sinp5au0 . ~23!

The magnitude of the parameterp is controlled by the
parametera5d/2L. Whena decreases, i.e., the resistance
the injection lead increases,p turns to zero, according to Eq
~23!, and the spectral functions approach their values
closed short SNS junctions. In the limita50, DOS has the
proximity gap uDfu, whereDf5D cos(f/2), and reveals a
BCS-like singularity at the gap edge,

N~E,0!5EQ~E2uDfu!/AE22Df
2 , ~24!

whereQ(x) is the Heaviside step function. The supercurre
spectral densityI s(E) spreads over the regionuDfu<E
<D, and has the singularity at the proximity gap edge
well,28

I s~E!5
p

2d

DfQ~E2uDfu!

AE22Df
2

Q~D2E!. ~25!

In a general case,aÞ0, the proximity of the normal res
ervoir leads to finite DOS at all energies, as shown in F
2~a!, though it is noticeably suppressed atE,uDfu for L
*d. The supercurrent spectral density at finited/L extends
over the whole subgap region@see Fig. 2~b!#, while at E
.D, both I s and I an turn to zero. Thus, in short diffusive
junctions with transparent interfaces, the supercurrent is
ried exclusively by the bound Andreev states confined to

FIG. 2. The density of states,N(E,0), at the device node~a!,
and the supercurrent spectral densityI s(E) at f5p/2 ~b!, at several
values of the ratioL/d, calculated by using numerical solution o
Eq. ~23!.
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potential well formed by the junction. However, this result
only correct to zero approximation with respect to the sm
parameterd/j0.29

B. Opaque interfaces

The effect of the interface becomes important when
interface resistanceRNS exceeds the resistance of the norm
conductor RN52d/s, r 5RNS/RN@1. In particular, the
magnitude of the Josephson current is determined by theRNS
rather than byRN in the limit r @1. At the same time, as we
will see below, the suppression of the proximity effect
governed by much smaller parameterr (d/j0)2!r , and the
proximity effect can be strong even whenr @1.

A high-resistive interface can be modeled by an effect
tunnel barrier characterized by its resistanceRNS in the nor-
mal state, which results in the following boundary conditio
for the Green’s functions30 at x5d:

sRNS]uN5uNvScos~f/22cN!2uSvN , ~26a!

sRNSI 5vNvSsin~f/22cN!, I 5vN
2 ]cN , ~26b!

and similar for x52d ~the indicesN and S refer to the
normal and superconducting sides of the interface!.

In the limit r @1, the spatial variation of the spectra
phase is strongly nonhomogeneous: the phase drops a
barriers and is small in the normal region,cN!1, along with
the spectral currentI. The spatial variation of the spectra
function u is small and can be approximated by a weak
varying parabolic function,

u~E,x!'u0@11~b/2!~x/d!2#. ~27!

In Eq. ~27!, we neglected the effect of the injection lea
assuming its resistance to be larger thanRNS, 1/a@r . The
coefficientb!1 is to be found from Eq.~15!, in which the
electron-hole dephasing effect has to be taken into acco
because it now becomes comparable with the small curr
induced depairing,

b522i
E

D S d

j0
D 2v0

2

u0
1S Id

v0
D 2

. ~28!

In Eq. ~14!, we may neglect spatial variations of the int
grand which results in a linear spatial dependence of
phase,c(E,x)'Ix/v0

2;r 21.
By making use of Eqs.~27! and ~28!, the boundary con-

ditions in Eqs.~26! give the equation for the spectral func
tions uN andvN ,

uS

uN
5

igE

uND
1

vS

vN
cos

f

2
2rcN

2 , g52r ~d/j0!2, ~29!

and the expression for the spectral currentI,

I 5
vNvS

sRNS
sin

f

2
, ~30!

