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Ground-state crossover in the quasi-two-dimensional classical Heisenberg model
with dipolar-type interaction
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We have studied the quasi-two-dimensional Heisenberg model with nearest-neighbor dipolar interaction by
using a Monte Carlo simulation. By varying the dipolar coupling magnitudeD or the anisotropy ratiol of the
interlayer exchange interaction to the intralayer one, crossovers between different ground-states were observed.
The phase boundaries in the (D, l) space were calculated from the ground-state energies, which are in
agreement with the Monte Carlo results. Our Monte Carlo results were compared with experimental data on
(CnH2n11NH3)2MnCl4.

DOI: 10.1103/PhysRevB.68.134437 PACS number~s!: 75.10.Hk, 75.30.Kz, 75.40.Mg
e
ns
o
ye
sy
en
em
rin
in

gt

r
o

h
i
t

r-
p
rg
e
tiv
rig
-
tio
la
te
at
ex

e

r
r,

en
ion
irs

d
sly

g-
t-

to
e
the
cc
ed
lt,

ied.
di-

rg
he
lar
to
in a
ac-
case

a

bed
ries
nte
be-
I. INTRODUCTION

Molecule-based magnets, such as (CnH2n11NH3)2MnCl4
~CnMn! ~Ref. 1! and Cu2(OH)3(CmH2m11CO2),2 have been
regarded as representative quasi-two-dimensional~quasi-2D!
Heisenberg magnets. They consist of alternating magn
and nonmagnetic layers. The nonmagnetic layers are co
tuted of organic chains, whose length can be easily c
trolled. Thus, the interlayer separation and the interla
magnetic interaction between the magnetic layers can be
tematically controlled. Because the two-dimensional Heis
berg model cannot have a long-range order at any finite t
perature, it can be expected that the magnetic orde
temperature will decrease down to zero with increasing
terlayer separation, i.e., with increasing organic chain len
This expectation was confirmed for short chain lengths3 but
failed for long chain lengths:1,2 Even for very large interlaye
separations, finite temperature magnetic orderings were
served. An Ising type of anisotropy can be an origin of t
magnetic ordering, since a magnetic ordering is allowed
the quasi-2D Ising model at a critical temperature close
that of the 2D Ising model even for an infinitesimal inte
layer interaction, as is well known. Renormalization-grou4

and spin-wave5 approaches for the quasi-2D Heisenbe
model with Ising type of anisotropy have also been report
On the other hand, a dipolar interaction between the effec
dipoles of correlated spin clusters was suggested as an o
of the magnetic ordering,6,7 since a high-temperature ferro
magnetism observed for a very large interlayer separa
was not easily understood with only an anisotropy. A dipo
effect on the quasi-2D Heisenberg model deserves a sys
atic study in order to understand the magnetic ordering
sizable temperature even with a very small interlayer
change interaction.

The model Hamiltonian for our quasi-2D system is d
scribed by

H52(
iÞ j

Ji j Si•Sj1D(
iÞ j

@Si•Sj23~Si• r̂ !~Sj• r̂ !# f ~r !.

~1!

The first term describes a nearest-neighbor exchange inte
tion, whereJi j 5J whenSi andSj belong to the same laye
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and Ji j 5lJ otherwise. WhenD50, Eq. ~1! describes a
stack of noninteracting 2D Heisenberg layers withl50, and
describes a 3D Heisenberg system withl51. The second

term indicates a dipolar interaction, whererW denotes the vec-
tor connecting the two spinsSi andSj . D(>0) is the mag-
nitude of the dipolar coupling andl is the ratio of the inter-
layer exchange interaction to the intralayer one. Wh
considering only the short-range interactions, the funct
f (r ) can be restricted to the nearest-neighboring pa
@ f (1)51#.

