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Heisenberg magnet with modulated exchange
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A modification of the ground state of the classical-spin Heisenberg Hamiltonian in the presence of a weak
superstructural distortion of an otherwise Bravais lattice is examined. It is shown that a slight modulation of the
crystal lattice with wave vectd®,, results in a corresponding modulation of the exchange interaction which, in
the leading order, is parametrized by no more than two constants per bond, and perturbs the spin Hamiltonian
by adding the “umklapp” terms~ sgsgch. As a result, for a general spin-spiral ground state of the nonper-
turbed exchange Hamiltonian, an incommensurate shift of the propagation @etwi additional new mag-
netic Bragg peaks, aQ*=nQ., n=1,2,..., appear, and its energy is lowered as it adapts to the exchange
modulation. Consequently, the lattice distortion may open a region of stability of the incommensurate spiral
phase which otherwise does not win the competition with the collinéai Blate. Such is the case for the
frustrated square-lattice antiferromagnet. In addition, the umklapp terms provide a commensuration mecha-
nism, which may lock the spin structure to the lattice modulation ve@tar if there is sufficient easy-axis
anisotropy, or a magnetic field in an easy plane.
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I. INTRODUCTION tration, and result in complicated spiral phases. Among the
simple realizations of the distorted TLA are the so-called
An interplay between the distortion of a crystal lattice and“row models” which were extensively studied in the
the magnetic properties of the material has recently becomepast’~'° However, previous studies were mainly restricted to
subject of renewed interest. One problem which provides specialized analysis of a few particular models; no general
strong motivation for studying the effect of a weak super-approach that would allow a unified treatment of the effect of
structural modulation on the spin system is that of stripedy small lattice distortion on a spin system has been devel-
phases:? These charge-ordered states are found in Iightlyoped so far.
doped hight; cuprates La ,Sr,CuQy,., (LSCO) and in re- A number of interesting experimental examples of dis-
lated nickelates, and are always associated with a weak Sy ted triangular lattice antiferromagnet®TLAS), which
perstructural distortion of the original “stacked square Iat'instigated this study, are found among the CsNi@pe

tice” structure of the undoped parent materlal'Eompoundswith the general chemical formABX;. In the

Incommensurate magnetism in these compounds is usual %ntherroelectric phases that are realized in some of these

interpreted in terms of the segregation of the doped charge . .
) ) . : ' ~Jaterials at low temperatures relevant for the magnetic or-
into lines which separate the antiferromagnetic domains

(“stripes”), characteristic of the undoped material. There isder_' th_eP63/mmchexagonaI symmetry n which they_cryg-
also a modulation of the crystal structure induced by th allize is Iowered,.and afuIIy.frustrated trlangular_lattlce in-
charge-stripe segregation, but it is often too small to be Obher.ent" in the original CsNiGitype “stacked triangular
served in experimeritlt is clear that the essential effect of 1attice” crystal structure is slightly distorted. Typically, the
the stripe order on the spin system of cuprates is that of ngh-tgmperature hexagona.ll str-ucture with a Brava|s lattice
periodic modulation of the exchange coupling in the Heisen©f €quivalent magnetic B sites is changed to either a hex-
berg spin Hamiltonian which describes their magneticagonalP63lcm structure with a three times larger unit cell,
properties However, only the simplest “average” conse- ©F to a large-cell orthorhombic structure. These superstruc-
quence of stripe superstructure, in the form of the effectivéures are characterized by the alepgarancelof the superlattice
weakening of the exchange coupling in the direction perpenBragg reflections aQc=(7,7,0),” with »=3, or =33,
dicular to stripes, has been considered sd fasimilar prob- - Fespectively. In some cases, as in KNidboth phases are
lem, of an interplay between the spin order and a cooperativiound to coexist at low tempergtu’r%?erhaps the most in-
Jahn-Teller distortion accompanying the charge order, ariselguing is the case of RbMngr in which most experiments
in the context of the charge-ordered phases in dopefind the orthorhombic lovF phase;**°and an incommen-
manganites. surate spiral spin structure with propagation ved@os (3

A number of examples not related to charge ordering buLFq, 149, 1),*%in place of the commensurate “triangu-

no less interesting involve an intriguing interplay between . . o1 _
small superlattice modulation and spin structure in spinJar antiferromagnetic order withQ=(5, 3, 1), which is

frustrated antiferromagnetic dielectrics. In the square-lattic€haracteristic of - the 17r1?gnd|storted hexagonal materials
antiferromagnet, a distortion could actually be the source ofSMnBk, CsNICk, etc.”~"In a magnetic field of about 3
the frustration. For example, it may generate a well-known! @pplied in the easy plane the spin structure becomes com-
generalized Villain modél.In the triangular-lattice antiferro- mensurate, witlQ=(3, 5, 1). In the similar orthorhombic
magnet(TLA), a weak distortion may partially release frus- modification of KNiCk, which is a related material but with
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an easy-axis spin anisotropy, this latter structure is realized In this paper we consider what happens to the classical
already atH=0. spiral ground state of the Hamiltonidf) if a weak super-
Until now, these experimental findings remained to a largestructural modulation of the original Bravais lattice appears
extent unexplained. One reason for this is that traditionallyjn the crystal whose spin system it describes. It is clear that
the effect of each particular lattice distortion on the spinresults obtained for classical spins are subject to corrections
Hamiltonian was considered separately, by devising a spdrom quantum and thermal fluctuations, and these are often
cific, generally multisublattice spin modek.g., the row crucial. Nevertheless, if we find the spiral state that has the
modelg, where the distortion simply defines the particularlowest energy already on the classical level, inclusion of the
setup of the near-neighbor exchange interactions. For longt/S corrections may still result in this state being the ground
period structural modulations, this approach leads to modelstate(clearly, this will always be the case for large enough
with a large number of inequivalent spin sif@sg., up to 8 spin9). In fact, this may appear to be the case even for small
for Q.=(%, &, 0)], resulting in tremendously complicated _spins, so long as t_he spin-wave thepry holds. While account-
spin Hamiltonians, and therefore the analysis has never bedRd for the fluctuations is important, it falls beyond the scope
carried through. The same problem is outstanding for th&@f this paper and is deferred to further studies.
stripe phases in LSCO cuprates, where the most stable su-
perstructure has a pitch of aboyifcuriously, it is the same Il. SUPERLATTICE DISTORTION AND THE SPIN
as that of the antiferroelectric lattice distortion in RbMgBr HAMILTONIAN

(Ref. 13]. In addition, the modulation has an even longer ) ) , ) .
period at small doping, and, in general, can also be incom- Consider a slight distortion of the crystal structure which

mensurate. Here we devise an alternative approach, whidfi characterized by the appearance of additional, weak super-
lays grounds for the consistent and general explanation dfttice Bragg reflections at wave vectorsQ. in the Bril-
spin incommensurability, commensuration transition, andouin zone of the nondistorted Bravais lattice. Most gener-

other phenomena arising from the lattice distortion, that werd!ly; Such a superstructure corresponds to a small harmonic
mentioned above. We treat the effect of arbitrary but modulation of the positions]" of the ions and the character-

small lattice distortion on the microscopic spin Hamiltonian iStic symmetry points of the local electron-density distribu-
in the perturbation framework. The analysis in this papeftion (orbitals in the lattice,

most directly applies in the case of the dielectrics with local-

ized spins, although we expect it to hold also for the doped (1)’ =r{'+ €, €'=€; cogQ. r")+ €5 sin(Qc-r{).
perovskites, to the extent that the itineracy effects can be 2
neglected.

