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Ground-state crossover in the quasi-two-dimensional classical Heisenberg model
with dipolar-type interaction
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We have studied the quasi-two-dimensional Heisenberg model with nearest-neighbor dipolar interaction by
using a Monte Carlo simulation. By varying the dipolar coupling magnifDde the anisotropy ratia of the
interlayer exchange interaction to the intralayer one, crossovers between different ground-states were observed.
The phase boundaries in th®( \) space were calculated from the ground-state energies, which are in
agreement with the Monte Carlo results. Our Monte Carlo results were compared with experimental data on

(ChHzn 4+ 1NHg) ,MNnCl,.
DOI: 10.1103/PhysRevB.68.134437 PACS nuni§er75.10.Hk, 75.30.Kz, 75.40.Mg
I. INTRODUCTION and J;;=\J otherwise. WhenD=0, Eg. (1) describes a

stack of noninteracting 2D Heisenberg layers with O, and
Molecule-based magnets, such askig,1NH3),MnCl,  describes a 3D Heisenberg system witk-1. The second

2 -
(CnMn) (Ref. 1) and Cy(OH)3(CrHam1C02),” have been  1orm indicates a dipolar interaction, whereenotes the vec-
regarded as representative quasi-two-dimensi@nasi-2D (. connecting the two spir§ andS;. D(=0) is the mag-

Heisenberg magnets. They consist of alternating rnagnetiﬁitude of the dipolar coupling and is the ratio of the inter-

and nonmagnetic layers. The nonmagnetic layers are Consiléyer exchange interaction to the intralayer one. When

tuted of organic chains, whose length can be easily con-~ . ™. . . :
trolled. Thus, the interlayer separation and the interlayef:OnSIderIng only the short-range |nteract|ons, the_ functpn
magnetic interaction between the magnetic layers can be sy%(r) can be restricted to the nearest-neighboring pairs
tematically controlled. Because the two-dimensional Heisen f(l)zlj' )

berg model cannot have a long-range order at any finite tem- 1€ dipolar models J=0) have long been studied, and
perature, it can be expected that the magnetic ordering@gnetic ordering at finite temperatures was rigorously
temperature will decrease down to zero with increasing inProven for the 3D short-range dipolar modieh spin-wave
terlayer separation, i.e., with increasing organic chain lengththeory also predicts a magnetic ordering for the 3D long-
This expectation was confirmed for short chain lengthst ~ range dipolar modél The critical exponents of the 3D short-
failed for long chain lengths? Even for very large interlayer range dipolar model were reported to be numerically close to
separations, finite temperature magnetic orderings were ofihe 3D Heisenberg valué$ The ground state of long-range
served. An Ising type of anisotropy can be an origin of thedipolar models was predicted to be antiferromagnetic for the
magnetic ordering, since a magnetic ordering is allowed irfimple cubic lattice and ferromagnetic for a bcc or fcc
the quasi-2D Ising model at a critical temperature close tdattice:* The dipolar ferromagnetism predicted was observed
that of the 2D Ising model even for an infinitesimal inter-iN @ recent experiment on a fcc rare-earth salt,
layer interaction, as is well known. Renormalization-grbup C£NaR(NQ,)s.'* The 3D Heisenberg modehE 1) with

and spin-wave approaches for the quasi-2D Heisenberglong-range dipolar interaction has been extensively studied.
model with Ising type of anisotropy have also been reportedFor J<0, the critical exponents are not affected by the di-
On the other hand, a dipolar interaction between the effectiviolar interaction® For J>0, the critical exponents were
dipoles of correlated spin clusters was suggested as an origfaund to be numerically very close to the 3D Heisenberg
of the magnetic ordering’ since a high-temperature ferro- values.* The linear spin-wave theory was employed for the
magnetism observed for a very large interlayer separatiodD and quasi-2D Heisenberg models with dipolar
was not easily understood with only an anisotropy. A dipolarinteraction;>*® where the dipolar interaction was shown to
effect on the quasi-2D Heisenberg model deserves a systerict as an anisotropy enabling a long-range order even in a
atic study in order to understand the magnetic ordering at ure 2D system. The effect of anisotropic exchange interac-
sizable temperature even with a very small interlayer exiions has also been considered, especially in the extreme case

