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Spatially heterogeneous ages in glassy systems
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We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems
with and without quenched disorder. We study two types of two-time local correlators with the aim of char-
acterizing the heterogeneous evolution in these systems: in one case we average the local correlators over
histories of the thermal noise, in the other case we simply coarse grain the local correlators obtained for a given
noise realization. We explain why the noise-averaged correlators describe the fingerprint of quenched disorder
when it exists, while the coarse-grained correlators are linked to noise-induced mesoscopic fluctuations. We
predict constraints on the distribution of the fluctuations of the coarse-grained quantities. In particular, we show
that locally defined correlations and responses are connected by a generalized local out-of-equilibrium
fluctuation-dissipation relation. We argue that large-size heterogeneities in the age of the system survive in the
long-time limit. A symmetry of the underlying theory, namely, invariance under reparametrizations of the time
coordinates, underlies these results. We establish a connection between the probabilities of spatial distributions
of local coarse-grained quantities and the theory of dynamic random manifolds. We define, and discuss the
behavior of, a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time
local functions. We characterize the fluctuations in the system in terms of their fractal properties. For concrete-
ness, we present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally,
we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be
either spin models without disorder or atomic and molecular glassy systems.
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I. INTRODUCTION

A mean-field theory of glasses has been developed du
the last two decades.1–3 This approach is based on the stu
of fully connected spin models with disorder. A fully con
nected spin system with pairwise interactions, t
Sherrington-Kirkpatrick~SK! model, is used to model spi
glasses.4–7 Extensions in which the spins interact via all po
sible p-uplets, with p>3, are used to describe structur
glasses of fragile type.8,9 These are the so-calledp-spin mod-
els. Even though structural glasses consist of molecules m
ing in a finite-dimensional volume, rather than spins intera
ing via random exchanges on a complete~hyper! graph, the
disorderedp-spin models yield a gross description of ma
important features of the structural glass phenomenolo
For instance, they have dynamic and static transitions oc
ring at different values of the external temperature, mimi
ing the dynamic slowing down at the freezing temperat
Tg and the entropy crisis at the Kauzmann temperatureTs .8

More strikingly, these models capture the slow nonequi
rium dynamics characterized by macroscopic observa
showing aging effects belowTg .7,9

Whilst they are successful in many respects, these mo
lack a geometric structure and hence cannot inform us a
the spatial evolution of the glass former. In the context
0163-1829/2003/68~13!/134442~41!/$20.00 68 1344
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spin glasses, there is consensus about there being some
of growing order belowTg . However, there has been a lon
lasting debate about the characteristics of this order.10–20 In
other words, the question as to whether there are only tw
many competing ground states, not related by symmetry,
grow during the nonequilibrium evolution12,20–24 has not
been answered yet. In comparison, it is not even clear if th
is a phase transition in structural glasses.25

Very recently, a number of experiments have shown
appearance of mesoscopic regions in supercooled liquids
glasses that have distinctively different dynamics from
bulk of the system.26–30 The position and identity of thes
‘‘particles’’ changes in time. In general, these regions a
referred to as dynamic heterogeneities and have also b
identified in numerical simulations.31,32

Developing a theoretical description of the real-space
namics of glassy systems is now a major challenge to th
reticians. The purpose of this paper is to expand on the
oretical framework we presented in Refs. 33 and 34 t
allowed us to predict several properties of local dynam
fluctuations in spin glasses. We test the predictions of
framework against numerical simulations on a spin mo
with disorder defined on a finite-dimensional lattice, t
Edwards-Anderson~EA! model.4,5 Following the philosophy
described in the first paragraph, we claim that the main
©2003 The American Physical Society42-1
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sults arising from our analysis will carry on rather simply
the particle models which are more relevant for real glas
In the Conclusions and Perspectives sections we explain
one should translate our results and predictions to this c
We also list a number of glassy models on which our id
could be tested.

A. Background

We first briefly summarize previous studies~mostly ex-
perimental and numerical! of dynamic heterogeneities in pa
ticle and spin systems that set the scene for our analysis

There is great interest in the experimental observation
dynamic heterogeneous regions in super-cooled liquids
glasses. Many experimental techniques have been use
signal the existence of dynamically heterogeneous region
samples of a variety of glasses,26–30and to try to characterize
their properties. The confocal microscopy technique28,29 is
particularly useful for this, as it allows one to reconstruct t
particle trajectories in three-dimensional~3D! space and
have the complete configuration of the system at cho
times.

In the context of theoretical studies of structural and po
meric glasses, Bennemannet al. and Kob et al. identified
fast moving particles embedded in a bulk of slow movi
ones at temperatures aboveTg in the super cooled liquid
phase of several models using molecular dynamics.31 Other
numerical studies of similar features appeared in Ref. 32

In these experimental systems, and the models use
study them numerically, there is no quenched disorder. Mo
over, the particles are identical and move in continuo
space, so they cannot be identified by their position o
lattice, as in typical spin models. However, two possib
ways of studying the heterogeneous dynamics of the sys
are as follows.

~i! One can tag each particle, follow their evolution, a
detect which are the fast and slow moving particles durin
previously chosen time window around some time af
preparation. Particles are labeled by an indexi. This is the
route followed in Refs. 31 and 32.

~ii ! One can divide the space into boxes of a chosen
and study the behavior of all particles within each box. T
locality is then given by the position of the box which
labeled byi. At the end of this paper we explain why w
believe that the second approach will be very useful to ch
acterize some spatial features of the nonequilibrium dyn
ics of glassy systems. An analysis of data obtained with
confocal microscopy technique of real systems and mole
lar dynamics of simple models along the lines described
this paper will yield valuable information for the future d
velopment of a complete analytic theory for glasses.

In the context of disordered spin models, fast and sl
spins that decorrelate on totally different time scales w
identified in numerical simulations in Refs. 35 and 36 for t
3D EA model above and belowTc , respectively. Barrat and
Zecchina37 and Montanari and Ricci-Tersenghi38 found a
similar separation in the low-temperature phase of spin m
els defined on random graphs. Even finite-size sample
mean-field models show important spin-to-spin fluctuatio
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in the characteristic time scale for individual decorrelatio
as shown by Brangian and Kob for the disordered Po
model above its dynamic critical temperature.39 A similar
behavior, superposed on aging phenomena, is observed i
Sherrington-Kirkpatrick model at low temperatures,
shown in Sec. VIII B. In all these studies the noise-averag
correlations for fixed disorder were the focus of the studi
In this type of analysis the identity of a spin is determined
its position on the lattice or by the random exchanges.

In Refs. 33 and 34 we concentrated instead on the 3D
model and its two-time coarse-grained~but not noise-
averaged! local quantities. In Ref. 33 we showed that th
action for the slow part of the local relaxation becomes r
arametrization invariant asymptotically. This~approximate!
symmetry allowed us to propose several properties of
dynamic behavior of the coarse-grained local correlatio
and responses that we tested numerically in Ref. 34. Th
quantities are relevant both for spin models~with and with-
out quenched disorder! and for continuous systems of inte
acting particles.

B. Plan of the paper

In this paper we complete the analysis that we started
Refs. 33 and 34. We study several aspects of thelocal dy-
namics of the 2D and 3D EA spin glass,

HJ5(
^ i , j &

Ji j sisj . ~1!

The sum runs over nearest-neighbor sitesi , j on a
d-dimensional cubic lattice. The couplingsJi j take values
6J/A2z with probability 1/2. z is the coordination of the
lattice, z52d in the square/cubic case. The spins are Is
variables,si561.

We also analyze the dynamic fluctuations in finit
dimensional and fully connected models with finite size.
test the latter we use the SK mean-field spin-glass mo
defined by

HJ5(
iÞ j

Ji j sisj ~2!

with Ji j taken from a bimodal probability distribution with
zero mean and variance@Ji j

2 #5J2/(2N). ~We expect to find
similar results using a Gaussian distribution of exchang!
Here and in what follows we use square brackets to den
the average over disorder.

We fix the value ofJ in such a way that the critical tem
peratures are atTc;1.1 for the 3D EA model and atTc51
for the SK model. The 2D EA model has a zero-temperat
phase transition. We set the Boltzmann constantkB to 1.

We focus on two types of locally defined correlations a
susceptibilities:~i! coarse-grained local quantitiesCi

cg(t,tw)
and x i

cg(t,tw) and ~ii ! noise-averaged local quantitie
Ci

na(t,tw) andx i
na(t,tw).

The two-time dependence reflects the out-of-equilibriu
dynamics of these systems after the quench at timet50. tw
denotes the waiting time elapsed after preparation andt a
longer time,t>tw . We present a detailed comparison of t
2-2
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behaviors of these local nonequilibrium correlations t
have been averaged differently.

The numerical simulations were performed as follows.
study the finite-dimensional EA model we evolved a cu
~square! system with side lengthL and periodic boundary
conditions from a random initial condition using Metropo
dynamics at temperatureT. The random initial configuration
represents the result of an infinitely rapid quench from in
nite temperature performed att50. In the 3D case we con
sideredL532 and L564 and for d52 we consideredL
5128. To compute spatially coarse-grained two-time qu
tities we used a coarse-graining volume which is a cu
~square! box of linear size 2M11. A coarse-graining time
that serves to make the spin variable smooth varies f
study to study and is noted in each plot. We considered s
eral values of the external temperature that lie above
below Tc and these are indicated as necessary. The no
averaged data we present were obtained using shorter v
of the waiting time to allow for an average over many no
realizations, typically 103 samples.

When studying the SK model we evolved systems w
N5128 andN5512 spins with Monte Carlo dynamics a
T50.4 also starting from a random configuration of spi
The noise-averaged data were obtained using, approxima
103 samples.

In short, the results in this paper are organized as follo
First, we establish the dynamic scaling forms of bo

coarse-grained and noise-averaged local quantities num
cally. In particular, we test scaling forms that we propose
Sec. II.

Second, we study the local relations between no
averaged correlation and integrated response and betw
the same quantities when coarse grained.

Third, we show that the global quantities in finite-si
systems in finite dimensions and those defined on the f
connected graph show similar fluctuations as the local qu
tities in finite-dimensional models.

Fourth, we propose a relation between the study of
probability distribution of local fluctuations and the theory
dynamic random surfaces.

Fifth, we define and analyze a dynamic correlation len
that depends on two times.

Sixth, we present a way of looking at geometric propert
in spin glasses that should be relevant to future experim
with local probes. We analyze the real-space organizatio
local correlations,Ci

cg andCi
na by investigating the geomet

ric properties of the~random! surfaces given by their evalu
ation on the substrated-dimensional real space. In particula
we study the properties of clusters of spins with local cor
lation in the interval@C,C1dC# for which C is a parameter
taking values between21 and 1. Again we compare th
behavior of noise-averaged and coarse-grained quantitie
similar analysis could be applied to the random surface
local susceptibilities,x i

cg andx i
na .

Because real systems do not equilibrate on accessible
scales, spatially resolved measurements will not be sta
instead, they will still depend on the age of the system, v
much like the bulk or global measurements. In these m
surements one can monitor noise and response in amesos-
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copic region of the sample. The results of our analysis w
be of relevance to the interpretation and analysis of th
experiments. They can also be used as a source of inspira
to analyze dynamic heterogeneities in supercooled liqu
and glasses,27,31,32as we discuss in the Conclusions and P
spectives sections.

C. Summary of results

Before getting into the technical details, let us summar
our results.

In Ref. 33 we showed that, in the limit of long times,
zero mode develops in the dynamics of finite-dimensio
spin glasses. This soft mode is related to the invariance of
effective action for the slow fields~that are actually two-time
functions! under a global reparametrization of time. Thus, w
argued that the least costly spatial fluctuations should
ones that smoothly change the local time reparametrizat
In Ref. 34 we tested these ideas numerically by evalua
the local coarse-grained correlations and integrated respo
in the 3D EA model. We observed that the fluctuations
these quantities are constrained to follow the fluctuati
dissipation relation~FDR! between the global quantities as
direct consequence of the existence of the asymptotic z
mode. In this paper we show further evidence that
coarse-grained two-time correlators reflect the existence
an asymptotic zero mode in the underlying theory. In parti
lar, using the fact that the dynamics become ‘‘critical’’ in
well-chosen long-time limit, we explain why a scaling lim
of long times and large coarse-graining volumes should e
in which the distributions of fluctuations approach a sta
limit.

In disordered systems such as the 3D EA model, ano
set of local two-time quantities can be defined using a diff
ent averaging procedure. Indeed, one can work with no
averaged, as opposed to coarse-grained, two-time functi
Even if these quantities do not fluctuate in systems with
quenched disorder, they do in spin glasses and other ran
systems due to the fingerprint of disorder. One can then w
der if these quantities are also coupled to the asymptotic z
mode and whether their fluctuations are constrained in
same way as those of the coarse-grained quantities. We s
numerically that this is not the case: the noise-averaged fl
tuations behave in a rather different way.

In order to sustain further this claim, we also study t
mesoscopic fluctuations in disordered models in finite a
infinite dimensions. We show that the fluctuations in the g
bal quantities,40 which are due to the finite size of the sy
tems, behave just like the coarse-grained local quantitie
finite-dimensional models. We observed this property in
3D EA and the SK model.

We relate the study of the fluctuations in the local cor
lations ~and susceptibilities! to the study of the evolution o
random surfaces. Indeed, we propose that one can deri
‘‘phenomenological’’ effective action for the fluctuations i
the local quantities from the statistical analysis of the s
faces given by the evaluation of the two-time quantities
the d-dimensional substrate. This idea gives us a handle
describe analytically the fluctuations in a large variety
systems with slow dynamics.
2-3
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We study numerically the random surfaces describing
fluctuations in space of both the coarse-grained and n
averaged two-time local correlators. We show that noise
eraging leads to surfaces that encode the fingerprint of
disorder realization, and are static if the two timest and tw

have a fixed ratio@or if h(t)/h(tw), with a more suitable
function h(t), is kept fixed#.

The coarse-grained surfaces obtained for different pair
times (t,tw), even if the ratiot/tw @or h(t)/h(tw)] is fixed,
fluctuate and cross each other at many points as a functio
tw . This result implies, as we show, that the relative age~as
measured using the correlation value! between two sitesi
and j in the sample is not static, but fluctuates as a funct
of time. These are examples ofsorpassithat we define in this
paper, and show a clear contrast to noise-averaged l
quantities, where the relative age between all sites in
sample keeps a constant, static, relative rank.

We define atwo-time dependentcorrelation lengthj(t,tw)
using the spatial correlation of the local two-time corre
tions. We study how this correlation length grows with tim
in the glassy phase of the 3D EA model. We discuss how
ratio between the coarse-grained volume and the correla
length affects the probability distributions for the measu
quantities. In particular, we argue that when the coar
graining length is smaller than the correlation length, o
probes the spatial fluctuations controlled by the zero mo
When using coarse-graining lengths that are larger, but
of the order of the correlation length, one is measuring m
soscopic fluctuations of nearly independent finite-size s
tems. If the coarse-graining length is much larger than
correlation length the fluctuations are suppressed. We s
numerically that the qualitative features of the local and m
soscopic fluctuations are indeed very similar and we con
ture that they may have a similar origin.

Finally, we study the spatial organization of the local c
relations ~coarse grained and noise averaged!. We propose
that the analysis of the geometric properties of clusters
sites with similar values of the local two-time correlatio
can be useful to determine if one is at or below the low
critical dimension. More precisely, we claim that the geom
ric organization of the fluctuations in the 2D EA model a
different from those in the 3D case signaling the fact that
former does not have a finiteT transition. The difference is
very clear when one looks at the fractal dimension of cl
ters, df . In three dimensionsdf;2, while in two dimen-
sions,df&2. These values of the fractal dimension are qu
close to each other—however, the difference between
fractal dimension and that of the substrate space,D5d
2df , is very different. In three-dimensionsD;1 and in two
dimensionsD!1. This suggests that the level surfaces
two-dimensions lie on a much rougher underlying manifo
as we suggest from theoretical arguments in Sec. III D,
should be linked to the absence of a glass transition id
52. However, a multifractal analysis gives less clear-cut d
tinctions, suggesting that the nonequilibrium aging regime
the two-dimensional case has aspects that are very simil
the three-dimensional case.
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In the conclusions we discuss how to adapt this appro
and the picture that emerges to supercooled liquids and s
tural glasses.

II. DEFINITIONS AND DISCUSSION

In this section we define the two-time, global and loc
correlators that we study numerically in the rest of the pap
We recall some known properties of the global correlato
We then discuss possible scaling forms for the local qua
ties, as well as the implications of these scaling forms.

A. Two-time-dependent global functions

To date, analytical, numerical, and experimental studie
glassy systems have mainly focused on the global correla
and integrated response:

C~ t,tw![
1

N (
i 51

N

si~ t !si~ tw!, ~3!

x~ t,tw![
1

N (
i 51

N E
tw

t

dt8
dsi~ t !e i

dh~ t8!
U

h50

, ~4!

where h i is a ~site-dependent! magnetic field given byh i
5he i with e i561 with probability 1

2 andh its magnitude.
The field couples linearly to the spin,HJ→HJ2( isih i . The
productsi(t)e i is the ‘‘staggered local spin,’’ i.e., the projec
tion of si on the direction of the local external fieldh i . In
order to extract the linear part of the response the variatio
evaluated at zero field,h50. The integrated response is us
ally averaged over many realizations of the random field

For an infinite system that evolves out of equilibriu
these quantities are self-averaging, and thus averages
the thermal noise and disorder~if existent! are not required.
All the generic analytic arguments we shall develop assu
that the thermodynamic limit,N→`, has been taken at th
outset.~We discuss finite-size effects in Sec. VIII.!

B. Two-time dependent local functions

Quenched random interactions have a strong effect on
local properties of spin systems. For instance, Griffiths s
gularities in the free energy of random ferromagnets are
to regions in space with strong ferromagnetic couplings41

These lead to dynamic slowing down even in the disorde
phase of the random problem, below the transition tempe
ture of the pure model. It is natural to expect that hetero
neous dynamics in spin glasses arises for similar reason
these systems random exchanges can be very differen
tween one region of the sample and another: some reg
can have purely ferromagnetic interactions, others can h
purely antiferromagnetic ones, others can be frustrated.
can analyze the fingerprint of the disorder on the local
namics by choosing not to average over the random
changes.

However, heterogeneous dynamics do not arise simply
cause of quenched random couplings. Glassy systems
no explicit quenched disorder also exist in nature.25 Many
2-4
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models with spin or particle variables that capture their
havior have been proposed.42–44Even if there is no quenche
disorder in these systems, one expects to find heterogen
dynamics in which some regions evolve differently th
others.30,44

An extreme example of the latter situation occurs in f
romagnetic domain growth.45 At any finite time with respect
to the size of the system, a coarsening system is heter
neous. Observed on a very short time window, spins on
terfaces behave very differently from spins in the bulk
domains. However, there is nothing special about the iden
of these spins. Spins that belong to an interface at one
can later become part of a domain and even later be pa
another wall. Importantly, no local region~not even of the
minimum linear size given by the lattice spacing! can be
considered to be equilibrated while coarsening is tak
place.