Consider a system df equivalent spins on a simple Bra-
vais lattice, coupled by Heisenberg exchange interaction
The model Hamiltonian, which allows also for a uniaxial
spin anisotropy and a Zeeman energy, is

Herej numbers the sites of the original Bravais lattice of
énagnetic ion€® and « indexes positions of ligands and sym-
metry points of the magnetic orbitals within the unit cell. It is
shown in the Appendix that a leading correction to the ex-
change coupling in this case is most generally expressed as

3=+ i cot Qe Ryy) ~ j{j sinQc-Ryp),  (3)

where R;;=3(R;+R)) is the middle of theij bond, jj|
here J. —J e th h ling b =jii, ji;=1j are real and symmetric, and, most importantly,
where J;;=J;; parametrize the exchange coupling ewVeensauisfy all symmetries of the original lattice which lea@g

the spins at lattice sitdsandj, D is the anisotropy constant, o : - .
andh=gugH is the magnetic field. Without the anisotropy fnd the polarizationg; , € invariant; the same is true for

Hziz;, Jijs-sj+DZ (3,2)2—2 h-S, (1)

and magnetic field, the classical ground state of @gis a  9ij - N particular,J;;, jij, andjjj are invariant under the
planar spin spiraf’->* S =(Scosé;, Ssing,, 0), §;=(Q translation group of the nondistorted lattice. Finally.
-1;). The ordering wave vectd® corresponds to the mini- =nQ., wheren=1,2 is the order of the leading correction

mum of the lattice Fourier transform of the exchange interto J;; of Eq. (3) in terms of the small parametee
action, Jg=3, Jj; exp(-ig-ryj), rij=r;—r; [this includes ~(ef/rj)<1 (j ,j!’}~e”Jij).29 _ _

ferro- and antiferromagnetism, Correspondin@go and, In the first order INe, lattice modulat|0r(2) results in the
e.g.,Q=(m,m,m), respectively. For nonzeroD andh, the ~ modulation of the exchange couplidg with the same wave
spin structure is, in general, modified by the appearance ofector Q.. It is described by Eq(3), with Q.= Q;, 3”
higher-order harmonics in the lattice Fourier transform of the= Jij andji’j , ji’; , defined by Eqs(A16) and (A17) of the
spin distributionS,=X, S; exp(~iq-rj), with the wave vec-  Appendix. The structure of the expressions fgr, jij is
tors Q,=nQ, in addition toSy .25-2TFor smallD andh the  quite illuminating. There are two contributions, one of which
corresponding terms in the Hamiltoniél) can be treated as is ~sin(Q.-r;/2), and therefore antisymmetric with respect
a perturbation. The perturbation expansion for the correctioto Q.— —Q., and the other depends on the relative align-
to the spiral winding angle has the formdo, ment of Q. and the distortion polarizations with respect to
=X [ancosQ-rj)+ B,sinMQ-r;)], where the coeffi- the bond geometry. Only the first contribution survives in the
cientsa,, and 3, are of the ordeO[ (|D|/J)"™?,(h/J)"].%® simplest case when exchange depends on the bond length
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alone,J;;=J(rj;); in this case the bonds that are perpendicu-Ill. CLASSICAL GROUND STATE OF THE MODULATED-
lar to Q. are not changed by the lattice distortion. EXCHANGE HAMILTONIAN
In many important cases the first-order corrections vanish, To proceed with finding the ground state of the

and the leading correction in E¢3) is ~¢°J;;, in which modulated-exchange Hamiltonidb), we first rewrite it in

caseQ.=2Qc, andjjj, jij are given by Eqs(_A9)—(A12). In _terms of the lattice Fourier transforms, taking advantage of
general, the latter have to be amended in accordance witlye |attice translational symmetry,

Egs.(A14) and(Al15). Importantly, aQ.-independent contri-
bution which determines the leading correction to the bond

H :
strengthJ ﬁ:% 19654 S-qTla+qu2Sy S-q-q,

ijo

3 =3+ 83, 8ky~é, (4) 13025y S-arar ©)
Herejq=2rijjij exp(=iq-ri;)=]j _q, similar with the Fourier
"ﬁeansforms\]q and S; introduced above. We note, however,
that unlike J, which is real,j, is, in general, complex, so

always appears in this order. Because the correction to t
bond strength4J;;, arises from replacing 2 CE(QCR”-),
2 sirF(QC~RiJ-), with cos(D.-Rj;) =1, it is directly related o
with the amplitudes of the exchange modulation. Eachla”1-a:
second-order term that contributes jto, jii, also adds to
8J;j, this is explicit in Eq.(A8). As before, there are two
contributions toji’j, ji’} ; the one that survives fod;; A general approach to finding the classical ground state
=J(r;;) does not affect the bonds that are perpendicular tdor a system oN equal spins on a simple Bravais lattice that
Q., but is now symmetric with respect @,— — Q.. are coupled by isotropic Heisenberg exchange interaction
Accounting for the corrections to the bond strength, Eqwas developed in Refs. 20-22, and recently discussed in
(4), is straightforward and does not require any additionalRef. 26. We need to solve the mathematical problem of find-
consideration. It simply amounts to a change in the Fouriering the absolute minimum of a functidi), which depends
transformed exchange couplink, which determines the on N classical vector variableS,; underN constraints,
ground-state energy and the spin-wave spectrum of the 2 2
Hamiltonian (1).2°~?° The significance of this correction, §=S Vi, @)
however, is in that a change iy, applies directly to the that are imposed on the length of classical spins. In terms of

ground-state energy, which therefore is corrected in the sam@ie Fourier components these constraints become
order,O(€?). As we shall see below, the first-order contri-

bution to the exchange modulation in E8), O(e€), corrects

the ground-state engrgy of the spin Haamilto(n()ain only in E Sy Sy-or =S840, V0, ®

the second order of perturbation. Therefore, except for spe- d

cial cases® these two contributions have to be treatedWhere 3y 4 is the three-dimensiondBD) Kronekker sym-

equally. bol. Upon introducingN Lagrange multipliers\, a straight-
To summarize, a superlattice distorti(®) leads to a har- forward variation leads to the following equations for the

monic modulation of the exchange coupling, with either theSpin structure that minimizes the Hamiltoniég),

same wave vectdd,, if it appears as a first-order correction

to J;;, or with the wave vector Q., if it appears in the i i* - , =

second order~ €2, There is also acsecond-F())Fr)der correction Yo%t la-0uz%u-oF larouzre, ? MarSe-a =0

to the bond strength. In the most general case these are de- 9)

scribed by Eq(3). In what follows, we study the effect of the g, which have to be solved together with E8). Substi-

exchange modulation on the ground state of the exchan%ting these into Eq(6), we obtain the ground-stat&S)
part of the spin Hamiltoniaril) (i.e., the caséD=H=0), energy per site,

which now reads

A. General approach

EW‘”zxosz, (10)
H=2, (Jj+jje%Ritjre @R 5. (5
b which depends only om, with g=0. While this suggests

searching for the solution withq=X\dy 0, it is easily veri-
Here we have introduced a complgx=j{;+ij{j, and omit-  fied by direct substitution that Eq9) does not allow any
ted the tildes, keeping implicit tha., J;;, jj, jij are all  nontrivial solutions of this type fof,# 0. In fact, using such
appropriately chosen in accordance with the situation, as disan “ansatz” for \ is equivalent to replacing Eq7) with a
cussed above. While in the absence of the distortign  single “weak” condition,EjS-zzNSZ. This “weak” condi-
would satisfy all symmetries of the lattice, exchange contion approach, also known as the Luttinger-Tisza method,
stants in Eq(5) possess only those symmetries of the undiswas widely employed throughout the early studies of com-
torted lattice which presen@®, and the polarizations} , €5  plex spin structure®-?*as it does lead to the correct solu-
(this includes all translations tion in several important particular cases, including the case
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of a simple exchange spiral. General reasons for the failur¥ n. Subsequently, upon substituting E41) into Eq. (8),
of this approach, which, in particular, occurs for Hamiltonianthe equal-spin constraint is rewritten as
(1) with D#0, H# 0, were discussed in Ref. 26. The current
situation, in the form of Eqs(6) and (9), presents another
example of such failure. > (Sq+nrqQ, Sq+(n-n1Q) =0, (14
An alternative approach to finding the ground state and n’
the spin-wave spectrum of the Hamiltonigh) for small D
andh was used in Refs. 26 and 27. It is based on a pertur-
bative solution for the real-space spin structure that is sta-
tionary with respect to small deviations in the form of a
slightly distorted flat spiral. The correction to the spiral V n. At this point, Egs.(13)—(15) are still a complicated
winding angle,¢;, was obtained in the form of the expan- nonlinear system of equations, and remains such even if we
sion, 66;=2, [a,cosfQ-r;)+ B,sin(hQ-r;)], where the retain only the terms-O(e) which determine the lowest-
coefficientsa, and 3, are of the orde©((|D|/J)"?,(h/J)"). order corrections to the simple exchange spiral.
As a result, additional harmonics in the Fourier transform of
the spin structure, at wave vectotsnQ, n=2,3,..., and a
magnetizationS,, appear. In fact, the same result can be
obtained from the conditional minimization of the Hamil-  Further progress into finding the perturbative solution to
tonian (1) outlined above, if a perturbative solution is Eds.(13)—(15) which would describe a weakly distorted ex-
searched in the form of aharmonic expansian\,  change spirakSy.ng;\n}, is made by employing a power-
=2 \ndgna- where)\n¢0~0((|D|/J)1’2,h/J)-)\‘n|_1, and ful “exchange symmetry” argument, which relates back to
S5=2nSh@0n0: 1Shol~O(\jn-1). It is this approach, the Landau theory of phase transitions. It was developed in
which is both natural and straightforward to apply to theRef. 33 as a basis for the unified Lagrangian description of
Hamiltonian(6) in order to obtain the spin-wave expansion the long-wavelength, macroscopic dynamics of the compli-
upon expressing spins through magnon creation/annihilationated spin systems with complex order parameters, including

