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Zero-frequency transport properties of one-dimensional spin-12 systems
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We report a detailed analysis of the Drude weights for both thermal and spin transport in one-dimensional
spin-12 systems by means of exact diagonalization and analytic approaches at finite temperatures. Transport
properties are studied first for the integrableXXZ model and second for various nonintegrable systems such as
the dimerized chain, the frustrated chain, and the spin ladder. We compare our results obtained by exact
diagonalization and mean-field theory with those of the Bethe ansatz, bosonization, and other numerical studies
in the case of the anisotropic Heisenberg model both in the gapless and gapped regime. In particular, we find
indications that the Drude weight for spin transport is finite in the thermodynamic limit for the isotropic chain.
For the nonintegrable models, a finite-size analysis of the numerical data for the Drude weights is presented,
covering the entire parameter space of the dimerized and frustrated chain. We also discuss which conclusions
can be drawn from bosonization regarding the question of whether the Drude weights are finite or not. One of
our main results is that the Drude weights vanish in the thermodynamic limit for nonintegrable models.
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I. INTRODUCTION

Due to their relevance for modeling the magnetic prop
ties of several quasi-one-dimensional materials, dimeri
and frustrated spin-1

2 chains and ladders are models of gre
and current interest. Recently, growing experimental e
dence has been found that magnetic excitations can con
ute significantly to the thermal conductivity of various qua
one and quasi-two-dimensional materials.1–11 Stimulated by
these observations, many theoretical activities have
dressed the issue of heat transport in one-dimensional
systems.12–22While spin transport has been a topic of num
ous theoretical investigations,22–45 the theory of thermal
transport is less well understood.

One of the key questions is to understand under wh
conditions transport is ballistic, i.e., dissipationless. The
terion for this is the existence of a singularity at zero f
quency in the real part of the conductivity. Therefore, one
interested in the integrated weight of this singularity — t
so-called Drude weight — in the thermodynamic limit. Th
appearance of a nonzero Drude weight is often ascribe
the influence of conservation laws on transp
properties.30,38,43,46,47For example, in the case of the Heise
berg chain the energy-current operator is conserved,30,48 im-
plying a nonzero thermal Drude weight at all temperatur
Another widely discussed and related issue is the differe
between transport in integrable models compared to noni
grable ones.15,17,20,27,33,41,43

The purpose of the present paper is to provide a syst
atic study of both the Drude weight for spin and therm
transport at finite temperatures by means of exact diago
ization on finite systems and analytic methods. The dep
dence on exchange coupling anisotropy, frustration
dimerization will be clarified.

We start with an overview of the results of previous a
related works. For the anisotropic Heisenberg chain, i
possible in principle to compute thermodynamic quantit
exactly with the Bethe ansatz at arbitrary temperatures.
0163-1829/2003/68~13!/134436~17!/$20.00 68 1344
r-
d
t
i-
ib-
-

d-
in

-

h
i-
-
s

to
t

s.
e

e-

-
l
l-

n-
d

s
s
e

Drude weight for thermal transport has been obtained in
antiferromagnetic regime of this model along this line.14,49

Numerical studies15,17 have provided the thermal Drud
weight in the antiferromagnetic regime, in the gapped, fer
magnetic phase and for the isotropic, ferromagnetic ch
Here we extend on such analysis by adding data for the g
less, ferromagnetic regime.

In a first numerical work devoted to the issue of therm
transport in nonintegrable models, Alvarez and Gros15 have
conjectured that the Drude weight is generically finite
dimerized and frustrated spin systems although the ene
current operator is not conserved in these cases. Howe
we have argued in Refs. 17 and 21 that this conclusion c
not be sustained for gapped, frustrated chains if larger sys
sizes are included in the finite-size analysis. In this paper,
extend our parameter study of the thermal Drude weigh
include dimerized chains and spin ladders also. The m
result is that the numerical data are best interpreted in te
of a vanishingthermal Drude weight in nonintegrable sy
tems.

Recently, however, the thermal Drude weight has a
been computed by means of analytic approaches yieldin
finite Drude weight at low temperatures.18,20 In Ref. 18, the
spin ladder and dimerizedXY models have been studied b
mapping to noninteracting models. While this is exact in t
latter case, it is an approximation in the case of the s
ladder. For instance, the influence of incommensur
umklapp-scattering terms on transport properties of mas
models is not yet fully understood. Bosonization was appl
in Ref. 20 to the cases of the dimerized and the frustra
chain leading to the interesting result that certain umkla
scattering terms do not spoil the conservation of the ene
current.

Spin transport in spin-1
2 models is equivalent to charg

transport of~spinless! fermions and an enormous amount
work has been devoted to this field.22–45The situation of spin
transport in the integrable model, i.e., the Heisenberg ch
is different from the case of thermal transport since the sp
©2003 The American Physical Society36-1
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current operator is only conserved in the case of free fer
ons (XY model!. Nevertheless, the Drude weight is finite
the gapless regime while numerical29,32and analytical36 stud-
ies have found indications that it may vanish in the gapp
cases. The case of the isotropic chain is still the subjec
discussion.31,33,37,41,43,44

At present, no final agreement about the results from
ferent Bethe ansatz computations34,37,50,51 for the Drude
weight has been achieved. For example, the Bethe an
computations by Zotos37 predict the Drude weight of the
isotropic chain to be zero while Klu¨mper and co-workers50

have found a finite Drude weight in this case. The lat
conclusion is in agreement with some numerical works
exact diagonalization31,33 ~ED! and quantum Monte Carlo
~QMC! simulations41—as well as analytic approaches.43

Very recently, however, Longet al.44 have developed a nove
Lanczos method for finite temperatures which has been
plied to spin transport in the anisotropic Heisenberg ch
with up toN528 sites. They interpret their numerical resu
in terms of a vanishing Drude weight for the isotropic cha

Regarding the temperature dependence of the Dr
weight in the gapless regime contradicting results are
ported in the literature.37,41,43,50,51

As far as nonintegrable models are concerned, the e
of frustration on spin transport has been studied at z
temperature,26 while at finite temperatures, Ising-like intera
tions with distance up to 3 have been investigated with
~Refs. 29 and 33! and QMC ~Ref. 41!. Fujimoto and
Kawakami43 have discussed transport in nonintegrable m
els in the low-energy limit with bosonization. They find
nonzero Drude weight provided that particle-hole symme
is broken in agreement with Ref. 30. The physical reaso
the finite overlap of the spin-current operator, which is n
conserved in the presence of any umklapp scattering, to
energy-current operator.

In their work on charge transport in a one-dimensio
system,38 Rosch and Andrei have argued that the Dru
weight is zero in the presence ofdangerously irrelevant per-
turbationssince then all relevant conservation laws are b
ken. On the basis of this result, a zero Drude weight is na
rally expected in all nonintegrable and gapless spin mod

It will be an additional focus of the present paper to p
vide a complete as possible analysis of spin transport in n
integrable models such as the dimerized and frustra
chains as well as spin ladders. As a main result, the num
cal data indicate a vanishing of the Drude weight in the th
modynamic limit consistent with Refs. 29 and 38.

Although it is beyond the scope of this paper to give a
conclusive explanations of recent transport experiments
low-dimensional spin materials, we will provide a list of m
terials for which this work could be of relevance. Whenev
possible we will make connection to these experiments
discuss implications of our results for their interpretatio
First, there are surprisingly large magnetic thermal cond
tivities observed in the compounds~Sr,La,Ca!14Cu24O41
~Refs. 2–5!. Here, a strong magnetic contribution to the th
mal conductivity is believed to be mediated by magne
excitations of spin ladders. Second, similar findings ha
been reported for the spin chain materials SrCuO2, Sr2CuO3
13443
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~Ref. 6! and BaCu2Si2O7 ~Ref. 7!. Third, we mention the
anorganic spin-Peierls material CuGeO3 ~Ref. 1! although
the physical nature of the heat carrying excitations is s
under controversial discussion.1,52 It has been suggested th
the magnetic properties of this material can be describe
some extent by a dimerized and frustrated chain. Fina
strong evidence for thermal transport mediated by mag
excitations in two-dimensional cuprate compounds has a
been found.8–11

The plan of the paper is the following. In Sec. II, w
introduce the model which is a dimerized and frustra
Heisenberg chain including an exchange-coupling anis
ropy. Next, we summarize the basic relations for the tra
port coefficients and, particularly, for the Drude weights
they follow from linear response theory in Sec. III. The de
nitions for the current operators will be given at the end
this section. Our results are presented in Secs. IV and
First, we discuss transport properties of the anisotro
Heisenberg chain using mean-field theory and exact dia
nalization. The results will be compared to Bethe ans
computations,14,37,49 QMC,41 and other numerica
studies15,32,33,44as well as analytical works.39,43 Second, we
consider several nonintegrable models in Sec. V. Us
bosonization, we argue that vanishing Drude weights are
nerically expected in massless38 and massive nonintegrabl
spin models. Numerical data will be shown for both therm
and spin transport and will be related to the results of ot
groups.15,18,20,43Finally, our main conclusions are summ
rized in Sec. VI.

II. MODEL
In this work we consider frustrated and dimerized spin1

2

chains as sketched in Fig. 1. The Hamiltonian reads

H5 (
l 51

N

hl~D,a,l!, ~1!

hl~D,a,l!5J@l lhl ,l 11~D!1ahl ,l 12~D!#, ~2!

hl ,l 1 i~D!5~Sl
1Sl 1 i

2 1H.c.!/21DSl
zSl 1 i

z . ~3!

hl(D,a,l) from Eq.~2! is the local energy density andN the
number of sites. We setl l51 if l is even andl l5l other-
wise. In Eq.~3!, i 51 for nearest andi 52 for next-nearest-
neighbor interactions. Throughout this work, periodic boun
ary conditions are used. All quantities are measured in u
of the exchange coupling constantJ where J is positive.
Mainly, we focus on the following limiting cases of thi
model: ~i! a50,l51, theXXZ chain; ~ii ! a.0,l51, the

FIG. 1. Sketch of a frustrated and dimerizedS5
1
2 chain. The

limiting cases area50, l51, theXXZ chain;~ii ! a.0, l51, the
frustrated chain;~iii ! a50, 0,l,1, the dimerized chain; and~iv!
a.0, l50, the two-leg spin ladder.
6-2
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ZERO-FREQUENCY TRANSPORT PROPERTIES OF ONE- . . . PHYSICAL REVIEW B 68, 134436 ~2003!
frustrated chain;~iii ! a50,0,l,1, the dimerized chain
and ~iv! a.0,l50, the spin ladder.