in which we omitted the small phasecN from the trigono-
metric functions. Equation~29! describes three mechanism
of depairing. The first term in the rhs represents the electr
6-4
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hole dephasing within the normal metal. The parameteg
determines the magnitude of the energy gapEg;D/(11g)
in the spectrum of the horizontal lead~see below!. The sec-
ond term describes suppression of the condensate fun
vN due to rapid change of the spectral phase across the
nel barrier. This effect is similar to the mechanism whi
produces the Andreev bound states in the vicinity of the t
nel junction in the ballistic23,5 as well as diffusive31 Joseph-
son structures. The third term is caused by the supercur
flow through the normal lead. Neglecting this smal
(;r 21) term, we obtain the solution of Eq.~29!,

vN5
D̃

AE22D̃2
, D̃~E,f!5

Df

11gAD22E2/D
. ~31!

According to Eq.~31!, the energy gapEg(f) in the spectrum
of the junction is to be determined by the equationEg

5uD̃(Eg ,f)u, whose solution can be well approximated by
simple relationEg5uDfu/(11g).

Thus, the regime of strong proximity effect with the pro
imity gap being of the order ofD @Fig. 3~a!# persists in short
junction despite of high-resistive interfaces,RNS@RN , as
long as the conditiong&1 holds. In this case, the supercu
rent spectral density

I s~E,f!52Im I 52
sin~f/2!

sRNS
ImFDvN~E,f!

AE22D2 G ~32!

extends over all quasiparticle states above the proximity g
including the continuum states above the bulk energy gapD,
whereI s(E) is negative@Fig. 3~b!#. In the limit g!1 ~recall
that we nevertheless assume here the interface resistan
be large,r @1), the dephasing effect becomes negligib
small and the energy gap approachesuDfu, similar to the
perfect SNS junction discussed above. However, the shap
the supercurrent spectral density essentially differs from
~25!,

I s~E!5
sinf

2sRNS

D2Q~E2uDfu!Q~D2E!

AE22Df
2AD22E2

. ~33!

FIG. 3. Variations in the density of states~a!, and in the super-
current spectral density~b! with the phase difference in SINIS junc
tion, calculated from Eqs.~31! and ~32! at g51: f50.1p ~dotted
lines!, 0.6p ~solid lines!, and 0.9p ~dashed lines!.
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It is interesting to note that the expression for the equilibriu
Josephson current obtained from Eq.~33!,

j s5
D sinf

2eRNS
K~ usin~f/2!u!, g!1 ~T50! ~34!

(K is the elliptic integral!, can be reproduced with the argu
ments of the scattering theory, similar to the case of per
diffusive SNS junction,32 by applying the transmissivity dis
tribution for a normal symmetric double-barrier structure33

Such a possibility is explained by the absence of electr
hole dephasing in this limit.

The proximity gap is strongly suppressed,Eg!D, only in
the limit of very large barrier strength,g@1.17 This is the
effect of enhanced electron-hole dephasing, similar to
case of a long diffusive SNS junction, where the proxim
gap is also reduced due to the dephasing effect and clos
f5p. This situation is qualitatively different from the cas
of the tunnel junction with a single barrier, giving the J
sephson current in junctions with two strong barriers,

j s5
D sinf

2eRNSg
ln

4g

ucos~f/2!u
, g@1 ~T50!, ~35!

to be much smaller than the result of the tunnel model.34

IV. KINETIC EQUATIONS

In the absence of inelastic collisions, the kinetic equatio
in each lead have the form of conservation laws for the sp
tral currentsI 6(E),

D6] f 61I sf 76I an] f 7[I 6~E!5const. ~36!

At the junction node, the conservation law for the mat
currents in Eq.~3! imposes the boundary condition

I 6
L 5I 6

R 1I 6
V , ~37!

where the indicesL, R, and V refer to the left, right, and
injection leads, respectively. At the transparent interfaces,
distribution functions are determined by the loca
equilibrium population in the reservoirs,

f 1~6d!5tanh
E

2T
~E.D!, f 2~6d!50, ~38a!

f 6~L !5n6[
1

2 F tanh
E1eV

2T
6tanh

E2eV

2T G . ~38b!