22 (Sgenennay Soinro) =m0, (15)
n’ ¢

C. Exchange symmetry

operators’* that we shall employ here. spin glasses. Subsequently, this approach was used with great
success, in particular, for calculating the low-energy spin dy-
B. Harmonic expansion for modulated exchange namics in a variety of situations encountered in the noncol-

. ) linear ground states of CsNigtype triangular-lattice
Because the modulated-exchange terms in the spin Ham'!a'ntiferromagnet§*.‘°’4‘36It is based on a very simple observa-

tonian allow the umklapp processes which coufileand  {jon that a macroscopic Lagrangiéor a Hamiltonian of a
Sy=q, and, consequently, couple these Fourier componentgyin system in a state which is described by an order param-
in Eq. (9), we search for the solution of the Ed8) and(9)  eter (at T=~0), when expressed in terms of the canonical
in the form of the expansion variables that parametrize the long-wavelength dynamics of
this order parameter, has to satisfy all remaining symmetries
of the ground statéorder parameter Practically, this works
Sq:; {SQ+“QC5%Q+“QC+%MQC&WQ*“QC}’ (1D as follows. In exchange approximation, possible ground
states are few, easily classified, and Lagrangians are rela-
where SQ+nQC~O(e”). Substituting this into Eq(9) it is  tively easy to write. Perturbation account for the anisotropy,
easy to see that a nontrivial solution requires thgt=0 ~ Mmagnetic field, etc., adds terms to the Lagrandidamil-
unlessg* (Q+nQ.) = +(Q+n'Q,) is satisfied for some tonian, which are expansions in powers of the order param-

andn’. Therefore the general solution fag, can be written eter, and whose general form is essentially determined by the
as above symmetry requirement.

We extend the exchange symmetry argument to the mi-
croscopic description of the present paper by nothing that, so
)\q=z AndgnQ, (120 long as the solution of Eq$13)—(15) is a weakly distorted
" simple exchange spiralS;=Sqexp(Q-rj)+ Sg exp(=iQ
where)\n~0(e|“‘). Here and below, if the limits are not -r;) (i.e., no.independent qrder paramete'r appears in gddition
specified explicitly, it is implied that the summation extendst© So), and if the perturbation does not violate the3Pspin
over all integergthis, in particular, implies taking the ther- symmetry of the initial exchange Hamiltonian, all vectors in
modynamic limit, N—).32 With Egs. (11) and (12) the spin spaceS; that define the corrections to the initial ex-

energy-minimum conditions of Eqé9) become change structure, have to be proportionalSg. In other
words, the only “selected” directions in spin space which

can determine direction of spin vectors in the perturbation
series are those resulting from the spontaneous breaking of
_ the spin symmetry that already exists in the nonperturbed
+16+<n+1/2)QCSQ+<n+1)QC_E )\n’SQJr(nfn’)QC:O’ system, i.e., those defined 8. This holds for the Hamil-

n’ tonian (5), because the modulated-exchange terms preserve
(13  the Q13) spin symmetry. Consequently, we write

Jo+nq,Se+nq, T i@+ (n-120,.Sq+(n-1)q,
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So+ng,=€nSq: S-q+ng,~€5nS-q. (16) mine {e,;\,} for any givenn through their values for
1,2,..n—1. In particular, the leading-order; O(€"), condi-

wheree,~O(€"), andeo=1. This simplifies Eqs(13)-(15  tion one,, is
tremendously, as they shall now involve only scalar variables
en, N\y. In addition, Eq.(14) is automatically satisfied for .
(Sp)?=0, which holds in the case of a simple exchange spi- enteXn=— 2 (en_ne™,)+0("?), (22
ral. It requires that spin vectors of real and imaginary parts of n'=1
So=S'+iS" are mutually perpendicular,S(-S")=0, and or, explicitly for the first few orders,
have equal length. This length is determined from &d),

n—-1

g,+e* =0(€), (23
2
2_|cr|2 n2____ —
|SQ| _|S| +|S| _22n|8n|2’ (17) 32+gt2=8§+0(64), (24)
along with the following set of conditions o, : g3te¥s=eq(e,—8%,)+0(€), (25)

n ®
2 (Snfn’sinf)'i_ 2 (8n+n’8zr+87n’8tnfn/)=01
n’=0 n'=1 18 The leading-order correction t,, which determines the
ground-state energy, appears in the second-order perturba-
which have to be satisfie n>0. The energy minimum tion, ~ €. In the same order appears the intensity of the new
conditions of Eqs(9) and (13) become, on account of Eq. magnetic Bragg peakST|SQiQC|27 that are induced by the

(16), exchange modulation. Up to this order, we obtain from Eg.
(19
n
JQ+ch8n_n§O Nn&n—n/ )\0:JQ+(jQ—Qc/z_)\1)8—1+(16+QC/2—)\I)81+O(64),

(26)

+io+(n-120 8n—1+j6+(n+1/2)Q08n+1 )
¢ )\1:JQ+QC/2+(JQ+QC_7\0)81+O(63), (27
_ngl ()\n+n/8_n;+)\:r8n+n/)zoy (19 )\I:j’(‘?chlz—}_(‘]Qch_)\o)S—l"'o(63), (28)

V n=0. Similar equations fom<0 are solved simulta- Which, on account of Eq23), have the solution

neously with the above, provided that . .
Jo-qu27 Jo+qy2

+0(€%), (29

&€
N i = Moy (20 '

Jo+o,TJo-0,72J0
in which case they are simply complex conjugates of Eqswith ¢ ;= —&% +O(€%) (for now, we exclude from consid-
(13) and(19). We note thaS_,=S; becauseS; are real, so eration a singular casdg: g, +Jg-q,.=2Jq)- The ground-
Egs. (20) just require that Lagrange multipliers used to ac-giate energy is then determined by
count for the condition$7) are also real. On the other hand,
e_n#ep . The solution{e,,;\,} of Egs.(18) and(19) deter- |jQ—Qc/2_jQ+Qc/2|2
mines the minimum-energy configuration of the equal-length No=Jdo— 3 3 53
spins through Eqg(11), (16), and(17). QFQ: ' ¥QR-Q. “¥Q

+0(e%), (30)

and, unlessQ,QC,2=jQ+Qc,2 and the correction vanishes, it

D. Recursion for the perturbation series and the is lower than that of the initial, nondistorted exchange spiral,
leading-order solution becauselg, is a minimum value ofl;, and therefordg. o_

Although they superficially look cumbe_rsome, Eq%9) +Jq-q,~23o=0. This is in agreement with a very general
and (19) are well suited for the perturbation treatment. In- 3rgument, that a nonvanishing second-order perturbation cor-

deed, because rection always lowers the ground-state energy.
)\nSQm,QCNO(E‘”M” , (21) E. Some remarks
it is easy to see that the first line in EQL9) is ~ €, the It is useful to express the results obtained in the previous

second line, except far=0, when both terms in it are €2, ~ S€ction in terms of the spin-wave spectrum,

contains a term~¢", and a term~¢€"*2, and the last line,
like the last sum in Eq.(18), sums up contributions 0q=SV2(Jq=J)Jg+q+t Jg-q—2J0),
~e"t2 n'=12 . ie., overall iO(e"*?). Starting with and theg-dependent transversg@erpendicular to the spin
go=1, this defines a set of recursion relations which deterplang classical static staggered spin susceptibiiity,