change interaction. of uniaxial (Ising-like) dipoles. A crossover behavior from
The model Hamiltonian for our quasi-2D system is de-the dipolar to the Ising magnet was expected BAT(— 1)
scribed by ~(D/J)¥?, whereT, is the Ising critical temperature angl

is the crossover exponetitin a 2D uniaxial long-range di-
- - polar model withJ>0, the ground state was found to be a
H=-2> 3;S-§+D2 [S-S-3(S-1)(S-NIf(r). striped phasé®
7 7 (1) In this work, ground-state crossover in systems described
by Hamiltonian(1) have been investigated. Phase boundaries
The first term describes a nearest-neighbor exchange interaaere calculated from the ground-state energy, and Monte
tion, whereJ;;=J when§; andS; belong to the same layer, Carlo simulations were employed to study crossovers be-
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TABLE I. Ground statedg.s) in the Heisenberg model. TABLE lll. Ground states and energies in the quasi-2D Heisen-
berg model with a short-range dipolar interaction.
J N g.s. E
g.s. E
+ + F —(2+N)I=—(2+]\])]J|
- + AF (2+N)I=—(2+\)|J] F —(2+M)[J
+ - AF_ —(2=N)JI=—(2+|\)]J| AF —(2+N)|J]
- - DP, (2—=N)I=—(2+\D]J| AF_ —2D—(2—2\)J
DP —4D+[N+2(1-)\)S2]d
DR, —4D+(2—2\)J
tween the ground states. Finally, the results were compared Dpp,, —4AD+2\J

with experiments on (H,,.1NH3),MnCl, (CnMn).

dipolar ground state should be equal to that in (etifer-
romagnetic ground statd—4D.=—3|J|, so that

The 3D Heisenberg model on a simple cubic lattice can
have four different spin configurations in the ground state, D= (J+3[J])/4. ©)
with an energy—3[J|, depending on the signs dfand\  Then D_/J=1 for J>0, or D./J=1/2 for J<0. In the
(19=|r[=1). Also, the quasi-2D or quasi-1D Heisenberg qyasi-2D Heisenberg model with a short-range dipolar inter-
models can have the same spin configurations as those in thgtion, the ground states are quite complicated depending on
3D case. The spin conflguratlons and ground-state energigfe values o andD, and the sign of. Table Il shows the
are shown in Table I, in which\|=1, [\|<1, and|\[>1  ground-state energies in several spin configurations, where
correspond to the 3D, the quasi-2D, and the quasi-1D caseg—1 corresponds to the ground-state energy in the 3D iso-
respectively. In the ferromagneti€) and antiferromagnetic tropic case which is shown in Table Il. Our goal is to find the
(AF) phases, all the nearest-neighbor spins are aligned Pa8bhase boundaries in the\( D/J) space starting from the
allel and antiparallel, respectively. In the layered antiferro-"miting cases in Tables | and II. The spin configuration with
magnetic (Afr) phase, neighboring spins are aligned parallekpe |owest energy is assigned to be a ground-state, and the
in the same layer and antiparallel between the adjacent 'aB(jround-state energies are the same at the phase boundary.

ers. The DPphase is one of the dipolar ground states. Therne energy in the dipolar ground-state DP has a minimum at
spin configurations of the dipolar ground state are def|neq;z:0 for (\<1, D/J>0) and @ >1, D/J<0), or one at

Il. GROUND STATE

by?*? §?=1 for (\<1, D/J<0) and (>1, D/J>0). At the
. R R phase boundary between (R)and DR, —4D+(2—\)J
Sthk,)=(-D¥-1)'Sx+(-1)"(-1)'S)y =—(2+\)|J], so that
+H-D"(-D¥sz, [S|=1, 2 _2(3+3)-4D
BEEEEE @

with the ground-state energy ef4D. For convenience, it
was assumed that the spin axes coincide with the lattice axeBor J<0, A =2D/J, where a crossover from AF to pBc-
;(:F]’ 9:R, and 2:’[ The Spin Conﬁguration of the DP 9[,“’3. FOI’J>O, the phase boundary iS independenl\(ﬂnd
phase Corresponds to Ecg) with SX: Sy:O and SZ: 1, IS equal toD/J=1. At the phase boundary between F)A)
where the spins are aligned parallel in the same chain an@nd AR, —2D—J(2—\)=—|J|(2+\), and thus
antiparallel between the adjacent chains.