We discuss various values for the anisotropy in the in
grable case~i.e., a50,l51) including theXY model (D
50). In the case of the two-leg spin ladder (l50), a
5Ji /J' is equal to the ratio of the leg couplingJi to the
rung couplingJ' .

It is instructive to write down the Hamiltonian in terms o
fermionic operators. This will later be used as the start
point for the mean-field theory in Sec. IV A. By performin
a Jordan-Wigner transformation~see, e.g., Ref. 53!, the spin-
1
2 operatorsSl

6,z can be mapped onto spinless fermions:

Sl
z5cl

†cl2
1

2
; Sl

15eipF lcl
† . ~4!

cl
(†) destroys~creates! a fermion on sitel. The string operator

F l readsF l5 ( i 51
l 21 ci

†ci . For the Hamiltonian from Eq.~1!,
we arrive at~see, e.g., Ref. 54!

H5J (
l

F1

2
l l H ~cl

†cl 111H.c.!

1DS cl
†clcl 11

† cl 112cl
†cl1

1

4D J
1aH 1

2
~cl

†cl 121H.c.!~12cl 11
† cl 11!

1DS cl
†clcl 12

† cl 122cl
†cl1

1

4D J G . ~5!

Note the presence of correlated hopping terms,
cl

†cl 12cl 11
† cl 111H.c., in Eq.~5!. Such contributions are ab

sent in the usual standard extended Hubbard models.

III. KUBO FORMULAE FOR k AND s

In this section we briefly review the underlying equatio
for the thermal and the spin conductivity and we define
energy-current operatorj th and the spin-current operatorj s.

A. Drude weight for heat and spin transport

The Kubo formulae for the thermal conductivityk(v)
and the spin conductivitys(v) read53,55–57

k@s#~v!

5
@b#

N E
0

`

dte2 i (v1 i01)tE
0

b

dt^ j th[s]~2t2 i t! j th[s]&.

~6!

The expressions in brackets@•# refer to spin transport; the
index ‘‘th’’ denotes thermal transport and ‘‘s’’ spin transpo
b51/T is the inverse temperature while the brackets^•&
denote the thermodynamic expectation value. The real
of k(v) ands(v), respectively, can be decomposed into ad
function atv50 and a regular part

Rek@s#~v!5D th[s]~T!d~v!1Rek@s# reg~v!. ~7!
13443
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Here, we are interested in the weightD th[s](T) of thed-type
singularity at v50. A nonzero value ofD th[s](T) corre-
sponds to a divergent conductivity whereas a vanish
D th[s](T) implies a normal conducting behavior if there is
contribution from the regular part of the conductivity at lo
frequencies or insulating behavior if Rek@s# reg(v50)50
~see Ref. 25!. In the remainder of the paper, the dependen
on system size of the Drude weight will be explicitly denot
by D th[s](N,T) while D th[s](T) refers to the thermodynami
limit N→`.

A spectral representation ofk@s#(v) in terms of eigen-
statesHu n&5Enu n& yields an expression for both Drud
weights30 (Z is the partition function!:

D th[s]
I ~N,T!5

pb t th[s]

ZN (
m,n

Em5En

e2bEnu^mu j th[s]un&u2. ~8!

Note that the exponentt th[s] in the prefactor needs to b
chosen according to

t th52 or ts51; ~9!

i.e., we expectD th;1/T2 andDs;1/T at high temperatures
For spin transport, we will numerically analyze Eq.~8!

and a second expression which can be derived from lin
response theory:23,27

Ds
II ~N,T!5

p

N F ^2T̂&2
2

Z (
m,n

Em5” En

e2bEn
u^mu j sun&u2

En2Em G .

~10!

The operatorT̂ is related to the kinetic energy. Note that
the derivation of Eq.~10!, the f-sum rule~see Ref. 23 and
references therein! is exploited. It is now instructive to make
a connection to Kohn’s formula for the Drude weightDs to
illustrate the relation betweenDs

I(N,T) andDs
II (N,T). As a

by-product, we will obtain the appropriate definition ofT̂.
Equation~10! is equivalent to the generalization of Kohn
formula58 for finite temperatures:27

Ds
II ~T!5

p

ZN(
n

e2bEn
]2En~F!

]F2 U
F50

. ~11!

To arrive at this expression, one considers finite rings
lengthN being pierced by the fluxF, i.e., a static twist abou
the z axis. The flux-dependent HamiltonianH(F) with ex-
change couplingsJr5” 0 being nonzero forr<r 0 reads26

H~F!5 (
l 51

N

(
r 51

r 0

Jr H 1

2
~ei (rF/N) Sl

1Sl 1r
2 1H.c.!1DSl

zSl 1r
z J .

~12!

ExpandingH(F) up to second order inF yields23,26

H~F!5H~F50!1
F

N
j s2

F2

2 N2
T̂. ~13!
6-3
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The expression for the current operatorj s will be given in
Sec. III B where we derive it from the equation of continui
In terms of spin operators,T̂ is given by

T̂5 (
l 51

N

(
r 51

r 0

r 2 Jr~Sl
1Sl 1r

2 1H.c.!. ~14!

For the models investigated in our paper, we haver 0<2. In
the fermionic picture@see Eq.~5!#, T̂ is the sum of the con-
tributions to the kinetic energy from both the neare
neighbor and next-nearest-neighbor hopping and also
correlatedhopping termscl 11

† cl 11cl 12
† cl1H.c. The appear-

ance of the extra factor of 4 in front of the term proportion
to J25a J, which arises from the factorr 2 in Eq. ~14!, can
be understood by considering the limit of two decoup
chains (Ja5const,J→0) of lengthN/2. Rescaling the size
dependent prefactors in Eq.~13! on N/2 cancels the factor o
4 and results in twice the Hamiltonian of a single chain w
N/2 sites.

By applying second-order perturbation theory toH(F) it
is straightforward to arrive at Eq.~10! ~see, e.g., Ref. 23!.

The relation betweenDs
I(N,T) and Ds

II (N,T) has been
pointed out in Refs. 25, 30, 33, and 35. While

Ds~T!5 lim
N→`

Ds
I~N,T!5 lim

N→`

Ds
II ~N,T!

holds for all temperaturesT.0 in the thermodynamic limit,
the two expressions are not equivalent onfinite systems. For
instance, Eq.~10! may result in negative values on finit
systems atT50 ~see Refs. 24 and 35 for examples! whereas
Ds

I(N,T)>0 is strictly fulfilled by evaluation of Eq.~8! ~see,
e.g., Ref. 30 for details!. Note in this context that the differ
enceDs

II (N,T)2Ds
I(N,T) is proportional to the second de

rivative of the free energy with respect to the fluxF in the
limit of vanishing momentum. In general, this quantity me
sures the superfluid density25,30,35 in more than one spatia
dimension. However, for a one-dimensional model, it va
ishes in the thermodynamic limit.30,35

Equation~8! can also be related to Kohn’s formula. Whi
the latter one is the sum of the curvature of energy lev
Ds

I(N,T) equals the sum of squares of first derivatives of
energy levels with respect to the fluxF ~Ref. 33!:

Ds
I~N,T!5

p

ZN(
n

e2bEnS ]En~F!

]F U
F50

D 2

. ~15!

In this paper, Eqs.~8! and ~10! will be used to compute the
Drude weights while Eqs.~11! and~15! have been given for
completeness. We will show in Sec. IV B 3 that the diffe
ence betweenDs

I(N,T) andDs
II (N,T) is negligibly small at

sufficiently high temperatures already on finite systems.
low temperatures, onlyDs

II (N,T) yields a good description
of the temperature dependence.

If the current operatorj th[s] is a conserved quantity, Eq
~8! can be rewritten as

D th[s]
I ~N,T!5

pb t th[s]

ZN (
n

e2bEn^nu j th[s]
2 un& ~16!
13443
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pb t th[s]

N
^ j th[s]

2 &, ~17!

implying that astatic expectation value has to be comput
which is a considerable simplification. Analogously, we o
tain

Ds
II ~N,T!5

p

N
^2T̂& ~18!

from Eq.~10! under the condition@H, j s#50. The main goal
of this work is to investigate whetherD th[s] has a finite value
in the thermodynamic limit (N→`). Typically, the finite-
size dependence is well controlled at high temperatureT
@J where all statesun& are occupied with equal probabilit
e2bEn→1. In this case, we see from Eq.~8! that

lim
T→`

@Tt th[s] D th[s]
I ~N,T!#5Cth[s]~N!, ~19!

with a prefactorCth[s] :

Cth[s]~N!5
p

Z` N (
m,n

Em5En

u^mu j th[s]un&u2. ~20!

In the limit T→`, the partition functionZ`52N is equal to
the dimension of the Hilbert space.

B. Current operators

The current operators obey the following equations
continuity:

] thl5 i @H,hl #52~ j th,l 112 j th,l !, ~21!

] tSl
z5 i @H,Sl

z#52~ j s,l 112 j s,l !, ~22!

wherehl is the local energy density,Sl
z the local magnetiza-

tion density, andj th[s],l are the local current operators.
From Eqs.~21! and~22!, we obtain solutions for the cur

rent operators for arbitrarily long-ranged interactions.
@hl 6r ,hl #5” 0 holds only forr<r 0, the energy-current opera
tor reads17,48,59

j th5 (
l 51

N

j th,l5 i (
l 51

N

(
n,r 50

r 021

@hl 2r 21 ,hl 1n#. ~23!