(31)
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1
= ——— = —_ . 2
of the initial, nondistorted, singl® exchange spiral. The 3 3|(Qc: V)ijgl? LO(e)
leading new Fourier components of the spin denﬁgy_@C (5Q-V)[(QC-V)ZJQ]+3(QC-V)2JQ €h
of Eqgs.(16), (29), are (36)

jQ—chz_ o+ Q.2

where V=g/dq. Note that unlike Eqs(33) and (34) this,
Se”| Y Queis ?
XL(Qc)wQC

SQ+O(63)' (33 generally, does not diverge f@.— 0. If, in the correction
term, we cancng and then expand the denominator keep-
. . ing only the leading term inQ, Eg. (36) takes the form
~lo-q2t]Qrqy2 No=Jdo+ Co+C1(8Q) +cx(8Q)2, with c;=0(e?) and c,
SQ*Qc: XL(QC)‘UZQ S 2 =0(e€). Clearly, minimum of this expression occurs, in the
¢ general case, for nonze#Q=0(€). However, if the linear

It is clear now that the singular case mentioned in the previl€'M ~dQ in the denominator of Eq(36) vanishes, then
ous section corresponds to the exchange modulation with th&Q=0- Also, in many important cases such as, for example,
wave vector at which the spin-wave energy vanishes. In thif® nearest-neighbor nonfrustrated antiferromag@ets a
case, unless the numerator in E(S) and(34) is also zero, ~SPecial symmetry point ofg (jo~€Jg), and the correction

the leading corrections diverge, and the perturbation apterm identically vanishes by symmetry. Therefore simple ex-
proach fails. Generally, there are two soft spots in the spinchange structures, such as antiferromagnets, are usually in-
wave spectrum of the exchange spiral. They correspond t8€nsitive to small I_ong-pe_nodl_c modulations of the exchange
the Goldstone modes a=0 and at the magnetic ordering COUPling in the spin Hamiltoniatb).

wave vector,q=Q. For Q.=Q, the numerator, jG/,

+0(ed). (34

—J3qr2), IS, in general, nonzero and the corrections diverge. IV. SOME EXAMPLES
Unlessq=0 is a speciallextremum point of j,, the nu- _
merators in Eqs(33) and (34) vanish~Q, in the limit Q. Now we shall apply the formalism developed above to

—0, while w3 _in the denominator issQZ. Therefore for a  Séveral representative one- and two-dimensicii& and

© 2D) systems. The fact that the ordered mean-fig\F)
ground state, such as that analyzed in this paper, in low di-
mension is unstable against the fluctuatinaill not be a
where the modulation is absent, aﬁg:QCESQ- Z?Q(;:eirr? ?hei;e. First, a sing(@;: structural d_ist_ortion consid-

B . ] paper is homogeneous within the crystallo-
Additional soft regions, such as the lines of soft mOdeSgraphic planes that are perpendicularQp. In many cases
often appear in frustrated spin systems, due to the accidentglese planes contain one or two unit-cell directions, so the

cancellation of the interactions. In such cases the spin systefjqqulation only exists along the remaining direct®nand
is extremely sensitive to structural modulation with the wavey,q distortion is explicitly 2D, or 1D, respectivelgf. Fig.
vector that is close to the soft regignof the dispersion. The 1) The honds that are not changed by the distortion cancel
same is true for distortions that propagate along the direcs ¢ in the resulting expressions for the corrections to the spin
tion(s) of weak interactiorfand weak magnon dispersioin  q,cture and to the ground-state energy, EB8) and (30).
quasi-low-dimensional spin systems. _ Therefore, even though the Hamiltoniél) may be on a 3D
From Egs.(10) and(30), the ground-state energy is lattice, the distortion corrections will be the same as for the
lower-dimensional system. Also, in many quasi-low-
4 dimensional materials the essential physics is 1D or 2D,
IS~ Y1 (Qo) w2 +0(€"). (39  while the MF order is stabilized by weak interaction in the
BRI remaining directiofs). Such is the case of highz cuprates
ich are made of two-dimensional square-lattice layers. In
%’; presence of a charge order the layers are modulated, as
illustrated in Fig. 1b). In fact, the MF analysis has certain
alue even for purely low-dimensional systems, because it
ighlights possible phases and instabilities, and guides the
ehavior of the critical points, at least asymptot&— ).

sufficiently long-wavelength distortion the corrections may
become arbitrarily large. It is not at all unexpected, though
that the perturbation approach fails extrapolatioro=0,

. . 2
EGS: 5 lig-qu2—lq+qul st

In the general case, it is lowered in response to the exchan
modulation. This occurs as a result of the appropriate adjus
ment(bunching of the initial, singleQ spiral spin structure
through the appearance of the additional Fourier harmonics,
SQ*HQC' n==*=1,+2,... . In addition, the pitch of the primary b
spiral component,, may also chang&)— Q, because the
spiral propagation vectd® is now defined by the minimum

of the corrected energy, E430) or Eq. (35). In the case A. n-merized 1D antiferromagnetic chain

where the modulation of the crystal structure is long peri-  As a simple example, consider the antiferromagnetic spin
odic, i.e., for smallQ.<1, and assuming that correction t0 chain with n-periodic nearest-neighbor exchange coupling
the propagation vectogQ=0-Q, is small,| 6Q|<Q, we (the ferromagnetic casd<0, is trivial, because small bond
can expand]ach andj(giQC,z in Taylor series and obtain  modulation has no effect on the ground statecorresponds

134451-6



HEISENBERG MAGNET WITH MODULATED EXCHANGE

al) a?)
J
T+

I
J+j

Jit+j

\VAVAVAVAVAVAVAVA
AVAYAVAVAVAVAVAY,
\VAVAVAVAVAVAVAVA
INNINNINNIN/NY
\VAVAVAVAVAVAVAVA
VAVAVAVAVAVAVAVAY.
VAV, VAYAVAVAVAVA
\VAVAVAVAVAVAVAY,

’\?\+
~oN

5

PHYSICAL REVIEW B68, 134451 (2003

and does not depend an Clearly, there are new local ex-
trema at co5Q~|j/J|?, corresponding to a spiral with pitch of
~m/2, which appear on account of the exchange modulation.
However, the new minimum is very shallowy~ —4|j|,
much higher in energy than the global minimumg
= —2J, which remains aQ= .

A more interesting 1D example is illustrated in Figa2),
where in addition to the nearest-neighbor couplinghere is
a frustrating next-nearest-neighbor exchadgeln this case
Jq=2J; cosg+2J,cos A and, for 4,=J,, frustration (for
classical spinsresults in a spiral MF ground state, with a
pitch defined from the condition c6=—J,/4J,. For the
sake of simplicity we consider only modulation of the
nearest-neighbor coupling, i.¢,=0. In this case, as before,
Jq=2j1cosq, and

o
No=Jdo+ 201sir’ QW . (39
Ji cosQ+4J, cos’-F cos

The minimum of this expression is achieved f@r=Q
+ 8Q which differs fromQ= cos }(—J,/4J,). For smallsQ
the leading correction is

2w
) cog Q- cos—-

8Q=|5+

j
% 5 (39

2

tanQ| 1— cosT cos QQ

and diverges folQ— mr, i.e., for a frustrated 1D antiferro-
magnet withJ,=0.25],. Perhaps this interesting finding is
an indication of an instability towards a spontaneous
n-merization and a spin gap formation in the vicinity of this
point. In fact, forS=3% quantum spin chain the whole region
J,>J,.~0.25);, is believed to belong to a spin-gap
phase’®~*!including the special pointl,=0.5];, where the
spontaneously dimerized ground state is known ex&ttly.
While the most recent numerical estimate &+ 3 chain is
Jpe~0.24;,** a J,,=0.25); for S—= coincides with the
earlier result obtained from the semiclassical mapping on the
nonlinear sigma modéP. Clearly, studying the susceptibility
of spin system towards bond modulation is a proper way to

~ FIG. 1. Examples of the modulated exchange patterns discussgflyestigate its instability towardsmerization(plaguette for-
in the text. Different bond thicknesses illustrate different COUp"ngmatior) and to characterize the corresponding phase dia-

strengths. (al) n-merized 1D chain with modulated nearest-
neighbor coupling,Q.=2=/n; (a2 dimerized f=2) antiferro-
magnetic chain with frustrating next-nearest neighbor coupling
4J,=J,. (b) “Stripes” on a square lattice with diagonal modula-
tion, Q.=(27/n,2mw/n); n=4 case is shown(c) Generalized
“staggered row model” on a triangular lattice, obtained with
=(2m/n,27/n). Shown is the case afi=4; n equals 8 in the

practical case of RbMnBt

to a modulation withQ.=2=/n, Fig. 1al). In this case,

gram. To this end it seems possible to develop a perturbation
approach similar to the one presented here and starting with
the Hamiltonian(5) also for quantum spins, but this goes far
beyond the scope of this paper.