In the 3D isotropic Heisenberg model with a short-range _ 2(3—-[9)+2D (5)
dipolar interaction, for whichh=1, it is expected that the J+|J|

ground state iganti)ferromagnetic withD<|J| or dipolar For >0, A=D/J, at which a crossover from F to AF

with D>|J|. Thus, a crossover of the ground states is ex-
pected aD=D.. Table Il shows the ground-state energy in occurs. ForJ<0, the phase boundary between AF and AR

i - i : appears to be &/J= —2. However, neither AF nor AFare
each ground-state. A2=D., the ground-state energy in the a ground-state in the region, where the ground state is DP

In a similar manner, we can acquire a phase diagram with

TABLE Il. Ground state in the 3D isotropic Heisenberg model IN|<2, as shown in Fig. 1

with a short-range dipolar interaction, wheke=1 and D.=(J
+3|J|)/4. E.y and Ey4 are the exchange energy and the dipolar

energy’ respective|y_ I1I. MONTE CARLO SIMULATION
b S E e E Monte Carlo_ simulations were emplqyed for the cla_ssical
gs. ex d Heisenberg spings|=1, placed on & simple cubic lattice
D<D, F -3|9 0 -39 with periodic boundary conditiongif not specified, L
D<D, AF -3|J 0 -3|J] =10). The conventional Metropolis algorithm was em-
D>D, DP J —4D — 4D+ ployed to update the spin configurations. All the measure-

ments were carried out by decreasing the temperature from
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FIG. 1. Phase diagram in the quasi-2D Heisenberg model with a D/J
short-range dipolar interaction, calculated from the ground-state en-
ergies. FIG. 2. T./|J] vs D/J for A=1. Ground-state crossovers occur
atD./J=1 (J=+1) and 1/2 §=—1). PARA stands for a para-
an infinite temperature. 5000—-20000 MC%Monte Carlo  magnetic phase.
steps were used for thermal equilibration, and 30000—
120000 averages for a physical quantity were taken. For where the Boltzmann constant is set to unity ands a
small\, the system size affects the effective dimensionalityweighting function of the lattice site coordinate. Let the lat-
of the systent? In a quasi-2D system with a small size, the tice site coordinates be expressed s S(h,k,1) and f;
growth of the correlation length in a layer is much faster than=f(h,k,I). Then, iff(h,k,1)=1, M;=M andy;= y are the
that along the anisotropy axis. Then, the spins in the samgagnetization and the susceptibility for the ferromagnetic
layer may act as a single spin and the system as a 1D one. [F) ground-state. Iff (h,k,1)=(—1)""k"!, M;=Mg and x;

;  PARA

T,/

order to conserve the 3D nature of the systamyas con- = g are the staggered magnetization and susceptibility for

fined to the range OIA<1. the antiferromagnetic(AF) ground-state, respectively. If
The energy and the specific heat were measured following(h, k,1)=(—1)M*+ (- 1)*""+(-1)"*' *® M;=M, and

common definitions: Xi=xp are the staggered magnetization and susceptibility

for the DP ground-state, respectively. fith,k,1)=(—1)',

1 M¢=M_ and y;=y_ are the staggered magnetization and
E= F<H>, (6)  susceptibility for the AF ground-state, respectively.
1 IV. RESULTS AND DISCUSSION
vzﬁ F<H2>_ L3E?|. @) Figure 2 shows the critical temperatures as a function of

D/J with A=1, which shows a dip ab./J=1 (J=+1)

