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We report a detailed analysis of the Drude weights for both thermal and spin transport in one-dimensional
spin+4 systems by means of exact diagonalization and analytic approaches at finite temperatures. Transport
properties are studied first for the integralfl¥ Z model and second for various nonintegrable systems such as
the dimerized chain, the frustrated chain, and the spin ladder. We compare our results obtained by exact
diagonalization and mean-field theory with those of the Bethe ansatz, bosonization, and other numerical studies
in the case of the anisotropic Heisenberg model both in the gapless and gapped regime. In particular, we find
indications that the Drude weight for spin transport is finite in the thermodynamic limit for the isotropic chain.
For the nonintegrable models, a finite-size analysis of the numerical data for the Drude weights is presented,
covering the entire parameter space of the dimerized and frustrated chain. We also discuss which conclusions
can be drawn from bosonization regarding the question of whether the Drude weights are finite or not. One of
our main results is that the Drude weights vanish in the thermodynamic limit for nonintegrable models.
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I. INTRODUCTION Drude weight for thermal transport has been obtained in the
antiferromagnetic regime of this model along this [{é°
Due to their relevance for modeling the magnetic properNumerical studi€s''” have provided the thermal Drude
ties of several quasi-one-dimensional materials, dimerizedveight in the antiferromagnetic regime, in the gapped, ferro-
and frustrated spig-chains and ladders are models of greatmagnetic phase and for the isotropic, ferromagnetic chain.
and current interest. Recently, growing experimental eviHere we extend on such analysis by adding data for the gap-
dence has been found that magnetic excitations can contrilbess, ferromagnetic regime.
ute significantly to the thermal conductivity of various quasi- In a first numerical work devoted to the issue of thermal
one and quasi-two-dimensional materialst Stimulated by  transport in nonintegrable models, Alvarez and Gtdmve
these observations, many theoretical activities have ad:zonjectured that the Drude weight is generically finite in
dressed the issue of heat transport in one-dimensional spilimerized and frustrated spin systems although the energy-
systems2=22\While spin transport has been a topic of numer-current operator is not conserved in these cases. However,
ous theoretical investigation;*® the theory of thermal we have argued in Refs. 17 and 21 that this conclusion can-
transport is less well understood. not be sustained for gapped, frustrated chains if larger system
One of the key questions is to understand under whictsizes are included in the finite-size analysis. In this paper, we
conditions transport is ballistic, i.e., dissipationless. The criextend our parameter study of the thermal Drude weight to
terion for this is the existence of a singularity at zero fre-include dimerized chains and spin ladders also. The main
guency in the real part of the conductivity. Therefore, one igesult is that the numerical data are best interpreted in terms
interested in the integrated weight of this singularity — theof a vanishingthermal Drude weight in nonintegrable sys-
so-called Drude weight — in the thermodynamic limit. The tems.
appearance of a nonzero Drude weight is often ascribed to Recently, however, the thermal Drude weight has also
the influence of conservation laws on transportbeen computed by means of analytic approaches yielding a
properties’3843464qr example, in the case of the Heisen- finite Drude weight at low temperatur&?® In Ref. 18, the
berg chain the energy-current operator is conset%&tim-  spin ladder and dimerizedY models have been studied by
plying a nonzero thermal Drude weight at all temperaturesmapping to noninteracting models. While this is exact in the
Another widely discussed and related issue is the differenckatter case, it is an approximation in the case of the spin
between transport in integrable models compared to nonintdadder. For instance, the influence of incommensurate
grable oneg>?1/:20:27:33:41.43 umklapp-scattering terms on transport properties of massive
The purpose of the present paper is to provide a systenmodels is not yet fully understood. Bosonization was applied
atic study of both the Drude weight for spin and thermalin Ref. 20 to the cases of the dimerized and the frustrated
transport at finite temperatures by means of exact diagonathain leading to the interesting result that certain umklapp-
ization on finite systems and analytic methods. The deperscattering terms do not spoil the conservation of the energy
dence on exchange coupling anisotropy, frustration andurrent.
dimerization will be clarified. Spin transport in spig- models is equivalent to charge
We start with an overview of the results of previous andtransport of(spinles$ fermions and an enormous amount of
related works. For the anisotropic Heisenberg chain, it isvork has been devoted to this figit:*> The situation of spin
possible in principle to compute thermodynamic quantitiesransport in the integrable model, i.e., the Heisenberg chain,
exactly with the Bethe ansatz at arbitrary temperatures. This different from the case of thermal transport since the spin-
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current operator is only conserved in the case of free fermi-
ons (XY mode). Nevertheless, the Drude weight is finite in
the gapless regime while numeri¢ai?and analyticaf stud-
ies have found indications that it may vanish in the gapped
cases. The case of the isotropic chain is still the subject of
discussiori333741.43:44 FIG. 1. Sketch of a frustrated and dimeriz6e % chain. The
At present, no final agreement about the results from dif{iimiting cases aree=0, A=1, theXXZ chain;(ii) >0, A\=1, the
ferent Bethe ansatz computatidhd”°%® for the Drude frustrated chain(ii) =0, 0<A<1, the dimerized chain; an@v)
weight has been achieved. For example, the Bethe ansatz>0, \=0, the two-leg spin ladder.
computations by Zotd$ predict the Drude weight of the
isotropic chain to be zero while Kioper and co-worker8  (Ref. 6 and BaCuySi,O; (Ref. 7). Third, we mention the
have found a finite Drude weight in this case. The latteranorganic spin-Peierls material CuGe@Ref. 1) although
conclusion is in agreement with some numerical works —the physical nature of the heat carrying excitations is still
exact diagonalizatioth*® (ED) and quantum Monte Carlo under controversial discussiofi? It has been suggested that
(QMC) simulation§*—as well as analytic approach®s. the magnetic properties of this material can be described to
Very recently, however, Longt al** have developed a novel some extent by a dimerized and frustrated chain. Finally,
Lanczos method for finite temperatures which has been agstrong evidence for thermal transport mediated by magnon
plied to spin transport in the anisotropic Heisenberg chairexcitations in two-dimensional cuprate compounds has also
with up toN= 28 sites. They interpret their numerical results been found
in terms of a vanishing Drude weight for the isotropic chain. The plan of the paper is the following. In Sec. Il, we
Regarding the temperature dependence of the Druditroduce the model which is a dimerized and frustrated
weight in the gapless regime contradicting results are reHeisenberg chain including an exchange-coupling anisot-
ported in the literaturd’414350.51 ropy. Next, we summarize the basic relations for the trans-
As far as nonintegrable models are concerned, the effegdort coefficients and, particularly, for the Drude weights as
of frustration on spin transport has been studied at zerthey follow from linear response theory in Sec. Ill. The defi-
temperaturé® while at finite temperatures, Ising-like interac- nitions for the current operators will be given at the end of
tions with distance up to 3 have been investigated with ECthis section. Our results are presented in Secs. IV and V.
(Refs. 29 and 38 and QMC (Ref. 41). Fujimoto and First, we discuss transport properties of the anisotropic
Kawakamf® have discussed transport in nonintegrable modHeisenberg chain using mean-field theory and exact diago-
els in the low-energy limit with bosonization. They find a nalization. The results will be compared to Bethe ansatz
nonzero Drude weight provided that particle-hole symmetrycomputations?*"4° QMC* and other numerical
is broken in agreement with Ref. 30. The physical reason istudie$®%?33%4as well as analytical work¥:*> Second, we
the finite overlap of the spin-current operator, which is notconsider several nonintegrable models in Sec. V. Using
conserved in the presence of any umklapp scattering, to thgosonization, we argue that vanishing Drude weights are ge-
energy-current operator. nerically expected in masslé&sand massive nonintegrable
In their work on charge transport in a one-dimensionalspin models. Numerical data will be shown for both thermal
systent® Rosch and Andrei have argued that the Drudeand spin transport and will be related to the results of other
weight is zero in the presence d&ngerously irrelevant per-  groupst>'82°43Finally, our main conclusions are summa-
turbationssince then all relevant conservation laws are brosized in Sec. VI.
ken. On the basis of this result, a zero Drude weight is natu-
rally expected in all nonintegrable and gapless spin models. Il. MODEL

