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Luttinger liquid behavior in spin chains with a magnetic field

Gábor Fáth
Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary

~Received 29 August 2002; revised manuscript received 8 April 2003; published 24 October 2003!

Antiferromagnetic Heisenberg spin chains in a sufficiently strong magnetic field are Luttinger liquids, whose
parameters depend on the actual magnetization of the chain. Here we present precise numerical estimates of the
Luttinger liquid dressed chargeZ, which determines the critical exponents, by calculating the magnetization
and quadrupole operator profiles forS51/2 andS51 chains using the density matrix renormalization group
method. Critical amplitudes and the scattering length at the chain ends are also determined. Although both
systems are Luttinger liquids the characteristic parameters differ considerably.
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I. INTRODUCTION

The one-dimensional~1D! antiferromagnetic Heisenber
chain

H5 (
i 51

N21

SiSi 112h(
i 51

N

Si
z ~1!

is one of the most thoroughly investigated paradigms of
teracting many-body systems. It is well known that for ze
magnetic field the low-energy physics depends very much
the spin lengthS. As Haldane predicted in 1983,1 integer-S
chains possess an energy gapDg(S) above the ground state
the size of which vanishes exponentially asS→`, whereas
half-integer-S chains are gapless. The presence of
Haldane gap in integer-spin chains implies the occurrenc
a critical fieldhc5Dg beyond which the system gets magn
tized. As the gap collapses at the critical field the grou
state structure changes adequately, and in an already ma
tized state there remains no conceptual difference in the l
energy properties between integer and half-integer chain

Partially magnetized antiferromagnetic Heisenberg cha
at low energies are expected to be one-component Luttin
liquids2 ~LL’s ! irrespective of the spin lengthS. This is
known rigorously in theS51/2 case where the model can b
analyzed using the Bethe ansatz.3 The validity of the Lut-
tinger liquid description forS>1 chains and coupled spin
1/2 ladders has been investigated and confirmed
analytical4–6 and numerical7–9 methods. Although there is
theoretical possibility of finding gapful behavior~magnetiza-
tion plateau! at special values of the magnetization, such
scenario does not seem to be realized in pure nea
neighbor Heisenberg chains ~see Ref. 10 for
S53/2)—neither would we expect multicomponent LL’
which can otherwise occur for more general~higher-order!
couplings.11

The LL concept bears a strong relationship toc51 con-
formal field theory~CFT!.12 In fact the LL is hardly more
than the CFT adapted to the situation with two Fermi poi
2kF momentum apart. The one-component LL is a thr
parameter theory.2 In the present context the first paramet
the location of the Fermi points6kF , is determined by the
magnetization through
0163-1829/2003/68~13!/134445~6!/$20.00 68 1344
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2kF52p~S2m!, ~2!

wherem5Stot
z /L is the~bulk! magnetization. The second pa

rameter, the Fermi velocityv, is just an energy scale
whereas the third parameter, to be called the ‘‘dres
charge’’Z, determines the universality class and the critic
exponents.~In the bosonization literature the notationK
5Z2 is standard.! The traditional LL parameters, the veloc
ties for charge and current excitations, can be expressed
Z asvcharge5v/Z2, vcurrent5vZ2.13

All three parameters are functions of the actual magn
zationm and the spin lengthS. The LL parameters of theS
51 chain in a magnetic field have already been determi
to some extent using numerical methods. Sakai and Ta
hashi diagonalized small finite chains up toN516 with pe-
riodic boundary conditions and used the prediction of CFT
finite-size energy spectra to estimate the critical exponen7

A similar method was used by Usami and Suga8 for the S
51/2 ladder which behaves as a Haldane-gap system
strong ferromagnetic interchain interactions. More recen
Campos Venutiet al.used the density matrix renormalizatio
group~DMRG! to compute directly the transverse two-poi
function Gxx(r )5^Sx(0)Sx(r )& on chains withN580 and
fitted these data to the expected asymptotic form ofGxx.14

