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Luttinger liquid behavior in spin chains with a magnetic field
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Antiferromagnetic Heisenberg spin chains in a sufficiently strong magnetic field are Luttinger liquids, whose
parameters depend on the actual magnetization of the chain. Here we present precise numerical estimates of the
Luttinger liquid dressed chargg which determines the critical exponents, by calculating the magnetization
and quadrupole operator profiles 8+ 1/2 andS=1 chains using the density matrix renormalization group
method. Critical amplitudes and the scattering length at the chain ends are also determined. Although both
systems are Luttinger liquids the characteristic parameters differ considerably.
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l. INTRODUCTION 2ke=2m(S—m), )
The one-dimensionallD) antiferromagnetic Heisenberg
chain wherem= S, /L is the(bulk) magnetization. The second pa-
rameter, the Fermi velocity, is just an energy scale,
N-1 whereas the third parameter, to be called the “dressed
H= 2 SS.1— hE 3 (1)  charge”Z, determines the universality class and the critical

exponents.(In the bosonization literature the notatidt
=72 is standard.The traditional LL parameters, the veloci-

is one of the most thoroughly investigated paradigms of inties for charge and current excitations, can be expressed with
teracting many-body systems. It is well known that for zeroz aSUchargezv/ZZ, Ueurren=0Z2. 13
magnetic field the low-energy physics depends very much on All three parameters are functions of the actual magneti-
the spin lengthS. As Haldane predicted in 1983integerS  zationm and the spin lengtls. The LL parameters of th8
chains possess an energy geg(S) above the ground state, =1 chain in a magnetic field have already been determined
the size of which vanishes exponentially &s>, whereas to some extent using numerical methods. Sakai and Taka-
half-integerS chains are gapless. The presence of thehashi diagonalized small finite chains upNe-=16 with pe-
Haldane gap in integer-spin chains implies the occurrence afodic boundary conditions and used the prediction of CFT of
a critical fieldh,= A4 beyond which the system gets magne-finite-size energy spectra to estimate the critical exporfents.
tized. As the gap collapses at the critical field the groundA similar method was used by Usami and Stfar the S
state structure changes adequately, and in an already magned/2 ladder which behaves as a Haldane-gap system for
tized state there remains no conceptual difference in the lowstrong ferromagnetic interchain interactions. More recently
energy properties between integer and half-integer chains. Campos Venuteét al. used the density matrix renormalization

Partially magnetized antiferromagnetic Heisenberg chaingroup (DMRG) to compute directly the transverse two-point
at low energies are expected to be one-component Luttingéanction G**(r)=(S*(0)S*(r)) on chains withN=80 and
liquids® (LL's) irrespective of the spin lengtls. This is fitted these data to the expected asymptotic fornGbf 4
known rigorously in thes=1/2 case where the model can be  In this paper we apply an alternative method. We calculate
analyzed using the Bethe ansatZhe validity of the Lut- precise numerical estimates to the critical exponents and by
tinger liquid description foiIS=1 chains and coupled spin- this to the LL dressed chargévia a direct numerical deter-
1/2 ladders has been investigated and confirmed bynination of the magnetization profiles in finite open chains.
analyticaf ~® and numericdl™® methods. Although there is a The magnetization profile is, by definition, the positional de-
theoretical possibility of finding gapful behavignagnetiza- pendence of the local magnetizatiom,=(S/) in an open
tion plateay at special values of the magnetization, such achain with some well-defined boundary condition. The form
scenario does not seem to be realized in pure nearessf the profile depends on the applied boundary condition and
neighbor Heisenberg chains(see Ref. 10 for may involve surface exponents as well whenever the bound-
S=23/2)—neither would we expect multicomponent LL's, ary condition on the left and right ends differ. In order to
which can otherwise occur for more genethigher-order  simplify the expected behavior we will only consider cases
couplings'! where the boundary condition is identically opéree) on

