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We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems
with and without quenched disorder. We study two types of two-time local correlators with the aim of char-
acterizing the heterogeneous evolution in these systems: in one case we average the local correlators over
histories of the thermal noise, in the other case we simply coarse grain the local correlators obtained for a given
noise realization. We explain why the noise-averaged correlators describe the fingerprint of quenched disorder
when it exists, while the coarse-grained correlators are linked to noise-induced mesoscopic fluctuations. We
predict constraints on the distribution of the fluctuations of the coarse-grained quantities. In particular, we show
that locally defined correlations and responses are connected by a generalized local out-of-equilibrium
fluctuation-dissipation relation. We argue that large-size heterogeneities in the age of the system survive in the
long-time limit. A symmetry of the underlying theory, namely, invariance under reparametrizations of the time
coordinates, underlies these results. We establish a connection between the probabilities of spatial distributions
of local coarse-grained quantities and the theory of dynamic random manifolds. We define, and discuss the
behavior of, a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time
local functions. We characterize the fluctuations in the system in terms of their fractal properties. For concrete-
ness, we present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally,
we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be
either spin models without disorder or atomic and molecular glassy systems.
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[. INTRODUCTION spin glasses, there is consensus about there being some kind
of growing order belowl ;. However, there has been a long-

A mean-field theory of glasses has been developed durinigsting debate about the characteristics of this oftiéf.in
the last two decadés? This approach is based on the study other words, the question as to whether there are only two or
of fully connected spin models with disorder. A fully con- many competing ground states, not related by symmetry, that
nected spin system with pairwise interactions, thegrow during the nonequilibrium evolutiéh?®-24 has not
Sherrington-Kirkpatrick(SK) model, is used to model spin been answered yet. In comparison, it is not even clear if there
glasse$’ Extensions in which the spins interact via all pos-is a phase transition in structural glas&es.
sible p-uplets, with p=3, are used to describe structural Very recently, a number of experiments have shown the
glasses of fragile typ®® These are the so-callgdspin mod-  appearance of mesoscopic regions in supercooled liquids and
els. Even though structural glasses consist of molecules moyfasses that have distinctively different dynamics from the
ing in a finite-dimensional volume, rather than spins interactbulk of the systen?®*° The position and identity of these
ing via random exchanges on a complétgpen graph, the “particles” changes in time. In general, these regions are
disorderedp-spin models yield a gross description of many referred to as dynamic heterogeneities and have also been
important features of the structural glass phenomenologydentified in numerical simulatior:32
For instance, they have dynamic and static transitions occur- Developing a theoretical description of the real-space dy-
ring at different values of the external temperature, mimick-namics of glassy systems is now a major challenge to theo-
ing the dynamic slowing down at the freezing temperatureeticians. The purpose of this paper is to expand on the the-
T4 and the entropy crisis at the Kauzmann temperalyrt@  oretical framework we presented in Refs. 33 and 34 that
More strikingly, these models capture the slow nonequilib-allowed us to predict several properties of local dynamic
rium dynamics characterized by macroscopic observablefuctuations in spin glasses. We test the predictions of our
showing aging effects beIoWg.7'9 framework against numerical simulations on a spin model

Whilst they are successful in many respects, these modelgith disorder defined on a finite-dimensional lattice, the
lack a geometric structure and hence cannot inform us abowdwards-AndersofEA) model*® Following the philosophy
the spatial evolution of the glass former. In the context ofdescribed in the first paragraph, we claim that the main re-
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sults arising from our analysis will carry on rather simply to in the characteristic time scale for individual decorrelation,
the particle models which are more relevant for real glassess shown by Brangian and Kob for the disordered Potts
In the Conclusions and Perspectives sections we explain homodel above its dynamic critical temperatdfeA similar
one should translate our results and predictions to this caseehavior, superposed on aging phenomena, is observed in the
We also list a number of glassy models on which our ideasSherrington-Kirkpatrick model at low temperatures, as
could be tested. shown in Sec. VIII B. In all these studies the noise-averaged
correlations for fixed disorder were the focus of the studies.
In this type of analysis the identity of a spin is determined by
A. Background its position on the lattice or by the random exchanges.
We first briefly summarize previous studiémostly ex- In Refs. 33 and 34 we concentrated instead on the 3D EA

perimental and numericabf dynamic heterogeneities in par- Model and its two-time coarse-grainghut not noise-
ticle and spin systems that set the scene for our analysis. averagedl local quantities. In Ref. 33 we showed that the

There is great interest in the experimental observation ofiction for the slow part of the local relaxation becomes rep-
dynamic heterogeneous regions in super-cooled liquids an@r@metrization invariant asymptotically. Thiapproximatg
glasses. Many experimental techniques have been used ¥ymmetry allowed us to propose several properties of the
signal the existence of dynamically heterogeneous regions iflynamic behavior of the coarse-grained local correlations
samples of a variety of giass&s.and to try to characterize and responses that we tested numerically in Ref. 34. These

their properties. The confocal microscopy techni§dis ~ guantities are relevant both for spin modelsth and with-
particularly useful for this, as it allows one to reconstruct the@Ut quenched disordeand for continuous systems of inter-

particle trajectories in three-dimensioné8D) space and acting particles.

have the complete configuration of the system at chosen
times. B. Plan of the paper

In the context of theoretical studies of structural and poly- | this paper we complete the analysis that we started in

meric glasses, Bennemaret al. and Kob et al. identified  Refs. 33 and 34. We study several aspects ofldcal dy-
fast moving particles embedded in a bulk of slow movingpgmics of the 2D and 3D EA spin glass,

ones at temperatures aboVg in the super cooled liquid
phase of several models using molecular dynarti&ther
numerical studies of similar features appeared in Ref. 32. HJ:%:) JijSis; - @
In these experimental systems, and the models used to '
study them numerically, there is no quenched disorder. MoreThe sum runs over nearest-neighbor site§ on a
over, the particles are identical and move in continuougl-dimensional cubic lattice. The couplingly take values
space, so they cannot be identified by their position on atJ/\/2z with probability 1/2.z is the coordination of the
lattice, as in typical spin models. However, two possiblelattice, z=2d in the square/cubic case. The spins are Ising
ways of studying the heterogeneous dynamics of the systewariables,s;= * 1.
are as follows. We also analyze the dynamic fluctuations in finite-
(i) One can tag each particle, follow their evolution, anddimensional and fully connected models with finite size. To
detect which are the fast and slow moving particles during dest the latter we use the SK mean-field spin-glass model
previously chosen time window around some time afterdefined by
preparation. Particles are labeled by an indeXhis is the
route followed in Refs. 31 and 32.
(i) One can divide the space into boxes of a chosen size HJ_iEj JijSis, @

and study the behavior of all particles within each box. The . . T .
locality is then given by the position of the box which is with J;; taken from a bimodal probability distribution with

B 2 _ 2 .
labeled byi. At the end of this paper we explain why we 280 mean and varian¢djj ]=J(2N). (We expect to find

believe that the second approach will be very useful to charSimilar res_ults using a Gaussian distribution of exchanges.
acterize some spatial features of the nonequilibrium dynamtere and in what follows we use square brackets to denote
ics of glassy systems. An analysis of data obtained with th&1€ average over disorder. .

confocal microscopy technique of real systems and molecu- e fix the value of) in such a way that the critical tem-

lar dynamics of simple models along the lines described iPeratures are af.~ 1.1 for the 3D EA model and ai.=1
this paper will yield valuable information for the future de- for the SK model. The 2D EA model has a zero-temperature
velopment of a complete analytic theory for glasses. phase transition. We set the Boltzmann conskanto 1.

In the context of disordered spin models, fast and slow e focus on two types of locally defined correlations and
spins that decorrelate on totally different time scales weréusceptibilities(i) coarse-grained local quantiti€y™®(t,t,,)
identified in numerical simulations in Refs. 35 and 36 for theand x;%(t,t,) and (ii) noise-averaged local quantities
3D EA model above and beloW,, respectively. Barrat and C{'*(t,t,,) and x{"®(t,ty).

Zecchind” and Montanari and Ricci-Tersendhifound a The two-time dependence reflects the out-of-equilibrium
similar separation in the low-temperature phase of spin moddynamics of these systems after the quench at time. t,,

els defined on random graphs. Even finite-size samples afenotes the waiting time elapsed after preparation taad
mean-field models show important spin-to-spin fluctuationdonger time,t=t,,. We present a detailed comparison of the

134442-2



SPATIALLY HETEROGENEOUS AGES IN GLASSY SYSTEMS PHYSICAL REVIEW 88, 134442 (2003

behaviors of these local nonequilibrium correlations thatcopic region of the sample. The results of our analysis will
have been averaged differently. be of relevance to the interpretation and analysis of these
The numerical simulations were performed as follows. Toexperiments. They can also be used as a source of inspiration
study the finite-dimensional EA model we evolved a cubicto analyze dynamic heterogeneities in supercooled liquids
(squarg system with side lengti. and periodic boundary and glasse$’'*?as we discuss in the Conclusions and Per-
conditions from a random initial condition using Metropolis spectives sections.
dynamics at temperatue The random initial configuration
represents the result of an infinitely rapid quench from infi- C. Summary of results
nite temperature performed & 0. In the 3D case we con- Before getting into the technical details, let us summarize
sideredL=32 andL=64 and ford=2 we considered. our results.
=128. To compute spatially coarse-grained two-time quan- |, Ref. 33 we showed that, in the limit of long times, a
tities we used a coarse-graining volume which is a cubiGerg mode develops in the dynamics of finite-dimensional
(squarg box of linear size #+1. A coarse-graining time  gnin glasses. This soft mode is related to the invariance of the
that serves to make the spin variable smooth varies fronaffective action for the slow fieldéhat are actually two-time
study to study and is noted in each plot. We considered sevynctiong under a global reparametrization of time. Thus, we
eral values of the external temperature that lie above angygyed that the least costly spatial fluctuations should be
below T, and these are indicated as necessary. The noisgnes that smoothly change the local time reparametrization.
averaged data we present were obtained using shorter valugs Ref. 34 we tested these ideas numerically by evaluating
of the waiting time to allow for an average over many noiseihe |ocal coarse-grained correlations and integrated responses
realizations, typically 10samples. _in the 3D EA model. We observed that the fluctuations in
When studying the SK model we evolved systems withihese quantities are constrained to follow the fluctuation-
N=128 andN=512 spins with Monte Carlo dynamics at gjssipation relatiofFDR) between the global quantities as a
T=0.4 also starting from a random configuration of spins.girect consequence of the existence of the asymptotic zero
The noise-averaged data were obtained using, approximatebyode. In this paper we show further evidence that the
10° samples. coarse-grained two-time correlators reflect the existence of
In short, the results in this paper are organized as followsan asymptotic zero mode in the underlying theory. In particu-
First, we establish the dynamic scaling forms of both|gy ysing the fact that the dynamics become “critical” in a
coarse-grained and noise-averaged local quantities numeje||-chosen long-time limit, we explain why a scaling limit
cally. In particular, we test scaling forms that we propose inof |ong times and large coarse-graining volumes should exist
Sec. II. in which the distributions of fluctuations approach a stable
Second, we study the local relations between noisefmit.
averaged correlation and integrated response and between | disordered systems such as the 3D EA model, another
the same quantities when coarse grained. set of local two-time quantities can be defined using a differ-
Third, we show that the global quantities in finite-size ent averaging procedure. Indeed, one can work with noise-
SyStemS in f|n|te dimenSionS and those deﬂned on the fu”hveraged' as Opposed to Coarse_grained, two_time functions_
connected graph show similar fluctuations as the local quargyen if these quantities do not fluctuate in systems without
tities in finite-dimensional models. quenched disorder, they do in spin glasses and other random
Fourth, we propose a relation between the study of theystems due to the fingerprint of disorder. One can then won-
probablllty distribution of local fluctuations and the theOI‘y of der if these quantities are a|So Coup|ed to the asymptotic Zero

dynamic random surfaces. _ _ mode and whether their fluctuations are constrained in the
Fifth, we define and analyze a dynamic correlation lengthsame way as those of the coarse-grained quantities. We show
that depends on two times. numerically that this is not the case: the noise-averaged fluc-

Sixth, we present a way of looking at geometric propertiesyations behave in a rather different way.
in spin glasses that should be relevant to future experiments | order to sustain further this claim, we also study the
with local probes. We analyze the real-space organization ghesoscopic fluctuations in disordered models in finite and
local correlationsC{¢ andC{'® by investigating the geomet- infinite dimensions. We show that the fluctuations in the glo-
ric properties of thérandom surfaces given by their evalu- pal quantitied® which are due to the finite size of the sys-
ation on the substradimensional real space. In particular, tems, behave just like the coarse-grained local quantities in
we study the properties of clusters of spins with local correfinite-dimensional models. We observed this property in the
lation in the interva[ C,C+dC] for which C is a parameter 3D EA and the SK model.
taking values betweern-1 and 1. Again we compare the  We relate the study of the fluctuations in the local corre-
behavior of noise-averaged and coarse-grained quantities. |ations (and susceptibilitigsto the study of the evolution of
similar analysis could be applied to the random surface ofandom surfaces. Indeed, we propose that one can derive a
local susceptibilitiesy{® and x{'. “phenomenological” effective action for the fluctuations in

Because real systems do not equilibrate on accessible tintee local quantities from the statistical analysis of the sur-
scales, spatially resolved measurements will not be statidaces given by the evaluation of the two-time quantities on
instead, they will still depend on the age of the system, venthe d-dimensional substrate. This idea gives us a handle to
much like the bulk or global measurements. In these meadescribe analytically the fluctuations in a large variety of
surements one can monitor noise and responsenresos-  systems with slow dynamics.
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We study numerically the random surfaces describing the In the conclusions we discuss how to adapt this approach
fluctuations in space of both the coarse-grained and noisand the picture that emerges to supercooled liquids and struc-
averaged two-time local correlators. We show that noise avtural glasses.
eraging leads to surfaces that encode the fingerprint of the
disorder realization, and are static if the two timeandt,, Il. DEFINITIONS AND DISCUSSION
have a fixed ratidor if h(t)/h(t,), with a more suitable
function h(t), is kept fixed.

The coarse-grained surfaces obtained for different pairs
times (,t,), even if the ratiot/t,, [or h(t)/h(t,)] is fixed,
fluctuate and cross each other at many points as a function Q
tw . This result implies, as we show, that the relative ée
measured using the correlation valusetween two sites
andj in the sample is not static, but fluctuates as a function
of time. These are examples srpassithat we define in this To date, analytical, numerical, and experimental studies in
paper, and show a clear contrast to noise-averaged loc8lassy systems have mainly focused on the global correlation
quantities, where the relative age between all sites in th@nd integrated response:
sample keeps a constant, static, relative rank.

In this section we define the two-time, global and local,
(forrelators that we study numerically in the rest of the paper.
e recall some known properties of the global correlators.
e then discuss possible scaling forms for the local quanti-
s, as well as the implications of these scaling forms.

A. Two-time-dependent global functions

N

We define awo-time dependembrrelation lengthé(t,t,,) Cltt)= i s(D)s (t 3
using the spatial correlation of the local two-time correla- L=y ;1 (U3, @
tions. We study how this correlation length grows with time
in the glassy phase of the 3D EA model. We discuss how the N : .

: . ! 1 L 0si(t) €
ratio between the coarse-grained volume and the correlation x(Ltw) =g 2 dt S| 4
length affects the probability distributions for the measured =1 Tt 7(t) 7=0

guantities. In particular, we argue that when the coarsey . . . .. .
.- . . ere 7; is a (site-dependenhtmagnetic field given byz,
graining length is smaller than the correlation length, one kKA ( b ntmag 9 Y

: . = n€; with €= =1 with probability ; and » its magnitude.
probes the spatial fluctuations controlled by the zero mOdeThze%idd coelljples Iinearls to the s)pl)iialjaHnJ—E-s- 3 The
7, I~

When using coarse-graining lengths that are Iarger,_but St'lbroductsi(t)ei is the “staggered local spin,” i.e., the projec-
of the order of the correlation length, one is measuring Megion of 5 on the direction of the local external fielg . In
soscopic fluctuations of nearly independent finite-size SySprder to extract the linear part of the response the variation is
tems. If the coarse-graining length is much larger than theyajuated at zero fieldy=0. The integrated response is usu-
correlation length the fluctuations are suppressed. We shoglly averaged over many realizations of the random field.
numerically that the qualitative features of the local and me- For an infinite system that evolves out of equilibrium
soscopic fluctuations are indeed very similar and we conjecthese quantities are self-averaging, and thus averages over
ture that they may have a similar origin. the thermal noise and disordéf existend are not required.
Finally, we study the spatial organization of the local cor-All the generic analytic arguments we shall develop assume
relations (coarse grained and noise averagefe propose that the thermodynamic limifN—c, has been taken at the
that the analysis of the geometric properties of clusters obutset.(We discuss finite-size effects in Sec. VIII.
sites with similar values of the local two-time correlations
can be useful to determine if one is at or below the lower B. Two-time dependent local functions

critical dimension. More precisely, we claim that the geomet- . .

. o ) . Quenched random interactions have a strong effect on the

ric organization of the fluctuations in the 2D EA model are . . ) e .
local properties of spin systems. For instance, Griffiths sin-

different from those in the 3D case signaling the fact that the B
e g . ) ularities in the free energy of random ferromagnets are due
former does not have a finif€ transition. The difference is J 9y 9

) , to regions in space with strong ferromagnetic couplitigs.
very clear when one looks at the fractal dimension of cluS—rpege jead to dynamic slowing down even in the disordered
ters, d;. In three dimensionsli~2, while in two dimen-  phage of the random problem, below the transition tempera-
sions,d¢=2. These values of the fractal dimension are quiteyyre of the pure model. It is natural to expect that heteroge-
close to each other—however, the difference between thgeous dynamics in spin glasses arises for similar reasons. In
fractal dimension and that of the substrate spatesd  these systems random exchanges can be very different be-
—ds, is very different. In three-dimensiods~1 and in two  tween one region of the sample and another: some regions
dimensionsA<1. This suggests that the level surfaces incan have purely ferromagnetic interactions, others can have
two-dimensions lie on a much rougher underlying manifold,purely antiferromagnetic ones, others can be frustrated. One
as we suggest from theoretical arguments in Sec. Ill D, andan analyze the fingerprint of the disorder on the local dy-
should be linked to the absence of a glass transitiod in namics by choosing not to average over the random ex-
=2. However, a multifractal analysis gives less clear-cut dischanges.

tinctions, suggesting that the nonequilibrium aging regime in  However, heterogeneous dynamics do not arise simply be-
the two-dimensional case has aspects that are very similar tause of quenched random couplings. Glassy systems with
the three-dimensional case. no explicit quenched disorder also exist in nattfrdlany
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models with spin or particle variables that capture their beHere and in what follows the angular brackets represent the
havior have been proposéti.**Even if there is no quenched average over thermal histories. These functions will appear,
disorder in these systems, one expects to find heterogeneofss example, in a dynamic cavity method applied to a disor-
dynamics in which some regions evolve differently thandered modef® This definition is particularly useful for
others?%44 mean-field (fully connected and dilule systems with

An extreme example of the latter situation occurs in fer-quenched disorder for which there is no notion of neighbor-
romagnetic domain growtft. At any finite time with respect nood. However, it completely erases the inherent heteroge-
to the size of the system, a coarsening system is heteroggeity of the dynamics in a nondisordered system such as
neous. Observed on a very short time window, Spins on iNgerromagnetic domain growth. Moreover, a single-spin ex-
terfaces behave very differently from spins in the bulk of yoimental measurement is unlikely, and usually a region in-

domains. However, there is nothing special about the identit)(lolving a large number of spins is probed, implying an ef-
of these spins. Spins that belong to an interface at one ti ctive coarse graining ’

can later become part of a domain and even later be part 0 Neither of the two definitions above include, in the case

ano.ther W?”' Impgrtant_ly, nc;)lo;:r?l rlegt;thmlot ev;an of tge of random systems, an average over disorder realizations.
mmw_r:jum dlntearb3|ze g'll\'/l()ant )é i'la IcEe Spacinean tek' This may allow us to detect regions that have special behav-
considered o be equilibrated while coarsening 1S taking, . 4,6 to the random interactions. We insist on the fact that

place. . . . the coarse-grained definition still contains noise-induced
If one wishes to analyze the local fluctuations in the dy'fluctuations

namics of spin systems, two natural functions to monitor are
the two-time local correlations and responses. These can be
made continuougin Ising spin systemsthrough different
averaging procedures that highlight different properties of
the systems. Each definition has a different theoretical moti- The relaxation of glassy systems may take place on many
vation. different time scales. A precise definition of “correlation
First, considespatially coarse-grained functioffs scales” was given in Ref. 7. Assuming that a chosen two-
time correlationC is a monotonic function of both timets
1 o andt,,, in the long waiting-time limit, one can relate the
Cfg(t,tw)zv E S;(1)sj(ty), (5)  values it takes at any three times using a time-independent
JeVi function. More precisely,C(t;,t3)=f[C(t1,t,),C(ts,t3)]
for t;=t,=1t; when all three times are very long.
The correlation scales are defined as follows. Within a
' (6) correlation scale, f(x,y)=J J(x)j(y)] and C(t;,t,)
7=0 =77 h(ty)/h(t,)] with h(t) a monotonic function of time

. - . N and j(x) another function. Between correlation scales the
whereV; is a coarse-graining region centered on siteth functionf is “ultrametric,” f(x,y)=min(x)

vqumeV,'and the overline stands for a coarse graining over To explain this definition with an example, the correlation
a short time W|nd0WTt (Ttw) around t (tw)a Tt<t (Ttw function C(tatw):(1_qEA)exq_(t_tw)/7]+qEA(tW/t) de-
<ty,). (Note that we use the same coarse-graining volume 0Bays in two scales that are separated at the V@ki@z, that
all sites) Only one realization of the thermal noise is usedpne sees as a plateau@ithat develops at long, in a plot
here, which mimics nature. This definition is natural for the againstt—t,, on a logarithmic scale. The first scale is sta-

study of finite-dimensional models in which there is a nOtiO”tionary and characterized Hy.(t) =exp(~t/7), the second

of space and neighborhood. Indeed, a coarse-graining procgne ages and is characterized loy(t) =t.

