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Heisenberg magnet with modulated exchange

I. A. Zaliznyak
Brookhaven National Laboratory, Upton, New York 11973-5000, USA

~Received 17 June 2003; published 29 October 2003!

A modification of the ground state of the classical-spin Heisenberg Hamiltonian in the presence of a weak
superstructural distortion of an otherwise Bravais lattice is examined. It is shown that a slight modulation of the
crystal lattice with wave vectorQc results in a corresponding modulation of the exchange interaction which, in
the leading order, is parametrized by no more than two constants per bond, and perturbs the spin Hamiltonian
by adding the ‘‘umklapp’’ terms;Sq

aSq6Qc

a . As a result, for a general spin-spiral ground state of the nonper-
turbed exchange Hamiltonian, an incommensurate shift of the propagation vectorQ and additional new mag-
netic Bragg peaks, atQ6nQc , n51,2,..., appear, and its energy is lowered as it adapts to the exchange
modulation. Consequently, the lattice distortion may open a region of stability of the incommensurate spiral
phase which otherwise does not win the competition with the collinear Ne´el state. Such is the case for the
frustrated square-lattice antiferromagnet. In addition, the umklapp terms provide a commensuration mecha-
nism, which may lock the spin structure to the lattice modulation vectorQc , if there is sufficient easy-axis
anisotropy, or a magnetic field in an easy plane.

DOI: 10.1103/PhysRevB.68.134451 PACS number~s!: 75.10.2b, 75.25.1z, 75.50.2y
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I. INTRODUCTION

An interplay between the distortion of a crystal lattice a
the magnetic properties of the material has recently becom
subject of renewed interest. One problem which provid
strong motivation for studying the effect of a weak sup
structural modulation on the spin system is that of strip
phases.1,2 These charge-ordered states are found in ligh
doped high-Tc cuprates La22xSrxCuO41y ~LSCO! and in re-
lated nickelates, and are always associated with a weak
perstructural distortion of the original ‘‘stacked square l
tice’’ structure of the undoped parent materia
Incommensurate magnetism in these compounds is usu
interpreted in terms of the segregation of the doped cha
into lines which separate the antiferromagnetic doma
~‘‘stripes’’ !, characteristic of the undoped material. There
also a modulation of the crystal structure induced by
charge-stripe segregation, but it is often too small to be
served in experiment.1 It is clear that the essential effect o
the stripe order on the spin system of cuprates is that
periodic modulation of the exchange coupling in the Heis
berg spin Hamiltonian which describes their magne
properties.3 However, only the simplest ‘‘average’’ conse
quence of stripe superstructure, in the form of the effect
weakening of the exchange coupling in the direction perp
dicular to stripes, has been considered so far.4 A similar prob-
lem, of an interplay between the spin order and a coopera
Jahn-Teller distortion accompanying the charge order, ar
in the context of the charge-ordered phases in do
manganites.5

A number of examples not related to charge ordering
no less interesting involve an intriguing interplay betwe
small superlattice modulation and spin structure in sp
frustrated antiferromagnetic dielectrics. In the square-lat
antiferromagnet, a distortion could actually be the source
the frustration. For example, it may generate a well-kno
generalized Villain model.6 In the triangular-lattice antiferro
magnet~TLA !, a weak distortion may partially release fru
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tration, and result in complicated spiral phases. Among
simple realizations of the distorted TLA are the so-call
‘‘row models’’ which were extensively studied in th
past.7–10 However, previous studies were mainly restricted
a specialized analysis of a few particular models; no gen
approach that would allow a unified treatment of the effect
a small lattice distortion on a spin system has been de
oped so far.

A number of interesting experimental examples of d
torted triangular lattice antiferromagnets~DTLA’s !, which
instigated this study, are found among the CsNiCl3-type
compounds with the general chemical formulaABX3 . In the
~anti!ferroelectric phases that are realized in some of th
materials at low temperatures relevant for the magnetic
der, theP63 /mmchexagonal symmetry in which they crys
tallize is lowered, and a fully frustrated triangular lattice i
herent in the original CsNiCl3-type ‘‘stacked triangular
lattice’’ crystal structure is slightly distorted. Typically, th
high-temperature hexagonal structure with a Bravais lat
of equivalent magnetic B21 sites is changed to either a he
agonalP63 /cm structure with a three times larger unit ce
or to a large-cell orthorhombic structure. These superstr
tures are characterized by the appearance of the superla
Bragg reflections atQc5(h,h,0),11 with h5 1

3 , or h5 1
4 , 1

8,
..., respectively. In some cases, as in KNiCl3 , both phases are
found to coexist at low temperature.12 Perhaps the most in
triguing is the case of RbMnBr3 , in which most experiments
find the orthorhombic low-T phase,13–15 and an incommen-

surate spiral spin structure with propagation vectorQ5( 1
3

1q, 1
3 1q, 1),13–16 in place of the commensurate ‘‘triangu

lar’’ antiferromagnetic order withQ5( 1
3 , 1

3 , 1), which is
characteristic of the nondistorted hexagonal mater
CsMnBr3 , CsNiCl3 , etc.17–19 In a magnetic field of about 3
T applied in the easy plane the spin structure becomes c

mensurate, withQ5( 1
8 , 1

8 , 1). In the similar orthorhombic
modification of KNiCl3 , which is a related material but with
©2003 The American Physical Society51-1
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I. A. ZALIZNYAK PHYSICAL REVIEW B 68, 134451 ~2003!
an easy-axis spin anisotropy, this latter structure is reali
already atH50.

Until now, these experimental findings remained to a la
extent unexplained. One reason for this is that traditiona
the effect of each particular lattice distortion on the sp
Hamiltonian was considered separately, by devising a s
cific, generally multisublattice spin model~e.g., the row
models!, where the distortion simply defines the particu
setup of the near-neighbor exchange interactions. For lo
period structural modulations, this approach leads to mo
with a large number of inequivalent spin sites@e.g., up to 8

for Qc5( 1
8 , 1

8 , 0)], resulting in tremendously complicate
spin Hamiltonians, and therefore the analysis has never b
carried through. The same problem is outstanding for
stripe phases in LSCO cuprates, where the most stable
perstructure has a pitch of about1

8 @curiously, it is the same
as that of the antiferroelectric lattice distortion in RbMnB3
~Ref. 13!#. In addition, the modulation has an even long
period at small doping, and, in general, can also be inco
mensurate. Here we devise an alternative approach, w
lays grounds for the consistent and general explanation
spin incommensurability, commensuration transition, a
other phenomena arising from the lattice distortion, that w
mentioned above. We treat the effect of anarbitrary but
small lattice distortion on the microscopic spin Hamiltonia
in the perturbation framework. The analysis in this pap
most directly applies in the case of the dielectrics with loc
ized spins, although we expect it to hold also for the dop
perovskites, to the extent that the itineracy effects can
neglected.