The exchange energ., and the dipolar energg, were ~and atDc/J=1/2 (J=—1), in agreement with Eq(3).

also measured independently, in the same manner. The tenen 0=D<D., the ground-state is a 3@ntjferromagnet
perature of maximum specific heat was adopted as an effe@nd aboveéd/J the ground-state is a dipolar one, which was
tive critical temperature. The effective critical temperature ofconfirmed by measuring thestaggerefl magnetizationM,

the 3D short-range dipolar model was measured to bMs, andMp. At D¢/J, a crossover from th¢antferro-
T./D=1.86(0.02), which is compatible with a previous magnetlc to the dlpola_r g_round—state occurs, which is accom-
report'® The (staggerell magnetizationM; and the(stag- Panied by a sharp dip iT./|J|. Except for the absolute

gered susceptibility y; were also measured, which are de- value of D./J, the overall crossover behaviors are similar
fined by regardless of the sign o

Figure 3 displays the critical temperatures as a function of
211/ A with J=—1 andD=0.2, showing a crossover from AF to
Mf=—<[(z fiéi) } > (8) DR at\.. The crossover behavior is very similar to that in

the 3D case, where the critical temperature, shows a dip at
the crossover. Withx decreasing below., the critical tem-
perature increases, in contrast to the expectation that the
, (9) critical temperature should decrease in the quasi-2D Heisen-
berg model. Wheih =)\, the ground-state is AF. Just below
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FIG. 3. T;(\)/|J| vs \ for J=—1 andD=0.2. The open and
solid squares correspond to=20 andL=10, respectively. The FIG. 4. Ground-state phase diagram in thel§/J) space, mea-
open circle corresponds @=0. In the inset the crossover region sured by the Monte Carlo simulations wilk= +1 and—1 (sym-
is shown, where two successive phase transitions occur with desols), resulting in good agreement with th@blid lineg calculated
creasing temperature: a second-order transition from PARA to AFrom the ground-state energy. Crossover regions are included in the
phase and a first-order one from AF to Ofhase. error bars.

Ac, @ Crossover region exists, where two phase transitionglinimum atS,=1 (DR phasgor atS,=0 (DR, phasg. At
occur as shown in the inset: with decreasing temperaturthe phase boundary between AF and, DP-2D,(1+ 6)
from the paramagnetic phase, a second-order antiferromag-J(2—\)=J(2+\), so that
netic transition occurs and then a first-order transition from
AF to DR occurs near the zero temperature. With further D, A
decrease i, the first-order transition temperature increases T T 1t (11)
and the first-order nature weakens. It then becomes equal to
the antiferromagnetic transition temperature, where the antiAlong the anisotropy axis, both the dipolar and the exchange
ferromagnetic transition is smeared out, and the system urinteractions are functions of the interlayer distance, and the
dergoes a single second-order transition from a paramagnetiipolar anisotropys can be reduced to a function of the
state to a dipolar ground-state. exchange anisotropx. Assumingdé=\% (0=<a=<1), Eq.
While the overall behavior is similar to the 3D case, the(11) becomes
quasi-2D Heisenberg model undergoes a crossover from AF
to DR for J<O0 or a crossover from F to AFor J>0. The
crossover anisotropy, is a function ofD/J and is shown in —p Ae=1tAc. (12
Fig. 4: \;=2D/J for J=—1 or A\;=D/J for J=+1, in °
agreement with Eq¢4) and(5). In Fig. 4 is shown the phase Because\. is a monotonic function ofx, the maximum
diagram measured by Monte Carlo simulations, which is inreduction of\, is
good agreement with that calculated, shown in Fig. 1.
While we have assumed that the dipolar interaction is A(a=1) 1
isotropic in spite of the anisotropic exchange interaction, a N(a=0) :2(1—D KR
structural anisotropy as that in CnMn leads to an anisotropic ¢ 0

dipolar interaction as well as an anisotropic exchange onérpe reduction in\, due to the dipolar anisotropy is at best
Then, the magnitude of the dipolar coupliBgin the model  1,> whenD,/|J|—0 anda—1.