dure of this type is usually used to derive a continuum field-  The structure of scales can be different for different corr-
theoretical description of a problem originally defined on ag|ators. The local correlations defined in E8) [or in Eq.
lattice*® Moreover, it is of use if one wants to compare the (7)] are different observables labeled by Their decay

behaviors of finite-dimensional models with and without dis-gnoyld follow these generic rules whenever one can assume
order since it is nontrivial in both cases. This quantity is alsohat they are monotonic.

relevant to compare with experiments in which mesoscopic
probes are limited to testing the behavior of regions with a

C. Correlation scales

1 t 5si(t)e
9t t,)=o Jdt'#
Xi (ttw) Vj;/i W on(t)

minimum size that involve a |al’g€hough meSOSCOpj(num' D. Behavior of g|oba| two-time quantities
ber of spins. In the | o limit. tak fter the th d
Second, one can definesingle-site noise-averaged n the long waiting-time fimit, taken after the thermody-

functions3-3947 namic limit, one can prove analytically that a sharp separa-
tion of time scales characterizes the dynamics of mean-field
A e glassy model€:>*°~5IA similar separation of time scales has
Gt ) =(si(D)si(tw)), (") been observed numericaify%5and experimentalR} in a va-
riety of glassy systems. In short, one finds the followfg

t 5<§(t)€i> (i) A fast stationary evolution at short time differences in
Xina(tvtw)Ej dt' ——— : (8)  which the correlation approaches a plateau defined as the
tw on(t’) 7=0 Edwards-Anderson parameter
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dea= lim Cgt—t,)= lim lim C(t,t,) (9 lim  x(t,t,)=x(C), (14)

t—ty— t—t,—ot,—o ty—*C(t,t,)=C
with the integrated response linked to the correlation by thevhereC is held fixed as we take the limit which we assume
fluctuation-dissipation theoreiDT) exists. We call Eq(14) a FDR. In equilibriumy(C)=(1

—C)/T holds for all values ofC. Out of equilibrium one

. 1 finds a different relation with a kink: whe@> the equi-
Xt )= lim x(tt)=Z[1-Cy(t-t,)], (10 dea e

T librium result holds x(C)=(1—C)/T; whenC<(qg, a non-
) ) trivial functional form’y(C) is found and its particular form
and, in particular, depends on the model or system considered. For disordered
. spin models of the mean-field type two types of curves have
. . . been found.
tfltlvrvrlmt:vlian(t’tW)_ T(17Gen): (D (i) For p-spin models it is a broken line with two different

slopes, one being the negative of the inverse temperature of
This regime is also called time-translational invari@ftl).  the bath forC e [gga,1]; the other has a different slope and
In general, the decay in this regime is not exponeritiiithe  spans the intervaC e [0,gga]. >’
example given in Sec. II C (i) For the SK model the construction also has a breaking
(i) A slow aging relaxation for longer time differences point atqg, separating a straight line with slope minus the
inverse temperature of the bath 0 [ qga,1], and a curved

C(t,t,) #C(t—t,), piece forC e[0,ggal.’
In the case of the random manifold the form of the modi-
x(t,t,) # x(t—ty,), (12)  fications of FDT depends on the range of correlation of the

random potential’ One finds a linear relation between the

when the value of the global correlation drops belqys  Fourier modes of the space-dependent correlator and suscep-
[and the integrated response goes above dd,)/T]. tibility if it is short ranged and a nonlinear form if it is long

The number of scales that appear in this second decaygnged. Moreover, one finds that all modes behave essen-
depends on the model considered. For the fully connegted tially in the same way in both cases. We shall discuss this
spin model a single correlation scale has been found belovgsue in Sec. Il F.
Jea in Which the global correlation scales with a power law,  Several simulations support the fact that the FDR of glo-
hag(t) =t.%%" A sequenceof global-correlation scales exists bal quantities in models for structural glasses, such as
in the analytic solution to the SK mod&f® For a manifold Lennard-Jones mixtures, behave like a manifold in a short-
moving in an infinite dimensional embedding space with arange correlated random potential, for which the second
short-ranged random potential one finds that the Fourieglope does not vanish and is equal for all the wave vectors

. - > 54,55 :

modes of the correlation C,(t,t,)=vdr'[{(r k. In the case of the 3D EA model the numerical results

" F’,t)gZ(F’,tW)>] decay on two scales that are separated at gvere interpreted as supporting the existence of a curve with

50 : fionconstant slope belowg,.>® Similar conclusions were
k-dependent Edwards-Anderson VaIQéA' The functions drawn from the experimental work presented in Ref. 59. The

Nt aq that chara<_:rtﬁ_r|ze;] the tIWO sbcales fare dld_enncall for Ia"numerical and experimental data are still rather far from the
wave vectors. This has also been found In molecularyqymniotic time limit, and, in our opinion, it is quite difficult

dynamic simulations of Lennard-Jones mixtu?és® If the decide f H datsifC) is indeed g
manifold feels a long-ranged random poterifidt the k O decide from the present atad(C) is indeed curved or a

modes decay in a sequence of scales. It is not clear yet if th'r@tra'ght line belowgea -

structure exists in any non-mean-field problem. In particular,

the 3D EA model behaves more like a model with only two E. Behavior of local correlations

global-correlation scalébut this may be due to the short- | this section we denote g, a generic local correlation
ness of the simulation times. In more complex problems onghat has been coarse grained, noise averaged, or smoothed
could even find that different correlators decay on totallywith any other prescription. We first discuss the possible time

different time scales. dependences of individual correlations at a very general

In the second time regime the FDT is not satisfied. How-evel. Later we distinguish between coarse-grained and
ever, in many glassy models evolving out of equilibrium thengjse-averaged values.

global correlation[Eq. (3)] and the global integrated re-
sponse[Eq. (4)] are linked in a rather simple manrfem- 1. Local Edwards-Anderson parameter
deed, assuming that the global correlation decays monotoni-

cally as a function of, one can invert this function and write Similarly to our discussion of the decay of the global

<1 correlation, see Eq(9), one can define docal Edwards-
t=1f4 "(C(t,tw),tw) and Anderson parameter as the value of the local correlation
separating fast and slow decays,

x(tty) = x(Fg HC(t, 1) tw), 1), (13) o
gea= lim lim Ci(t,ty). (15

implying t—tyy— ooty —o0
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The local correlations should decay quickly towagis and ~ waiting and total times explored. If the hypothesis in Eq.
then slowly below this value. If the structure of the global (19) holds, theh(t) in Eq. (17) must be identical tdy(t),
correlation is preserved at the local level, the first step of thénd one can write
relaxation should be stationary whilst the second one could _
be waiting-time dependent. Ci(t,ty) =fi(fg H(C(t,t,)) =Ti(C(t,ty)). (20
Site-to-site fluctuations im, are possible. For some =
spins the local Edwards-Anderson parameter may vanisfb
i.e., qea=0, and they may only show the first, fast decay.
These are the fast spins identified in Refs. 36—-38 in purely , _7F
; : Ci(t,ty)=f;(C). (21
noise averaged local correlations. However, one expects the
fluctuations ingf, to be smoothed by spatial coarse grainingAll local correlations are then site-dependent functions of the
and to disappear if a sufficiently large coarse-graining vol-global correlation. Following the line of thought in Ref. 7
umeV is used®* one can extend this argument to the case with a global cor-
relation that decays over many time scales. If one assumes
2. Slow local relaxation that the global correlation is monotonic, one can w@teas

; e F1
What about the decay of the local correlations below thé® function of C(t,t,) andt,, using t=fg*(C(t,tw),ty). If

plateau at:,? Any monotonically decaying two-time corre- ON€ further assumes that in the linjf—c with C(t,t,)
lation within a correlation scale behaved as = C fixed eachlocal correlation approaches a limit, then

or all pairs of times {(t,,) leading to a fixed value of the
lobal correlationC(t,t,,) =C, one has

lim Ci(t,t,)=f(C). (22)
— . (16) ty—,C(t,t,)=C

hi(tw)
oY This means thatvithin eachcorrelation scalall local corre-
There are two special cases that deserve special mention. Qitions are locked into following the scaling of the global
the one hand, the scaling argumehi&) could be site inde- one.

Citt =

pendenth;(t)=h(t), and thus Replacing the local space indeky a wave vectok, this
is exactly the behavior of a finite-dimensional manifold em-
h(t) bedded in an infinite-dimensional spafaVhen the random
Ci(ttw) =i WW)) : 17 potential is short-range correlated, the dynamics are such that

there are only two correlation scales in the problem, a TTI
On the other hand, the external functifyrcould be indepen- one satisfying FDT and an aging one in which all
dent of the site index and the scaling could take the form k-dependent correlators decay belq\'élA as in Eq.(17). In-
stead, when the random potential is of long-range type, the
h;(t) correlations have a TTI scale that ends ak-dependent
Ci(t!tw):f(m)- (18 Edwards-Anderson pIateatq,‘EA, and a subsequent decay
s that takes place in a sequence of scales. All modes are locked
This allows several combinations. The main ones to be disin the sense that for all times one can wrilg=f,(Cy)
cussed below ardi) the scaling in Eg(17) holds for all sites  where the argument can be any chosen mode, for instance,
in the sample(ii) the scaling in Eq(18) holds everywhere in the k=0 one. The former behavior was also found numeri-
the sample. Evidently, one can also have more complicatedally in thek modes of the incoherent scattering function of
behaviors{iii ) parts of the sample scale as in Efj7), other a Lennard-Jones mixture where there is only one correlation
parts scale as in E418), and still other parts do not satisfy scale below thek-dependenty¥,.>* Recently, it was also
either of the special forms but are described by the moreyroposed for all site-dependent correlators in the context of a
general form(16). Note that the noise-averaged and coarseferromagnetic model on a random graph in Ref. 38 and for
grained local correlations do not necessarily scale in thehe 3D EA model in Ref. 47. In these cases the correlations
same way. and susceptibilities were averaged over the noise with no
We first explore the consequences of having the behaviagpatial coarse graining.
in Eq. (17) for all sites in the sample. For simplicity, let us  Instead, if the hypothesis in Eq18) holds, there are
first assume that the global correlation decays in a singlenany open possibilities. For instance, different sites can
correlation scale once its value drops below the globakvolve on totally different time scales. A simple example
Edwards-Anderson parameter, illustrating this point is given by two sitesandj that decay
below their Edwards-Anderson values to zero each in a
hg(t) single scale but that are different from one another:
hy(ty)® = den: 19 c(t,ty)=gialint)/(Int) and Ci(t,t,)=gkaty/t. In this
case, siteé decays on a slower scale than git&here is also
This is the behavior of fully connecteatspin models with  the possibility that, while being in the same correlation scale,
p=3.2 One can expect it to hold in dilute ferromagnetic the value of the correlations at two site§ may cross each
=3 spin model® and, surprisingly, it is also suggested by other as a function of time. Let us be more explicit; consider
numerical simulations in the 3D EA model, at least for thetwo sites with local scaling functions

C(t,t,) =fq
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5 T . T T 7 F. Behavior of local responses and fluctuation-
dissipation relation
S 4t site i - Let us define a generalizddcal FDR via the limit
3 site | ,
5,1 " # | im  xi(tty) =xi(Cy). (26)
“5) / tyw—*Cj(t,ty,) =C;j
2, -
w This limit exists whenever the local correlations are not mul-
& 2 g | tivalued, i.e., if they are monotonic functions ofor fixed
T ty. Indeed, in this case one can invert for the time
817 - -
t=1"1(Ci(t,ty),tw), (27)
0 & : : : : and write
0 1 2 3 4 5
h(t) Xi(tt) = xi (T HCH(t ) t) ). (28)

FIG. 1. (Color onling Example of scaling functionk; ;j(t) vs  Taking the limitt,—c while keepingC;(t,t,,) fixed to C;
h(t). Because the functionis; ;(t) cross, there are pairs of times one recovers Eq26).

(t,ty) for which C;>C;, but others for whichC;<C;, even The question now arises as to whether the fluctuations in
thoughh; ;(t) only fluctuate slightly around the scaling function C; andy; are independent or whether they are constrained to
h(t). satisfy certain relations.
Based on thermometric argumefilswe shall associate
hi(t) =h(t) + oh;(t), (23)  the variation ofy; with respect toC; to a local effective

temperature. We would also like to know if the values of the
local effective temperatures are constrained or can freely
fluctuate.

. . - In the rest of this subsection we discuss different sce-
with |oh; j(t)[<h(t), so that the sites evolve within the o for the behavior of the joint probability distribution
same scale[Note that bothh;(t) and h;(t) are monotonic (PDP) p(C;,x:) computed at two fixed timesandt,,. We

functions] In this case, one can expand the expression in Eqy;q giscuss the behavior of the fluctuations in the local ef-

(18) and write fective temperature. In order to illustrate different possibili-
ties we present several plots that sketch the following con-
h(t) ohi(t)  Shi(ty,) struction. Given a pair of timetg,<t, we depict theN points
h(tw)( + h(t) - h(t,) ) [Ci(t,tw),_'l'xi(.t,tw)] with arrows Fhat represent the yglocity
of the points[i.e., the rate at which theQ;,Ty;) positions
h(t) [ h(t) | h(t) [ohi(t) Shi(ty) change as one changds and are located at their position in
~f h(t,) h(t,)/ h(t,)\ h(t) N h(t,) |’ the C-Ty plane. Note that all these points are evaluaéd
the sameoair of times ,t,,). For the sake of comparison, in
(24) the same plots we also draw the parametric plot for the glo-

bal Tx(C) constructed as usuafor a fixedt,, we follow the
evolution of the pair C,Ty) as timet evolves fromt=t,, to
t—oo,
In the figures showing the distributions of(,x;) pairs
G Cuct ohi(t) — hi(t)  Shi(ty) — &hy(tw) @ we scale the y-axis by temperature to work with dimension-
| h(t) h(t,,) ' ) less variables. This is important to compare the extent of
fluctuations in the two directions.

hj(t)=h(t)+ oh;(t)

Ci(tatw)%f[

and similarly forC;(t.t,). At any pair of times (t,), the
difference between the two local correlations is

In general, the right-hand-sidehs) of Eq. (25 can change

sign as a function of the two timesandt,,, allowing for 1. Similar times

sorpassi (passing evenjshetween different sites. An ex- Let us first discuss the case in which the two tinhesd
ample of functionsh; and h; for which thesesorpassiare t,, chosen to evaluate the local correlation and integrated
realized is shown in Fig. 1. linear response are close to each other, in such a way that the

Finally, one could also find cases in whidh; ;(t) are  global correlation between them lies above the Edwards-
large[|h; j(t)|<h(t) is not satisfiefland thesorpassican ~ Anderson parameter. In this case the global correlator and the
be such thaC; andC; move across correlation scales. Theseglobal linear integrated response are stationary and related by
variations are quite dramatic. One could expect them to béhe FDT. In this regime of times we also expect the local
penalized in such a way that they appear less frequently thaguantities to be linked by the FDT.
the ones in which éh; ;(t)|<h(t). We shall return to this When studying noise-averaged two-time quantities one
issue in Sec. lll. can actually use the bound derived in Ref. 61 to justify this
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TX,

FIG. 2. (Color online Sketch of the local FDR between inte- FIG. 3. (Color onling Fluctuations in a system with only two
grated responses and correlations on all sites, at a fixed pair of time®rrelation scales defined using the global correlator. The plot
(t,ty) such that the global correlation goes belqwy . In this case  shows fluctuations in the local Edwards-Anderson parameter,
neither the positions of the pair€(,Ty;) nor the velocities of the (t,t,) are such that the global correlation goes betpy and the
points, i.e., the direction of the arrows that are associated with theairs (C;,Ty;) are not constrained to lie close to the global curve,
effective temperatures, are constrained. This case represents E§§C), indicated with a full broken line. The effective temperature is
(16) and (29). The full line sketches the parametric pip(C) for the same for all sites, as shown by the fact that all arrows are
the global quantities in a model with tw(straight line belowgga) parallel to the second piece of the global curve. Consequently, once
and a model with a sequence of global correlation scétesve  a site enters a “track” after IeavingfEA (indicated with straight
below ggp). The dashed line is the continuation of the sectionlines drawn with dotg it will follow it as time t evolves. The
where the FDT holds. The black dots indicate the location of thedashed line is the continuation of the part where the FDT holds. The
averaged values for the susceptibility and correlatigny, black dot indicates the location of the values for the susceptibility
=1/NZ, x; andCy = 1/NZ,C; at the timed andt,,, i.e., the global  and correlation averaged over the distribution.
values.

to satisfy certain relations. Here we explore the conse-
claim. For coarse-grained quantities we do not have an anguences of the scaling expressed in E2p) for all sites in
lytic argument to use but we find this expectation very reathe sample. Hence,
sonable. Note that the arguments put forward in Sec. 11l do
not apply to these short time differences since they hold for
the slowly varying part of the two-time functions only. We
have verified numerically that the fluctuations of the local

coarse-gram:_ad correlations and responses are concentratvt\a”qh C the chosen value of the global correlation. Note that
rather spherically around the global valuye=(1—C)/T

im  xitt)=xif(CH=x(C) (30
ty—°C(t,t,)=C

whenC>qe, .3 thsre is no constraint on the values ﬁ(C) and C;
=f;(C). Thus, the pairs@;,Ty;) can be scattered all over
2. Far away times: No constraint the plane.

However, since all sites are locked to evolve in the same
time scale as the global correlation for each choice of times
(t,ty), one expects

We now choose two timesandt,, such that the global
correlation taken between them is less tlgR .

The simplest possibility is that the fluctuations@n and
x; are independent. If these are not specially constrained the _
pairs (C;,Ty;) can be scattered almost everywhere on the dxi(Cy)
C-Ty plane. - Bf(C)=—45=—B"(C), (3D

I
The scaling in Eq(16) means that different sites might

evolve on different time scales. This could happen, for exyaseqd on the expectation of having partial equilibration be-
ample, ifh;(t) =t andh;(t) =In(t/ty). Hence, one can expect tyeen observables in the same time scileBhus, if the

each site to have its own effective temperature, scaling in Eq.(22) holds for all sites in the sample, there
should be ssite-independengffective temperature.
it dxi(Ci) The content of Eqs(20) and (31) is illustrated in Figs. 3
F(Ci)= ic_- (29 and 4 for a system with two correlation scales and a system
! with a continuous sequence of correlation scales, respec-
tively.

This situation is sketched in Fig. 2. Note that in this time regime, at longer timethe points

will also be scattered on the plane but the average of the
correlation will take a smaller value. Since this determines

Naturally, one expects that the fluctuations in the localthe velocity of the point§and their effective temperatyre
correlations and integrated linear responses at far away timeke direction of the arrows will be different. We can say that
are not completely independent and that they are constraindbere is a nonvanishing acceleration.

3. Far away times: Locked scales
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TY, TY,

FIG. 4. (Color online Fluctuations in a system with a sequence  FIG. 5. (Color online Fluctuations in a system with a single
of correlation scales defined using the global correlator. The pointsorrelation scale below the Edwards-Anderson plateau. The con-
are scattered on the plane with no constraint on their positions. Thstraint on the location of the pair<(,Ty;) implies that there are
local Edwards-Anderson parameter fluctuates. The velocities witmo fluctuations of the local Edwards-Anderson parameter and that
which the points move are all the same. Their positions are noall pairs are concentrated along the global straight line with little
constrained but their velocity moduli and directions are all identical.dispersion perpendicular to it. The arrows have the direction of the
This is given by the slope at the value of the global correlation alsecond slope in the globg(C) curve due to the result in E34).
the chosen timest{t,,), indicated with a black dot on the global As in previous figures, the dashed line continues the FDT line and
line. the black dot indicates the location of the values for the suscepti-

bility and correlation averaged over the distribution.

Finally, we reiterate that the only reason for the scatter of
(Ci,Txi) values is the dependence of the external functions 3D EA model behave as in Figs. 5 or 6. We expect that the
T, andy;. coarse-grained two-time correlators of structural glasses will

show a behavior as in Fig. 5.
4. Far away times: Fluctuations in time scales

As opposed to the case just discussed, the scaling in EqQ. Ill. CONSTRAINTS ON THE LOCAL FLUCTUATIONS
(18) means that different sites might evolve on different time
scales[if |sh;|>h(t)] and hence have their own effective
temperature.

As we shall argue in Sec. Ill, under certain circumstancesP" 1 : ; .
the local responses and fluctuations are constrained to foIIm?vnal's_m we derl_ved a dlsqrder-averaged dynamlc_generatmg
the global curve, i.e., ynctlonal that is a path integral over local two-time func-

tions, Q*A(t,t,), with a,8=0,1 labeling the Keldysh com-
Xi(C)=x(C)) (32  Ponents(see details belo This generating functional be-
comes the classical one, derived in Ref. 62, wher0. This
with C and}(C) defined in Eqs(3) and(14), respectively. treatment allowed us to discuss the classical and quantum

Then we have

We recently studied the symmetry properties of the dy-
namic action for the aging dynamics of finidimensional
pin glassed® Using the Schwinger-Keldysh functional for-

d%(C)  dWC) d(C) T,
i(C; Ci C
_ peffi XilLi _ XL _ X
IBI (CI)_ dC| dC| dC C:Ci (33)

If there are only two time scales for the decay of the
global correlation and, below the global Edwards-Anderson
parameter.y(C) is linearly dependent o€, this equation
yields =

iE'ff: Beff, (34) qEA Cl

for all sites, and values o <Qea. FIG. 6. (Color onling This is the possibility expressed in Egs.