The spin current is given by23,26

j s5 (
l 51

N

j s,l5 i (
l 51

N

(
n,r 50

r 021

@hl 2r 21 ,Sl 1n
z #, ~24!

with @hl 2r ,Sl
z#5” 0 for r<r 0. In this paper, we restrict our

selves tor 0<2. The same result can be obtained from E
~13!. Independent of the model, the local magnetization d
sity is given bySl

z whereas we use Eqs.~2! and ~3! as a
definition for the local energy density. For theXY model,
both quantitiesj th and j s commute with the Hamiltonian, i.e.
@HXY, j th[s]#50. While @HXXZ, j th#50 remains valid for ar-
bitrary D anda50;l51,30,48 the conservation ofj s is im-
mediately broken once the anisotropyD has a nonzero value
6-4
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Dimerization and frustration which spoil the integrability
the XXZ model also lead to@H, j th[s]#5” 0 ~except for
D5a50).

IV. XXZ MODEL

In this section we discuss transport properties of theXXZ
model. Since this model is solvable via the Bethe ans
certain thermodynamic quantities like susceptibility60,61 or
specific heat14,61are accessible with this technique. The th
mal Drude weightD th has recently been computed along th
line by Klümper and Sakai14,49 for arbitraryD>0. For spin
transport, finite-temperature Bethe ansatz computations h
been performed by both Zotos37 and Klümper and
co-workers.50 However, these two groups find different r
sults for the temperature dependence which is ascribe
conceptual problems of computing the Drude weight from
single microstate at a given temperature.51,62

First, we apply mean-field theory based on the Jord
Wigner transformation and compute the Drude weights in
gapless, antiferromagnetic regime 0<D<1. This approach
yields a good approximation to the exact results from
Bethe ansatz~compare Ref. 17! for the thermal conductivity,
whereas for spin transport, it fails to describe theD depen-
dence of the Drude weightDs. Second, we present our re
sults from exact diagonalization focusing mainly on sp
transport.

A. Mean-field theory

In this section, we consider an approximate treatmen
the Hamiltonian of the anisotropic chain within mean-fie
theory. First, this approach will provide exact expressions
the Drude weights in the case of free fermions (D50) which
is useful for a check of the numerical implementation. S
ond, we will see that the thermal Drude weight of theXXZ
chain can be well described by this approximation foruDu
<117 which is, however, not the case for spin transport.

Within mean-field theory, the interaction terms in the fe
mionized Hamiltonian from Eq.~5! are simplified by means
of a Hartree-Fock decomposition. Since details of the pro
dure can be found in the literature~see, e.g., Ref. 54!, we
prefer to quote directly the result for the mean-field Ham
tonian (k labels the momentum!

HMF5 (
k

ekck
†ck. ~25!

HMF is diagonal in momentum space with the tight-bindi
dispersion

ek52t~D,T! cos~k!. ~26!

The hopping amplitudet(D,T)ª2@112A(T)D# is modi-
fied via the one-particle expectation value

A~T!5^cl
†cl 11&5

1

p E
0

p

dk cos~k! f ~ek!, ~27!

which needs to be determined self-consistently. Note
f (e)51/(exp(be)11) is the Fermi function.
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In the mean-field description, the current operators
simply given by

j th
MF5 (

k
ekvknk , j s

MF5 (
k

vknk , ~28!

with velocity vk5]ek /]k andnk5ck
†ck . The spinon veloc-

ity, i.e., v0
MF5vk(T50), follows from Eq. ~26!, v0

MF51
12 A(T50)D with A(T50)51/p. From Eq.~17!, we ob-
tain the Drude weights

D th
MF~T!5

p

NT2 (k
~ekvk!

2 f 2~ek!e
ek /T, ~29!

Ds
MF~T!5

p

NT(
k

vk
2f 2~ek!e

ek /T. ~30!

In the case of free fermions, i.e.,D50, Eqs.~29! and ~30!
are exact and can be evaluated both on finite systems an
the thermodynamic limit. This provides a useful check f
the numerical implementation, in particular since the sp
current operatorj s is independent ofD @see Eq.~24!#.

For thermal transport, the mean-field approach provide
good approximation toD th(T) for uDu<1 as we have shown
in Ref. 17 and as can be seen in the inset of Fig. 2~a! where
we compareD th(T) from the mean-field approach~dotted
line! with the Bethe ansatz results from Ref. 14~solid line!
for D50.5.

FIG. 2. Thermal Drude weight of theXXZ chain for D50.5
@panel ~a!#, D520.5 @panel ~b!#, and D52 @inset in panel~b!#.
Dashed~dot-dashed! lines: ED data for even~odd! N. Solid lines:
Bethe ansatz~BA! results from Refs. 14 and 49. Thin, solid line i
~a!: high-temperature limitD th(T).Cth /T2 from Ref. 14. Dotted
line in the inset of~a!: mean-field~MF! approximation.
6-5
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Regarding the spin transport, we note that the mean-fi
theory does not give a qualitatively correct description
Ds(D). Equation~30! results inDs

MF(T50)5v0
MF(D). Ba-

sically, the Drude weight increases withD here because
Ds

MF;^2T̂& essentially measures the increase of the ba
width with D. This is in contrast to the exact expression f
Ds(T50) ~Ref. 23!

Ds~T50!5
p2

4

sin~g!

g~p2g!
,D5 cos~g!, ~31!

whereDs decreases withD due to the presence of the inte
action terms in Eq.~5!. The reason for the failure of th
mean-field theory is that the current operatorj s

MF is con-
served for 0<D<1 which is not true for the full Hamil-
tonian~1! and the respective current operator~24!. Note that
the exact Drude weight takes the formDs(T50);Kv0
where K is the Luttinger parameter andv0 the velocity at
T50 ~see, e.g., Ref. 39!. It is precisely the factor ofK that is
missing in the mean-field result.

B. Numerical results for the XXZ model

Now we turn to the discussion of the results from ex
diagonalization for~i! the thermal Drude weightD th and~ii !
the Drude weightDs for spin transport of the anisotropi
chain. Before going into details, let us outline the structure
this section and point out the main results:

First, we discuss technical aspects of the numerical p
cedure which will also be of relevance for the nonintegra
models in Sec. V. In particular, the importance of degene
states and their numerical identification will be emphasiz

Second, the numerical results for the thermal Dru
weightD th(N,T) for D560.5,2 will be presented and com
pared to the Bethe ansatz.14,49 In addition, the high-
temperature prefactorCth is computed and discussed as
function of D.

Third, a detailed parameter study of the Drude weightDs

is performed. Results forDs
I ,II (N,T) are shown forD50.5,

61,22 as well as forD.1. We discuss the temperatu
dependence of bothDs

I(N,T) and Ds
II (N,T) and point out

that they are indistinguishable at high temperatures, but
hibit a completely different finite-size scaling33 at low T.
This result, i.e.,Ds

I(N,T)5Ds
II (N,T) for T large enough, is

of importance since the Drude weight could in principle a
be obtained analytically from Eq.~8! or ~15!, respectively,
which has to our knowledge not been attempted so far. F
ther, the influence of logarithmic finite-size corrections aT
50 for the isotropic chain is mentioned.39 Finally — and
most important — we analyze the finite-size scaling of
high-temperature prefactorCs and its dependence onD.
While we can unambiguously confirm that limN→`Cs(N)
.0 for uDu,1 in agreement with the results of oth
groups,29,32,33,37,41,43,44the data forD51 clearly indicates a
finite Drude weightDs(T.0) as well. The latter observatio
is in agreement with Refs. 31, 33, 41, 43, and 50 but con
dicts the conclusions of Refs. 37 and 44.
13443
ld
f

d-
r

t

f

o-
e
te
.

e

x-

r-

e

a-

1. Technical remarks on the numerical procedure

We start with several technical remarks on the numer
procedure which are relevant for both integrable and non
tegrable models. We have performed complete diagonal
tion for chains withN<18 sites exploiting conservation o
the z componentStot

z 5 ( l Sl
z of the total spin, translationa

invariance, and spin-inversion symmetry in theSz50 sub-
spaces of systems with evenN. The latter symmetry is re-
spected by the energy-current operatorj th but not by the
spin-current operatorj s. The dimensions of the largest sub
spaces for a given momentumk are'2400 forStot

z 51 and
'2700 forStot

z 50 atN518. In the latter case, the dimensio
is almost reduced by a factor of 2 by spin-inversion symm
try for the subspaces with odd and even sign under this s
metry.

Another important aspect is the identification of degen
ate states~i.e., En5Em) in subspaces labeled byStot

z and
momentumk. This is necessary both in the evaluation of Eq
~8! and ~10! but becomes irrelevant if the respective curre
operator is conserved, leading to the simpler expression,
~16!. The latter is possible for thermal transport in theXXZ
model.

For spin transport, however, we have@H, j s#5” 0 for D
Þ0. The ~integrated! distribution of level spacingsDEn is
shown in Fig. 3. There, the numberI (e) of level spacings
DEn5En112En ,En,En11 of adjacent energy levels, bein
smaller than a given value ofe is plotted versuse
for D50.5

I ~e!5 (
(Stot

z ,k)
(

DEn,e
1. ~32!

It is sufficient to analyze all subspaces with givenStot
z and

momentumk separately and sum over all subspaces ther
ter @indicated by the first sum in Eq.~32!#.

FIG. 3. Distribution of level spacings in the spectrum of fini
chains with 8<N<18 ~bottom to top as indicated by the arrow! for
D50.5 ~solid lines,N even; dashed lines,N odd!. DEn is the dif-
ference of adjacent energy levels in subspaces classified by totaStot

z

and momentumk. The numberI (e) of DEn with DEn,e summed
over all subspaces is plotted vse @see Eq.~32!#.
6-6
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The spectrum displays some characteristic features: fi
the value ofI (e) for e→` equals the dimension of the Hil
bert space 2N minus the number of subspaces (Stot

z ,k). Sec-
ond, a large fraction of degenerate states is present and t
the integrated distribution of level spacings is constant
1029J&e&1026J for the system sizes investigated he
This suggests that adjacent energy levels are typically s
rated byDEn&1029J if they are degenerate.