If one wishes to analyze the local fluctuations in the d
namics of spin systems, two natural functions to monitor
the two-time local correlations and responses. These ca
made continuous~in Ising spin systems! through different
averaging procedures that highlight different properties
the systems. Each definition has a different theoretical m
vation.

First, considerspatially coarse-grained functions34

Ci
cg~ t,tw![

1

V (
j PVi

s̄j~ t !s̄j~ tw!, ~5!

x i
cg~ t,tw![

1

V (
j PVi

E
tw

t

dt8
d s̄j~ t !e j

dh~ t8!
U

h50

, ~6!

whereVi is a coarse-graining region centered on sitei with
volumeV, and the overline stands for a coarse graining o
a short time windowt t (t tw

) around t (tw), t t!t (t tw
!tw). ~Note that we use the same coarse-graining volume
all sites.! Only one realization of the thermal noise is us
here, which mimics nature. This definition is natural for t
study of finite-dimensional models in which there is a noti
of space and neighborhood. Indeed, a coarse-graining pr
dure of this type is usually used to derive a continuum fie
theoretical description of a problem originally defined on
lattice.46 Moreover, it is of use if one wants to compare t
behaviors of finite-dimensional models with and without d
order since it is nontrivial in both cases. This quantity is a
relevant to compare with experiments in which mesosco
probes are limited to testing the behavior of regions with
minimum size that involve a large~though mesoscopic! num-
ber of spins.

Second, one can definesingle-site noise-average
functions:35–39,47

Ci
na~ t,tw![^s̄i~ t !s̄i~ tw!&, ~7!

x i
na~ t,tw![E

tw

t

dt8
d^s̄i~ t !e i&

dh~ t8!
U

h50

. ~8!
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Here and in what follows the angular brackets represent
average over thermal histories. These functions will app
for example, in a dynamic cavity method applied to a dis
dered model.48 This definition is particularly useful for
mean-field ~fully connected and dilute! systems with
quenched disorder for which there is no notion of neighb
hood. However, it completely erases the inherent hetero
neity of the dynamics in a nondisordered system such
ferromagnetic domain growth. Moreover, a single-spin e
perimental measurement is unlikely, and usually a region
volving a large number of spins is probed, implying an e
fective coarse graining.

Neither of the two definitions above include, in the ca
of random systems, an average over disorder realizati
This may allow us to detect regions that have special beh
ior due to the random interactions. We insist on the fact t
the coarse-grained definition still contains noise-induc
fluctuations.

C. Correlation scales

The relaxation of glassy systems may take place on m
different time scales. A precise definition of ‘‘correlatio
scales’’ was given in Ref. 7. Assuming that a chosen tw
time correlationC is a monotonic function of both timest
and tw , in the long waiting-time limit, one can relate th
values it takes at any three times using a time-independ
function. More precisely,C(t1 ,t3)5 f @C(t1 ,t2),C(t2 ,t3)#
for t1>t2>t3 when all three times are very long.

The correlation scales are defined as follows. Within
correlation scale, f (x,y)521@(x)(y)# and C(t1 ,t2)
521@h(t1)/h(t2)# with h(t) a monotonic function of time
and (x) another function. Between correlation scales t
function f is ‘‘ultrametric,’’ f (x,y)5min(x,y).

To explain this definition with an example, the correlatio
function C(t,tw)5(12qEA)exp@2(t2tw)/t#1qEA(tw /t) de-
cays in two scales that are separated at the valueC5qEA that
one sees as a plateau inC that develops at longtw in a plot
againstt2tw on a logarithmic scale. The first scale is st
tionary and characterized byhst(t)5exp(2t/t), the second
one ages and is characterized byhag(t)5t.

The structure of scales can be different for different co
elators. The local correlations defined in Eq.~5! @or in Eq.
~7!# are different observables labeled byi. Their decay
should follow these generic rules whenever one can ass
that they are monotonic.

D. Behavior of global two-time quantities

In the long waiting-time limit, taken after the thermody
namic limit, one can prove analytically that a sharp sepa
tion of time scales characterizes the dynamics of mean-fi
glassy models.7,9,49–51A similar separation of time scales ha
been observed numerically52–55and experimentally21 in a va-
riety of glassy systems. In short, one finds the following56

~i! A fast stationary evolution at short time differences
which the correlation approaches a plateau defined as
Edwards-Anderson parameter
2-5
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qEA[ lim
t2tw→`

Cst~ t2tw![ lim
t2tw→`

lim
tw→`

C~ t,tw! ~9!

with the integrated response linked to the correlation by
fluctuation-dissipation theorem~FDT!

xST~ t2tw![ lim
tw→`

x~ t,tw!5
1

T
@12Cst~ t2tw!#, ~10!

and, in particular,

lim
t2tw→`

lim
tw→`

x~ t,tw!5
1

T
~12qEA!. ~11!

This regime is also called time-translational invariant~TTI!.
In general, the decay in this regime is not exponential~cf. the
example given in Sec. II C!.

~ii ! A slow aging relaxation for longer time differences

C~ t,tw!ÞC~ t2tw!,

x~ t,tw!Þx~ t2tw!, ~12!

when the value of the global correlation drops belowqEA
@and the integrated response goes above (12qEA)/T].

The number of scales that appear in this second de
depends on the model considered. For the fully connectep
spin model a single correlation scale has been found be
qEA in which the global correlation scales with a power la
hag(t)5t.9,57 A sequenceof global-correlation scales exist
in the analytic solution to the SK model.7,49 For a manifold
moving in an infinite dimensional embedding space with
short-ranged random potential one finds that the Fou
modes of the correlation Cr(t,tw)5*Vddr 8@^fW (rW

1rW8,t)fW (rW8,tw)&# decay on two scales that are separated
k-dependent Edwards-Anderson value,qEA

k .50 The functions
hst,ag that characterize the two scales are identical for
wave vectors. This has also been found in molecu
dynamic simulations of Lennard-Jones mixtures.54,55 If the
manifold feels a long-ranged random potential50,51 the k
modes decay in a sequence of scales. It is not clear yet if
structure exists in any non-mean-field problem. In particu
the 3D EA model behaves more like a model with only tw
global-correlation scales52 but this may be due to the shor
ness of the simulation times. In more complex problems
could even find that different correlators decay on tota
different time scales.

In the second time regime the FDT is not satisfied. Ho
ever, in many glassy models evolving out of equilibrium t
global correlation@Eq. ~3!# and the global integrated re
sponse@Eq. ~4!# are linked in a rather simple manner.7 In-
deed, assuming that the global correlation decays monot
cally as a function oft, one can invert this function and writ
t5 f̃ g

21
„C(t,tw),tw… and

x~ t,tw!5x~ f̃ g
21

„C~ t,tw!,tw…,tw!, ~13!

implying
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lim
tw→`C(t,tw)5C

x~ t,tw!5x̃~C!, ~14!

whereC is held fixed as we take the limit which we assum
exists. We call Eq.~14! a FDR. In equilibriumx̃(C)5(1
2C)/T holds for all values ofC. Out of equilibrium one
finds a different relation with a kink: whenC.qEA the equi-
librium result holds,x̃(C)5(12C)/T; whenC,qEA a non-
trivial functional form x̃(C) is found and its particular form
depends on the model or system considered. For disord
spin models of the mean-field type two types of curves h
been found.

~i! For p-spin models it is a broken line with two differen
slopes, one being the negative of the inverse temperatur
the bath forCP@qEA,1#; the other has a different slope an
spans the intervalCP@0,qEA#.9,57

~ii ! For the SK model the construction also has a break
point at qEA separating a straight line with slope minus t
inverse temperature of the bath forCP@qEA,1#, and a curved
piece forCP@0,qEA#.7

In the case of the random manifold the form of the mo
fications of FDT depends on the range of correlation of
random potential.50 One finds a linear relation between th
Fourier modes of the space-dependent correlator and sus
tibility if it is short ranged and a nonlinear form if it is long
ranged. Moreover, one finds that all modes behave es
tially in the same way in both cases. We shall discuss
issue in Sec. II F.

Several simulations support the fact that the FDR of g
bal quantities in models for structural glasses, such
Lennard-Jones mixtures, behave like a manifold in a sh
range correlated random potential, for which the seco
slope does not vanish and is equal for all the wave vec
k.54,55 In the case of the 3D EA model the numerical resu
were interpreted as supporting the existence of a curve w
nonconstant slope belowqEA .58 Similar conclusions were
drawn from the experimental work presented in Ref. 59. T
numerical and experimental data are still rather far from
asymptotic time limit, and, in our opinion, it is quite difficu
to decide from the present data ifx̃(C) is indeed curved or a
straight line belowqEA .

E. Behavior of local correlations

In this section we denote byCi a generic local correlation
that has been coarse grained, noise averaged, or smoo
with any other prescription. We first discuss the possible ti
dependences of individual correlations at a very gene
level. Later we distinguish between coarse-grained a
noise-averaged values.

1. Local Edwards-Anderson parameter

Similarly to our discussion of the decay of the glob
correlation, see Eq.~9!, one can define alocal Edwards-
Anderson parameter as the value of the local correla
separating fast and slow decays,

qEA
i [ lim

t2tw→`

lim
tw→`

Ci~ t,tw!. ~15!
2-6
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SPATIALLY HETEROGENEOUS AGES IN GLASSY SYSTEMS PHYSICAL REVIEW B68, 134442 ~2003!
The local correlations should decay quickly towardsqEA
i and

then slowly below this value. If the structure of the glob
correlation is preserved at the local level, the first step of
relaxation should be stationary whilst the second one co
be waiting-time dependent.

Site-to-site fluctuations inqEA
i are possible. For som

spins the local Edwards-Anderson parameter may van
i.e., qEA

i 50, and they may only show the first, fast deca
These are the fast spins identified in Refs. 36–38 in pu
noise averaged local correlations. However, one expects
fluctuations inqEA

i to be smoothed by spatial coarse graini
and to disappear if a sufficiently large coarse-graining v
umeV is used.34

2. Slow local relaxation

What about the decay of the local correlations below
plateau atqEA

i ? Any monotonically decaying two-time corre
lation within a correlation scale behaves as7

Ci~ t,tw!5 f i S hi~ t !

hi~ tw! D . ~16!

There are two special cases that deserve special mention
the one hand, the scaling argumentshi(t) could be site inde-
pendent,hi(t)5h(t), and thus

Ci~ t,tw!5 f i S h~ t !

h~ tw! D . ~17!

On the other hand, the external functionf i could be indepen-
dent of the site indexi and the scaling could take the form

Ci~ t,tw!5 f S hi~ t !

hi~ tw! D . ~18!

This allows several combinations. The main ones to be
cussed below are:~i! the scaling in Eq.~17! holds for all sites
in the sample,~ii ! the scaling in Eq.~18! holds everywhere in
the sample. Evidently, one can also have more complica
behaviors:~iii ! parts of the sample scale as in Eq.~17!, other
parts scale as in Eq.~18!, and still other parts do not satisf
either of the special forms but are described by the m
general form~16!. Note that the noise-averaged and coar
grained local correlations do not necessarily scale in
same way.

We first explore the consequences of having the beha
in Eq. ~17! for all sites in the sample. For simplicity, let u
first assume that the global correlation decays in a sin
correlation scale once its value drops below the glo
Edwards-Anderson parameter,

C~ t,tw!5 f gS hg~ t !

hg~ tw! D , C,qEA . ~19!

This is the behavior of fully connectedp-spin models with
p>3.9 One can expect it to hold in dilute ferromagneticp
53 spin models38 and, surprisingly, it is also suggested b
numerical simulations in the 3D EA model, at least for t
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waiting and total times explored.52 If the hypothesis in Eq.
~19! holds, theh(t) in Eq. ~17! must be identical tohg(t),
and one can write

Ci~ t,tw!5 f i~ f g
21

„C~ t,tw!…!5 f̃ i„C~ t,tw!…. ~20!

For all pairs of times (t,tw) leading to a fixed value of the
global correlation,C(t,tw)5C, one has

Ci~ t,tw!5 f̃ i~C!. ~21!

All local correlations are then site-dependent functions of
global correlation. Following the line of thought in Ref.
one can extend this argument to the case with a global
relation that decays over many time scales. If one assu
that the global correlation is monotonic, one can writeCi as
a function of C(t,tw) and tw using t5 f̃ g

21
„C(t,tw),tw…. If

one further assumes that in the limittw→` with C(t,tw)
5C fixed eachlocal correlation approaches a limit, then

lim
tw→`,C(t,tw)5C

Ci~ t,tw!5 f̃ i~C!. ~22!

This means thatwithin eachcorrelation scaleall local corre-
lations are locked into following the scaling of the glob
one.

Replacing the local space indexi by a wave vectork, this
is exactly the behavior of a finite-dimensional manifold e
bedded in an infinite-dimensional space.50 When the random
potential is short-range correlated, the dynamics are such
there are only two correlation scales in the problem, a T
one satisfying FDT and an aging one in which a
k-dependent correlators decay belowqEA

k as in Eq.~17!. In-
stead, when the random potential is of long-range type,
correlations have a TTI scale that ends at ak-dependent
Edwards-Anderson plateau,qEA

k , and a subsequent deca
that takes place in a sequence of scales. All modes are lo
in the sense that for all times one can writeCk5 f k(C0)
where the argument can be any chosen mode, for insta
the k50 one. The former behavior was also found nume
cally in thek modes of the incoherent scattering function
a Lennard-Jones mixture where there is only one correla
scale below thek-dependentqEA

k .54 Recently, it was also
proposed for all site-dependent correlators in the context
ferromagnetic model on a random graph in Ref. 38 and
the 3D EA model in Ref. 47. In these cases the correlati
and susceptibilities were averaged over the noise with
spatial coarse graining.

Instead, if the hypothesis in Eq.~18! holds, there are
many open possibilities. For instance, different sites c
evolve on totally different time scales. A simple examp
illustrating this point is given by two sitesi and j that decay
below their Edwards-Anderson values to zero each in
single scale but that are different from one anoth
Ci(t,tw)5qEA

i (ln tw)/(ln t) and Cj (t,tw)5qEA
j tw /t. In this

case, sitei decays on a slower scale than sitej. There is also
the possibility that, while being in the same correlation sca
the value of the correlations at two sitesi , j may cross each
other as a function of time. Let us be more explicit; consid
two sites with local scaling functions
2-7
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hi~ t !5h~ t !1dhi~ t !, ~23!

hj~ t !5h~ t !1dhj~ t !

with udhi , j (t)u!h(t), so that the sites evolve within th
same scale.@Note that bothhi(t) and hj (t) are monotonic
functions.# In this case, one can expand the expression in
~18! and write

Ci~ t,tw!' f F h~ t !

h~ tw! S 11
dhi~ t !

h~ t !
2

dhi~ tw!

h~ tw! D G
' f S h~ t !

h~ tw! D1 f 8S h~ t !

h~ tw! D h~ t !

h~ tw! S dhi~ t !

h~ t !
2

dhi~ tw!

h~ tw! D ,

~24!

and similarly forCj (t,tw). At any pair of times (t,tw), the
difference between the two local correlations is

Ci2Cj}
dhi~ t !2dhj~ t !

h~ t !
2

dhi~ tw!2dhj~ tw!

h~ tw!
. ~25!

In general, the right-hand-side~rhs! of Eq. ~25! can change
sign as a function of the two timest and tw , allowing for
sorpassi ~passing events! between different sites. An ex
ample of functionshi and hj for which thesesorpassiare
realized is shown in Fig. 1.

Finally, one could also find cases in whichdhi , j (t) are
large @ udhi , j (t)u!h(t) is not satisfied# and thesorpassican
be such thatCi andCj move across correlation scales. The
variations are quite dramatic. One could expect them to
penalized in such a way that they appear less frequently
the ones in whichudhi , j (t)u!h(t). We shall return to this
issue in Sec. III.

FIG. 1. ~Color online! Example of scaling functionshi , j (t) vs
h(t). Because the functionshi , j (t) cross, there are pairs of time
(t,tw) for which Ci.Cj , but others for whichCi,Cj , even
though hi , j (t) only fluctuate slightly around the scaling functio
h(t).
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F. Behavior of local responses and fluctuation-
dissipation relation

Let us define a generalizedlocal FDR via the limit

lim
tw→`Ci (t,tw)5Ci

x i~ t,tw!5x̃ i~Ci !. ~26!

This limit exists whenever the local correlations are not m
tivalued, i.e., if they are monotonic functions oft for fixed
tw . Indeed, in this case one can invert for the time

t5 f̃ 21
„Ci~ t,tw!,tw…, ~27!

and write

x i~ t,tw!5x i~ f̃ 21
„Ci~ t,tw!,tw…,tw!. ~28!

Taking the limit tw→` while keepingCi(t,tw) fixed to Ci
one recovers Eq.~26!.

The question now arises as to whether the fluctuation
Ci andx i are independent or whether they are constraine
satisfy certain relations.

Based on thermometric arguments,60 we shall associate
the variation ofx̃ i with respect toCi to a local effective
temperature. We would also like to know if the values of t
local effective temperatures are constrained or can fre
fluctuate.

In the rest of this subsection we discuss different s
narios for the behavior of the joint probability distributio
~PDF! r(Ci ,x i) computed at two fixed timest and tw . We
also discuss the behavior of the fluctuations in the local
fective temperature. In order to illustrate different possib
ties we present several plots that sketch the following c
struction. Given a pair of timestw<t, we depict theN points
@Ci(t,tw),Tx i(t,tw)# with arrows that represent the velocit
of the points@i.e., the rate at which the (Ci ,Tx i) positions
change as one changest], and are located at their position i
the C-Tx plane. Note that all these points are evaluatedat
the samepair of times (t,tw). For the sake of comparison, i
the same plots we also draw the parametric plot for the g
bal Tx̃(C) constructed as usual:7 for a fixedtw we follow the
evolution of the pair (C,Tx) as timet evolves fromt5tw to
t→`.

In the figures showing the distributions of (Ci ,x i) pairs
we scale the y-axis by temperature to work with dimensio
less variables. This is important to compare the extent
fluctuations in the two directions.

1. Similar times

Let us first discuss the case in which the two timest and
tw chosen to evaluate the local correlation and integra
linear response are close to each other, in such a way tha
global correlation between them lies above the Edwar
Anderson parameter. In this case the global correlator and
global linear integrated response are stationary and relate
the FDT. In this regime of times we also expect the loc
quantities to be linked by the FDT.

When studying noise-averaged two-time quantities o
can actually use the bound derived in Ref. 61 to justify t
2-8
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claim. For coarse-grained quantities we do not have an a
lytic argument to use but we find this expectation very r
sonable. Note that the arguments put forward in Sec. III
not apply to these short time differences since they hold
the slowly varying part of the two-time functions only. W
have verified numerically that the fluctuations of the loc
coarse-grained correlations and responses are concen
rather spherically around the global valuex5(12C)/T
whenC.qEA .34

2. Far away times: No constraint

We now choose two timest and tw such that the globa
correlation taken between them is less thanqEA .

The simplest possibility is that the fluctuations inCi and
x i are independent. If these are not specially constrained
pairs (Ci ,Tx i) can be scattered almost everywhere on
C-Tx plane.