In this paper we apply an alternative method. We calcul
precise numerical estimates to the critical exponents and
this to the LL dressed chargeZ via a direct numerical deter
mination of the magnetization profiles in finite open chain
The magnetization profile is, by definition, the positional d
pendence of the local magnetizationmn5^Sn

z& in an open
chain with some well-defined boundary condition. The fo
of the profile depends on the applied boundary condition
may involve surface exponents as well whenever the bou
ary condition on the left and right ends differ. In order
simplify the expected behavior we will only consider cas
where the boundary condition is identically open~free! on
both ends; in this case only bulk exponents come into pla15

In a semi-infinite chain, far from the chain’s end, the ma
netization profile is expected to decay to its bulk valuem
algebraically as

m~r !.m1Am cos~2kFr 1f!r 2hz/2, ~3!
©2003 The American Physical Society45-1
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whereAm is a nonuniversal amplitude,f is a phase shift,hz
is the ~bulk! critical exponent, defined through th
translation-invariant longitudinal two-point functionGzz(r )
5^Sz(0)Sz(r )&2m2.Acos(2kFr1f)r2hz, and kF is deter-
mined as a function ofm by Eq.~2!. The form of theFriedel
oscillation in Eq. ~3! contains indirect information about th
LL parameterZ, and this can be exploited in a numeric
procedure to calculate precise estimates. This program
been carried out for theS51/2 chain and ladders in Ref. 9
for the Kondo lattice model in Ref. 16, for the Hubba
model in Ref. 17, and for thet-J model in Ref. 18.

While the algebraic decay withhz/2 is a standard conse
quence of criticality,19 the 2kF oscillation is a special LL
feature, which stems from the fact that we work with tw
families of ~chiral! CFT operators residing around the tw
Fermi points ink space. Without the 2kF oscillation it is a
standard exercise in CFT to derive the shape of the ma
tization profile in a strip geometry of widthL by applying the
logarithmic mapping.21,15 This transformation, together with
the proper account for the 2kF LL term, yields a prediction
for the magnetization profile of a finite Luttinger liquid se
ment of lengthL with open boundary condition on bot
ends9,18:

m(L)~r !.m1Am cosF2kFS r 2
L

2D G F L

p
sinS p

r

L D G2hz/2

.

~4!

Note that there is no need to introduce explicitly a phase s
f as in the semi-infinite case, Eq.~3!, since the symmetry o
the profile with respect tor→L2r implies thatf52kFL.

The predicted LL profile in Eq.~4! is based on the con
tinuum limit. However, for finite lattice systems such as t
Heisenberg chain, we expect corrections. Conformal inv
ance and thus Eq.~4! are only expected to be valid asym
totically in the large-L limit with r satisfying 0!r !L.
Clearly, in a strict sense the magnetization cannot diverg
the chain ends sincemn<S. Phenomenologically this natura
cutoff at the boundary acts as an effective impurity put in
the CFT model at the system ends. This defines an effec
‘‘scattering length’’dN5O(1) associated with the boundar
suggesting that we should replace the naive system sizL
5N in Eq. ~4! with an ‘‘effective’’ system sizeL→N
12dN. Based on this intuitive argument in the following w
will work with a slightly modified ansatz

mn
(N).m1Am cosF2kFS n2

N11

2 D G
3FN12 dN

p
sinS p

n21/21dN

N12 dN D G2hz/2

, ~5!

wheredN is a free fitting parameter. WhendN50, Eq.~5! is
simply the discrete version of Eq.~4! ~note that now the
system is defined forn51, . . . ,N).

In the lack of a consistent scheme to calculate correctio
the above amendment to the fitting formula is not rigoro
Justification can stem from a direct comparison with ex
results. In the following we first discuss in detail the exac
solvableS51/2 chain as a benchmark case. We demonst
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that the ansatz in Eq.~5! is capable of reproducing the~nu-
merically! exactS51/2 critical exponents to high precisio
even withdN50. WhendN is also fitted for, the accuracy
improves by an order of magnitude.