At E,D, the quasiparticle population in the leads is disco
nected from the superconducting reservoirs due to comp
Andreev reflection, and the quasiparticle density functionf 1

is determined by the condition of the absence of the
probability currentI 150. Due to the conservation law in
Eq. ~37!, the subgap probability currentI 1 turns to zero
within the entire device.

In the energy regionE.D, where the currentsI s and I an
turn to zero, and the diffusion coefficientD1 turns to unity,
the kinetic equations have a simple solution,
6-5
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I 1
R 5

n02n1

R112R1
V , I 2

R 52
n2

R212R2
V . ~39!

Here the quantitiesR15d, R1
V 5L, R25d^1/D2

R,L&, and
R2

V 5L^1/D2
V & play the role of effective resistances of th

leads for the spectral currentsI 6 , and the angle bracket
denote spatial averaging along the leads. The currents in
left lead are equal by magnitude but flow in opposite dir
tions, I 6

L 52I 6
R , and therefore the currents in the injectio

lead are twice the currents in the left lead. Combining t
result with the relation f 1(0)2n052R1I 1

R , following
from the kinetic equations, we find that in the limit of lon
injection lead the boundary condition at the junction no
becomes independent of applied voltage,

f 1~0!5n0 , L@d, ~40!

which implies that the quasiparticles in horizontal leads
in equilibrium with the superconducting reservoirs.

Within the subgap energy region,E,D, the situation is
more complex due to appearance of the currentsI s and I an ;
the only simplification is due to the zero quasiparticle curr
I 150. By this reason,f 1

V 5const5n1 within the entire in-
jection lead, including the junction node. Thus, the bound
conditions for the distribution functions in the horizont
leads read

f 1~0!5n1 , f 2~0!5n22R2
V I 2

V , f 2~6d!50.
~41!

Taking advantage of the symmetry of the quantitiesD6(x)
5D6(2x) and I an(x)52I an(2x), we separate the eve
and odd parts of the distribution functions,f s,a(x)5@ f (x)
6 f (2x)#/2, in Eqs. ~36!, which then become split in the
two independent pairs of kinetic equations. One pair t
couplesf 1

s and f 2
a ,

D1] f 1
s 1I sf 2

a 2I an] f 2
a 50, ~42a!

D2] f 2
a 1I sf 1

s 1I an] f 1
s 5~ I 2

R 1I 2
L !/2, ~42b!

has a constant solution,f 1
s 5n1 , f 2

a 50, consistent with the
boundary conditions, which yields the relationI sn15(I 2

R

1I 2
L )/2. As we will see later, Eq.~48!, the nonequilibrium

Josephson currentj s has the formj s5( j R1 j L)/2, and taking
into account Eq.~4!, we arrive at the following result:35

j s5
sN

e E
0

D

dE Is~E!n1~E!. ~43!

The second pair of kinetic equations couples the functi
f 1

a and f 2
s ,

D1] f 1
a 1I sf 2

s 2I an] f 2
s 50, ~44a!

D2] f 2
s 1I sf 1

a 1I an] f 1
a 52I 2

V /2. ~44b!

Since the source term and also the boundary condition
these equations, Eq.~41!, depend onI 2

V , these functions
determine the dissipative current. The solution to Eq.~44! in
general case must be found numerically.
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At zero temperature, it is possible to further extend t
analysis. By making use of a stepwise shape of the distr
tion functionsn65Q@6(E2eV)#, we find that a trivial so-
lution, f 1

a 50, f 2
s 50, I 2

V 50, satisfies Eq.~44! and all the
boundary conditions atE.eV. Thus the dissipative curren
vanishes in this energy interval. On the other hand, aE
,eV, wheren150 andn251, Eqs.~44! have a nontrivial
solution, which implies that the dissipative current exists
these energies, while the Josephson current is zero, acco
to Eq. ~43!. Thus at zero temperature the dissipative a
nondissipative currents flow within the separate energy
gions, which do not overlap: The injection current sprea
over the energy region 0,E,eV,

j V5
sN

e E
0

eV

dE I2
V ~E!, ~45!

while the supercurrent occupies the regioneV,E,D,

j s5Q~D2eV!
sN

e E
eV

D

dE Is~E!. ~46!