The scaling in Eq.~16! means that different sites migh
evolve on different time scales. This could happen, for
ample, ifhi(t)5t andhj (t)5 ln(t/t0). Hence, one can expec
each site to have its own effective temperature,

2b i
eff~Ci ![

dx̃ i~Ci !

dCi
. ~29!

This situation is sketched in Fig. 2.

3. Far away times: Locked scales

Naturally, one expects that the fluctuations in the lo
correlations and integrated linear responses at far away t
are not completely independent and that they are constra

FIG. 2. ~Color online! Sketch of the local FDR between inte
grated responses and correlations on all sites, at a fixed pair of t
(t,tw) such that the global correlation goes belowqEA . In this case
neither the positions of the pairs (Ci ,Tx i) nor the velocities of the
points, i.e., the direction of the arrows that are associated with
effective temperatures, are constrained. This case represents

~16! and ~29!. The full line sketches the parametric plotx̃(C) for
the global quantities in a model with two~straight line belowqEA)
and a model with a sequence of global correlation scales~curve
below qEA). The dashed line is the continuation of the secti
where the FDT holds. The black dots indicate the location of
averaged values for the susceptibility and correlation,xAV

51/N( ix i andCAV51/N( iCi at the timest andtw , i.e., the global
values.
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to satisfy certain relations. Here we explore the con
quences of the scaling expressed in Eq.~22! for all sites in
the sample. Hence,

lim
tw→`C(t,tw)5C

x i~ t,tw!5x̃ i„ f̃ i~C!…5x̄ i~C! ~30!

with C the chosen value of the global correlation. Note th
there is no constraint on the values ofx̄ i(C) and Ci

5 f̃ i(C). Thus, the pairs (Ci ,Tx i) can be scattered all ove
the plane.

However, since all sites are locked to evolve in the sa
time scale as the global correlation for each choice of tim
(t,tw), one expects

2b i
eff~Ci ![

dx̃ i~Ci !

dCi
52beff~C!, ~31!

based on the expectation of having partial equilibration
tween observables in the same time scales.60 Thus, if the
scaling in Eq.~22! holds for all sites in the sample, ther
should be asite-independenteffective temperature.

The content of Eqs.~20! and ~31! is illustrated in Figs. 3
and 4 for a system with two correlation scales and a sys
with a continuous sequence of correlation scales, resp
tively.

Note that in this time regime, at longer timest the points
will also be scattered on the plane but the average of
correlation will take a smaller value. Since this determin
the velocity of the points~and their effective temperature!,
the direction of the arrows will be different. We can say th
there is a nonvanishing acceleration.

es

e
qs.

e

FIG. 3. ~Color online! Fluctuations in a system with only two
correlation scales defined using the global correlator. The
shows fluctuations in the local Edwards-Anderson parameter,qEA

i .
(t,tw) are such that the global correlation goes belowqEA and the
pairs (Ci ,Tx i) are not constrained to lie close to the global curv

x̃(C), indicated with a full broken line. The effective temperature
the same for all sites, as shown by the fact that all arrows
parallel to the second piece of the global curve. Consequently, o
a site enters a ‘‘track’’ after leavingqEA

i ~indicated with straight
lines drawn with dots!, it will follow it as time t evolves. The
dashed line is the continuation of the part where the FDT holds.
black dot indicates the location of the values for the susceptib
and correlation averaged over the distribution.
2-9
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Finally, we reiterate that the only reason for the scatte
(Ci ,Tx i) values is thei dependence of the external functio
f̃ i and x̄ i .

4. Far away times: Fluctuations in time scales

As opposed to the case just discussed, the scaling in
~18! means that different sites might evolve on different tim
scales@if udhi u@h(t)] and hence have their own effectiv
temperature.

As we shall argue in Sec. III, under certain circumstan
the local responses and fluctuations are constrained to fo
the global curve, i.e.,

x̃ i~Ci !5x̃~Ci ! ~32!

with C and x̃(C) defined in Eqs.~3! and ~14!, respectively.
Then we have

2b i
eff~Ci ![

dx̃ i~Ci !

dCi
5

dx̃~Ci !

dCi
5

dx̃~C!

dC
U

C5Ci

. ~33!

If there are only two time scales for the decay of t
global correlation and, below the global Edwards-Anders
parameter,x̃(C) is linearly dependent onC, this equation
yields

b i
eff5beff, ~34!

for all sites, and values ofCi,qEA .
If, on the contrary, the global correlation decays in a

quence of scales andx̃(C) is not a linear function ofC, one
has fluctuations in the local effective temperature due to
fluctuations inCi .

This behavior is sketched in Figs. 5 and 6 for a syst
with two global correlation scales and a system with a
quence of global correlation scales, respectively. In Ref.
we showed that the coarse-grained two-time quantities in

FIG. 4. ~Color online! Fluctuations in a system with a sequen
of correlation scales defined using the global correlator. The po
are scattered on the plane with no constraint on their positions.
local Edwards-Anderson parameter fluctuates. The velocities
which the points move are all the same. Their positions are
constrained but their velocity moduli and directions are all identic
This is given by the slope at the value of the global correlation
the chosen times (t,tw), indicated with a black dot on the globa
line.
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3D EA model behave as in Figs. 5 or 6. We expect that
coarse-grained two-time correlators of structural glasses
show a behavior as in Fig. 5.

III. CONSTRAINTS ON THE LOCAL FLUCTUATIONS

We recently studied the symmetry properties of the d
namic action for the aging dynamics of finite,d-dimensional
spin glasses.33 Using the Schwinger-Keldysh functional for
malism we derived a disorder-averaged dynamic genera
functional that is a path integral over local two-time fun
tions, Qi

ab(t,tw), with a,b50,1 labeling the Keldysh com
ponents~see details below!. This generating functional be
comes the classical one, derived in Ref. 62, when\→0. This
treatment allowed us to discuss the classical and quan

ts
he
th
ot
l.
t

FIG. 5. ~Color online! Fluctuations in a system with a singl
correlation scale below the Edwards-Anderson plateau. The c
straint on the location of the pairs (Ci ,Tx i) implies that there are
no fluctuations of the local Edwards-Anderson parameter and
all pairs are concentrated along the global straight line with li
dispersion perpendicular to it. The arrows have the direction of

second slope in the globalx̃(C) curve due to the result in Eq.~34!.
As in previous figures, the dashed line continues the FDT line
the black dot indicates the location of the values for the susce
bility and correlation averaged over the distribution.

FIG. 6. ~Color online! This is the possibility expressed in Eq
~32! and ~33! for a system with a sequence of correlation sca
below the globalqEA . All point positions are constrained to be ne

the globalx̃(C) curve for C,qEA @Eq. ~32!#, and their velocities

are forced to be parallel to the globalx̃(C) curve forC,qEA @Eq.
~33!#. The velocities fluctuate from site to site, but since they
determined by the global curve, they are identical for all sites w
the same value of the local correlationCi . The dashed line and the
black dot are as in previous figures.
2-10



ow
o
t
u
a
a

ne
th
le

ta

us

o
.
al

se

in
e
ll

ba

o-

-
it is
ions
oint

x-
the

ay,
me-

the

me
the

tor,
the
e

ng

er-
a-

e.
der
bal
he

is

SPATIALLY HETEROGENEOUS AGES IN GLASSY SYSTEMS PHYSICAL REVIEW B68, 134442 ~2003!
problems simultaneously. The aim of that work was to sh
that the slow part of the action is a fixed point of a group
time reparametrizations (RpG) and to build upon this resul
an argument to constrain how the local fluctuations sho
behave in time and space. Here we recall this argument
summarize its main consequences. Indeed, one of the m
results arising from this analysis is that the coarse-grai
two-time quantities should behave as in Fig. 5 or Fig. 6 if
global correlations decay on one or a sequence of sca
respectively.

A. Time-reparametrization transformations

The local two-time fieldsQi
ab(t,tw) are related to the

fluctuating local physical two-time functions. The expec
tion values^^Qi

ab(t,tw)&& ~we use^^•••&& to denote expec-
tation with respect to theQ actionS@Q#) give thedisorder
and thermal averagedlocal correlations and instantaneo
responses:

^^Qi
00~ t,tw!&&5^^Qi

K~ t,tw!&&

5(
j

Ki j @Cj
na~ t,tw!#

5(
j

Ki j @^sj~ t !sj~ tw!&#, ~35!

^^Qi
01~ t,tw!&&5^^Qi

R~ t,tw!&&

5(
j

Ki j @Rj
na~ t,tw!#5(

j
Ki j F ^dsj~ t !&

dh j~ tw!
Uh50G . ~36!

The connectivity matrixKi j [@Ji j
2 #. For example, for the

Edwards-Anderson model with Gaussian distributed dis
der, Ki j 5J2 for nearest neighborsi , j , and zero otherwise
Notice that thê ^Qi

ab&& are already an average over a sm
region around sitei ~because of theKi j ) even before coarse
graining. There are two other components of the 232 matrix
Qi : Qi

10(t,tw)5Qi
A(t,tw) is related to the advanced respon

and the remaining two-time functionQi
11(t,tw)5Qi

D(t,tw) is
related to a correlator whose average^^Qi

D(t,tw)&& vanishes
for all causal problems. The two-time fieldsQi

ab(t,tw) in the
action are fluctuating quantities.

We defined a time-reparametrization transformationt
→h(t) that acts on the fluctuating fieldsQi

ab(t,tw) as33,49

Q̂i
ab~ t,tw![S dh~ t !

dt D D
A

QiS dh~ tw!

dtw
D D

R

Qi

Qi
ab
„h~ t !,h~ tw!…,

~37!

where DA
Qi and DR

Qi are the advanced and retarded scal
dimensions of the fieldQi under the rescaling of the tim
coordinates.49 These transformations generalize the we
known ones for the expected values of the glo
Q’s5–7,51,62–65to the local and fluctuating case, withh(t) a
differentiable function. This choice of transformation is m
tivated as follows.
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Since the local fieldsQi are related to the local correla
tion, linear response, and causality breaking correlator,
natural to associate with them the same scaling dimens
that correspond to the global counterparts of these two-p
functions. The appearance of an~approximate! time-
reparametrization invariance of the slow part of the rela
ation was noticed long ago in the asymptotic solution of
dynamics of mean-field models.5–7,51,62–65Indeed, when one
studies the effective dynamic equations for the slow dec
one drops the time-derivatives and approximates the ti
integrals. These approximations can be justified because
neglected terms are irrelevant in the RpG sense.49 After ap-
plying these approximations the resulting equations beco
invariant under time-reparametrizations that transform
global correlator and linear response according to

Ĉ~ t,tw!5C„h~ t !,h~ tw!…, ~38!

R̂~ t,tw!5
dh~ tw!

dtw
R„h~ t !,h~ tw!…u~ t2tw!, ~39!

for any differentiable and monotonic functionh(t).66 Note
that once one proposes this transformation of the correla
the transformation of the linear response is forced to take
form in Eq. ~39! if one wishes to preserve their link via th
FDT.

Extending these definitions to the local and fluctuati
fields Qi

ab we propose

~D
A

Qi
K

,D
R

Qi
K

!5~0,0!, ~40!

~D
A

Qi
R

,D
R

Qi
R

!5~0,1!, ~41!

~D
A

Qi
A

,D
R

Qi
A

!5~1,0!, ~42!

~D
A

Qi
D

,D
R

Qi
D

!5~1,1!. ~43!

This explains the choice of indices 0,1 for the Schwing
Keldysh components, which conveniently label both the m
trix components and scaling dimensions at the same tim

Note that all sites are transformed in the same way un
the reparametrization of time just defined. This is a glo
transformation that leaves invariant any local FDR of t
form

E
tw

t

dt8Qi
01~ t,t8!5 f „Qi

00~ t,tw!…. ~44!

This relation is a ‘‘constant of motion’’ with respect to th
symmetry. Explicitly,

E
tw

t

dt8Q̂i
01~ t,t8!5E

tw

t

dt8S dh~ t8!

dt8
D Qi

01~ t,t8!

5E
hw

h

dh8Qi
01~h,h8!5 f „Qi

00~h,hw!…

5 f „Q̂i
00~ t,tw!…. ~45!
2-11
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These transformations imply that the physical noise a
disorder averaged saddle-point values transform as expe

@Ci
na~ t,tw!#→@Ci

na
„h~ t !,h~ tw!…#, ~46!

@x i
na~ t,tw!#→@x i

na
„h~ t !,h~ tw!…#, ~47!

and the FDR in Eq.~26! is respected.

B. Invariance of the action

In Ref. 33 we studied the symmetries of the actionS@Q#.
We showed that the long-time limit of the effective Landa
Ginzburg aging action for the two-point functionsQi

ab(t,tw)
is a fixed point of the group of time reparametrizatio
(RpG). By this we mean that, after separating the fie
Qi

ab(t,tw)5Qi
ab

fast(t,tw)1Qi
ab

slow(t,tw), and then integrat-
ing out the fast part of the fields, all terms in the effecti
slow action are invariant under a reparametrization of tim
t→h(t), that transforms the fields as in Eq.~37!. In deriving
the effective action for the slow contributionQi

ab
slow(t,tw),

we assumed that there is alocal separation of time scales
The only other ingredient in the proof was that the syst
must be causal.

The approach to the fixed point is asymptotic, and th
will be corrections to scaling at finite times. In particular, t
kinetic contribution to the effective action is irrelevant
long times. However, irrelevant as it is at long times, th
term acts as a~time-decaying! symmetry breaking field tha
selects a particular reparametrization.

The importance of what we have shown is that it holds
infinite and short-range models alike, and at the level of
action, not just the equations of motion. Moreover, it su
gests an approach to study spatial fluctuations of aging
namics, as we discuss below.

C. Implications of RpG invariance: Connection
with a sigma model

In view of this approximate~asymptotic! symmetry we
constructed an argument that allowed us to predict how
local fluctuations of the disordered averaged theory sho
behave. In this section we explain in more detail the ar
ments sketched in Refs. 33 and 34.

1. Parallel with the O„N… model

To better explain the argument, it is useful to explore
analogy with the static, coarse-grained,O(N) theory of mag-
nets ind dimensions:

H5E ddr $@¹W •mW ~rW !#21HW •mW ~rW !1V~mW !%, ~48!

where mW (rW) is a continuous N-dimensional variable,mW (rW)
5@m1(rW),m2(rW), . . . ,mN(rW)#, that represents the local mag
netization.V(mW ) is a potential energy with the form of
Mexican hat.HW is an external magnetic field. A particula
case of this model is the well-known 3D Heisenberg fer
magnet obtained whenN53 andd53.

The parallel between the two models is as follows.
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~1! Fields. The two-time fieldsQi
ab(t,tw), once coarse

grained over a volumeV centered aroundrW, play the role of

the static magnetizationmW (rW).

~2! Symmetry. When HW 50 the energy function of the
magnetic problem is invariant under a global rotation of t

magnetization,ma(rW)5Rabmb(rW) @Rab(rW)5Rab, for all rW].

The potentialV(mW ) has a zero mode along the bottom of t
Mexican hat potential.

In the dynamic problem, for longer and longer waitin
times, the symmetry breaking terms become less and
important and the action progressively acquires a glo
symmetry~a zero mode develops!.

~3! Spontaneous symmetry breaking. In the absence of a
pinning field, the ferromagnetic model spontaneou

chooses a direction of the vectormW everywhere in real space

mW (rW)5mW 0 in the broken symmetry phase.
In the RpG invariant asymptotic regime, the minima o

the dynamic action satisfy the global reparametrization sy
metry. A given direction in the minima manifold is describe
by one uniform time-reparametrization everywhere in spa

h(rW,t)5h(t),
~4! Explicit symmetry breaking. A nonzero magnetic field

HW breaks the symmetry explicitly by tilting the Mexican h
potential. It forces the magnetizationmW to point in its direc-
tion in the N-dimensional space everywhere in the re
d-dimensional space.

RpG irrelevant terms, which vanish asymptotically, pla
the role of~time-decaying! symmetry-breaking fields that se
lect a particular time reparametrization. The particular sc
ing function h(t) chosen by the system is determined
matching the fast and the slow dynamics. It depends on s
eral details—the existence of external forcing, the nature
the microscopic interactions, etc. In other words, the f
modes which are absent in the slow dynamics act as sym
try breaking fields for the slow modes.

~5! Fluctuations: These correspond to smooth variatio
in the magnetization as a function of position,mW (rW)5mW 0

1dmW (rW). There are two types of fluctuations, longitudin
and transverse. The former change the length of the ma
tization vector,umW (rW)u; these move off the saddle point man
fold of potential minima, and are thus massive excitatio
The latter change direction only,mW 0•dmW (rW)50; these re-
main in the potential minima manifold, and are massless
citations. The transverse fluctuations, which correspond
smoothly spatially varying rotations of the magnetizati
vector, are therefore the most energetically favored. Th
are the spin waves or Goldstone modes in theO(N) model.

The equivalent of the transverse modes for the dynamiQ
theory are smooth spatially varying time reparametrizatio
h(rW,t)5h(t)1dh(rW,t). Uniform or global reparametrization
is the symmetry of the model; the smooth spatially fluctu
ing dh(rW,t) are excitations that cost the lowest action, or t
Goldstone modes of theQ action.

What controls the distance scale on which the fluctuati
can vary? The first term in the ferromagnetic model in E
2-12
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FIG. 7. ~a! Soft modes in the Heisenberg magnet.N-dimensional sphere with radiusumW o(rW)u centered at the spatial pointrW. The
longitudinal and transverse directions for the fluctuations are indicated with arrows.~b! Soft modes in the spatial fluctuations during agin

The full line represents the globalx̃(C) curve in a model with a sequence of correlation scales belowqEA . The vertical dashed line show
the value ofqEA separating the slow stationary decay~TTI! from the slow aging regime. The directions for longitudinal and transve
fluctuations as explained in the text are indicated with arrows.
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~48! restricts the magnitude of the variation of the directi
of mW . For the second model, one expects that a similar s
ness will be generated once it is coarse grained, mak
sharp variations indh(rW,t) difficult to achieve.

The longitudinal fluctuations in the ferromagnet, those
which the modulus of the magnetization vector changesm
5m01dm, cost more energy due to the Mexican hat pote
tial and hence are less favorable. Similarly, in the dynam
problem the fluctuations in which the ‘‘external form’’@for
example, imagine the functionf in Eq. ~18! varying with
position# of the coarse-grained two-time functions chang
are less favorable.

2. Spatial fluctuations of aging dynamics

The penalties for longitudinal fluctuations, and the s
transverse fluctuations corresponding to local reparamet
tions t→h(rW,t), led us to propose that thecoarse-grained
local correlations in the aging regimescale as in Eq.~18!. In
the C-Tx plane, these soft modes correspond to displa
ments along the globalx̃(C) curve; this is shown in Fig. 7
Displacements that move points off thex̃(C) curve are the
longitudinal modes, which do not correspond to smoot
varying time reparametrizations.

A natural consequence of this is the prediction that
fluctuations in thecoarse-grained localFDR should be such
that the distribution of pointsx i

cg(Ci
cg) follows the global

FDR, x̃(C), defined in Eq.~14!. Thus, Eq.~33! should hold
~see Figs. 5 and 6!. Given any pair of times (t,tw) such that
the global correlation equals a prescribed value,C(t,tw)
5C, the local effective temperature should be the same
all regions of space having the same value of the local c
relationCi(t,tw).