This separation allows for an identification of degener
states by imposing the following criterion in the numeric
analysis: energy levels withuEn112Enu,ecut51028J are
degenerate. By evaluation of Eq.~8! for the thermal Drude
weight we find agreement with Eq.~16! and the Bethe
ansatz14 for this choice ofecut but significant deviations a
temperaturesT;J if larger or lower values for the cutof
energy are used.

2. Thermal transport in the XXZ model

Numerical results for the thermal Drude weightD th(N,T)
have previously been presented forD51 in Refs. 15 and 17
and forD521,22,10 in Ref. 17. We enhance on the latt
study by adding numerical data for the gapless antiferrom
netic and the ferromagnetic regime which is shown in Fig
@panel~a! D50.5, ~b! D520.5]. Dashed~dot-dashed! lines
display ED data forN even~odd!. Since we are using peri
odic boundary conditions, the twofold degeneracy of
ground state for chains with an odd number of sites lead
a divergence ofD th(N,T) for T→0. The Drude weight of
systems with an even number of sites is characterized b
exponential suppressionD th(N,T);e2DFS/T at low tempera-
tures whereDFS is the finite-size gap of the system.

A striking feature ofD th(N,T) of the XXZ model is the
rapid convergence withN at high temperatures. The diffe
ence between the numerical data for the largest system
vestigated forD50.5 ~i.e., N518) and the Bethe ansat
curve14 @solid line in Fig. 2~a!# is smaller than 1022J2 for
temperaturesT*0.23J. Basically, the convergence of th
numerical data is as good as in the case of other therm
namic quantities such as specific heatCV and susceptibility
x. We stress that the relationD th(T);CV(T) only holds at
high and low temperatures~see Ref. 14!.

The antiferromagnetic, gapped regime has been discu
in Ref. 17. We mention that in the meantime Bethe ans
computations49 have been extended toD.1. The numerical
data are in agreement with these results@see inset of Fig.
2~b!: solid line, BA; dashed line, ED forN518 atD52].

We continue by a discussion of the high-temperature p
actor Cth defined in Eq.~19!. As is evident from Figs. 2~a!
and 2~b!, the value ofCthª limN→`Cth(N) can be numeri-
cally determined already from systems with a compara
small number of sites~e.g.,N512) with very good accuracy
Here we are interested in theD dependence ofCth as shown
in Fig. 4 ~squares: ED!. Note the excellent agreement wit
the analytic expression from the Bethe ansatz14 ~solid line in
Fig. 4!:

Cth~D!5
p J4

64 S 31
sin@3arccos~D!#

sin@arccos~D!# D . ~33!
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For D50 ~i.e., free fermions!, we getCth(D50)5p J4/32
which can also be obtained from Eq.~29!.

There are two main features ofCth(D): ~i! Cth(D)
5Cth(2D) @see Fig. 4~a!# and ~ii ! limD→`@Cth(D)/D4#
50 @see Fig. 4~b!#. In Fig. 4 ~b!, Cth is measured in units
of D.

The first property can be seen from the following obs
vations: changing the sign ofD is an antiunitary transforma
tion and essentially turnsH(2D)52H(D) and En(2D)
52En(D) while the eigenvectors remain unchanged~this
follows from an additional rotation byp about thez axis on
all sites with even site index!. This transformation leaves th
energy-current operator unchanged, i.e.,j th(2D)5 j th(D).
From Eq.~20!, we can then concludeCth(D)5Cth(2D).

For J/D→0, the Ising limitH5 ( l Sl
zSl 11

z is approached
where the only possible excitations are local spin flips. He
no current can flow and, consistent with this notio
@hl ,hl 11#50 leading toj th[0 @see Eq.~23!# andD th[0 for
J/D50.

3. Spin transport in the XXZ model

In the following, a survey of the results forDs for arbi-
trary values of the anisotropy will be given. First, the ga
less, antiferromagnetic regime (0,D<1, Fig. 5! will be dis-
cussed with a particular focus on the isotropic chainD
51). Second, we comment on the finite-size data forDs for
the gapped, antiferromagnetic case@D.1, Figs. 6~a! and
6~b!,# and third, results for the ferromagnetic regime will b
shown@D,0, Figs. 6~c! and 6~d!#. Finally, the dependence
of the high-temperature prefactorCs on both anisotropy and
system size is analyzed~Fig. 7!.

Numerical results forDs
I ,II (N,T) in the gapless, antiferro

magnetic regime are shown in Fig. 5 forD50.5 @panel~a!#
and D51 @panel ~b!#. Note that our results forDs

I(N,T)
agree with the data forD50.4 ~not shown in the figures! and
N<14 published in Ref. 33 by Narozhnyet al.

First, we concentrate on the case ofD50.5. In panel~a!,
we compare data from Eqs.~8! @Ds

I(N,T), dashed lines# and
~10! @Ds

II (N,T), solid lines#, confirming that these two ex
pressions are equivalent at high temperatures (T*0.5J, de-
pending on system size!. At low temperatures,Ds

I(N,T)
shows much slower convergence withN and essential fea

FIG. 4. High-temperature prefactorCth for the XXZ model in
the gapless~left panel! (uDu<1) and gapped, antiferromagnetic re
gime ~right panel! (D.1). The numerical data~ED! are in perfect
agreement with the exact expression forCth from the Bethe ansatz
~Ref. 14! ~BA!.
6-7
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tures of the temperature dependence are only present in
data forDs

II (N,T) which is the finite value atT50 and the
vanishing slope ofDs

II (N,T) for T→0. The latter observa
tion @i.e., dDs

II (N,T)/dT50 at T50] is consistent with the
Bethe ansatz by Klu¨mper and co-workers.50,51 In general, the
functional form ofDs(T) at low T for uDu,1 is

Ds~T!5Ds~T50!2const3Ta, ~34!

where the exponenta depends on the anisotropy. In Ref. 3
the expressiona5 (2/n21) was derived@the integern pa-
rametrizes the anisotropy viaD5 cos (p/n)]. Taking this re-
sult, Eq.~34! would imply Ds(T)5Ds(T50)2const3T for
D50.5 which is obviously not consistent with our numeric
data. ForuDu,1 and low T, the temperature dependen
seems to be described by the expressions derived
Fujimoto and Kawakami43 which are compatible with QMC
~Ref. 41! and the ED presented here.

We have also determinedDs
II (N,T50) numerically by

evaluating Eq.~10! in the subspace containing the grou
state~see inset of Fig. 5!. Using Eq.~11!, one could go to
larger systems thanN518 since only the curvature of th
ground state is needed. However, the main topic of this w

FIG. 5. Spin transport: Drude weight forD50.5 @panel~a!# and
D51 @panel ~b!#. Dashed lines are numerical data obtained
Ds

I(N,T) from Eq. ~8!; solid lines denoteDs
II (N,T) from Eq. ~10!.

Arrows indicate increasing system size. Note thatDs
II (N,T) shows

a better convergence withN at low temperatures compared
Ds

I(N,T). The inset shows the Drude weight atT50 for D50.5
~diamonds! andD51 ~squares! as a function of the inverse syste
size. The dashed lines are fits applied to the subsets with even~solid
symbols! and odd~open symbols! N. Open circles atT50 denote
the exact values forDs(T50) ~Ref. 23!.
13443
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is the Drude weight at finite temperatures while the fini
size corrections for theT50 Drude weight have been com
puted in Ref. 39.

Data forDs
II (N,T50) are plotted versus 1/N in the inset

of Fig. 5 for D50.5 ~diamonds! and D51 ~squares!. The
data from finite systems with an even number of sites form
monotonically decreasing sequence withN at T50 and
small temperatures@see Fig. 5~a!, T&0.2J] while the data
for oddN are a monotonically increasing sequence. Thus,
results forDs

II (N,T) and evenN provide an upper bound an
those from systems with oddN a lower bound forDs(T) at
low temperatures.

From Ref. 39, the leading finite-size corrections atT50
are available

Ds
II ~N,T50!5Ds~T50!1

B

Nm
1•••, ~35!

with m52 for D&0.5. Performing fits according to Eq.~35!
at T50 separately for even~odd! N results in Ds(T50)
50.9747(0.9717)J for D50.5 which is in very good agree
ment with the exact result23 Ds(T50)50.97428J.

At the isotropic point, i.e.,D51, the curves display simi-
lar features as forD50.5: ~i! a vanishing slope forT→0,
~ii ! a monotonic decrease at high temperatures,
~iii ! Ds

II (2N,T),Ds
II (2N22,T) @Ds

II (2N11,T).Ds
II (2N

21,T)# at low temperaturesT&0.1 J.

r

FIG. 6. Spin transport. Panels~a! and ~b!: Drude weight
Ds

II (N,T) as a function ofD. (N59,13,17) in~a! T51 J, ~b! T
50. Panel ~c!: Drude weightDs

II (N,T) for D521 and 8<N
<18 (N even, top to bottom!. Panel ~d!: Drude weight forD
522 andN512,14,17@top to bottom: dashed lines,Ds

I(N,T), Eq.
~8!; solid lines, Ds

II (N,T), Eq. ~10!#. Arrows indicate increasing
system size.
6-8
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However, the finite-size data at the isotropic point andT
50 seem to followDs

II (N,T50)5A1B/N in contrast to
the case ofD50.5 as can be seen in the inset of Fig. 5~b!.
For A, we find A'0.847J which compares well with nu-
merical results obtained by the Lanczos method reporte
Ref. 26. Admittedly, a good approximation to the exact va
of Ds(T50) atD51 for N→` cannot be obtained from th
numerical data since the system sizes are far too small@see
Fig. 5~b!#. In fact, from the work of Laflorencieet al.39 it is
known that the relevant and leading finite-size correction
T50 andD51 is a logarithmic term. This is because um
klapp scattering is a marginally irrelevant perturbation in t
case. Similar to the susceptibilityx(T),39,60 Ds(T) is ex-
pected to show a sharp drop forT→0 accompanied with a
diverging slope atT50 ~Ref. 50! in the thermodynamic
limit.