Consider a system ofN equivalent spins on a simple Bra
vais lattice, coupled by Heisenberg exchange interactio
The model Hamiltonian, which allows also for a uniaxi
spin anisotropy and a Zeeman energy, is

H5(
i , j

Ji j Si•Sj1D(
i

~Si
z!22(

i
h•Si , ~1!

where Ji j 5Jji parametrize the exchange coupling betwe
the spins at lattice sitesi and j, D is the anisotropy constan
andh5gmBH is the magnetic field. Without the anisotrop
and magnetic field, the classical ground state of Eq.~1! is a
planar spin spiral,20–24 Sj5(Scosuj , Ssinuj , 0), u j5(Q
•r j ). The ordering wave vectorQ corresponds to the mini
mum of the lattice Fourier transform of the exchange int
action, Jq5( r i j

Ji j exp(2iq•r i j ), r i j 5r j2r i @this includes

ferro- and antiferromagnetism, corresponding toQ50 and,
e.g.,Q5(p,p,p), respectively#. For nonzeroD and h, the
spin structure is, in general, modified by the appearanc
higher-order harmonics in the lattice Fourier transform of
spin distributionSq5( r j

Sj exp(2iq•r j ), with the wave vec-

tors Qn5nQ, in addition toSQ .25–27 For smallD andh the
corresponding terms in the Hamiltonian~1! can be treated a
a perturbation. The perturbation expansion for the correc
to the spiral winding angle has the formdu j
5(n@an cos(nQ•r j )1bn sin(nQ•r j )#, where the coeffi-
cientsan andbn are of the orderO@(uDu/J)n/2,(h/J)n#.26
13445
d

e
y,

e-

r
g-
ls

en
e
u-

r
-

ch
of
d
e

r
-
d
e

s.

n

-

of
e

n

In this paper we consider what happens to the class
spiral ground state of the Hamiltonian~1! if a weak super-
structural modulation of the original Bravais lattice appe
in the crystal whose spin system it describes. It is clear t
results obtained for classical spins are subject to correct
from quantum and thermal fluctuations, and these are o
crucial. Nevertheless, if we find the spiral state that has
lowest energy already on the classical level, inclusion of
1/S corrections may still result in this state being the grou
state~clearly, this will always be the case for large enou
spinS!. In fact, this may appear to be the case even for sm
spins, so long as the spin-wave theory holds. While acco
ing for the fluctuations is important, it falls beyond the sco
of this paper and is deferred to further studies.

II. SUPERLATTICE DISTORTION AND THE SPIN
HAMILTONIAN

Consider a slight distortion of the crystal structure whi
is characterized by the appearance of additional, weak su
lattice Bragg reflections at wave vectors6Qc in the Bril-
louin zone of the nondistorted Bravais lattice. Most gen
ally, such a superstructure corresponds to a small harm
modulation of the positionsr j

m of the ions and the characte
istic symmetry points of the local electron-density distrib
tion ~orbitals! in the lattice,

~r j
m!85r j

m1ej
m , ej

m5e1
m cos~Qc•r j

m!1e2
m sin~Qc•r j

m!.
~2!

Here j numbers the sites of the original Bravais lattice
magnetic ions,28 andm indexes positions of ligands and sym
metry points of the magnetic orbitals within the unit cell. It
shown in the Appendix that a leading correction to the e
change coupling in this case is most generally expressed

Ji j8 5 J̃i j 1 j i j8 cos~Q̃c•Ri j !2 j i j9 sin~Q̃c•Ri j !, ~3!

where Ri j 5
1
2 (Ri1Rj ) is the middle of theij bond, j i j8

5 j j i8 , j i j9 5 j j i9 are real and symmetric, and, most important
satisfy all symmetries of the original lattice which leaveQc

and the polarizationse1
m , e2

m invariant; the same is true fo

J̃i j . In particular, J̃i j , j i j8 , and j i j9 are invariant under the

translation group of the nondistorted lattice. Finally,Q̃c
5nQc , wheren51,2 is the order of the leading correctio
to Ji j of Eq. ~3! in terms of the small parametere
;(e1,2

m /r i j )!1 ( j i j8 , j i j9 ;enJi j ).
29

In the first order ine, lattice modulation~2! results in the
modulation of the exchange couplingJi j8 with the same wave

vector Qc . It is described by Eq.~3!, with Q̃c5Qc , J̃i j

5Ji j , and j i j8 , j i j9 , defined by Eqs.~A16! and ~A17! of the
Appendix. The structure of the expressions forj i j8 , j i j9 is
quite illuminating. There are two contributions, one of whi
is ;sin(Qc•r i j /2), and therefore antisymmetric with respe
to Qc→2Qc , and the other depends on the relative alig
ment of Qc and the distortion polarizations with respect
the bond geometry. Only the first contribution survives in t
simplest case when exchange depends on the bond le
1-2
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HEISENBERG MAGNET WITH MODULATED EXCHANGE PHYSICAL REVIEW B68, 134451 ~2003!
alone,Ji j 5J(r i j ); in this case the bonds that are perpendi
lar to Qc are not changed by the lattice distortion.

In many important cases the first-order corrections van
and the leading correction in Eq.~3! is ;e2Ji j , in which
caseQ̃c52Qc , andj i j8 , j i j9 are given by Eqs.~A9!–~A12!. In
general, the latter have to be amended in accordance
Eqs.~A14! and~A15!. Importantly, aQc-independent contri-
bution which determines the leading correction to the bo
strengthJi j ,

J̃i j 5Ji j 1dJi j , dJi j ;e2, ~4!

always appears in this order. Because the correction to
bond strength,dJi j , arises from replacing 2 cos2(Qc•Ri j ),
2 sin2(Qc•Ri j ), with cos(2Qc•Ri j )61, it is directly related
with the amplitudes of the exchange modulation. Ea
second-order term that contributes toj i j8 , j i j9 , also adds to
dJi j , this is explicit in Eq.~A8!. As before, there are two
contributions to j i j8 , j i j9 ; the one that survives forJi j

5J(r i j ) does not affect the bonds that are perpendicula
Qc , but is now symmetric with respect toQc→2Qc .

Accounting for the corrections to the bond strength, E
~4!, is straightforward and does not require any additio
consideration. It simply amounts to a change in the Four
transformed exchange couplingJq , which determines the
ground-state energy and the spin-wave spectrum of
Hamiltonian ~1!.20–26 The significance of this correction
however, is in that a change inJq applies directly to the
ground-state energy, which therefore is corrected in the s
order,O(e2). As we shall see below, the first-order cont
bution to the exchange modulation in Eq.~3!, O(e), corrects
the ground-state energy of the spin Hamiltonian~1! only in
the second order of perturbation. Therefore, except for s
cial cases,30 these two contributions have to be treat
equally.

To summarize, a superlattice distortion~2! leads to a har-
monic modulation of the exchange coupling, with either t
same wave vectorQc , if it appears as a first-order correctio
to Ji j , or with the wave vector 2Qc , if it appears in the
second order,;e2. There is also a second-order correcti
to the bond strength. In the most general case these are
scribed by Eq.~3!. In what follows, we study the effect of th
exchange modulation on the ground state of the excha
part of the spin Hamiltonian~1! ~i.e., the caseD5H50),
which now reads

H5(
i , j

~Ji j 1 j i j e
iQc•Ri j 1 j i j* e2 iQc•Ri j !Si•Sj . ~5!

Here we have introduced a complexj i j 5 j i j8 1 i j i j9 , and omit-
ted the tildes, keeping implicit thatQc , Ji j , j i j8 , j i j9 are all
appropriately chosen in accordance with the situation, as
cussed above. While in the absence of the distortionJi j
would satisfy all symmetries of the lattice, exchange co
stants in Eq.~5! possess only those symmetries of the und
torted lattice which preserveQc and the polarizationse1

m , e2
m

~this includes all translations!.
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III. CLASSICAL GROUND STATE OF THE MODULATED-
EXCHANGE HAMILTONIAN

To proceed with finding the ground state of th
modulated-exchange Hamiltonian~5!, we first rewrite it in
terms of the lattice Fourier transforms, taking advantage
the lattice translational symmetry,

H
N

5(
q

$JqSq•S2q1 j q1Qc/2Sq•S2q2Qc

1 j q2Qc/2* Sq•S2q1Qc
%. ~6!

Here j q5( r i j
j i j exp(2iq•r i j )5 j 2q , similar with the Fourier

transformsJq and Sq introduced above. We note, howeve
that unlikeJq which is real, j q is, in general, complex, so
j q* Þ j 2q .