If, on the contrary, the global correlation decays in & Se{3p) and (33) for a system with a sequence of correlation scales
guence of scales angd C) is not a linear function o€, one  below the globabe, . All point positions are constrained to be near
has fluctuations in the local effective temperature due to théne globaly(C) curve forC<gga [Eq. (32)], and their velocities

fluctuations inC; . are forced to be parallel to the globg{C) curve forC<qga [Eq.

This behavior is sketched in Figs. 5 and 6 for a systemzss)]. The velocities fluctuate from site to site, but since they are
with two global correlation scales and a system with a sedetermined by the global curve, they are identical for all sites with
quence of global correlation scales, respectively. In Ref. 34he same value of the local correlatin. The dashed line and the
we showed that the coarse-grained two-time quantities in thelack dot are as in previous figures.
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problems simultaneously. The aim of that work was to show Since the local field®; are related to the local correla-
that the slow part of the action is a fixed point of a group oftion, linear response, and causality breaking correlator, it is
time reparametrizations @) and to build upon this result natural to associate with them the same scaling dimensions
an argument to constrain how the local fluctuations shouldhat correspond to the global counterparts of these two-point
behave in time and space. Here we recall this argument arfdnctions. The appearance of atapproximate time-
summarize its main consequences. Indeed, one of the mareparametrization invariance of the slow part of the relax-
results arising from this analysis is that the coarse-grainedtion was noticed long ago in the asymptotic solution of the
two-time quantities should behave as in Fig. 5 or Fig. 6 if thedynamics of mean-field modets’*¢2-%9ndeed, when one
global correlations decay on one or a sequence of scalestudies the effective dynamic equations for the slow decay,

respectively. one drops the time-derivatives and approximates the time-
integrals. These approximations can be justified because the
A. Time-reparametrization transformations neglected terms are irrelevant in the® sensé? After ap-

) i B plying these approximations the resulting equations become
The local two-time fieldsQ;"(t,t,) are related to the nyariant under time-reparametrizations that transform the

fluctuating local physical two-time functions. The expecta-g|ohal correlator and linear response according to

tion values((Q®”(t,t,))) (we use({- - -)) to denote expec-

tation with respect to th€ action S[_Q]) give t_hedisorder C(t,tw)=C(h(t),h(tW)), (39
and thermal averagedocal correlations and instantaneous
responses: . dh(t,,)
R(ttw) = —g RO(®,h(L) O t), (39
QML tw))) = ((QI (1, t))) o _ e
for any differentiable and monotonic functidr(t).” Note
that once one proposes this transformation of the correlator,
=2 Ky[C(tt)] pLop ' '

the transformation of the linear response is forced to take the
form in Eq. (39) if one wishes to preserve their link via the
FDT.

Extending these definitions to the local and fluctuating
fields Q¥ we propose

=$ Kij[{sj(D)s;(tw))], (35)

{QM(Lt) ) =((QR(L,t,)))

K K

(A%,A3)=(0,0), (40)
(55(1))

=2, Ki[R'¥(t,ty) 1= 2, Kii| = |h=0|- (36 R QR
> IRAWI=2 K| 5 G o) @O A 8= (01, @

The connectivity matrixKi-E[J?]. For example, for the A oA
i =LJj _example . (A% A%)=(1,0 (42)

Edwards-Anderson model with Gaussian distributed disor- 2R ™

der, Ki,-=\]2 for nearest neighborsj, and zero otherwise. o 5

Notice that the((Q®#)) are already an average over a small (A A =(1,. (43)

region around site (because of th&;;) even before coarse _ ) ) o _
graining. There are two other components of the2matrix This explains the ch0|ce_0f |nd|ces.0,1 for the Schwinger-
Q;: Qt,t,)=QA(t,t,) is related to the advanced responseKeldysh components, which conveniently label both the ma-
arlwd thle rér\ﬁvaininlg t\;vz)v-time functid@i“(t,tw):QiD(t,tw) is trix components and scaling dimensions at the same time.

related to a correlator whose avera(géQiD(t,tW))) vanishes Note that all sites are transformed in the same way under

for all | orobl Th ime fielg? in th the reparametrization of time just defined. This is a global
or all causal problems. The two-time fiel@™(t,tw) inthe o stormation that leaves invariant any local FDR of the
action are fluctuating quantities.

form
We defined a time-reparametrization transformation
—h(t) that acts on the fluctuating field3*4(t,t,,) as>*° t
v 9@ f dt'QY(t,t) = QML L)), (44)
dh(t)| 2~ dh(t,)| % N
Qi‘Y'B(t’tW)E( at ) ( T z ) QA(h(t),h(tw)), This relation is a “constant of motion” with respect to this
W

symmetry. Explicitly,
37) Y Yy plucity

WhereA,?i and Agi are the advanced and retarded scaling ftdt’Q?l(t,t’):ft dt’(dh(t )) oLy 1)
dimensions of the field); under the rescaling of the time ty t’
coordinated® These transformations generalize the well- )

known ones for the expected values of the global :f 101 " 00
Q's®75162-65%q the |ocal and fluctuating case, wilt{t) a hwdh QI (h.h)=1@Q7(hhw)
differentiable function. This choice of transformation is mo- 00

tivated as follows. =f(Qi (t,ty)). (45)

tw
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These transformations imply that the physical noise and (1) Fields The two-time fieIdsQf’B(t,tW), once coarse
disorder averaged saddle-point values transform as expecteéi,,amed over a volum¥ centered around, play the role of

[CM(t,t,,)]—[C(h(t),h(t,))], (46)  the static magnetizatiomgr).
(2) Symmetry When H=0 the energy function of the
DXt ) ]=[xi (1), h(tw)], (47 magnetic problem is invariant under a global rotation of the
and the FDR in Eq(26) is respected. magnetizationm?(r) =R*"m°(r) [R*(r)=R", for all r].
The potentiar\/(rﬁ) has a zero mode along the bottom of the
B. Invariance of the action Mexican hat potential.

In the dynamic problem, for longer and longer waiting
times, the symmetry breaking terms become less and less
important and the action progressively acquires a global

In Ref. 33 we studied the symmetries of the act®Q].
We showed that the long-time limit of the effective Landau-
Ginzburg aging action for the two-point functio@fﬁ(t,tw)

is a fixed point of the group of time reparametrizationsS’ymmetry(a zero mode develops .
(RpG). By this we mean that, after separating the field . (3 SPontaneous symmetry breakirg the absence of a

Qiaﬂ(t!tw):Qianasl(titw)+Qiaﬁslovxtrtw)’ and then integrat- pinning field, the ferromagnetic model spontaneously

ing out the fast part of the fields, all terms in the effectivechooses a direction of the vectoreverywhere in real space,
slow action are invariant under a reparametrization of timem(r)=m, in the broken symmetry phase.

t—h(t), that transforms the fields as in E&7). In deriving In the RoG invariant asymptotic regime, the minima of
the effective action for the slow contributid®**¢.(t,t,),  the dynamic action satisfy the global reparametrization sym-
we assumed that there islacal separation of time scales. metry. A given direction in the minima manifold is described
The only other ingredient in the proof was that the systemby one uniform time-reparametrization everywhere in space,
must be causal. h(F,t) =h(t),

. The approa}ch to the f!xed point is asymptotic, and there (4) Explicit symmetry breaking nonzero magnetic field
will be corrections to scaling at finite times. In particular, the -

kinetic contribution to the effective action is irrelevant at H Preaks the symmetry explicitly by tilting the Mexican hat
long times. However, irrelevant as it is at long times, thispotential. It forces the magnetization to point in its direc-
term acts as &ime-decayiny symmetry breaking field that tion in the N-dimensional space everywhere in the real
selects a particular reparametrization. d-dimensional space.

The importance of what we have shown is that it holds for RpG irrelevant terms, which vanish asymptotically, play
infinite and short-range models alike, and at the level of théhe role of(time-decaying symmetry-breaking fields that se-
action, not just the equations of motion. Moreover, it sug-lect a particular time reparametrization. The particular scal-
gests an approach to study spatial fluctuations of aging dying function h(t) chosen by the system is determined by

namics, as we discuss below. matching the fast and the slow dynamics. It depends on sev-
eral details—the existence of external forcing, the nature of
C. Implications of RpG invariance: Connection the microscopic interactions, etc. In other words, the fast
with a sigma model modes which are absent in the slow dynamics act as symme-
, ) i ) try breaking fields for the slow modes.
In view of this approximatgasymptotig symmetry we (5) Fluctuations These correspond to smooth variations

constructed an argument that allowed us to predict how the the magnetization as a function of positian(r)=m
local fluctuations of the disordered averaged theory shoul 1€ mag P i o
behave. In this section we explain in more detail the argu-- M(r). There are two types of fluctuations, longitudinal

ments sketched in Refs. 33 and 34. and transverse. The former change the length of the magne-
tization vector|m(r)|; these move off the saddle point mani-
1. Parallel with the Q'N) model fold of potential minima, and are thus massive excitations.

To better explain the argument, it is useful to explore anThe latter change direction onlyny- ém(r) =0; these re-

ana|ogy with the static, Coarse-grainé](,N) theory of mag- main in the pOtential minima manifold, and are massless ex-
nets ind dimensions: citations. The transverse fluctuations, which correspond to

smoothly spatially varying rotations of the magnetization
vector, are therefore the most energetically favored. These
are the spin waves or Goldstone modes in@(@&) model.

N . The equivalent of the transverse modes for the dyn&pic
wherem(r) is a continuous Ndimensional variablem(r)  theory are smooth spatially varying time reparametrizations,
=[m1(r),m2(r), ...,mY(r)], that represents the local mag- h(r t)=h(t)+ sh(r,t). Uniform or global reparametrization
netization.V(m) is a potential energy with the form of a is the symmetry of the model; the smooth spatially fluctuat-

Mexican hat.H is an external magnetic field. A particular ing 5h(F,t) are excitations that cost the lowest action, or the

case of this model is the well-known 3D Heisenberg ferro-Goldstone modes of th@ action.

magnet obtained wheN=3 andd=3. What controls the distance scale on which the fluctuations
The parallel between the two models is as follows. can vary? The first term in the ferromagnetic model in Eq.

H:fddr{[ﬁ-rﬁ<F>]Z+ﬁ-rﬁ<F>+V(rﬁ>}, 49)
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Transverse (a) A (b)
AGING

Longitudinal
Transverse

TTI

C.

1

FIG. 7. (a) Soft modes in the Heisenberg magnitdimensional sphere with radiysn,(r)| centered at the spatial poimt The
longitudinal and transverse directions for the fluctuations are indicated with arfiowSoft modes in the spatial fluctuations during aging.
The full line represents the globg(C) curve in a model with a sequence of correlation scales bejgw The vertical dashed line shows
the value ofgg, separating the slow stationary decd@yTl) from the slow aging regime. The directions for longitudinal and transverse
fluctuations as explained in the text are indicated with arrows.

(48) restricts the magnitude of the variation of the directionder is carried out from the outset in the field-theoretical ap-

of m. For the second model, one expects that a similar stiffProach, while fluctuations due to noise histories are kept by

ness will be generated once it is coarse grained, makiny/iting the Q theory using a path integral formulation. How

sharp variations insh(r t) difficult to achieve can one test the predictions from this disordered average
The longitudinal fluctuations in the ferromagnet, those Inf|eld theory against numerical simulations? The answer lies

which the modulus of the magnetization vector changes on whether the distributions that one studies are self-

— Mg+ 8m, cost more energy due to the Mexican hat poten_averagmg or not. What we find is that, if we study coarse-

tial and hence are less favorable. Similarly, in the dynamicgr‘r’“neFj Ioca_l corre_zlatlons a_nd |_nte_gra_ted respo?‘fshspugh
problem the fluctuations in which the “external fornfifor numerical S|m_ulat|ons, the_lr o_llstr|but|ons become indepen-
example, imagine the functiohin Eq. (18) varying with dent of the disorder realization for large enough coarse-

position| of the coarse-grained two-time functions change raining cell sizes. Thig .is an i”‘?“C‘?“"".‘ that self-_averaging
are less favorable olds for these nonequilibrium distributions, and in fact the

coarse-graining procedure is somehow averaging over disor-
der. This is perhaps another reason to work with coarse-
grained quantities, as opposed to noise-averaged quantities.
The penalties for longitudinal fluctuations, and the soft What can we say about the behavior of noise-averaged
transverse fluctuations corresponding to local reparametrizdand neither disorder-averaged nor coarse-graitoeal two-
tions t—h(rt), led us to propose that theparse-grained time functions? We argue that this procedure corresponds to
local correlations in the aging regimscale as in Eq(18). In  ‘fingerprinting” the particular disorder realization of the sys-
the C-Ty plane, these soft modes correspond to displacel€M- By a “fingerprint” of disorder we mean that noise-
ments along the gIob&(C) curve: this is shown in Fig. 7. averaged correlations and integrated responses at the differ-

_ i — ent sites purely reflect their disorder environment, since there
Displacements that move points off th&C) curve are the s g other source of fluctuations left in the problem. Of

longitudinal modes, which do not correspond to smoothlyeqyrse, further averaging over the disorder would erase the
varying time reparametrizations. . fingerprint, and simply give the global result. For this reason,
A na.turallconsequence qf this is the prediction that thgqarse graining also erases the fingerprint for a self-
fluctuations in the_noarse—grami(g |OE§FDR should be such - 5yeraging system. The noise-averaging approach should cor-
that the distribution of pointy;~(C;*) follows the global  (espond to the scaling in E¢L7), and fluctuations are then

FDR, x(C), defined in Eq(14). Thus, Eq.(33) should hold  not constrained to follow the globa(C) curve, as in Fig. 6.
(see Figs. 5 and)6Given any pair of timest(t,,) such that

ti]e global correlathn equals a prescribed valGgt,ty,) D. Random surface action: Effective action for the fluctuations
=C, the local effective temperature should be the same for
all regions of space having the same value of the local cor- In the spirit of the usual approach in deriving a coarse-
relationC;(t,t,,). grained effective action for the relevant fields in a probfém,
We would like to remark that the above theoretical argu-we search for the “minimal” effective action describing the
ment was developed for the fluctuating fiel@&”(t,t,), not ~ aging dynamics of the system in terms of coarse-grained
their thermal averages; these correspond, instead, to the efields Q*4(r’t,t,,). More precisely, in Sec. Il A we men-
pectation vaIue$<Qf“'3(t,tW))>. The average over the disor- tioned that the dynamic generating function is expressed in

2. Spatial fluctuations of aging dynamics
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terms of local two-time fieldsQ{*A(t,t,,), that are coarse configuration that satisfies causality. Since we focus on the
grained over a cube involving the first neighbors of theisite causal solution and its fluctuations, we do not consider such
Since we are interested in postulating an effective action foterms. The gradient penalizing term in E§O0) is chosen as
the soft fluctuations we shall consider a further spatial coarsene of the simplest nontrivial terms that respegGRnvari-
graining of these fields and work wi@®#(r t,t,,) that rep- ~ ance.

resents a smooth two-time field at the positiBn’n real I.n apalogy with the study' of th@(N)_ model aﬂd the
space derivation of an effective action describing the spin waves,

In a coarse-grained theory, one expects gradient terms g€ start by identifying the unifornfin spac saddle-point

be present in the effective action. Their effect is to penalizeconﬁguranon and we then consider small fluctuations around

rapid variations(in time and spageof the coarse-grained Since the saddle-point solution does not depend on the

fields. zThese terms play the role OT the terful’r[V spatial positionSy..d dspl = 0. Thus,qs, is completely deter-
-m(r)]“ in the energy Eq(48) for the Heisenberg ferromag- mined byS,,.,{ Q] and its precise form depends on the de-
net. . . . o tails of the model. We argue that one can still learn a great
~ As we discussed above, globap® invariance is, in the  deal about the spatial fluctuations by considering simplified,
limit of long times, a symmetry of the total action and we approximate saddle-point solutions. We know from numeri-
should preserve it when constructing the effective action fogal simulations of the 3D EA modél®?that the global cor-
the fields Q*#(r;t,t,). Thus, this symmetry poses strong relation scales rather well as
restrictions on the form of allowed gradient terms. _

In general, the effective action takes the form min[h(t1),h(tz)]

C(ty,ty)~0gaf ht) it
Q1= Syad Q1+ Scal Q] (49) math(ty).h(tz)]

with Scal Q] an RoG invariant action composed solely of
local terms andSy,{ Q] including the gradientnonloca)
dependence. Let us propose, for the latter,

(52

with h(t) andf(x) two monotonic functionsf(x) satisfies
f(1)=1 and f(0)=0. A very good scaling of the data is
obtained usindn(t) =t. It will be convenient to define a new
time-dependent functiog by

Syad Q1= - [ o [ "at, | "t 9,07ty 1) h(t) =%, (53
. The role of spatially varying rotations in tf@(N) model is
X[V a,Q%r;ty,tp)]. (500 here played by the spatially varying time reparametrizations

] ) that we write as
Notice that a global BG transformation t—h(t),

QY11 t) = Qrsty 1) = Q%r;h(ty) h(ty)) leaves h(t)—h(r,t)=e?. (54)
Syrad Q] invariant as well, as can be explicitly checked,
Thus, we express the saddle-point solution as

Syad @1= - [ o [ “dt, [ “at,1v0, 077, o) ()~ Gl (e ), (55

X[VﬂIZQOO(F;tl,tz)] and we parametrize the fluctuations around it with
(e } QYFity o) ~Geaf (e /42 (56)
= —f ddr f dhlf dhy[Van, Q%r;hy hy)]
0 0 > -
Let us now split ¢(r,t)=7h(t)]+ d¢(r,t), where
X[VahZQOO(F;hlth)]:Sgrat{Q]- (51)  7h(t)] selects the global reparametrization, i.e., fixes the
“direction” of the saddle-point solution, and¢(r,t) con-
Before proceeding, we would like to remind the readertrols the small fluctuations around it. Furthermore, it is best
that Q% and C®9 are indeed related, so what we discussto think of = as the proper time variable and work with
below appﬁes to the spatially varying coarse—qrained correy(r, 7)=84(r,t(7)). Changing integration variables in
lation C°9(r;ty,t5). The expectation Va|U(5<QOO(f{1:t2)>> Syad Q] from t to 7, and expanding around smadland ¢,
is related to the noisand disorderaverage ofC9(r;ty,t,) we obtain[for the simplest casé(x) =Xx]:
[see Eq(35)]. Similarly, one can show a relation between all
n-moments ((Q%(r;ty,t5)---Q%(r,;t;,t5))) and the 2 f d f”’ f” -
noise(and disorderaverage of products dE’s at n points. Sgrad~ea | Y _wdTl _xdTZ[VSD(r’Tl)]
Hence, the fluctuations of these quantities are akin.

The reader might also note that there are several other X[Veo(r,m)[1—|r—1,]]2 e dn~
simple RG invariant actions that we could have written 1
; : ; 01 10 11 00 * oo
down, involving eltherQ andQ-", or Q- andQ"™. How- _ _ —QéAJ ddr J drVe(r, D)2+, (57
ever, such terms vanish when evaluated on a saddle-point 2 —
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T /_\/\/\/— o(r,T,) details of the crossover depend on those neglected terms, but
l I o(r%,) one can capture its most important features by approximately
N 3 replacing| 7, — 7,| — 7.+ |7, — 75| in Eq. (61).
e The simple expression E¢61) has some powerful con-

sequences. First, it implies that the statistical distribution of

N\/w(r’Tz) local correlation functionSS(F;tl,tz) is controlled by the

proper time differencer;— 7,. Becauser=Inh(t) follows
Ag from the scaling of the global correlations of the EA
model?*>2we can conclude that the full PDF for the local
— > e(r.Ty) correlations is also a function that scales with the ratio
h(t)/h(t,,); this scaling is confirmed in our numerical simu-
lations in the 3D EA model, as discussed in Sec. IV D, where
for simplicity, we useh(t)~t.
FIG. 8. Schematics of the height separation between surfaces Second, it suggests that fluctuations of the height differ-
o(r,7) at different proper times, . . ., 7,. Notice that height dif- ©nces are much more pronounced in two dimensions than in

ferences for two different points,r’ can increase or decrease for three dimensionsGy(r,r), the correlation function for a
different pairs ofr’s. Such fluctuations can explain teerpassive ~ Gaussian random surface éhdimensions, goes to an ultra-
described previously. violet cutoff dependent constant in 3D, but diverges logarith-

mically with the system sizé in two dimensions. Hence,
where ¢ =d¢/dr. In Eq. (57) we retained only the leading this may provide a simple explanation why in two dimen-
relevant termwe neglected terms with higherderivative. ~ sions fluctuations destroy the global order in spite of the
It is very simple to show that in the case of a general funcexistence of nonzero local correlations.

tion f(x) the resulting action is identical to the above up to a  Additionally, Eq. (61) allows us to obtain more detailed
renormalized stiffness constant, namely, predictions about the leading order behavior of the fluctuat-

ing reparametrization. Within the present approximation,
o(r, ) — o(r, ) is a Gaussian random variable with a vari-
ance given by the square root of the rhs of Eij). Com-
bining this with the physical information that(t) = In h(t)
[where again for simplicity we can takkgt) ~t for the scal-

1 ing of the global functions and noting ¢(F,t)= 7(t)
)\f=4f0 dx X{[1+Inx]f' ) +xInxf" ()} (59 + 5¢(r.t), we can write the following scaling form:

r

1 o ..
Sgrad% E)\fQ%AJ dr Jide[V(P(ryT)]z"' --- (58

with

a positive definite constant. In particular, for a power law  ¢(r,t;)— ¢(r,t))=Int;—Inty+[Gy(r,r)

f(x)=x*, the renormalization factor of the stiffness is sim- 12
X (7t [Int —Int))]VX (ty,1p)

ply Ns=N\.