II. SÄ1Õ2 CHAIN: BETHE ANSATZ RESULTS

The S51/2 Heisenberg chain in a magnetic field can
solved exactly by the Bethe ansatz~BA! method.20 The BA
itself cannot yield the correlation functions and critical e
ponents directly, but assuming conformal invariance the
erator content can be read off from the structure of the lo
energy excitations above the ground state.21 These latter can
be determined by a systematic calculation of the finite-s
corrections to theL5` BA equations~assuming periodic
boundary conditions!.22 The energy and momentum of th
lowest-energy~primary! states~with respect to those of the
ground state,Eg andPg) can be cast into the form

dE5Ea2Eg5
2pv

N
~D11D2!, ~6!

dP5Pa2Pg5Q1
2p

N
~D12D2!, ~7!

where a5$d,l % is a shorthand for two integer topologica
quantum numbers labeling the states. TheO(1) momentum
term is

Q5Qa52kFd1p l , ~8!

with kF defined in Eq.~2!. The ‘‘conformal dimensions’’D6

read

D65
1

2 FZd6
l

2ZG2

, ~9!

where Z is the dressed charge. The topological quant
numbers have a direct physical interpretation in the LL re
resentation:l (d) denotes the number of fermions added
~transferred from the left Fermi point to the right in! the
band.

The critical exponents appearing in the one- and tw
point correlation functions can be expressed with the con
mal dimensionsD6. In general a physical operator such
Sz decomposes into all operators which are not forbidden
conservation~selection! rules. In particular, forSz the num-
ber of fermions in the band is conserved; thus necessarl
50. The asymptotic decay is determined by the opera
which has the lowest critical exponent, i.e.,d51, giving

hz52~D11D2!u l 50,d5152Z2, ~10!

and an oscillation 2kF by Eq. ~8!. The transverse critica
exponentshx is determined by the operatorl 51,d50, i.e.,

hx52~D11D2!u l 51,d505
1

2Z2
, ~11!

with the associated oscillation frequencyQ5p. Equations
~10! and ~11! imply hzhx51.
5-2
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LUTTINGER LIQUID BEHAVIOR IN SPIN CHAINS . . . PHYSICAL REVIEW B 68, 134445 ~2003!
In the BA approach the dressed chargeZ5Z(B) is deter-
mined by a set of integral equations for the density of rap
ties r(x), and the dressed charge functionZ(x),23

r~x!5g~x!1E
2B

B

K~x2x8!r~x8!dx8, ~12!

Z~x!511E
2B

B

K~x2x8!Z~x8!dx8, ~13!

where

g~z!5
1

p~11z2!
, K~z!5

22

p~41z2!
. ~14!

The limits of integration are defined implicitly through th
constraint

E
2B

B

r~x8!dx851/22m. ~15!

The coupled integral equations in Eqs.~12!, ~13!, and~15!
are to be solved numerically.23 First, assumingB is given,
Eq. ~12! is solved forr. This is inserted into Eq.~15! to find
the associated value ofm. Whenm is given, as in our case
this procedure can be iterated to findB as a function ofm at
arbitrary precision. Finally Eq.~15! is solved for the function
Z(x) and the dressed chargeZ5Z(B) is determined. The
numerically determined dressed charge as a function of
magnetization is plotted in Fig. 1. In the next section this w
serve as a reference curve to check the accuracy of the fi
ansatz in Eq.~5!.

III. SÄ1Õ2 CHAIN: DMRG RESULTS

In order to test the fitting formula Eq.~5! we calculated
the magnetization profile in the ground state of finite ch
segments with open boundary condition using the den

FIG. 1. The dressed charge as a function of the magnetizatio
an S51/2 chain;L denotes results using the naive fitdN50, and
1 denotes fits wheredN is optimized. Solid line is the Bethe ansa
result. Inset shows the critical exponents and the numerically de
mined amplitudeAm . At m50 the dressed charge isZ51/A2.
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matrix renormalization group method.24 The chain length
wasN5120 and we keptM5160 states. The truncation e
ror was found to be in the range 12PM510213210211. We
applied a finite lattice algorithm with four iteration cycle
which was found sufficient for convergence. An example
the magnetization profile as determined by the DMRG
depicted in Fig. 2.