B. Square-lattice antiferromagnet with diagonal modulation

A square-lattice, nearest-neighbor antiferromagnet with
diagonal modulation corresponds@= (2#/n,2m/n), Fig.
1(b), and may be of direct relevance for the charge-ordered

Jq=2J cosq, j4=2j cosq, the modified GS energy is deter- stripe phases in doped LSCO cuprates and related perovs-

mined by

No=2J cosQ(1+]j/J|*tar? Q), (37

kites. In the isotropic case the bond strengths and the modu-
lation amplitudes are equal in two directiodg,= 2J[ cos
q)+cosQ-a)], jq=€Jy, and, upon switching t®Q=q
[(ay+ay)/2] andQ’'=q-[(a;—a,)/2], the problem is fac-
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torized and reduced to the one-dimensional one considerazhe sublattice cancels on the sites of the other. This continu-
above. The distortion-corrected spin GS energy is detereus degeneracy is lifted by zero-point or thermal fluctuations
mined by Ay of Eq. (37), which is simply multiplied by which prefer collinear arrangements of the two sublattices in
cosQ’. As before, we find that nearest-neighbor antiferro-the GS. This is a famous example of the order by disorder
magnetism is stable with respect to the bond modulation. Ipphenomenon in a frustrated magrt?
fact, the same conclusion is reached even if the amplitude of The most interesting situation occurs f@r 1, when, on
the bond modulation is different in two directions, so thatthe MF level, there is a continuous GS degeneracy even in
jq=2j1c0sQ-ay)+2j,cosq-ay). the Q space. The minimum condition fod, becomes
Again, an interesting situation occurs if there is frustra-cosQ=cosQ’, and is satisfied for any spiral with the propa-
tion. In the case of the square-lattice antiferromagnet it igation vectoiQ that belongs to the square with the vertices at
introduced by the diagonal, next-nearest-neighbor coupling,*=,*= ), (+,=). All these states belong to the global
J’>0. This model has been extensively studied in recenminimum, and have the same energy,NJE,,_,=—2JS°
years¥ *8since it was predicted that in a region of param-=—4J'S?. It is this continuousQ space degeneracy which
eters in the vicinity 0fJ/(2J")=1 it has a disordered, spin- is at the origin of the spin-liquid phase conjectured for the
liquid ground staté®** For S=% quantum spins this was values of« in a finite region around the special point
proposed as a possible candidate for the resonating-valence-1.43-4’
bond staté®*® In this case, Jy=4JcosQcosQ’ Importantly, fora<1 the spiral states witQ~ (7, ) are
+2J'(cos +cos A'), and, if both side and diagonal bonds in close competition with the collinear states. In particular,
are modulated,j,=4j cosQcosQ’+2j’(cos D+cos AY'). consider an extremum df, which is a local minimum along
Consequently, we obtain from EG30) the diagonal direction, parallel to the lattice modulation wave
vectorQ., whose energy in the absence of the modulation is

] ] Lo T ) (IN)Eqg= —2aJS%. It corresponds to a spiral with the
4 sirf Qlj cosQ’ +2] cos_-cosQ) propagation vector defined b’ =0, cosQ=-J/2J’, i.e.,
No=Jdo+ - . (400  Q=(cos }(—J23"),cos {(—J23")) (there is also a degener-
JcosQ cosQ’ +2J’ CoszF cos ate state withQ at 90°, respecting th@ —Q’ symmetry of

the square lattice Except fora=1 the energy of this extre-
mum is higher than that for the decoupled antiferromagnetic
In the absence of bond modulation the ground state i%ublatticesE(mo). It is clear, however, from Eq40) that,
determined by the hierarchy of the local minimaXf. It while the energy of the collinear antiferromagnetic states is
depends on the relative strength of the nearest-neighbor coixsensitive to bond modulation, the energy of the spiral GS
pling J, and the next-nearest-neighbor, diagonal coupliig  can be lowered as it adapts to distortion! Therefore, at least
which is parametrized byr=J/2J". For weak frustration, on the MF level, the spiral may become the lowest energy
a>1, the global minimum is that with s@=sinQ'=0. It state(i.e., the ground statdor some range of the parameter
corresponds to the conventional, collineareNantiferro-  « in the vicinity of 1 [whose width is~O(€?)]. For the
magnetic order with a single propagation vect@  |ong-periodic modulationg.<1, and forj’ =0, it is easy to
=(m,m), and the ground-state energy is NJE.. .,  find that spiral phase is stable for-1j/J|?<a<1. The
= —4JS*(1—-1/2a). Although there are four equivale®  “nominal” spiral propagation vectof is obtained by mini-
points in the Brillouin zone(BZ), (xm,*m), (¥m*m),  mizing Eq.(40), similarly with the case of the frustrated 1D
which restore the lattic&€, rotational symmetry, they are chain. Again, our finding clearly indicates the instability of
related through addition of the appropriate reciprocal-latticehe frustrated square-lattice antiferromagnet witt§2J")
vectors7, so there is no true GS degeneracy in @apace. close to 1 with respect to the bond-modulated states. By
The only GS degeneracy is the rotational symmetry in spirselecting spiral spin GS the “order by distortion” mechanism
space which corresponds to the(3D symmetry of the proposed here competes with the “order by disorder” phe-
Heisenberg spin Hamiltonian. nomenon, which prefers collinear states. At least for large
For strong frustrationa<1, additional ground-state de- enoughS spiral always wins in some vicinity af=1.

generacy occurs on the MF level. Fax<1 there are two
nonequivalent lowest-energy minima afg, satisfying
cosQ=cosQ’'=0. They correspond to two pairs of equiva-
lent Q points in the BZ(*,0) and(0,%= ), which represent Because of inherent frustration, the triangular-lattice anti-
the antiferromagnetic order propagating along thandy  ferromagnet, Fig. (t), is a very interesting case to consider.
axis, respectively. The GS energy is Iﬁgl;lE(qT,())=—4\]’S2 Without modulation, a minimum ofJ,=2J{cos(-a,)
= —4JS(1/2a). This double degeneracy @ space can be +cos@-a,)+codq-(a;+a,)]} is achieved for a commen-
used to construct a continuum of states which are the lineagurate spiral GS with propagation vec@Qr= (27/3,27/3).
combinations of the above two. This continuous GS degenk corresponds to a noncollinear GS structure where spins are
eracy is usually described in terms of two decoupl@ aligned along one of the three directions, at 120° with each
Xv?2 sublattices based on the diagonals of the original squarether. Structural distortion may result in a variety of coupling
lattice, which is transparent in the limit >J. Each sublat- patterns where equivalent bonds are related by translations
tice has an antiferromagnetic order, but there may be an aperpendicular t&@.. These can be classified as “generalized
bitrary angle between the two, because the mean field fromow models,” the simplest of which is the original row model