The go(F, 7) that parametrize the fluctuations can be =In(t,/ty)+[a+b|In(t, /t,)]]
thought of as the height of a random surface. Equati) W
relates the fluctuations of the local correlators with the rep- XX (tg,t2), (62

arametrization fieldg. In the casef(x)=x", this relation

here, to Gaussian level=1/2, andX,(t{,t,) is a random
takes the form w ussi v r(ty,to)

Gaussian variable of unit variance and spatially correlated.
Higher-order corrections could, in principle, modify this pre-
diction significantly. It turns out that simulational restfts

i i NS are consistent with Eq62), although witha# 1/2 and with
so spatial fluctuations of the correlatio®S9(r;t,,t,) are a non-Gaussian distribution fot,(t, .t,).

related to the fluctuations of the height differences from two
¢ surfaces evaluated at two proper times and 7,, as
sketched in Fig. 8. It is simple to understand how these IV. SCALING OF LOCAL CORRELATIONS

height differences, which fluctuate as a function of time, can  p¢qf having introduced the local two-time quantities in

very simply explain thesorpassiwe discussed in Sec. Il E2. goc | and having discussed several scenarios for their be-
What are the statistics of these height differences? Bepyyior in Sec. 111, in this section we study the dynamic be-
causep is a Gaussian surface, it is simple to show that  havior of the coarse-grained and noise-averaged local corre-
R R . lations of the 3D EA model using numerical simulations.
<[‘P(r171)_(P(r!TZ)]2>:2Gd(r!r)|Tl_7-2|! (61)

where G4(r,r’) is the correlation function for a Gaussian
random surface il dimensions. Wherr; and 7, get close, We recall that, for the waiting and total times we use, the
irrelevant terms neglected in E:7) become important, and aging decay of the global correlatidq. (3)] is rather well
|7.— 7, should be replaced by a short-time cuteff. The  described with a simplé't,, scaling® Indeed, even without

QOO(F;tl,t2)=qgg(tl,tz)e—W@T(‘D)—40@7(‘2))), (60)

A. Global correlation
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1

100 MCs ——
500 MCs ——
2500 MCs —=—
12500 MCs
z
5]
0.1 1 10 100 1000 FIG. 10. (Color onling Surface of local coarse-grained correla-
(t-tw)/tw tions on a 2D cut of the 3D real spade=0.8, L=64, M=3. The
local correlations are evaluated fgf=4.1x 10° andt=2.8x 1P,

FIG. 9. (Color onling Decay of the global correlatio@(t,t,,)
in the 3D EA model as a function of {t,)/t,,. The waiting-times
are indicated in the keyf =0.7 andL =32.

ie.,t/t,~6.8.

think about the random surface generated by the coarse-
] _ ) grained and noise-averaged local susceptibilities. In Sec. IX
subtracting the first approach to the plateawgt (which  \ye shall show the results of the numerical analysis of the

can occur with a very slow power Iy the scaling is quite geometric properties of the random surface of local correla-
acceptable. To illustrate this point, we show the global coryions in the 2D and 3D EA models.

relation against t(—t,,)/t,, in Fig. 9 for a system evolved
with a single thermal history and using relatively short wait-
ing times.

We stress that we do not claim that this scaling holds Before analyzing the time dependence of the local corre-
asymptotically. It simplyapproximatelydescribes the data |ations we briefly exhibit the dependence of the coarse-
for these short waiting times and up to the maximum waitinggrained correlations on the coarse-graining volume. In Fig.
time reachable in simulations, which is of the order of 10 12 we plot C%9(t,t,,) against the time difference—t,, on
Monte Carlo stepsMCS) (see Refs. 23 and 52 for a precise seven sites around the site with coordinates (1,1,1), using
analysis Where |0nger Wa|t|ng times haVe been Used and th:ﬂree Coarse_graining Volumey:(ZM +1)3 W|th M
approach to the plateau has been taken into actount =3,6,9. The waiting time ig,, =500 MCS. As expected,
coarse graining smoothens the spatial variation of the local
correlations and we see very little variation between the local
i ) correlations on neighboring sites. Foy=500 MCS, the

The evaluation of the local correlations on the ,res forM =3 are rather noisy while those fod =6 and
d-dimensional real-space substrate allowed us to draw a pafy = 9 pehave roughly in the same way. For longer waiting
allel between the evolution of the local coarse-grained coregmes the curves for the three coarse-graining volumes be-

lations and the dynamics of al-dimensional random p5ye roughly in the same mann@ot shown. In what fol-
surface’ see Sec. Ill D. At any pair of timed t,,) the ran-

dom surface fluctuates about the global vali(,t,) and it na
is constrained to do so betweenl and 1 sinceC,e C,
[ —1,1]. Within our RpG invariant theory, there is a one-to-

one relationship between this random surface for the coarse-

grained correlatorCCg(F;t,tW) and the random surfaces

&(r.t) [and ¢(r,t,)] discussed in Sec. IlID, as evident
from Eq.(56). The parallel between the evolution of the local
correlations and the dynamics of dadimensional random
surface can also be extended to the noise-averaged correla-
tions (although we present no analytical theory for this gase
The statistical and dynamical properties of the surfaces in
each case are not necessarily the same. In Figs. 10 and 11 we
show the values of the local coarse-grained and noise- g 11 (Color onling Surface of local noise-averaged correla-
averaged correlations, respectively, on a 2D cut of the 3Qions on a 2D cut of the 3D real spad®=0.7, L=32, 16 noises.
real space. These figures illustrate how the local correlationghe |ocal correlations are evaluated tgt=1.6x 10 and t=4.8
generate a surface with heigt} on each sité of the 3D x1¢#, i.e.,t/t,,=3. The fluctuations are reduced with respect to the
substrate. The statistical properties of g(their distribu-  ones in Fig. 10 sinc& is lower andt/t,, is smaller here. Note that
tion, geometric organization, eténform us about the statis- this surface fluctuates between 0 and 1 since the noise averaging
tical properties of the random surface. Similarly, we caneliminates negative values.

C. Coarse-graining volume

B. Relation to random surfaces
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FIG. 12. (Color onling The local correlatiorC{9(t,t,,) against
t—t,, for t,=500 MCS.L=64. The three groups of curves corre-
spond to coarse-graining volumas=(2M +1)® with M =3,6,9.

Different curves within each group correspond to the seven sites in

FIG. 13. (Color onling The distribution of the noise-averaged

the cubic box centered on the site with coordinates (1,1,1). We usical correlationsCi*® for several pairs ot andt,,. The waiting

a variable coarse-graining timethat starts atr=10 MCS and is
multiplied by 5 each time the total time reaches 5@} with k
For conparison we also plot the global correlati@n

=1,...

lows we shall typically useM =1, M=3, andM =6 that
correspond to linear sizesM+1=3, 2M+1=7, and M

times aret,,= 10° MCS, 2x 10° MCS, 4x 10° MCS, 8x 10° MCS,
1.6x10* MCS, and 3.X10* MCS, and the ratiot/t,, go from 2 to
64 and are indicated in the key. We averaged ovérrg@lizations
of the noise.r,=1/10, L=64, andT=0.7.

Fig. 14 shows two Gaussian fits to the numerical PDF’s for

+1=13. The first choice is the coarse graining implicit in the ratiost/t,=8,16 andt,=3.2x10". Note that sinceC{"*

the analytic theorysee Eqs(35) and(36)], except that here

e[0,1] the Gaussian fit cannot be perfect. In Sec. IV B we

the central site is also included. The two latter choices are gihentioned the interpretation of the local correlations as gen-

the order of one fifth of the linear size of the systenLif

=32 andL =64, respectively.

D. Distribution functions

erating a random surface on the 3D substrate. The approxi-
mate Gaussian distribution of tHg'® implies that we can
interpret the random surface of noise-averaged correlations
as being approximately Gaussian.

The distribution seems to become stable with respect to

What is the origin of the rather simple scaling of the glo-the number of realizgtiops of the noise, .after a large enough
bal correlation for the times explored? Do all local correla-number of such realizations. More precisely, we do not see

tions scale in the same way, andas/t,,, or is the global

any noticeable variation between the calculated distributions

scaling the result of the combination of different behaviorsthat are averaged over 500 and 1000 thermal histories. We

on different sites?

expect this distribution to be self-averaging, i.e., independent

In order to exp|ore these questions we first Study the t|mé)f the particular realization of the disorder for Iarge-enough

evolution of the probability distribution functiofPDF) of

local correlations. In Fig. 13 we show the distribution of 3
C"s for several pairs of andt, with ratios given in the
key. Only one disorder realization has been used and the
curves are drawn with correlations that have been averaged
over 1@ realizations of the noise. The full distributions scale 2+~
approximately witht/t,,. The peak moves towards smaller
values ofC{'® when the ratio increases and the distribution p 1.5 |-
gets slightly wider. The curves with wider lines correspond

to the longest,,. For smallt/t,, a drift with increasingt,, 1+
leading to a very mild decrease in the height of the peak is
visible in the figure. Note that when sufficiently many noise 0.5
realizations are averaged over, the distribution does not have

2.5 |-

16 e

8 [NE 101

any weight on negative values 6. For even larger val- 0 ........J..d“"l 1

ues of the ratid/t,, we expect to see a reverse trend in the -0.2
sense that the distribution has to start getting squeezed
around the valu€'®=0.

The central part of the distribution is described very well
by a Gaussian distribution for intermediate valuest/f,
(before the PDF starts to be squeezedGjfi=0). Indeed,

134442-17

FIG. 14. (Color online The distribution of the noise-averaged
local correlationsC"® for two ratiost/t,, given in the keyt,=3.2
X 10*, and two Gaussian fits. Same parameters as in Fig. 13.
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FIG. 15. The distribution of the coarse-grained local correlations  FIG. 17. The distribution of the coarse-grained local correlations
Cy9 for several pairs of andt,,. M=0 [2M+1=1<§(t,t,)] L C/9 for several pairs ot andt,. M=6 [2M+1>§(t,t,)], L
=32, 7=10° MCS, andT=0.8. The parameters given in the key =32, r=10° MCS, andT=0.8. The parameters in the key fix the
determine the waiting times,,= 2"wx 10* MCS. waiting times as in Fig. 15.

systems. We have checked the self-averaging property n@efine and study in Sec. V. For this amount of coarse grain-
merically, and also that, for large enough valuesNpfthe  ing the PDF has a nice scaling behavior. The position of the
distribution becomes size independent. peak is almost independent of the ratit,, in this case. Its

Figure 13 should be compared to Figs. 15—17 in whichheight diminishes when the ratift,, increases and the tail at
the distribution of the coarse-grained local correlatid®(¥, smaller values o9 grows. The scaling with/t,, is rather
is shown for several times and different values of the coarsegood in this case.
graining volume. Finally, in Fig. 17 the coarse-graining volume has a linear

In Fig. 15 the coarse-graining volume has a linear sizesize 2 +1=13 which is almost half the system size and
2M+1=1. Thus, there is no spatial coarse graining and thenuch larger than the two-time-dependent correlation length
only reason why these curves are not simple peaks Bt &(t,t,) for all the waiting and total times studied. The width
and 1 is that the coarse-graining in time, done witks 10> of the PDF’s has been considerably reduced with respect to
MCS for all times, slightly smooths the data. This figure the previous case. In particular, the PDF does not have any
shows that to get meaningful information about the distribu-weight on negative values, as opposed to what is shown in
tions the data need to be coarse grained. Fig. 16. It has also become quite symmetric, centered at the

In Fig. 16 the coarse-graining volume has a linear sizeglobal value which is also approximately the average value
2M+1=3. This distance is slightly shorter than the two- of this PDF. Reasonably, the distributions drift towards
time-dependent correlation leng#(t,t,), which we shall smaller values of the correlations when the valuet/af,
increases. Moreover, the scaling wiitt,, worsens with too
much coarse graining, as is to be expected. Using such a
large coarse-graining volume one approaches the limit in
which the distribution becomes & function at the global
value. Thet/t,, scaling is only an approximation to the true
scaling, see Fig. 9. In order to improve the fit one should
eliminate the contributions to the stationary decay but this is
not easy to do at the level of the full distribution.

It is clear that for a given disorder and thermal history this
distribution approaches a function on the time-dependent
global value of the correlation when the coarse-graining vol-
ume reaches the size of the system. Even in this limit, for
finite N we still have sample-to-sample and noise-to-noise
e " . fluctuations and hence a nontrivial distribution of these
-1 0.5 0 0.5 1 points. o _

C.%9 To conclude, for long waiting times, both the noise-
' averaged PDF and the coarse-grained PDF with+21

FIG. 16. The distribution of the coarse-grained local correlations™ §(t,t,) approximately scale with/t,,. However, even if
C®9 for several pairs of andt,,. M=1[2M+1=3~&(t,t,)], L for a given ratiot/t,, the mean valuesf the noise-averaged
=32, 7=10° MCS andT=0.8. The parameters in the key fix the and the coarse-grained distributions coincigelding the
waiting times as in Fig. 15. global value in both casgstheir shapediffer. This is most
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clearly seen by comparing, for instance, the curvestfgy
=32 in Figs. 13 and 16. The most distinctive difference is
given by the persistence of a peakgd(C®9) that is centered
on a stable value, almost independenttkf, (although its
height decreases with increasitig,) in contrast to a peak in
p(C"®) that changes its position continuously as a function
of t/t,,. Moreover, the PDF of noise-averaged correlations is
approximately Gaussian for intermediaté,, values while
the PDF of coarse-grained two-time local correlations is
clearly non-Gaussian wherV+ 1~ &(t,t,,). For larger val-

noise-averaged local two-time corr

. . W/ 03 | tw=8000 —— ttw=1.4 | (a)
ues of the linear size of the coarse-graining volume the PDF tw=16000 - i ,
looks more Gaussian, see Fig. 17, at least in its central par 0.2 - tw=32000 -~*-- l *

We have observed the same features at other temperatures 0.1 : : :
We end this section by pointing out that the probability 0 20 40 60 80 100 120
distributions for noise-averaged and coarse-grained quanti site
ties can be interpreted as, respectively, probabilities of aver
ages and averages of probabilities. To see this relation, con
sider a quantity that is noise averaged after being coarse
grained, and its probability density jg(C{9). In the limit
when the coarse-graining volume is a single sgih=0),
we recoverp(C®, using C'®*=(C;). Now, for a large
enough total system size, the probability distribution for
coarse-grained quantities(C;% becomes self-averaging,
p(C9—(p(Cf9). Hence, the differences between the
noise-averaged and coarse-grained probabilities derive fron
the fact thatp({C{9) #(p(C{9)).

|

03| tw=8000 ——  tAw=2
tw=16000
02 [ tw=32000 %

noise-averaged local two-time corr

. . 0 20 40 60 80 100 120
E. Scaling of noise-averaged local correlators

We have just shown that even if the probability distribu-
tions of noise-averaged and coarse-grained local correlation
take different forms, they scale approximatelyt&s,. This
does not mean, however, that each site has a local correlatio
scaling witht/t,,. Equationg17) and(18) can now be put to
test by studying the decay in time of the individual local
correlationsC'® and C/™9.

A simple way to test Eq(17) is to plot the values of the
local correlations at different sites for different paitst)
such that their ratid/t,, is held fixed. If the hypothesis is
correct, for a given site, its correlation must take a very simi-
lar value for allt,,’s. Figure 18 shows this test for a 3D EA

tw=16000 -

noise-averaged local two-time corr

model of linear sizd. =32 atT=0.7. The average involves 0.1 : . . . . .
10® noise realizations. In the three panels we used different 0 20 40 60 80 100 120
values of the ratid/t,, as labeled. The points represent the site

values of the noise-averaged local correlations at sites in four

rows in the cube. More precisely, the discrete points on the FIG. 18. (Color online The fingerprint of disorder. The noise-
axis labeled “site” correspond tox=0y=0,z=0,...L averaged local correlation on 128 sites ordered along four adjacent
-1), (x=0y=1z=0,...L—1), (x=0y=2z=0,...L rows for three choices of the ratiét,, indicated as a label in each
—1), and k=0y=3z=0,...L—1) ordered in this way. panel.L=32T=0.7,7=t/10. The curves for differertt,’s fall on
This means that, for example, the values sit, site=32,  top of each other showing that'® scales as in E¢17).

and site=64 are nearby sites on the lattice, sit® being

(x=0y=0,z=0), site=32 being k=0,y=1,z=0) and site  this range of times. The site-dependent external fundtjim
=64 being &=0,y=2,z=0). This explains the approximate Eq. (17) reflects the fingerprint of disorder.

periodicity in the data: it indicates that nearby sites have a Interestingly enough, even running at different tempera-
rather similar behavior as most clearly indicated by staring atures (with the same seeds for the thermal npitlee indi-

the points with rather small values @®. The lines are vidual evolution of the sites is still very similésee Fig. 19
added as guides to the eye. The figure shows that the nois&his issue deserves further investigation since it might be
averaged correlations satisfy the hypothesis in @d) for  very useful in helping to explain the intriguing memory and
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06 ¥ tw=10000 ——
' { fwep X w=20000

0.8  *® VWS tw=40000 % 1

noise-averaged local two-time corr

coarse-grained local two-time corr

FIG. 19. (Color onling Competition between temperature and
quenched disorder. The noise-averaged local correlation on adjacet
128 sites for two temperatureb=0.56 andT=0.7. The time ratio
is t/t,,=1.4,t,=8%10° MCS, andr,=t/10. The two sets of data
are surprisingly similar.

rejuvenation effects seen in the dynamics of spin glasse:
when temperature is modified. Nevertheless, we shall not
expand on this topic here.

tw=10000 —+—
tw=20000 -
tw=40000 -

F. Scaling of coarse-grained local correlators

coarse-grained local two-time corr

We can now analyze the coarse-grained local correlations
in the same manner as the noise-averaged ones.

First, in Fig. 20 we showC{® on 128 sites chosen as in
Fig. 18 (see the text aboydor three choices of/t,,=2 (a),
t/t,=4 (b), andt/t, =64 (c). In the three figures we show
data fort,=10° MCS, t,,=2x10°> MCS, andt,=4x10°
MCS. The coarse-graining volume is smalNM =1. The
curves for different,,’s do not scale exactly since the noise
induces fluctuations in addition to those that originate from
the quenched disordeZ® does not scale as in E¢L7) for
any of the choices of the ratidgt,, .

Notice that the curves obtained for different pairs of times
(t,t,,) cross each other at many points, even though the ratic
t/t,, is fixed. Therefore, it is always possible to find sites

tw=10080 —+—

coarse-grained local two-time corr

andj at opposite sides of the crossing points for whizf? {&;3,8888 ...... e
>C79 for one pair of ¢,t,), but Cf9<Cj? for another. In 4 ; ; ; i ; ;
other words, the relative agas measured using the correla- 0 20 40 60 80 100 120
tion value between two sites andj in the sample is not site

static, but fluctuates as a function of time. These are exactly
the sorpassithat we described in Sec. Il E. Once again, no-  F|G. 20. (Color online Test oft/t,, scaling in the coarse-grained
tice that this is in sharp contrast with the scaling ELif),  correlation. Values of this quantity on 128 adjacent sites for three
where the relative age between all sites in the sample keepscaoices of the ratid/t,, indicated in each paneM=1, L=32T
constant, static, relative rank. =0.8, and7=t/10.

In Fig. 21 we compare the coarse-grained and noise-
averaged local correlations for two systemih the same the same waiting times, with open squardg=8x 10
quenched disordeevolved at the same temperature. We plotMCS), open circles ,=1.6x 10* MCS) and dark squares
the local correlations on one row of the 3D cube correspondt,,= 3.2x 10* MCS). The lines joining the points are a guide
ing to (x=0y=0,z=0,...L—1), with L=32. The tem- to the eye. The ratio betwedrandt,, is alwayst/t,,=1.4,
perature isT=0.7. In all panels we plot the noise-averagedbut similar results are obtained for other choices. In different
data for threet,’s, t,=8%x10° MCS, 1.6x10* MCS, and panels in the figure we use different valuesMyfM =0 (a),
3.2x10* MCS, with crosses and the coarse-grained data, foM =1 (b), M=3 (c), andM =5 (d).
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FIG. 21. (Color online Comparison between noise-averaged and coarse-grained local correlations. The three curves in each group
correspond to three waiting timet,=8x 10> MCS (open squarést,=1.6x10* MCS (open circle and t,,=3.2x10* MCS (filled
squarek for the coarse-grained data. The coarse-graining volume is indicated in the labe82,T=0.7. The coarse-graining time is
=8x 10> MCS whent,,=8x 10° MCS and is multiplied by 2 when the time is doubled.