The LL concept bears a strong relationshipcte 1 con-  both ends; in this case only bulk exponents come into Play.
formal field theory(CF'I‘).12 In fact the LL is hardly more In a semi-infinite chain, far from the chain’s end, the mag-
than the CFT adapted to the situation with two Fermi pointsetization profile is expected to decay to its bulk valne
2kr momentum apart. The one-component LL is a threealgebraically as
parameter theoryIn the present context the first parameter,
the location of the Fermi points kg, is determined by the
magnetization through m(r)=m-+A,, cog 2Kgr + ¢)r =722, 3
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whereA,, is a nonuniversal amplitude is a phase shifty,  that the ansatz in Eq5) is capable of reproducing theu-

is the (bulk) critical exponent, defined through the merically) exactS=1/2 critical exponents to high precision
translation-invariant longitudinal two-point functicd®*(r) even withSN=0. WhenéN is also fitted for, the accuracy
=(SH0)S4(r))— m?=Acos(Xr+)r ", and ke is deter- improves by an order of magnitude.

mined as a function af by Eq.(2). The form of theFriedel

oscillationin Eq. (3) contains indirect information about the II. S=1/2 CHAIN: BETHE ANSATZ RESULTS

LL parameterZ, and this can be exploited in a numerical ) o o
procedure to calculate precise estimates. This program has The S=1/2 Heisenberg chain in a magnet|(2:of|eld can be
been carried out for the=1/2 chain and ladders in Ref. 9, Solved exactly by the Bethe ansdfA) method.” The BA

for the Kondo lattice model in Ref. 16, for the Hubbard itself cannot yield the correlation functions and critical ex-
model in Ref. 17, and for the-J model in Ref. 18. ponents directly, but assuming conformal invariance the op-

While the algebraic decay withy,/2 is a standard conse- erator content can be read off from the structure of the low-
quence of criticality® the g oscillation is a special LL €Nergy excitations above the ground st&t&hese latter can

feature. which stems from the fact that we work with two P€ determined by a systematic calculation of the finite-size
families of (chiral) CFT operators residing around the two COITections to t'h.eLzzo BA equations(assuming periodic
Fermi points ink space. Without the i2- oscillation it is a  Poundary condlt_lor‘)sz The energy and momentum of the
standard exercise in CFT to derive the shape of the magndeWwest-energy(primary) states(with respect to those of the
tization profile in a strip geometry of width by applying the  9round stateE, andPg) can be cast into the form
logarithmic mapping**® This transformation, together with D

the proper account for thek2 LL term, yields a prediction SE=E,— Eg=—(A++A‘), (6)

for the magnetization profile of a finite Luttinger liquid seg- N

ment of lengthL with open boundary condition on both

,18. 2
ends ' SP=P,—Py=Q+ WW(A*—A’), )

=72
E sin(wEH . wherea={d,l} is a shorthand for two integer topological
7 4) guantum numbers labeling the states. THgl) momentum
term is

Note that there is no need to introduce explicitly a phase shift
¢ as in the semi-infinite case, E@®), since the symmetry of Q=Qa=2kgd+ 7l, 8
the profile with respect to—L —r implies that¢= —kgL.

The predicted LL profile in Eq(4) is based on the con-

mB(r)=m+A, cos{ZkF( r— ;”

with kg defined in Eq(2). The “conformal dimensionsA*

. - - . read

tinuum limit. However, for finite lattice systems such as the

Heisenberg chain, we expect corrections. Conformal invari- 1 | 12

ance and thus Ed4) are only expected to be valid asymp- Ai=§ Zdiﬁ} , 9

totically in the largek limit with r satisfying O<r<L.
Clearly, in a strict sense the magnetization cannot diverge athere Z is the dressed charge. The topological quantum
the chain ends sinam,,<S. Phenomenologically this natural numbers have a direct physical interpretation in the LL rep-
cutoff at the boundary acts as an effective impurity put intoresentationi (d) denotes the number of fermions added to
the CFT model at the system ends. This defines an effectivéransferred from the left Fermi point to the right) ithe
“scattering length”dN= (1) associated with the boundary, band.
suggesting that we should replace the naive systemlsize  The critical exponents appearing in the one- and two-
=N in Eqg. (4) with an “effective” system sizeL—N point correlation functions can be expressed with the confor-
+25N. Based on this intuitive argument in the following we mal dimensionsA “. In general a physical operator such as
will work with a slightly modified ansatz S* decomposes into all operators which are not forbidden by
conservatiorn(selection rules. In particular, foiS* the num-