_ It will be an additional focus of the present paper to pro- | this work we consider frustrated and dimerized spin-
vide a complete as possible analysg of spin transport in NONkhains as sketched in Fig. 1. The Hamiltonian reads
integrable models such as the dimerized and frustrated

chains as well as spin ladders. As a main result, the numeri- N
cal data indicate a vanishing of the Drude weight in the ther- H= > hi(Aa,)\), 1)
modynamic limit consistent with Refs. 29 and 38. =1
Although it is beyond the scope of this paper to give any _
conclusiv?a explanations of recent transport experiments on (A, M) =00y 2 (A) a4 2(A)], )
low-dimensional spin materials, we will provide a list of ma- _ oto- 202
terials for which this work could be of relevance. Whenever Mi(A)=(ST S+ HC)2HAS S 3
possible we will make connection to these experiments anti|(A,a,\) from Eq.(2) is the local energy density amdithe
discuss implications of our results for their interpretation.number of sites. We set;=1 if | is even and\;=\ other-
First, there are surprisingly large magnetic thermal conducwise. In Eq.(3), i=1 for nearest andl=2 for next-nearest-
tivities observed in the compoundéSr,La,C9,.Cu,4O4;  neighbor interactions. Throughout this work, periodic bound-
(Refs. 2—5. Here, a strong magnetic contribution to the ther-ary conditions are used. All quantities are measured in units
mal conductivity is believed to be mediated by magneticof the exchange coupling constafitwhere J is positive.
excitations of spin ladders. Second, similar findings haveMainly, we focus on the following limiting cases of this
been reported for the spin chain materials SrguSr,CuQO; model: (i) a=0\=1, the XXZ chain; (ii)) a>0\=1, the
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frustrated chaingiii) «=0,0<A<1, the dimerized chain; Here, we are interested in the weidby,(T) of the 5-type
and(iv) >0\ =0, the spin ladder. singularity atw=0. A nonzero value ofD(T) corre-
We discuss various values for the anisotropy in the intesponds to a divergent conductivity whereas a vanishing
grable casdi.e., =0\=1) including theXY model A Dings)(T) implies a normal conducting behavior if there is a
=0). In the case of the two-leg spin laddex=0), «  contribution from the regular part of the conductivity at low
=Jy/J, is equal to the ratio of the leg coupling to the  frequencies or insulating behavior if R¢ o] w=0)=0
rung couplingd, . (see Ref. 2h In the remainder of the paper, the dependence
It is instructive to write down the Hamiltonian in terms of on system size of the Drude weight will be explicitly denoted
fermionic operators. This will later be used as the startingoy D g)(N,T) while Dyy(T) refers to the thermodynamic
point for the mean-field theory in Sec. IV A. By performing limit N—oo.
a Jordan-Wigner transformatigsee, e.g., Ref. §3the spin- A spectral representation &f o](w) In terms of eigen-
3 operatorsS;* can be mapped onto spinless fermions: statesH| n)=E,| n) yields an expression for both Drude
weights® (Z is the partition functiop

Sf=cfc,— S =€/ . (4)

E;
¢! destroyg(createga fermion on sité. The string operator
®, reads® = =!_1clc;. For the Hamiltonian from EqJ),
we arrive at(see, e.g., Ref. 54 Note that the exponertt,g in the prefactor needs to be
chosen according to
H=J),
|

| _Wﬁtm[s] —BE ; 2
Dinig(N,T) = 7N % e PEnl(mljglm|%. (8)

En=Ep

1

- +

2>\|[(c| C;1tH.c) ty=2 or te=1; )

i.e., we expecDy,~1/T? andD .~ 1/T at high temperatures.
For spin transport, we will numerically analyze E®)

and a second expression which can be derived from linear

response theor§>?’

1
to of t
CiCiC+1Ci+1—C G+ 4

+A 2

1 4 T
+a) 5(CClet H.C)(1 =€l 1Cria)
. 2 [(m|jg|n)|?
I L S -pE, N UsIT/T

+A ETE

to ot t
CICICI+2CI+2— CiCt o

Note the presence of correlated hopping terms, i.e.,
ClC142C/ 1 1€ 1+ H.C., in Eq.(5). Such contributions are ab- The operatoff is related to the kinetic energy. Note that in

©)

(10

sent in the usual standard extended Hubbard models. the derivation of Eq(10), the f-sum rule(see Ref. 23 and
references therejns exploited. It is now instructive to make
[ll. KUBO FORMULAE FOR & AND o a connection to Kohn'’s formula for the Drude weidhj to

H : | 1
In this section we briefly review the underlying equationsIIIUStrate the relation betweed(N,T) andDg (N T). As a

for the thermal and the spin conductivity and we define the?y-Product, we will obtain the appropriate definition of ,
energy-current operatgs, and the spin-current operatfy. Equatlog(lo) is equivalent to thze generalization of Kohn'’s
formula® for finite temperature$*

A. Drude weight for heat and spin transport

.. 1 m _ (92En(¢)
The Kubo formulae for the thermal conductivig(w) DI(M==-> e ﬁEn—Z (11)
and the spin conductivity(w) read®°>°->7 ZN A P
k[o](w) To arrive at this expression, one considers finite rings of
lengthN being pierced by the flusb, i.e., a static twist about
_LAl fx dte_i(wﬂm)tfﬁd el — =i 7] aret) the z axis. The flux-dependent Hamiltoniah(®) with ex-
N Jo o J7\this] sy change couplingd, #0 being nonzero for<r, read$®

. . . © S 1 i(r®/N) ot~ zZoZ
The expressions in brackefts] refer to spin transport; the H(®)= 21 21 (e S S tH.C)+ASS (.

index “th” denotes thermal transport and “s” spin transport.

B=1T is the inverse temperature while the brackets (12
denote the thermodynamic expectation value. The real pagixpandingH(®) up to second order i yields?328
of k(w) ando(w), respectively, can be decomposed intd a
function ato=0 and a regular part o o2
H(®)=H(®=0)+ —js— T. (13
Rex[0](w) =Dyg(T) 8(w) + Rex[led @). (7 N 2 N?
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The expression for the current operajgrwill be given in ar Blinls] "
Sec. Ill B where we derive it from the equation of continuity. =— s (17)

In terms of spin operatord; is given by i . i _
implying that astatic expectation value has to be computed

N which is a considerable simplification. Analogously, we ob-
T= |21 21 r23.(S'S,, +H.c). (14  tain
ey Rl
For the models investigated in our paper, we hay€2. In DI(N,T)= Z<_-T-> (18)
' N

the fermionic picturdsee Eq(5)], T is the sum of the con-

tributions to the kinetic energy from both the nearest-from Eq.(10) under the conditiofiH,j]=0. The main goal
neighbor and next-nearest-neighbor hopping and also thef this work is to investigate wheth@ 5 has a finite value
correlatedhopping termss/, ;¢ 1¢], ,¢;+H.c. The appear- in the thermodynamic limit N—c). Typically, the finite-
ance of the extra factor of 4 in front of the term proportionalsize dependence is well controlled at high temperatires

to J,=a J, which arises from the factor” in Eq. (14), can > J where all state$n) are occupied with equal probability
be understood by considering the limit of two decouplede™ 4.1 In this case, we see from E) that
chains Ja=constJ—0) of lengthN/2. Rescaling the size-

dependent prefactors in EG.3) on N/2 cancels the factor of lim [ T'ts) Dypy (N, T)]= Cyns(N), (19
4 and results in twice the Hamiltonian of a single chain with T—ee
N/2 sites. _ _ with a prefactorCq:

By applying second-order perturbation theoryH¢d) it
is straightforward to arrive at Eq10) (see, e.g., Ref. 23 T _ )

The relation betwee!(N,T) and DY (N,T) has been Cings(N)= 2N % (Ml sl M1 (20)
pointed out in Refs. 25, 30, 33, and 35. While Em=E,