At sufficient large temperatures, we believe that the
merical data forD51 presented in Fig. 5~b! give the correct
picture of the temperature dependence of the Drude wei
However, Fujimoto and Kawakami43 have recently obtained
an analytic expression forDs(T) in the low-energy limit with
conformal field theory which is compatible with our nume
cal data foruDu,1 but not forD51. Here, Fujimoto and
Kawakami findDs(T),Ds(T50) while the data shown in
Fig. 5~b! seemingly support the opposite relation. Desp
this discrepancy, our results do nevertheless support the
tion of a finite Ds(T.0) at D51. This is substantiated b
the analysis of the high-temperature prefactorCs(N) @see Eq.
~20!# as we will discuss in detail below.

For larger D ~i.e., D.1), the monotonic increase o
Ds

II (N,T) at low temperatures for oddN changes to a mono
tonic decrease. This is illustrated in Fig. 6~b! where
Ds

II (N,T50) is plotted versusD for N59,13,17~compare
Refs. 39 and 63!. The crossover in the monotony occurs
D'1.2, i.e., in the gapped regime. SinceDs

II (N,T)'const
for small T, the behavior atT50 is characteristic for the
low-temperature regime. At larger temperatures,Ds

II (N,T) is
a monotonically decreasing function for both even and odN
@see panel~a! of Fig. 6 for oddN andT51 J].

Regarding the ferromagnetic regime~i.e.,D,0), we con-
centrate onD521 and D522. The results forD521
plotted in Fig. 6~c! indicateDs

II (N,T)'const at lowT with
Ds(T50)'0.523(5)J. However, since the low-energ
spectrum forD521 is of comparable complexity as forD
51, one may expect nontrivial finite-size corrections whi
could lead to a different temperature dependence at lowT. If
the latter is true, then the system sizes are too small to d
conclusions about the behavior ofDs

II (N,T) at very lowT.
The Drude weight in the gapped, ferromagnetic regime

expected to show a behavior analogous to that ofD.1. For
instance,Ds

II (N,T) is monotonically decreasing withN at all
temperatures irrespective of odd-even effects. Interestin
Ds

I(N,T) and Ds
II (N,T) turn out to be indistinguishable fo

D,21 andN large enough which is illustrated in Fig. 6~d!.
This plot showsDs

I ,II (N,T) for N512,14,17 atD522
where dashed lines denoteDs

I(N,T) from Eq. ~8! and solid
lines stem from Eq.~10! @Ds

II (N,T)#.
To conclude this section, we discuss the high-tempera
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prefactorCs both as a function of anisotropy and system si
In Fig. 7~a!, Cs(N) is shown versus 1/N for D
50,0.5,0.6,1,1.5. Results for the case of free fermionsD
50) have been deduced from Eq.~30! on finite systems in
the fermionic picture. To fix the absolute values we note t
Cs5p/8 in our notation for the free-fermion caseD50.

As is evident from Fig. 7~a!, Cs(N) roughly follows

Cs~N!5a1
b

N
1•••. ~36!

The same finite-size extrapolation has been used
Ds

I(N,T)3T in Ref. 33 for even-numbered systems andN
<14 atT550 J. However, by comparing the direct compu
tation of Cs(N) from Eq. ~20! with fitting

Ds
I ,II ~N,T!5

Cs~N!

T
1

C1~N!

T2
1 . . . ~37!

to Ds
I ,II (N,T), we find that, often, more than one term in E

~37! needs to be taken into account to recover the result
Cs(N) from Eq. ~20!. Consequently, it is preferable to com
puteCs(N) directly from Eq.~20!.

The data can be well extrapolated according to Eq.~36!
for D50.5 andD>1. A subtlety arises from the strong dif
ferences between even and odd-numbered systems for i
mediate values ofD such asD50.6 @see Fig. 7~a!#. In these
cases~i.e., D50.2,0.4,0.6,0.8,0.9) we have separately p
formed fits to the subsets with even and oddN. Cs is then
estimated by averaging the results from the fits. The la
error bars forD50.2,0.4,0.6,0.8,0.9 are due to these lar
differences in the extrapolated values of subsets with e
and oddN.

Following this procedure, we obtainCs5(0.1560.03)
J2 for D50.6 while the extrapolation of the even-number
systems yieldsCs5(0.12360.001) J2. The latter value
compares well to the data published in Ref. 33@Cs5(0.119
60.004) J2#. The strong finite-size effects between eve
and odd-numbered systems, however, indicate that additi

FIG. 7. Spin transport. Panel~a!: high-temperature prefacto
Cs(N) vs 1/N for D50,0.5,0.6,1,1.5@solid ~open! symbols: even
~odd! N]. The dashed lines are fits according to Eq.~36! ~see text
for details!. Panel~b!: extrapolated high-temperature weightCs(D)
as a function of the anisotropyD ~diamonds! and the data forN
517,18~squares, circles!. The lines are guides to the eyes.
6-9
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finite-size corrections apart from a simple 1/N term must
become relevant for largerN if the sequences of even an
odd N converge to the same value in the thermodynam
limit. A difference in the extrapolated value for largeN of
these two subsets does not seem to be plausible.

Note that it has been suggested in Refs. 32 and 44
partly include spectral weight from low frequencies
Re s(v) to obtainCs for all thoseD which cannot be writ-
ten asD5 cos (p/n),n integer. However, within such a pro
cedure, a criterion is necessary to decide up to which
quency one should integrate Res(v) and it goes obviously
beyond the usual definition of the Drude weight via Kohn
formula ~11!. In this paper, we prefer to confine our analys
to Eq. ~10! or ~11!, respectively.

At the isotropic pointD51, we have fitted the numerica
data forCs(N) using Eq.~36! while varying the range of data
points (Nmin<N<Nmax). Stable fit results are obtained fo
11<N<Nmax with Nmax.14 and for Nmin<N<18 with
Nmin,14. We findCs5(0.02060.006) J2, indicating a fi-
nite Drude weight in the thermodynamic limit. This result
slightly smaller than the data reported in Ref. 33@Cs
5(0.04660.005) J2 there forN56,8, . . .,14] but the latter
is regained if we use our data forN56, . . .,14. Since we
observeCs(D,N)5Cs(2D,N), this implies Ds(T.0).0
for the isotropic, ferromagnetic chain also.

The results from the extrapolation are summarized in F
7~b! together with our data forN517 andN518. The plot
suggests that~i! Ds(T).0 for D51 and ~ii ! Ds(T)50 for
D>1.5 within our numerical accuracy. Respective conc
sions can be drawn forD<21 sinceCs(D)5Cs(2D). We
stress that for intermediate Ising-like anisotropies~i.e., 1
,D,1.5) the system sizes may still be too small for
unambiguous confirmation of the conjecture29,32,36 Ds(D
.1)50. In particular, the possibility of a finite Drud
weight in the gapped regime cannot be ruled out on the b
of the numerical data even though the Drude weight is z
at T50. An example for such a scenario@i.e., Ds(T50)
50 but Ds(T.0).0] has been given in Ref. 35.

Very recently, Long et al.44 have applied a newly devel
oped finite-temperature Lanczos method to computeCs(N)
for N524,26,28. Compared to our data, their results stron
deviate from the fits to Eq.~36! for systems withN<18 for
all values ofD presented in Fig. 7~a!.

V. NONINTEGRABLE MODELS

In this section we address the issue of transport in no
tegrable models by means of bosonization and exact dia
nalization. As discussed in Sec. III B, both the spin-curr
and heat-current operators are not conserved in the pres
of frustration and dimerization except for the case of
dimerizedXY chain.18

The original conjecture by Zotos and co-workers27–29

stated that the Drude weights are expected to vanish in n
integrable models and we will argue in the following that o
exact diagonalization study corroborates this statement.

In a first numerical work by Alvarez and Gros15 on ther-
mal transport, the data obtained by complete and exac
agonalization of systems withN<14 have been interprete
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in favor of a nonzero Drude weightD th(T.0).0 in the
cases of spin ladders and frustrated spin chains. However
have argued17,21 that this conclusion cannot be sustained
the case of gapped, frustrated chains if larger systems o
to 18 sites and additional values for the next-neare
neighbor frustrationa (a50.35,0.5,1) are included in th
finite-size analysis.

Additionally, several authors have recently used analy
approaches to compute the Drude weightD th ~Refs. 18 and
20! and the spin Drude weightDs ~Ref. 43! in the low-
energy limit. If the effective model describes noninteracti
particles such as in Ref. 18 in the case of the spin ladde
finite Drude weight will naturally exist. However, to prov
that the Drude weight is also finite in the corresponding l
tice model is more difficult. The outcome of a low-energ
description crucially depends on the effective models; i
one has to take care which operators are kept and which
can be omitted when passing from the lattice to the c
tinuum limit. In particular, Rosch and Andrei38 have shown
that two independent incommensurate umklapp terms su
to relax the spin current in massless models. Since this re
has not been fully appreciated by some of the aforem
tioned papers, we will discuss the line of reasoning of R
38 and apply these ideas to the models which are of inte
in this paper. We will argue that a vanishing Drude weig
for both kinds of transport is expected in generic nonin
grable~massive! models also. Thus, the first part of this se
tion will be devoted to the discussion of transport propert
in the continuum limit.

In Secs. V B and V C, we will complete our numeric
investigation of both the thermal and the spin Drude wei
of frustrated and dimerized spin systems with arbitrary v
ues ofa and l. The main focus will be on the finite-siz
analysis of the high-temperature prefactorCth[s](N) @see Eq.
~20!#. If not stated otherwise,D51.