We would like to remark that the above theoretical arg
ment was developed for the fluctuating fieldsQi

ab(t,tw), not
their thermal averages; these correspond, instead, to the
pectation valueŝ^Qi

ab(t,tw)&&. The average over the diso
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der is carried out from the outset in the field-theoretical a
proach, while fluctuations due to noise histories are kept
writing the Q theory using a path integral formulation. Ho
can one test the predictions from this disordered aver
field theory against numerical simulations? The answer
on whether the distributions that one studies are s
averaging or not. What we find is that, if we study coars
grained local correlations and integrated responses34 through
numerical simulations, their distributions become indep
dent of the disorder realization for large enough coar
graining cell sizes. This is an indication that self-averag
holds for these nonequilibrium distributions, and in fact t
coarse-graining procedure is somehow averaging over di
der. This is perhaps another reason to work with coar
grained quantities, as opposed to noise-averaged quanti

What can we say about the behavior of noise-avera
~and neither disorder-averaged nor coarse-grained! local two-
time functions? We argue that this procedure correspond
‘‘fingerprinting’’ the particular disorder realization of the sys
tem. By a ‘‘fingerprint’’ of disorder we mean that noise
averaged correlations and integrated responses at the d
ent sites purely reflect their disorder environment, since th
is no other source of fluctuations left in the problem.
course, further averaging over the disorder would erase
fingerprint, and simply give the global result. For this reas
coarse graining also erases the fingerprint for a s
averaging system. The noise-averaging approach should
respond to the scaling in Eq.~17!, and fluctuations are then
not constrained to follow the globalx̃(C) curve, as in Fig. 6.

D. Random surface action: Effective action for the fluctuations

In the spirit of the usual approach in deriving a coars
grained effective action for the relevant fields in a problem46

we search for the ‘‘minimal’’ effective action describing th
aging dynamics of the system in terms of coarse-grai
fields Qab(rW;t,tw). More precisely, in Sec. III A we men
tioned that the dynamic generating function is expressed
2-13
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terms of local two-time fields,Qi
ab(t,tw), that are coarse

grained over a cube involving the first neighbors of the siti.
Since we are interested in postulating an effective action
the soft fluctuations we shall consider a further spatial coa
graining of these fields and work withQab(rW,t,tw) that rep-
resents a smooth two-time field at the positionrW in real
space.

In a coarse-grained theory, one expects gradient term
be present in the effective action. Their effect is to pena
rapid variations~in time and space! of the coarse-grained
fields. These terms play the role of the term*ddr @¹W

•mW (rW)#2 in the energy Eq.~48! for the Heisenberg ferromag
net.

As we discussed above, global RpG invariance is, in the
limit of long times, a symmetry of the total action and w
should preserve it when constructing the effective action
the fields Qi

ab(rW;t,tw). Thus, this symmetry poses stron
restrictions on the form of allowed gradient terms.

In general, the effective action takes the form

S@Q#5Sgrad@Q#1Slocal@Q# ~49!

with Slocal@Q# an RpG invariant action composed solely o
local terms andSgrad@Q# including the gradient~nonlocal!
dependence. Let us propose, for the latter,

Sgrad@Q#52E ddr E
0

`

dt1E
0

`

dt2@“] t1
Q00~rW;t1 ,t2!#

3@“] t2
Q00~rW;t1 ,t2!#. ~50!

Notice that a global RpG transformation t→h(t),
Q00(rW;t1 ,t2)→Q̂00(rW;t1 ,t2)5Q00

„rW;h(t1),h(t2)… leaves
Sgrad@Q# invariant as well, as can be explicitly checked,

Sgrad@Q̂#52E ddr E
0

`

dt1E
0

`

dt2@“] t1
Q̂00~rW;t1 ,t2!#

3@“] t2
Q̂00~rW;t1 ,t2!#

52E ddr E
0

`

dh1E
0

`

dh2@“]h1
Q00~rW;h1 ,h2!#

3@“]h2
Q00~rW;h1 ,h2!#5Sgrad@Q#. ~51!

Before proceeding, we would like to remind the read
that Q00 and Ccg are indeed related, so what we discu
below applies to the spatially varying coarse-grained co
lation Ccg(rW;t1 ,t2). The expectation valuê̂ Q00(rW;t1 ,t2)&&
is related to the noise~and disorder! average ofCcg(rW;t1 ,t2)
@see Eq.~35!#. Similarly, one can show a relation between
n-moments ^^Q00(rW1 ;t1 ,t2)•••Q00(rWn ;t1 ,t2)&& and the
noise~and disorder! average of products ofC’s at n points.
Hence, the fluctuations of these quantities are akin.

The reader might also note that there are several o
simple RpG invariant actions that we could have writte
down, involving eitherQ01 andQ10, or Q11 andQ00. How-
ever, such terms vanish when evaluated on a saddle-p
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configuration that satisfies causality. Since we focus on
causal solution and its fluctuations, we do not consider s
terms. The gradient penalizing term in Eq.~50! is chosen as
one of the simplest nontrivial terms that respects RpG invari-
ance.

In analogy with the study of theO(N) model and the
derivation of an effective action describing the spin wav
we start by identifying the uniform~in space! saddle-point
configuration and we then consider small fluctuations aro
it.

Since the saddle-point solution does not depend on
spatial position,Sgrad@qsp#50. Thus,qsp is completely deter-
mined bySlocal@Q# and its precise form depends on the d
tails of the model. We argue that one can still learn a gr
deal about the spatial fluctuations by considering simplifi
approximate saddle-point solutions. We know from nume
cal simulations of the 3D EA model23,52 that the global cor-
relation scales rather well as

C~ t1 ,t2!'qEAf S min@h~ t1!,h~ t2!#

max@h~ t1!,h~ t2!# D ~52!

with h(t) and f (x) two monotonic functions.f (x) satisfies
f (1)51 and f (0)50. A very good scaling of the data i
obtained usingh(t)5t. It will be convenient to define a new
time-dependent functionf by

h~ t !5ef(t). ~53!

The role of spatially varying rotations in theO(N) model is
here played by the spatially varying time reparametrizatio
that we write as

h~ t !→h~rW,t !5ef(rW,t). ~54!

Thus, we express the saddle-point solution as

qSP
00~ t1 ,t2!'qEAf ~e2uf(t1)2f(t2)u!, ~55!

and we parametrize the fluctuations around it with

Q00~rW;t1 ,t2!'qEAf ~e2uf(rW,t1)2f(rW,t2)u!. ~56!

Let us now split f(rW,t)5t@h(t)#1df(rW,t), where
t@h(t)# selects the global reparametrization, i.e., fixes
‘‘direction’’ of the saddle-point solution, anddf(rW,t) con-
trols the small fluctuations around it. Furthermore, it is b
to think of t as the proper time variable and work wit
w„rW,t)[df(rW,t(t)…. Changing integration variables i
Sgrad@Q# from t to t, and expanding around smallw and ẇ,
we obtain@for the simplest casef (x)5x]:

Sgrad'qEA
2 E ddr E

2`

`

dt1E
2`

`

dt2@“ẇ~rW,t1!#

3@“ẇ~rW,t2!#@12ut12t2u#2 e22ut12t2u

5
1

2
qEA

2 E ddr E
2`

`

dt@“ẇ~rW,t!#21•••, ~57!
2-14
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SPATIALLY HETEROGENEOUS AGES IN GLASSY SYSTEMS PHYSICAL REVIEW B68, 134442 ~2003!
where ẇ5]w/]t. In Eq. ~57! we retained only the leading
relevant term~we neglected terms with highert derivatives!.
It is very simple to show that in the case of a general fu
tion f (x) the resulting action is identical to the above up to
renormalized stiffness constant, namely,

Sgrad'
1

2
l fqEA

2 E ddr E
2`

`

dt@“ẇ~rW,t!#21••• ~58!

with

l f54E
0

1

dx x$@11 ln x# f 8~x!1x ln x f9~x!%2 ~59!

a positive definite constant. In particular, for a power la
f (x)5xl, the renormalization factor of the stiffness is sim
ply l f5l.

The w(rW,t) that parametrize the fluctuations can
thought of as the height of a random surface. Equation~56!
relates the fluctuations of the local correlators with the r
arametrization fieldf. In the casef (x)5xl, this relation
takes the form

Q00~rW;t1 ,t2!5qsp
00~ t1 ,t2!e2l„w(rW,t(t1)…2w„rW,t(t2)…), ~60!

so spatial fluctuations of the correlationsCcg(rW;t1 ,t2) are
related to the fluctuations of the height differences from t
w surfaces evaluated at two proper timest1 and t2 , as
sketched in Fig. 8. It is simple to understand how the
height differences, which fluctuate as a function of time, c
very simply explain thesorpassiwe discussed in Sec. II E 2

What are the statistics of these height differences?
causeẇ is a Gaussian surface, it is simple to show that

^@w~rW,t1!2w~rW,t2!#2&52Gd~rW,rW !ut12t2u, ~61!

where Gd(rW,rW8) is the correlation function for a Gaussia
random surface ind dimensions. Whent1 andt2 get close,
irrelevant terms neglected in Eq.~57! become important, and
ut12t2u should be replaced by a short-time cutofftc . The

FIG. 8. Schematics of the height separation between surf

w(rW,t) at different proper timest1 , . . . ,t4 . Notice that height dif-

ferences for two different pointsrW,rW8 can increase or decrease f
different pairs oft ’s. Such fluctuations can explain thesorpassiwe
described previously.
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details of the crossover depend on those neglected terms
one can capture its most important features by approxima
replacingut12t2u→tc1ut12t2u in Eq. ~61!.

The simple expression Eq.~61! has some powerful con
sequences. First, it implies that the statistical distribution
local correlation functionsC(rW;t1 ,t2) is controlled by the
proper time differencet12t2 . Becauset5 ln h(t) follows
from the scaling of the global correlations of the E
model,23,52 we can conclude that the full PDF for the loc
correlations is also a function that scales with the ra
h(t)/h(tw); this scaling is confirmed in our numerical simu
lations in the 3D EA model, as discussed in Sec. IV D, wh
for simplicity, we useh(t)'t.

Second, it suggests that fluctuations of the height diff
ences are much more pronounced in two dimensions tha
three dimensions.Gd(rW,rW), the correlation function for a
Gaussian random surface ind dimensions, goes to an ultra
violet cutoff dependent constant in 3D, but diverges logari
mically with the system sizeL in two dimensions. Hence
this may provide a simple explanation why in two dime
sions fluctuations destroy the global order in spite of
existence of nonzero local correlations.

Additionally, Eq. ~61! allows us to obtain more detaile
predictions about the leading order behavior of the fluctu
ing reparametrization. Within the present approximatio
w(rW,t1)2w(rW,t2) is a Gaussian random variable with a va
ance given by the square root of the rhs of Eq.~61!. Com-
bining this with the physical information thatt(t)5 ln h(t)
@where again for simplicity we can takeh(t)'t for the scal-
ing of the global functions#, and noting f(rW,t)5t(t)
1df(rW,t), we can write the following scaling form:

f~rW,t1!2f~rW,t2!5 ln t12 ln t21@Gd~rW,rW !

3~tc1u ln t12 ln t2u!#1/2Xr~ t1 ,t2!

5 ln~ t1 /t2!1@a1bu ln~ t1 /t2!u#

3aXr~ t1 ,t2!, ~62!

where, to Gaussian levela51/2, andXr(t1 ,t2) is a random
Gaussian variable of unit variance and spatially correlat
Higher-order corrections could, in principle, modify this pr
diction significantly. It turns out that simulational results34

are consistent with Eq.~62!, although withaÞ1/2 and with
a non-Gaussian distribution forXr(t1 ,t2).

IV. SCALING OF LOCAL CORRELATIONS

After having introduced the local two-time quantities
Sec. II and having discussed several scenarios for their
havior in Sec. III, in this section we study the dynamic b
havior of the coarse-grained and noise-averaged local co
lations of the 3D EA model using numerical simulations.

A. Global correlation

We recall that, for the waiting and total times we use, t
aging decay of the global correlation@Eq. ~3!# is rather well
described with a simplet/tw scaling.52 Indeed, even without

es
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subtracting the first approach to the plateau atqEA ~which
can occur with a very slow power law21! the scaling is quite
acceptable. To illustrate this point, we show the global c
relation against (t2tw)/tw in Fig. 9 for a system evolved
with a single thermal history and using relatively short wa
ing times.

We stress that we do not claim that this scaling ho
asymptotically. It simplyapproximatelydescribes the data
for these short waiting times and up to the maximum wait
time reachable in simulations, which is of the order of 18

Monte Carlo steps~MCS! ~see Refs. 23 and 52 for a precis
analysis where longer waiting times have been used and
approach to the plateau has been taken into account!.

B. Relation to random surfaces

The evaluation of the local correlations on th
d-dimensional real-space substrate allowed us to draw a
allel between the evolution of the local coarse-grained co
lations and the dynamics of ad-dimensional random
surface,34 see Sec. III D. At any pair of times (t,tw) the ran-
dom surface fluctuates about the global valueC(t,tw) and it
is constrained to do so between21 and 1 sinceCiP
@21,1#. Within our RpG invariant theory, there is a one-to
one relationship between this random surface for the coa
grained correlatorCcg(rW;t,tw) and the random surface
f(rW,t) @and f(rW,tw)] discussed in Sec. III D, as eviden
from Eq.~56!. The parallel between the evolution of the loc
correlations and the dynamics of ad-dimensional random
surface can also be extended to the noise-averaged co
tions ~although we present no analytical theory for this cas!.

The statistical and dynamical properties of the surface
each case are not necessarily the same. In Figs. 10 and 1
show the values of the local coarse-grained and no
averaged correlations, respectively, on a 2D cut of the
real space. These figures illustrate how the local correlat
generate a surface with heightCi on each sitei of the 3D
substrate. The statistical properties of theCi ~their distribu-
tion, geometric organization, etc.! inform us about the statis
tical properties of the random surface. Similarly, we c

FIG. 9. ~Color online! Decay of the global correlationC(t,tw)
in the 3D EA model as a function of (t2tw)/tw . The waiting-times
are indicated in the key.T50.7 andL532.
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think about the random surface generated by the coa
grained and noise-averaged local susceptibilities. In Sec
we shall show the results of the numerical analysis of
geometric properties of the random surface of local corre
tions in the 2D and 3D EA models.

C. Coarse-graining volume

Before analyzing the time dependence of the local co
lations we briefly exhibit the dependence of the coar
grained correlations on the coarse-graining volume. In F
12 we plot Ci

cg(t,tw) against the time differencet2tw on
seven sites around the site with coordinates (1,1,1), us
three coarse-graining volumesV5(2M11)3 with M
53,6,9. The waiting time istw5500 MCS. As expected
coarse graining smoothens the spatial variation of the lo
correlations and we see very little variation between the lo
correlations on neighboring sites. Fortw5500 MCS, the
curves forM53 are rather noisy while those forM56 and
M59 behave roughly in the same way. For longer waiti
times the curves for the three coarse-graining volumes
have roughly in the same manner~not shown!. In what fol-

FIG. 10. ~Color online! Surface of local coarse-grained correl
tions on a 2D cut of the 3D real space.T50.8, L564, M53. The
local correlations are evaluated attw54.13105 and t52.83106,
i.e., t/tw;6.8.

FIG. 11. ~Color online! Surface of local noise-averaged correl
tions on a 2D cut of the 3D real space.T50.7, L532, 103 noises.
The local correlations are evaluated attw51.63104 and t54.8
3104, i.e., t/tw53. The fluctuations are reduced with respect to t
ones in Fig. 10 sinceT is lower andt/tw is smaller here. Note tha
this surface fluctuates between 0 and 1 since the noise avera
eliminates negative values.
2-16
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lows we shall typically useM51, M53, and M56 that
correspond to linear sizes 2M1153, 2M1157, and 2M
11513. The first choice is the coarse graining implicit
the analytic theory@see Eqs.~35! and~36!#, except that here
the central site is also included. The two latter choices ar
the order of one fifth of the linear size of the system ifL
532 andL564, respectively.

D. Distribution functions

What is the origin of the rather simple scaling of the g
bal correlation for the times explored? Do all local corre
tions scale in the same way, and as't/tw , or is the global
scaling the result of the combination of different behavio
on different sites?

In order to explore these questions we first study the t
evolution of the probability distribution function~PDF! of
local correlations. In Fig. 13 we show the distribution
Ci

na’s for several pairs oft and tw with ratios given in the
key. Only one disorder realization has been used and
curves are drawn with correlations that have been avera
over 103 realizations of the noise. The full distributions sca
approximately witht/tw . The peak moves towards small
values ofCi

na when the ratio increases and the distributi
gets slightly wider. The curves with wider lines correspo
to the longesttw . For smallt/tw a drift with increasingtw
leading to a very mild decrease in the height of the pea
visible in the figure. Note that when sufficiently many noi
realizations are averaged over, the distribution does not h
any weight on negative values ofCi

na . For even larger val-
ues of the ratiot/tw we expect to see a reverse trend in t
sense that the distribution has to start getting squee
around the valueCi

na50.
The central part of the distribution is described very w

by a Gaussian distribution for intermediate values oft/tw

~before the PDF starts to be squeezed onCi
na50). Indeed,

FIG. 12. ~Color online! The local correlationCi
cg(t,tw) against

t2tw for tw5500 MCS.L564. The three groups of curves corr
spond to coarse-graining volumesV5(2M11)3 with M53,6,9.
Different curves within each group correspond to the seven site
the cubic box centered on the site with coordinates (1,1,1). We
a variable coarse-graining timet that starts att510 MCS and is
multiplied by 5 each time the total time reaches 50035k with k
51, . . . For comparison we also plot the global correlationC.
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Fig. 14 shows two Gaussian fits to the numerical PDF’s
the ratiost/tw58,16 andtw53.23104. Note that sinceCi

na

P@0,1# the Gaussian fit cannot be perfect. In Sec. IV B w
mentioned the interpretation of the local correlations as g
erating a random surface on the 3D substrate. The appr
mate Gaussian distribution of theCi

na implies that we can
interpret the random surface of noise-averaged correlat
as being approximately Gaussian.

The distribution seems to become stable with respec
the number of realizations of the noise, after a large eno
number of such realizations. More precisely, we do not
any noticeable variation between the calculated distributi
that are averaged over 500 and 1000 thermal histories.
expect this distribution to be self-averaging, i.e., independ
of the particular realization of the disorder for large-enou

in
se

FIG. 13. ~Color online! The distribution of the noise-average
local correlationsCi

na for several pairs oft and tw . The waiting
times aretw5103 MCS, 23103 MCS, 43103 MCS, 83103 MCS,
1.63104 MCS, and 3.23104 MCS, and the ratiost/tw go from 2 to
64 and are indicated in the key. We averaged over 103 realizations
of the noise.t t5t/10, L564, andT50.7.

FIG. 14. ~Color online! The distribution of the noise-average
local correlationsCi

na for two ratiost/tw given in the key,tw53.2
3104, and two Gaussian fits. Same parameters as in Fig. 13.
2-17
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systems. We have checked the self-averaging property
merically, and also that, for large enough values ofN, the
distribution becomes size independent.