The dipolar models (J50) have long been studied, an
magnetic ordering at finite temperatures was rigorou
proven for the 3D short-range dipolar model.8 A spin-wave
theory also predicts a magnetic ordering for the 3D lon
range dipolar model.9 The critical exponents of the 3D shor
range dipolar model were reported to be numerically close
the 3D Heisenberg values.10 The ground state of long-rang
dipolar models was predicted to be antiferromagnetic for
simple cubic lattice and ferromagnetic for a bcc or f
lattice.11 The dipolar ferromagnetism predicted was observ
in a recent experiment on a fcc rare-earth sa
Cs2NaR(NO2)6.12 The 3D Heisenberg model (l51) with
long-range dipolar interaction has been extensively stud
For J,0, the critical exponents are not affected by the
polar interaction.13 For J.0, the critical exponents were
found to be numerically very close to the 3D Heisenbe
values.14 The linear spin-wave theory was employed for t
2D and quasi-2D Heisenberg models with dipo
interaction,15,16 where the dipolar interaction was shown
act as an anisotropy enabling a long-range order even
pure 2D system. The effect of anisotropic exchange inter
tions has also been considered, especially in the extreme
of uniaxial ~Ising-like! dipoles. A crossover behavior from
the dipolar to the Ising magnet was expected at (T/Tc21)
;(D/J)1/f, whereTc is the Ising critical temperature andf
is the crossover exponent.17 In a 2D uniaxial long-range di-
polar model withJ.0, the ground state was found to be
striped phase.18

In this work, ground-state crossover in systems descri
by Hamiltonian~1! have been investigated. Phase bounda
were calculated from the ground-state energy, and Mo
Carlo simulations were employed to study crossovers
©2003 The American Physical Society37-1
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tween the ground states. Finally, the results were comp
with experiments on (CnH2n11NH3)2MnCl4 ~CnMn!.

II. GROUND STATE

The 3D Heisenberg model on a simple cubic lattice c
have four different spin configurations in the ground sta
with an energy23uJu, depending on the signs ofJ and l
(uJu5ulu51). Also, the quasi-2D or quasi-1D Heisenbe
models can have the same spin configurations as those i
3D case. The spin configurations and ground-state ene
are shown in Table I, in whichulu51, ulu,1, andulu.1
correspond to the 3D, the quasi-2D, and the quasi-1D ca
respectively. In the ferromagnetic~F! and antiferromagnetic
~AF! phases, all the nearest-neighbor spins are aligned
allel and antiparallel, respectively. In the layered antifer
magnetic (AFL) phase, neighboring spins are aligned para
in the same layer and antiparallel between the adjacent
ers. The DPl phase is one of the dipolar ground states. T
spin configurations of the dipolar ground state are defi
by8,10

SW ~h,k,l !5~21!k~21! lSxx̂1~21!h~21! lSyŷ

1~21!h~21!kSzẑ, uSW i u51, ~2!

with the ground-state energy of24D. For convenience, it
was assumed that the spin axes coincide with the lattice a
x̂5ĥ, ŷ5 k̂, and ẑ5 l̂ . The spin configuration of the DPl
phase corresponds to Eq.~2! with Sx5Sy50 and Sz51,
where the spins are aligned parallel in the same chain
antiparallel between the adjacent chains.

In the 3D isotropic Heisenberg model with a short-ran
dipolar interaction, for whichl51, it is expected that the
ground state is~anti!ferromagnetic withD!uJu or dipolar
with D@uJu. Thus, a crossover of the ground states is
pected atD5Dc . Table II shows the ground-state energy
each ground-state. AtD5Dc , the ground-state energy in th

TABLE I. Ground states~g.s.! in the Heisenberg model.

J l g.s. E

1 1 F 2(21l)J52(21ulu)uJu
- 1 AF (21l)J52(21ulu)uJu
1 - AFL 2(22l)J52(21ulu)uJu
- - DPl (22l)J52(21ulu)uJu

TABLE II. Ground state in the 3D isotropic Heisenberg mod
with a short-range dipolar interaction, wherel51 and Dc5(J
13uJu)/4. Eex and Ed are the exchange energy and the dipo
energy, respectively.

D g.s. Eex Ed E

D,Dc F 23uJu 0 23uJu
D,Dc AF 23uJu 0 23uJu
D.Dc DP J 24D 24D1J
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dipolar ground state should be equal to that in the~anti!fer-
romagnetic ground state,J24Dc523uJu, so that

Dc5~J13uJu!/4. ~3!