m™—m4 A cos 2k.| n— N+1 ber of fermions in the band is conserved; thus necessarily
n m F 2 =0. The asymptotic decay is determined by the operator
2 which has the lowest critical exponent, i.d=1, giving
» N+2 6N . n—1/2+ 6N\ |~ 7= .
SN TN 2 oN - © 7= 2(A%+A7)| Zog-1=222, (10

wheredN is a free fitting parameter. WheiN=0, Eq.(5)is ~ and an oscillation B= by Eq. (8). The transverse critical
simply the discrete version of Ed4) (note that now the exponentsy, is determined by the operatb+1,d=0, i.e.,
system is defined fon=1, ... N).

In the lack of a consistent scheme to calculate corrections,
the above amendment to the fitting formula is not rigorous.
Justification can stem from a direct comparison with exact
results. In the following we first discuss in detail the exactlywith the associated oscillation frequen®s= 7. Equations
solvableS=1/2 chain as a benchmark case. We demonstratél0) and(11) imply 7,7,=1.

1
=2(AT+A7)||Z19-0=

577 (11
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FIG. 1. The dressed charge as a function of the magnetization in FIG. 2. Magnetization profiles determined by the DMRG for the

an S=1/2 chain;<$ denotes results using the naiveditl=0, and

S=1/2 chain with N=120,M=160, and magnetizationm

+ denotes fits wheréN is optimized. Solid line is the Bethe ansatz = St/ N=1/3. Only half of the chain shown—the other half is mir-
result. Inset shows the critical exponents and the numerically detefO Symmetric.

mined amplituded,,,. At m=0 the dressed charge Zs=1/y/2.

In the BA approach the dressed cha#ye Z(B) is deter-

mined by a set of integral equations for the density of rapidi

ties p(x), and the dressed charge functiB(x),

B
P(X)=9(X)+fﬁBK(X—X')P(X')dX', (12
B
Z(x)=1+f K(x—=x")Z(x")dx’, (13
B
where
g(Z)Zm, K(Z):m- (14

The limits of integration are defined implicitly through the

constraint

fB p(X")dx'=1/2—m. (15
-B

The coupled integral equations in E¢$2), (13), and(15)
are to be solved numericalfy.First, assumingB is given,
Eq. (12) is solved forp. This is inserted into Eq.15) to find

the associated value of. Whenm is given, as in our case,

this procedure can be iterated to fiBdas a function ofn at
arbitrary precision. Finally Eq15) is solved for the function
Z(x) and the dressed charge=Z7(B) is determined. The

matrix renormalization group methdd.The chain length
wasN=120 and we kepM =160 states. The truncation er-

ror was found to be in the range-1P,,=10 - 1011 we

applied a finite lattice algorithm with four iteration cycles
which was found sufficient for convergence. An example of
the magnetization profile as determined by the DMRG is
depicted in Fig. 2.

It is worth discussing the fitting procedure itself in
some detail. The ansatz in E@5) has five parameters
m, A, ke, 6N, andz,. AlthoughS;,, is a conserved quan-
tity and thus can be set to a given value in the DMRG, due to
the open boundary condition the control over the exaclk)
value ofmis lost. While it is true that for long enough chains
m will be close toS;,/N, the finite-size deviation should be
tracked during the fitting procedure. Similarly, althodghis
a well-specified function afnin the bulk[see Eq(2)], it was
found advantageous to keep it as an independent fit param-
eter and only use E@2) a posteriorias a consistency check.
On the other hand, it is better to avoid fitting 6N directly.
Instead the best working alternative seems to be making a
four-parameter fit orm, A,,, kg, and »,, while 6N kept
fixed. The optimal value oBN is the one which yields the
highest stability with respect to local fits, i.e., calculating the
four fitting parameters from a small number of sites at dif-
ferent locations in the chain. An example of this procedure is
shown in Fig. 3. We found that the optimal value&l is a
weak function ofm, being aboutbN~0.5 form=0 and de-
creasing monotonically t6N~0.4 form=1/2. This is more
or less consistent with the valuéN=1/2 used in the

numerically determined dressed charge as a function of thBosonization approach of Ref. 9.