Figure 13 should be compared to Figs. 15–17 in wh
the distribution of the coarse-grained local correlations,Ci

cg ,
is shown for several times and different values of the coa
graining volume.

In Fig. 15 the coarse-graining volume has a linear s
2M1151. Thus, there is no spatial coarse graining and
only reason why these curves are not simple peaks at21
and 1 is that the coarse-graining in time, done witht t5103

MCS for all times, slightly smooths the data. This figu
shows that to get meaningful information about the distrib
tions the data need to be coarse grained.

In Fig. 16 the coarse-graining volume has a linear s
2M1153. This distance is slightly shorter than the tw
time-dependent correlation lengthj(t,tw), which we shall

FIG. 15. The distribution of the coarse-grained local correlatio
Ci

cg for several pairs oft and tw . M50 @2M1151,j(t,tw)# L
532, t5103 MCS, andT50.8. The parameters given in the ke
determine the waiting times,tw52nw3104 MCS.

FIG. 16. The distribution of the coarse-grained local correlatio
Ci

cg for several pairs oft and tw . M51 @2M1153;j(t,tw)#, L
532, t5103 MCS andT50.8. The parameters in the key fix th
waiting times as in Fig. 15.
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define and study in Sec. V. For this amount of coarse gra
ing the PDF has a nice scaling behavior. The position of
peak is almost independent of the ratiot/tw in this case. Its
height diminishes when the ratiot/tw increases and the tail a
smaller values ofCi

cg grows. The scaling witht/tw is rather
good in this case.

Finally, in Fig. 17 the coarse-graining volume has a line
size 2M11513 which is almost half the system size an
much larger than the two-time-dependent correlation len
j(t,tw) for all the waiting and total times studied. The wid
of the PDF’s has been considerably reduced with respec
the previous case. In particular, the PDF does not have
weight on negative values, as opposed to what is show
Fig. 16. It has also become quite symmetric, centered at
global value which is also approximately the average va
of this PDF. Reasonably, the distributions drift towar
smaller values of the correlations when the value oft/tw
increases. Moreover, the scaling witht/tw worsens with too
much coarse graining, as is to be expected. Using suc
large coarse-graining volume one approaches the limi
which the distribution becomes ad function at the global
value. Thet/tw scaling is only an approximation to the tru
scaling, see Fig. 9. In order to improve the fit one sho
eliminate the contributions to the stationary decay but this
not easy to do at the level of the full distribution.

It is clear that for a given disorder and thermal history th
distribution approaches ad function on the time-dependen
global value of the correlation when the coarse-graining v
ume reaches the size of the system. Even in this limit,
finite N we still have sample-to-sample and noise-to-no
fluctuations and hence a nontrivial distribution of the
points.

To conclude, for long waiting times, both the nois
averaged PDF and the coarse-grained PDF with 2M11
;j(t,tw) approximately scale witht/tw . However, even if
for a given ratiot/tw the mean valuesof the noise-averaged
and the coarse-grained distributions coincide~yielding the
global value in both cases!, their shapesdiffer. This is most

s

s

FIG. 17. The distribution of the coarse-grained local correlatio
Ci

cg for several pairs oft and tw . M56 @2M11@j(t,tw)#, L
532, t5103 MCS, andT50.8. The parameters in the key fix th
waiting times as in Fig. 15.
2-18
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SPATIALLY HETEROGENEOUS AGES IN GLASSY SYSTEMS PHYSICAL REVIEW B68, 134442 ~2003!
clearly seen by comparing, for instance, the curves fort/tw
532 in Figs. 13 and 16. The most distinctive difference
given by the persistence of a peak inr(Ccg) that is centered
on a stable value, almost independent oft/tw ~although its
height decreases with increasingt/tw) in contrast to a peak in
r(Cna) that changes its position continuously as a funct
of t/tw . Moreover, the PDF of noise-averaged correlation
approximately Gaussian for intermediatet/tw values while
the PDF of coarse-grained two-time local correlations
clearly non-Gaussian when 2M11;j(t,tw). For larger val-
ues of the linear size of the coarse-graining volume the P
looks more Gaussian, see Fig. 17, at least in its central p
We have observed the same features at other temperatu

We end this section by pointing out that the probabil
distributions for noise-averaged and coarse-grained qua
ties can be interpreted as, respectively, probabilities of a
ages and averages of probabilities. To see this relation,
sider a quantity that is noise averaged after being coa
grained, and its probability density isr(^Ci

cg&). In the limit
when the coarse-graining volume is a single spin (M50),
we recoverr(Ci

na), using Ci
na5^Ci&. Now, for a large

enough total system size, the probability distribution
coarse-grained quantitiesr(Ci

cg) becomes self-averaging
r(Ci

cg)→^r(Ci
cg)&. Hence, the differences between t

noise-averaged and coarse-grained probabilities derive f
the fact thatr(^Ci

cg&)Þ^r(Ci
cg)&.

E. Scaling of noise-averaged local correlators

We have just shown that even if the probability distrib
tions of noise-averaged and coarse-grained local correlat
take different forms, they scale approximately ast/tw . This
does not mean, however, that each site has a local correl
scaling witht/tw . Equations~17! and~18! can now be put to
test by studying the decay in time of the individual loc
correlationsCi

na andCi
cg .

A simple way to test Eq.~17! is to plot the values of the
local correlations at different sites for different pairs (t,tw)
such that their ratiot/tw is held fixed. If the hypothesis is
correct, for a given site, its correlation must take a very si
lar value for alltw’s. Figure 18 shows this test for a 3D E
model of linear sizeL532 atT50.7. The average involve
103 noise realizations. In the three panels we used differ
values of the ratiot/tw as labeled. The points represent t
values of the noise-averaged local correlations at sites in
rows in the cube. More precisely, the discrete points on
axis labeled ‘‘site’’ correspond to (x50,y50,z50, . . . ,L
21), (x50,y51,z50, . . . ,L21), (x50,y52,z50, . . . ,L
21), and (x50,y53,z50, . . . ,L21) ordered in this way.
This means that, for example, the values site50, site532,
and site564 are nearby sites on the lattice, site50 being
(x50,y50,z50), site532 being (x50,y51,z50) and site
564 being (x50,y52,z50). This explains the approximat
periodicity in the data: it indicates that nearby sites hav
rather similar behavior as most clearly indicated by staring
the points with rather small values ofCi

na . The lines are
added as guides to the eye. The figure shows that the n
averaged correlations satisfy the hypothesis in Eq.~17! for
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this range of times. The site-dependent external functionf i in
Eq. ~17! reflects the fingerprint of disorder.

Interestingly enough, even running at different tempe
tures ~with the same seeds for the thermal noise! the indi-
vidual evolution of the sites is still very similar~see Fig. 19!.
This issue deserves further investigation since it might
very useful in helping to explain the intriguing memory an

FIG. 18. ~Color online! The fingerprint of disorder. The noise
averaged local correlation on 128 sites ordered along four adja
rows for three choices of the ratiot/tw indicated as a label in eac
panel.L532,T50.7,t t5t/10. The curves for differenttw’s fall on
top of each other showing thatCi

na scales as in Eq.~17!.
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rejuvenation effects seen in the dynamics of spin glas
when temperature is modified. Nevertheless, we shall
expand on this topic here.

F. Scaling of coarse-grained local correlators

We can now analyze the coarse-grained local correlat
in the same manner as the noise-averaged ones.

First, in Fig. 20 we showCi
cg on 128 sites chosen as i

Fig. 18 ~see the text above! for three choices oft/tw52 ~a!,
t/tw54 ~b!, and t/tw564 ~c!. In the three figures we show
data for tw5103 MCS, tw523103 MCS, andtw543103

MCS. The coarse-graining volume is small,M51. The
curves for differenttw’s do not scale exactly since the nois
induces fluctuations in addition to those that originate fr
the quenched disorder.Ci

cg does not scale as in Eq.~17! for
any of the choices of the ratiot/tw .

Notice that the curves obtained for different pairs of tim
(t,tw) cross each other at many points, even though the r
t/tw is fixed. Therefore, it is always possible to find sitei
and j at opposite sides of the crossing points for whichCi

cg

.Cj
cg for one pair of (t,tw), but Ci

cg,Cj
cg for another. In

other words, the relative age~as measured using the correl
tion value! between two sitesi and j in the sample is not
static, but fluctuates as a function of time. These are exa
the sorpassithat we described in Sec. II E. Once again, n
tice that this is in sharp contrast with the scaling Eq.~17!,
where the relative age between all sites in the sample kee
constant, static, relative rank.

In Fig. 21 we compare the coarse-grained and no
averaged local correlations for two systemswith the same
quenched disorder, evolved at the same temperature. We p
the local correlations on one row of the 3D cube correspo
ing to (x50,y50,z50, . . . ,L21), with L532. The tem-
perature isT50.7. In all panels we plot the noise-averag
data for threetw’s, tw583103 MCS, 1.63104 MCS, and
3.23104 MCS, with crosses and the coarse-grained data,

FIG. 19. ~Color online! Competition between temperature an
quenched disorder. The noise-averaged local correlation on adja
128 sites for two temperatures,T50.56 andT50.7. The time ratio
is t/tw51.4, tw583103 MCS, andt t5t/10. The two sets of data
are surprisingly similar.
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the same waiting times, with open squares (tw583103

MCS!, open circles (tw51.63104 MCS! and dark squares
(tw53.23104 MCS!. The lines joining the points are a guid
to the eye. The ratio betweent and tw is alwayst/tw51.4,
but similar results are obtained for other choices. In differ
panels in the figure we use different values ofM, M50 ~a!,
M51 ~b!, M53 ~c!, andM55 ~d!.

ent

FIG. 20. ~Color online! Test oft/tw scaling in the coarse-graine
correlation. Values of this quantity on 128 adjacent sites for th
choices of the ratiot/tw indicated in each panel.M51, L532,T
50.8, andt t5t/10.
2-20
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FIG. 21. ~Color online! Comparison between noise-averaged and coarse-grained local correlations. The three curves in ea
correspond to three waiting times.tw583103 MCS ~open squares!, tw51.63104 MCS ~open circles! and tw53.23104 MCS ~filled
squares! for the coarse-grained data. The coarse-graining volume is indicated in the labels.L532,T50.7. The coarse-graining time ist
583102 MCS whentw583103 MCS and is multiplied by 2 when the time is doubled.
w

a

ng
re

e
e
th
1
m

e
e
e
n

wh
t

arse
at

he
te
i-
y
rse
er-
t

er

ue
es
.
at.

eral

f

The first result from these figures is that, as already sho
in Fig. 18, the noise-averaged data scale as in Eq.~17!. In-
stead, the coarse-grained data do not scale in this way for
of the values ofM.

Let us now discuss in detail the effect of coarse graini
In panel ~a! we compare the noise-averaged data to the
sults of a single run without coarse graining (M50). We see
that thet/tw scaling does not hold for the curves with coars
grained data, but the values of the local correlations are v
much influenced by the disorder. For instance, observe
low values simultaneously taken by the correlation at site
for the noise-averaged quantity and also in the single ther
history runs.

In panel ~b! we use a minimum volumeV5(2M11)3

533. We see that the ‘‘surface’’ created by the coars
grained data has been smoothed with respect to the casM
50 shown in panel~a! but there remains a memory of th
underlying quenched disorder. The coarse graining does
help improve thet/tw scaling.

This trend is even clearer in panels~c! and ~d! where we
useM53 andM55, respectively. Thet/tw scaling is clearly
broken as the surfaces become smoother and smoother
M increases. WhenM55, the surface is almost totally fla
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and the fingerprint of disorder has been washed out by co
graining. However, there are still soft local fluctuations th
break thet/tw scaling.

The conclusion we draw from these plots, and from t
theoretical discussion in Sec. III, is that for a truly infini
system,N5L3→`, we expect to find that when times d
verge, t,tw→` with C(t,tw) fixed to a chosen value, sa
C(t,tw)5C, thus selecting the correlation scale, coa
graining over a sufficiently large volume erases the fing
print of disorder while still allowing for fluctuations tha
change the reparametrization locally,h(t)→hi(t)5h(t)
1dhi(t). This argument implies that hypothesis~18! should
describe the data in this limit. In Sec. V we shall furth
discuss the implications of coarse graining.

The final test of this hypothesis would be to plot the val
of the correlation on each site for different pairs of tim
such thathi(t)/hi(tw) is held fixed. If the hypothesis in Eq
~18! holds, the surface of the resulting figure should be fl

An equivalent way to check hypothesis~18! is to plot the
decay of the local correlations on several sites, for sev
chosen values oftw and all subsequentt, against different
ratiosl i5hi(t)/hi(tw). For each sitei the choice of an ad-
equate scaling functionhi(t) should lead to a collapse o
2-21
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each of the local correlationsCi(t,tw) corresponding to dif-
ferent tw’s. Moreover, if the ~in principle site-dependent!
master curves,f i , thus obtained are all identical,f i5 f for all
i, then the conjecture in Eq.~18! is satisfied.

The careful implementation of these checks is rather
dious since one needs an independent inspection of the
namics of each site in the sample. We take the flattening
the curves in Fig. 21 for increasingM as strong evidence fo
the scaling in Eq.~18! in the ‘‘scaling limit’’ defined in
Sec. V B.

G. Effect of coarse graining on already noise-averaged
quantities

In Fig. 22 we coarse grain the already noise-averaged
for the local correlation. WhenM53 the surface is alread
quite flat ~and t/tw dependent!. This is to be compared with
the the data in Fig. 21~c! for one run coarse grained over th
same volume. We see how the fingerprint of disorder p
gressively disappears with more coarse graining.

V. TWO-TIME-DEPENDENT CORRELATION LENGTH

In this section we define a correlation length from t
study of the spatial fluctuations of the two-time local co
elators. We also discuss the interplay between times
length scales in the analysis of our data.

A. Definition

The presence of a Goldstone mode in the dynamics g
rise to a specific form for the spatial correlations of the flu
tuating two-time fieldsQi

ab(t,tw). In the asymptotic limit,
the RpG invariance implies a true Goldstone or zero ma
mode. Therefore, the spatial correlations in the fluctuati
should show a power-law decay;1/r in 3D. However, as
mentioned before, we know thatfor any finite time, the RpG
invariance is explicitly brokenby irrelevant terms that play
the role of symmetry-breaking fields. As in the case of m
nons in the presence of a weak external magnetic field,
Goldstone mode in the dynamics acquires a small m

FIG. 22. ~Color online! Effect of coarse graining on the loca
noise-averaged data. The parameters are as in Fig. 21.
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which vanishes in the asymptotic limit of small symmetr
breaking field, i.e., in the long time limit. Therefore, we e
pect that in a simulation the local two-time quantities w
exhibit a finite correlation length for their fluctuations. Fix
ing the relation betweent andtw to have, say, a given globa
correlation, one should find a correlation lengthj(t,tw) that
increases monotonically for increasingtw . Equivalently, the
massm(t,tw)51/j(t,tw) should be a monotonically decrea
ing function of the times.67

Most of the results about the finite correlation length th
we present were obtained for a 3D EA model with linear s
L532 evolving atT50.8. We considered 64 realizations
the disorder. The length of the simulation was 8.1923107

MCS.
The two-time quantities considered are the local two-ti

correlations CrW i
(t,tw)[Ci(t,tw)5 s̄i(t) s̄i(tw), where the

s̄i(t) are site magnetizations time averaged overt5103

MCS. The vectorrW i is the position of sitei with respect to a
chosen origin of coordinates.

We define a spatial correlator

Ã~r ;t,tw![F 1

N (
i

CrW i
~ t,tw!CrW i1rW~ t,tw!G , ~63!

which is averaged over disorder realizations but is not av
aged over the noise. Since the problem is isotropic on a
age we expect the rhs to depend only on the modulus of
distance between the positions of the spins considerer

[urWu. Thus we writer in the argument ofÃ. N5L3 is the
total number of spins in the sample. Asr→` we expect that
this correlator will approach its disconnected part:

Ã`~ t,tw![ lim
r→`

Ã~r ;t,tw!5F S 1

N (
i

CrW i
~ t,tw! D 2G ,

5@C~ t,tw!2#, ~64!

with C(t,tw) being the global correlation.
In order to define a correlator that has a spatia

asymptotic value that is independent of the timest and tw ,
we define the normalized correlator

A~r ;t,tw![
Ã~r ;t,tw!

Ã`~ t,tw!
, ~65!

which tends to unity in the limitr→`. Therefore, the con-
nected part ofA is simply A21. Note that the equal site
correlatorA(r 50;t,tw) is very close to 1/Ã`(t,tw) since the
zero-distance correlatorÃ(r 50,t,tw) involves s̄i

2(t) and

s̄i
2(tw), which for short coarse-graining timest and long

times t and tw are approximately equal to 1. For anytw the
denominatorÃ`(t,tw)5@C(t,tw)2# vanishes in the limitt
@tw . Consequently, as it is defined, the correlatorA(r ;t,tw)
evaluated at zero spatial distance diverges with increasit
for any value oftw . At equal timesA is approximately 1 for
all distancesr; the reason for this result is again the fact th
s̄i

2(t)'1.
2-22
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One can also define a correlator that is forced to evo
for all pairs of timest andtw , between 1 at zero distance an
0 for infinitely separated distances. Indeed,

B~r ;t,tw![
Ã~r ;t,tw!2Ã`~ t,tw!

Ã~r 50;t,tw!2Ã`~ t,tw!
~66!

satisfies these requirements.
In Fig. 23 we show the space dependence ofB(r ;t,tw) for

various ratiost/tw . In all cases we observe that the corre
tion decays rapidly, consistent with an exponential decay,
r ,6 lattice spacings.

In Fig. 23, the horizontal axis represents the distancr.
One point is plotted for each vectorrW, therefore many points
with similar r but corresponding to different directions forrW
appear close to each other. The fact that in the figures
corresponding values ofB are also close together indicate
that the spatial correlations are indeed spatially isotropic
expected.

FIG. 23. ~Color online! Spatial correlationsB(r ;t,tw) against
distancer in a semi-logarithmic scale fortw5104 MCS andt/tw

52, 16, 128, 1024, and 8192.

FIG. 24. ~Color online! Comparison between the spatial depe
dence ofB(r ;t,tw) for L532 andL564, with tw5104 MCS and
t/tw52.
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In Fig. 24, we show the decay of the correlation for tw
system sizesL532 and L564, with tw5104 MCS and
t/tw52. We observe that the decay is roughly independen
the system size, up to distances of the order ofr;6. One
notices that the trend of the points, after this limit, is to be
downwards forL532 and to bend upwards forL564. The
figure also shows that a fit of the data by a simple expon
tially decaying function,

Bexp~r ;t,tw!5D~ t,tw!e2m(t,tw)r , ~67!

is very good up to distancesr;6. For the range of times an
system sizes achieved in our simulations, the simple ex
nential form provides an excellent fit, withx2 typically of
the order of 1023 per degree of freedom. In principle there
no reason to expect the fit to be good for small values or.
However, the simple exponential form actually does prov
a good fit down tor 50.

An alternative fitting form, the Yukawa function
BYuk(r ;t,tw)5D(t,tw)e2m(t,tw)r /r , systematically shows
both worse values ofx2 and worse extrapolation outside th
fitting interval.