A. General approach

A general approach to finding the classical ground st
for a system ofN equal spins on a simple Bravais lattice th
are coupled by isotropic Heisenberg exchange interac
was developed in Refs. 20–22, and recently discusse
Ref. 26. We need to solve the mathematical problem of fi
ing the absolute minimum of a function~6!, which depends
on N classical vector variablesSq underN constraints,

Sj
25S2, ; j , ~7!

that are imposed on the length of classical spins. In term
the Fourier components these constraints become

(
q8

Sq8•Sq2q85S2dq,0 , ;q, ~8!

wheredq,q8 is the three-dimensional~3D! Kronekker sym-
bol. Upon introducingN Lagrange multiplierslq a straight-
forward variation leads to the following equations for th
spin structure that minimizes the Hamiltonian~6!,

JqSq1 j q2Qc/2Sq2Qc
1 j q1Qc/2* Sq1Qc

2(
q8

lq8Sq2q850,

~9!

; q, which have to be solved together with Eq.~8!. Substi-
tuting these into Eq.~6!, we obtain the ground-state~GS!
energy per site,

EGS

N
5l0S2, ~10!

which depends only onlq with q50. While this suggests
searching for the solution withlq5l0dq,0 , it is easily veri-
fied by direct substitution that Eq.~9! does not allow any
nontrivial solutions of this type forj qÞ0. In fact, using such
an ‘‘ansatz’’ for lq is equivalent to replacing Eq.~7! with a
single ‘‘weak’’ condition, ( jSj

25NS2. This ‘‘weak’’ condi-
tion approach, also known as the Luttinger-Tisza meth
was widely employed throughout the early studies of co
plex spin structures,20–24 as it does lead to the correct solu
tion in several important particular cases, including the c
1-3
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I. A. ZALIZNYAK PHYSICAL REVIEW B 68, 134451 ~2003!
of a simple exchange spiral. General reasons for the fai
of this approach, which, in particular, occurs for Hamiltoni
~1! with DÞ0, HÞ0, were discussed in Ref. 26. The curre
situation, in the form of Eqs.~6! and ~9!, presents anothe
example of such failure.

An alternative approach to finding the ground state a
the spin-wave spectrum of the Hamiltonian~1! for small D
andh was used in Refs. 26 and 27. It is based on a per
bative solution for the real-space spin structure that is
tionary with respect to small deviations in the form of
slightly distorted flat spiral. The correction to the spir
winding angle,u j , was obtained in the form of the expan
sion, du j5(n @an cos(nQ•r j )1bn sin(nQ•r j )#, where the
coefficientsan andbn are of the orderO„(uDu/J)n/2,(h/J)n

….
As a result, additional harmonics in the Fourier transform
the spin structure, at wave vectors6nQ, n52,3,..., and a
magnetizationS0 , appear. In fact, the same result can
obtained from the conditional minimization of the Ham
tonian ~1! outlined above, if a perturbative solution
searched in the form of aharmonic expansion, lq
5(nlndq,nQ , wherelnÞ0;O„(uDu/J)1/2,h/J…•l unu21 , and
Sq5(nSnQdq,nQ , uSnQu;O(l unu21). It is this approach,
which is both natural and straightforward to apply to t
Hamiltonian~6! in order to obtain the spin-wave expansio
upon expressing spins through magnon creation/annihila
operators,31 that we shall employ here.

B. Harmonic expansion for modulated exchange

Because the modulated-exchange terms in the spin Ha
tonian allow the umklapp processes which coupleSq and
Sq6Qc

and, consequently, couple these Fourier compon
in Eq. ~9!, we search for the solution of the Eqs.~8! and~9!
in the form of the expansion

Sq5(
n

$SQ1nQc
dq,Q1nQc

1SQ1nQc
* d2q,Q1nQc

%, ~11!

where SQ1nQc
;O(en). Substituting this into Eq.~9! it is

easy to see that a nontrivial solution requires thatlq50
unlessq6(Q1nQc)56(Q1n8Qc) is satisfied for somen
andn8. Therefore the general solution forlq can be written
as

lq5(
n

lndq,nQc
, ~12!

where ln;O(e unu). Here and below, if the limits are no
specified explicitly, it is implied that the summation exten
over all integers~this, in particular, implies taking the ther
modynamic limit, N→`).32 With Eqs. ~11! and ~12! the
energy-minimum conditions of Eqs.~9! become

JQ1nQc
SQ1nQc

1 j Q1~n21/2!Qc
SQ1~n21!Qc

1 j Q1~n11/2!Qc
* SQ1~n11!Qc

2(
n8

ln8SQ1~n2n8!Qc
50,

~13!
13445
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; n. Subsequently, upon substituting Eq.~11! into Eq. ~8!,
the equal-spin constraint is rewritten as

(
n8

~SQ1n8Qc
•SQ1~n2n8!Qc

!50, ~14!

2(
n8

~SQ1~n1n8!Qc
•SQ1n8Qc

* !5S2dn,0 , ~15!

; n. At this point, Eqs.~13!–~15! are still a complicated
nonlinear system of equations, and remains such even if
retain only the terms;O(e) which determine the lowest
order corrections to the simple exchange spiral.

C. Exchange symmetry

Further progress into finding the perturbative solution
Eqs.~13!–~15! which would describe a weakly distorted e
change spiral,$SQ1nQc

;ln%, is made by employing a power
ful ‘‘exchange symmetry’’ argument, which relates back
the Landau theory of phase transitions. It was develope
Ref. 33 as a basis for the unified Lagrangian description
the long-wavelength, macroscopic dynamics of the com
cated spin systems with complex order parameters, includ
spin glasses. Subsequently, this approach was used with
success, in particular, for calculating the low-energy spin
namics in a variety of situations encountered in the nonc
linear ground states of CsNiCl3-type triangular-lattice
antiferromagnets.8,34–36It is based on a very simple observ
tion, that a macroscopic Lagrangian~or a Hamiltonian! of a
spin system in a state which is described by an order par
eter ~at T'0), when expressed in terms of the canonic
variables that parametrize the long-wavelength dynamics
this order parameter, has to satisfy all remaining symmet
of the ground state~order parameter!. Practically, this works
as follows. In exchange approximation, possible grou
states are few, easily classified, and Lagrangians are
tively easy to write. Perturbation account for the anisotro
magnetic field, etc., adds terms to the Lagrangian~Hamil-
tonian!, which are expansions in powers of the order para
eter, and whose general form is essentially determined by
above symmetry requirement.

We extend the exchange symmetry argument to the
croscopic description of the present paper by nothing that
long as the solution of Eqs.~13!–~15! is a weakly distorted
simple exchange spiralSj5SQ exp(iQ•r j )1SQ* exp(2iQ
•r j ) ~i.e., no independent order parameter appears in add
to SQ), and if the perturbation does not violate the O~3! spin
symmetry of the initial exchange Hamiltonian, all vectors
spin spaceSq that define the corrections to the initial ex
change structure, have to be proportional toSQ . In other
words, the only ‘‘selected’’ directions in spin space whic
can determine direction of spin vectors in the perturbat
series are those resulting from the spontaneous breakin
the spin symmetry that already exists in the nonpertur
system, i.e., those defined bySQ . This holds for the Hamil-
tonian ~5!, because the modulated-exchange terms pres
the O~3! spin symmetry. Consequently, we write
1-4
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HEISENBERG MAGNET WITH MODULATED EXCHANGE PHYSICAL REVIEW B68, 134451 ~2003!
SQ1nQc
5«nSQ , S2Q1nQc

5«2n* S2Q , ~16!

where«n;O(en), and«0[1. This simplifies Eqs.~13!–~15!
tremendously, as they shall now involve only scalar variab
«n , ln . In addition, Eq.~14! is automatically satisfied fo
(SQ)250, which holds in the case of a simple exchange s
ral. It requires that spin vectors of real and imaginary parts
SQ5S81 iS9 are mutually perpendicular, (S8•S9)50, and
have equal length. This length is determined from Eq.~15!,

uSQu25uS8u21uS9u25
S2

2(nu«nu2 , ~17!

along with the following set of conditions on«n :

(
n850

n

~«n2n8«2n8
* !1 (

n851

`

~«n1n8«n8
* 1«2n8«2n2n8

* !50,

~18!

which have to be satisfied; n.0. The energy minimum
conditions of Eqs.~9! and ~13! become, on account of Eq
~16!,

JQ1nQc
«n2 (

n850

n

ln8«n2n8

1 j Q1~n21/2!Qc
«n211 j Q1~n11/2!Qc

* «n11

2 (
n851

`

~ln1n8«2n81ln8
* «n1n8!50, ~19!