The analysis for the subgap region also applies to the c
of resistive interfacesr @1. However, at the energiesE
.D, the supercurrentI s and anomalous currentI an are non-
zero and give additional contribution to the Josephson c
rent in Eq.~46!.

V. NONEQUILIBRIUM JOSEPHSON CURRENT

In equilibrium, the Josephson current is given by the s
ond term in Eq.~5!, as it was mentioned in Sec. II. Unde
nonequilibrium conditions, this connection becomes ambi
ous and needs reconsideration. The reason is that the ap
ance of the dissipative currents and related gradients of
distribution functions in Eq.~5! will lead to spatial variation
of the supercurrent term along the horizontal lead. To find
appropriate equation for the observable nonequilibrium
sephson current, we refer to a generic definition of the
Josephson effect, as a current flow through a junction w
out any dissipation. In our case, the rate of the energy tra
fer from a voltage source to the junction is given by t
equation

W5E
2d

d

dx j~x!
dV

dx
5 j LVL1 j RVR, ~47!

whereVL,R are the voltage drops at the left/right leads. T
stationary Josephson effect assumes zero voltage drop
tween the superconducting electrodes,VL1VR50, thus the
nondissipative current component must satisfy the equa
j s
L5 j s

R[ j s . Combining this equation with the Kirchhoff’s
rule, we arrive at the following definition of the Josephs
current through the currents in the left, right, and injecti
leads,

j L,R5 j s6 j V/2. ~48!

Thus, in order to evaluate observable Josephson current
general case, it is necessary to calculate the injection cur
6-6
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and the current in one of the horizontal leads, and then ap
Eq. ~48!. In particular case of symmetric junction, this pr
cedure leads to Eq.~43!.

Persistent current in a SQUID is the most fundamen
manifestation of the Josephson effect. The Josephson cu
in Eq. ~48! coincides with the circulating current, and it ca
be directly measured by measuring the induced flux with
external magnetometer.

Let us first consider junctions with transparent interfac
where the nonequilibrium Josephson current is given by
~46!. Since the spectral densityI s is positive in this case, a
it is found from numerical solution of Eq.~23!, and the popu-
lation of the subgap states is depleted with increasing v
age, the injection will suppress the Josephson current
block it completely ateV.D @see Fig. 4~a!#; however, the
current direction cannot be reversed. The Josephson cu
weakly depends on the applied voltage and is close to
equilibrium value as long as the voltage is smaller than
proximity gap value,eV,uDfu. We note that this equilib-
rium value differs from that in closed SNS junctions,36 it is
reduced due to the proximity of the normal reservoir a
therefore depends on the length of the injection lead,
shown in Fig. 4~b!. At larger voltage, the Josephson curre
voltage dependencej s(V) becomes more steep, especia
for the small phase differences.

For a long injection lead, Eq.~46! takes the form

j s~f,V!5
pDf

2eRN
E

uDfu

D

dE
n1~E!

AE22Df
2

. ~49!

At zero temperature, the integration in Eq.~49! can be ex-
plicitly performed,20

j s~f,V!5
pDf

2eRN
ln

11sin~f/2!

f ~V!1Af 2~V!2cos2~f/2!
, ~50!

f ~V!5max@eV/D,cos~f/2!#, eV.uDfu. ~51!

This current-voltage dependence is shown in Fig. 4~a! by
a dashed line. In this case, the Josephson current ateV
,uDfu is constant and equal to the equilibrium value.