It is worth discussing the fitting procedure itself
some detail. The ansatz in Eq.~5! has five parameters
m, Am , kF , dN, andhz . AlthoughStot

z is a conserved quan
tity and thus can be set to a given value in the DMRG, due
the open boundary condition the control over the exact~bulk!
value ofm is lost. While it is true that for long enough chain
m will be close toStot

z /N, the finite-size deviation should b
tracked during the fitting procedure. Similarly, althoughkF is
a well-specified function ofm in the bulk@see Eq.~2!#, it was
found advantageous to keep it as an independent fit par
eter and only use Eq.~2! a posteriorias a consistency check
On the other hand, it is better to avoid fitting ondN directly.
Instead the best working alternative seems to be makin
four-parameter fit onm, Am , kF, and hz , while dN kept
fixed. The optimal value ofdN is the one which yields the
highest stability with respect to local fits, i.e., calculating t
four fitting parameters from a small number of sites at d
ferent locations in the chain. An example of this procedure
shown in Fig. 3. We found that the optimal value ofdN is a
weak function ofm, being aboutdN'0.5 for m50 and de-
creasing monotonically todN'0.4 for m51/2. This is more
or less consistent with the valuedN51/2 used in the
bosonization approach of Ref. 9.

Having obtainedhz using the above fitting procedure, th
fundamental quantity of the theory, the dressed chargeZ, can
be calculated from Eq.~10!. Figure 1 shows the numericall
determined dressed charge as a function ofm. The relative
error of the fitting procedure is under 0.1%, except for ve
small m values where logarithmic corrections to the fittin
formula andZ are expected, and the fitting procedure los
stability ~see the error bar in the figure atm50.03). Other-
wise, the agreement with the exact values is very good

in

r-

FIG. 2. Magnetization profiles determined by the DMRG for t
S51/2 chain with N5120, M5160, and magnetizationm
5Stot

z /N'1/3. Only half of the chain shown—the other half is mi
ror symmetric.
5-3
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GÁBOR FÁTH PHYSICAL REVIEW B 68, 134445 ~2003!
stable for 0.03&m,1/2. For comparison Fig. 1 also show
the estimate ofZ when the naive scattering lengthdN50 is
used. Even with this the error is within 1%, except for ve
small m.

We conclude that forS51/2 the LL ansatz for the mag
netization profile, Eq.~5!, is a very efficient tool in calculat-
ing the critical exponents~dressed charge!. The final result is
highly accurate already withdN50, but an additional in-
crease in precision can be achieved by adding the scatte
length as an extra fit parameter.

IV. SÄ1 CHAIN

Encouraged by the success of the fitting procedure foS
51/2, in this section we apply it to theS51 Heisenberg
chain. The forthcoming analysis is not intended to prove t
theS51 chain in its magnetized regime is a Luttinger liqu
— this has been done convincingly already.4–7,14Instead, our
starting point is the assumption that we have a o
component Luttinger liquid and then use LL theory and
numerically calculated magnetization profiles to determ
the value ofZ and the critical exponents with high accurac

Although the spin-1 problem cannot be treated rigorou
there are two limits where clear theoretical predictions ex
In the high-magnetization limit near saturation the phys
can be understood by regarding the system as a dilute g
magnons created in the ferromagnetic vacuum.7 Magnons
behave as bosons with short-range repulsive interaction
the dilute limit the exact form of the interaction is irreleva
and an essentially hard-core boson description beco
valid. In 1D hard-core bosons are equivalent to free spin
fermions, which imply an LL parameterZ51 with correla-
tion exponentshz52 andhx51/2 asm→1.

There is a similar argument in them→0 limit. Below the
critical magnetic fieldhc,Dg , whereDg is the Haldane gap
the elementary excitations are massive spin-1 bosons.25 At hc
these bosons condensate, but due to the interboson repu

FIG. 3. Stability of local fit parameters as a function of loc
position in the chain forS51/2, L5120,m'1/4. Local fit param-
eters at positionn are defined by fitting for sitesi 5n, . . . ,n
13l, with l52p/kF51/(S2m) the wavelength of the oscilla
tions. The highest stability of the parameters is achieved fordN
'0.4. Equation~2! is satisfied up to 231024.
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the magnetization only increases gradually. Nearm*0 the
boson density is low and by the above argument we ag
obtain Z51, hz52, andhx51/2. Note that this argumen
only works for S51 with a Haldane gap. ForS51/2 for
which the nonmagnetized ground state is massless, the
ementary excitations form a strongly interacting dense
with Z51/A2 as is given by the Bethe ansatz and the SU~2!
symmetry atm50. Alternative theories forS51, based on
either a Majorana fermion representation4 or on the
bosonization of spin-1/2 ladders,5 lead to a similar conclu-
sion in this limit.