A. Bosonization

The low-energy description of the systems studied bel
i.e., dimerized chain and frustrated chains, can be cast in
general form of a U~1! scalar field theory, known as a Lut
tinger liquid ~denoted byHLL), with a perturbationg corre-
sponding to a relevant operatorH rel plus all irrelevant opera-
tors H irr allowed by the symmetries of the given problem64:

H5HLL1H rel1H irr , ~38!

HLL5 E dxS vK~]xQ!21
v
K

~]xf!2D , ~39!

H rel5g E dx cos~af!. ~40!

f5f(x,t) is a bosonic field in 111 dimensions andQ is
the dual field]xQ5(1/K)]tf. K is the Luttinger paramete
andv is the velocity. General situations involving more tha
one relevant operator could also occur, but this does
change the discussion below.
6-10
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ZERO-FREQUENCY TRANSPORT PROPERTIES OF ONE- . . . PHYSICAL REVIEW B 68, 134436 ~2003!
The Hamiltonian, Eq.~38!, with H irr[0 corresponds ei-
ther to a Luttinger liquid in a generic massless situationg
50, e.g., the massless regime of the frustrated chain! or to a
sine-Gordon theory in the massive cases (gÞ0, e.g., dimer-
ized chain, massive regime of the frustrated chain!. These
descriptions provide in general the correct low-energy p
ture if one is interested in, e.g., the long-distance behavio
correlators, and usually, one can discard the irrelevant te
H irr since they only contribute with subleading correction

However, as was pointed out in Ref. 38, certain opera
have a crucial effect on transport properties and should th
fore be taken into account to reproduce the correct lo
frequency and low-temperature behavior even if these op
tors are irrelevant in the renormalization group sense.
main result of Ref. 38 is that a certain class of incommen
rate umklapp operators lead to the decay of all currents
hence render all conductivities finite. The emerging pictur
that, except for very special circumstances which could h
pen in certain integrable models, one should expect a v
ishing Drude weight and hence a finite conductivity.

It should be stressed that Ref. 38 is devoted to mass
cases — that is, to those situations where no relevant op
tors are present@g50 in Eq. ~40!#. However, one can argu
that the main ingredient in the proof — that is, the violati
of all conservation laws due to the presence of incommen
rate umklapp operators — is independent of the scaling
mensions of the operators involved. Hence one could ex
a similar picture in the massive case, while clearly the res
for k@s#(v) will be quantitatively different. This conjectur
is in full agreement with our numerical findings.

For pedagogical reasons let us briefly summarize the m
results of Ref. 38: among the infinitely many irrelevant o
erators contained inH irr , those which could produce a deca
of the currents are the incommensurate umklapp opera
which are, in the case of pure spin models, generically of
form

E dx On,m~x!5 E dx gnm cos~A2pn f1knmx!.

~41!

gnm are coupling constants,knm52nkF2mG where kF is
the Fermi momentum, andG is a reciprocal lattice vector. In
a fermionic representation,n is the number of fermions
which change chirality under the action of the opera
On,m(x).

These operators do not modify the low-energy expr
sions for the energy and spin current. The same holds for
relevant operator20 in Eq. ~40!. The currents take the form
~see, e.g., Refs. 17 and 65!

j s5
2vK

A2p
E dx ]xQ, ~42!

j th5v2 E dx ]xf]xQ. ~43!

Comparing our notation with Ref. 38, note thatj s;J0 and
j th;PT . The spin current neither commutes with the r
13443
-
of

s

rs
e-
-
a-
e
-
d

is
p-
n-

ss
ra-

u-
i-
ct
ts

in
-

rs,
e

r

-
he

-

evant operator nor withH irr while for the thermal current,
@H rel , j th#50 but @H irr , j th#5” 0.

The key observation38 is that in the presence ofonesuch
operatorOn,m(x), there is still a conserved current which ca
be written as a linear combination of the spin and therm
current:

j conserved5knmj s12n j th . ~44!

However, as soon asmorethan one of the operatorsOn,m(x)
are considered, no conservation law of the type~44! survives
and hence the conductivity is expected to be finite. Sin
there is no reasona priori to exclude such incommensura
operators, this seems to be the generic situation. As inc
mensurate operators have been considered neither in Re
nor in Ref. 20 it is not clear whether their results of a fin
thermal Drude weight in the low-energy limit provide
proof of D th(T.0).0 for the respective nonintegrable la
tice models.

Generally, even if the current operator is not conserved
nonzero Drude weight can be caused by the existence
~nontrivial! conserved quantities$Ql% with a finite projection
on the current operatorj th[s] in the Liouville space~see, e.g.,
Refs. 38, 46, 47, and 57!. More precisely, the Drude weigh
is nonzero if

D th[s]~T!5
p

T2[1] N
~ j th[s] u Pj th[s]!.0, ~45!

whereP is the projection operator onall conserved quanti-
ties $Ql%. (A u B) denotes Mori’s scalar product57 in the
space of operators:

~A~ t ! u B!5
1

b E
0

b

dt ^A~ t !†B~ i t!&. ~46!

Under certain circumstances, e.g., integrability, it is possi
to construct an infinite set of$Ql% ~see Ref. 30 and refer
ences therein!. Still, the evaluation of Eq.~45! is a nontrivial
problem.

In the literature,30,43one often refers to a weaker conditio
than Eq.~45!: namely, Mazur’s inequality30,66where a subse
of the $Ql% or even only one operatorQiP$Ql% is taken into
account. Therefore, Mazur’s inequality provides a low
bound for the Drude weight. For instance, the conserva
law,38 Eq. ~44!, would suffice to prove thatDs.0 if no fur-
ther incommensurate operators are considered.

Quite recently, such an operatorQi has been found for
charge transport in a Luttinger-liquid plus interactions spo
ing both the integrability and the conservation of the sp
current operator,43 reformulating Zotos co-worker result
from Ref. 30 in the continuum limit. The conserved quant
can be readily identified as the thermal current opera
~compare Refs. 17 and 20!. However, their proof of
( j s u Qi).0 assumes particle-hole symmetry to be brok
e.g., by the existence of a magnetic field~see also Refs. 22
and 30!. Consequently, for the class of models considered
Ref. 43, a nonzero Drude weight can be inferred. Since
incommensurate operators of Eq.~41! are explicitly excluded
6-11
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in Ref. 43, their result does not contradict our numeri
indications for a vanishing Drude weightDs in nonintegrable
spin-lattice models.

B. Thermal transport in nonintegrable models

Frustrated chain.In the thermodynamic limit, the low-
energy spectrum of a frustrated chain witha,acrit'0.241
~Ref. 67! is gapless and gapped fora.acrit . The thermal
Drude weight in the gapped regime of frustrated chains
been discussed in detail in Refs. 17 and 21 where we fo
clear indications of a vanishing Drude weight forN→`.
Figure 8 shows the thermal Drude weightD th(N,T) and the
specific heatCV for a50.2 andN58,10,12,14,16,18. Fo
chains of finite length, the data at low temperatures are do
nated by the finite-size gap. Hence the Drude weight
specific heat are exponentially suppressed for smallT. While
the specific heat converges to the thermodynamic limit
temperaturesT*0.25J, strong finite-size effects are prese
in the data for the Drude weight at all temperatures.

At low temperatures,D th(N,T) monotonically increases
with system size similar to the case ofa50.35~see Fig. 3 in
Ref. 17!. In Ref. 21, we have argued that the notion of
increasing Drude weight at low temperatures does not s
port the conjecture15 of a finiteD th for N→` for a50.35. In
fact, we have shown that a crossover temperatureT* which
we define byD th(N12,T* )5D th(N,T* ) and evenN seems
to extrapolate to zero as a function of system size. This
plies that the temperature range where one observes a
creasing Drude weight with system size could vanish forN
→`. An analogous finite-size analysis ofT* for a50.2 ~not
shown in the figures! could also be interpreted in the sam
sense, i.e., the temperature interval whereD th(N,T)
,D th(N12,T) tends to vanish forN→`. To summarize the
discussion of the low-temperature regime, we emphasize
the finite-size data should not be used to speculate abou
thermodynamic limit.

FIG. 8. Thermal transport, frustrated chain: Drude weig
D th(N,T) ~dashed lines! and specific heatCV ~solid lines! for a
50.2 andN58, . . . ,18 sites ~arrows indicate increasing syste
size!. The plot includes data forCV from a high-temperature serie
expansion~HTSE! reproduced from Ref. 68~note that only the bare
high-temperature series up to order 10 inJ/T is shown. By means
of extrapolation schemes, the HTSE can be extended to sig
cantly lower temperatures; see Ref. 68!.
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In Fig. 9~a!, we present the high-temperature prefac
Cth(N) for several values ofa both in the gapless (a
50.1,0.2, open symbols! and the gapped regime (a
50.25,0.35,0.5,1, solid symbols; the last three sets have
ready been shown in Ref. 21!. Finite systems with up toN
518 sites have been analyzed. WhileCth(N) appears to be
almost constant in the case ofa50.1, a substantial decreas
with system size is observed for largera and sufficiently
large N as it is especially obvious fora51. We also note
that, regarding thermal transport, the data at the Majumd
Ghosh pointa50.5 ~see Ref. 69 and references therein! do
not point to any peculiarities.

In panel ~b! of Fig. 9, Cth(N) is plotted versusa for N
514,16,18. Starting at smalla, we observe thatCth(N) is
discontinuous ata50 which will be commented below. The
curve further decreases witha and exhibits a minimum a
a'0.4 forN514 anda'0.5 forN516. The position of the
minimum seems to be further shifted towards largera on
growing N. Further increasing the next-nearest-neighbor
teraction drives the system into the limit of two decoupl
chains each withN/2 sites and interchain interactiona. Ex-
actly for J→0, Ja5const, the current operator is again co
served. Consequently, one expects the Drude weight to
crease for largea at finite and fixedN. This feature is indeed
found for a*0.5; see Fig. 9~b!.