D(T)= lim D(N,T)= lim D' (N,T) In the limit T—co, the partition functiorZ.,=2" is equal to
New New the dimension of the Hilbert space.

holds for all temperature§>0 in the thermodynamic limit,
the two expressions are not equivalentfimite systems. For
instance, Eq(10) may result in negative values on finite ~ The current operators obey the following equations of
systems afT =0 (see Refs. 24 and 35 for exampleghereas continuity:

DY(N,T)=0 is strictly fulfilled by evaluation of Eq(8) (see, . . :
e.g., Rﬁf. 30 for dletai)s Note in this context that the differ- g =i[H.]==(mi+1=Tmo),
enceD¢ (N,T)—D¢N,T) is proportional to the second de- 7 - .

rivative of the free energy with respect to the fldxin the AS=IH.ST==Usiram ), (22)
limit of vanishing momentum. In general, this quantity mea-whereh; is the local energy densit§% the local magnetiza-
sures the superfluid densiy’***in more than one spatial tion density, and g are the local current operators.
dimension. However, for a one-dimensional model, it van- Erom Egs.(21) and(22), we obtain solutions for the cur-
ishes in the thermodynamic linfi¢:*® rent operators for arbitrarily long-ranged interactions. If

Equation(8) can also be related to Kohn’s formula. While [hl . 1h|] :/: 0 holds on|y forr grol the energy_current opera-
the latter one is the sum of the curvature of energy levelsyor readd? 4859

D'S(N,T) equals the sum of squares of first derivatives of the
energy levels with respect to the fldx (Ref. 33:

T e-BEn(M

B. Current operators

(21)

N rp—1

N
= 21 Jiny =i lE rE:O [h—r—1,hgal (23

=1n

DYN,T)=

The spin current is given B%2°

2
ZN4 ) (DO)' (19

In this paper, Eqs(8) and (10) will be used to compute the N N ro1

Drude weights while Eqg11) and(15) have been given for =2 Q=i 2 [ho-1,50] (24
completeness. We will show in Sec. IV B 3 that the differ- =t =1 nr=o

ence betwee®y(N,T) andD{ (N, T) is negligibly small at  with [h,_,,S/]#0 for r<r,. In this paper, we restrict our-
sufficiently high temperatures already on finite systems. Akelves tor,<2. The same result can be obtained from Eq.
low temperatures, oanD's'(N,T) yields a good description (13). Independent of the model, the local magnetization den-

of the temperature dependence. sity is given byS’ whereas we use Eq$2) and (3) as a
If the current operatojg is a conserved quantity, Eq. definition for the local energy density. For the€Y model,
(8) can be rewritten as both quantitieg., andjs commute with the Hamiltonian, i.e.,

- [HXY,jm[s]]=0- While [H;(g(jéjm]=0 remains valid for ar-
Dinsi(N.T) = ZN > e E(n|jdglny  (16) bitrary A and a=0;A=1,****the conservation of; is im-
mediately broken once the anisotrofsyhas a nonzero value.
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Dimerization and frustration which spoil the integrability of 12 T
the XXZ model also lead to[H,ju]#0 (except for | @a=05 \\Nodd
A=a=0). I N
o8 M NITNn
IV, XXZ MODEL - "Q;:»’,;’/‘;;;}\E‘ .
] L 770 =
In this section we discuss transport properties ofXixez 0 /,’4/,//7 e
model. Since this model is solvable via the Bethe ansatz, — o4 | ,;’/7/ AN
certain thermodynamic quantities like susceptibifi§* or il - ey
specific hedf+®!are accessible with this technique. The ther- o2 } ,5/’/2//  BAD M, .
mal Drude weighDy, has recently been computed along this ,ﬂ///// Neven
line by Klumper and Sakat*° for arbitrary A=0. For spin 0 frfy ' ' ' '
transport, finite-temperature Bethe ansatz computations haw
been performed by both Zofds and Klimper and 5[ ®)A=-03
co-workers>® However, these two groups find different re- 04 F 1V N odd
sults for the temperature dependence which is ascribed tc AN
conceptual problems of computing the Drude weight from a™ o3} ‘.\\\\\\\ 0 L .
single microstate at a given temperateé? =) AN 002 7!
First, we apply mean-field theory based on the Jordan- 02 ///////
Wigner transformation and compute the Drude weights in the ////,/f//
gapless, antiferromagnetic regimes@<1. This approach 0L r /Z’///Neven
yields a good approximation to the exact results from the 0 Yy , , , ,
Bethe ansatzcompare Ref. 1j7for the thermal conductivity, 0 02 04 0.6 0.8 1

whereas for spin transport, it fails to describe thelepen- FIG. 2. Thermal Drude weight of th&XZ chain for A=0.5
dence of the Drudg WelgF[pS. .Second, we pre;ent Our e~ |hanel (a)], A=—0.5 [panel (b)], and A=2 [inset in panel(b)].
sults from exact diagonalization focusing mainly on spinpaghed(dot-dashelilines: ED data for everiodd N. Solid lines:
transport. Bethe ansatzBA) results from Refs. 14 and 49. Thin, solid line in
(a): high-temperature limiDy(T)=C,/T? from Ref. 14. Dotted
A. Mean-field theory line in the inset of(a): mean-field(MF) approximation.

In this section, we consider an approximate treatment of
the Hamiltonian of the anisotropic chain within mean-field i
theory. First, this approach will provide exact expressions fosMPly given by
the Drude weights in the case of free fermions<0) which
is useful for a check of the numerical implementation. Sec- i MF_ i MF_
ond, we will see that the thermal Drude weight of thXZ i Ek: Wik I zk: Okl @9
chain can be well described by this approximation [ft i , + ,
<17 which is, however, not the case for spin transport. ~ With velocity v= de,/dk andn, = cyc,.. The spinon veloc-

Within mean-field theory, the interaction terms in the fer-ity, i.€., vg' =v(T=0), follows from Eq.(26), vy =1
mionized Hamiltonian from Eq(5) are simplified by means +2 A(T=0)A with A(T=0)=1/7. From Eq.(17), we ob-
of a Hartree-Fock decomposition. Since details of the procetain the Drude weights
dure can be found in the literatufeee, e.g., Ref. 54we

In the mean-field description, the current operators are

prefer to quote directly the result for the mean-field Hamil- ME T o)
tonian ( labels the momentum Dy (T)= ﬁ; (ei)? f2(e)e'T, (29)
Hur= 2 €CiCy. (29 ar
k DQ”F(T):N—T > vif?(e)ew/T. (30)
Hye is diagonal in momentum space with the tight-binding
dispersion In the case of free fermions, i.e\,=0, Egs.(29) and (30)
are exact and can be evaluated both on finite systems and in

€= —1(A,T) cos(k). (26)  the thermodynamic limit. This provides a useful check for
The hopping amplitude(A,T):=—[1+2A(T)A] is modi- the numerical implementation, in particular since the spin-
fied via the one-particle expectation value current operatoj is independent oA [see Eq.(24)].

For thermal transport, the mean-field approach provides a
N 1 (n good approximation t®,(T) for |A|<1 as we have shown
A(M)=(cjci1)=— fo dk cos(k)f(ex), (27 in Ref. 17 and as can be seen in the inset of Fig) @here
we compareD,(T) from the mean-field approactdotted
which needs to be determined self-consistently. Note thdine) with the Bethe ansatz results from Ref. @sblid line)
f(e)=1/(exp(Be)+1) is the Fermi function. for A=0.5.
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Regarding the spin transport, we note that the mean-fielc T T T T T
theory does not give a qualitatively correct description of A=0.5 N=8...18 —— Neven
Dg(A). Equation(30) results inD¥ (T=0)=0v}"(A). Ba- w °
. . . . Vv
sically, the Drude weight increases with here because £= 10°E P it e
DMF~(—T) essentially measures the increase of the band-3 \ S
width with A. This is in contrast to the exact expression for '§ 10 - - S r—3
D(T=0) (Ref. 23 T A i
R Rl v
X -
72 sin(y) T e Z ,/ T
D(T=0)= — ———,A= cos(y), (31 = s
4 y(m—v) W~ TTTT TS .
whereDg decreases with due to the presence of the inter- 110-9 1(')-8 1(')-6 1(')-4 1(')-2 I1 10
action terms in Eq(5). The reason for the failure of the e [J]

mean-field theory is that the current operath\F is con-
served for B=A=<1 which is not true for the full Hamil-
tonian(1) and the respective current operat@4). Note that
the exact Drude weight takes the forB(T=0)~Kuvg

whereK is the Luttinger parameter ang, the velocity at
T=0 (see, e.g., Ref. 391t is precisely the factor oK that is
missing in the mean-field result.