The first result from these figures is that, as already showand the fingerprint of disorder has been washed out by coarse
in Fig. 18, the noise-averaged data scale as in(Ef. In- graining. However, there are still soft local fluctuations that
stead, the coarse-grained data do not scale in this way for aryreak thet/t,, scaling.
of the values oM. The conclusion we draw from these plots, and from the

Let us now discuss in detail the effect of coarse grainingtheoretical discussion in Sec. lll, is that for a truly infinite
In panel(a) we compare the noise-averaged data to the resystem,N=L3—%, we expect to find that when times di-
sults of a single run without coarse graining €0). We see  verge, t,t,—o with C(t,t,) fixed to a chosen value, say
that thet/t,, scaling does not hold for the curves with coarse-C(t,t,)=C, thus selecting the correlation scale, coarse
grained data, but the values of the local correlations are vergraining over a sufficiently large volume erases the finger-
much influenced by the disorder. For instance, observe thprint of disorder while still allowing for fluctuations that
low values simultaneously taken by the correlation at site 1@hange the reparametrization locallia(t)— h;(t)=h(t)
for the noise-averaged quantity and also in the single thermat sh;(t). This argument implies that hypothesis8) should
history runs. describe the data in this limit. In Sec. V we shall further

In panel (b) we use a minimum volum&=(2M+1)%  discuss the implications of coarse graining.
=33 We see that the “surface” created by the coarse- The final test of this hypothesis would be to plot the value
grained data has been smoothed with respect to theMase of the correlation on each site for different pairs of times
=0 shown in panela) but there remains a memory of the such thath,;(t)/h;(t,,) is held fixed. If the hypothesis in Eq.
underlying quenched disorder. The coarse graining does no18) holds, the surface of the resulting figure should be flat.
help improve the/t,, scaling. An equivalent way to check hypothegikd) is to plot the

This trend is even clearer in pandty and(d) where we decay of the local correlations on several sites, for several
useM =3 andM =5, respectively. Th&/t,, scaling is clearly chosen values of,, and all subsequertt against different
broken as the surfaces become smoother and smoother wheatios \; = h;(t)/h;(t,,). For each sité the choice of an ad-

M increases. WheiM =5, the surface is almost totally flat equate scaling functioi;(t) should lead to a collapse of
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which vanishes in the asymptotic limit of small symmetry-
breaking field, i.e., in the long time limit. Therefore, we ex-
pect that in a simulation the local two-time quantities will
exhibit a finite correlation length for their fluctuations. Fix-
ing the relation betweenandt,, to have, say, a given global
correlation, one should find a correlation lendtt,t,,) that
increases monotonically for increasityg. Equivalently, the
massm(t,t,,) = 1/£(t,t,,) should be a monotonically decreas-
ing function of the time§’

Most of the results about the finite correlation length that
we present were obtained for a 3D EA model with linear size

1

07

0.6

local two-time corr

0.5

Oi L =232 evolving atT=0.8. We considered 64 realizations of
0.3 . . . . . . the disorder. The length of the simulation was 8.£92’
0 5 10 15 20 25 30 MCS.

The two-time quantities considered are the local two-time
correlations C;i(t,tW)ECi(t,tW)=si(t)si(tw), where the
?i(t) are site magnetizations time averaged over1C®

MCS. The vectoﬁ is the position of site with respect to a
each of the local correlatior;(t,t,,) corresponding to dif- chosen origin of coordinates.

site

FIG. 22. (Color online Effect of coarse graining on the local
noise-averaged data. The parameters are as in Fig. 21.

ferent t,’'s. Moreover, if the(in principle site-dependent We define a spatial correlator
master curvesd;; , thus obtained are all identicdl,=f for all
i, then the conjecture in E¢198) is satisfied. = _|1 ) L
The careful implementation of these checks is rather te- ATt ty) = N Z Cr(ttw) Crer(ttw) |, (63)

dious since one needs an independent inspection of the dy-
namics of each site in the sample. We take the flattening othich is averaged over disorder realizations but is not aver-
the curves in Fig. 21 for increasirld as strong evidence for aged over the noise. Since the problem is isotropic on aver-
the scaling in Eq.(18) in the “scaling limit” defined in age we expect the rhs to depend only on the modulus of the
Sec. V B. distance between the positions of the spins considered,
=|r|. Thus we writer in the argument oA. N=L3 is the
G. Effect of coarse graining on already noise-averaged total number of spins in the sample. As>c we expect that

quantities this correlator will approach its disconnected part:
. ) ~ ~ 1 2
for' the local correlation. Whei .=3. the surface is aIreqdy A.(t,ty)=limA(r;tt,)= (N 2 Cr(tty) }
quite flat(andt/t,, dependent This is to be compared with r—o !
the the data in Fig. 2t) for one run coarse grained over the —[C(tt,)? (64)
same volume. We see how the fingerprint of disorder pro- =LCt )],
gressively disappears with more coarse graining. with C(t,t,,) being the global correlation.
In order to define a correlator that has a spatially
V. TWO-TIME-DEPENDENT CORRELATION LENGTH asymptotic value that is independent of the timesdt,,,

. . . . we define the normalized correlator
In this section we define a correlation length from the

In Fig. 22 we coarse grain the already noise-averaged data

study of the spatial fluctuations of the two-time local corr- A(rt,)
elators. We also discuss the interplay between times and A(ritt,)= =———= (65)
length scales in the analysis of our data. A.(t,ty)

finiti which tends to unity in the limit —o. Therefore, the con-

A. Definition nected part ofA is simply A—1. Note that the equal site
~ The presence of a Goldstone mode in the dynamics givegorrelatorA(r =0;t,t,,) is very close to #..(t,t,,) since the
rise to a spe(_:mc f_orm foz/;[he spatial correlations qf the_ﬂuc'zero-distance correlatoR(r =04,t,) involves giz(t) and
tuating two-time fieldsQ;*"(t,t,,). In the asymptotic limit,
the RoG invariance implies a true Goldstone or zero mas ;
mode. Therefore, the spatial correlations in the fluctuationdMest _andIWNare approxmatelg/ equgl to 1._For am_/ the
should show a power-law decay1/r in 3D. However, as denominatorA..(t,t,) =[C(t,t,)"] vanishes in the limitt
mentioned before, we know thédr any finite timethe RpG ~ >tw. Consequently, as it is defined, the correlaigr;t,t,)
invariance is explicitly brokerby irrelevant terms that play €valuated at zero spatial distance diverges with increasing
the role of symmetry-breaking fields. As in the case of magfor any value oft,,. At equal timesA is approximately 1 for
nons in the presence of a weak external magnetic f|e|d, thé” dIStanCGS‘; the reason for this result is again the fact that
Goldstone mode in the dynamics acquires a small masg‘-z(t)wl.

Sg?(tw), which for short coarse-graining times and long
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FIG. 23. (Color onling Spatial correlations(r;t,t,) against FIG. 25. (Color online Dependence of the fitted values of the
distancer in a semi-logarithmic scale fat,=10* MCS andt/t mass on the interval chosen for the fit. Comparison between values
—2 16. 128. 1024. and 8192. v v of the mass obtained by fitting in the intervale[0.0,4., r

e[1.5,5.1, andr €[2.5,7.1, displayed as a function df,. In all

One can also define a correlator that is forced to evolveCases- =32 andt/t,=2.

for all pairs of timeg andt,,, between 1 at zero distance and

0 for infinitely separated distances. Indeed, In Fig. 24, we show the decay of the correlation for two
~ 5 system sized.=32 and L=64, with t,=10* MCS and
A(r;t,t,) —Ax(t,ty,) t/t,,= 2. We observe that the decay is roughly independent of
B(r;t,ty)= (66)

the system size, up to distances of the orderef6. One
notices that the trend of the points, after this limit, is to bend
satisfies these requirements. downwards forL =32 and to bend upwards far=64. The

In Fig. 23 we show the space dependencB(ft,t,) for  figure also shows that a fit of the data by a simple exponen-
various ratiog/t,,. In all cases we observe that the correla-tially decaying function,
tion decays rapidly, consistent with an exponential decay, for
r<6 lattice spacings.

In Fig. 23, the horizontal axis represents the distance Bexp(r;t,tw)zD(t,tW)e*m("‘w)r, (67)
One point is plotted for each vectoy therefore many points

with similar r but corresponding to different directions for
appear close to each other. The fact that in the figures th
corresponding values @ are also close together indicates
that the spatial correlations are indeed spatially isotropic,
expected.

A(r=0:t,t,) — A.(t,t,)

is very good up to distances- 6. For the range of times and
stem sizes achieved in our simulations, the simple expo-
nential form provides an excellent fit, with? typically of
athe order of 103 per degree of freedom. In principle there is
no reason to expect the fit to be good for small values. of
However, the simple exponential form actually does provide

L=32 - a good fit down tar=0.
L=64 «
exponential fit

] An alternative fitting form, the Yukawa function
Byu(r;t,t,)=D(t,t,)e "Wy systematically shows
both worse values of? and worse extrapolation outside the
fitting interval.

Given the excellent quality of fit by an exponential func-
tion, we only use the exponential fit in what follows. We
shall not further comment on the Yukawa fit, except to notice
that correlation lengths obtained from it are systematically
larger than those obtained from the simple exponential fit,
and this leads to some additional uncertainty in the determi-
nation of correlation lengths.

Figure 25 displays a comparison of results obtained by
using different fitting intervals. Changing the fitting interval
does somewhat affect the results of the fits, but the trends are

FIG. 24. (Color online@ Comparison between the spatial depen- consistent, and the interval choseme(0.0,4.0) seems to
dence ofB(r;t,t,) for L=32 andL=64, witht,=10* MCS and  be the one that minimizes the noise in the mass versus time
t/t,=2. curve. In what follows, all the values of the magsjuiva-
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0.01

0.001 |

0.0001
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e e 15 FI5. 2 (Colr oning e et m s a rcon
fixed ratiot/t,,. The horizont.al axis corresponds to 1fjn “of the geometric average betwe&aranc_i b Eac_h set of points
we corresponds to a fixed rattét,, . The horizontal axis corresponds to
In(tt,). The data collapse for high values of the ratiy,. Two fits
lently, the inverse correlation lengthre obtained by using a are shown for the data at higft,, ratios: a power-law fitdots and
simple exponential fit in the interv4lD,4] (each fit has 52  a logarithmic fit(full line).
degrees of freedom
From the definition in Eq.(66), we know thatB(r ty. One must note, though, that the variation of the mass
=0;t,t,) = 1. The fitting functions that we use do not need towith the ratiot/t,, is also quite mild.
have exactly this value at the origin, but it turns out that An intriguing fact in our results is that the values of the
D(t,ty)~1 within an error of the order of 10%. correlation length obtained are extremely short. Note that
In Figs. 26 and 27, we show the two-time dependence oFigs. 26 and 27 show a variation of the mass between 0.4
the mass in our simulations. Each set of points correspondsnd 0.8 that corresponds to lengths between 1.25 and 2.5
to a fixed ratiot/t,,. We attempt two fits of the mass as a lattice spacings. However, as mentioned earlier, an alterna-
function of t,. In Fig. 26 we show the fitm(t,t,) tive fit with a Yukawa form leads to longer correlation
=1/&(t,t,) =~mg(t/t,)/Int,. In Fig. 27, we show the fit lengths, and there is some additional uncertainty due to pos-
m(t,t,) = L/E(t,t,) ~mg(t/t,) (t,/tg) ~%, with a=0.085. sible finite-size effects. Based on these considerations we
The simulation results are consistent with both fitting forms.shall postulate, somewhat arbitrarily, that the correlation
Due to the very slow decay of the mass with, it is not  lengths for the times explored in the rest of this paper are of
possible to distinguish between the two fits. Another impor-the order of 3-5 lattice spacings.
tant feature of the data is revealed by these figures: the cor- Let us discuss a qualitative picture for describing the two-
relation lengthincreaseswith increasing ratid/t,,, at fixed time dependence of the(t,t,) suggested by the random
surface action of Sec. Il D. Althougn(t,t,) depends on
the two timest andt,,, an action such as that in E¢8)
My=2 + , (with an addedr-dependent mass tejrsuggests that differ-
Viy=16  x rd ent time slices factorize in the effective theory for fluctua-
08 t,=1024 o S tions. This picture is only approximate, in that for time ratios
T not far from one, the subleading terms neglected in(E§)
0.6 & pe_am will generate corrections. Thus we expect that, for long times
o x i and larget/t,, ratios,m(t,t,,) should be some kind of aver-
S age of one-time quantities associated withnd t,,. This
0.4 r et T picture suggests that one should also analyze the correlation
i length data by plotting it against an average betweand
02t ] ty, the appropriate one being a geometric averagg
s =/tt,, [which corresponds to the simple averagg.=(r
¥ il + 7,,)/2 for the proper times, where=Int].
. 0 0.1 0.2 0.3 0.4 0.5 With the above picture in mind, we now reanalyze the
. data in our simulations by replotting the correlation length
b &(t,t,) as a function ott,, in Fig. 28. As this figure shows,
FIG. 27. (Color onling Mass (inverse correlation lengthas a  the curves for fixedt/t,, ratio eventually converge to an
function of the waiting time. Each set of points corresponds to aSymptotic curve for largé/t,, . As discussed above, this is
fixed ratio t/t,,. The horizontal axis corresponds t§® with a  consistent with the subleading corrections in &) becom-
=0.085. ing negligible for larget/t,, ratios.

mass = 1/(correlation length)
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09 - - - - - function of tt,,; (i) m(t,t,) is a very slow monotonically
— 08| ™ Uw=4 z ] decreasing function ott,,, consistent both with them
% 07 | = V=18 a ] ~1/In(tt,) and with the mw(ttwltg)*a functional forms;
o i W;?gg N z (iii) the values of the correlation length=1/m are of the
s 06 mw=512 g = 1 order of only a few lattice constants for the time scales ac-
% 05} WZ}S% ;,{x e ] qes§|ble |n_the S|m!,llat|on$|;v) the extrapolaﬂon of the data
S o4l o mW_am Xl ] f!ts is consistent with the expect.eﬂ.—fo pehawor for long
g = ST times, but a nonzero mass at infinite times cannot be ex-
037 1 cluded.
@ 02| ] Previous studi€$°®have found a correlation length scale
g 6 | ] &(t,) growing with t,, that is in the range of 3—4 lattice
' spacings for the waiting times and temperatures we have
0

considered. Those authors determined the correlation length

0 00t 002 003 004 005 006 from the spatial decay of a four-point correlation functfon

1/n(t t,)

FIG. 29. (Color onling Mass (inverse correlation lengihas a N 1

R X 1 Pt ab ab
function of the geometric average betweeandt,,. Each set of G(r,ty)= N E - > [(C;(n)C:_ A7)], (68
points corresponds to a fixed ratitt,,. The horizontal axis corre- =1 w =ty ' '
sponds to 1/Irg,).

with C:i‘ib(r)zs%(f)s?i(r), involving thus two copies of the

In Figs. 29 and 30 we attempt to obtain more detailedsystema and b, with identical exchanges, and an average
information about the time dependence of the mass. In Figover thermal histories and disorder. Note that this “2-point
29 we show fits ofm(t,t,,)=1/£(t,t,,) to a 1/Inft,) depen- correlator” differs from ours in thafi) it is evaluated at
dence. If a nonzero value is allowed for the mass at infiniteequal times(ii) there is a further average over the noise, and,
time, the fitted value obtained is negative, meaning that thenore importantly,iii) the two-point functions that one fur-
mass actually goes to zero at very large, but finite, timesher correlates are evaluated between two copies of the sys-
(tt,,~10?"® MCS). In practice, this fit is as good as a fit with tem evolving independently. The latter property implies that
the mass going to zero only at infinite time: in both cagés this length can only be tested experimentally with indirect
per degree of freedom is of order 10 measurements:®® Interestingly enough, the length we de-

In Fig. 30 we show the fiim(t,t,,)=1/£(t,t,,) to a power fine in this paper is, in principle, accessible directly with
law (tt,,/t3) 2. If a finite mass is allowed at infinite times, local experimental probes. Even though they represent dif-
an exponena~0.10 is obtained. If, instead, the value of the ferent quantities the values of the two correlation-lengths are
mass is assumed to be zero at infinite tines,0.04 is ob-  very short and very similar.
tained. They? per degree of freedom is again of the order of
104 for both fits.

In summary, the simulation results indicate thaj
m(t,t,,) is asymptotically(for larget, t,, and t/t,) only a

B. Interplay between the waiting time, linear coarse-graining
size, and correlation length

In this section we discuss the role played by the waiting

09 and total times;t,, andt, the coarse-graining linear size
' D=2 2M+1, and the correlation lengté(t,t,) in our measure-
=) 0.8 r o mw_ . =] ments. We assume that the size of the systerns, the largest
2 07} = tﬁx;g% W scale in the problem that has diverged at the outset of the
= o6 | = Uwzies e/ discussion.
S it =512 T g For a finite but very long waiting time,; and a time-
S 05 T v l0%s e y window [t,,,t;] over which one wishes to study the fluctu-
5 Gdl o "~ glon x o 1 ating dynamics, the correlation lengft, ,t,,,) is finite but
7_3/ a5 | very long. Choosing a cubic coarse-graining voluvhewith
T B linear size M;+1<é(t,,t,1) one then accommodates
G 02r 1 [£(ty,tw1)/(2M,+1)]9 cells within each correlated volume
© 1rwl 1 h . . . .
E 01} | [&(ty,tw1)]1% According to the discussions in previous sec-
. . L . . L tions, the local coarse-grained two-time functions, defined on
0 0 0.1 0.2 0.3 0.4 05 each cell, have different time reparametrizatidmé) that

(1) vary smoothly in real space until reaching the correlation
w length &(t4,t,,1) when they completely decorrelate. By tak-
FIG. 30. (Color online Mass (inverse correlation lengitas a  INg @ large coarse-graining volume we ensure that the under-

function of the geometric average betweeandt,, . Each set of |ylng effect of disorder is erased. This Kills the fluctuations in

points corresponds to a fixed ratitt,,. The horizontal axis corre- the external functiori; , [see Eq(18)] as well as erasing all
sponds to {t,,) ~? with a=0.04. fluctuations ingg, . The fluctuations in the local time rep-
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arametrizations give rise to a distribution of values of the 3.5 T T T
local coarse-grained correlationg(C%(t,,t,1)) that we 0.10 ——
study numerically in Sec. IV. 3 ' (L2 wmestbins —

For another finite, but longer waiting timg,,>t,,1, the 030; ===
zero-mode discussed in Sec. Ill becomes flatter and one ex: 25 0.40 -8 —
pects the amount of fluctuations to increase. If we also en- 2 b 0.50 |
large the time windovjit,,,,t,] to be analyzed in such a way
that, say, the global correlatio remains unchanged, 15 F 3 _
C(tq,ty1)=C(t2,t,2), the new correlation length is longer %
than the previous oné(t,,t,,»)>&(tq,t,1) (see the results 1} g -
in Sec. V A). If we keep the same coarse-graining linear size :
as befordi.e., 2M;+1, we expect the level of fluctuations 0.5 -
in the reparametrizations to increase and the PDF
p(C(t,,t,,)) to be wider tharp(CF9(ty,t,4)). If, simulta- 0
neously to increasing the values of the times, we also in- 0.5 1 L5
crease the coarse-graining volume so a#M1({21) scales
with &(t,t,,), we should be able to maintain the amount of
fluctuations. More precisely, the PDF computed with the new 3.5 T I I
times (,,t,,) and the new coarse-graining sizévi2+1 3l A 8%8 ::_
should be identical to the PDF computed with ,¢,,,1) and p’ s 0'30 e
2|V|1-i_- 1. 25 :‘\;; 040 R —

This procedure can be taken further to postulate that a 7 W 0.50

¥
¥

scaling limit in which a stable distribution of fluctuations is
reached. This limit is such that the waiting time and the s
subsequent time go to infinity together keeping the global
correlation fixed to a prescribed valug (note that this
double limit can be more general than the case in whjch

andt are proportionagl and the coarse-graining volume di-
verges together with the correlation length betweandt,, ,

i.e., &(t,t,)/M is held fixed. If in this limit the distribution of

local two-time functions remains nontrivial, then dynami-
cally heterogeneous regions of all sizes exist. X

Even though for a system with an asymptotic reparametri-
zation invariant action the correlation length is expected to FIG. 31. (Color onling Distribution ofglobal staggered suscep-
diverge asymptotically, in Sec. V A we showed tl##t,t,,) tibilities for small 3 EA models. The field is applied g=10"
is still very short for the times accessible numerically in theMCS and held fixed subsequently. The integrated response is mea-
spin-glass model that we study here. Thus, one cannot studyred att=4x 10* MCS. In the first panel we used one noise and
the dynamics using a Coarse_graining volume such #&hat 10° field realizations; in the second panel we used one random field
<2M+1<(t,t,) (with a being the lattice spacingThis ~ and 16 noise realizations. The curves correspond to different field
fact gives a plausible explanation why we do not reach thétrengths given in the key. =8, T=0.7 (noise-averaged and T
scaling limit with a stable distribution of fluctuations in our =0-8 (field-averagen
simulations. ) ) . )

A different, but interesting, regime in which to study fluc- @Pplied perturbation by studying the behavior of the global
tuations is the following. Let us taki, andt very long but sysc_eptl_blllty. Next we study the evolutlo_n of the probability _
finite leading to a finite correlation lengté(t,t,). If one d_|str|but|ons of coarse-grained and noise-averaged quanti-
takes the coarse-graining linear size to be of order21 ties.
~&(t,t,,) each block leading to a point in the construction of
the PDF’s is, roughly speaking, an independent model with A. Choice of field strength
finite sizeL = &(t,t,,). The results in Sec. VIII A suggest that
the fluctuations in the global two-time functions of finite-size
systems have a very similar behavior to the local ones di
cussed above.

Finally, if we use a coarse-graining volume with linear
size 2\ + 1> £(t,t,,), we do not expect to have any fluctua-
tions and the PDF’s should h&peaks on single values.

We choose the strength of the perturbing fidgldin such
a way that(i) there are no negative global susceptibilities;
Siii) there are no global susceptibilities with a magnitude
larger than the value allowed by FDTTL/(iii ) we select the
range of field strengths such that linear response holds, i.e.,
we find the maximum strength for which the distribution is
stable. The first two conditions yield a lower bound lon
hmin, the third determines its maximum possible vahyg,.