Although the magnetizedS51 chain is a Luttinger liquid,
this classification only applies at low energies and long d
tances. Indeed, at higher energies and shorter distance
S51 chain produces features which cannot be underst
within the framework of LL theory. These features, absen
S51/2 chains, stem from the additional degrees of freed
staying massive forS.1/2. These degrees of freedom ha
signature both in the energy spectrum and correlations,
manifest themselves in the numerical, finite-chain calcu
tions. Their origin can be easily understood in the lo
magnetization limit. At zero magnetic field the system po
sesses an energy gap, the Haldane gap. The lowest ex
states form a triplet branch with a minimum energy at m
mentumk5p. The operatorSi

z has large matrix element
between the ground state and theStot

z 50 component of this
triplet. This leads to an exponentially decaying alternat
~antiferromagnetic! behavior in the longitudinal correlation
function. When the magnetic field is switched on, the Ze
man energy splits the triplet branch, and ath5Dg the Stot

z

51 component atk5p crosses over with the ground stat
However, theStot

z 50 component remains in the spectrum~at
energy'Dg) and still contributes to the short-range longit
dinal correlation functions. As a consequence the two-po
function shows a crossover from a seemingly exponen
decay on short distances caused by the massive mode
algebraic decay determined by the soft, LL mode on lon
distances.

There is a similar effect in the one-point function we co
sider here. Near the chain’s end there is an exponenti
localized effectiveS51/2 degree of freedom, the so-calle
‘‘end spin,’’ which also survives in the magnetized regime,
least when the magnetization is not too high.26 Its presence
produces a crossover from exponential decay to algeb
decay in the one-point correlation function as is illustrated
Fig. 4. As the magnetization increases the massive mo
rise in energy, and have a less and less significant impac
the low-energy physics. At the same time the end sp
gradually dissolve and disappear in the bulk as was obse
by Yamamoto and Miyashita.26

In order to measure the critical exponenthz we used the
DMRG algorithm withN5120 andM5160 with five itera-
tion cycles. The truncation error varied in the range 12Pm
510212–1028, the calculation being more precise in th
high-magnetization regime. A limited number of runs wi
N5240, M5300 was done to check the numerical precisi
and to obtain results at points where longer systems w
needed. We applied the fitting procedure described above
5-4
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LUTTINGER LIQUID BEHAVIOR IN SPIN CHAINS . . . PHYSICAL REVIEW B 68, 134445 ~2003!
care was taken to stay in the bulk of the chain sufficiently
from the ends. Since form50 the correlation~localization!
length of the end spin is about six lattice sites, which b
comes even shorter form.0, a chain lengthN5120 was
found sufficient.

We observed that the fitting procedure is somewhat
accurate here than forS51/2, meaning that finite-size cor
rections to the Luttinger liquid profile, Eq.~5!, are more
important for S51. The fitting procedure becomes esp
cially unreliable belowm'0.05 and aroundm'0.5. In the
former case the increasing wavelength, which becomes c
parable to the system size, whereas in the latter case
vanishing prefactor cos@2kF(n2(N11)/2)#→0 can be
blamed for the numerical difficulty. Far enough from the
problematic regions the relative error of the calculated ex
nent was estimated to be less than 1%.

Beyond measuring the local magnetization profilemn , for
S51 there is another, independent quantity whose pro
can also be measured easily. This is the local quadru
momentqn5^(Sn

z)2&. Note that forS51/2 this quantity is
redundant and thus carries no additional information. FoS
51, however, the quadrupole profile provides us an alter
tive way to measure the critical exponent which in ma
cases became even more precise than the one obta
through the magnetization profile. The quadrupole profile
expected to behave according to the same scaling form
~5! with the replacementm→q, Am→Aq .