FIG. 3. Distribution of level spacings in the spectrum of finite
chains with 8<N=<18 (bottom to top as indicated by the arrpfer
A=0.5(solid lines,N even; dashed line$\y odd. AE, is the dif-
ference of adjacent energy levels in subspaces classified bysfgtal
and momentunk. The numbel (€) of AE, with AE,<e summed
over all subspaces is plotted ¥qsee Eq(32)].

1. Technical remarks on the numerical procedure

B. Numerical results for the XXZ model We start with several technical remarks on the numerical
Now we turn to the discussion of the results from exactprocedure which are relevant for both integrable and nonin-
diagonalization fori) the thermal Drude weighby, and(ii) ~ tegrable models. We have performed complete diagonaliza-
the Drude weightD, for spin transport of the anisotropic tion for chains withN=<18 sites exploiting conservation of
chain. Before going into details, let us outline the structure othe z componentS{,= 2, Sf of the total spin, translational
this section and point out the main results: invariance, and spin-inversion symmetry in t88&=0 sub-
First, we discuss technical aspects of the numerical prospaces of systems with evéh The latter symmetry is re-
cedure which will also be of relevance for the nonintegrablespected by the energy-current operajgr but not by the
models in Sec. V. In particular, the importance of degeneratspin-current operatojs. The dimensions of the largest sub-
states and their numerical identification will be emphasizedspaces for a given momentuknare ~2400 forS;,,=1 and
Second, the numerical results for the thermal Drude~2700 forS;,=0 atN=18. In the latter case, the dimension
weightDy,(N,T) for A=+0.5,2 will be presented and com- is almost reduced by a factor of 2 by spin-inversion symme-
pared to the Bethe ansdfz!® In addition, the high- try for the subspaces with odd and even sign under this sym-
temperature prefactoCy, is computed and discussed as ametry.
function of A. Another important aspect is the identification of degener-
Third, a detailed parameter study of the Drude weldbt ate statedi.e., E,=E,) in subspaces labeled b§, and
is performed. Results faD}" (N,T) are shown forA=0.5,  momentunk. This is necessary both in the evaluation of Eqgs.
+1,—2 as well as forA>1. We discuss the temperature (8) and(10) but becomes irrelevant if the respective current
dependence of botB(N,T) and D! (N,T) and point out operator is conserved, leading to the simpler expression, Eq.
that they are indistinguishable at high temperatures, but ex:6). The latter is possible for thermal transport in K¥Z
hibit a completely different finite-size scalitigat low T.  model.
This result, i.e.DY(N,T)=DU(N,T) for T large enough, is For spin transport, however, we haf/el,j#0 for A
of importance since the Drude weight could in principle also# 0. The (integrated distribution of level spacingdE, is
be obtained analytically from Ed8) or (15), respectively, shown in Fig. 3. There, the numbefe) of level spacings
which has to our knowledge not been attempted so far. FUAE,=E,;;—E, ,E,<E,;, of adjacent energy levels, being
ther, the influence of logarithmic finite-size correctionsTat smaller than a given value ok is plotted versuse
=0 for the isotropic chain is mentionéd.Finally — and for A=0.5
most important — we analyze the finite-size scaling of the
high-temperature prefactd€; and its dependence on.

While we can unambiguously confirm that |im..C{(N) l(e)= > AE 1. (32
>0 for |A£<1 in agreement with the results of other (S k) AEn=€
groups?®32:33.37414344he data forA=1 clearly indicates a

finite Drude weightD(T>0) as well. The latter observation It is sufficient to analyze all subspaces with giv8f and
is in agreement with Refs. 31, 33, 41, 43, and 50 but contramomentumk separately and sum over all subspaces thereaf-
dicts the conclusions of Refs. 37 and 44. ter [indicated by the first sum in E432)].
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04 T T T

I Gapless regime

0.3y

The spectrum displays some characteristic features: first
the value ofl (¢) for e— equals the dimension of the Hil-
bert space ? minus the number of subspace&(,k). Sec-
ond, a large fraction of degenerate states is present and thir.- \
the integrated distribution of level spacings is constant for “s 02 ®_
10 9)=<e=<10%J for the system sizes investigated here. rooom
This suggests that adjacent energy levels are typically sepe o1 -
rated byAE, <10 °J if they are degenerate. I

This separation allows for an identification of degenerate 05— 1 A 5901294167530
states by imposing the following criterion in the numerical A A
analysis: energy levels WithE, . ;— E,|<e.~=10 8J are
degenerate. By evaluation of E@) for the thermal Drude
weight we find agreement with Eq16) and the Bethe
ansatz* for this choice ofe, but significant deviations at
temperaturest ~J if larger or lower values for the cutoff
energy are used.

C

FIG. 4. High-temperature prefact@,, for the XXZ model in
the gaplesgleft pane) (JA|<1) and gapped, antiferromagnetic re-
gime (right pane] (A>1). The numerical datéED) are in perfect
agreement with the exact expression &y, from the Bethe ansatz
(Ref. 14 (BA).

For A=0 (i.e., free fermiong we getCy(A=0)=m J*32
which can also be obtained from E@®9).
There are two main features df(A): (i) Cy(A)

- i 5y I 4
have previously been presented fo=1 in Refs. 15 and 17 = Cu(—A) [see Fig. 4(@] and (ii) lims_.[Cy(A)/A™]
and forA=—1,—2,10 in Ref. 17. We enhance on the latter =0 [S€€ Fig. 40)]. In Fig. 4 (b), Cy, is measured in units
study by adding numerical data for the gapless antiferromagQf A. i ]
netic and the ferromagnetic regime which is shown in Fig. 2 1he first property can be seen from the following obser-
[panel(a) A=0.5, (b) A= —0.5]. Dasheddot-dasheflines ~ Vations: changing the sign df is an antiunitary transforma-
display ED data foN even(odd). Since we are using peri- ton and essentially turnsi(—A)=—H(A) and E,(—A)
odic boundary conditions, the twofold degeneracy of the= —En(A) while the eigenvectors remain unchangeis
ground state for chains with an odd number of sites leads té!lows from an additional rotation byr about thez axis on
a divergence oD(N,T) for T—0. The Drude weight of all sites with even site indexThis transformation leaves the
systems with an even number of sites is characterized by a@nergy-current operator unchanged, ijg(—A)=jn(4).
exponential suppressiddy,(N,T)~e 2/ at low tempera- From Eq.(20), we can then conclud€y(A) = Cu( - 4).
tures whereA g is the finite-size gap of the system. ForJ/A—0, the Ising limitH = X, §'S], ; is approached

A striking feature ofDy,(N,T) of the XXZ model is the where the only possible excitations are local spin flips. Here,
rapid convergence witlN at high temperatures. The differ- N0 current can .flow.and, consistent with this notion,
ence between the numerical data for the largest system ihhi,h+1]=0 leading toj ;=0 [see Eq(23)] andDy,=0 for
vestigated forA=0.5 (i.e., N=18) and the Bethe ansatz J/A=0.