magnetization is plotted in Fig. 1. In the next section this will

Having obtainedy, using the above fitting procedure, the

serve as a reference curve to check the accuracy of the fittifgfndamental quantity of the theory, the dressed chargan

ansatz in Eq(5).

Ill. S=1/2 CHAIN: DMRG RESULTS

In order to test the fitting formula E45) we calculated

be calculated from Eq10). Figure 1 shows the numerically
determined dressed charge as a functiomofThe relative
error of the fitting procedure is under 0.1%, except for very
small m values where logarithmic corrections to the fitting
formula andZ are expected, and the fitting procedure loses

the magnetization profile in the ground state of finite chainstability (see the error bar in the figure mi=0.03). Other-
segments with open boundary condition using the densityvise, the agreement with the exact values is very good and
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i the magnetization only increases gradually. Neex 0 the
¢ ® a0 boson density is low and by the above argument we again
i oy obtainZ=1, 7,=2, and n,=1/2. Note that this argument
. - only works for S=1 with a Haldane gap. FoB=1/2 for
¢ which the nonmagnetized ground state is massless, the el-
ementary excitations form a strongly interacting dense gas
with Z= 1/\/§ as is given by the Bethe ansatz and thg3U
VST O symmetry atm=0. Alternative theories fo6=1, based on
25000 either a Majorana fermion representafioor on the
bosonization of spin-1/2 laddetdead to a similar conclu-
X sion in this limit.
1.4 T T T T T Although the magnetizeS=1 chain is a Luttinger liquid,
0 10 20 30 40 50 60 this classification only applies at low energies and long dis-
position in chain n tances. Indeed, at higher energies and shorter distances the
o _ ) S=1 chain produces features which cannot be understood
FIG. 3. Stability of local fit parameters as a function of local i the framework of LL theory. These features, absent in
position in the chain fo=1/2, L. =120, m~1/4. Local fit param- S=1/2 chains, stem from the additional degrees of freedom
eters at positionn are defined by fitting for sites=n, ... n ] N
13\, with A= 27/ke=1/(S—m) the wavelength of the oscilla- staying massive foB>1/2. These degrees of freedo_m have
tions. The highest stability of the parameters is achievedsfér S|gn§1ture both in the ?nergy SpeCtr,um a_”o,' Correl_at'ons' and
~0.4. Equation2) is satisfied up to X 10~*. manifest themselves in the numerical, finite-chain calcula-
tions. Their origin can be easily understood in the low-
magnetization limit. At zero magnetic field the system pos-
sesses an energy gap, the Haldane gap. The lowest excited
used. Even with this the error is within 1%, except for veryStates form a triplet branch with a minimum energy at mo-
small m. mentumk= 7. The operatorS’ has large matrix elements
We conclude that foS=1/2 the LL ansatz for the mag- between the ground state and t§g=0 component of this
netization profile, Eq(5), is a very efficient tool in calculat- triplet. This leads to an exponentially decaying alternating
ing the critical exponentéressed chargeThe final resultis ~ (antiferromagnetic behavior in the longitudinal correlation
highly accurate already witdN=0, but an additional in- function. When the magnetic field is switched on, the Zee-
crease in precision can be achieved by adding the scatterif§an energy splits the triplet branch, andhat A the S,
length as an extra fit parameter. =1 component ak= 7 crosses over with the ground state.
However, theS;,,=0 component remains in the spectriat
energy~A,) and still contributes to the short-range longitu-
dinal correlation functions. As a consequence the two-point
Encouraged by the success of the fitting procedureSfor function shows a crossover from a seemingly exponential
=1/2, in this section we apply it to th8=1 Heisenberg decay on short distances caused by the massive mode to an
chain. The forthcoming analysis is not intended to prove thatlgebraic decay determined by the soft, LL mode on longer
the S=1 chain in its magnetized regime is a Luttinger liquid distances.
— this has been done convincingly alredd{**Instead, our There is a similar effect in the one-point function we con-
starting point is the assumption that we have a onesider here. Near the chain’s end there is an exponentially
component Luttinger liquid and then use LL theory and thelocalized effectiveS=1/2 degree of freedom, the so-called
numerically calculated magnetization profiles to determin€'end spin,” which also survives in the magnetized regime, at
the value ofZ and the critical exponents with high accuracy. least when the magnetization is not too hf§Hts presence
Although the spin-1 problem cannot be treated rigorouslyproduces a crossover from exponential decay to algebraic
there are two limits where clear theoretical predictions existdecay in the one-point correlation function as is illustrated in
In the high-magnetization limit near saturation the physicsFig. 4. As the magnetization increases the massive modes
can be understood by regarding the system as a dilute gas née in energy, and have a less and less significant impact on
magnons created in the ferromagnetic vacduMagnons the low-energy physics. At the same time the end spins
behave as bosons with short-range repulsive interactions. lgradually dissolve and disappear in the bulk as was observed
the dilute limit the exact form of the interaction is irrelevant by Yamamoto and Miyashit®.
and an essentially hard-core boson description becomes In order to measure the critical exponeptwe used the
valid. In 1D hard-core bosons are equivalent to free spinlesBMRG algorithm withN=120 andM = 160 with five itera-
fermions, which imply an LL parametet=1 with correla- tion cycles. The truncation error varied in the range A,
tion exponentsy,=2 and»,=1/2 asm—1. =10"12-10"8, the calculation being more precise in the
There is a similar argument in the— O limit. Below the  high-magnetization regime. A limited number of runs with
critical magnetic fielh;<A,, whereA is the Haldane gap, N=240,M =300 was done to check the numerical precision
the elementary excitations are massive spin-1 bo$oish,  and to obtain results at points where longer systems were
these bosons condensate, but due to the interboson repulsiorgeded. We applied the fitting procedure described above and