C. Generalized row models on triangular lattice
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of Ref. 7. It can arise, for example, as a second-order effecdpins, coupled by Heisenberg exchange interactignwas
from the distortion withQ.=(=* 7r,7). Because Q.=7 (v  considered. It was found that lattice distortion results in a
is a reciprocal-lattice vectirit is equivalent to a homoge- modulation of the exchange coupling which, to the leading
neous uniaxial compression, i.e., it simply chandgsand  order, is parametrized by no more than two constants per
does not result in a bond modulation. Nevertheless, th@ond, Eq.(5) (this is valid irrespective of whether the spins
ground state becomes incommensurate, with pitch of the spire quantum or classigalThere are also corrections of the
ral determined by the coupling anisotropy. order O(€?) (e is a small parameter that parametrizes the

A general modulation of the triangular lattice wil. [attice distortion to the exchange constanig in the cova-
=(2m/n,—2m/n) results in a “staggered row model,” rjant part of the Hamiltonian. It should be noted here that,
where the horizontal rows have equal coupling. On the othegithough the distortion considered is small, the resulting cor-
hand, modulation witlQ.= (27/n,27/n) leads to a “zigzag rections to the coupling constants need not be small com-
row model,” an example of which witm=4 is shown in  pared to the initial values of the couplings in the spin Hamil-
Fig. 1(c), and the one witm=8 is relevant for the phases tonian, which may be small themselves. Therefore the result
realized in RbMnBg and KNiCk."*™ In this casej,  expressed by Eq5) is quite general and does not automati-
=4j cosQcosQ’'+2jcos X and it is easy to see that the cally imply the conditior|j;;|<|J;;|. In other words, the um-
energy of the modulated state is givgn by the same expregiapp termswsgsgmc added to the spin Hamiltonian by
_s!on_ as for, the frus_trated square lattice, E40), but with small lattice distortion may be relatively large, even larger
j’=] andJ’=J. As in the previous example, we Uge=q than the original exchange interactions.

[(a+8,)/2] and Q' =q-[ (&, —ay)/2]. Exchange modula- ~"\\pije it would be interesting to study the modulated-

tion leads to a deviation from the commensurate 120 trlanéxchange Hamiltonian for quantum spins and for the arbi-
gular spin structure. The leading correction to the propag

_ . . ] Hrary values oflji; /3;;], it is a formidable task which is be-
tion vector is determined from c6¥=—3+ 6, where yond the scope of this paper. Here we developed a
perturbative scheme for finding the mean-field ground state
z(cosz— COSZ_W) S ?COSL Ecoszz) of the Hamiltonian(5) which is valid for classical spinss
n n/\4 4 "n 2 n >1, and in the case of small exchange modulatjpn/J;;|
1 2 ~e<1. One of the initial motivations here was to develop a
2 §+cos’-ﬁ) basis for the spin-wave theory in weakly distorted crystal
(42) structures in terms of the modification of the magnon spec-
o _ trum in the original, large Brillouin zone of the nondistorted
In the two limiting cases,n=2 and n>1, we find 6  Bravais lattice. The other, no less important motivation, was
=31i/3|% and 5~ (m/2n)?|j/J|?, respectively. It is clear that to see whether it would be possible to understand, already on
ois small for alln, so there is no evidence for an instability the mean-field level, the incommensurate phases observed in
towardsn-merization in the case of ideal triangular lattice. the distorted triangular-lattice antiferromagnets RbMyBr
Perhaps, such evidence can be found in the anisotropignd KNiCk, and in the doped, distorted square-lattice anti-
quasi-1D case, where exchange in zigzag rows is mucferromagnets, such as LSCO or related Ni, Mn, and Co ma-

5=

!
J

smaller than that in straight rows, or vice versa. terials, such as LaSr, C00,.%
The essential results of this paper are expressed by Egs.
V. SUMMARY AND CONCLUSIONS (29) and(30), or, equivalently, by Eq€33)—(35). They show

| . £ ical h | that a transverse, equal-spin spiral structure, which is the
n agreat variety of important practical cases the complex, ;g state of the initial Heisenberg Hamiltonian, adapts to

crystal structure which is at the origin of the intricate mag- ¢ exchange modulation through appearance of the addi-
netic behavior in magnetic material results from a small sus;0 -1 Eourier harmonicsSo . ng , N=1,+ 2,...(bunching
+n C, - =4, — 4. .

erstructural distortion of a much simpler structure, in which . .
P P As a result, in a general case the GS energy is lowered by

the magnetic ions form a primitive Bravais lattice. Reduction h dulati In addition. the pitch of th .
of the crystal symmetry related to the appearance of even §*¢1anNge moduiation. in addition, the pitch of the primary

single, commensurate with the original lattice, superstrucspiral componen§; may also changeQ—Q, because it is
tural Bragg reflection at a wave Vect@& forma"y requires now defined by the minimum of modulation-corrected en-
folding the original Brillouin zone to a much smaller one, €r9y, Eq.(35).
many times reducing its volume. Consequently, the magnetic APplying these results to several particular examples of
system is usually described in terms of multiple spin sitesthe topical frustrated spin systems appears quite revealing.
and multiple sheets of spin excitations. Not only does thigVe find that in the case of the frustrated square-lattice anti-
greatly complicate understanding and predicting magneti¢erromagnet with diagonal coupling)’, such that «
properties, such violent modification of tigespace clearly =J/(2J") is close to 1, lattice modulation opens a region of
seems an unsatisfactory way to account for a small distortioftability of the incommensurate spiral phase. This “order by
of the crystal structure. Moreover, BZ folding is not an op- distortion” phenomenoif competes with “order by disor-
tion for the incommensurate structural modulations, such ager,” which prefers collinear arrangements of two antiferro-
arise in various charge-density-wave ordered states. magnetic sublattices. The incommensurate spiral phase with
In this paper the effect of a small lattice modulation with the propagation vectdp= (7 + 8,7+ &) close to(s,7) wins
single propagation vecto®, on the system of localized for the rangeO(e?) of the parameter in the vicinity of a
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=1. This provides a plausible explanation for the incommen- APPENDIX: EFFECT OF LATTICE MODULATION ON
surate spin order observed in L Co0,,% and in a EXCHANGE COUPLING

number of other doped perovskites, and may also be of a The simplest assumption, and the one which is most often

direct relevance for the doped LSCO materials. It is impor'employed in literatur&® is that the exchange coupling,

tant to mention here that _incommensurate sp_in—orderegetween the magnetic iorisping at positionsr; andr; only
phases are among the most interesting and puzzling featur%pends on the distance between the sifessJ(|r;|).

of doped layered perovskites. In the absence of distortiopyowever, in magnetic dielectrics this coupling most often
one needs at least a third-neighbor coupling in order to staesults from the superexchange and therefore generally also
bilize spiral MF ground state for the Heisenberg spin Hamil-depends on the positiés) of ligand ions which bridge the

tonian on square lattice. superexchange path,
Exchange modulation in Heisenberg antiferromagnet on a
distorted triangular-lattice leads to an incommensurate shift Jij=3(|rij | {r#i})=3(ry; {uri}). (A1)

of the spiral propagation vector, in qualitative agreement _ o o
with what is observed in RbMnBr However, Eq(41) im-  Hereu;; numbers the ligands that participate in héond

plies thatQ is decreased compared @=(2/3,27/3) for andr*i are their positions which are most naturally param-

re Ao are most
the ideal triangular lattice, whil@~27-(0.357,0.357) is zed In terms of the offseta®=r=R,;, from the

. : g bond centerR;; = 3(R+R;).
observed in experimentd:* Therefore it is likely that the Lo 28 ,
shift in RbMnB#; is mainly due to the anisotropic corrections In addition, the superexchange coupling may also depend

to the nearest-neighbor coupling, which are captured alrea n the angles of orbital overlaps. This dependence can be
in the simplest rov% modéi® l\lcl)evg}theless corre?:tion of E (%arametrized in terms of the positions of some particular

. ples ' ! . q- symmetry points in the local electron-density distribution,
(41) is not unimportant. In the case of=4, which may be

— . . and accounted for in EqALl) by including these points
relevant f_or RbMnBy, it gives the same magmtude S.h'ft of among{r*ii}. While these additional degrees of freedom do
the ordering wave vectogQ, as measured in experiment,

for [j/3[2~0.2 (for n=8, |j/J[2~1 is needey lift some nonessential symmetries which are present in the

. . ; . articular case when the exchange coupling only depends on
More importantly, bunching of the spin spiral as a resultp g ping only dep

the bond length);;=J(|r;;|), they do not change the general

of the lattice distortion provides, already on the m(':'Ejm'f'elO.lstructure of the corrections to the exchange coupling result-