2. Thermal transport in the XXZ model
Numerical results for the thermal Drude weidbg,(N, T)

curve [solid line in Fig. 2a)] is smaller than 10232 for
temperaturesT =0.23J. Basically, the convergence of the

3. Spin transport in the XXZ model

numerical data is as good as in the case of other thermody- In the following, a survey of the results f@ for arbi-

namic quantities such as specific h€at and susceptibility
x- We stress that the relatidd,(T) ~Cy,(T) only holds at
high and low temperaturgsee Ref. 14

trary values of the anisotropy will be given. First, the gap-
less, antiferromagnetic regimeQ\ <1, Fig. 5 will be dis-
cussed with a particular focus on the isotropic chaln (

The antiferromagnetic, gapped regime has been discussedl). Second, we comment on the finite-size dataligffor
in Ref. 17. We mention that in the meantime Bethe ansatthe gapped, antiferromagnetic casé>1, Figs. &a) and

computation® have been extended to>1. The numerical
data are in agreement with these res(ifise inset of Fig.
2(b): solid line, BA; dashed line, ED foN=18 atA=2].

6(b),] and third, results for the ferromagnetic regime will be
shown[A <0, Figs. &c) and &d)]. Finally, the dependence
of the high-temperature prefact@g on both anisotropy and

We continue by a discussion of the high-temperature prefsystem size is analyzedFig. 7).

actor Cy, defined in Eq.(19). As is evident from Figs. (&)
and 2b), the value ofCy,:=limy_,..Cy(N) can be numeri-

Numerical results foDL' (N, T) in the gapless, antiferro-
magnetic regime are shown in Fig. 5 far=0.5[panel(a)]

cally determined already from systems with a comparablyand A=1 [panel (b)]. Note that our results fODL(N,T)

small number of sitege.g.,N=12) with very good accuracy.
Here we are interested in the dependence doE, as shown
in Fig. 4 (squares: ED Note the excellent agreement with
the analytic expression from the Bethe an¥htzolid line in
Fig. 4):

o J*
64

sin[3arccosA) ]
sin[arccosA)] |

Cin(A)= (33

agree with the data fak = 0.4 (not shown in the figurgsand
N=14 published in Ref. 33 by Narozhret al.

First, we concentrate on the case/o£0.5. In panela),
we compare data from Eqe) [DY(N,T), dashed linesand
(10) [DY(N,T), solid lineg, confirming that these two ex-
pressions are equivalent at high temperatuiies .53, de-
pending on system sizeAt low temperatures,D!S(N,T)
shows much slower convergence withand essential fea-
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12 v . . . . r
A=0.5 \N=9,13,17 @T=1J a-ans 090  (B)T=0
1 (@ VAR 9,13, ——-ED:D!NT) | 03 B -aN-13 = 1%\5:
Py —— ED:D(N,T) I o-—oN=17 o~ 038 ‘E\&\
0 ~ (OBA: D(T=0) 025 B e A &fﬁ
8 ED: D,(T=0) (Fit) | = Jon 07 o @
= 02 Y5 \A\‘A 08 1 512 14
A R TR A A A A — A
N B
0.15 | e e
\5 B g 4+-8-- —————
01} O-0-0-o O — e _ i
0.5 1 A L5 2
0.6 (c) A=-1 (d) A==-2
N S DI(N,T) = 0.04 | E
DD A 002
= 04| N=12,14,17
:‘ — 0 . 1 1
= o 0 05 1 15
=} T[]
02
02 | N=8,10,14,18 . , ,
0 0.2 04 0.6 0.8
0 1 1 1 1 T [J]
0 0.2 0.4 0.6 0.8 1
T[J] FIG. 6. Spin transport. Panel&) and (b): Drude weight

, , DY(N,T) as a function ofA. (N=9,13,17) in(a) T=1J, (b) T
FIG. 5. Spin transport: D_rude weight fnr=_0.5[panel(a)]_and —0. Panel(c): Drude weightD"(N,T) for A=—1 and 8<N
AI=1 [panel (b)]. Dashe(_j Il'nes are nurrlllerlcal data obtained for _ g (N even, top to bottoin Panel (d): Drude weight for A
Ds(N‘T)_ frqm EQ'(S); S(_)“d lines denpt@S(N,T) from Eq. (10). =—2 andN=12,14,17top to bottom: dashed Iine@,'s(N,T), Eq.
Arrows indicate increasing system size. Note ﬂjét(N,T) shows @®): solid lines, D”(N,T), Eq. (10)]. Arrows indicate increasing
a better convergence withl at low temperatures compared to system size s

DYN,T). The inset shows the Drude weight B=0 for A=0.5

(diamond$ andA =1 (squarepas a function of the inverse system . he Drud iah fini hile the fini
size. The dashed lines are fits applied to the subsets with(eoed 'S the€ Drude weight at finite temperatures while the finite-

symbol3 and odd(open symbolsN. Open circles af =0 denote size corrections for th& =0 Drude weight have been com-

the exact values fob(T=0) (Ref. 23. puted in Ref.“39. _ _
Data forDg (N, T=0) are plotted versus W/in the inset

if Fig. 5 for A=0.5 (diamond$ and A=1 (squares The
data from finite systems with an even number of sites form a
monotonically decreasing sequence withat T=0 and
small temperaturefsee Fig. §a), T=0.2]] while the data
for oddN are a monotonically increasing sequence. Thus, the
results forD's' (N, T) and everN provide an upper bound and
those from systems with odd a lower bound foD(T) at
low temperatures.

Dy(T)=DgT=0)—consxT*, (34) From Ref. 39, the leading finite-size correctionsTat0

are available
where the exponent depends on the anisotropy. In Ref. 37,
the expressiom= (2/v—1) was derivedthe integerv pa-
. . o , . B

rametrizes the anisotropy vi&= cos (#/v)]. Taking this re- DY(N,T=0)=D(T=0)+—+---, (35)
sult, Eq.(34) would imply D(T)=D(T=0)—const< T for N#
A=0.5 which is obviously not consistent with our numerical
data. For|A|<1 and low T, the temperature dependence with u=2 for A<0.5. Performing fits according to E(B5)
seems to be describped by the expressions derived kgt T=0 separately for everiodd N results inD(T=0)
Fujimoto and Kawakarfif which are compatible with QMC =0.9747(0.9717)] for A=0.5 which is in very good agree-
(Ref. 41 and the ED presented here. ment with the exact resaft D(T=0)=0.97428J.

We have also determineB! (N,T=0) numerically by At the isotropic point, i.e.A=1, the curves display simi-
evaluating Eq.(10) in the subspace containing the ground lar features as foA=0.5: (i) a vanishing slope fof —0,
state(see inset of Fig. 6 Using Eq.(11), one could go to (i) a monotonic decrease at high temperatures, and
larger systems thahl=18 since only the curvature of the (i) DY(2N,T)<D!(2N-2,T) [DY(2N+1T)>D! (2N
ground state is needed. However, the main topic of this work-1,T)] at low temperature$=<0.1J.

tures of the temperature dependence are only present in t
data forDY'(N,T) which is the finite value aT=0 and the
vanishing slope oD!'(N,T) for T—0. The latter observa-
tion [i.e., dDY(N,T)/dT=0 atT=0] is consistent with the
Bethe ansatz by Kimper and co-worker&:>!In general, the
functional form ofD(T) at low T for [A|<1 is
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However, the finite-size data at the isotropic point and - - ) ' ' 04
=0 seem to followD!(N,T=0)=A+B/N in contrast to 04 b @ s it ‘:\“‘.\ . e ®
the case ofA=0.5 as can be seen in the inset of Figh)5 44206 _\\ By & Extrapolation 103
For A, we find A~0.847J which compares well with nu- 03 F :i:,s- \Cj( Sa
merical results obtained by the Lanczos method reported irfs e e * /;'gn .
Ref. 26. Admittedly, a good approximation to the exact value &, [ =" r* AR 102 5
of DT=0) atA=1 for N—o cannot be obtained from the ask s h \*u %
numerical data since the system sizes are far too Jred T ale i Neg lo1
Fig. 5b)]. In fact, from the work of Laflorenciet al*° it is 0L r /‘ 1  FSsag g
known that the relevant and leading finite-size correction at <l
T=0 andA;l i§ a Iogar[thmic_ term. This is because_ um- 0 o0 o1 o5 o o5 R
klapp scattering is a marginally irrelevant perturbation in this 1/N A

case. Similar to the susceptibility(T),3°% D(T) is ex- _ _
pected to show a Sharp drop for—0 accompanled with a FIG. 7. Spln transport. Pan(éh) hlgh-temperature prefaCtOI’

diverging slope atT=0 (Ref. 50 in the thermodynamic Cs(N) vs 1N for A=0,0.5,0.6,1,1.9solid (open symbols: even
limit. (odd) N]. The dashed lines are fits according to E8f) (see text