In Fig. 31 we show the outcome of these tests. We plot the

In this section we study the dynamic behavior of the localPDF of the global staggered susceptibilities where we used
integrated responses. First we select the magnitude of thwvo different procedures to draw the histograms. In the first

VI. SCALING OF LOCAL SUSCEPTIBILITY
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FIG. 32. (Color onling Distribution of the global staggered sus-  FIG. 34. (Color onling Check oft/t,, scaling of the distribution
ceptibilities for a 3D EA model with linear size=16 atT=0.7  of noise-averaged local susceptibilities with no coarse grairihg,
using 1¢ noise realizations and one perturbing field with strength=0 and with coarse grainingyl =1. The ratio ist/t,=2. When
given in the keyt,,= 10* MCS,t=4x 10" MCS andr,=t/10 MCS.  t,=1.6x10*, MCS we used 1200 noise realizations. Whgn

=3.2x10* MCS, we used 200 noise realizations.
plot, we used 19 realizations of a random fieldy, = 7e¢;
with &= +1 with probability3, and only one thermal noise the probability distributiong(y) change quite a bit with the
(note that perturbed and unperturbed copies are evolved witktrength of the applied fielgeven if the average and variance
the same thermal noiseWe then draw the distribution of gre quite stable, see Fig. 33 belowor larger system sizes,

global values, L=16, see Fig. 32, the probability distribution stabilizes for
1o e hows th d th f
_ sy &0 k The plot in Fig. 33 shows the average and the variance o
X(ttw) 7 2’1 [s(O=si(O]er, 69 the probability distribution for systems of sizes=8 andL

=16 with 1¢ noise realizations, anti=8 with 10° field
realizations. We confirm tha#,,;;=0.2 and we see that the
havior starts to become nonlinear at aroupg,~0.7.
We see that field strengths between 0.2 and 0.7 comply
1 N with our criteria. In what follows we usey=0.25 and we
(tty)== > [SMe(t) =82 (t)] €, (70)  focus on the noise-averaged and coarse-grained definitions of
7i=1 the local susceptibilities given in Eg&) and(8) eventually
averaged over many field realizations.

with one point per field realizatiofkk=1, . . . N¢jeigs- IN the
second case, we used only one random field realization a
we draw the distribution of global values

with one point per thermal noise realization, witk

=1,... Nhoisess We see that for such a small system size 3
0.8 U =
. T T T I th, =
10% noises L = 8 —— 25 t, = 32
10° fields L = 8 ===~
0.6 - 107 noises L = 16 == _| & 2|
= I
- 1.5
0.4 [— [oN 1 :
05 | AJJ
0.2 , U
0 2 2 a3 M M 2
8 6 4 2 0 2 4 6 8
0 <9
- Ty

FIG. 35. Distribution of local coarse-grained staggered suscep-
tibilities. L=32, T=0.8, andn»=0.25. The waiting times arg,

FIG. 33. (Color onling Average and variance of the distribution =4x10* MCS, 1.6x10* MCS, and 6.4 10* MCS. Three ratios
of global staggered susceptibilities in the 3D EA model against there considered/t,,=2, 8, and 32. The coarse-graining volume is
field strength. The parameters are as in Figs. 31 and 32. V=2M+1=1.
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o ) FIG. 38. (Color onling Projection of the joint probability distri-

_ FIG. 36. Distribution of local coarse-grained staggered suscepption of the coarse-grained local susceptibilities and correlations.
tibilities. Same data as in Fig. 35 witd = 1. L=32, T=0.8, andM=1 leading to M+ 1~£(t,t,). The con-
tour levels surround 66% of the weight of the distribution and each
of them is drawn using a different ratio between the two times.

Here we study the evolution of the PDF of local suscep-From inside to outside/t, =2, 8, 32.
tibilities computed as in Eq$6) and (8).

B. Probability distributions of local susceptibilities

are much narrower with no support on negative values nor
1. Noise-averaged data values that go beyond@iy 9=1. Note, however, that the lin-

In Fig. 34 we show that the/t,, scaling is worse for the €ar size of this coarse-graining volumeM2-1=13, is

noise-averaged susceptibility than it is for the correspondinéf‘rger than the maximum correlation length reached with
correlations. hese times, sag(t,t,)~5 (see Sec. Y.

2. Coarse-grained data VII. THE LOCAL FLUCTUATION-DISSIPATION
In Figs. 35—37 we show the PDF of local susceptibilities RELATION

coarse grained over different volumes. These figures are the \ynich of the possibilities listed in Sec. Il F does the local
counterparts of Figs. 15 —17 where we showed the coarsg=pR follow? The aim of this section is to show numerical
grained data for the local correlations. evidence for the following statements.
37'”25:% f5!123v| # r}e: slt rl:rtll Fil%c?;?’smgc;;l:bsl';tzgdsir?o':i% o (i) The local coarse-grained two-time correlations and re-
, =13. i u ibiliti wn i : ~ .
Fig. 35 are distributed almyost in a discF:)rete way, one see%_ponse,s are constra|~ned 0 fOHOV\_I the global CW(’,@)' the
dispersion along theg/(C) curve is much more important

peaks at precise values gf? that extend also to the negative han the di ) dicul hi For fixed
side of the axis. WheiM =1, the negative susceptibilities than .t € 'SPerS'O” perpendicu far to t_ Is curve. For fitg
have not yet disappeared and the positive tail goes also b&nd increasing values df the dispersion along thg(C)

yond Tx%9=1, see Fig. 36. Finally, wheM =6 the PDF's  Curve increases. This is as predicted by thenodel argu-
ment of Sec. lll. Equatiori33) holds for these functions.

14 . . . . . . . . (if) The local noise-averaged correlations do not necessar-
ily follow the global curve. Coarse graining this data does
12 | not lead to concentrating the distribution o Ty;) pairs
10| around the global curve. EquatidB3) does not hold. It is
hard to test numerically if Eq:31) holds since there is no
constraint on the location of the pairs in tGeT y plane.

(i) The mesoscopic fluctuatior(svith no average over
the noisé behave as iri).

We provide numerical evidence for these statements by
plotting the joint probability distribution of pairsQ;,T ;)
evaluated at a pair of times,(,t), and its projection on the
2D planeC-Ty.

)

0._
=
-

S
Q

o NN~ O

0 01 020304 05 06 07 08 09

T 5.9
Xi In Fig. 38 we plot the projection of the joint probability
FIG. 37. Distribution of local coarse-grained staggered suscepdistribution  of  coarse-grained two-time  functions
tibilities. Same data as in Fig. 35 wittl = 6. (C9,Tx9 on theC-Ty plane. The data correspond to a

A. Coarse-grained two-time functions
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0.8 — 1 | ,
FDT 05 | \
I ol
Ty .4 | e b - i ol _
+ Bulk ) -
° | = 1 -05 0 05 1
0 0.5 ] o

C.
' FIG. 40. (Color online The projection of the joint PDF on the
FIG. 39. (Color onling Projection of the joint probability distri- CTX Plane, nmse-a(t;l/eraged local quantities: 32, t,,=1.6x 10°

bution of the coarse-grained local susceptibilities and correlationd"CS: andt=4.8x10" MCS. The FDT prediction is represented

L=32, T=0.8, andM=6. Note that here Bl +1>¢(t,t,). The  With a straight line.

contour levels surround 66% of the weight of the distribution and L .
each of them is drawn using a different ratio between the two time§hat the distribution is concentrated about the FDT line and

with t/t,, increasing from right to left. does not bend in the direction of the nontrivial part of the

global Y(C) as the coarse-grained data does, see Fig. 38.
system of linear sizé =64 atT=0.8. The coarse-graining This indicates that the disorder induced fluctuations are not

linear size is M +1=3 that is of the order of the correlation controlled by theo-model argument of Sec. lIl. Note that
length &(t,t,). We study simultaneously three ratios of with no coarse graining the Edwards-Anderson parameter
times, t/t,, =2, 8, and 32, fot,,= 10* MCS in all cases. The qu_ctuates frc_)m site-to-site and hence the value of the corre-
contour levels are such that they include 66% of the weightation at which the sites enter the slow scale varies. This
of the joint PDF and they correspond tt,,= 2, 8, and 32 result resembles Fig. 3 or Fig. 4 except that the extent of the
from inside to outside. Reasonably, as the times get morBuctuations inCi*® is narrower than in these sketches.
separated the values of the local correlations vary more and In Sec. VIl we shall observe a very similar behavior of
the region encircled by the contour level is wider. This p|0tthe nOise-averaged meSOSCOpiC fluctuations in finite-size SK
shows that these distributions are very wide, as also indimodels.

cated by Figs. 16 and 37 where we shp{C;) and p(x;)

independently. Even though the contour levels are also wide C. Effect of coarse graining on already noise-averaged data

in the Ty direction, they tilt in the horizontal direction @, In Figs. 41 and 42 we test the effect of coarse graining on
al~o ng the cgrve made by the crosses, that corresponds {Re joint probability distribution of noise-averaged local cor-
Tx(C) for thist,, and 10 values of. relations and susceptibilities. In Fig. 41 the linear size of the

In Fig. 39 we see the effect of further coarse graining theboarse-graining box isM +1=3 while in Fig. 42 it is M
data corresponding to the samgandt as in Fig. 38. In the

projected plot we see how the size of the cloud around the 1

Tx(C) plot is reduced. The longitudinal fluctuations that
correspond to fluctuations in the functidp that character-
izes the local correlations are killed very quickly by the 0.75 )

coarse grainingsee the theoretical background for this in

Sec. lll and the related effect in the values of the local cor- T X’?a 05 ¢t -
relation in Sec. IV F. The transverse fluctuations are also I
reduced but in a weaker manner. These are related to the
fluctuations in the local reparametrizations and, as we argued 0.25

in Secs. Il and IV F, they should survive in the limit of long
times and large coarse-graining volumes. See Sec. VIII for 0 I L -
similar results for the joint PDF's of the global quantities 0 025 05 0.75 1
computed using systems of small size.

ci?
B. Noise-averaged two-time functions |

In Fig. 40 we show the joint probability distribution of the FIG. 41. (Color onling Same as Fig. 40, but now the noise-
noise-averaged local correlations and susceptibilities. We seeraged quantities are coarse-grained in a volume Mithl.
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TXi 0.25 r 4- .
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0 : -
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1
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FIG. 42. (Color onling Same as Figs. 40 and 41: the coarse  F|G. 44. (Color onling Evolution of the PDF of the global
graining in this case hadl = 3. susceptibility for the same system as in Fig. 43 0.3.
+1=7. The system size is=32 andT=0.7. We see that in In this section we study the time dependence of the dis-

all cases the distribution follows the FDT line. Indeed, aver-riputions of the global correlation and susceptibility for
aging over the noise Kills all thermal fluctuations and henceinite-size samples of both finite-dimensional and infinite-
does not allow the fluctuations in the time reparametrizatiorjimensional spin glasses. We show that the “mesoscopic”
which cause the bending of the data along #{€) curve. fluctuations, i.e., the fluctuations of the global quantities due
This is consistent with the results in Fig. 22 where weto finite-size effects, behave very similarly to the local
checked the effect of coarse graining the already noisecoarse-grained ones in finite dimensionas. Moreover, we test

averaged local correlations. the relation between the fluctuations in the susceptibility and
the correlation and we find that they are also constrained to
VIII. FINITE-SIZE SYSTEMS follow the global parametrig/(C).

Barrat and Berthiél showed that the modification of the
FDT in a 3D EA model of finite size, which is evolving out A. The 3D EA model
of equilibrium (that is to say fott andt,, that are well below In Figs. 43 and 44 we show the evolution of the distribu-
the finite equilibration timegg), has a very similar behavior tions of the global correlatiorC(t,t,) and integrated re-
to that found in the thermodynamic limit. The system will sponsex(t,t,,) with timet and for fixedt,,, respectively. We
eventually equilibrate but, as long as one keeps the times to

be shorter thargg, the global dynamics is very much typi- 1 . . .
cal of an out-of-equilibrium system.
6 0.75 | 1
5 Ty 05 ¢ 1
4 0.25 | it .
Q3
0

0 025 05 075 1

C

FIG. 45. Projection of the joint probability distribution of the
global correlations and integrated responses for a 3D EA model
with linear sizeL=8 atT=0.7. The strength of the applied field is
7=0.25. The contour levels correspond to the joint PDF for the

FIG. 43. (Color onling Evolution of the PDF of the global waiting timet,,=10* MCS andt/t,,=4. One realization of the ran-
correlation for a system with linear site=8 atT=0.7. The wait- dom exchanges and 36hermal histories are used to construct the
ing time ist,,= 10" MCS and the different values of the subsequentPDF. 7,=t/10 MCS. The straight line indicates the FDT prediction
time t used in each curve are given in the key. and the pluses indicate the time evolution of the avergde).
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construct the distribution functions using one data point for

the global correlation and linear integrated response of the 1 ' ' '

full system obtained using one noise realization. The details (a)

of the system are given in the captions and keys. Weluse

=8 so as to be able to access smaller values of the globe 0.75 T

correlation than is possible in larger-size systems. This smal
system size also allows us to have PDF’s that are rather wide |—

In Figs. 43 and 44 we display the evolution in time ofthe &= 0.5
PDF's for the global correlation and the global susceptibility e
of a system withL=8. We see that the distributions get <t>+
wider as the separation between the times increases. In Fic 0.25 TG ’
45 we correlate the fluctuations in the global correlation and +
susceptibility. We see that, as in the study of the local coarse
grained quantities in a larger system, the contour levels of 0 , ) ,

the joint PDF are tilted in the direction of the globg(C) 0 0.25 0.5 0.75 1
that is indicated with crosses. C

T
4
1

B. The SK model 1 ' ' T

With the aim of giving additional support to our claim that (b)
noise-averaged and coarse-grained dynamic fluctuations be 0.75
have differently we analyzed the dynamic fluctuations in the
fully connected SK model on a finite-size lattice.

The SK model is defined in E¢2), where the couplings
Ji; connect all sites and are chosen randomly from a bimoda X 05
distribution. An infinite-size system undergoes a thermody-
namic and dynamic phase transition B=1. When N @ ¥
— oo, the dynamics in the low-temperature phase was solvec 0.25
analytically in the asymptotic limit of long time&@lthough
finite with respect to the size of the systefiThe solution

T
&£
1

has a rather peculiar structure with the relaxation taking 0 ! . .

place in a sequence of hierarchically organized correlation 0 0.25 05 0.75 1
scales. These are intimately related to the FRRG), that

takes a curved form for values of the correlation that fall C

below the Edwards-Anderson order parameter. _ o o
Several studi€d of the growth of the equilibration time  FIG. 46. (Color onling Projection of the joint PDF for the glo-
with the size of the systenl, indicate that this increases bal susceptibility and correlations of the SK model with-=512

imately age.o eNe(™ ith ical tant and B=2.5. The strength of the applied field ig=0.25. The
approximately aseq e. W.I ¢ a numerical constant ., e graining over time is done using 2 for t,,=64 MCS and
and the exponen&(T) increasing from 1/3 af; to 0.5 at t=65,70 MCS, and,=2, 4, 8, and 16 MCS fot= 128, 256, 512,

T=0.4T; (see also Ref. 73Even though these studies used ng 1024 MCS. The pluses indicate values averaged over the dis-

a Gaussian distribution of couplings we take these results agpution, the straight line is the prediction from the FDT. In panel

an indication that even for small samples, ey 512, we  (a) the contour levels are chosen at heights corresponding to 95%,

have a very large time window with nonequilibrium effects 90%, and 82% of the maximum in the PDF for the global correla-

before equilibration takes placéNe chose to us&=512 tions evaluated at,=64 MCS andt=1024 MCS. In panelb) the

just to have the same number of spins as for the 3D EA witlcontour levels are at 90% of the maximum and they correspond to

L=8 used in Sec. VIII A. the PDFs calculated at,=64 MCS andt=128, 256, 512, and
Numerical studies have found results in agreement witi024 MCS from right to left.

the analytic prediction of there being a sequence of global

correlation scales and a curve FDR out of equilibri{frx- 1. Finite-size fluctuations of global quantities

actly how the scaling laws and th&C) prediction are modi- For a fully connected model, the natural counterparts to
fied due to finite-size effects has not been carefully investithe coarse-grained local correlations and responses in finite-
gated. dimensional models are the global quantities themselves. The

In this section we present results from a numerical simuiatter fluctuate if the fully connected system has a finite size.
lation of the SK model with bimodal interactions using MC  In Fig. 46 we display the joint PDF for the global suscep-
dynamics with the heat bath algorithm B&0.4.”° We pay tibility and global correlation. We useig,=64 MCS and we
special attention to the fluctuations induced by the finite sizeevolved the systems untiE 1024 MCS. We constructed the
of the systems. distribution functions using fOpairs (C(t,t,,), x(t,t,)) cal-
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culated as follows. First we chose the value of the total time
t with which to calculate the global quantities, e.g5128 :
MCS. For a fixed realization of the random exchanges we N
used 16 noise histories and thus obtained*1fbints. We N (a)
repeated this procedure with ten different realizations of dis- 0.75 .
order completing the set of ¥@ata points. With this data we o N
obtained a probability distribution. The pluses represent the ~
average over the £(oints fort=65, 70, 128, 256,512, and FH— 0.5 g .
1024 MCS. In Fig. 46 we show the projection on Q€T y ( Q N

N\ C W M

N | + N

plane of three contour levels at 95%, 90%, and 82% from the
maximum of the joint PDF calculated fay,=64 MCS and 0.25 =3 .
t=1024 MCS[panel(a)]; one contour level at 90% of the *
maximum of the joint PDF for four values of the total time \
t=128, 256, 512, and 1024 MC[$anel(b)]. The straight 0 L L L :
line represents the expected equilibrium curve. 0 0.25 05 0.75 1
We see that, similarly to the local coarse-grained fluctua- C na
tions for the 3D EA model, the distribution follows the glo-

bal Tx(C) curve. The contour levels are inclined in the di- 1
rection of the global curve. Thus, despite having very
different time scalings, these two models have very similar L8 (b)
parametric joint PDF distributions. 0.75

T
L
4
7
1

2. Fluctuations in the noise-averaged local quantities %{— \
In this section we follow a path similar to that described — 0.5

in Sec. VII B for the 3D EA model. We simulated a SK

model withN=512 spins aj3=2.5. The waiting time cho-

sen wast,,=64 MCS. We averaged the spin-spin “local” 0.25 9

self-correlation and integrated self-response for chosen pair K

of timest, t,, with t=128, 256, 512, and 1024 MCS over

1600 different noise realizations. With one realization of the 0 L L L _

random exchqnges we thus obtalm(ﬂata pomts..To im- 0 0.25 0.5 0.75 1

prove the statistics we repeated this procedure using 150 dif na

ferent SK models of the same size, i.e., with different real- I

izations of the coupling strengths. Thus, the PDF's are _ o o

constructed with 76 800 data points as is shown in Fig. 47 FIG. 47. (C0|"0r Oﬂ"“ne Projection of the joint PDF for the

(the plus signs are the averaged vajuge qualitative form noise-averaged “local” susceptibilities and correlations of the SK

of the distribution is very different from that in Fig. 46. The "°de!l WIthN=512 andg=2.5. The strength of the applied field is
7=0.125. The coarse-graining timgsare chosen as in Fig. 46.

orientation of the contour levels does not follow thg(C)  The plus signs indicate values averaged over the distribution; the

curve but, instead, it is approximately parallel to the FDTstraight line is the prediction from the FDT. In parta) the contour

straight line. levels are chosen at heights corresponding to 90%, 85%, and 80%
These results are similar to those displayed in Sec. VII Band they correspond to timég=64 MCS andt=1024 MCS. In

for the joint PDF of the local noise-averaged correlations andpanel(b) the contour levels are at 80% and they correspond to the

integrated responses in the 3D EA model. joint PDF att,, =64 MCS andt=1024 MCS.

IX. GEOMETRIC PROPERTIES

3. Effect of partial noise averaging ) )
We have analyzed the local correlations and responses in

Finally, we studied the effect of partial averaging over theierms of their PDF’s and through plots of their spatial fluc-
noise the global two-time functions in a still smaller system.tyations along a plane or line of spins. An alternate way to
By this we mean that we averaged over 6alizations of  extract information about the spatial structure in spin glasses
the thermal history the global correlation and integrated reis through an analysis of geometric properties, such as the
sponse of each of 810 SK models withN=128 spins. fractal properties of clusters of spins.

Thus, we constructed the joint PDF withk@.0* points. The The clusters of spins that we choose to study are defined
result is displayed in Fig. 48. We see that by averaging ovein a way that we believe makes close contact with possible
the noise we destroy the behavior in Fig. 46: the contouexperiments with local probes. The usual definition of a clus-
levels are tilted toward the direction of the FDT line. Theseter in a spin glass is in terms of spins belonging to different
results approach those in Fig. 47. ground states; since we have not calculated the ground states
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1 ; ; . in our simulations, such a definition is clearly not available
to us. Instead, we define clusters as follows: for a particular
correlationC, a cluster consists of all connect@dpins with
correlationC; in the interval C,C+ dC] for a specifiedd C.
This definition is used for both coarse-grained and noise-
averaged correlators. A similar approach could be easily
implemented to analyze experimental data on local noise in
05 | T mesoscopic regions in supercooled liquids and gla<sé.
The richness of the spatial structure is illustrated in Figs.
L 49(a) and 49b) by highlighting slices of the correlatio@;®
\ with values in a chosen interval. We show slices with
=0.95 anddC=0.05 in Fig. 4%9a), and slices of negatively
correlated sites in Fig. 4B). The waiting time ist, =2
. . , S ><1834 MCS andt/t,=2. The coarse-graining time i%
=10° MCS. Regions with negative correlation are well lo-
0 0.25 0.5 0.75 1 calized in space while the sites with lar@¥9 are evenly
C distributed throughout the sample. We find an essentially
space-filling distribution of points for any choice of positive
FIG. 48. (Color onling Projection of the joint PDF for the glo- €9 |arger than about 0.1 and a localized distribution of
bal susceptibility and correlations of the SK model witl= 128, points forC¢%e [ —1,0]. It should also be noted that there is
B=2.5, andnp=0.1. The global two-point functions for each sys- . . . . . .
a distinct spatial anticorrelation between the location of sites

tem have been averaged over’ Ibise realizations. The coarse- with positive and negative correlation. We find that the num-
graining timesr are chosen as in Fig. 46. The plus signs indicate P 9 ;

values averaged over the distribution, the straight line is the predicber of points WithC_ZsO spales approximately 352 and i?t
tion from the FDT and the contour levels are chosen at height§he number of points witlC>0 scales approximately

corresponding to 80%, 70% and 60% of the maximum in the PDAOr both L =32 andL = 64. _
evaluated at,, =64 MCS andt=1024 MCS. A different picture emerges for the spatial structure of

0.75

XT

0.25

FIG. 49. (Color onling (a) Slices of Cf?e[0.95,1] (extendedl and (b) —1<Cf%< —0.5 (localized. The coarse-graining length is
2M+1=3. L=64, t/t,=2, t,=2X10* MCS, T=0.72T,. Slices of(c) C'®*<[0.93,1] (localized and (d) C"®<0.4 (extended, and L
=32 with t,,=3.2x 10* MCS, t/t,,=2, ¥=3200 MCS,T=0.7.
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Ry X
100 ] FIG. 51. Number of spingm) against radius of gyrationRy)

for the coarse-grained correlations in the 2D EA modgk5

b) X 10° MCS andt/t,,=16. T=0.8. M=1.