I_evel, a possible explanation for the commensqratlon .trans'l'ng from the lattice modulation which are summarized by
tion in RbMnBr and for the long-periodic lattice-

te struct i th lated oh £ KNI Eqg. (3) in the main text. In what follows, we first discuss the
commensurate structure in the refated phase o .é\“ _ particular case of;; =J(|ri,-|), and then the general case of
deed, an easy-axis anisotropy, such as in KNiGbr a

magnetic field applied within the easy plane, as inEq' (AD).
RbMnBr;, also lead to bunching of the exchange spiral,
generating additional Fourier harmonicS,, at q=nQ,
n==*2,+3,... 2 Appearance of these Fourier components in First, consider the effect of displacement of the magnetic
the spin distribution lowers the spin anisotropy and the Zeeions alone. In presence of the superstructural modul&fipn
man energy, but competes with the modulated exchangéhe bond lengths becoms|=|r;;+ €;|, with €;=¢—¢

which requires additional Fourier components g&Q  given by

+nQ.. Therefore for some finite value of the easy-axis an- o
isotropy, or the in-plane magnetic field, a commensuration [ Qe T .

transition may be expected, whe@ebecomes equal tmQ, €j=2 S'r( 2 )[_ €5IN(Qc- Ryj) €2 o4 Qe Ryj) ],

with some integem. In the lattice-commensurate phase both (A2)
sets of additional harmonics coincide, and both the modu-

lated exchange energy, and the spin anisotropy and Zeemahere, as usuak; =r;—r; andR;;=3(R;+R)).

energy, can be lowered simultaneousijis, of course, Expanding the exchange couplingf;=J(r{;), modified
should offset the increase in the unmodulated exchange ehy the distortion(A2) in a Taylor series in small displace-
ergy caused by the shift i). Extending the results of this ment, €;<r;,

paper and those of Ref. 26 to the Hamiltoniél) with

modulated exchange of the E@) andD, H#0 in order to , 1
map out such phase diagram is one of the most obvious ‘JiJ:JiiJrEn: n!
directions for further studies.

1. Modulation of the bond length only

{9 n
fij'm) J(rij), (A3)

we find, up to a second order ir;(/r;)~e<1,
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For (&; - ri;) # 0 anddJ(r;;)/dri; # 0 the leading contribution are perpendicular to the direction of propagation of the lat-

is given by the first-order termy e, and we obtain, tice distortion, while those bonds that are symmetric with
_ o respect to this direction are modified equally. On the other
3= Jij +Jij oL Q- Rij) — ] sin(Qc- Rij) +O(€?), hand,jj; andjj; of Egs.(A6) and (A7) which describe the
(A5) first-order correction to the exchange coupling resulting from
where the lattice modulation are-sin(Q.-r;;/2), and therefore are
o P antisymmetric with respect tQ— — Q.
., [ Qe Tij Iij
lij=2 SIr( 2 ) rijorij (€2Ty)), (A6) 2. Modulation of the ligand positions, etc.
Q.-rii\ ad(ry) Itis also straightforwarq to account for the dgpendence of
”3:2 sir( J) ) (€1-1)). (A7)  the superexchange coupling, H&1), on the positiong*ii
2] rjory of the ligand ions and the symmetry points of the local elec-

Clearly, to the first order, there is @.-independent correc- tron density distribution which define the orbital overlaps. In
tion which would change the bond strength. Such a cor-  the presence of the superstructural distortiah
rection does appear in the second ordee.in -, ) ) _ )
If (&;-1i;)=0, i.e., the displacements are perpendicular to (rein)" =rki+ e cog Q- r*ii) + € sinf(Qc-ri),
the bonds, the leading correction is given by the second- (A13)
order term~ei2j. In fact, this important situation is often where w1 indexes different types af*ii positions within the
encountered in practice, in particular, it is the basis for thqnit cell, and the polarization vectoe§, which parametrize
so-called “row models” for triangular-lattice antiferromag- e displacement for point of type are determined by the

nets. These are typically thought to be realized through @yperiattice Bragg intensities that appear with distortion.
modulation of the hexagonal lattice where the displacement$nis can be rewritten as

of the magnetic ions are parallel to ti& symmetry axis,
and are perpendicular to the bonds in the hexagonal plane in(yaij)7 = yaij + €4 cog Q.- Ryj) + € sin(Q.- R)),

which the modulation propagates. RbMgBs believed to (A14)
present an example of such situation. For such case of a
transverse structural modulation we obtain where the new polarization vectoeﬁg now depend orQ)..

, ~, ~ They are obtained by rotating}’, through an anglep,,
Jjj=Jij+]1{; cod2Q.- R;j) — |} sin(2Q.- Rjj) § . Ny . “
=(Qc-u#ii), and subtracting; ,cosGQ.- ;) (this accounts
+sij[(Ti’j)2+(Ti’})2]1’2+ O((€j-1ij)% €%, (A8)  for change in the bond center positigy), correspondingly.
Consequently, in the general case of El), the Taylor

wheres;; =sgr{ dJ(rj)/4r;;], and series(A3) for J;; has to be amended, by adding

~ . Qc'rij>(93(rij) n
j=si] &), 9 R P __
& 2 ) riory () (A9 Jij_"]ii+2 n_|2 € JuHii I(rij {uri}),
n b
.y Qc'rij) ad(rj) (A15)
iy _sz( 2] rjjor 2ee). (A10) whose first- and second-order terms are easily rewritten in

the form of Eqs.(A5) and (A8), respectively. Therefore the
ccount for the modulation of the position$ii in the gen-
ral expression for the superexchange, E§l), simply

amounts to amending the coefficiepfsandj;; in Egs.(A5)

and (A8), in accordance with Eq9A14) and (A15). For

The first-order correction tdi’j also vanish ifaJ(r;;)/dr;;
=0. In this case the leading contribution comes from the las
second-order term in EqA4), and is also expressed by Eq.
(A8), but with s;; = sgrf2J(r;;)/er7], and

B Qc-rii ) 023(ri1) example, additional first-order terms which appear in Eq.
i =sin2(%) o [(&1i)?—(&-1)?], (A15) change the expressions of E¢a6) and (A7) as fol-
Fijorij lows:
(A11)

o i\ d23(r;; irqn i M

jiHj=Sir\2(%)%ﬁ2‘])2(€1'rij)(é'z'rij), (A12) JIJ_}II]—’—ME” 6’; ﬁUMij)J(r” ,{U J})’ (A16)
ij i

in place of Eqs(A9) and(A10). o . )

A Q-independent correction which changes the bond Jij_”ii_; &' gy i AU (ALT)
1

strengthJ;; first appears in the second order, E48). In
general, it is obtained by summing up &).-independent Using Egs.(A14) and (A15) it is easy to write out similar
contributions from all second-order terms in E44). Their  expressions for the coefficients of the second-order contribu-
common multiplier, siF(Qc-rij/Z), makes the structure of tion of Eq.(A8).

this correction rather simple. It does not affect the bonds that Clearly, a number of symmetry properties of the coeffi-
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cients jj; and ji; given by Egs.(A6)—(A12) which are
present forJ;=J(r;;), disappear upon account for the
modulation of the positions*ii. In particular, for the first-

PHYSICAL REVIEW B 68, 134451 (2003

becausej|;, ji; and, in generalﬁij, are functions on the
nondistorted lattice which also depend on the modulation

wave vectorQ. and the polarizations’l‘g, they are invariant

order corrections to vanish, not only should the displacewjith respect to all symmetry operations of that initial lattice

ments of the lattice site@nagnetic ionsbe perpendicular to
the bonds, but all of the displacememg should be per-
pendicular to the corresponding gradients afj;

=J(rj; ,{u*i}) with respect tas“ii. However, it is clear that,

which do not chang®, and €,. Importantly, this includes

the translation group of the nondistorted lattice, which means
that the new couplings and the exchange modulation ampli-
tudes which are related by that lattice translations are equal.

1J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y.
Nakamura, and S. Uchida, Phys. Rev. Lét8 338 (1997);
Phys. Rev. B59, 14 712(1999.