At sufficient large temperatures, we believe that the nufor details. Panel(b): extrapolated high-temperature weighy(A)

merical data foA =1 presented in Fig.(®) give the correct as a function of th'_e a“is°”°F’3‘ (diamonql$ and the data foN
picture of the temperature dependence of the Drude weighf 17,18(squares, circlgsThe lines are guides to the eyes.
However, Fujimoto and Kawakafiihave recently obtained
an analytic expression f@4T) in the low-energy limit with ; '
conformal field theory which is compatible with our numeri- "' Fig. 7@, Cy(N) is shown versus N for A
cal data for|A|<1 but not forA=1. Here, Fujimoto and =0,0.5,0.6,1,1.5. Results for the case o_f _free fermlo!sn_s (
Kawakami findD(T)<D(T=0) while the data shown in = 0) have been deduced from EQO) on finite systems in
Fig. 5(b) seemingly support the opposite relation. Despitethe fermionic picture. To fix the absolute values we note that
this discrepancy, our results do nevertheless support the n&s= 77/8 in our notation for the free-fermion cage=0.
tion of afinite D{T>0) atA=1. This is substantiated by S iS evident from Fig. @), C{N) roughly follows
the analysis of the high-temperature prefa@giN) [see Eq. b
(20)] as we will discuss in detail below. CdN)=a+ —+---. (36)

For larger A (i.e., A>1), the monotonic increase of N

1
Ds (N,T) at low temperatures for odd changes to a mono-  tpe same  finite-size extrapolation has been used for

tonic decrease. This is illustrated in Fig.(bp where D'S(N,T)><T in Ref. 33 for even-numbered systems aMd

DS(N,T=0) is plotted versus for N=9,13,17(compare  _% 4 T —50 . However, by comparing the direct compu-
Refs. 39 and 68 The crossover in the monotony occurs atiation of C (N) from Eq.(20) with fitting
d .

A=~1.2, i.e., in the gapped regime. Sinbé'(N,T)~const
for small T, the behavior afT=0 is characteristic for the C4N) Cy(N)
low-temperature regime. At larger temperatu@$(N,T) is DL(N,T)=— ! 5
a monotonically decreasing function for both even and Hdd T T
[see panela) of Fig. 6 for oddN andT=1 J].

Regarding the ferromagnetic regirtiee., A<<0), we con-
centrate onA=—1 andA=-2. The results forA=—-1
plotted in Fig. ¢) indicateD;'(N,T)wconst at lowT with

DS(T:O)%O'523(5)‘?' However, since the _Iow-energy The data can be well extrapolated according to &G6)
spectrum forA=—1 is of comparable complexity as f& ¢, A _g 5 andA=1. A subtlety arises from the strong dif-

=1, one may expect nontrivial finite-size corrections whichfeences hetween even and odd-numbered systems for inter-
could lead to a different temperature dependence afTlolv mediate values oA such ash =0.6[see Fig. 7a)]. In these

the latter is true, then the system sizes are too small to draWases(i e., A=0.2,0.4,0.6,0.8,0.9) we have separately per-
conclusions about the behavior B (N, T) at very lowT. e e hamte e

formed fits to the subsets with even and dddC; is then

The Drude weight in the gapped, ferromagnetic regime igstimated by averaging the results from the fits. The large
expected to show a behavior analogous to that Bfl. For  gqror phars forA =0.2,0.4,0.6,0.8,0.9 are due to these large

instancePg (N, T) is monotonically decreasing witi at all  gifferences in the extrapolated values of subsets with even

temperatures irrespective of odd-even effects. Interestinglyng oddN.

Dy(N,T) andD¢(N,T) turn out to be indistinguishable for  Following this procedure, we obtaift,=(0.15+0.03)

A< -1 andN large enough which is illustrated in Fig(@.  J2 for A=0.6 while the extrapolation of the even-numbered

This plot showsDg"(N,T) for N=12,14,17 atA=—2  systems yieldsC.=(0.123-0.001)J2. The latter value

where dashed lines dendB(N,T) from Eq. (8) and solid compares well to the data published in Ref.[83=(0.119

lines stem from Eq(10) [DY(N,T)]. +0.004) J2]. The strong finite-size effects between even-
To conclude this section, we discuss the high-temperaturand odd-numbered systems, however, indicate that additional

prefactorCg both as a function of anisotropy and system size.

(37)

to DL"'(N,T), we find that, often, more than one term in Eq.
(37) needs to be taken into account to recover the result for
C«(N) from Eq. (20). Consequently, it is preferable to com-
pute C(N) directly from Eq.(20).
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finite-size corrections apart from a simpleNlierm must in favor of a nonzero Drude weighd,(T>0)>0 in the
become relevant for large if the sequences of even and cases of spin ladders and frustrated spin chains. However, we
odd N converge to the same value in the thermodynamithave argueti** that this conclusion cannot be sustained for
limit. A difference in the extrapolated value for largeof  the case of gapped, frustrated chains if larger systems of up
these two subsets does not seem to be plausible. to 18 sites and additional values for the next-nearest-
Note that it has been suggested in Refs. 32 and 44 t@eighbor frustratione («=0.35,0.5,1) are included in the
partly include spectral weight from low frequencies of finite-size analysis.
Re o(w) to obtainCs for all thoseA which cannot be writ- Additionally, several authors have recently used analytic
ten asA = cos (@/v),v integer. However, within such a pro- approaches to compute the Drude weigh (Refs. 18 and
cedure, a criterion is necessary to decide up to which fre20) and the spin Drude weighD (Ref. 43 in the low-
quency one should integrate R€w) and it goes obviously energy limit. If the effective model describes noninteracting
beyond the usual definition of the Drude weight via Kohn'sparticles such as in Ref. 18 in the case of the spin ladder, a
formula(11). In this paper, we prefer to confine our analysisfinite Drude weight will naturally exist. However, to prove
to Eq. (10) or (11), respectively. that the Drude weight is also finite in the corresponding lat-
At the isotropic pointA =1, we have fitted the numerical tice model is more difficult. The outcome of a low-energy
data forC¢(N) using Eq.(36) while varying the range of data description crucially depends on the effective models; i.e.,
points Nmin=N=Np,,). Stable fit results are obtained for one has to take care which operators are kept and which ones
11sN<Npa With Nyo>14 and for Np;,,<N<18 with  can be omitted when passing from the lattice to the con-
Nmin<14. We find C¢=(0.020+0.006)J?, indicating a fi-  tinuum limit. In particular, Rosch and Andféihave shown
nite Drude weight in the thermodynamic limit. This result is that two independent incommensurate umklapp terms suffice
slightly smaller than the data reported in Ref. B85 to relax the spin current in massless models. Since this result
=(0.046+0.005) J? there forN=6,8, . . .,14] but the latter has not been fully appreciated by some of the aforemen-

is regained if we use our data fdé=6, .. .,14. Since we tioned papers, we will discuss the line of reasoning of Ref.
observeC{(A,N)=C(—A,N), this impliesD{(T>0)>0 38 and apply these ideas to the models which are of interest
for the isotropic, ferromagnetic chain also. in this paper. We will argue that a vanishing Drude weight