Then, Dc /J51 for J.0, or Dc /J51/2 for J,0. In the
quasi-2D Heisenberg model with a short-range dipolar in
action, the ground states are quite complicated dependin
the values ofl andD, and the sign ofJ. Table III shows the
ground-state energies in several spin configurations, wh
l51 corresponds to the ground-state energy in the 3D
tropic case which is shown in Table II. Our goal is to find t
phase boundaries in the (l, D/J) space starting from the
limiting cases in Tables I and II. The spin configuration wi
the lowest energy is assigned to be a ground-state, and
ground-state energies are the same at the phase boun
The energy in the dipolar ground-state DP has a minimum
Sz50 for (l,1, D/J.0) and (l.1, D/J,0), or one at
Sz

251 for (l,1, D/J,0) and (l.1, D/J.0). At the
phase boundary between (A)F and DPl , 24D1(22l)J
52(21l)uJu, so that

l5
2~J1uJu!24D

J2uJu
. ~4!

For J,0, l52D/J, where a crossover from AF to DPl oc-
curs. ForJ.0, the phase boundary is independent ofl and
is equal toD/J51. At the phase boundary between (A)F
and AFL , 22D2J(22l)52uJu(21l), and thus

l5
2~J2uJu!12D

J1uJu
. ~5!

For J.0, l5D/J, at which a crossover from F to AFL
occurs. ForJ,0, the phase boundary between AF and AL
appears to be atD/J522. However, neither AF nor AFL are
a ground-state in the region, where the ground state is Dl .
In a similar manner, we can acquire a phase diagram w
ulu,2, as shown in Fig. 1.

III. MONTE CARLO SIMULATION

Monte Carlo simulations were employed for the classi
Heisenberg spins,usu51, placed on aL3 simple cubic lattice
with periodic boundary conditions~if not specified, L
510). The conventional Metropolis algorithm was em
ployed to update the spin configurations. All the measu
ments were carried out by decreasing the temperature f

l

r

TABLE III. Ground states and energies in the quasi-2D Heis
berg model with a short-range dipolar interaction.

g.s. E

F 2(21l)uJu
AF 2(21l)uJu
AFL 22D2(22l)J
DP 24D1@l12(12l)Sz

2#J
DPl 24D1(22l)J
DPhk 24D1lJ
7-2
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an infinite temperature. 5000–20 000 MCS’s~Monte Carlo
steps! were used for thermal equilibration, and 30 000
120 000 averages for a physical quantity were taken. Fo
small l, the system size affects the effective dimensiona
of the system.19 In a quasi-2D system with a small size, th
growth of the correlation length in a layer is much faster th
that along the anisotropy axis. Then, the spins in the sa
layer may act as a single spin and the system as a 1D on
order to conserve the 3D nature of the system,l was con-
fined to the range 0.1<l<1.

The energy and the specific heat were measured follow
common definitions:

E5
1

L3
^H&, ~6!

Cv5
1

T2 F 1

L3
^H2&2L3E2G . ~7!

The exchange energyEex and the dipolar energyEd were
also measured independently, in the same manner. The
perature of maximum specific heat was adopted as an e
tive critical temperature. The effective critical temperature
the 3D short-range dipolar model was measured to
Tc /D51.86(0.02), which is compatible with a previou
report.10 The ~staggered! magnetizationM f and the~stag-
gered! susceptibilityx f were also measured, which are d
fined by

M f5
1

L3 K F S ( f iSW i D 2G1/2L , ~8!

x f5
1

T F 1

L3 K S ( f iSW i D 2L 2L3M2G , ~9!

FIG. 1. Phase diagram in the quasi-2D Heisenberg model wi
short-range dipolar interaction, calculated from the ground-state
ergies.
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where the Boltzmann constant is set to unity andf i is a
weighting function of the lattice site coordinate. Let the la
tice site coordinates be expressed asSW i5SW (h,k,l ) and f i
5 f (h,k,l ). Then, if f (h,k,l )51, M f5M andx f5x are the
magnetization and the susceptibility for the ferromagne
~F! ground-state. Iff (h,k,l )5(21)h1k1 l , M f5MS andx f
5xS are the staggered magnetization and susceptibility
the antiferromagnetic~AF! ground-state, respectively. I
f (h,k,l )5(21)h1k1(21)k1 l1(21)h1 l ,10 M f5MD and
x f5xD are the staggered magnetization and susceptib
for the DP ground-state, respectively. Iff (h,k,l )5(21)l ,
M f5ML and x f5xL are the staggered magnetization a
susceptibility for the AFL ground-state, respectively.