20, p. 305; T. Nagamiya, T. Nagata, and Y. Kitano, Prog. Theor.
Phys.27, 1253(1962.
23D, H. Lyons and T. A. Kaplan, Phys. Reil20, 1580(1960.

2J. M. Tranquada, B. J. Sternlieb, J. D. Axe, N. Nakamura, and S?*T. A. Kaplan, Phys. Rev124, 329 (1961).

Uchida, Nature(lLondon 375 561 (1995.

3R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T.
E. Mason, S.-W. Cheong, and Z. Fisk, Phys. Rev. 18615377
(2001.

4A. H. Castro-Neto and D. Hone, Phys. Rev. L&8, 2165(1996.

5J. Orenstein and A. J. Millis, Scien@88 468 (2000.

SW. M. Saslow and R. Erwin, Phys. Rev. 45, 4759(1992.

"W.-M. Zhang, W. M. Saslow, M. Gabay, and M. Benakli, Phys.
Rev. B48, 10 204(1993; W.-M. Zhang, W. M. Saslow, and M.
Gabay,ibid. 44, 5129(1991.

M. E. Zhitomirsky, O. A. Petrenko, and L. A. Prozorova, Phys.
Rev. B52, 351 1(1995.

M. E. Zhitomirsky, Phys. Rev. B4, 353 (1996.

10A. E. Trumper, Phys. Rev. BO, 2987(1999.

Y Throughout this paper, we index the wave vectors in the Brillouin

zone of the original, nondistorted structure, where magnetic ions

occupy the sites of a Bravais lattice.

120, A. Petrenko, M. A. Lumsden, M. D. Lumsden, and M. F.
Collins, J. Phys.: Condens. Matt8y 10 899(1996; O. A. Pe-
trenko, M. F. Collins, C. V. Stager, B. F. Collier, and Z. F. Tun,
J. Appl. Phys79, 6614(1996.

13|, A. zaliznyaket al. (unpublishedl

147, Kato, J. Phys. Soc. Jpidl, 300(2001); T. Kato, T. Asano, Y.
Ajiro, S. Kawano, T. Ishii, and K. lio, Physica B13&214, 182
(1995; T. Kato, K. Machida, T. Ishii, K. lio, and T. Mitsui,
Phys. Rev. B50, 13 039(1994; T. Kato, T. Ishii, Y. Ajiro, T.
Asano, and S. Kawano, J. Phys. Soc. %#.3384(1993.

SM. F. Collins and O. A. Petrenko, Can. J. Phys, 605 (1997.

16A. M. Tikhonov and S. V. Petrov, Phys. Rev.@®, 9629(2000.

"W. B. Yelon and D. E. Cox, Phys. Rev. ® 204 (1972; 7, 2024
(1973.

18M. Eibshutz, R. C. Sherwood, F. S. L. Hsu, and D. E. Cox, in
Thermal Expansion—1972dited by R. E. Taylor and G. L.
Denman, AIP Conf. Proc. No. 1(AIP, New York, 1972, p. 864.

%A, s. Borovik-Romanov, S. V. Petrov, A. M. Tihkonov, and B. S.
Dumesh, Pis’'ma Zh. Eksp. Teor. F&4, 208(1996 [JETP Lett.
64, 225(19967]; Zh. Eksp. Teor. Fiz113 352 (1998 [JETPSS,
197 (1998].

20A. Yoshimori, J. Phys. Soc. Jpa4, 807 (1959.

213, Villain, J. Phys. Chem. Solidkl, 303 (1959.

22T, Nagamiya, inSolid State Physicedited by F. Seitz, D. Turn-
bull, and H. EhrenreiclAcademic Press, New York, 195%0l.

25B. R. Cooper, R. J. Elliott, S. J. Nettel, and H. Suhl, Phys. Rev.
127,57 (1962; B. R. Cooper and R. J. Elliotf,31, 1043(1963.

26| A. zaliznyak and M. E. Zhitomirsky, cond-mat/030637@n-
published; JETP81 (3), 579 (1995 [Zh. Eksp. Teor. Fiz108,
1052(1995].

2TM. E. Zhitomirsky and I. A. Zaliznyak, Phys. Rev. B3, 3428
(1996.

28\We consider materials where in the absence of a distortion mag-
netic ions occupy the sites of a simple Bravais lattice. In addi-
tion, a number of the nonmagnetic ligand ions, inherent in the
chemical formula, may also be present in the unit-cell basis of
the crystal structure.

29such a simple expression with a singlemodulation is only true

for the first two orders ire. In general, thenth order correction

is ~[ € cosQq-rij) + € sin@Qc-ri;)]". While it invariably in-

cludes modulation with the wave vectoQ., it may also in-

clude lower harmonics. For example, both modulations with

3Q, and Q. appear in the third order.

30For example, if either of the contributions vanishes by lattice
and/or distortion symmetry.

31T, Holstein and H. Primakoff, Phys. Res8, 1098(1940.

32|n the case when the modulation is commensurate, i.e., there is a
numbem such thamQ.= 7 (7 is a reciprocal-lattice vectprthe
sums are limited tm<m, and the minimum conditions are finite
systems ofm equations. However, as far as the leading correc-
tions are concerned, for large>2 this is no different from the
general incommensurate case.

33A. F. Andreev and V. I. Marchenko, Usp. Fiz. Nadld0, 39
(1980 [Sov. Phys. Usp23, 21 (1980].

34|, A. Zaliznyak, V. I. Marchenko, S. V. Petrov, L. A. Prozorova,
and A. V. Chubukov, Pis'ma Zh. Eksp. Teor. F#7, 172(1988
[JETP Lett.47, 211(1988].

355, 1. Abarzhi, M. E. Zhitomirsky, O. A. Petrenko, S. V. Petrov, and
L. A. Prozorova, Zh. Eksp. Teor. FiA04, 3232(1993 [JETP
77, 521(1993].

36|, A. zaliznyak, N. N. Zorin, and S. V. Petrov, JETP Let, 473
(1996.

373. Jensen and A. R. MackintosRare Earth MagnetisniClaren-
don, Oxford, 1991

%8|, D. Landau, Zh. Eksp. Teor. FiZ, 627 (1937.

39D, Allen and D. Seechal, Phys. Rev. B1, 6394(1995; 55, 299
(1997.

134451-12



HEISENBERG MAGNET WITH MODULATED EXCHANGE PHYSICAL REVIEW B68, 134451 (2003

40F, D. M. Haldane, Phys. Rev. B5, 4925(1982. Phys. Rev. B68, 144422(2003.

41S. R. White, I. Affleck, Phys. Rev. B4, 9862 (1996. 49p, W. Anderson, Scienc235, 1196(1987).

42C. K. Majumdar and D. K. Ghosh, J. Math. Phyk, 1388  50S_A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. R&5, B
(1969; C. K. Majumdar, J. Phys. G, 911 (1970. 8865(1987).

43p. Chandra and B. Doucot, Phys. Rev38 9335(1988. 51E. Shender, Sov. Phys. JEBB, 178(1982.

*s. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Re89B  52C_ | Henley, Phys. Rev. Let62, 2056(1989; 73, 2788(1994).

i 2344(1989. 3|, A. Zaliznyak, J. P. Hill, J. M. Tranquada, R. Erwin, and Y.
E. H. Lieb and P. Schupp, Phys. Rev. L&B, 5362(1999. Moritomo, Phys. Rev. Lett85, 4353(2000).

46 : : .
R. R. P. Singh, Z. Weihong, C. J. Hamer, and J. Oitmaa, Phy$40. Tchernyshyov, R. Moessner, and S. L. Sondhi, Phys. Rev. Lett.
Rev. B60, 7278(1999.

470. P. Sushkov, J. Oitmaa, and Z. Weihong, Phys. Re\66B
054401(2002; 63, 104420(2002); V. N. Kotov and O. P. Sus- .
pyrochlore antiferromagnets.

hkov, ibid. 61, 11 820(2000. o
480. Tchernyshyov, O. A. Starykh, R. Moessner, and A. G. Abanov, E. Pytte, Phys. Rev. B0, 4637(1974.

88, 067203(2002, use the same tag for a completely different
phenomenon, arising from the magnetoelastic coupling in the

134451-13