To estimate the efficiency of the Josephson transistor
us consider the most steep part of the current-voltage c

FIG. 4. Josephson current vs voltage at different phases: s
lines representL5d and dashed line representsL@d ~a!, and Jo-
sephson current vs phase at several values of the ratioL/d ~b!.
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acteristic,j s(f,V), at small phase and at large voltage. F
example, atf50.3p, when the equilibrium Josephson cu
rent approaches about 0.7 of its critical valuej c , the switch-
ing effect occurs within a small voltage intervaldV
;0.1D/e. The current gain in this case,d j s /d j V

;0.7j c /GdV;7(L/d), exceeds unity even for comparab
lengths of the leads, and it can be further enhanced by m
ing the injection lead longer. The upper bound for the gain
imposed by the condition of small quasiparticle dwellin
time L2/D, compared to the quasiparticle relaxation timet,
L2/D!t.

The nonequilibrium Josephson current-phase depend
for the junctions with transparent interfaces and hig
resistive injection lead is shown in Fig. 5~a! for different
applied voltages. The kinks on the graphs correspond to
phase values, at which the applied voltage equals the p
imity gap, f0(V)52 arccos(eV/D). At smaller phases, 0
,f,f0(V), the current-phase dependence has an equ
rium form, while at larger phases it is considerably distort
Correspondingly, the critical currentj c(V) remains indepen-
dent of applied voltage untilf0(V) exceeds the valuefm
51.97, at which the equilibrium supercurrent approaches
maximum valuej c05 j c(0)50.66pD/2eR. At larger volt-
age,eV.D cos(fm/2)50.55D, the critical current decrease
and turns to zero ateV>D, as shown in Fig. 5~b!,

j c~V!

j c~0!
5

j s@f0~V!,0#

j c~0!
51.51

eV

D
arccosh

D

eV
. ~52!

In junctions with resistive interfaces,r @1, the current-
phase dependence is more interesting, because of the p
bility of the Josephson current inversion and the crossove
thep-junction regime. This results from the negative cont
bution of the energiesE.D to the Josephson current whic
turns to zero before the voltage achieves the gap value,eV
&D, when the positive and negative parts ofI s(E) compen-
sate each other. At larger voltage the current becomes n
tive, as shown in Fig. 6~a!. Detailed analysis of the crossove
region can be made for the junctions with high-resistive
jection lead,L/d@r @1, and at zero temperature. In th
case, in the horizontal leads, the distribution functionf 2 is

lid FIG. 5. Current-phase relations from Eq.~50! at different volt-
age ~a!, and critical current vs voltage~b! at L@d. For a given
voltage, the current-phase relation follows the equilibrium law
soon as the proximity gap edge is above the energyeV, but it is
significantly suppressed when the gap edge is beloweV.
6-7
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small, and the functionf 1 is approximately constant an
approaches the equilibrium valuen0(E)51 in the supercon-
ducting reservoir@see Eq.~40!#. By these reasons, the sma
dissipative and anomalous components can be omitted f
the current spectral densityI 2'I s , which then becomes in
dependent of the applied voltage ateV.D. This results in
the following modification of Eq.~46!:

j s5
s

eEmin(eV,D)

`

dE Is~E!, ~53!

whereI s(E) is to be found from Eqs.~32! and ~31!.
As follows from Eq.~53!, the critical voltage at which the

current turns to zero depends on the phase, and therefor
crossover extends over a certain~in fact, rather small!, volt-
age interval, as shown in Fig. 6~b!. When the voltage ap
proaches the critical region, a new current node in
current-phase dependence splits from the node atf5p, then
it moves towards smallerf; the process ends where the ex
node approachesf50. Such a fine structure of the Josep
son current inversion has been observed experimentall
long SNS junctions.11 At very large interface resistance,g
@1, this fine structure becomes irresolvable because of
fact that in this limit the phase dependence inI s(E,f) for
relevant energies is given by a prefactor sinf, and therefore
the compensation effect appears simultaneously at
phases.17

VI. CRITICAL CURRENT IN CURRENT BIASED
JUNCTION

In experiment, the current bias setup is often employ
for investigation of the dc Josephson current, Fig. 1~c!. In
equilibrium, the maximum value of the current flowin
through the junction without creating a voltage drop co
cides with the maximum current in the current-phase dep
dence. This is not the case for a nonequilibrium junction w
current injection: the ‘‘critical’’ current is contributed by bot
the nonequilibrium Josephson current and the injection c
rent.