Given the excellent quality of fit by an exponential fun
tion, we only use the exponential fit in what follows. W
shall not further comment on the Yukawa fit, except to not
that correlation lengths obtained from it are systematica
larger than those obtained from the simple exponential
and this leads to some additional uncertainty in the deter
nation of correlation lengths.

Figure 25 displays a comparison of results obtained
using different fitting intervals. Changing the fitting interv
does somewhat affect the results of the fits, but the trends
consistent, and the interval chosen (r P@0.0,4.0#) seems to
be the one that minimizes the noise in the mass versus
curve. In what follows, all the values of the mass~equiva-

-

FIG. 25. ~Color online! Dependence of the fitted values of th
mass on the interval chosen for the fit. Comparison between va
of the mass obtained by fitting in the intervalsr P@0.0,4.0#, r
P@1.5,5.1#, andr P@2.5,7.1#, displayed as a function oftw . In all
casesL532 andt/tw52.
2-23
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lently, the inverse correlation length! are obtained by using a
simple exponential fit in the interval@0,4# ~each fit has 52
degrees of freedom!.

From the definition in Eq.~66!, we know that B(r
50;t,tw)51. The fitting functions that we use do not need
have exactly this value at the origin, but it turns out th
D(t,tw)'1 within an error of the order of 10%.

In Figs. 26 and 27, we show the two-time dependence
the mass in our simulations. Each set of points correspo
to a fixed ratiot/tw . We attempt two fits of the mass as
function of tw . In Fig. 26 we show the fitm(t,tw)
[1/j(t,tw)'m0(t/tw)/ ln tw . In Fig. 27, we show the fit
m(t,tw)[1/j(t,tw)'m0(t/tw)(tw /t0)2a, with a50.085.
The simulation results are consistent with both fitting form
Due to the very slow decay of the mass withtw , it is not
possible to distinguish between the two fits. Another imp
tant feature of the data is revealed by these figures: the
relation lengthincreaseswith increasing ratiot/tw , at fixed

FIG. 26. ~Color online! Mass ~inverse correlation length! as a
function of the waiting time. Each set of points corresponds t
fixed ratio t/tw . The horizontal axis corresponds to 1/lntw .

FIG. 27. ~Color online! Mass ~inverse correlation length! as a
function of the waiting time. Each set of points corresponds t
fixed ratio t/tw . The horizontal axis corresponds totw

2a with a
50.085.
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tw . One must note, though, that the variation of the m
with the ratiot/tw is also quite mild.

An intriguing fact in our results is that the values of th
correlation length obtained are extremely short. Note t
Figs. 26 and 27 show a variation of the mass between
and 0.8 that corresponds to lengths between 1.25 and
lattice spacings. However, as mentioned earlier, an alte
tive fit with a Yukawa form leads to longer correlatio
lengths, and there is some additional uncertainty due to p
sible finite-size effects. Based on these considerations
shall postulate, somewhat arbitrarily, that the correlat
lengths for the times explored in the rest of this paper are
the order of 3–5 lattice spacings.

Let us discuss a qualitative picture for describing the tw
time dependence of them(t,tw) suggested by the random
surface action of Sec. III D. Althoughm(t,tw) depends on
the two timest and tw , an action such as that in Eq.~58!
~with an addedt-dependent mass term! suggests that differ-
ent time slices factorize in the effective theory for fluctu
tions. This picture is only approximate, in that for time rati
not far from one, the subleading terms neglected in Eq.~58!
will generate corrections. Thus we expect that, for long tim
and large t/tw ratios,m(t,tw) should be some kind of aver
age of one-time quantities associated witht and tw . This
picture suggests that one should also analyze the correla
length data by plotting it against an average betweent and
tw , the appropriate one being a geometric averagetave

5Attw @which corresponds to the simple averagetave5(t
1tw)/2 for the proper times, wheret5 ln t].

With the above picture in mind, we now reanalyze t
data in our simulations by replotting the correlation leng
j(t,tw) as a function ofttw in Fig. 28. As this figure shows
the curves for fixedt/tw ratio eventually converge to a
asymptotic curve for larget/tw . As discussed above, this i
consistent with the subleading corrections in Eq.~58! becom-
ing negligible for larget/tw ratios.

a

a

FIG. 28. ~Color online! Correlation lengthj51/m as a function
of the geometric average betweent and tw . Each set of points
corresponds to a fixed ratiot/tw . The horizontal axis corresponds t
ln(ttw). The data collapse for high values of the ratiot/tw . Two fits
are shown for the data at hight/tw ratios: a power-law fit~dots! and
a logarithmic fit~full line!.
2-24
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In Figs. 29 and 30 we attempt to obtain more detai
information about the time dependence of the mass. In
29 we show fits ofm(t,tw)[1/j(t,tw) to a 1/ln(ttw) depen-
dence. If a nonzero value is allowed for the mass at infin
time, the fitted value obtained is negative, meaning that
mass actually goes to zero at very large, but finite, tim
(ttw;10276 MCS!. In practice, this fit is as good as a fit wit
the mass going to zero only at infinite time: in both casesx2

per degree of freedom is of order 1024.
In Fig. 30 we show the fitm(t,tw)[1/j(t,tw) to a power

law (ttw /t0
2)2a. If a finite mass is allowed at infinite times

an exponenta'0.10 is obtained. If, instead, the value of th
mass is assumed to be zero at infinite times,a'0.04 is ob-
tained. Thex2 per degree of freedom is again of the order
1024 for both fits.

In summary, the simulation results indicate that~i!
m(t,tw) is asymptotically~for large t, tw and t/tw) only a

FIG. 29. ~Color online! Mass ~inverse correlation length! as a
function of the geometric average betweent and tw . Each set of
points corresponds to a fixed ratiot/tw . The horizontal axis corre-
sponds to 1/ln(ttw).

FIG. 30. ~Color online! Mass ~inverse correlation length! as a
function of the geometric average betweent and tw . Each set of
points corresponds to a fixed ratiot/tw . The horizontal axis corre-
sponds to (ttw)2a with a50.04.
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function of ttw ; ~ii ! m(t,tw) is a very slow monotonically
decreasing function ofttw , consistent both with them
'1/ln(ttw) and with the m'(ttw /t0

2)2a functional forms;
~iii ! the values of the correlation lengthj51/m are of the
order of only a few lattice constants for the time scales
cessible in the simulations;~iv! the extrapolation of the data
fits is consistent with the expectedm→0 behavior for long
times, but a nonzero mass at infinite times cannot be
cluded.

Previous studies24,68have found a correlation length sca
j(tw) growing with tw that is in the range of 3–4 lattice
spacings for the waiting times and temperatures we h
considered. Those authors determined the correlation le
from the spatial decay of a four-point correlation function68

G~r ,tw!5
1

N (
i 51

N
1

tw
(

t5tw

2tw21

@^CrW i

ab
~t!CrW i1rW

ab
~t!&#, ~68!

with CrW i

ab(t)[srW i

a (t)srW i

b (t), involving thus two copies of the

systema and b, with identical exchanges, and an avera
over thermal histories and disorder. Note that this ‘‘2-po
correlator’’ differs from ours in that~i! it is evaluated at
equal times,~ii ! there is a further average over the noise, a
more importantly,~iii ! the two-point functions that one fur
ther correlates are evaluated between two copies of the
tem evolving independently. The latter property implies th
this length can only be tested experimentally with indire
measurements.23,69 Interestingly enough, the length we de
fine in this paper is, in principle, accessible directly wi
local experimental probes. Even though they represent
ferent quantities the values of the two correlation-lengths
very short and very similar.

B. Interplay between the waiting time, linear coarse-graining
size, and correlation length

In this section we discuss the role played by the wait
and total times,tw and t, the coarse-graining linear siz
2M11, and the correlation lengthj(t,tw) in our measure-
ments. We assume that the size of the system,L, is the largest
scale in the problem that has diverged at the outset of
discussion.

For a finite but very long waiting timetw1 and a time-
window @ tw1 ,t1# over which one wishes to study the fluctu
ating dynamics, the correlation lengthj(t1 ,tw1) is finite but
very long. Choosing a cubic coarse-graining volumeV1 with
linear size 2M111,j(t1 ,tw1) one then accommodate
@j(t1 ,tw1)/(2M111)#d cells within each correlated volum
@j(t1 ,tw1)#d. According to the discussions in previous se
tions, the local coarse-grained two-time functions, defined
each cell, have different time reparametrizationshi(t) that
vary smoothly in real space until reaching the correlat
length j(t1 ,tw1) when they completely decorrelate. By ta
ing a large coarse-graining volume we ensure that the un
lying effect of disorder is erased. This kills the fluctuations
the external functionf i , @see Eq.~18!# as well as erasing al
fluctuations inqEA

i . The fluctuations in the local time rep
2-25
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arametrizations give rise to a distribution of values of t
local coarse-grained correlations,r„Ci

cg(t1 ,tw1)… that we
study numerically in Sec. IV.

For another finite, but longer waiting time,tw2.tw1 , the
zero-mode discussed in Sec. III becomes flatter and one
pects the amount of fluctuations to increase. If we also
large the time window@ tw2 ,t2# to be analyzed in such a wa
that, say, the global correlationC remains unchanged
C(t1 ,tw1)5C(t2 ,tw2), the new correlation length is longe
than the previous one,j(t2 ,tw2).j(t1 ,tw1) ~see the results
in Sec. V A!. If we keep the same coarse-graining linear s
as before,70 i.e., 2M111, we expect the level of fluctuation
in the reparametrizations to increase and the P
r„Ci

cg(t2 ,tw2)… to be wider thanr„Ci
cg(t1 ,tw1)…. If, simulta-

neously to increasing the values of the times, we also
crease the coarse-graining volume so as (2M11) scales
with j(t,tw), we should be able to maintain the amount
fluctuations. More precisely, the PDF computed with the n
times (t2 ,tw2) and the new coarse-graining size 2M211
should be identical to the PDF computed with (t1 ,tw1) and
2M111.

This procedure can be taken further to postulate tha
scaling limit in which a stable distribution of fluctuations
reached. This limit is such that the waiting time and t
subsequent time go to infinity together keeping the glo
correlation fixed to a prescribed valueC ~note that this
double limit can be more general than the case in whichtw
and t are proportional!, and the coarse-graining volume d
verges together with the correlation length betweent andtw ,
i.e.,j(t,tw)/M is held fixed. If in this limit the distribution of
local two-time functions remains nontrivial, then dynam
cally heterogeneous regions of all sizes exist.

Even though for a system with an asymptotic reparame
zation invariant action the correlation length is expected
diverge asymptotically, in Sec. V A we showed thatj(t,tw)
is still very short for the times accessible numerically in t
spin-glass model that we study here. Thus, one cannot s
the dynamics using a coarse-graining volume such thaa
!2M11!j(t,tw) ~with a being the lattice spacing!. This
fact gives a plausible explanation why we do not reach
scaling limit with a stable distribution of fluctuations in ou
simulations.

A different, but interesting, regime in which to study flu
tuations is the following. Let us taketw and t very long but
finite leading to a finite correlation lengthj(t,tw). If one
takes the coarse-graining linear size to be of order 2M11
;j(t,tw) each block leading to a point in the construction
the PDF’s is, roughly speaking, an independent model w
finite sizeL5j(t,tw). The results in Sec. VIII A suggest tha
the fluctuations in the global two-time functions of finite-si
systems have a very similar behavior to the local ones
cussed above.

Finally, if we use a coarse-graining volume with line
size 2M11@j(t,tw), we do not expect to have any fluctu
tions and the PDF’s should bed peaks on single values.

VI. SCALING OF LOCAL SUSCEPTIBILITY

In this section we study the dynamic behavior of the lo
integrated responses. First we select the magnitude of
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applied perturbation by studying the behavior of the glo
susceptibility. Next we study the evolution of the probabili
distributions of coarse-grained and noise-averaged qua
ties.

A. Choice of field strength

We choose the strength of the perturbing field,h, in such
a way that~i! there are no negative global susceptibilitie
~ii ! there are no global susceptibilities with a magnitu
larger than the value allowed by FDT 1/T; ~iii ! we select the
range of field strengths such that linear response holds,
we find the maximum strength for which the distribution
stable. The first two conditions yield a lower bound onh,
hmin , the third determines its maximum possible valuehmax.

In Fig. 31 we show the outcome of these tests. We plot
PDF of the global staggered susceptibilities where we u
two different procedures to draw the histograms. In the fi

FIG. 31. ~Color online! Distribution ofglobal staggered suscep
tibilities for small 3 EA models. The field is applied attw5104

MCS and held fixed subsequently. The integrated response is m
sured att543104 MCS. In the first panel we used one noise a
103 field realizations; in the second panel we used one random
and 103 noise realizations. The curves correspond to different fi
strengths given in the key.L58, T50.7 ~noise-averaged!, and T
50.8 ~field-averaged!.
2-26
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plot, we used 103 realizations of a random field,h i5he i
with e i561 with probability 1

2 , and only one thermal nois
~note that perturbed and unperturbed copies are evolved
the same thermal noise!. We then draw the distribution o
global values,

x~ t,tw![
1

h (
i 51

N

@si
h~ t !2si

0~ t !#e i
k , ~69!

with one point per field realization,k51, . . . ,nf ields . In the
second case, we used only one random field realization
we draw the distribution of global values

x~ t,tw![
1

h (
i 51

N

@si
h

k~ t !2si
0

k~ t !#e i , ~70!

with one point per thermal noise realization, withk
51, . . . ,nnoises. We see that for such a small system s

FIG. 32. ~Color online! Distribution of the global staggered su
ceptibilities for a 3D EA model with linear sizeL516 at T50.7
using 103 noise realizations and one perturbing field with stren
given in the key.tw5104 MCS, t543104 MCS andt t5t/10 MCS.

FIG. 33. ~Color online! Average and variance of the distributio
of global staggered susceptibilities in the 3D EA model against
field strength. The parameters are as in Figs. 31 and 32.
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the probability distributionsr(x) change quite a bit with the
strength of the applied field~even if the average and varianc
are quite stable, see Fig. 33 below!. For larger system sizes
L516, see Fig. 32, the probability distribution stabilizes f
h>hmin;0.2.

The plot in Fig. 33 shows the average and the variance
the probability distribution for systems of sizesL58 andL
516 with 103 noise realizations, andL58 with 103 field
realizations. We confirm thathmin50.2 and we see that th
behavior starts to become nonlinear at aroundhmax;0.7.

We see that field strengths between 0.2 and 0.7 com
with our criteria. In what follows we useh50.25 and we
focus on the noise-averaged and coarse-grained definition
the local susceptibilities given in Eqs.~6! and~8! eventually
averaged over many field realizations.

e

FIG. 34. ~Color online! Check oft/tw scaling of the distribution
of noise-averaged local susceptibilities with no coarse grainingM
50 and with coarse graining,M51. The ratio ist/tw52. When
tw51.63104, MCS we used 1200 noise realizations. Whentw

53.23104 MCS, we used 200 noise realizations.

FIG. 35. Distribution of local coarse-grained staggered susc
tibilities. L532, T50.8, andh50.25. The waiting times aretw

543104 MCS, 1.63104 MCS, and 6.43104 MCS. Three ratios
are considered,t/tw52, 8, and 32. The coarse-graining volume
V52M1151.
2-27



p

in

es
t

rs

n
ee
e
s
b

nor
-

ith

al
al

re-

t

sar-
es

by

y
s
a

e

e

ns.

ch
es.

CASTILLO, CHAMON, CUGLIANDOLO, IGUAIN, AND KENNETT PHYSICAL REVIEW B 68, 134442 ~2003!
B. Probability distributions of local susceptibilities

Here we study the evolution of the PDF of local susce
tibilities computed as in Eqs.~6! and ~8!.

1. Noise-averaged data

In Fig. 34 we show that thet/tw scaling is worse for the
noise-averaged susceptibility than it is for the correspond
correlations.

2. Coarse-grained data

In Figs. 35–37 we show the PDF of local susceptibiliti
coarse grained over different volumes. These figures are
counterparts of Figs. 15 –17 where we showed the coa
grained data for the local correlations.

In Fig. 35, 2M1151; in Fig. 36, 2M1153; and in Fig.
37, 2M11513. The strictly local susceptibilities shown i
Fig. 35 are distributed almost in a discrete way, one s
peaks at precise values ofx i

cg that extend also to the negativ
side of the axis. WhenM51, the negative susceptibilitie
have not yet disappeared and the positive tail goes also
yond Tx i

cg51, see Fig. 36. Finally, whenM56 the PDF’s

FIG. 36. Distribution of local coarse-grained staggered susc
tibilities. Same data as in Fig. 35 withM51.

FIG. 37. Distribution of local coarse-grained staggered susc
tibilities. Same data as in Fig. 35 withM56.
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are much narrower with no support on negative values
values that go beyondTx i

cg51. Note, however, that the lin
ear size of this coarse-graining volume, 2M11513, is
larger than the maximum correlation length reached w
these times, sayj(t,tw);5 ~see Sec. V!.

VII. THE LOCAL FLUCTUATION-DISSIPATION
RELATION

Which of the possibilities listed in Sec. II F does the loc
FDR follow? The aim of this section is to show numeric
evidence for the following statements.

~i! The local coarse-grained two-time correlations and
sponses are constrained to follow the global curvex̃(C): the
dispersion along thex̃(C) curve is much more importan
than the dispersion perpendicular to this curve. For fixedtw

and increasing values oft the dispersion along thex̃(C)
curve increases. This is as predicted by thes-model argu-
ment of Sec. III. Equation~33! holds for these functions.

~ii ! The local noise-averaged correlations do not neces
ily follow the global curve. Coarse graining this data do
not lead to concentrating the distribution of (Ci ,Tx i) pairs
around the global curve. Equation~33! does not hold. It is
hard to test numerically if Eq.~31! holds since there is no
constraint on the location of the pairs in theC-Tx plane.

~iii ! The mesoscopic fluctuations~with no average over
the noise! behave as in~i!.

We provide numerical evidence for these statements
plotting the joint probability distribution of pairs (Ci ,Tx i)
evaluated at a pair of times (tw ,t), and its projection on the
2D planeC-Tx.

A. Coarse-grained two-time functions

In Fig. 38 we plot the projection of the joint probabilit
distribution of coarse-grained two-time function
(Ci

cg ,Tx i
cg) on the C-Tx plane. The data correspond to

p-

p-

FIG. 38. ~Color online! Projection of the joint probability distri-
bution of the coarse-grained local susceptibilities and correlatio
L532, T50.8, andM51 leading to 2M11;j(t,tw). The con-
tour levels surround 66% of the weight of the distribution and ea
of them is drawn using a different ratio between the two tim
From inside to outsidet/tw52, 8, 32.
2-28
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system of linear sizeL564 at T50.8. The coarse-graining
linear size is 2M1153 that is of the order of the correlatio
length j(t,tw). We study simultaneously three ratios
times,t/tw52, 8, and 32, fortw5104 MCS in all cases. The
contour levels are such that they include 66% of the wei
of the joint PDF and they correspond tot/tw52, 8, and 32
from inside to outside. Reasonably, as the times get m
separated the values of the local correlations vary more
the region encircled by the contour level is wider. This p
shows that these distributions are very wide, as also in
cated by Figs. 16 and 37 where we showr(Ci) and r(x i)
independently. Even though the contour levels are also w
in theTx direction, they tilt in the horizontal direction ofC,
along the curve made by the crosses, that correspond
Tx̃(C) for this tw and 10 values oft.