1. Coarse-grained correlations

Figure 5@a) showsm againstR, for the 3D EA model
and five pairs C,dC) corresponding taC<0, 0<C<(ga,
C~Qga, andC>(qg, (see the key The coarse-graining lin-
ear size igVl =1. There is no qualitative difference between
the five sets of data and they are consistent withk 2.0
+0.1. It should be noted, however, that we only fit over two
decades in the number of spins and it would be desirable to
1‘ have a larger dynamic range to get more precise results. We
R obtained the same results for other valueg,pdndt and for
different temperature$<T. [see panelb) in the same fig-

FIG. 50. Number of spingm) against radius of gyrationR(,) ure]. The results are relatively insensitive to the valuel 6f
for the coarse-grained correlations in the 3D EA moddl=1.  the values ofiC chosen are such that they are not only big
Panel(a) T=0.72T, and three pairs o€ anddC. t,=6.4x10°  €nough to wash out some of the site-to-site fluctuations due
MCS andt/t,=2. Panel(b) two values ofT, 0.56T, (t,=3.2 tothermal noise, but also small enough that they do not lump
x10° MCS andt/t,=2), T=0.72T, (t,=6.4x10° MCS and very different values of the correlation in the same bin. The
t/t,=2). The dotted lines correspond de= 2. results do not depend that strongly on the coarse-graining

volume until one gets to large coarse-graining volumes such
noise-averaged correlations. In this case, there appear to 88M =6, for whichd;~2 for small clusters with a crossover
space-filling distributions of points for low correlations up to to di~d at larger cluster sizes. _
aboutCM'~ qea in Fig. 49d) and localized regions of corre- 1N Sec. V we defined a two-time-dependent correlation
lations forCP™ close to 1 in Fig. 4&). As might be expected, I_ength that is of the order of 3-5 Iattl_ce spacings for the
only sites that are essentially forced by the disorder realizallMeS and temperatures we have considered. Notice that all
tion to take a particular correlation and do not decay in timgl® clusters obtained usirlg =1 haveR,<3, which is of
(i.e., those with large values @") are likely to show a the _order of the correlation length This is consistent with
localized distribution of points. In the noise-averaged cas r’1avmgdf~2<d=3 for Ry<¢.
there are essentially no sites with negative correlatises 50”_‘9 recent work su_ggested that one class of I(_)w-energy
Fig. 13 for the PDF of noise-averaged local correlatjons excitations '2 3D EA spin glasses haye thg properties of lat-
tice animald® and hence a fractal dimension of 2. In that
study, a fractal dimensiod;~2 was found for the lowest-
A. Fractal analysis energy excitations above the ground state made of a con-

We next studied the fractal dimension of clusters of Con_nected cI_uster with qhosen number of spips and a given site.

nected spins withCS% [C,C+dC]. The total number of The precise connection between these objects and those stud-

e . o ., . . ied here is not clear. However, it is intriguing that the fractal
spins in a cluster is regarded as its “mass,”and its radius

. . . I dimension observed here is the same.
2
of gyration, Ry, is evaluated via the definitiorR, In d=2 the glass transition occurs Bf=0. However, the

_ -z > " T . e

=1/(2m*)Z;;|r; —r;|* wherer; is the position of spiri. dynamics at lowT and large finite times strongly resembles
The fractal dimensioml; of the clusters is defined from the those seen in 3D. Several “glassy” features are observed,
sca(!ing of the massn with the radius of gyrationRy; m  such as aging phenomena and a nontrivial relation between
ocRgf. global correlation and respon&&which eventually disap-

10 ¢
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FIG. 52. Number of spingm) against radius of gyrationRj)

for the noise-averaged correlations in the 3D EA modlet 32, FIG. 54. (Color onling Average cluster sizen,, against the

t,=8x 10> MCS, t=1.28x 10" MCS, T=0.7 and the average has Value of the correlation on the clusterdC=0.06. The system size

been done using 868 noise realizations for the same random ei L=64, T=0.72T, t/t,=2, andt,=6.4<10° MCS for the

changes. coarse-grained data. The noise-averaged data isLfeB2, T
=0.7,t,=3.2x10* MCS, andt/t,,= 2.

pear at very long times. In Fig. 51 we analyze the fractalorrelations. While there are a number of similarities be-
dimension of a two-dimensional system with=128, M tween the data, there were also some significant differences.

=3,1,=5x%10°, MCS andt/t,,=16. The dotted lines indi- At relatively shortt,, andt, essentially all values of appear
cate where the points would be expected to lie der=2,  to haved;=2, as can be seen in Fig. 52.

d¢f=1.7 andd;= 1.5. Lattice animals in two dimensions have At longert, or t,,, there are two types of behavior, de-

d¢=1.5 below the percolation thresholdy=1.85 at the per- pending on the value of the correlation. For correlati@hs
colation threshold, and;=2 for percolating clusterf: The  |ess than the peak in the distribution 6f, the fractal di-
results here are not inconsistent with lattice animals in 2Dmension is close to 2, as found in all other cases. However,

but the large error bars make it hard to definitively establisior |arge values of the correlatidelose to 1, it appears that
a connection(The errorbars are much more important thanine g, ~2.5 for small clusters, with a crossover de~2 at

in d=3 since we work with many fewer spins: ¥28 |arger cluster sizes. This is illustrated in Fig. 53. We note that
=16384 as opposed to $4262144.) The ratid/t, used 25 is very close to the fractal dimension for site-diluted
in the plot is quite large, similar results are obtained for otheihercolation in three dimensiond;=2.53+0.02,° although
(smaller or largerratios. we do not have any arguments to make a link between the
two.
2. Noise-averaged correlations Note that the same phenomenology shown in Fig. 53 was

In addition to looking at the coarse-grained correlations 2SO _S€en at lower temperaturés=0.56T.. There is no

we also performed a fractal analysis on the noise-average‘EPalitative difference between the data at that temperature
and the data shown here.

100 | ' B 3. Average cluster sizes

Another way to analyze the clusters defined above is to
look at their average size for a given value of the correlation.
As illustrated in Fig. 54, it is clear that the largest clusters are
found in the vicinity ofC,>qg, for both noise-averaged and
coarse-grained cases. This average cluster size for a given
correlationC is defined agnote thatm,(C) is the mass of

10 ¢ the kth cluster at correlatiorC]

n(C)

e & M
; We also plot the number of clusters at a given correlation,
n(C), for both noise-averaged and coarse-grained cases in
Fig. 55. Both have forms relatively similar to the PDF of the
FIG. 53. Number of spingm) against radius of gyrationRj) correlations; however, even in the coarse-grained case there
for the noise averaged correlations in the 3D EA modet 32, are very few clusters at negatig consistent with the exis-
t,=3.2x10* MCS, t=48 000 MCS,T=0.7, 822 samples. tence of a few localized clusters evident in Fig. 49. The peak

mMa(C)= (71)
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FIG. 55. (Color onling Number of clusters normalized by the  FIG. 56. Multifractal scaling ofP? in the 3D EA model. The
size of the systerl as a function of the correlation. Parameters areStraight line is a fit toP*(Lp)<\”, i.e.,d(3)=3.
the same as for Fig. 54.

1
in cluster sizes also does not coincide with the peak(id), <Pq(Lb)>L:W Z i (73)
suggesting a characteristic state of a large number of moder-
ately small clusters with only a few large clusters even wherand the scaling of these moments is investigated. Multifractal
C~0ga- scaling should be valid for

B. Multifractal analysis l<Lp<L<¢, (74)

Another approach to investigating the spatial structure ofvhere | is a microscopic length ang is the correlation
correlations in aging dynamics is to perform a multifractallength, and we expect the moments to scale as
scaling analysis. In a disordered system, different moments
of a probability distribution may scale in different ways as (PY(Lp)) ~N\9F7@, (75)
the length scale changes. A multifractal analysis seeks to ] ) ) ) )
determine the scaling behavior of each moment of the distrivhere 7(q) defines a generalized dimensid(q) via 7(q)
bution. We do not find any multifractal behavior here, but it =d(a)(q—1) forg>1.
would be interesting to look for it in other glassy models or
in larger simulations. The method used here, as the method 1.3D EA model

of fractal analysis, is very simple to implement and could |n the 3D EA model it is found thatr(2)=3 and #(3)
also be used to examine experimental data, such as that cal-g, corresponding tal(2)=3 andd(3)=3. The same be-

lected in confocal microscopy experiments. havior, i.e.,d(q)=3 is observed fog=4, 5, and 6. As is
We follow a procedure similar to that outlined by evident in Fig. 56, which is for data with =64, atT

Janssefi® and define a box probability; such that =0.72T, with t/t,=2, 4, 16, and 64, there appears to be

pi:—c,e(c,) : (72 o1 f ' -

] 0.01 }4
e

whereC; is taken to be the average correlation in the box. 0.001 | & 1
Let the box size bé, and the system siZe, which leads to 3
a dimensionless parameterLy/L. The @ function in Eq. «;: 0.0001 } 1
(72) is to enforcep;>0 and thug; has an interpretation as a
probability. In practice, thé function is not very important, 1e-05 ¢ P thy=4 +
since the average correlations in the data considered here ar 4 Yty jg X
positive in all but a very small proportion of the boxes, even 1e-06 ;/’// t/t“é: 2 X
at the smallest box sizel ({=2) in three dimensions. The ) qg 1.9 ——o
distribution of box probabilities?(L,) is such that when all 1e-07 0.1
boxes are included, the total probability is unity. For a given ’;L

\ there areN(\)~\ "% boxes, wherdl is the dimension of
space. Moments of the distribution are defined via the rela- FIG. 57. Multifractal scaling ofP® in the 2D EA model.T
tion =0.8, t,=5x 10° MCS, L=128, t/t,, as shown in the key.

134442-36



SPATIALLY HETEROGENEOUS AGES IN GLASSY SYSTEMS PHYSICAL REVIEW 88, 134442 (2003

very little dependence on the ratio of the two times. Notice slightly more technical terms, we make the following claims.

however, that the condition in E74) is not satisfied. (i) The fluctuations in the local time reparametrization
hi(t) [see Eq.(18)] are coupled to the thermal noise and
2. 2D EA model hence manifest in the fluctuations of the coarse-grained local

correlations and responses.

(ii) The fluctuations in the external functiofis[see Eq.
952)] are coupled to the quenched disorder and hence mani-
"fest in the fluctuations of the noise-averaged local correla-
tions and responses.

Consequently, in a system with disorder the noise-
averaged local quantities show fluctuationd;ifbut average
out those irh; . In a system without disorder these quantities
do not fluctuate. In contrast, for any coarse-graining volume
if the times are long-enough the coarse-grained local quanti-

ties keep the fluctuations in, while those inf; are erased

that case it appears to be due to the mixing of noneqUiIibriurT%ince an effective average over the random exchanges is per-
correlations with equilibrium correlations. There will still be formed

such mixing using the definition above, but all negative cor- We related the study of the fluctuations in the local cor-

Lﬁ:er;tgjgrso?;%xee);ci‘lcj)?Z?ﬁaﬁngo;hgigsmay cover a nontrlV'aljelations(and susceptibilitiosto thg study of _the evolution of
' random surfaces. The local two-time functions correspond to
the “local heights” of a fluctuating random surface on the
d-dimensional substrate. We presented the simplest phenom-
The picture obtained from the above analysis is that thenological effective action for the fluctuations in the local
multifractal structure of aging dynamics in two- and three-quantities. This allowed us to predict several dynamic prop-
dimensional EA spin glasses is very similar. In both cases, alerties of their distributions. On the other hand, the geometric
moments of the probability distribution of correlations ap-analysis of clusters of spins that we introduced in Sec. IX
pear to scale with the same generalized dimension, which iglso has a counterpart in the theory of random surfaces; it
equal to the dimension of space. The reason why this is soorresponds to the analysis of contour levels of the
here is that the correlation lengéhs small, of the order 3—5 surface$! A complete study of the statistical and dynamic
lattice spacings, and therefore we are not truly in the scalingproperties of these surfaces might be useful to determine the
regime defined in Eq(74). Nonetheless, this method of ex- lower critical dimension of different glassy models.
amining spatial heterogeneities via multifractal analysis may The analytic calculations that we use as a guideline in this
be a useful tool for investigating the behavior observed inpaper were performed using the finite-dimensional spin-glass
different glassy models and in experimental systems. Hamiltonian®® The numerical data that we present also cor-
respond to this glassy problem. However, we believe that our
results are more general and should apply also, with a few
X. CONCLUSIONS modifications, to other glassy problems. In the following sec-

In this paper we showed further evidence that the coarsdion we discuss several possible spin-offs of our results as
grained two-time correlators are the ones that reflect the exvell as a number of models in which the ideas here discussed
istence of an asymptotic zero mode in the underlying theoryc@n be put to test.

We defined a two-time correlation length that controls the

spatial fluctuations in the coarse-grained local two-time cor- XI. PERSPECTIVES

relators and we showed numerical evidence for the growth of )

this length in the glassy phase of the 3D EA model, as was to Several questions remain open even within the study of
be expected from the existence of the asymptotic zero modéhe finite-dimensional EA model. In particular, we have not
It should be noted, though, that for the times reached numerehecked numerically that a scaling limit is reached by taking
cally the correlation length is still very short. We argued thatthe limit of long-times and large coarse-graining volumes
in the limit in which the coarse-graining linear siad¢ is  while keeping (M +1)/&(t,t,,) fixed. This check remains
taken to diverge together with the correlation length the in-out of the reach of present computer simulations. Another
dividual and joint distributions of coarse-grained local corre-independent issue that deserves further study is the intriguing
lations and integrated responses should reach a stable forfiact that the noise-averaged local correlations are quite in-
This means that heterogeneities of all sizes exist in the sysensitive to temperature and its possible relation to the ob-
tem. This is another consequence of the asymptotic zerservation of memory and rejuvenation in spin-glass experi-
mode. ments. Moreover, the study of the geometric properties of

In disordered systems one can also define noise-averagetlusters can be improved and made more complete in several
as opposed to coarse-grained, fluctuating two-time functionglirections, e.g., by examining lower temperatures in the 2D
We showed numerically that the fluctuations in these quantiease and higher temperatures in the 3D case in order to iden-
ties are not controlled by the zero mode and that they behawify similarities and differences, etc.
rather differently than their coarse-grained cousins. In  We have stated that our approach and its results, derived

In performing a multifractal analysis of the 2D EA model,
the same approach to the analysis was used as outlined f
the 3D EA model. The results were similar to the 3D case, i
that d(q) ~d for the times available. In the data shown in
Fig. 57, it is clear that fog=3, 1.9<d(3)<2, with perhaps
a slightly lower value ofi(g) at long waiting times. The data
are from a run withL=128, T=0.8, andt,=5000. The
time ratios considered aitét,,=4,8, and 16]Note that al-
ternative definitions of the box probability in 2D, such as
using|C;| rather than & function can lead tal(q)#d. In

3. Summary
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in this paper for spin models with disorder, can be adapted tover to a different, activated-like, nonequilibrium regime that
describe the structural glass problem. Let us summarize whate cannot characterize theoreticdtf? We cannot predict

we expect in this case. what happens to the correlation length on these extremely
Dynamic heterogeneities in the supercooled liquid phaséong time scales.
have been identified numerically’> and exper- The ideas discussed in this paper should apply not only to

imentally?®=28|n the case of particléor moleculay interact-  systems that relax in a nonequilibrium manner as glasses but
ing systems the natural and simplest two-time local correlaalso to systems that are kept out of equilibrium with an
tion that makes contact with our approach is the densityfweak external forcing. As shown in Ref. 84 the time rep-
density correlator defined on boxes with voluivig=(2M arametrization of the bulk quantities that is selected dynami-
+1)4. Having partitioned the total volum¥ in V/Vg such  cally is very easy to modify with external perturbations. In-
boxes, one then ha¥/Vy local correlators and local re- deed, a small force that does not derive from a potential and
sponsegif a perturbation coupled to the density is app)ied is applied on every spin in the model renders an agksgin
with which one can construct the PDF’s. model stationar’? while the model maintains a separation of
In the supercooled liquid phase we expect that the localime scales in which the fast scale follows the temperature of
correlations and integrated responses defined in boxes of fihe bath,T, while the slow scale is controlled by an effective
nite size will be typically stationaryafter a sufficiently long temperatureT > T. In this case, the aging system selects a
waiting time that goes beyond the equilibration ti®it  time reparametrizatior(t)=t,%>%" while in the perturbed
with different finite structural relaxation times. This is con- modelh(t)=e~Y"«. Similarly, the aging of a Lennard-Jones
sistent with the experimental observation that dynamic hetmixture is stopped by a homogeneous shea. different
erogeneities in supercooled liquids seem to have a lifetime ofvay to modify the time reparametrization that characterizes
the order of the relaxation time. At high temperatures the sizéhe decay of the correlations is by using complex thermal
of the heterogeneities is finite and hence one should supprebaths®* Recently, there has been much interest in the appear-
the fluctuations by using sufficiently large coarse-grainingance of shear localization, in the form of shear bands, in the
volumes. The correlation lengt(t,t,,), which is also sta- rheology of complex fluid§®®” Along the lines described
tionary, should remain finite, even in the limit of long times. here it would be very interesting to analyze the fluctuations
From a theoretical point of view, this picture is, in a sensejn the local reparametrizations in the fluidized shear band
similar to the one that describes the paramagnetic phase énd the “jammed” glassy band.
the O(N) model, just above the ordering transition tempera- The appearance of an asymptotic invariance under time-
ture. reparametrizations in the mean-field dynamic equations was
As the temperature is lowered the size and lifetime of therelated to the reparametrization invariance of the replica
heterogeneities increasés. A mean-field-like, or mode- treatment of the statics of the same modéfsThe latter
coupling-like approach predicts that their typical size will remains rather abstract. Recently, de Dominicis anaiBt@
diverge at the mode-coupling transition temperafaréle  studied the consequences of twisting the reparametrizations
expect then that the correlation lengitt,t,,) will saturate at in the replica approach. Interestingly enough, this can be
a higher value wherT decreases approachirig. In real  simply done in a dynamic treatment either by applying shear
systems the divergence 8¢ is smoothed and hencgt,t,,) forces, as discussed above or by applying different heat baths
should not strictly diverge. to different parts of the system. More precisely, using a
At still lower temperatures the bulk quantities age and wemodel with open boundary conditions one could apply a
expect then to observe heterogeneous aging dynamics of thieermal bath with a characteristic time scale on one end and
kind described in this paper, with a two-time-dependent cora different thermal bath with a different characteristic time
relation length for the local fluctuations. The heterogeneitiescale on the opposite end and see how a time reparametriza-
will age too, in a “dynamic” way. By this we mean that if a tion “flow” establishes in the model.
region looks older than another one when observed on a We would like to conclude this paper by mentioning a
given time window, it can reverse its status and look youngenumber of other tests and interesting applications of the ideas
than the same other region when observed on a different timgescribed here to other models with a slow relaxation.
window. (i) In this paper we studied the distributions of the two-
The numerical studies of the global two-time correlationstime, local in space, spin-spin correlations and their associ-
and integrated susceptibilities of Lennard-Jones mixtdrés ated responses. In a finite-dimensional system one can con-
have shown a remarkable accord with the predictions fronstruct many other two-time correlations that are still local in
the analytic solution to mean-field-like glassy modelde  space. The question then arises as to if all the distributions of
then expect that the PDF’s of local correlations and locahll possible correlators have the same qualitative features.
integrated responses, for the same time scales used for the (ii) An important property of the interpretation of the FDR
bulk calculations, will show the main features described inin terms of effective temperatures is that in systems that
this paper. In particular, we expect the joint PDF’s to repro-reach an asymptotic regime with slow dynamics and small
duce the sketch shown in Fig. 5. entropy production one expects that all observables evolving
In the glassy phase, we expect the correlation length oin the same time scale partially equilibrate and hence have
structural systems to grow for increasing times roughly in thethe same value of the effective temperatifr&elated to this
manner here described. However, this growth might beguestion one can try to determine if the joint probability
modified for long enough times when the dynamics crossedistributions of the local correlations and susceptibilities of
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other pairs of observables are the same and have the sarbheen recorded are the measurement of voltage noise self-
time evolution. correlation in laponit® and the light-scattered intensity-
(iii ) We expect to see a similar behavior of the local FDRintensity correlation in colloidal suspensicfiswhere large
in simple systems undergoing domain gro#thiviore pre-  fluctuations appear. It will be very interesting to analyze the
cisely, using thecoarse-grainedocal correlations between PDF’s of the two-time correlation and the two-times inte-
the fluctuations in the magnetizations and their associategrated response along the lines described here.
coarse-grained local susceptibilities, we expect to find a joint Last, but not the least, the approach based on reparametri-
PDF that is mostly concentrated alongflat, global y(C)  Zzation invariance suggests that it may be possible to search
curve whend>1. This statement can be checked rather easfor universality in glassiness. For example, a Ginzburg-
ily with Monte Carlo simulations of the finite-dimensional Landau theory for phase transitions captures universal prop-
ferromagnetic Ising model. erties that are independent of the details of the material. It is
(iv) Related to(iii), the ferromagnetic Ising chain is a Symmetry that defines the universality classes. For example,
particularly interesting case of study. It has been proven the@n€ requires rotational invariance of the Ginzburg-Landau
at zero temperatur@r when the Coup"ng Strength diverges aCtI'OH When deSCI’IbIng ferl’omagnets. Reparametrlzatlon n-
the global FDR takes a curved forg(C).%° For this model variance may be the underlying symmetry that must be sat-

it might be possible to derive an analytic expression for thdSfied by the Ginzburg-Landau action of all glasses. What

joint PDF. Similarly, one can attempt an analytic calculatlondeterm'nes whether a system s glassy or not We are
at criticality in coarsening models as done in Ref. 90. tempted to say the answer 1 if the symmetry is generated or
(v) Kinetically constrained lattice modéfscapture many not at long times. Knowing how to describe the universal

of the characteristic features of glasses. An analytical Stuigehawor may tell us all the common properties of all glasses,

of dynamic heterogeneities in one such spin model has r out surely it will not gllow us to make _n_onuniversal predic-
cently appearetf’ Versions in which one works with par- tions, such as what is the glass transition temperature for a

ticles on a lattice are also rather simple to simulate. In thes ertain matenal,- or whether th.e matgr@l d|splays_ glassy be-
models one can partition the full lattice in boxes of size avior at all. This quest for universality is a very interesting