Suppose the voltage is applied between the injection e
trode and left superconducting electrode, Fig. 1~c!, then the
external transport currentj T is equal to the currentj R in the
right lead. In this case, the problem of the critical curre

FIG. 6. Inversion of the current-phase relationj s(f) under ap-
plied voltage in a SINIS junction atg51. The voltage step betwee
the curves in right panel is 1023D/e.
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evaluation is reduced to the analysis of the phase depend
of j R5 j s2 j V/2 at a given voltage. The requirement of ze
potential difference between the superconducting electro
is automatically fulfilled in our calculation ~time-
independent phase difference!. For simplicity, we consider
the junction with perfect interfaces, where the currents
given by Eqs.~45! and ~46!.

The numerical results of such analysis are shown in F
7~a,c!. They are obtained by solving numerically Eq.~23! for
the spectral functions and Eq.~36! for the distribution func-
tions, which determine the magnitude of the injection c
rent. At eV,D, when the supercurrent is allowed to flo
through the junction, the current-phase relations are sim
to that depicted in Fig. 5~a!. At these voltages, the Josephs
current coexists with the normal current flowing out of t
injection lead. At larger voltages,eV.D, the supercurrent is
blocked, however, the transport current still flows throu
the junction without voltage drop across it, within a certa
range of the current magnitudes determined by the amplit
of the dependencej R(f). The existence of such Josephso
like regime without real Josephson current has been
pointed out for a four-terminal SNS junction with opaqu
interfaces.6

To understand this phenomenon, it is important to reme
ber that the injection current in NS interferometers is n
uniquely determined by the bias voltage, but also depend
the superconducting phase. In principle, a similar regi
with zero voltage drop across the junction may appear e
for normal reservoirs, at the transport currentj T5 j V(V)/2.

FIG. 7. Currentj T vs phasef at different injection voltages
~a,c!, and critical transport currentj Tmin , j Tmax vs voltage~b,d!, at
L5d ~a,b!, and L55d ~c,d!. Shaded regions correspond to ze
potential difference between the superconducting electrodes
oval-like regions, the Josephson current coexists with the nor
current; in shaded stripes ateV.D, the Josephson current is abse
~Josephsonlike regime!.
6-8



nd

lin
f
n
de
ip
cil

n

.
ed
on
be

.
t

h
en

in
o
on

ve

q.

o
h
ea
ri
e
an
g

t
-
n

,

int

e

e

his

ith

e

n to

om-

the

ith

nce

NONEQUILIBRIUM JOSEPHSON EFFECT IN SHORT- . . . PHYSICAL REVIEW B 68, 134506 ~2003!
This value is unique for the given injection voltage, a
therefore the corresponding dependencej T(V) is represented
by a straight line. In the superconducting junctions, such
broadens to a stripe,j T5 j V(V,f)/2, due to the presence o
the free parameterf: The phase adjusts the injection curre
for given injection voltage and transport current to provi
zero voltage drop across the junction. The width of the str
is determined by the amplitude of the injection current os
lation with the phase. AteV,D, this effect is hidden by the
presence of the true supercurrent@large shaded regions i
Figs. 7~b,d!#, however, it is fully revealed ateV.D, where
the supercurrent is suppressed@shaded stripes in Figs
7~b,d!#. In fact, at large voltage, the width of the shad
stripes is determined by the amplitude of phase oscillati
of the excess injection current. The qualitative difference
tween the phase dependence of the excess current (eV.D)
and the Josephson current (eV,D) is clearly seen in Figs
7~a,c!. It is interesting that the ‘‘critical current’’ has differen
sign for positive and negative voltages@the shaded stripes in
Fig. 7~b,d! are differently oriented with respect to the straig
line#. This is consistent with the fact that the excess curr
changes sign along with the applied voltage.