_.
4y
|

_.
o
]
%
]

local exponent n,
)
|

stable for 0.0m<1/2. For comparison Fig. 1 also shows
the estimate oZ when the naive scattering lengiN=0 is

IV. S=1 CHAIN
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FIG. 4. Magnetization profiles determined by the DMRG for the  FIG. 5. Dressed charge determined numerically for th8=1
S=1 chain withN=120,M =160 at the bulk magnetizatiom chain. Open symbols denote results Eor 120, solid symbols for
~0.097. Only half of the chain shown—the other half is mirror L=240. The estimated error is comparable to the symbol size.
symmetric. The LL oscillation is clearly visible abowe>20. Solid  Solid line is only a guide to the eye. Inset shows the longitudinal
line is the LL fit. Inset shows the end of the chain on a log-linearand transverse critical exponengg and 7, , respectively.

scale featuring the exponentially decaying initial oscillation which . ) o
crosses over to LL behavior at~12. sufficient numerical precision near=1, we were unable to

resolve this question reliably.
care was taken to stay in the bulk of the chain sufficiently far Form—0 the conclusion is also somewhat vague because
from the ends. Since fan=0 the correlationlocalization = the m dependence is very steep, and due to numerical diffi-
length of the end spin is about six lattice sites, which be-culties, we were unable to approach this limit closely
comes even shorter fan>0, a chain lengtiN=120 was enough. However, =1 value predicted by the theory
found sufficient. seems highly consistent with our data. Assuming this, our
We observed that the fitting procedure is somewhat lessumerical values seem to indicate endependenc& —1
accurate here than f@=1/2, meaning that finite-size cor- ~m“, with «=0.5=0.1. Knowing thatm scales above the
rections to the Luttinger liquid profile, Eq5), are more gap asm~\/h—Ag,27this would imp|yZ—l~(h—Ag)Bfor
important for S=1. The fitting procedure becomes espe-smallh with g~ 1/4.
cially unreliable belowm~0.05 and arounan~0.5. In the Between the two limitsZ is larger, reaching its largest
former case the increasing wavelength, which becomes convalue Z~1.21 atm~0.36. This behavior should be com-
parable to the system size, whereas in the latter case thpared to that o6=1/2, whereZ<1 in the whole regimésee
vanishing prefactor c¢8k-(n—(N+1)/2)] -0 can be Fig. 1). Earlier data on the critical exponents available in the
blamed for the numerical difficulty. Far enough from theseliterature, which were determined by other methods such as
problematic regions the relative error of the calculated expothe finite-size scaling analysis of the energy specfiior
nent was estimated to be less than 1%. the staggered structure factrare consistent with our re-
Beyond measuring the local magnetization prafilg, for  sults.
S=1 there is another, independent quantity whose profile The numerically determined critical amplitudes are de-
can also be measured easily. This is the local quadrupolpicted in Fig. 6. The amplitude of the magnetic moment fluc-
momentq,,=((S3)?). Note that forS=1/2 this quantity is tuations A, increases monotonically as a function wf
redundant and thus carries no additional information. Hor However, the rate of increase is not smooth as it is seen in