The results from the extrapolation are summarized in Figfor both kinds of transport is expected in generic noninte-
7(b) together with our data fol=17 andN=18. The plot grable(massive¢ models also. Thus, the first part of this sec-
suggests thati) D{(T)>0 for A=1 and(ii) D{T)=0 for tion will be devoted to the discussion of transport properties
A=1.5 within our numerical accuracy. Respective conclu-in the continuum limit.
sions can be drawn fak<—1 sinceC4{A)=C¢(—A). We In Secs. VB and V C, we will complete our numerical
stress that for intermediate Ising-like anisotropige., 1  investigation of both the thermal and the spin Drude weight
<A<1.5) the system sizes may still be too small for anof frustrated and dimerized spin systems with arbitrary val-
unambiguous confirmation of the conjecffr@®® D(A  ues ofa and\. The main focus will be on the finite-size
>1)=0. In particular, the possibility of a finite Drude analysis of the high-temperature prefac@ys(N) [see Eq.
weight in the gapped regime cannot be ruled out on the basi0)]. If not stated otherwiseh =1.
of the numerical data even though the Drude weight is zero

at T=0. An example for such a scenarjoe., D(T=0) A. Bosonization
=0 butD(T>0)>0] has been given in Ref. 35. e _
Very recently, Long et d* have applied a newly devel- The low-energy description of the systems studied below,

oped finite-temperature Lanczos method to comZeN) i.e., dimerized chain and frustrated chains, can be cast in the

for N=24,26,28. Compared to our data, their results stronggeneral form of a ) scalar field theory, known as a Lut-
deviate from the fits to E¢(36) for systems wittN<18 for  tinger liquid (denoted byH, ), with a perturbatiorg corre-
all values ofA presented in Fig. (8). sponding to a relevant operatdr,, plus all irrelevant opera-

tors H;, allowed by the symmetries of the given probfém
V. NONINTEGRABLE MODELS H=H,, +H e+ Hy,, (39)
In this section we address the issue of transport in nonin-
tegrable models by means of bosonization and exact diago- v
nalization. As discussed in Sec. Ill B, both the spin-current H= f dx(vK(aX®)2+ R(&Xd))z , (39
and heat-current operators are not conserved in the presence
of frustration and dimerization except for the case of a
dimerizedXY chain!® B
The original conjecture by Zotos and co-workérs® Hre=9 f dxcos(ad).
stated that the Drude weights are expected to vanish in non-
integrable models and we will argue in the following that our ¢= ¢(x,7) is a bosonic field in +1 dimensions and® is
exact diagonalization study corroborates this statement.  the dual fields,® =(1/K)d,¢. K is the Luttinger parameter
In a first numerical work by Alvarez and GrGson ther-  andu is the velocity. General situations involving more than
mal transport, the data obtained by complete and exact dbne relevant operator could also occur, but this does not
agonalization of systems witN<14 have been interpreted change the discussion below.

(40)

134436-10



ZERO-FREQUENCY TRANSPORT PROPERTIES OF ONE. PHYSICAL REVIEW B 68, 134436 (2003

The Hamiltonian, Eq(38), with H;,=0 corresponds ei- evant operator nor witt;, while for the thermal current,
ther to a Luttinger liquid in a generic massless situatign ( [H,y,jn]=0 but[H;,jm]#0.
=0, e.g., the massless regime of the frustrated glaito a The key observatidti is that in the presence ahesuch
sine-Gordon theory in the massive casgs-0, e.g., dimer-  operator®,, ,,(x), there is still a conserved current which can
ized chain, massive regime of the frustrated chaifhese be written as a linear combination of the spin and thermal
descriptions provide in general the correct low-energy piccurrent:
ture if one is interested in, e.g., the long-distance behavior of
correlators, and usually, one can discard the irrelevant terms i conserved Knmi s+ 2N j - (44
H,, since they only contribute with subleading corrections.

However, as was pointed out in Ref. 38, certain operator§lowever, as soon asorethan one of the operatot8, m(x)
have a crucial effect on transport properties and should theré'® considered, no conservation law of the t## survives
fore be taken into account to reproduce the correct low@nd hence the conductivity is expected to be finite. Since
frequency and low-temperature behavior even if these operdD€re is no reasoa priori to exclude such incommensurate
tors are irrelevant in the renormalization group sense. Th@Perators, this seems to be the generic situation. As incom-
main result of Ref. 38 is that a certain class of incommensuMensurate operators have been considered neither in Ref. 18
rate umklapp operators lead to the decay of all currents an@r in Ref. 20 it is not clear whether their results of a finite
hence render all conductivities finite. The emerging picture ighermal Drude weight in the low-energy limit provide a
that, except for very special circumstances which could hapProof of D(T=>0)>0 for the respective nonintegrable lat-
pen in certain integrable models, one should expect a varfice€ models. _ .
ishing Drude weight and hence a finite conductivity. Generally, even |]‘ the current operator is not conserved, a

It should be stressed that Ref. 38 is devoted to massleg¥onzero Drude weight can be caused by the existence of
cases — that is, to those situations where no relevant oper&0ntrivial) conserved quantitie, } with a finite projection
tors are preserjig=0 in Eq.(40)]. However, one can argue ©n the current operatggy) in the Liouville spacesee, e.g.,
that the main ingredient in the proof — that is, the violation Refs. 38, 46, 47, and 5.7More precisely, the Drude weight
of all conservation laws due to the presence of incommensu$ nonzero if
rate umklapp operators — is independent of the scaling di-

mensions of the operators involved. Hence one could expect T .

a similar picture in the massive case, while clearly the results Dinis)(T)= T2 (unsy | Plings) >0, (49
for x[ o](w) will be quantitatively different. This conjecture

is in full agreement with our numerical findings. where P is the projection operator oall conserved quanti-

For pedagogical reasons let us briefly summarize the maities {Q,}. (A | B) denotes Mori’s scalar prodwétin the
results of Ref. 38: among the infinitely many irrelevant op-space of operators:
erators contained iRl;, , those which could produce a decay
of the currents are the incommensurate umklapp operators, 1 (8 o
which are, in the case of pure spin models, generically of the (A(t) | B)= E Jo d7 (A(t)'B(i7)). (46)
form

Under certain circumstances, e.g., integrability, it is possible
to construct an infinite set dfQ,} (see Ref. 30 and refer-
= N + ) : ) . e
f dX On,m(x) f dX Gnm COS(V27N b FKnmX) ences therein Still, the evaluation of Eg(45) is a nontrivial
(41)  problem.
In the literature’®*3one often refers to a weaker condition
. o 120,66
the Fermi momentum, an@ is a reciprocal lattice vector. In gﬁﬂf{%ﬁ%} ré?/rgflghll\/l %an:er(s) 'gfgtlg“ﬁg{ QV;T:;ZI?e?]Ui?]foet
a fermionic representatiom is the number of fermions account ! Therefore hzlazur’spine uél?t Irovides a lower
which change chirality under the action of the operator ) ' ) q y P .
0, (). bougsd for the Drude Welght. For instance, the conservation
These operators do not modify the low-energy expres!aw' Eq. (44), would suffice to prove thab.>0 if no fur-

. . ther incommensurate operators are considered.
sions for the energy and spin current. The same holds for thé1 Quite recently, such an operat@; has been found for

relevant operatcf in Eq. (40). The currents take the form charge transport in a Luttinger-liquid plus interactions spoil-

(see, e.g., Refs. 17 and 65 ing both the integrability and the conservation of the spin
current operatof reformulating Zotos co-worker results
J-S:__UKJ dx 9,0, (42) from Ref. 30 in the continuum limit. The conserved quantity
2 can be readily identified as the thermal current operator
(compare Refs. 17 and 20 However, their proof of
_ ) (js| Q))>0 assumes particle-hole symmetry to be broken,
Jn=v f dx dxpdx®. (43)  e.g., by the existence of a magnetic fiétbe also Refs. 22
and 30. Consequently, for the class of models considered in
Comparing our notation with Ref. 38, note that-Jy and  Ref. 43, a nonzero Drude weight can be inferred. Since the
jtn~Pt. The spin current neither commutes with the rel-incommensurate operators of E41) are explicitly excluded

Onm are coupling constantk,,,=2nks—mG wherekg is
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FIG. 9. Thermal transport: high-temperature prefac@g(N)
for frustrated chains. Panéh): C,,(N)/C(8) vs 1N for various
values of @« both in the gapless and gapped regimbl (
=8,...,18) (see also Ref. 21 Panel (b): Cy(N) for N
=14,16,18 as a function of frustratiam. The arrow indicates the
system-size independent value®f, at «=0.