Hamiltonian[Eq. (1)] should be redefined=D, when S Figure 5 showsT./|J| measured in CnMn, which is a

and S; belong to the same layer afd=46D, (0<6<1)  \g|l.known quasi-2D Heisenberg antiferromagnet with spin
otherwise. The energy in the dipolar ground-state is canting, as a function of the carbon numbein the case of
C3Mn, thle& lattice constantse?ée about 7 A in the layer and
_ (1 a2 2 about 26 A between the layetsThe dipolar interaction be-
E==Dol3+5-(1=9)F ]+ +2(1-MS;], (10 tween spins is much smaller in different layers than in the
same layer, by about®4times, i.e.,6~1/64. The lattice an-
where the dipolar energffirst term) was modified, but not isotropy increases further with increasing carbon number.
the exchange enerdigecond terry) in comparison to Table The approximation of dipolar interaction as being short
[ll. The energy does not change in different ground-states. ranged is believed to be fairly suitable at least for the dipolar
Assuming O=<A<1, J<O0, and 6=\, Eq. (10, has a interaction between different layers.

(13
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With increasing carbon number, the interlayer separa-
tion increases, whereas the interlayer exchange interaction
6.6 J decreases. Far<8, T./|J| decreases with increasing as

6.8 1

expected for the quasi-2D Heisenberg model. However, for

6.4 n>8, T./|J| increases again with increasing T./|J|
6ol 1 shows a typical behavior of the ground-state crossover in the
presence of dipolar interaction. Unfortunately, the magnetic
3 6.0 ] ground-states for the long-chain compounds are not known
,:o and the dipolar ground-state also appears antiferromagnetic.

served with decreasing interlayer exchange interaction can-

581 } Nevertheless, it appears that the turning upTef|J| ob-
5.6
] 1 1 not be understood without a crossover from the AF to the

5.4 DP, ground-state, sinc&./|J| of the quasi-2D Heisenberg
5] { model decreases monotonously with decreasingven in
I the presence of an additional anisotrdpyA quasi-2D
0 2 4 6 8 10 12 Heisenberg magnet with<<\ is believed to provide a good
Carbon number n example of a dipolar magnet.

In summary, the quasi-2D classical Heisenberg model
with a short-range dipolar interaction was studied. Phase

The ordering temperature and the exchange energy iﬁogndaries were calculated from the _groungl-state energy,
CnMn were reported in our previous workThe ordering which was confirmed by Monte Carlo simulations, showmg
temperature was determined from the weak magnetic mghat the ground-state crossover appears as a sharp dip of
ment originating from the canted spin component. The exJc/[d]. The observed turning up of T/ n
change energyd| was calculated from the temperature of (CnHzn+1NHz),MnCl, with increasing interlayer separation
maximum susceptibilityksT ymax=1.2629(S+1) with S is in contrast to the expec.tatlon that Fhe .crltlcal ter.nperatu're
=5/2. The temperature of maximum susceptibility was mea__should decrgase to zero with decreasing mterla_lyer interaction
sured again withi 1 K in this work. The exchange energy I" the quasi-2D Heisenberg model. The turing up is be-
was calculated to be about 7 K. The usual estimate of thd€ved to be due to a crossover from the antiferromagentic to
dipolar energy scale isi,/4m)g?u?/a%, whereu,, g, x,  (he dipolar ground-states.
anda are the magnetic permeability, factor, the magnetic
moment, and the lattice constant, respectivelJhe dipolar
energyD, was calculated to be about 0.5 K, so tiag/|J] This work was supported by the KISTERational Re-
~0.07. Our simulation was limited to 0slD,/|J|<0.5, search Laboratory and Grant No. M102KS010001-02K1901-
corresponding to 0Z\. <1, in order to conserve the 3D 01814 and by the Brain Korea 21 Project in 2003. We thank
nature of our model, as discussed in Sec.Dl}/|J| calcu- the Korea Basic Science Institute for the superconducting
lated in CnMn is not far from our simulation range. guantum interference device measurements.

FIG. 5. T./|J| measured in (fHyn41NH3),MNCl,.
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