; n>0. Similar equations forn,0 are solved simulta-
neously with the above, provided that

l2unu5l unu* , ~20!

in which case they are simply complex conjugates of E
~13! and~19!. We note thatS2q5Sq* becauseSj are real, so
Eqs. ~20! just require that Lagrange multipliers used to a
count for the conditions~7! are also real. On the other han
«2nÞ«n* . The solution$«n ;ln% of Eqs.~18! and~19! deter-
mines the minimum-energy configuration of the equal-len
spins through Eqs.~11!, ~16!, and~17!.

D. Recursion for the perturbation series and the
leading-order solution

Although they superficially look cumbersome, Eqs.~18!
and ~19! are well suited for the perturbation treatment. I
deed, because

lnSQ1n8Qc
;O~e unu1un8u!, ~21!

it is easy to see that the first line in Eq.~19! is ;en, the
second line, except forn50, when both terms in it are;e2,
contains a term;en, and a term;en12, and the last line,
like the last sum in Eq.~18!, sums up contributions
;en12n8, n851,2,..., i.e., overall isO(en12). Starting with
«051, this defines a set of recursion relations which de
13445
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mine $«n ;ln% for any given n through their values for
1,2,...,n21. In particular, the leading-order,;O(en), condi-
tion on «n is

«n1«2n* 52 (
n851

n21

~«n2n8«2n8
* !1O~en12!, ~22!

or, explicitly for the first few orders,

«11«21* 5O~e3!, ~23!

«21«22* 5«1
21O~e4!, ~24!

«31«23* 5«1~«22«22* !1O~e5!, ~25!

... .

The leading-order correction tol0 , which determines the
ground-state energy, appears in the second-order pertu
tion, ;e2. In the same order appears the intensity of the n
magnetic Bragg peaks,;uSQ6Qc

u2, that are induced by the
exchange modulation. Up to this order, we obtain from E
~19!

l05JQ1~ j Q2Qc/22l1!«211~ j Q1Qc/2* 2l1* !«11O~e4!,

~26!

l15 j Q1Qc/21~JQ1Qc
2l0!«11O~e3!, ~27!

l1* 5 j Q2Qc/2* 1~JQ2Qc
2l0!«211O~e3!, ~28!

which, on account of Eq.~23!, have the solution

«15
j Q2Qc/22 j Q1Qc/2

JQ1Qc
1JQ2Qc

22JQ
1O~e3!, ~29!

with «2152«1* 1O(e3) ~for now, we exclude from consid
eration a singular case,JQ1Qc

1JQ2Qc
52JQ). The ground-

state energy is then determined by

l05JQ2
u j Q2Qc/22 j Q1Qc/2u2

JQ1Qc
1JQ2Qc

22JQ
1O~e4!, ~30!

and, unlessj Q2Qc/25 j Q1Qc/2 and the correction vanishes,
is lower than that of the initial, nondistorted exchange spi
becauseJQ is a minimum value ofJq , and thereforeJQ1Qc

1JQ2Qc
22JQ>0. This is in agreement with a very gener

argument, that a nonvanishing second-order perturbation
rection always lowers the ground-state energy.

E. Some remarks

It is useful to express the results obtained in the previ
section in terms of the spin-wave spectrum,

vq5SA2~Jq2JQ!~Jq1Q1Jq2Q22JQ!, ~31!

and theq-dependent transverse~perpendicular to the spin
plane! classical static staggered spin susceptibility,37
1-5



v
t

th

a
in

d
g

ge

ay
gh

es
n
te
v

re

n
us

ic
y

ri
to

p-

e

le,

ex-
y in-
ge

to

di-

llo-

the

cel
pin

the
-
D,
e

. In
d, as
n
e it
the

pin
ng
d

I. A. ZALIZNYAK PHYSICAL REVIEW B 68, 134451 ~2003!
x'~q!5
1

2~Jq2JQ!
, ~32!

of the initial, nondistorted, single-Q exchange spiral. The
leading new Fourier components of the spin density,SQ6Qc

of Eqs.~16!, ~29!, are

SQ1Qc
5S j QÀQc/22 j Q1Qc/2

x'~Qc!vQc

2 S22 D SQ1O~e3!, ~33!

SQ2Qc
5S 2 j Q2Qc/2* 1 j Q1Qc/2*

x'~Qc!vQc

2 S22 D SQ1O~e3!. ~34!

It is clear now that the singular case mentioned in the pre
ous section corresponds to the exchange modulation with
wave vector at which the spin-wave energy vanishes. In
case, unless the numerator in Eqs.~33! and~34! is also zero,
the leading corrections diverge, and the perturbation
proach fails. Generally, there are two soft spots in the sp
wave spectrum of the exchange spiral. They correspon
the Goldstone modes atq50 and at the magnetic orderin
wave vector, q5Q. For Qc5Q, the numerator, (j Q/2
2 j 3Q/2), is, in general, nonzero and the corrections diver
Unlessq50 is a special~extremum! point of j q , the nu-
merators in Eqs.~33! and ~34! vanish;Qc in the limit Qc

→0, while vQc

2 in the denominator is&Qc
2. Therefore for a

sufficiently long-wavelength distortion the corrections m
become arbitrarily large. It is not at all unexpected, thou
that the perturbation approach fails extrapolation toQc50,
where the modulation is absent, andSQ6Qc

[SQ .
Additional soft regions, such as the lines of soft mod

often appear in frustrated spin systems, due to the accide
cancellation of the interactions. In such cases the spin sys
is extremely sensitive to structural modulation with the wa
vector that is close to the soft region~s! of the dispersion. The
same is true for distortions that propagate along the di
tion~s! of weak interaction~and weak magnon dispersion! in
quasi-low-dimensional spin systems.

From Eqs.~10! and ~30!, the ground-state energy is

EGS

N
5JQS22

u j Q2Qc/22 j Q1Qc/2u2S4

x'~Qc!vQc

2 1O~e4!. ~35!