Figure 9~b! indicates a difference between the gapped a
gapless regimes: the decrease ofCth(N) with N is weaker in
the gapless regime. We suggest the following two scena
for further discussion:~i! the Drude weight is nonzero in th
gapless regime and zero in the gapped regime;~ii ! the Drude
weight is zero for alla.0, but depending ona, there is a
characteristic system sizeN(a) with Cth(N)'const for N
,N(a) and monotonically decreasing forN.N(a).

The first interpretation might be plausible in view of th
significant differences in the low-energy properties fora
,acrit and a.acrit . However, sinceCth is essentially the
Drude weight atinfinite temperature where all states contri
ute with equal weight, it is not clear why low-energy featur
should play a crucial role for the finite-size scaling in t
limit b→0.

t

fi-

FIG. 9. Thermal transport: high-temperature prefactorCth(N)
for frustrated chains. Panel~a!: Cth(N)/Cth(8) vs 1/N for various
values of a both in the gapless and gapped regimeN
58, . . .,18) ~see also Ref. 21!. Panel ~b!: Cth(N) for N
514,16,18 as a function of frustrationa. The arrow indicates the
system-size independent value ofCth at a50.
6-12
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A second objection against the first scenario arises fr
the analysis of the level-spacing distribution both in t
gapped and gapless regime. Exploiting translational inv
ance and conservation of totalStot

z already lifts all degenera
cies on finite systems as is obvious from Fig. 10 showing
integrated level spacing distributionI (e); see Eq.~32!. The
difference to the spectrum of the integrable model~see Fig.
3! is striking: while a large fraction of states withDEn
,1028 J is present forD50.5,a50, no such candidates fo
degenerate states appear in the case ofa50.2,D51. This
feature is characteristic fora.0 which, in particular, sup-
ports the conjecture that transport properties in the gap
and gapless regimes should not be different at high temp
tures. Exceptions are found fora50.5,1. At the Majumdar-
Ghosh point, one degenerate state occurs ifN/2 is even. In
the latter case~i.e., a51), there are degenerate states in
spectra of chains withN510,12,14,18 which are, howeve
small in number ('10 for N518).

Next, there is the discontinuity ofCth(N) at a50. A
small, but finite frustration~e.g.,a51024,1023) has the ef-
fect that degeneracies are lifted while the values of diago
matrix elementsu^n u j su n&u2 are almost unaffected. Thi
leads to the substantial difference betweenCth at a50 com-
pared to small, but finitea.0. Finally, we mention that the
fact of Cth(N)'const for smalla could be a consequence o
the proximity to the integrable pointa50.

In conclusion, our numerical data indicate a vanish
thermal Drude weight for arbitrary values ofa at high tem-
peratures. This result is difficult to reconcile with the rece
findings18,20 of a nonzero Drude weight in the continuu
limit as we have discussed above that a crossover fro
nonzero to a zero Drude weight as a function of tempera
is not likely.

Spin ladder and dimerized chain.Now we turn to the
cases of the dimerized chain and the spin ladder. First,
discuss the numerical data for the thermal Drude wei

FIG. 10. Frustrated chain: distribution of level spacings in
spectrum of finite chains with 8<N<18 ~bottom to top as indicated
by the arrow! for a50.2. DEn is the difference of adjacent energ
levels in subspaces classified by totalStot

z and momentumk. The
numberI (e) of DEn with DEn,e summed over all subspaces
plotted vse.
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D th(N,T) taking the example of a spin ladder witha
5Ji /J'50.5,J'5J for N58,10,12,14,16. Second, the re
sults from a finite-size analysis of the high-temperature p
actor for both spin ladders and dimerized chains are p
sented. Finally, we comment on possible implications of o
results for the interpretation of recent experiments.3

Due to the dimerization, the unit cell of our model
doubled restricting the maximal system size toN516 in our
numerical computations at present.

Regarding the level-spacing distribution, degeneracies
still present in the case of the spin ladder. For example, th
are&102 degenerate states forN516 compared to*103 in
the integrable case~see Fig. 3!. The spectra of dimerized
chains show the same features.

The specific heatCV , the susceptibilityx, and the ther-
mal Drude weightD th(N,T) are plotted versusT in Fig. 11
for N58,10,12,14,16 anda50.5,l50 @panel ~a! CV , x,
panel~b! D th(N,T)]. The main characteristics are the follow
ing: ~i! for the specific heat, finite-size effects are small a
negligible for the susceptibility;~ii ! the data forD th(N,T)
display strong finite-size effects at all temperatures;~iii !
D th(N,T) is monotonically decreasing at high temperatu
for N.8 andT*0.6 J; ~iv! the positions of the maxima o
the specific heat and the Drude weight are different;~v! for
N/2 even~odd!, the data are monotonically increasing~de-
creasing! at low temperatures. The latter may be attributed
the fact thatD th(N,T) is diverging for decoupled chains an
odd N.

It should be stressed that the restricted number of sys
sizes analyzed here precludes any conclusions from
finite-size scaling at temperaturesT&0.6 J; in particular
since theN dependence is nonmonotonic. Note that eve

FIG. 11. Thermal transport, spin ladder (a50.5,l50, N
58, . . .,16). Panel~a!: specific heatCV and susceptibilityx.
Panel~b!: Drude weightD th(N,T). ED for D th ,CV ,x: lines. QMC
for CV(x): squares~circles! reproduced from Ref. 15~70!.
6-13
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HEIDRICH-MEISNER, HONECKER, CABRA, AND BRENIG PHYSICAL REVIEW B68, 134436 ~2003!
monotonic increase ofD th(N,T) with system size at lowT as
observed in the case of frustrated chains with, e.g.,a
50.35 does not unambigously point to a finite Drude weig
@see the discussion ofD th(N,T) of frustrated chains and
Ref. 21#.

While our numerical data for the specific heat are in qu
titative agreement with the results from Ref. 15 for the sa
choice of parameters, only qualitative consistency is fou
for the thermal Drude weight regarding points~ii !–~iv!. Note
that the Drude weightD th in Ref. 15 is measured in units o
Ji;a J instead ofJ'5J used in this work. The specific
heat, however, is dimensionless. Also, compared to point~v!,
the opposite monotony behavior is observed at low temp
tures in Ref. 15. One may speculate that this difference
due to the use of twisted boundary conditions and differ
definitions for the energy-current operatorj th in Ref. 15.

The finite-size analysis of the high-temperature prefac
Cth(N) reveals a systematic decrease with system size
N.8 both for the case of the spin ladder and dimeriz
chain as it is evident from Fig. 12. In particular, by norma
izing the data on the respective values forCth(N58) the
finite-size dependence of the data for the spin ladder@panel
~a! in Fig. 12# appears to be almost independent of the int
chain couplinga5Ji /J' for the choice of parameters con
sidered here (a50.1,0.5,1,2) including the isotropic ladde
(a51). Only the results for the dimerized chain withl
50.9 show less evidence for a vanishing ofCth . This does,
however, not question the conclusion of a vanishing ther
Drude weight becausel50.9 is still very close to the homo
geneous Heisenberg chain whereD th(T.0) is finite.

To summarize the finite-size analysis, one can concl
that the numerical data forD th of spin ladders and dimerize
chains indicate a vanishing Drude weight forN→`. In par-
ticular, this includes the isotropic spin ladder (J'5Ji , a
51) which is of relevance because the magnetic proper
of La5Ca9Cu24O41 are well described byJ''Ji .71,72

Recently, first attempts have been made to extract m
netic mean free pathsl mag from the experimental data for th
magnetic part kmag of the thermal conductivity of
La5Ca9Cu24O41. Assuming that heat is carried mainly by th
elementary excitations of spin ladders~i.e., dispersive triplet
modes! Hesset al.5 have used a relaxation time ansatz f
the respective kinetic equation reading

FIG. 12. Thermal transport:Cth(N) for spin ladders@panel~a!#
and dimerized chains@panel ~b!#. Data are shown forN
58, . . . ,16spins~i.e., ladders with 4, . . . ,8 rungs!.
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CV,k vkl k . ~47!

Here,CV,k is the specific heat perk-space volume,vk is the
triplet velocity, andl k the momentum-dependent mean fr
path. This approach results in very large mean free pathsl mag
of the order of 3000 Å at 100 K corresponding to'770
lattice constants. Following this work, Alvarez and Gros15

have suggested a much smaller value forl mag: namely,
176 Å'45 lattice constants atT5100 K. They have attrib-
uted this significant difference to the fact thatD th(N,T)
;” CV as is seen in the numerical data. It is, howev
straightforward to check that Eq.~47! leads tokmag;” CV ,
implying that this alone does not explain the different valu
found for l mag in Refs. 3 and 15.

The result forl mag of Ref. 15 is explicitly based on the
assumption of afinite Drude weightD th for spin ladders
which is questionable in view of the detailed numerical
sults presented in this paper.

C. Spin transport in nonintegrable models

In this last section, we give an overview of our results f
the Drude weight for spin transport in nonintegrable mode
The dependence ofDs on frustration and dimerization will be
systematically discussed. Our analysis of the Drude weigh
finite temperatures includes next-nearest-neighbor inte
tions ( l SW l•SW l 12 extending previous numerical studies
nonintegrable lattice models29,33,41 where different kinds of
Ising-like interactions (( l Sl

zSl 1 i
z , i 52,3) have been consid

ered. Note in this context that frustration cannot be trea
with QMC simulations due to the sign problem.41

Frustrated chain. Results for the Drude weigh
Ds

I ,II (N,T) are shown in Fig. 13 fora50.2 ~main panel! and
a50.5 ~inset!. In the gapless regime (a,acrit), the finite-
size data display features similar to theXXZ model: ~i!
Ds

II (N,T50).0; ~ii ! Ds
II (N,T)'const at small tempera

tures; ~iii ! Ds
I(N,T).Ds

II (N,T) at high temperatures, bu
significant deviations at low temperatures;~iv! a monotonic

FIG. 13. Spin transport, frustrated chain: Drude weig
Ds

I ,II (N,T) for N58,11,12,13,15,16,18 anda50.2,l51 @dashed
lines,Ds

I(N,T); solid lines,Ds
II (N,T)]. Arrows indicate increasing

systems size. Inset: Drude weight at the Majumdar-Ghosh p
(a50.5,l51) for N512,16.
6-14
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ZERO-FREQUENCY TRANSPORT PROPERTIES OF ONE- . . . PHYSICAL REVIEW B 68, 134436 ~2003!
decrease with system size at high temperaturesT*0.5 J.
Similar to the case of the thermal Drude weight of frustra
chains, we observe that for evenN, the monotonic decreas
of Ds

I ,II (N,T) with system size at high temperatures chan
to an increase at lowerT. However, the temperature, whe
this change in the monotony behavior occurs, is stron
shifted to lower temperatures asN grows; see Fig. 13. This
resembles the case ofD th(N,T) for a50.35 discussed in
Ref. 21 and we conclude that the numerical data forDs at
low temperatures do not give unambiguous evidence fo
finite Drude weight.