In Fig. 39 we see the effect of further coarse graining
data corresponding to the sametw and t as in Fig. 38. In the
projected plot we see how the size of the cloud around
Tx̃(C) plot is reduced. The longitudinal fluctuations th
correspond to fluctuations in the functionf i that character-
izes the local correlations are killed very quickly by th
coarse graining~see the theoretical background for this
Sec. III and the related effect in the values of the local c
relation in Sec. IV F!. The transverse fluctuations are al
reduced but in a weaker manner. These are related to
fluctuations in the local reparametrizations and, as we arg
in Secs. III and IV F, they should survive in the limit of lon
times and large coarse-graining volumes. See Sec. VIII
similar results for the joint PDF’s of the global quantitie
computed using systems of small size.

B. Noise-averaged two-time functions

In Fig. 40 we show the joint probability distribution of th
noise-averaged local correlations and susceptibilities. We

FIG. 39. ~Color online! Projection of the joint probability distri-
bution of the coarse-grained local susceptibilities and correlati
L532, T50.8, andM56. Note that here 2M11.j(t,tw). The
contour levels surround 66% of the weight of the distribution a
each of them is drawn using a different ratio between the two tim
with t/tw increasing from right to left.
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that the distribution is concentrated about the FDT line a
does not bend in the direction of the nontrivial part of t
global x̃(C) as the coarse-grained data does, see Fig.
This indicates that the disorder induced fluctuations are
controlled by thes-model argument of Sec. III. Note tha
with no coarse graining the Edwards-Anderson param
fluctuates from site-to-site and hence the value of the co
lation at which the sites enter the slow scale varies. T
result resembles Fig. 3 or Fig. 4 except that the extent of
fluctuations inCi

na is narrower than in these sketches.
In Sec. VIII we shall observe a very similar behavior

the noise-averaged mesoscopic fluctuations in finite-size
models.

C. Effect of coarse graining on already noise-averaged data

In Figs. 41 and 42 we test the effect of coarse graining
the joint probability distribution of noise-averaged local co
relations and susceptibilities. In Fig. 41 the linear size of
coarse-graining box is 2M1153 while in Fig. 42 it is 2M

s.

d
s

FIG. 40. ~Color online! The projection of the joint PDF on the
C-Tx plane, noise-averaged local quantities,L532, tw51.63104

MCS, and t54.83104 MCS. The FDT prediction is represente
with a straight line.

FIG. 41. ~Color online! Same as Fig. 40, but now the nois
averaged quantities are coarse-grained in a volume withM51.
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1157. The system size isL532 andT50.7. We see that in
all cases the distribution follows the FDT line. Indeed, av
aging over the noise kills all thermal fluctuations and hen
does not allow the fluctuations in the time reparametrizat
which cause the bending of the data along thex̃(C) curve.
This is consistent with the results in Fig. 22 where w
checked the effect of coarse graining the already no
averaged local correlations.

VIII. FINITE-SIZE SYSTEMS

Barrat and Berthier71 showed that the modification of th
FDT in a 3D EA model of finite size, which is evolving ou
of equilibrium ~that is to say fort andtw that are well below
the finite equilibration timetEQ), has a very similar behavio
to that found in the thermodynamic limit. The system w
eventually equilibrate but, as long as one keeps the time
be shorter thantEQ, the global dynamics is very much typ
cal of an out-of-equilibrium system.

FIG. 43. ~Color online! Evolution of the PDF of the globa
correlation for a system with linear sizeL58 at T50.7. The wait-
ing time istw5104 MCS and the different values of the subseque
time t used in each curve are given in the key.

FIG. 42. ~Color online! Same as Figs. 40 and 41: the coar
graining in this case hasM53.
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In this section we study the time dependence of the d
tributions of the global correlation and susceptibility f
finite-size samples of both finite-dimensional and infini
dimensional spin glasses. We show that the ‘‘mesoscop
fluctuations, i.e., the fluctuations of the global quantities d
to finite-size effects, behave very similarly to the loc
coarse-grained ones in finite dimensionas. Moreover, we
the relation between the fluctuations in the susceptibility a
the correlation and we find that they are also constraine
follow the global parametricx̃(C).

A. The 3D EA model

In Figs. 43 and 44 we show the evolution of the distrib
tions of the global correlationC(t,tw) and integrated re-
sponsex(t,tw) with time t and for fixedtw , respectively. We

t

FIG. 44. ~Color online! Evolution of the PDF of the globa
susceptibility for the same system as in Fig. 43,h50.3.

FIG. 45. Projection of the joint probability distribution of th
global correlations and integrated responses for a 3D EA mo
with linear sizeL58 atT50.7. The strength of the applied field i
h50.25. The contour levels correspond to the joint PDF for
waiting timetw5104 MCS andt/tw54. One realization of the ran
dom exchanges and 103 thermal histories are used to construct t
PDF.t t5t/10 MCS. The straight line indicates the FDT predictio
and the pluses indicate the time evolution of the averagex(C).
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construct the distribution functions using one data point
the global correlation and linear integrated response of
full system obtained using one noise realization. The det
of the system are given in the captions and keys. We usL
58 so as to be able to access smaller values of the gl
correlation than is possible in larger-size systems. This sm
system size also allows us to have PDF’s that are rather w

In Figs. 43 and 44 we display the evolution in time of t
PDF’s for the global correlation and the global susceptibi
of a system withL58. We see that the distributions g
wider as the separation between the times increases. In
45 we correlate the fluctuations in the global correlation a
susceptibility. We see that, as in the study of the local coa
grained quantities in a larger system, the contour levels

the joint PDF are tilted in the direction of the globalx̃(C)
that is indicated with crosses.

B. The SK model

With the aim of giving additional support to our claim th
noise-averaged and coarse-grained dynamic fluctuations
have differently we analyzed the dynamic fluctuations in
fully connected SK model on a finite-size lattice.

The SK model is defined in Eq.~2!, where the couplings
Ji j connect all sites and are chosen randomly from a bimo
distribution. An infinite-size system undergoes a thermo
namic and dynamic phase transition atTc51. When N
→`, the dynamics in the low-temperature phase was sol
analytically in the asymptotic limit of long times~although
finite with respect to the size of the system!.7 The solution
has a rather peculiar structure with the relaxation tak
place in a sequence of hierarchically organized correla
scales. These are intimately related to the FDR,x̃(C), that
takes a curved form for values of the correlation that f
below the Edwards-Anderson order parameter.

Several studies72 of the growth of the equilibration time
with the size of the system,N, indicate that this increase
approximately astEQ}ecNa(T)

with c a numerical constan
and the exponenta(T) increasing from 1/3 atTc to 0.5 at
T50.4Tc ~see also Ref. 73!. Even though these studies us
a Gaussian distribution of couplings we take these result
an indication that even for small samples, e.g.,N5512, we
have a very large time window with nonequilibrium effec
before equilibration takes place.~We chose to useN5512
just to have the same number of spins as for the 3D EA w
L58 used in Sec. VIII A.!

Numerical studies have found results in agreement w
the analytic prediction of there being a sequence of glo
correlation scales and a curve FDR out of equilibrium.74 Ex-
actly how the scaling laws and thex̃(C) prediction are modi-
fied due to finite-size effects has not been carefully inve
gated.

In this section we present results from a numerical sim
lation of the SK model with bimodal interactions using M
dynamics with the heat bath algorithm atT50.4.75 We pay
special attention to the fluctuations induced by the finite s
of the systems.
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1. Finite-size fluctuations of global quantities

For a fully connected model, the natural counterparts
the coarse-grained local correlations and responses in fi
dimensional models are the global quantities themselves.
latter fluctuate if the fully connected system has a finite si

In Fig. 46 we display the joint PDF for the global susce
tibility and global correlation. We usedtw564 MCS and we
evolved the systems untilt51024 MCS. We constructed th
distribution functions using 105 pairs „C(t,tw),x(t,tw)… cal-

FIG. 46. ~Color online! Projection of the joint PDF for the glo-
bal susceptibility and correlations of the SK model withN5512
and b52.5. The strength of the applied field ish50.25. The
coarse graining over time is done usingt52 for tw564 MCS and
t565,70 MCS, andt t52, 4, 8, and 16 MCS fort5128, 256, 512,
and 1024 MCS. The pluses indicate values averaged over the
tribution, the straight line is the prediction from the FDT. In pan
~a! the contour levels are chosen at heights corresponding to 9
90%, and 82% of the maximum in the PDF for the global corre
tions evaluated attw564 MCS andt51024 MCS. In panel~b! the
contour levels are at 90% of the maximum and they correspon
the PDFs calculated attw564 MCS andt5128, 256, 512, and
1024 MCS from right to left.
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culated as follows. First we chose the value of the total ti
t with which to calculate the global quantities, e.g.,t5128
MCS. For a fixed realization of the random exchanges
used 104 noise histories and thus obtained 104 points. We
repeated this procedure with ten different realizations of d
order completing the set of 105 data points. With this data we
obtained a probability distribution. The pluses represent
average over the 105 points fort565, 70, 128, 256, 512, an
1024 MCS. In Fig. 46 we show the projection on theC-Tx
plane of three contour levels at 95%, 90%, and 82% from
maximum of the joint PDF calculated fortw564 MCS and
t51024 MCS@panel ~a!#; one contour level at 90% of th
maximum of the joint PDF for four values of the total tim
t5128, 256, 512, and 1024 MCS@panel ~b!#. The straight
line represents the expected equilibrium curve.

We see that, similarly to the local coarse-grained fluct
tions for the 3D EA model, the distribution follows the glo

bal Tx̃(C) curve. The contour levels are inclined in the d
rection of the global curve. Thus, despite having ve
different time scalings, these two models have very sim
parametric joint PDF distributions.

2. Fluctuations in the noise-averaged local quantities

In this section we follow a path similar to that describ
in Sec. VII B for the 3D EA model. We simulated a S
model withN5512 spins atb52.5. The waiting time cho-
sen wastw564 MCS. We averaged the spin-spin ‘‘loca
self-correlation and integrated self-response for chosen p
of times t, tw with t5128, 256, 512, and 1024 MCS ove
1600 different noise realizations. With one realization of t
random exchanges we thus obtainedN data points. To im-
prove the statistics we repeated this procedure using 150
ferent SK models of the same size, i.e., with different re
izations of the coupling strengths. Thus, the PDF’s
constructed with 76 800 data points as is shown in Fig.
~the plus signs are the averaged values!. The qualitative form
of the distribution is very different from that in Fig. 46. Th

orientation of the contour levels does not follow theTx̃(C)
curve but, instead, it is approximately parallel to the FD
straight line.

These results are similar to those displayed in Sec. V
for the joint PDF of the local noise-averaged correlations a
integrated responses in the 3D EA model.

3. Effect of partial noise averaging

Finally, we studied the effect of partial averaging over t
noise the global two-time functions in a still smaller syste
By this we mean that we averaged over 102 realizations of
the thermal history the global correlation and integrated
sponse of each of 63104 SK models withN5128 spins.
Thus, we constructed the joint PDF with 63104 points. The
result is displayed in Fig. 48. We see that by averaging o
the noise we destroy the behavior in Fig. 46: the cont
levels are tilted toward the direction of the FDT line. The
results approach those in Fig. 47.
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IX. GEOMETRIC PROPERTIES

We have analyzed the local correlations and response
terms of their PDF’s and through plots of their spatial flu
tuations along a plane or line of spins. An alternate way
extract information about the spatial structure in spin glas
is through an analysis of geometric properties, such as
fractal properties of clusters of spins.

The clusters of spins that we choose to study are defi
in a way that we believe makes close contact with poss
experiments with local probes. The usual definition of a cl
ter in a spin glass is in terms of spins belonging to differe
ground states; since we have not calculated the ground s

FIG. 47. ~Color online! Projection of the joint PDF for the
noise-averaged ‘‘local’’ susceptibilities and correlations of the S
model withN5512 andb52.5. The strength of the applied field i
h50.125. The coarse-graining timest are chosen as in Fig. 46
The plus signs indicate values averaged over the distribution;
straight line is the prediction from the FDT. In panel~a! the contour
levels are chosen at heights corresponding to 90%, 85%, and
and they correspond to timestw564 MCS andt51024 MCS. In
panel~b! the contour levels are at 80% and they correspond to
joint PDF attw564 MCS andt51024 MCS.
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FIG. 48. ~Color online! Projection of the joint PDF for the glo
bal susceptibility and correlations of the SK model withN5128,
b52.5, andh50.1. The global two-point functions for each sy
tem have been averaged over 102 noise realizations. The coarse
graining timest are chosen as in Fig. 46. The plus signs indic
values averaged over the distribution, the straight line is the pre
tion from the FDT and the contour levels are chosen at heig
corresponding to 80%, 70% and 60% of the maximum in the P
evaluated attw564 MCS andt51024 MCS.
13444
in our simulations, such a definition is clearly not availab
to us. Instead, we define clusters as follows: for a particu
correlationC, a cluster consists of all connected76 spins with
correlationCi in the interval@C,C1dC# for a specifieddC.
This definition is used for both coarse-grained and noi
averaged correlators. A similar approach could be ea
implemented to analyze experimental data on local noise
mesoscopic regions in supercooled liquids and glasses.27–30

The richness of the spatial structure is illustrated in Fi
49~a! and 49~b! by highlighting slices of the correlationCi

cg

with values in a chosen interval. We show slices withC
50.95 anddC50.05 in Fig. 49~a!, and slices of negatively
correlated sites in Fig. 49~b!. The waiting time istw52
3104 MCS and t/tw52. The coarse-graining time ist
5103 MCS. Regions with negative correlation are well l
calized in space while the sites with largeCi

cg are evenly
distributed throughout the sample. We find an essenti
space-filling distribution of points for any choice of positiv
Ci

cg larger than about 0.1 and a localized distribution
points forCi

cgP@21,0#. It should also be noted that there
a distinct spatial anticorrelation between the location of s
with positive and negative correlation. We find that the nu
ber of points withC<0 scales approximately asL2 and that
the number of points withC.0 scales approximately asL3

for both L532 andL564.
A different picture emerges for the spatial structure

e
c-
ts
F

s
FIG. 49. ~Color online! ~a! Slices of Ci
cgP@0.95,1# ~extended! and ~b! 21,Ci

cg<20.5 ~localized!. The coarse-graining length i
2M1153. L564, t/tw52, tw523104 MCS, T50.72Tc . Slices of ~c! Ci

naP@0.93,1# ~localized! and ~d! Ci
na,0.4 ~extended!, and L

532 with tw53.23104 MCS, t/tw52, t53200 MCS,T50.7.
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noise-averaged correlations. In this case, there appear t
space-filling distributions of points for low correlations up
aboutCi

na;qEA in Fig. 49~d! and localized regions of corre
lations forCi

na close to 1 in Fig. 49~c!. As might be expected
only sites that are essentially forced by the disorder real
tion to take a particular correlation and do not decay in ti
~i.e., those with large values ofCi

na) are likely to show a
localized distribution of points. In the noise-averaged ca
there are essentially no sites with negative correlations~see
Fig. 13 for the PDF of noise-averaged local correlations!.

A. Fractal analysis

We next studied the fractal dimension of clusters of co
nected spins withCi

cgP@C,C1dC#. The total number of
spins in a cluster is regarded as its ‘‘mass’’m, and its radius
of gyration, Rg , is evaluated via the definitionRg

2

51/(2m2)( i j urW i2rW j u2 where rW i is the position of spini.77

The fractal dimensiondf of the clusters is defined from th
scaling of the massm with the radius of gyration,Rg ; m
}Rg

df .

FIG. 50. Number of spins~m! against radius of gyration (Rg)
for the coarse-grained correlations in the 3D EA model.M51.
Panel ~a! T50.72Tc and three pairs ofC and dC. tw56.43105

MCS and t/tw52. Panel ~b! two values ofT, 0.56Tc (tw53.2
3105 MCS and t/tw52), T50.72Tc (tw56.43105 MCS and
t/tw52). The dotted lines correspond todf52.
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1. Coarse-grained correlations

Figure 50~a! showsm againstRg for the 3D EA model
and five pairs (C,dC) corresponding toC,0, 0,C,qEA ,
C;qEA , andC.qEA ~see the key!. The coarse-graining lin-
ear size isM51. There is no qualitative difference betwee
the five sets of data and they are consistent withdf52.0
60.1. It should be noted, however, that we only fit over tw
decades in the number of spins and it would be desirabl
have a larger dynamic range to get more precise results.
obtained the same results for other values oftw andt and for
different temperaturesT,Tc @see panel~b! in the same fig-
ure#. The results are relatively insensitive to the value ofdC;
the values ofdC chosen are such that they are not only b
enough to wash out some of the site-to-site fluctuations
to thermal noise, but also small enough that they do not lu
very different values of the correlation in the same bin. T
results do not depend that strongly on the coarse-grain
volume until one gets to large coarse-graining volumes s
asM56, for whichdf;2 for small clusters with a crossove
to df;d at larger cluster sizes.

In Sec. V we defined a two-time-dependent correlat
length that is of the order of 3–5 lattice spacings for t
times and temperatures we have considered. Notice tha
the clusters obtained usingM51 haveRg,3, which is of
the order of the correlation lengthj. This is consistent with
havingdf;2,d53 for Rg,j.

Some recent work suggested that one class of low-ene
excitations in 3D EA spin glasses have the properties of
tice animals18 and hence a fractal dimension of 2. In th
study, a fractal dimensiondf;2 was found for the lowest-
energy excitations above the ground state made of a c
nected cluster with chosen number of spins and a given
The precise connection between these objects and those
ied here is not clear. However, it is intriguing that the frac
dimension observed here is the same.

In d52 the glass transition occurs atTc50. However, the
dynamics at lowT and large finite times strongly resemble
those seen in 3D. Several ‘‘glassy’’ features are observ
such as aging phenomena and a nontrivial relation betw
global correlation and response,70 which eventually disap-

FIG. 51. Number of spins~m! against radius of gyration (Rg)
for the coarse-grained correlations in the 2D EA model.tw55
3103 MCS andt/tw516. T50.8. M51.
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pear at very long times. In Fig. 51 we analyze the frac
dimension of a two-dimensional system withL5128, M
53, tw553103, MCS andt/tw516. The dotted lines indi-
cate where the points would be expected to lie fordf52,
df51.7 anddf51.5. Lattice animals in two dimensions hav
df.1.5 below the percolation threshold,df.1.85 at the per-
colation threshold, anddf.2 for percolating clusters.78 The
results here are not inconsistent with lattice animals in 2
but the large error bars make it hard to definitively estab
a connection.~The errorbars are much more important th
in d53 since we work with many fewer spins: 1282

516 384 as opposed to 6435262 144.) The ratiot/tw used
in the plot is quite large, similar results are obtained for ot
~smaller or larger! ratios.