IV. RESULTS AND DISCUSSION

Figure 2 shows the critical temperatures as a function
D/J with l51, which shows a dip atDc /J51 (J511)
and at Dc /J51/2 (J521), in agreement with Eq.~3!.
When 0<D,Dc , the ground-state is a 3D~anti!ferromagnet
and aboveDc /J the ground-state is a dipolar one, which w
confirmed by measuring the~staggered! magnetizationM,
MS , and MD . At Dc /J, a crossover from the~anti!ferro-
magnetic to the dipolar ground-state occurs, which is acco
panied by a sharp dip inTc /uJu. Except for the absolute
value of Dc /J, the overall crossover behaviors are simil
regardless of the sign ofJ.

Figure 3 displays the critical temperatures as a function
l with J521 andD50.2, showing a crossover from AF t
DPl at lc . The crossover behavior is very similar to that
the 3D case, where the critical temperature, shows a di
the crossover. Withl decreasing belowlc , the critical tem-
perature increases, in contrast to the expectation that
critical temperature should decrease in the quasi-2D Heis
berg model. Whenl>lc , the ground-state is AF. Just belo

a
n-

FIG. 2. Tc /uJu vs D/J for l51. Ground-state crossovers occ
at Dc /J51 (J511) and 1/2 (J521). PARA stands for a para
magnetic phase.
7-3
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KYU WON LEE AND CHEOL EUI LEE PHYSICAL REVIEW B68, 134437 ~2003!
lc , a crossover region exists, where two phase transit
occur as shown in the inset: with decreasing tempera
from the paramagnetic phase, a second-order antiferrom
netic transition occurs and then a first-order transition fr
AF to DPl occurs near the zero temperature. With furth
decrease inl, the first-order transition temperature increas
and the first-order nature weakens. It then becomes equ
the antiferromagnetic transition temperature, where the a
ferromagnetic transition is smeared out, and the system
dergoes a single second-order transition from a paramag
state to a dipolar ground-state.

While the overall behavior is similar to the 3D case, t
quasi-2D Heisenberg model undergoes a crossover from
to DPl for J,0 or a crossover from F to AFL for J.0. The
crossover anisotropylc is a function ofD/J and is shown in
Fig. 4: lc52D/J for J521 or lc5D/J for J511, in
agreement with Eqs.~4! and~5!. In Fig. 4 is shown the phas
diagram measured by Monte Carlo simulations, which is
good agreement with that calculated, shown in Fig. 1.

While we have assumed that the dipolar interaction
isotropic in spite of the anisotropic exchange interaction
structural anisotropy as that in CnMn leads to an anisotro
dipolar interaction as well as an anisotropic exchange o
Then, the magnitude of the dipolar couplingD in the model
Hamiltonian@Eq. ~1!# should be redefined:D5Do whenSi
and Sj belong to the same layer andD5dDo (0<d<1)
otherwise. The energy in the dipolar ground-state is

E52Do@31d2~12d!Sz
2#1J@l12~12l!Sz

2#, ~10!

where the dipolar energy~first term! was modified, but not
the exchange energy~second term!, in comparison to Table
III. The energy does not change in different ground-state

Assuming 0<l<1, J,0, and d>l, Eq. ~10!, has a

FIG. 3. Tc(l)/uJu vs l for J521 andD50.2. The open and
solid squares correspond toL520 andL510, respectively. The
open circle corresponds toD50. In the inset the crossover regio
is shown, where two successive phase transitions occur with
creasing temperature: a second-order transition from PARA to
phase and a first-order one from AF to DPl phase.
13443
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minimum atSz51 (DPl phase! or atSz50 (DPhk phase!. At
the phase boundary between AF and DPl , 22Do(11d)
1J(22l)5J(21l), so that

2
Do

J
5

l

11d
. ~11!