The observation ofDs
II (N,T50).0 for smalla has also

been reported in Ref. 26. There, using the Lanczos met
and truncation in theStot

z 50 subspace, a nonzero Drud
weight atT50 has been found fora,0.43 andN520. To
clarify whetherDs(T50).0 survives in the thermodynami
limit, one should exploit Kohn’s formula forT50 using,
e.g., the Lanczos algorithm, which is, however, not the p
pose of the present paper.

Consistent with Ref. 26, we findDs
II (N,T50)50 in the

case ofa50.5 ~see inset of Fig. 13!. Notice thatDs
I(N,T)

.Ds
II (N,T) at all temperatures forN516.

We now turn to the question of a nonzero Drude weigh
the thermodynamic limit by a finite-size analysis of the hig
temperature pre-factorCs(N). Cs(N) is plotted versus 1/N in
Fig. 14~a! for a50.2,0.35,0.5,1. First,Cs(N) monotonically
decreases with system size~except for odd-even effects! for
all values ofa presented here and exhibits a discontinuity
a50 analogous toCth(N) ~see inset of Fig. 14!. Second, the
data fora50.2 may in principle be extrapolated to a fini
value in the thermodynamic limit~see, however, remarks be
low!. The behavior fora.acrit is similar to the case of the
thermal Drude weight sinceCs(N) decreases rapidly withN
and faster than 1/N.

Another remarkable difference between the gapped
the gapless regime is revealed in Fig. 14~b! where we show
Cs(N) as a function of frustrationa for N514,16,18. In
contrast to the thermal Drude weight~see Fig. 9!, Cs(N) first
grows witha and exhibits a maximum arounda'0.2. For

FIG. 14. Spin transport: high-temperature prefactorCs(N) for
frustrated chains. Panel~a!: Cs(N)/Cs(8) vs 1/N for various values
of a both in the gapless and gapped regime (N58,9, . . .,18).
Panel~b!: Cs(N) for N514,16,18 as a function of frustrationa.
The inset shows a blowup for smalla andN514,16.
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larger a*0.7, Cs(N) increases witha again analogous to
the case of the thermal Drude weight~see Fig. 9!.

We interpret the data fora.acrit in terms of a vanishing
Drude weight forN→`. For the gapless regime, the poss
bility for a nonzeroCs cannot be ruled out by our data a
though the absence of degeneracies~see Fig. 10! supports the
conclusion ofCs50 for all a.0.

Dimerized chain, spin ladder.While for the frustrated
chain and the spin ladder the fermionized Hamiltonian, E
~5!, contains interaction terms even atD50, the case of the
dimerizedXY model, (D50,l5” 1,a50) corresponds to a
model of free, but massive fermions which can be solv
exactly~see, e.g., Ref. 18!. We will start with a discussion of
this limiting case where a finite Drude weightDs exists.

The Hamiltonian in terms of spinless fermions@see Eq.
~5!# reads

HXY5 (
l

l l

2
~cl 11

† cl1H.c.! ~48!

(l l5l for l odd andl l51 otherwise!. A straightforward
computation diagonalizesHXY ~see, e.g., Ref. 18 for details!,

HXY5 (
k

ek ~ak,1
† ak,12ak,2

† ak,2!, ~49!

leading to two modes with a gapped dispersionek

5JA(12l)2/41l cos (k). Obviously, the spin-current op
erator j s5 (k vk(ak,1

† ak,12ak,2
† ak,2) is conserved and the

Drude weight can be computed exactly:

Ds~T!5
1

4T E dk
vk

2

cosh2@ek /~2T!#
. ~50!

vk5]ek /]k is the velocity.
In Fig. 15, the Drude weight on finite systems is plott

FIG. 15. Spin transport, dimerized chain: Drude weig
Ds

I ,II (N,T) for N510, . . . ,16~top to bottom as indicated by th
arrow! and a50,l50.5 @dashed lines,Ds

I(N,T); solid lines,
Ds

II (N,T)]. In the inset, the exact result from Eq.~50! ~dot-dashed
line! for the Drude weight of a dimerizedXY chain with D50,a
50,l50.5 and numerical data~solid line! for N516 sites are
shown.
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HEIDRICH-MEISNER, HONECKER, CABRA, AND BRENIG PHYSICAL REVIEW B68, 134436 ~2003!
for a dimerized chain withl50.5 and bothD50 ~inset! and
D51 ~main panel!. In the former case, we see that the n
merical data for 16 sites agree with the exact expression
N→`, Eq. ~50!, at temperaturesT*0.2 J. The same holds
for smaller system sizes~not shown in the figure! for high T.
This is in contrast to the curves forD51 ~main panel!,
where no convergence is observed at all temperatures.

For D51, both Ds
I(N,T) ~dashed lines! and Ds

II (N,T)
~solid lines! have been evaluated proving their equivalence
high temperatures. Small systems (N510,12) still exhibit a
large nonzero value ofDs

II (N,T50) which rapidly decrease
with system size.

The data for the high-temperature pre-factorCs(N) are
collected in Figs. 16~a! ~dimerized chain! and 16~b! ~spin
ladder!. A substantial decrease ofCs(N) with system size is
observed for all choices of parameters andN.8, indicating
a vanishing Drude weight at high temperatures.

In summary, our numerical data yield evidence for no
ballistic spin transport in nonintegrable spin models with
spin gap, i.e.,Ds(T.0)50 in the thermodynamic limit. This
result confirms Zotos and co-worker’s original conjectur29

that transport in nonintegrable models should be normal.
system sizes investigated here may, however, be too sma
clarify whether the Drude weight is zero or not in the gaple
phase of the frustrated chain.

*Electronic address: f.heidrich-meisner@tu-bs.de
†On leave from Universidad de La Plata and Universidad de Lom
de Zamora, Argentina.
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VI. CONCLUSION

In this paper, we have presented a detailed study of
Drude weights for thermal and spin transport in on
dimensional spin systems at finite temperatures. Let us fo
here on the main results while more detailed summaries
be found in the preceding sections.

Thermal transport in theXXZ model is generically dissi-
pationless due to the conservation of the energy cur
operator.30 Our data for the thermal Drude weight are
excellent agreement with the Bethe ansatz14,49. For spin
transport in this model, we have presented numerical res
for various values of the anisotropy. Our data confirm t
observation29,32,33,37,41,43,44of a finite Drude weightDs in the
gapless regime (uDu,1). We have discussed some so f
unresolved issues: first, the exact temperature dependen
the Drude weight in the critical regime (uDu,1) and, sec-
ond, the question of whetherDs(T.0) is finite for the iso-
tropic chain (D51). Regarding the first point, analytical43

and numerical41 results are compatible with the finite-siz
data presented here. Regarding the second issue, the
diagonalization data of finite systems withN<18 do favor a
finite Drude weight atD51.

In the case of nonintegrable models~frustrated chain,
dimerized chain, spin ladder!, our main result is that the
finite-size analysis of the ED data does not indicate a fin
Drude weight in the thermodynamic limit either for therm
or spin transport, but rather supports the conclusion t
transport in these systems is dissipative. While we have c
centrated our numerical analysis on the finite-size scalin
high temperatures, this result is corroborated by bosoniza
in the low-temperature limit.
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Büchner, C. Gros, C. Hess, A. Klu¨mper, T. Lorenz, T. M.
Rice, and A. Rosch for fruitful discussions. We are indeb
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62A. Klümper ~private communication!.
63Shi-Jain Gu, V. M. Pereira, and N. M. R. Peres, Phys. Rev. B66,

235108~2002!.
64H. J. Schulz, inCorrelated Fermions and Transport in Meso

copic Systems, edited by T. Martin, G. Montambaux, and J. Tra
Thanh Van~Editions Frontie`res, Gif-sur-Yvette, 1996!, p. 81.

65S. Rao and D. Sen, inField Theories in Condensed Matter Phy
ics, edited by S. Rao~IOP Publishing, Bristol, 2002!.

66P. Mazur, Physica~Amsterdam! 43, 533 ~1969!; M. Suzuki, ibid.
51, 277 ~1971!.

67See, e.g., K. Nomura and K. Okamoto, J. Phys. Soc. Jpn.62, 1123
~1993!.

68A. Bühler, N. Elstner, and G. S. Uhrig, Eur. Phys. J. B16, 475
~2000!.

69B. S. Shastry and B. Sutherland, Phys. Rev. Lett.47, 964 ~1981!.
70D. C. Johnston, M. Troyer, S. Miyahara, D. Lidsky, K. Ueda, M

Azuma, Z. Hiroi, M. Takano, M. Isobe, Y. Ueda, M. A. Korotin
V. I. Anisimov, A. V. Mahajan, and L. L. Miller,
cond-mat/0001147~unpublished!.

71M. Matsuda, K. Katsumata, R. S. Eccleston, S. Brehmer,
H.-J. Mikeska, Phys. Rev. B62, 8903~2000!.
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