In the general case, it is lowered in response to the excha
modulation. This occurs as a result of the appropriate adj
ment ~bunching! of the initial, single-Q spiral spin structure
through the appearance of the additional Fourier harmon
SQ1nQc

, n561,62,... . In addition, the pitch of the primar
spiral component,SQ , may also change,Q→Q̃, because the
spiral propagation vectorQ̃ is now defined by the minimum
of the corrected energy, Eq.~30! or Eq. ~35!. In the case
where the modulation of the crystal structure is long pe
odic, i.e., for smallQc!1, and assuming that correction
the propagation vector,dQ5Q̃2Q, is small, udQu!Q, we
can expandJQ̃6Qc

and j Q̃6Qc/2 in Taylor series and obtain
13445
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l05JQ1
1

2
~dQ•“ !2JQ

2
3u~Qc•“ ! j Qu2

~dQ•“ !@~Qc•“ !2JQ#13~Qc•“ !2JQ
1O~e3!,

~36!

where“5]/]q. Note that unlike Eqs.~33! and ~34! this,
generally, does not diverge forQc→0. If, in the correction
term, we cancelQc

2 and then expand the denominator kee
ing only the leading term indQ, Eq. ~36! takes the form
l05JQ1c01c1(dQ)1c2(dQ)2, with c15O(e2) and c2
5O(e). Clearly, minimum of this expression occurs, in th
general case, for nonzerodQ5O(e). However, if the linear
term ;dQ in the denominator of Eq.~36! vanishes, then
dQ50. Also, in many important cases such as, for examp
the nearest-neighbor nonfrustrated antiferromagnet,Q is a
special symmetry point ofj Q ( j Q;eJQ), and the correction
term identically vanishes by symmetry. Therefore simple
change structures, such as antiferromagnets, are usuall
sensitive to small long-periodic modulations of the exchan
coupling in the spin Hamiltonian~5!.

IV. SOME EXAMPLES

Now we shall apply the formalism developed above
several representative one- and two-dimensional~1D and
2D! systems. The fact that the ordered mean-field~MF!
ground state, such as that analyzed in this paper, in low
mension is unstable against the fluctuations38 will not be a
concern here. First, a single-Qc structural distortion consid-
ered in this paper is homogeneous within the crysta
graphic planes that are perpendicular toQc . In many cases
these planes contain one or two unit-cell directions, so
modulation only exists along the remaining direction~s!, and
the distortion is explicitly 2D, or 1D, respectively~cf. Fig.
1!. The bonds that are not changed by the distortion can
out in the resulting expressions for the corrections to the s
structure and to the ground-state energy, Eqs.~29! and ~30!.
Therefore, even though the Hamiltonian~1! may be on a 3D
lattice, the distortion corrections will be the same as for
lower-dimensional system. Also, in many quasi-low
dimensional materials the essential physics is 1D or 2
while the MF order is stabilized by weak interaction in th
remaining direction~s!. Such is the case of high-Tc cuprates
which are made of two-dimensional square-lattice layers
the presence of a charge order the layers are modulate
illustrated in Fig. 1~b!. In fact, the MF analysis has certai
value even for purely low-dimensional systems, becaus
highlights possible phases and instabilities, and guides
behavior of the critical points, at least asymptotic (S→`).

A. n-merized 1D antiferromagnetic chain

As a simple example, consider the antiferromagnetic s
chain with n-periodic nearest-neighbor exchange coupli
~the ferromagnetic case,J,0, is trivial, because small bon
modulation has no effect on the ground state!. It corresponds
1-6
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to a modulation withQc52p/n, Fig. 1~a1!. In this case,
Jq52J cosq, j q52 j cosq, the modified GS energy is dete
mined by

l052J cosQ~11u j /Ju2tan2 Q!, ~37!

FIG. 1. Examples of the modulated exchange patterns discu
in the text. Different bond thicknesses illustrate different coupl
strengths. ~a1! n-merized 1D chain with modulated neares
neighbor coupling,Qc52p/n; ~a2! dimerized (n52) antiferro-
magnetic chain with frustrating next-nearest neighbor coupli
4J2>J1 . ~b! ‘‘Stripes’’ on a square lattice with diagonal modula
tion, Qc5(2p/n,2p/n); n54 case is shown.~c! Generalized
‘‘staggered row model’’ on a triangular lattice, obtained withQc

5(2p/n,2p/n). Shown is the case ofn54; n equals 8 in the
practical case of RbMnBr3 .
13445
and does not depend onn. Clearly, there are new local ex
trema at cos2 Q'uj/Ju2, corresponding to a spiral with pitch o
'p/2, which appear on account of the exchange modulat
However, the new minimum is very shallow,l0'24u j u,
much higher in energy than the global minimum,l0
522J, which remains atQ5p.

A more interesting 1D example is illustrated in Fig. 1~a2!,
where in addition to the nearest-neighbor couplingJ1 there is
a frustrating next-nearest-neighbor exchangeJ2 . In this case
Jq52J1 cosq12J2 cos 2q and, for 4J2>J1 , frustration~for
classical spins! results in a spiral MF ground state, with
pitch defined from the condition cosQ52J1/4J2 . For the
sake of simplicity we consider only modulation of th
nearest-neighbor coupling, i.e.,j 250. In this case, as before
j q52 j 1 cosq, and

l05JQ1
2u j 1u2sin2 Q

J1 cosQ14J2 cos2
p

n
cos 2Q

. ~38!

The minimum of this expression is achieved forQ̃5Q
1dQ which differs fromQ5cos21(2J1/4J2). For smalldQ
the leading correction is

dQ5U j 1

2J2
U2 cos2 Q2cos

2p

n

tanQS 12cos
2p

n
cos 2QD 2 , ~39!

and diverges forQ→p, i.e., for a frustrated 1D antiferro
magnet withJ250.25J1 . Perhaps this interesting finding i
an indication of an instability towards a spontaneo
n-merization and a spin gap formation in the vicinity of th
point. In fact, forS5 1

2 quantum spin chain the whole regio
J2.J2c'0.25J1 is believed to belong to a spin-ga
phase,39–41including the special point,J250.5J1 , where the
spontaneously dimerized ground state is known exactl42

While the most recent numerical estimate forS5 1
2 chain is

J2c'0.24J1 ,41 a J2c50.25J1 for S→` coincides with the
earlier result obtained from the semiclassical mapping on
nonlinear sigma model.39 Clearly, studying the susceptibility
of spin system towards bond modulation is a proper way
investigate its instability towardsn-merization~plaquette for-
mation! and to characterize the corresponding phase
gram. To this end it seems possible to develop a perturba
approach similar to the one presented here and starting
the Hamiltonian~5! also for quantum spins, but this goes f
beyond the scope of this paper.

B. Square-lattice antiferromagnet with diagonal modulation

A square-lattice, nearest-neighbor antiferromagnet w
diagonal modulation corresponds toQc5(2p/n,2p/n), Fig.
1~b!, and may be of direct relevance for the charge-orde
stripe phases in doped LSCO cuprates and related per
kites. In the isotropic case the bond strengths and the mo
lation amplitudes are equal in two directions,Jq52J@cos(q
•a1)1cos(q•a2)#, j q5eJq , and, upon switching toQ5q
•@(a11a2)/2# andQ85q•@(a12a2)/2#, the problem is fac-

ed

,

1-7
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I. A. ZALIZNYAK PHYSICAL REVIEW B 68, 134451 ~2003!
torized and reduced to the one-dimensional one consid
above. The distortion-corrected spin GS energy is de
mined by l0 of Eq. ~37!, which is simply multiplied by
cosQ8. As before, we find that nearest-neighbor antifer
magnetism is stable with respect to the bond modulation
fact, the same conclusion is reached even if the amplitud
the bond modulation is different in two directions, so th
j q52 j 1 cos(q•a1)12 j 2 cos(q•a2).

Again, an interesting situation occurs if there is frust
tion. In the case of the square-lattice antiferromagnet i
introduced by the diagonal, next-nearest-neighbor coupl
J8.0. This model has been extensively studied in rec
years,43–48 since it was predicted that in a region of para
eters in the vicinity ofJ/(2J8)51 it has a disordered, spin
liquid ground state.43,44 For S5 1

2 quantum spins this wa
proposed as a possible candidate for the resonating-vale
bond state.49,50 In this case, Jq54J cosQcosQ8
12J8(cos 2Q1cos 2Q8), and, if both side and diagonal bond
are modulated,j q54 j cosQcosQ812j8(cos 2Q1cos 2Q8).
Consequently, we obtain from Eq.~30!

l05JQ1

4 sin2 Qu j cosQ812 j 8 cos
p

n
cosQu2

J cosQ cosQ812J8 cos2
p

n
cos 2Q

. ~40!