(2M+ 1) and define the local two-time density-density cor- theoretical scenario that needs to be confronted.
relators within them. A local susceptibility can also be easily
defined following Ref. 91. A check of the form of the joint ACKNOWLEDGMENTS
probability distribution and its evolution in time is an inter-  This work was supported in part by the NSF Grants Nos.
esting problem. DMR-98-76208, DMR-03-05482, and INT-01-28922 and the
(vi) One would like to study realistic models of glass Alfred P. Sloan FoundatiofC.C), CNRS-NSF grant, an
formers with molecular dynamics and test the scaling lawsACI-France, the Guggenheim Foundation, and ICTP-Trieste
and qualitative features in these cases. (L.F.C.), CONICET and the Universidad Nacional de Mar
(vii) Herisson and Oci® studied recently the bulk two- del Plata, Argentina(J.L.l), and NSF under Grant No.
time correlation between magnetic fluctuations and the bullPHY99-07949H.E.C., C.C. and L.F.¢. LPTHE -Jussieu is
two-time integrated response to an external magnetic fieldcknowledged by H.E.C, C.C., and M.P.K., BU by M.P.K.
(magnetic susceptibilifyof an insulator spin glass. Their aim and the Aspen Center for Physics by H.E.C. and C.C. for
was to test the modifications of the global FDT in this non-hospitality. The simulations were done with the BU Scien-
equilibrium system. In order to have smooth data, they avertfic Supercomputing and Visualization facilities. We espe-
aged these quantities over many repetitions of the expergially thank J. Kurchan for very enlightening discussions
ment done after heating the sample above the transition. Ithroughout the development of this work. We also thank L.
our terms, the bulk correlations were averaged over differenBalents, A. Barrat, S. Franz, D. Huse, A. Montanari, G. Pa-
noise realizations. Two other experimental systems in whichisi, L. Radzihovsky, D. Reichmann, and X.-G. Wen for sug-
the two-time evolution of a bulk two-time correlation has gestions and discussions.

1For a review see L.F. Cugliandolo, $low Relaxations and Non- Cambridge, 1991 M. Mézard, G. Parisi, and M.A. Virasoro,
equilibrium Dynamics in Condensed Mattéres Houches Ses- Spin-Glasses and Beyori@/orld Scientific, Singapore, 1987
sion 77, edited by J.-L. Barrat, J. Dalibard, M.V. Feigel’'man, 5V.S. Dotsenko, M.V. Feige'man, and L.B. loff&§pin Glasses

and J. Kurchan(Springer-Verlag, Berlin, in pregscond-mat/ and Related ProblemsSoviet Scientific Reviews 18Harwood
0210312. Academic, New York, 1990

23.-P. Bouchaud, L.F. Cugliandolo, J. Kurchan, and Mzhtd, in 6H. Sompolinsky and A. Zippelius, Phys. Rev. Le#t7, 359
Spin Glasses and Random Fiel@slited by A.P. YoundWorld (1981); Phys. Rev. B25, 274 (1982; H. Sompolinsky, Phys.
Scientific, Singapore, 1998 Rev. Lett.47, 935(1981).

3G. Parisi, Slow Relaxations and Nonequilibrium Dynamics in ’L.F. Cugliandolo and J. Kurchan, J. Phys2& 5749(1994).
Condensed MattefRef. 1). 8T.R. Kirkpatrick and D. Thirumalai, Phys. Rev. Lef8, 2091

4K. Binder and A.P. Young, Rev. Mod. Phys8, 801 (1986); K. (1987; Phys. Rev. B36, 5388(1987; T.R. Kirkpatrick and P.

Fischer and J. Hert&pin Glasse¢Cambridge University Press, Wolynes, ibid. 36, 8552(1987).

134442-39



CASTILLO, CHAMON, CUGLIANDOLO, IGUAIN, AND KENNETT

LF Cugliandolo and J. Kurchan, Phys. Rev. L&it, 173(1993.

10G. Parisi, Phys. Rev. Lett3, 1754 (1979; J. Phys. A13, 1101
(1980; 13, 1887(1980; 13, L115(1980.

1p.s. Fisher and D.A. Huse, Phys. Rev. Léi6, 1601 (1986;
Phys. Rev. B38, 386(1988.

12D s. Fisher and D.A. Huse, Phys. Rev3B, 373(1988.

Bw.L. McMillan, Phys. Rev. B28, 5216(1983; 31, 340 (1985:
A.J. Bray and M.A. Moore, J. Phys. €7, L463 (1984); in
Heidelberg Colloquium on Glassy Dynamieslited by J.L. van

PHYSICAL REVIEW B 68, 134442 (2003

Plimpton, P.H. Poole, and S.C. Glotzer, Phys. Rev. L&¥.
2827(1997).

32D, Perera and P. Harrowell, Phys. Rev.5E 1652 (1996; C.
Donatiet al, ibid. 60, 3107(1999; A. Onuki and Y. Yamamoto,
J. Non-Cryst. Solids235-237 19 (1998; B. Doliwa and A.
Heuer,ibid. 307, 32(2002; A. Heuer, M. Kunow, M. Vogel, and
R.D. Banhatti, Phys. Rev. B6, 224201(2002.

33C. Chamon, M.P. Kennett, H.E. Castillo, and L.F. Cugliandolo,
Phys. Rev. Lett89, 217201(2002.

Hemmen and |. Morgenstern, Vol. 275 of Lecture Notes in Phys-34H.E. Castillo, C. Chamon, L.F. Cugliandolo, and M.P. Kennett,

ics (Springer, Berlin, 1986 G.J.M. Koper and H.J. Hilhorst, J.
Phys.(France 49, 429(1988.

143, Villain, Europhys. Lett2, 871(1986.

153, Houdayer and O.C. Martin, Europhys. Let8, 794 (2000; J.
Houdayer, F. Krzakala, and O.C. Martin, Eur. Phys. 183467
(2000.

18F Krzakala and O.C. Martin, Phys. Rev. Le36, 3013(2000.

M. Palassini and A.P. Young, Phys. Rev. L&§, 3017(2000.

183. Lamarcq, J.-P. Bouchaud, O.C. Martin, and M.zsliel, Euro-
phys. Lett.58, 321(2002.

19H. Bokil, B. Drossel, and M.A. Moore, Phys. Rev. &, 946
(2002.

20T, Komori, H. Yoshino, and H. Takayama, J. Phys. Soc. &8n.
3387 (1999; 69, Suppl. A228 (2000; K. Hukushima, H.
Yoshino, and H. Takayama, Prog. Theor. Phys. Supp8 568
(2000; H. Yoshino, K. Hukushima, and H. Takayama, Phys.
Rev. B66, 064431(2002.

21The aging properties of spin glasses are reviewed in E. Vincent, J.

Hammann, M. Ocio, J.-P. Bouchaud, and L.F. Cugliandolo, in
Sitges 1996edited by M. Rubi(Springer-Verlag, Berlin, 1997
and Ref. 22.

22p._ Nordblad and P. Svedlindh, Experiments on Spin-Glassks
Spin-Glasses and Random Fieldslited by A.P. YoundWorld
Scientific, 1998.

Phys. Rev. Lett88, 237201(2002.

35p.H. Poole, S.C. Glotzer, A. Coniglio, and N. Jan, Phys. Rev. Lett.
78, 3394(1997; S.C. Glotzer, N. Jan, and P. Poole, Phys. Rev. E
57, 7350(1998.

36F. Ricci-Tersenghi and R. Zecchina, Phys. Rev6E R7567
(2000.

S7A. Barrat and R. Zecchina, Phys. Rev5H, R1299(1999.

%8A. Montanari and F. Ricci-Tersenghi, Phys. Rev. L8, 017203
(2003.

39C. Brangian and W. Kob, J. Phys.35, 191 (2002.

404, Bissig, V. Trappe, S. Romer, and L.
cond-mat/030126%unpublishegl

4IR.B. Griffiths, Phys. Rev. Let3, 17(1969; A.J. Bray and M.A.
Moore, J. Phys. A5, L765(1982; A.J. Bray, Phys. Rev. Lett.
59, 586(1987).

423 P. Bouchaud and M. fard, J. Phys. 4, 1109(1994; E. Mari-

nari, G. Parisi, and F. Ritort, J. Phys. 2¥, 7615 (1994); 27,

7647 (1999; L.F. Cugliandolo, J. Kurchan, G. Parisi, and F.

Ritort, Phys. Rev. Lett74, 1012(1995; P. Chandra, L.B. loffe,

and D. Sherringtonjbid. 75, 713 (1996; P. Chandra, M.V.

Feige'man, L.B. loffe, and D.M. Kagan, Phys. Rev. 5,

11553(1997; G. Franzese and A. Coniglio, Phys. Rev5E

2753(1999; Philos. Mag. B79, 1807(1999.

“3For a review on kinetically constrained glassy models see F.
Ritort and P. Sollich, cond-mat/02103&2npublishedl

Cipelletti,

233.-P. Bouchaud, V. Dupuis, J. Hammann, and E. Vincent, Phys‘?“J.-P. Garrahan and D. Chandler, Phys. Rev. L&#%. 035704

Rev. B 65, 024439(2002.

24L. Berthier and J.-P. Bouchaud, Phys. Re\6® 054404(2002).

25A recent review on the main experimental features of supercoole
liquids and glasses is M.D. Ediger, C.A. Angell, and S.R. Nagel,
J. Phys. Cheml100, 14 200(2000; See also C.A. Angell, K.L.
Ngai, G.B. McKenna, P.F. McMillan, and S.W. Martin, J. Appl.
Phys.88, 3113(2000.

26H. Sillescu, J. Non-Cryst. Solid843 81 (1999; M.D. Ediger,
Annu. Rev. Phys. Chenkl, 99 (2000.

27g. Vidal-Russell and N.E. Israeloff, Natutéondon 408 695
(2000.

28, van Blaaderen and P. Wiltzius, Scieng2&0, 1177 (1995;
W.K. Kegel and A. van Blaadereihid. 287, 290 (2000; E.R.
Weeks and D.A. Weitz, Phys. Rev. Le89, 095704(2000; E.R.
Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, and D.A. Weitz,
Science287, 627 (2000.

(2002.

45A.J. Bray, Adv. Phys43, 357 (1994).

86See, for example, P.M. Chaikin and T.C. Lubengksinciples of
Condensed Matter SysterfGambridge University Press, Cam-
bridge, 1995.

41G. Parisi, cond-mat/020807@npublished

48The static properties of disordered models have been studied us-
ing the cavity method in M. Mzard, G. Parisi, and M.A. Vira-
soro, Europhys. Lettl, 77 (1985; M. Mézard and G. Parisi, J.
Stat. Phys.111, 1 (2003; M. Mézard, G. Parisi, and R.
Zecchina, Scienc97, 812 (2002.

“SM.P. Kennett and C. Chamon, Phys. Rev. L88, 1622 (2001);
M.P. Kennett, C. Chamon, and J. Ye, Phys. Re\643 224408
(2001).

%0 .F. Cugliandolo, J. Kurchan, and P. Le Doussal, Phys. Rev. Lett.
76, 2390(1996.

29The aging properties of a colloidal glass have been studied witfi*S. Franz and M. Meard, Europhys. Let26, 209(1994; Physica

the confocal microscopy technique in R.E. Courtland and E.R
Weeks, J. Phys.: Condens. Matfes, S359(2003.

30L_, Buisson, L. Bocquet, and S. Ciliberto, cond-mat/021049%-
published.

. A 210, 48(1994.

52M. Picco, F. Ricci-Tersenghi, and F. Ritort, Eur. Phys. J2B
211(2001; D.A. Stariolo, M.A. Montemurro, and F.A. Tamarit,
cond-mat/020710%unpublishegl

31c. Bennemann, C. Donati, J. Baschnagel, and S.C. Glotzer, NaSA summary of numerical studies of the nonequilibrium dynamics

ture (London 399 246 (1999; W. Kob, C. Donati, S.J.

in spin models appeared in H. Rieger, Annu. Rev. Comp. Phys.

134442-40



SPATIALLY HETEROGENEOUS AGES IN GLASSY SYSTEMS

Il (World Scientific, Singapore, 1995p. 295. Studies of frus-

trated lattice gases have been published in A. Fierro, A. de Can’

dia, and A. Coniglio, Phys. Rev. &, 7715(2002; M. Sellitto,
Eur. Phys. J. B4, 135(1998; J.J. Arenzon, F. Ricci-Tersenghi,
and D.A. Stariolo, Phys. Rev. B2, 5978 (2000. Molecular-

dynamics simulations of interacting particle systems can be

found in Refs. 54,55.

54W. Kob and J.-L. Barrat, Phys. Rev. Le®8, 4581 (1997); Eur.
Phys. J. B13, 319 (2000; R. di Leonardo, L. Angelani, G.
Parisi, and G. Ruocco, Phys. Rev. L&, 6054 (2000.

SSL. Berthier and J.-L. Barrat, Phys. Rev. Le8B, 095702(2002;
J. Chem. Physl16, 6228(2002.

56The existence of a well-defined plateau for the A model is

PHYSICAL REVIEW 68, 134442 (2003

Kurchan, and G. Parisi, J. Phys.28, 1831(1995.

Some papers in which the dynamics of the SK model were stud-
ied numerically are H. Eissfeller and M. Opper, Phys. Rev. Lett.
68, 2094 (1992; A. Scharnagl, M. Opper, and W. Kinzel, J.
Phys. A28, 5721(1995; H. Yoshino, K. Hukushima, and H.
Takayama, Prog. Theor. Phys. Supp26, 107 (1997; A. Bil-
loire and E. Marinari, J. Phys. 84, L727 (2001); H. Takayama,
H. Yoshino, and K. Hukushimabid. 30, 3891(1997); K. Huku-
shima and K. Nemoto, J. Phys. Soc. JBB, 1604 (1996.

"®Two spins are connected if they are nearest neighbors.

T, Nakayama, K. Yakubo, and R.L. Orbach, Rev. Mod. Pi6gs.

381 (1994.
8D, Stauffer, Phys. Rev. Lett1, 1333(1979; R.C. Ball and J.R.

5

not established beyond any doubt. We shall use it as a hypothesis Lee, J. Phys. B, 356 (1996.
admitting the possibility that future generation simulations “°N. Jan and D. Stauffer, Int. J. Mod. Phys.9C341 (1998.

might show thagg,—0 even ind=3.
57B. Kim and A. Latz, Europhys. Let63, 660 (2001).
583. Franz and H. Rieger, J. Stat. Phy8. 749(1995; E. Marinari,

80M. Janssen, Int. J. Mod. Phys. & 943 (1994).
813. Kondev, Phys. Rev. Letf8, 4320(1997; C. Zeng, J. Kondeyv,
D. McNamara, and A.A. Middletonibid. 80, 109 (1998; J.

G. Parisi, F. Ricci-Tersenghi, and J.J. Ruiz-Lorenzo, J. Phys. A Kondev, C.L. Henley, and D.G. Salinas, Phys. Re\6E 104

31, 2611(1998.

59D, Herisson and M. Ocio, Phys. Rev. LeB8, 257202(2002.

80 F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Re63: 3898
(1997.

51.F. Cugliandolo, D.S. Dean, and J. Kurchan, Phys. Rev. [8ft.
2168(1997).

52H. Sompolinsky and A. Zippelius, Phys. Rev. LeB3, 1297
(1983. ,

633.L. Ginzburg, Zh. Esp. Teor. Fiz.90, 754 (1986 [Sov. Phys.
JETP63, 439(1986)].

64L.B. loffe, Phys. Rev. B38, 5181(1988.

55H. Sompolinsky and A. Zippelius, Phys. Rev. Le#t7, 359
(1981); Phys. Rev. B25, 6860(1982.

56The dynamic equations are derived in the limit>c. In this

(2000; M. Schwartz, Phys. Rev. Let86, 1283(2001).

823 Franz and G. Parisi, J. Phys5,11401(1999; Phys. Rev. Lett.
79, 2486 (1997; C. Donati, S. Franz, G. Parisi, and S.C.
Glotzer, Philos. Mag. B9, 1827(1999.

83A solvable model with “mean-field-like” nonequilibrium regime
and a slower still nonequilibrium regime has recently been ex-
hibited, see G. Semerjian and L.F. Cugliandolo, Europhys. Lett.
61, 247 (2003.

84L.F. Cugliandolo and J. Kurchan, Physica283 242 (1999.

8| F. Ccugliandolo, J. Kurchan, P. Le Doussal, and L. Peliti, Phys.
Rev. Lett.78, 350(1997); L. Berthier, J.-L. Barrat, and J. Kur-
chan, Phys. Rev. B1, 5464(2000; L. Berthier, J. Phys.: Con-
dens. Matterl5, S933(2003.

8| J. Chen, B.J. Ackerson, and C.F. Zulowski, J. Rhé&8}. 193

case, the dynamic correlations and responses are self-averaging (1993; F. Pignon, A. Magnin, and J.-M. Piatbid. 40, 573

and independent of the noise realization. For this reason we do (1996; W. Losset, L. Bocquet, T.C. Lubensky, and J.P. Gollub,

not worry about having to average the two-time quantities in  Phys. Rev. Lett85, 1428(2000; C. Debregead, H. Tabuteau,

Egs.(38) and(39). and J.-M. di Meglio,ibid. 87, 178305(2001); P. Coussot, J.S.
67\We shall not consider the possibility of there being sevérar- Raynaud, F. Bertrand, P. Moucheront, J.P. Guilbaud, H.T.

archica) length scales. Moreover, to keep the discussion simple Huynh, S. Jarny, and D. Lesuelinjd. 88, 218301(2002; G.

as elsewhere in this paper, we study the asymptotic properties of Picard, A. Ajdari, L. Bocquet, and F. Lequeux, Phys. Re@&:

the mass keepingt,, fixed[using a ratich(t)/h(t,,) fixed might
be more precise

58D.A. Huse, Phys. Rev. B3, 8673(1991); J. Kisker, L. Santen,
M. Schreckenberg, and H. Riegehid. 53, 6418 (1996; E.

051501(2002.
8F. varnik, L. Bocquet, J.-L.
cond-mat/020848%unpublishegl
88C. De Dominicis and E. Bn, Eur. Phys. J. B0, 71 (2002.

Barrat, and L. Berthier,

Marinari, G. Parisi, F. Ricci-Tersenghi, and J.J. Ruiz-Lorenzo, J8°C. Godrehe and J.-M. Luck, J. Phys. 83, 1151 (2000; E.

Phys. A33, 2373(2000.

59V, Dupuis, E. Vincent, J.-P. Bouchaud, J. Hammann, A. Ito, and

H. Aruga Katori, Phys. Rev. B4, 174204(2001); P.E. Jmsson,

H. Yoshino, P. Nordblad, H. Aruga Katori, and A. Ito, Phys. Rev.

Lett. 88, 257204(2002.
"ODue to the slight variation of(t,t,,) in our simulations this effect
is not apparent in the data shown.
A, Barrat and L. Berthier, Phys. Rev. Le&7, 087204(2001).
"2N.D. Mackenzie and A.P. Young, Phys. Rev. Ld8, 301(1982;

J. Phys. C16, 5321(1983; A. Baldassarri, cond-mat/9607162

(unpublishegt Phys. Rev. E58, 7047 (1998.
73A.J. Bray and M.A. Moore, J. Phys. €3, 419 (1980.
74G. Ferraro(unpublishett A. Baldassarri, L.F. Cugliandolo, J.

Lippiello and M. Zannetti, Phys. Rev. BE1, 3369 (2000; F.
Corberi, E. Lippiello, and M. Zannettibid. 63, 061506(2002);
Eur. Phys. J. B24, 359 (2000; F. Corberi, C. Castellano, E.
Lippiello, and M. Zannetti, Phys. Rev. &, 066114(2001); P.
Sollich, S. Fielding, and P. Mayer, J. Phys.: Condens. Mader
1683(2002.

9C. Godrehe and J.-M. Luck, J. Phys. 83, 9141 (2000; M.
Henkel, M. Piemling, C. Godhe, and J.-M. Luck, Phys. Rev.
Lett. 87, 265701(2002D; A. Picone and M. Henkel, J. Phys. A
35, 5572(2002; M. Henkel, Nucl. Phys. B541, 405(2002; P.
Calabrese and A. Gambassi, Phys. Rew63:066120(2002);
66, 066101(2002; Phys. Rev. B66, 212407(2002.

9M. Sellitto, Eur. Phys. J. B, 135(1998.

134442-41