VII. INTERFEROMETER EFFECT

In this section, we investigate the conductance of the
jection lead as a function of the bias voltage and superc
ducting phase focusing on its properties due to the str
proximity effect. At small temperatures,T!eV, the overall
voltage dependence of the differential conductance is gi
by Eq. ~45!, G(V,f)5d jV/dV5sI 2

V , where the injection
current I 2

V is to be calculated by numerical solution of E
~23! for the spectral functions and the kinetic equations~36!.
As shown in Fig. 8, the conductance has two peaks, at v
ageseV5D andeV'uDfu . The first peak is associated wit
enhanced transmissivity of the junction due to the DOS p
at the bulk gap edge. This peak has a logarithmic singula
at f50, and it becomes smeared and decreases whilf
departs from zero. The second peak manifests a rapid ch
in the spectral functions in the vicinity of the spectrum ed
in a short SNS junction~see Fig. 2!, and it can be interpreted
as a resonance transmission due to enhanced DOS a
proximity gap edgeuDfu. As soon asL increases, this reso
nance becomes more sharp because the singularities i

FIG. 8. Differential conductanceG vs voltage atL5d ~a! and
L55d ~b! for different phases.
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spectral functions atE5uDfu become more pronounced
whereas the peak at the bulk gap edge,eV5D, decreases
and vanishes atd/L→0, as shown in Fig. 8~b!. Furthermore,
the conductance exhibits the reentrance effect:G(V) ap-
proaches the valueGN5s/(d/21L) in the normal state both
at small and large voltages, as it was predicted for NS po
contacts.37 We notice that the differential conductanceG(V)
deviates fromGN in the short-arm interferometers at th
characteristic energy of the order ofD, in contrast to the
long-arm SNS junctions (d@j0), where the conductanc
peak appears at the Thouless energyETh5\D/(2d)2!D.38

At zero phase difference,f50, the functionG(V) can be
found analytically. In this case,I s5I an50, and the function
f 2 obeys a simple equationD2] f 25I 2 in each lead, with
the diffusion coefficients

D2
R,L5cosh2FReuS~E!

11auxu/d
11a G , ~54a!

D2
V 5cosh2FReuS~E!

12y/L

11a G . ~54b!

From Eqs.~45! and ~54!, we obtain

G~V!5GNh~eV! ~f50!, ~55!

h~E!5z arctanhz21, z5~E/D!sgn(E2D). ~56!

The oscillations of the conductance peak ateV5D with
the phase can be found from the following arguments. At t
energy, the diffusion coefficientD2 turns to infinity in the
horizontal lead, which therefore becomes nonresistive w
respect to the normal current,R2(D)50. Thus, the differen-
tial conductance ateV5D is completely determined by th
resistance of the injection lead@R2

V (D)5L tanhu0 /u0#,
whereu05 ln cot(f/4),

Gmax~f![G~D/e,f!5GN

11a

cos~f/2!
ln cot

f

4
. ~57!

According to Eq.~57!, the peak height approachesGN(1
1a) at f5p. At this point, like atf50, the spectral den-
sities of the superconducting and anomalous current tur
zero, and only the resistancesR2 andR2

V are involved in the
calculation. Since the condensate function becomes c
pletely suppressed in the middle of the junction,u050, the
injection lead behaves as a normal wire, and therefore
resistanceR2

V approaches its normal valueL. Correspond-
ingly, the resistance of each horizontal lead coincides w
the resistance of a short NS junction with the lengthd, R2

5d tanh(ReuS)/ReuS , and thereforeG(V) at f5p is
given by

G~V!5GN

11a

11a/h~eV!
~f5p!. ~58!

In the limit of long injection lead,d/L→0, its resistance
R2

V 5L tanh Reu0 /Reu0 , u05arctanh(Df /E) completely
determines the injection current, and the voltage depende
6-9
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of the differential conductance shown in Fig. 8~b! is approxi-
mately described by Eq.~55!, with uDfu substituted forD in
the functionh(eV).