In the absence of bond modulation the ground state
determined by the hierarchy of the local minima ofJQ . It
depends on the relative strength of the nearest-neighbor
pling J, and the next-nearest-neighbor, diagonal couplingJ8,
which is parametrized bya5J/2J8. For weak frustration,
a.1, the global minimum is that with sinQ5sinQ850. It
corresponds to the conventional, collinear Ne´el antiferro-
magnetic order with a single propagation vectorQ
5(p,p), and the ground-state energy is (1/N)E(p,p)
524JS2(121/2a). Although there are four equivalentQ
points in the Brillouin zone~BZ!, ~6p,6p!, ~7p,6p!,
which restore the latticeC4 rotational symmetry, they are
related through addition of the appropriate reciprocal-latt
vectorst, so there is no true GS degeneracy in theQ space.
The only GS degeneracy is the rotational symmetry in s
space which corresponds to the O~3! symmetry of the
Heisenberg spin Hamiltonian.

For strong frustration,a<1, additional ground-state de
generacy occurs on the MF level. Fora,1 there are two
nonequivalent lowest-energy minima ofJQ , satisfying
cosQ5cosQ850. They correspond to two pairs of equiv
lent Q points in the BZ~6p,0! and~0,6p!, which represent
the antiferromagnetic order propagating along thex and y
axis, respectively. The GS energy is (1/N)E(p,0)524J8S2

524JS2(1/2a). This double degeneracy inQ space can be
used to construct a continuum of states which are the lin
combinations of the above two. This continuous GS deg
eracy is usually described in terms of two decoupled&
3& sublattices based on the diagonals of the original squ
lattice, which is transparent in the limitJ8@J. Each sublat-
tice has an antiferromagnetic order, but there may be an
bitrary angle between the two, because the mean field f
13445
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one sublattice cancels on the sites of the other. This cont
ous degeneracy is lifted by zero-point or thermal fluctuatio
which prefer collinear arrangements of the two sublattices
the GS. This is a famous example of the order by disor
phenomenon in a frustrated magnet.51,52

The most interesting situation occurs fora51, when, on
the MF level, there is a continuous GS degeneracy eve
the Q space. The minimum condition forJQ becomes
cosQ5cosQ8, and is satisfied for any spiral with the prop
gation vectorQ that belongs to the square with the vertices
~6p,6p!, ~7p,6p!. All these states belong to the glob
minimum, and have the same energy, (1/N)Ea51522JS2

524J8S2. It is this continuousQ space degeneracy whic
is at the origin of the spin-liquid phase conjectured for t
values of a in a finite region around the special pointa
51.43–47

Importantly, fora<1 the spiral states withQ'(p,p) are
in close competition with the collinear states. In particul
consider an extremum ofJQ which is a local minimum along
the diagonal direction, parallel to the lattice modulation wa
vectorQc , whose energy in the absence of the modulation
(1/N)EQ522aJS2. It corresponds to a spiral with th
propagation vector defined byQ850, cosQ52J/2J8, i.e.,
Q5„cos21(2J/2J8),cos21(2J/2J8)… ~there is also a degener
ate state withQ at 90°, respecting theQ↔Q8 symmetry of
the square lattice!. Except fora51 the energy of this extre
mum is higher than that for the decoupled antiferromagn
sublatticesE(p,0) . It is clear, however, from Eq.~40! that,
while the energy of the collinear antiferromagnetic states
insensitive to bond modulation, the energy of the spiral
can be lowered as it adapts to distortion! Therefore, at le
on the MF level, the spiral may become the lowest ene
state~i.e., the ground state! for some range of the paramete
a in the vicinity of 1 @whose width is;O(e2)]. For the
long-periodic modulations,Qc!1, and forj 850, it is easy to
find that spiral phase is stable for 12u j /Ju2<a,1. The
‘‘nominal’’ spiral propagation vectorQ is obtained by mini-
mizing Eq.~40!, similarly with the case of the frustrated 1D
chain. Again, our finding clearly indicates the instability
the frustrated square-lattice antiferromagnet withJ/(2J8)
close to 1 with respect to the bond-modulated states.
selecting spiral spin GS the ‘‘order by distortion’’ mechanis
proposed here competes with the ‘‘order by disorder’’ ph
nomenon, which prefers collinear states. At least for la
enoughS spiral always wins in some vicinity ofa51.

C. Generalized row models on triangular lattice

Because of inherent frustration, the triangular-lattice an
ferromagnet, Fig. 1~c!, is a very interesting case to conside
Without modulation, a minimum ofJq52J$cos(q•a1)
1cos(q•a2)1cos@q•(a11a2)#% is achieved for a commen
surate spiral GS with propagation vectorQ5(2p/3,2p/3).
It corresponds to a noncollinear GS structure where spins
aligned along one of the three directions, at 120° with ea
other. Structural distortion may result in a variety of coupli
patterns where equivalent bonds are related by translat
perpendicular toQc . These can be classified as ‘‘generaliz
row models,’’ the simplest of which is the original row mod
1-8
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HEISENBERG MAGNET WITH MODULATED EXCHANGE PHYSICAL REVIEW B68, 134451 ~2003!
of Ref. 7. It can arise, for example, as a second-order ef
from the distortion withQc5(6p,p). Because 2Qc5t ~t
is a reciprocal-lattice vector!, it is equivalent to a homoge
neous uniaxial compression, i.e., it simply changesJq and
does not result in a bond modulation. Nevertheless,
ground state becomes incommensurate, with pitch of the
ral determined by the coupling anisotropy.7–9

A general modulation of the triangular lattice withQc
5(2p/n,22p/n) results in a ‘‘staggered row model,
where the horizontal rows have equal coupling. On the ot
hand, modulation withQc5(2p/n,2p/n) leads to a ‘‘zigzag
row model,’’ an example of which withn54 is shown in
Fig. 1~c!, and the one withn58 is relevant for the phase
realized in RbMnBr3 and KNiCl3 .12–14 In this case j q
54 j cosQcosQ812j cos 2Q and it is easy to see that th
energy of the modulated state is given by the same exp
sion as for the frustrated square lattice, Eq.~40!, but with
j 85 j andJ85J. As in the previous example, we useQ5q
•@(a11a2)/2# and Q85q•@(a12a2)/2#. Exchange modula-
tion leads to a deviation from the commensurate 120° tri
gular spin structure. The leading correction to the propa
tion vector is determined from cosQ̃521

21d, where

d5U j

JU
2 S cos

p

n
2cos

2p

n D S 5

4
2

9

4
cos

p

n
1

5

2
cos2

p

n D
2S 1

2
1cos2

p

n D 2 .

~41!

In the two limiting cases,n52 and n@1, we find d
5 5

2 u j /Ju2 andd'(p/2n)2u j /Ju2, respectively. It is clear tha
d is small for alln, so there is no evidence for an instabili
towardsn-merization in the case of ideal triangular lattic
Perhaps, such evidence can be found in the anisotro
quasi-1D case, where exchange in zigzag rows is m
smaller than that in straight rows, or vice versa.

V. SUMMARY AND CONCLUSIONS

In a great variety of important practical cases the comp
crystal structure which is at the origin of the intricate ma
netic behavior in magnetic material results from a small
perstructural distortion of a much simpler structure, in wh
the magnetic ions form a primitive Bravais lattice. Reducti
of the crystal symmetry related to the appearance of eve
single, commensurate with the original lattice, superstr
tural Bragg reflection at a wave vectorQc formally requires
folding the original Brillouin zone to a much smaller on
many times reducing its volume. Consequently, the magn
system is usually described in terms of multiple spin sit
and multiple sheets of spin excitations. Not only does t
greatly complicate understanding and predicting magn
properties, such violent modification of theq space clearly
seems an unsatisfactory way to account for a small distor
of the crystal structure. Moreover, BZ folding is not an o
tion for the incommensurate structural modulations, such
arise in various charge-density-wave ordered states.