Figure 5 shows the dressed charge determined using
~10! from the measuredhz exponent of magnetization an
quadrupole profiles. The inset also shows the correspon
critical exponentshz andhx as a function of the bulk mag
netization. We see that form→1 the predicted valueZ51 is
reached very rapidly. We analyzed them dependence close t
m51 and found it to be describable with a power law with
rather large exponent around 4, although a scaling faster
any power law cannot be excluded either. Due to the lack

FIG. 4. Magnetization profiles determined by the DMRG for t
S51 chain with N5120, M5160 at the bulk magnetizationm
'0.097. Only half of the chain shown—the other half is mirr
symmetric. The LL oscillation is clearly visible aboven.20. Solid
line is the LL fit. Inset shows the end of the chain on a log-line
scale featuring the exponentially decaying initial oscillation wh
crosses over to LL behavior atn'12.
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sufficient numerical precision nearm51, we were unable to
resolve this question reliably.

For m→0 the conclusion is also somewhat vague beca
the m dependence is very steep, and due to numerical d
culties, we were unable to approach this limit close
enough. However, aZ51 value predicted by the theor
seems highly consistent with our data. Assuming this,
numerical values seem to indicate anm dependenceZ21
;ma, with a50.560.1. Knowing thatm scales above the
gap asm;Ah2Dg,27 this would implyZ21;(h2Dg)b for
small h with b'1/4.

Between the two limitsZ is larger, reaching its larges
value Z'1.21 at m'0.36. This behavior should be com
pared to that ofS51/2, whereZ,1 in the whole regime~see
Fig. 1!. Earlier data on the critical exponents available in t
literature, which were determined by other methods such
the finite-size scaling analysis of the energy spectrum7,8 or
the staggered structure factor,14 are consistent with our re
sults.

The numerically determined critical amplitudes are d
picted in Fig. 6. The amplitude of the magnetic moment flu
tuations Am increases monotonically as a function ofm.
However, the rate of increase is not smooth as it is see
the figure.Am changes sign somewhere close tom51/2.
Where Am'0 the observable fluctuations are governed
the next smallest critical exponent, and thus a precise m
surement is beyond our method. In contrast with this,
amplitude of the quadrupole fluctuationsAq remains positive
in the whole magnetized regime. We observe that it
creases for smallm, reaching its minimal~still positive!
value atm'0.36. Above this it increases and saturates
m→1.

Finally, it is interesting to note that the optimal value
the scattering lengthdN changes considerably asm varies.
As the inset of Fig. 6 shows thatdN is around 0.5 for small
m, then decreasing todN'20.5 atm'0.7, then increasing
again todN'0 at m51. There is a relatively large unce
tainty in the optimal value determined, but this imprecisi

r

FIG. 5. Dressed chargeZ determined numerically for theS51
chain. Open symbols denote results forL5120, solid symbols for
L5240. The estimated error is comparable to the symbol s
Solid line is only a guide to the eye. Inset shows the longitudi
and transverse critical exponentshz andhx , respectively.
5-5
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GÁBOR FÁTH PHYSICAL REVIEW B 68, 134445 ~2003!
has little impact on the estimated value ofZ and the correla-
tion exponents.

V. SUMMARY

In this paper we have analyzed the critical fluctuations
openS51/2 andS51 Heisenberg chains in their magnetiz
regime. The low-energy physics is a one-component L
tinger liquid in both cases. We have calculated the LL’s ch
acteristic dressed charge and the amplitude of the lea
critical fluctuations. Our method consisted of determini

FIG. 6. Magnetization and quadrupole moment amplitudes
the S51 chain. Open symbols denote results forL5120, solid
symbols forL5240. Inset shows the best estimate ofdN.
,

M

13444
n

t-
r-
ng

numerically the magnetization and quadrupole operator p
files and applying a fitting procedure based on conform
invariance. The method has been thoroughly tested on
Bethe ansatz solvableS51/2 chain, confirming its reliability
and high precision. In theS51 case, where the exact solu
tion is unknown, the method provided high-precision es
mates of the critical exponents, justifying and compleme
ing earlier results derived by alternative methods. We a
determined critical amplitudes which have been much l
studied so far for these systems.

Beyond calculating the characteristic parameters w
high accuracy our results also allow us to make a deta
comparison between theS51/2 andS51 chains. Although
both are Luttinger liquids, the respective dressed charge
functions of the magnetization differ quite considerably. T
only limit where the two systems become equivalent is
full saturation limit m→S, whereZ→1. Otherwise, forS
51/2 the dressed charge isZ,1, while for S51 it is Z
.1. There are interesting differences in the behavior of
critical amplitudes and the scattering lengths at the ch
ends, as well.
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