The differential conductance exhibits full-sca
2p-periodic oscillations with the phase differencef ~An-
dreev interferometer effect!. The form of the oscillations is
qualitatively different for the subgap bias region,eV,D,
and foreV.D, as shown in Fig. 9~b!. In the latter case, the
phase dependence ofG has a comparatively simple form
with maxima atf52pn and minima atf5(2n11)p. At
eV,D, the differential conductance approaches mini
both at even and odd multiples ofp, which reflects the in-
terplay between the position and amplitude of the resona
at eV5uDfu.

VIII. SUMMARY

We have developed a theory of the nonequilibrium
sephson effect in a three-terminal diffusive interferome
with short SNS junction having the length 2d much smaller
than the superconducting coherence lengthj0. We focused
on the case of strong proximity effect, when the proxim
energy gap in the normal region is of the order ofD. For the
junction with transmissive NS interfaces, the density
states,N(E), and the supercurrent spectral densityI s(E) ex-
tend over the whole subgap region, 0,E,D, due to the
proximity to a normal reservoir, and exhibit a considera
enhancement at the energy equal to the proximity gapuDfu
5Ducos(f/2)u in the spectrum of a closed SNS junction. T
supercurrent spectral density is positive at all relevant e
gies. We demonstrated a possibility of the strong proxim
effect in a junction with opaque interfaces whose resista
RNS is much larger than the normal resistanceRN of the
junction arms. In such case, the suppression of the proxim
gap Eg(f)'uDfu/(11g) is controlled by the parameterg
5(2RNS/RN)(d/j0)2, which could be small in short junc
tions,d!j0, even at large interface resistance,RNS@RN . In
contrast to the case of transmissive interfaces, the supe

FIG. 9. Differential conductance vs phase atL5d and different
voltage:V5D/e ~a!, V50.7D/e @~b!, solid line#, and V51.2D/e
@~b!, dashed line#.
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value.

In three-terminal interferometers, the supercurrent gen
ally coexists with the dissipative current flowing out from th
injection electrode. In such situation, we defined the n
equilibrium Josephson currentj s as the nondissipative com
ponent of the current flowing between the superconduc
electrodes. In symmetric junctions, within the subgap ene
region, this component coincides with its intuitive represe
tation through the supercurrent spectral densityI s and the
quasiparticle population imposed by nonequilibrium inje
tion, because the Andreev reflection blocks quasiparticle
change with equilibrium superconducting reservoirs. In jun
tions with transmissive interfaces the Josephson cur
becomes completely blocked ateV5D at zero temperature
while in junctions with high-resistive interfaces, the Josep
son current undergoes inversion ateV&D, which spreads
over a finite voltage interval. At the energies above the b
energy gap,E.D, the population in the junction arms i
basically determined by the equilibrium population in t
superconducting reservoirs. By this reason, the Joseph
current becomes voltage independent ateV.D.

We notice that spectroscopy of the supercurrent spec
density at the subgap energies is possible at zero temp
ture, similar to the tunnel spectroscopy ofN(E), because the
derivative of the Josephson current over applied volta
d js /dV, is proportional toI s(eV).

The critical currentj c of the three-terminal junction, de
fined as the maximum value of the transport currentj T flow-
ing through the junction without creating a voltage dro
does not coincide with the maximum inj s(f). This is due to
the presence of phase-dependent injection currentj V(f)
which contributes toj c , along with the Josephson curren
and adjusts its magnitude providing zero voltage drop acr
the junction. At large voltage, where the Josephson curren
suppressed, the domain of the Josephson-like regime is
termined by the amplitude of phase oscillations of the exc
current in the injection electrode.

The behavior of the injection current is highly sensitive
the quasiparticle spectrum of the junction and can be use
detect the position of the phase-dependent proximity gap
particular, the differential conductance of the junction w
perfect interfaces exhibits sharp peaks at the bulk gap va
eV5D, and at the proximity gap,eV5uDfu; the latter be-
comes more pronounced as the resistance of the injec
lead increases. Furthermore, the differential resistance ex
its full-scale oscillations with the phase difference; ateV
,D, the shape of the oscillations becomes rather comp
due to the interplay between the position and amplitude
the proximity gap resonance.
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