In this paper the effect of a small lattice modulation w
single propagation vectorQc on the system of localized
13445
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spins, coupled by Heisenberg exchange interaction~1!, was
considered. It was found that lattice distortion results in
modulation of the exchange coupling which, to the lead
order, is parametrized by no more than two constants
bond, Eq.~5! ~this is valid irrespective of whether the spin
are quantum or classical!. There are also corrections of th
order O(e2) ~e is a small parameter that parametrizes t
lattice distortion! to the exchange constantsJi j in the cova-
riant part of the Hamiltonian. It should be noted here th
although the distortion considered is small, the resulting c
rections to the coupling constants need not be small c
pared to the initial values of the couplings in the spin Ham
tonian, which may be small themselves. Therefore the re
expressed by Eq.~5! is quite general and does not automa
cally imply the conditionu j i j u!uJi j u. In other words, the um-
klapp terms;Sq

aSq6Qc

a added to the spin Hamiltonian b

small lattice distortion may be relatively large, even larg
than the original exchange interactions.

While it would be interesting to study the modulate
exchange Hamiltonian for quantum spins and for the a
trary values ofu j i j /Ji j u, it is a formidable task which is be
yond the scope of this paper. Here we developed
perturbative scheme for finding the mean-field ground s
of the Hamiltonian~5! which is valid for classical spins,S
@1, and in the case of small exchange modulation,u j i j /Ji j u
;e!1. One of the initial motivations here was to develop
basis for the spin-wave theory in weakly distorted crys
structures in terms of the modification of the magnon sp
trum in the original, large Brillouin zone of the nondistorte
Bravais lattice. The other, no less important motivation, w
to see whether it would be possible to understand, alread
the mean-field level, the incommensurate phases observe
the distorted triangular-lattice antiferromagnets RbMnB3
and KNiCl3 , and in the doped, distorted square-lattice an
ferromagnets, such as LSCO or related Ni, Mn, and Co m
terials, such as La1.5Sr0.5CoO4.53

The essential results of this paper are expressed by
~29! and~30!, or, equivalently, by Eqs.~33!–~35!. They show
that a transverse, equal-spin spiral structure, which is
ground state of the initial Heisenberg Hamiltonian, adapts
the exchange modulation through appearance of the a
tional Fourier harmonics,SQ1nQc

, n561,62,... ~bunching!.
As a result, in a general case the GS energy is lowered
exchange modulation. In addition, the pitch of the prima
spiral componentSQ may also change,Q→Q̃, because it is
now defined by the minimum of modulation-corrected e
ergy, Eq.~35!.

Applying these results to several particular examples
the topical frustrated spin systems appears quite revea
We find that in the case of the frustrated square-lattice a
ferromagnet with diagonal couplingJ8, such that a
5J/(2J8) is close to 1, lattice modulation opens a region
stability of the incommensurate spiral phase. This ‘‘order
distortion’’ phenomenon54 competes with ‘‘order by disor-
der,’’ which prefers collinear arrangements of two antiferr
magnetic sublattices. The incommensurate spiral phase
the propagation vectorQ̃5(p6d,p6d) close to~p,p! wins
for the rangeO(e2) of the parametera in the vicinity of a
1-9
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51. This provides a plausible explanation for the incomm
surate spin order observed in La1.5Sr0.5CoO4,53 and in a
number of other doped perovskites, and may also be o
direct relevance for the doped LSCO materials. It is imp
tant to mention here that incommensurate spin-orde
phases are among the most interesting and puzzling fea
of doped layered perovskites. In the absence of distor
one needs at least a third-neighbor coupling in order to
bilize spiral MF ground state for the Heisenberg spin Ham
tonian on square lattice.

Exchange modulation in Heisenberg antiferromagnet o
distorted triangular-lattice leads to an incommensurate s
of the spiral propagation vector, in qualitative agreem
with what is observed in RbMnBr3 . However, Eq.~41! im-
plies thatQ̃ is decreased compared toQ5(2p/3,2p/3) for
the ideal triangular lattice, whileQ̃'2p•(0.357,0.357) is
observed in experiments.13,14 Therefore it is likely that the
shift in RbMnBr3 is mainly due to the anisotropic correction
to the nearest-neighbor coupling, which are captured alre
in the simplest row model.8,9 Nevertheless, correction of Eq
~41! is not unimportant. In the case ofn54, which may be
relevant for RbMnBr3 , it gives the same magnitude shift o
the ordering wave vector,dQ, as measured in experimen
for u j /Ju2'0.2 ~for n58, u j /Ju2'1 is needed!.

More importantly, bunching of the spin spiral as a res
of the lattice distortion provides, already on the mean-fi
level, a possible explanation for the commensuration tra
tion in RbMnBr3 and for the long-periodic lattice
commensurate structure in the related phase of KNiCl3 . In-
deed, an easy-axis anisotropy, such as in KNiCl3 , or a
magnetic field applied within the easy plane, as
RbMnBr3 , also lead to bunching of the exchange spir
generating additional Fourier harmonics,Sq , at q5nQ̃,
n562,63,... .26 Appearance of these Fourier components
the spin distribution lowers the spin anisotropy and the Z
man energy, but competes with the modulated excha
which requires additional Fourier components atq5Q̃
1nQc . Therefore for some finite value of the easy-axis a
isotropy, or the in-plane magnetic field, a commensurat
transition may be expected, whereQ becomes equal tomQc
with some integerm. In the lattice-commensurate phase bo
sets of additional harmonics coincide, and both the mo
lated exchange energy, and the spin anisotropy and Zee
energy, can be lowered simultaneously~this, of course,
should offset the increase in the unmodulated exchange
ergy caused by the shift inQ!. Extending the results of this
paper and those of Ref. 26 to the Hamiltonian~1! with
modulated exchange of the Eq.~5! andD, HÞ0 in order to
map out such phase diagram is one of the most obv
directions for further studies.
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APPENDIX: EFFECT OF LATTICE MODULATION ON
EXCHANGE COUPLING

The simplest assumption, and the one which is most o
employed in literature,55 is that the exchange couplingJi j
between the magnetic ions~spins! at positionsr i andr j only
depends on the distance between the sites,Ji j 5J(ur i j u).
However, in magnetic dielectrics this coupling most oft
results from the superexchange and therefore generally
depends on the position~s! of ligand ions which bridge the
superexchange path,

Ji j 5J~ ur i j u,$rm i j %!5J~r i j ,$um i j %!. ~A1!

Herem i j numbers the ligands that participate in theij bond
and rm i j are their positions which are most naturally para
etrized in terms of the offsets,um i j 5rm i j 2Ri j , from the
bond center,Ri j 5

1
2 (Ri1Rj ).

In addition, the superexchange coupling may also dep
on the angles of orbital overlaps. This dependence can
parametrized in terms of the positions of some particu
symmetry points in the local electron-density distributio
and accounted for in Eq.~A1! by including these points
among$rm i j %. While these additional degrees of freedom
lift some nonessential symmetries which are present in
particular case when the exchange coupling only depend
the bond length,Ji j 5J(ur i j u), they do not change the gener
structure of the corrections to the exchange coupling res
ing from the lattice modulation which are summarized
Eq. ~3! in the main text. In what follows, we first discuss th
particular case ofJi j 5J(ur i j u), and then the general case
Eq. ~A1!.