2. Noise-averaged correlations

In addition to looking at the coarse-grained correlatio
we also performed a fractal analysis on the noise-avera

FIG. 52. Number of spins~m! against radius of gyration (Rg)
for the noise-averaged correlations in the 3D EA model.L532,
tw583103 MCS, t51.283104 MCS, T50.7 and the average ha
been done using 868 noise realizations for the same random
changes.

FIG. 53. Number of spins~m! against radius of gyration (Rg)
for the noise averaged correlations in the 3D EA model.L532,
tw53.23104 MCS, t548 000 MCS,T50.7, 822 samples.
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correlations. While there are a number of similarities b
tween the data, there were also some significant differen
At relatively shorttw andt, essentially all values ofC appear
to havedf.2, as can be seen in Fig. 52.

At longer t, or tw , there are two types of behavior, de
pending on the value of the correlation. For correlationsC
less than the peak in the distribution ofCi

na , the fractal di-
mension is close to 2, as found in all other cases. Howe
for large values of the correlation~close to 1!, it appears that
the df;2.5 for small clusters, with a crossover todf;2 at
larger cluster sizes. This is illustrated in Fig. 53. We note t
2.5 is very close to the fractal dimension for site-dilut
percolation in three dimensions,df52.5360.02,79 although
we do not have any arguments to make a link between
two.

Note that the same phenomenology shown in Fig. 53 w
also seen at lower temperatures,T50.56Tc . There is no
qualitative difference between the data at that tempera
and the data shown here.

3. Average cluster sizes

Another way to analyze the clusters defined above is
look at their average size for a given value of the correlati
As illustrated in Fig. 54, it is clear that the largest clusters
found in the vicinity ofCi.qEA for both noise-averaged an
coarse-grained cases. This average cluster size for a g
correlationC is defined as@note thatmk(C) is the mass of
the kth cluster at correlationC]

mav~C![
1

n~C! (
k51

n(C)

mk . ~71!

We also plot the number of clusters at a given correlati
n(C), for both noise-averaged and coarse-grained case
Fig. 55. Both have forms relatively similar to the PDF of th
correlations; however, even in the coarse-grained case t
are very few clusters at negativeC, consistent with the exis-
tence of a few localized clusters evident in Fig. 49. The pe

x-

FIG. 54. ~Color online! Average cluster sizemav against the
value of the correlation on the clusterC. dC50.06. The system size
is L564, T50.72Tc , t/tw52, and tw56.43105 MCS for the
coarse-grained data. The noise-averaged data is forL532, T
50.7, tw53.23104 MCS, andt/tw52.
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in cluster sizes also does not coincide with the peak inn(C),
suggesting a characteristic state of a large number of mo
ately small clusters with only a few large clusters even wh
C;qEA .

B. Multifractal analysis

Another approach to investigating the spatial structure
correlations in aging dynamics is to perform a multifrac
scaling analysis. In a disordered system, different mome
of a probability distribution may scale in different ways
the length scale changes. A multifractal analysis seeks
determine the scaling behavior of each moment of the dis
bution. We do not find any multifractal behavior here, bu
would be interesting to look for it in other glassy models
in larger simulations. The method used here, as the me
of fractal analysis, is very simple to implement and cou
also be used to examine experimental data, such as tha
lected in confocal microscopy experiments.

We follow a procedure similar to that outlined b
Janssen,80 and define a box probabilitypi such that

pi5
Ciu~Ci !

(
j

Cju~Cj !

, ~72!

whereCi is taken to be the average correlation in the b
Let the box size beLb and the system sizeL, which leads to
a dimensionless parameterl5Lb /L. The u function in Eq.
~72! is to enforcepi.0 and thuspi has an interpretation as
probability. In practice, theu function is not very important,
since the average correlations in the data considered her
positive in all but a very small proportion of the boxes, ev
at the smallest box size (Lb52) in three dimensions. The
distribution of box probabilitiesP(Lb) is such that when al
boxes are included, the total probability is unity. For a giv
l there areN(l);l2d boxes, whered is the dimension of
space. Moments of the distribution are defined via the re
tion

FIG. 55. ~Color online! Number of clusters normalized by th
size of the systemN as a function of the correlation. Parameters a
the same as for Fig. 54.
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^Pq~Lb!&L5
1

N~l! (
i

pi
q , ~73!

and the scaling of these moments is investigated. Multifra
scaling should be valid for

l !Lb,L!j, ~74!

where l is a microscopic length andj is the correlation
length, and we expect the moments to scale as

^Pq~Lb!&L;ld1t(q), ~75!

wheret(q) defines a generalized dimensiond(q) via t(q)
5d(q)(q21) for q.1.

1. 3D EA model

In the 3D EA model it is found thatt(2)53 andt(3)
56, corresponding tod(2)53 andd(3)53. The same be-
havior, i.e.,d(q)53 is observed forq54, 5, and 6. As is
evident in Fig. 56, which is for data withL564, at T
50.72Tc with t/tw52, 4, 16, and 64, there appears to

FIG. 57. Multifractal scaling ofP3 in the 2D EA model.T
50.8, tw553103 MCS, L5128, t/tw as shown in the key.

FIG. 56. Multifractal scaling ofP3 in the 3D EA model. The
straight line is a fit toP3(Lb)}l9, i.e., d(3)53.
2-36



ce

l,
d
, i
in

as

ium
e
or
vi

th
e
, a
p-
h

lin
-
a
i

rs
e

or
th
o
h
s
od
e
a

in
re
o
sy
e

g
n

nt
a
I

s.
on
d
cal

ani-
la-

e-

es
me
nti-

per-

or-
f

to
e
om-
al
op-
tric
IX

s; it
the
ic
the

this
lass
or-
our
few
c-
as

sed

of
ot

ing
es

her
uing

in-
ob-
eri-

of
eral
2D
den-

ived

SPATIALLY HETEROGENEOUS AGES IN GLASSY SYSTEMS PHYSICAL REVIEW B68, 134442 ~2003!
very little dependence on the ratio of the two times. Noti
however, that the condition in Eq.~74! is not satisfied.

2. 2D EA model

In performing a multifractal analysis of the 2D EA mode
the same approach to the analysis was used as outline
the 3D EA model. The results were similar to the 3D case
that d(q);d for the times available. In the data shown
Fig. 57, it is clear that forq53, 1.9,d(3),2, with perhaps
a slightly lower value ofd(q) at long waiting times. The data
are from a run withL5128, T50.8, andtw55000. The
time ratios considered aret/tw54,8, and 16.@Note that al-
ternative definitions of the box probability in 2D, such
using uCi u rather than au function can lead tod(q)Þd. In
that case it appears to be due to the mixing of nonequilibr
correlations with equilibrium correlations. There will still b
such mixing using the definition above, but all negative c
relations are excluded, and these may cover a nontri
number of boxes for small box sizes.#

3. Summary

The picture obtained from the above analysis is that
multifractal structure of aging dynamics in two- and thre
dimensional EA spin glasses is very similar. In both cases
moments of the probability distribution of correlations a
pear to scale with the same generalized dimension, whic
equal to the dimension of space. The reason why this is
here is that the correlation lengthj is small, of the order 3–5
lattice spacings, and therefore we are not truly in the sca
regime defined in Eq.~74!. Nonetheless, this method of ex
amining spatial heterogeneities via multifractal analysis m
be a useful tool for investigating the behavior observed
different glassy models and in experimental systems.

X. CONCLUSIONS

In this paper we showed further evidence that the coa
grained two-time correlators are the ones that reflect the
istence of an asymptotic zero mode in the underlying the
We defined a two-time correlation length that controls
spatial fluctuations in the coarse-grained local two-time c
relators and we showed numerical evidence for the growt
this length in the glassy phase of the 3D EA model, as wa
be expected from the existence of the asymptotic zero m
It should be noted, though, that for the times reached num
cally the correlation length is still very short. We argued th
in the limit in which the coarse-graining linear sizeM is
taken to diverge together with the correlation length the
dividual and joint distributions of coarse-grained local cor
lations and integrated responses should reach a stable f
This means that heterogeneities of all sizes exist in the
tem. This is another consequence of the asymptotic z
mode.

In disordered systems one can also define noise-avera
as opposed to coarse-grained, fluctuating two-time functio
We showed numerically that the fluctuations in these qua
ties are not controlled by the zero mode and that they beh
rather differently than their coarse-grained cousins.
13444
,

for
n

-
al

e
-
ll

is
so

g

y
n

e-
x-
y.
e
r-
of
to
e.
ri-
t

-
-
rm.
s-
ro

ed,
s.
i-
ve
n

slightly more technical terms, we make the following claim
~i! The fluctuations in the local time reparametrizati

hi(t) @see Eq.~18!# are coupled to the thermal noise an
hence manifest in the fluctuations of the coarse-grained lo
correlations and responses.

~ii ! The fluctuations in the external functionsf i @see Eq.
~22!# are coupled to the quenched disorder and hence m
fest in the fluctuations of the noise-averaged local corre
tions and responses.

Consequently, in a system with disorder the nois
averaged local quantities show fluctuations inf i but average
out those inhi . In a system without disorder these quantiti
do not fluctuate. In contrast, for any coarse-graining volu
if the times are long-enough the coarse-grained local qua
ties keep the fluctuations inhi while those inf i are erased
since an effective average over the random exchanges is
formed.

We related the study of the fluctuations in the local c
relations~and susceptibilities! to the study of the evolution o
random surfaces. The local two-time functions correspond
the ‘‘local heights’’ of a fluctuating random surface on th
d-dimensional substrate. We presented the simplest phen
enological effective action for the fluctuations in the loc
quantities. This allowed us to predict several dynamic pr
erties of their distributions. On the other hand, the geome
analysis of clusters of spins that we introduced in Sec.
also has a counterpart in the theory of random surface
corresponds to the analysis of contour levels of
surfaces.81 A complete study of the statistical and dynam
properties of these surfaces might be useful to determine
lower critical dimension of different glassy models.

The analytic calculations that we use as a guideline in
paper were performed using the finite-dimensional spin-g
Hamiltonian.33 The numerical data that we present also c
respond to this glassy problem. However, we believe that
results are more general and should apply also, with a
modifications, to other glassy problems. In the following se
tion we discuss several possible spin-offs of our results
well as a number of models in which the ideas here discus
can be put to test.

XI. PERSPECTIVES

Several questions remain open even within the study
the finite-dimensional EA model. In particular, we have n
checked numerically that a scaling limit is reached by tak
the limit of long-times and large coarse-graining volum
while keeping (2M11)/j(t,tw) fixed. This check remains
out of the reach of present computer simulations. Anot
independent issue that deserves further study is the intrig
fact that the noise-averaged local correlations are quite
sensitive to temperature and its possible relation to the
servation of memory and rejuvenation in spin-glass exp
ments. Moreover, the study of the geometric properties
clusters can be improved and made more complete in sev
directions, e.g., by examining lower temperatures in the
case and higher temperatures in the 3D case in order to i
tify similarities and differences, etc.

We have stated that our approach and its results, der
2-37
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in this paper for spin models with disorder, can be adapte
describe the structural glass problem. Let us summarize w
we expect in this case.

Dynamic heterogeneities in the supercooled liquid ph
have been identified numerically31,32 and exper-
imentally.26–28In the case of particle~or molecular! interact-
ing systems the natural and simplest two-time local corre
tion that makes contact with our approach is the dens
density correlator defined on boxes with volumeVB5(2M
11)d. Having partitioned the total volumeV in V/VB such
boxes, one then hasV/VB local correlators and local re
sponses~if a perturbation coupled to the density is applie!
with which one can construct the PDF’s.

In the supercooled liquid phase we expect that the lo
correlations and integrated responses defined in boxes o
nite size will be typically stationary~after a sufficiently long
waiting time that goes beyond the equilibration time! but
with different finite structural relaxation times. This is co
sistent with the experimental observation that dynamic h
erogeneities in supercooled liquids seem to have a lifetim
the order of the relaxation time. At high temperatures the s
of the heterogeneities is finite and hence one should supp
the fluctuations by using sufficiently large coarse-grain
volumes. The correlation lengthj(t,tw), which is also sta-
tionary, should remain finite, even in the limit of long time
From a theoretical point of view, this picture is, in a sen
similar to the one that describes the paramagnetic phas
the O(N) model, just above the ordering transition tempe
ture.

As the temperature is lowered the size and lifetime of
heterogeneities increases.31 A mean-field-like, or mode-
coupling-like approach predicts that their typical size w
diverge at the mode-coupling transition temperature.82 We
expect then that the correlation lengthj(t,tw) will saturate at
a higher value whenT decreases approachingTc . In real
systems the divergence atTc is smoothed and hencej(t,tw)
should not strictly diverge.

At still lower temperatures the bulk quantities age and
expect then to observe heterogeneous aging dynamics o
kind described in this paper, with a two-time-dependent c
relation length for the local fluctuations. The heterogenei
will age too, in a ‘‘dynamic’’ way. By this we mean that if
region looks older than another one when observed o
given time window, it can reverse its status and look youn
than the same other region when observed on a different
window.

The numerical studies of the global two-time correlatio
and integrated susceptibilities of Lennard-Jones mixtures54,55

have shown a remarkable accord with the predictions fr
the analytic solution to mean-field-like glassy models.1,2 We
then expect that the PDF’s of local correlations and lo
integrated responses, for the same time scales used fo
bulk calculations, will show the main features described
this paper. In particular, we expect the joint PDF’s to rep
duce the sketch shown in Fig. 5.

In the glassy phase, we expect the correlation length
structural systems to grow for increasing times roughly in
manner here described. However, this growth might
modified for long enough times when the dynamics cros
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over to a different, activated-like, nonequilibrium regime th
we cannot characterize theoretically.1,83 We cannot predict
what happens to the correlation length on these extrem
long time scales.

The ideas discussed in this paper should apply not onl
systems that relax in a nonequilibrium manner as glasses
also to systems that are kept out of equilibrium with
~weak! external forcing. As shown in Ref. 84 the time re
arametrization of the bulk quantities that is selected dyna
cally is very easy to modify with external perturbations. I
deed, a small force that does not derive from a potential
is applied on every spin in the model renders an agingp-spin
model stationary85 while the model maintains a separation
time scales in which the fast scale follows the temperature
the bath,T, while the slow scale is controlled by an effectiv
temperature,Teff.T. In this case, the aging system selects
time reparametrizationh(t)5t,9,57 while in the perturbed
modelh(t)5e2t/ta. Similarly, the aging of a Lennard-Jone
mixture is stopped by a homogeneous shear.55 A different
way to modify the time reparametrization that characteri
the decay of the correlations is by using complex therm
baths.84 Recently, there has been much interest in the app
ance of shear localization, in the form of shear bands, in
rheology of complex fluids.86,87 Along the lines described
here it would be very interesting to analyze the fluctuatio
in the local reparametrizations in the fluidized shear ba
and the ‘‘jammed’’ glassy band.

The appearance of an asymptotic invariance under ti
reparametrizations in the mean-field dynamic equations
related to the reparametrization invariance of the rep
treatment of the statics of the same models.6,88 The latter
remains rather abstract. Recently, de Dominicis and Bre´zin88

studied the consequences of twisting the reparametrizat
in the replica approach. Interestingly enough, this can
simply done in a dynamic treatment either by applying sh
forces, as discussed above or by applying different heat b
to different parts of the system. More precisely, using
model with open boundary conditions one could apply
thermal bath with a characteristic time scale on one end
a different thermal bath with a different characteristic tim
scale on the opposite end and see how a time reparame
tion ‘‘flow’’ establishes in the model.

We would like to conclude this paper by mentioning
number of other tests and interesting applications of the id
described here to other models with a slow relaxation.

~i! In this paper we studied the distributions of the tw
time, local in space, spin-spin correlations and their ass
ated responses. In a finite-dimensional system one can
struct many other two-time correlations that are still local
space. The question then arises as to if all the distribution
all possible correlators have the same qualitative feature

~ii ! An important property of the interpretation of the FD
in terms of effective temperatures is that in systems t
reach an asymptotic regime with slow dynamics and sm
entropy production one expects that all observables evolv
in the same time scale partially equilibrate and hence h
the same value of the effective temperature.60 Related to this
question one can try to determine if the joint probabil
distributions of the local correlations and susceptibilities
2-38
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other pairs of observables are the same and have the
time evolution.

~iii ! We expect to see a similar behavior of the local FD
in simple systems undergoing domain growth.45 More pre-
cisely, using thecoarse-grainedlocal correlations between
the fluctuations in the magnetizations and their associa
coarse-grained local susceptibilities, we expect to find a jo
PDF that is mostly concentrated along aflat, global x̃(C)
curve whend.1. This statement can be checked rather e
ily with Monte Carlo simulations of the finite-dimension
ferromagnetic Ising model.

~iv! Related to~iii !, the ferromagnetic Ising chain is
particularly interesting case of study. It has been proven
at zero temperature~or when the coupling strength diverge!
the global FDR takes a curved formx̃(C).89 For this model
it might be possible to derive an analytic expression for
joint PDF. Similarly, one can attempt an analytic calculati
at criticality in coarsening models as done in Ref. 90.

~v! Kinetically constrained lattice models43 capture many
of the characteristic features of glasses. An analytical st
of dynamic heterogeneities in one such spin model has
cently appeared.44 Versions in which one works with par
ticles on a lattice are also rather simple to simulate. In th
models one can partition the full lattice in boxes of si
(2M11)d and define the local two-time density-density co
relators within them. A local susceptibility can also be eas
defined following Ref. 91. A check of the form of the join
probability distribution and its evolution in time is an inte
esting problem.

~vi! One would like to study realistic models of gla
formers with molecular dynamics and test the scaling la
and qualitative features in these cases.

~vii ! Hérisson and Ocio59 studied recently the bulk two
time correlation between magnetic fluctuations and the b
two-time integrated response to an external magnetic fi
~magnetic susceptibility! of an insulator spin glass. Their aim
was to test the modifications of the global FDT in this no
equilibrium system. In order to have smooth data, they av
aged these quantities over many repetitions of the exp
ment done after heating the sample above the transition
our terms, the bulk correlations were averaged over differ
noise realizations. Two other experimental systems in wh
the two-time evolution of a bulk two-time correlation ha
-
-
n,

in

,
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been recorded are the measurement of voltage noise
correlation in laponite30 and the light-scattered intensity
intensity correlation in colloidal suspensions,40 where large
fluctuations appear. It will be very interesting to analyze t
PDF’s of the two-time correlation and the two-times int
grated response along the lines described here.

Last, but not the least, the approach based on reparam
zation invariance suggests that it may be possible to se
for universality in glassiness. For example, a Ginzbu
Landau theory for phase transitions captures universal p
erties that are independent of the details of the material.
symmetry that defines the universality classes. For exam
one requires rotational invariance of the Ginzburg-Land
action when describing ferromagnets. Reparametrization
variance may be the underlying symmetry that must be
isfied by the Ginzburg-Landau action of all glasses. W
determines whether a system is glassy or not? We
tempted to say the answer is if the symmetry is generate
not at long times. Knowing how to describe the univers
behavior may tell us all the common properties of all glass
but surely it will not allow us to make nonuniversal predi
tions, such as what is the glass transition temperature f
certain material, or whether the material displays glassy
havior at all. This quest for universality is a very interesti
theoretical scenario that needs to be confronted.
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