=1, however, the quadrupole profile provides us an alternathe figure. A, changes sign somewhere close no=1/2.
tive way to measure the critical exponent which in manyWhere A,~0 the observable fluctuations are governed by
cases became even more precise than the one obtaintte next smallest critical exponent, and thus a precise mea-
through the magnetization profile. The quadrupole profile issurement is beyond our method. In contrast with this, the
expected to behave according to the same scaling form E@mplitude of the quadrupole fluctuatioAg remains positive
(5) with the replacementn—q, Ap—A,. in the whole magnetized regime. We observe that it de-
Figure 5 shows the dressed charge determined using Eqreases for smalim, reaching its minimal(still positive)
(10) from the measured;, exponent of magnetization and value atm~0.36. Above this it increases and saturates for
qguadrupole profiles. The inset also shows the corresponding—1.
critical exponentsy, and 7, as a function of the bulk mag- Finally, it is interesting to note that the optimal value of
netization. We see that fon— 1 the predicted valuE=1 is  the scattering lengttdN changes considerably &s varies.
reached very rapidly. We analyzed timelependence close to As the inset of Fig. 6 shows tha@N is around 0.5 for small
m=1 and found it to be describable with a power law with am, then decreasing t6N~ —0.5 atm~0.7, then increasing
rather large exponent around 4, although a scaling faster thaagain toSN~0 atm=1. There is a relatively large uncer-
any power law cannot be excluded either. Due to the lack ofainty in the optimal value determined, but this imprecision
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0.2

numerically the magnetization and quadrupole operator pro-
files and applying a fitting procedure based on conformal
invariance. The method has been thoroughly tested on the
Bethe ansatz solvable=1/2 chain, confirming its reliability
and high precision. In th&=1 case, where the exact solu-
tion is unknown, the method provided high-precision esti-
mates of the critical exponents, justifying and complement-
ing earlier results derived by alternative methods. We also
determined critical amplitudes which have been much less
studied so far for these systems.

Beyond calculating the characteristic parameters with
& o m ap high accuracy our results also allow us to make a detailed
T T T T T T comparison between the=1/2 andS=1 chains. Although
0.0 0.2 0.4 0.6 0.8 1.0 both are Luttinger liquids, the respective dressed charges as

magnetization m functions of the magnetization differ quite considerably. The

FIG. 6. Magnetization and quadrupole moment amplitudes forOnly limit vyhere the two systems become eqw_valent Is the
the S=1 chain. Open symbols denote results for120, solid full saturation limitm—S, WhereZ—>;L. OtherW|s§, forS
symbols forL =240. Inset shows the best estimateddf. =1/2 the dressled Charge $<1' Wh'le_ for S=1 it IS Z

>1. There are interesting differences in the behavior of the
has little impact on the estimated valuezand the correla- critical amplitudes and the scattering lengths at the chain
tion exponents. ends, as well.

0.1 —
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