1. Modulation of the bond length only

First, consider the effect of displacement of the magne
ions alone. In presence of the superstructural modulation~2!,
the bond lengths becomer i j8 5ur i j 1ei j u, with ei j 5ej2ei

given by

ei j 52 sinS Qc•r i j

2 D @2e1 sin~Qc•Ri j !1e2 cos~Qc•Ri j !#,

~A2!

where, as usual,r i j 5r j2r i andRi j 5
1
2 (Ri1Rj ).

Expanding the exchange coupling,Ji j8 5J(r i j8 ), modified
by the distortion~A2! in a Taylor series in small displace
ment,e i j !r i j ,

Ji j8 5Ji j 1(
n

1

n! S ei j •
]

]r i j
D n

J~r i j !, ~A3!

we find, up to a second order in (e i j /r i j );e!1,

Ji j8 5Ji j 1
~ei j •r i j !

r i j

]J~r i j !

]r i j
1

1

2

~ei j •r i j !
2

r i j
2

]2J~r i j !

]r i j
2

1
1

2 S ei j
2

r i j
2

~ei j •r i j !
2

r i j
3 D ]J~r i j !

]r i j
1O~e3!. ~A4!
1-10
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For (ei j •r i j )Þ0 and]J(r i j )/]r i j Þ0 the leading contribution
is given by the first-order term,;e, and we obtain,

Ji j8 5Ji j 1 j i j8 cos~Qc•Ri j !2 j i j9 sin~Qc•Ri j !1O~e2!,
~A5!

where

j i j8 52 sinS Qc•r i j

2 D ]J~r i j !

r i j ]r i j
~e2•r i j !, ~A6!

j i j9 52 sinS Qc•r i j

2 D ]J~r i j !

r i j ]r i j
~e1•r i j !. ~A7!

Clearly, to the first order, there is noQc-independent correc
tion which would change the bond strengthJi j . Such a cor-
rection does appear in the second order ine.

If ( ei j •r i j )50, i.e., the displacements are perpendicula
the bonds, the leading correction is given by the seco
order term;ei j

2 . In fact, this important situation is ofte
encountered in practice, in particular, it is the basis for
so-called ‘‘row models’’ for triangular-lattice antiferromag
nets. These are typically thought to be realized throug
modulation of the hexagonal lattice where the displaceme
of the magnetic ions are parallel to theC6 symmetry axis,
and are perpendicular to the bonds in the hexagonal plan
which the modulation propagates. RbMnBr3 is believed to
present an example of such situation. For such case
transverse structural modulation we obtain

Ji j8 5Ji j 1 j̃ i j8 cos~2Qc•Ri j !2 j̃ i j9 sin~2Qc•Ri j !

1si j @~ j̃ i j8 !21~ j̃ i j9 !2#1/21O„~ei j •r i j !
2,e3

…, ~A8!

wheresi j 5sgn@]J(rij)/]rij#, and

j̃ i j8 5sin2S Qc•r i j

2 D ]J~r i j !

r i j ]r i j
~e2

22e1
2!, ~A9!

j̃ i j9 5sin2S Qc•r i j

2 D ]J~r i j !

r i j ]r i j
2~e1•e2!. ~A10!

The first-order correction toJi j8 also vanish if]J(r i j )/]r i j

50. In this case the leading contribution comes from the
second-order term in Eq.~A4!, and is also expressed by E
~A8!, but with si j 5sgn@]2J(rij)/]rij

2#, and

j̃ i j8 5sin2S Qc•r i j

2 D ]2J~r i j !

r i j
2 ]r i j

2 @~e2•r i j !
22~e1•r i j !

2#,

~A11!

j̃ i j9 5sin2S Qc•r i j

2 D ]2J~r i j !

r i j
2 ]r i j

2 2~e1•r i j !~e2•r i j !, ~A12!

in place of Eqs.~A9! and ~A10!.
A Qc-independent correction which changes the bo

strengthJi j first appears in the second order, Eq.~A8!. In
general, it is obtained by summing up allQc-independent
contributions from all second-order terms in Eq.~A4!. Their
common multiplier, sin2(Qc•r i j /2), makes the structure o
this correction rather simple. It does not affect the bonds
13445
o
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are perpendicular to the direction of propagation of the
tice distortion, while those bonds that are symmetric w
respect to this direction are modified equally. On the ot
hand, j j i8 and j i j9 of Eqs. ~A6! and ~A7! which describe the
first-order correction to the exchange coupling resulting fr
the lattice modulation are;sin(Qc•r i j /2), and therefore are
antisymmetric with respect toQ→2Q.

2. Modulation of the ligand positions, etc.

It is also straightforward to account for the dependence
the superexchange coupling, Eq.~A1!, on the positionsum i j

of the ligand ions and the symmetry points of the local el
tron density distribution which define the orbital overlaps.
the presence of the superstructural distortion~2!,

~rm i j !85rm i j 1e1
m cos~Qc•rm i j !1e2

m sin~Qc•rm i j !,
~A13!

wherem indexes different types ofrm i j positions within the
unit cell, and the polarization vectorse1,2

m which parametrize
the displacement for point of typem are determined by the
superlattice Bragg intensities that appear with distorti
This can be rewritten as

~um i j !85um i j 1e1
m i j cos~Qc•Ri j !1e2

m i j sin~Qc•Ri j !,
~A14!

where the new polarization vectorse1,2
m i j now depend onQc .

They are obtained by rotatinge1,2
m through an anglefm i j

5(Qc•um i j ), and subtractinge1,2cos(12Qc•r i j ) ~this accounts
for change in the bond center positionRi j ), correspondingly.

Consequently, in the general case of Eq.~A1!, the Taylor
series~A3! for Ji j8 has to be amended, by adding

Ji j8 →Ji j8 1(
n

1

n! (m i j
S em i j

•

]

]um i j D n

J~r i j ,$um i j %!,

~A15!

whose first- and second-order terms are easily rewritten
the form of Eqs.~A5! and ~A8!, respectively. Therefore the
account for the modulation of the positionsum i j in the gen-
eral expression for the superexchange, Eq.~A1!, simply
amounts to amending the coefficientsj i j8 and j i j9 in Eqs.~A5!
and ~A8!, in accordance with Eqs.~A14! and ~A15!. For
example, additional first-order terms which appear in E
~A15! change the expressions of Eqs.~A6! and ~A7! as fol-
lows:

j i j8 → j i j8 1(
m i j

S e1
m i j
•

]

]um i j D J~r i j ,$um i j %!, ~A16!

j i j9 → j i j8 2(
m i j

S e2
m i j
•

]

]um i j D J~r i j ,$um i j %!. ~A17!

Using Eqs.~A14! and ~A15! it is easy to write out similar
expressions for the coefficients of the second-order contr
tion of Eq. ~A8!.

Clearly, a number of symmetry properties of the coe
1-11
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cients j i j8 and j i j9 given by Eqs. ~A6!–~A12! which are
present for Ji j 5J(r i j ), disappear upon account for th
modulation of the positionsum i j . In particular, for the first-
order corrections to vanish, not only should the displa
ments of the lattice sites~magnetic ions! be perpendicular to
the bonds, but all of the displacementse1,2

m i j should be per-
pendicular to the corresponding gradients ofJi j
5J(r i j ,$um i j %) with respect toum i j . However, it is clear that,
, Y

S

, T

s.
.
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uin
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becausej i j8 , j i j9 and, in general,J̃i j , are functions on the
nondistorted lattice which also depend on the modulat
wave vectorQc and the polarizationse1,2

m i j , they are invariant
with respect to all symmetry operations of that initial latti
which do not changeQc ande1,2

m i j . Importantly, this includes
the translation group of the nondistorted lattice, which me
that the new couplings and the exchange modulation am
tudes which are related by that lattice translations are eq
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