Along the anisotropy axis, both the dipolar and the excha
interactions are functions of the interlayer distance, and
dipolar anisotropyd can be reduced to a function of th
exchange anisotropyl. Assumingd5la (0<a<1), Eq.
~11! becomes

2
J

Do
lc511lc

a . ~12!

Becauselc is a monotonic function ofa, the maximum
reduction oflc is

lc~a51!

lc~a50!
5

1

2~12Do /uJu!
. ~13!

The reduction inlc due to the dipolar anisotropy is at be
1/2 whenDo /uJu→0 anda→1.

Figure 5 showsTc /uJu measured in CnMn, which is a
well-known quasi-2D Heisenberg antiferromagnet with sp
canting, as a function of the carbon numbern. In the case of
C3Mn, the lattice constants are about 7 Å in the layer a
about 26 Å between the layers.20 The dipolar interaction be-
tween spins is much smaller in different layers than in
same layer, by about 43 times, i.e.,d;1/64. The lattice an-
isotropy increases further with increasing carbon numb
The approximation of dipolar interaction as being sh
ranged is believed to be fairly suitable at least for the dipo
interaction between different layers.

e-
F

FIG. 4. Ground-state phase diagram in the (l,D/J) space, mea-
sured by the Monte Carlo simulations withJ511 and21 ~sym-
bols!, resulting in good agreement with that~solid lines! calculated
from the ground-state energy. Crossover regions are included in
error bars.
7-4
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GROUND-STATE CROSSOVER IN THE QUASI-TWO- . . . PHYSICAL REVIEW B 68, 134437 ~2003!
The ordering temperature and the exchange energ
CnMn were reported in our previous work.1 The ordering
temperature was determined from the weak magnetic
ment originating from the canted spin component. The
change energyuJu was calculated from the temperature
maximum susceptibility,kBTxmax51.2625JS(S11) with S
55/2. The temperature of maximum susceptibility was m
sured again within 1 K in this work. The exchange energ
was calculated to be about 7 K. The usual estimate of
dipolar energy scale is (mo/4p)g2m2/a3, wheremo , g, m,
and a are the magnetic permeability,g factor, the magnetic
moment, and the lattice constant, respectively.21 The dipolar
energyDo was calculated to be about 0.5 K, so thatDo /uJu
;0.07. Our simulation was limited to 0.1<Do /uJu<0.5,
corresponding to 0.1<lc<1, in order to conserve the 3D
nature of our model, as discussed in Sec. III.Do /uJu calcu-
lated in CnMn is not far from our simulation range.
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With increasing carbon numbern, the interlayer separa
tion increases, whereas the interlayer exchange interac
decreases. Forn,8, Tc /uJu decreases with increasingn, as
expected for the quasi-2D Heisenberg model. However,
n.8, Tc /uJu increases again with increasingn. Tc /uJu
shows a typical behavior of the ground-state crossover in
presence of dipolar interaction. Unfortunately, the magne
ground-states for the long-chain compounds are not kno
and the dipolar ground-state also appears antiferromagn
Nevertheless, it appears that the turning up ofTc /uJu ob-
served with decreasing interlayer exchange interaction c
not be understood without a crossover from the AF to
DPl ground-state, sinceTc /uJu of the quasi-2D Heisenberg
model decreases monotonously with decreasingl, even in
the presence of an additional anisotropy.4,5 A quasi-2D
Heisenberg magnet withl,lc is believed to provide a good
example of a dipolar magnet.

In summary, the quasi-2D classical Heisenberg mo
with a short-range dipolar interaction was studied. Ph
boundaries were calculated from the ground-state ene
which was confirmed by Monte Carlo simulations, showi
that the ground-state crossover appears as a sharp d
Tc /uJu. The observed turning up of Tc /uJu in
(CnH2n11NH3)2MnCl4 with increasing interlayer separatio
is in contrast to the expectation that the critical temperat
should decrease to zero with decreasing interlayer interac
in the quasi-2D Heisenberg model. The turning up is b
lieved to be due to a crossover from the antiferromagenti
the dipolar ground-states.
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