FIG. 8. Thermal transport, frustrated chain: Drude weight
Dn(N,T) (dashed linesand specific hea€y, (solid lineg for «
=0.2 andN=38, ... ,18sites (arrows indicate increasing system
size. The plot includes data fdE, from a high-temperature series
expansionHTSE) reproduced from Ref. 6@ote that only the bare

high-temperature series up to order 1QJifT is shown. By means In Fig. 9a), we present the high-temperature prefactor
of extrapolation schemes, the HTSE can be extended to signific, (N) for several values ofe both in the gapless o
cantly lower temperatures; see Ref)68 =0.1,0.2, open symbolsand the gapped regimeaf

=0.25,0.35,0.5,1, solid symbols; the last three sets have al-
ready been shown in Ref. R1Finite systems with up tdl
=18 sites have been analyzed. Whilg,(N) appears to be
almost constant in the case @t 0.1, a substantial decrease
with system size is observed for larger and sufficiently
large N as it is especially obvious foit=1. We also note
Frustrated chain.In the thermodynamic limit, the low- that, regarding thermal transport, the data at the Majumdar-
energy spectrum of a frustrated chain with< a.;7=0.241  Ghosh pointe=0.5 (see Ref. 69 and references thejaio
(Ref. 67 is gapless and gapped far> ;. The thermal not point to any peculiarities.
Drude weight in the gapped regime of frustrated chains has In panel(b) of Fig. 9, Cy(N) is plotted versusy for N
been discussed in detail in Refs. 17 and 21 where we founer 14,16,18. Starting at smadt, we observe thaC,(N) is
clear indications of a vanishing Drude weight fiSiF— oo, discontinuous atr=0 which will be commented below. The
Figure 8 shows the thermal Drude weidh,(N,T) and the curve further decreases witla and exhibits a minimum at
specific heatCy for «a=0.2 andN=8,10,12,14,16,18. For «a~0.4 forN=14 anda~0.5 forN=16. The position of the
chains of finite length, the data at low temperatures are domiminimum seems to be further shifted towards largeon
nated by the finite-size gap. Hence the Drude weight angrowing N. Further increasing the next-nearest-neighbor in-
specific heat are exponentially suppressed for sinalVhile  teraction drives the system into the limit of two decoupled
the specific heat converges to the thermodynamic limit athains each witiN/2 sites and interchain interactien Ex-
temperature3 =0.25J, strong finite-size effects are present actly for J—0, Ja=const, the current operator is again con-
in the data for the Drude weight at all temperatures. served. Consequently, one expects the Drude weight to in-
At low temperaturesP(N,T) monotonically increases crease for larger at finite and fixed\. This feature is indeed
with system size similar to the case @f 0.35(see Fig. 3in  found for «=0.5; see Fig. ®).
Ref. 17. In Ref. 21, we have argued that the notion of an  Figure 9b) indicates a difference between the gapped and
increasing Drude weight at low temperatures does not supgapless regimes: the decreaseCgf{N) with N is weaker in
port the conjectur€ of a finite D, for N—o for «=0.35. In  the gapless regime. We suggest the following two scenarios
fact, we have shown that a crossover temperattfrevhich  for further discussion(i) the Drude weight is nonzero in the
we define byD(N+2,T*)=Dy(N,T*) and everN seems  gapless regime and zero in the gapped regiiinethe Drude
to extrapolate to zero as a function of system size. This imweight is zero for alle>0, but depending om, there is a
plies that the temperature range where one observes an ioharacteristic system siZéd(«) with Cy,(N)~const forN
creasing Drude weight with system size could vanishNor <N(«) and monotonically decreasing fof>N(«).
—o0, An analogous finite-size analysis Bf for «=0.2(not The first interpretation might be plausible in view of the
shown in the figurescould also be interpreted in the same significant differences in the low-energy properties tor
sense, i.e., the temperature interval whebg,(N,T) <agi and a> aq. However, sinceCy, is essentially the
<Dn(N+2,T) tends to vanish foN—oo. To summarize the Drude weight ainfinite temperature where all states contrib-
discussion of the low-temperature regime, we emphasize thatte with equal weight, it is not clear why low-energy features
the finite-size data should not be used to speculate about ttslould play a crucial role for the finite-size scaling in the
thermodynamic limit. limit 3—0.

in Ref. 43, their result does not contradict our numerical
indications for a vanishing Drude weigbt, in nonintegrable
spin-lattice models.

B. Thermal transport in nonintegrable models
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FIG. 10. Frustrated chain: distribution of level spacings in the =
spectrum of finite chains with®8 N< 18 (bottom to top as indicated o2 |
by the arrow for «=0.2. AE, is the difference of adjacent energy
levels in subspaces classified by to&), and momentunk. The 0

numberl(e) of AE, with AE,,<e summed over all subspaces is 0 X
plotted vse. T[]

FIG. 11. Thermal transport, spin ladder0.5A=0, N

A second objection against the first scenario arises from=8, ...,16). Panel(a): specific heatC, and susceptibilityy.
the analysis of the level-spacing distribution both in thePanel(b): Drude weightDy,(N,T). ED for Dy,,Cy, x: lines. QMC
gapped and gapless regime. Exploiting translational invarifor Cv(x): squaregcircles reproduced from Ref. 1670).
ance and conservation of totg}, already lifts all degenera-
cies on finite systems as is obvious from Fig. 10 showing th&®,(N,T) taking the example of a spin ladder with
integrated level spacing distributidife); see Eq.32). The =Jy/3,=0.5), =J for N=8,10,12,14,16. Second, the re-
difference to the spectrum of the integrable mo@ele Fig.  sults from a finite-size analysis of the high-temperature pref-
3) is striking: while a large fraction of states withE,,  actor for both spin ladders and dimerized chains are pre-
<10 8 Jis present fo =0.5=0, no such candidates for sented. Finally, we comment on possible implications of our
degenerate states appear in the casee0.2A=1. This results for the interpretation of recent experimehts.
feature is characteristic fax>0 which, in particular, sup- Due to the dimerization, the unit cell of our model is
ports the conjecture that transport properties in the gappedoubled restricting the maximal system sizeNte: 16 in our
and gapless regimes should not be different at high temperaumerical computations at present.
tures. Exceptions are found far=0.5,1. At the Majumdar- Regarding the level-spacing distribution, degeneracies are
Ghosh point, one degenerate state occuls/# is even. In  still present in the case of the spin ladder. For example, there
the latter caséi.e., «a=1), there are degenerate states in theare <10? degenerate states fof=16 compared te=10° in
spectra of chains wittN=10,12,14,18 which are, however, the integrable casésee Fig. 3. The spectra of dimerized
small in number £ 10 for N=18). chains show the same features.

Next, there is the discontinuity ofy,(N) at «=0. A The specific hea€C,,, the susceptibilityy, and the ther-
small, but finite frustratiorie.g.,a=10"410 ) has the ef- mal Drude weightD,(N,T) are plotted versug in Fig. 11
fect that degeneracies are lifted while the values of diagondbr N=8,10,12,14,16 andv=0.5\A=0 [panel (a) Cy, ¥,
matrix elements|(n |jJ n)|? are almost unaffected. This panel(b) D(N,T)]. The main characteristics are the follow-
leads to the substantial difference betwé&spat =0 com-  ing: (i) for the specific heat, finite-size effects are small and
pared to small, but finitee>0. Finally, we mention that the negligible for the susceptibility(ii) the data forDy(N,T)
fact of Cy(N) =~ const for smallx could be a consequence of display strong finite-size effects at all temperaturés;
the proximity to the integrable point=0. D(N,T) is monotonically decreasing at high temperatures

In conclusion, our numerical data indicate a vanishingfor N>8 andT=0.6J; (iv) the positions of the maxima of
thermal Drude weight for arbitrary values afat high tem-  the specific heat and the Drude weight are differéwn;for
peratures. This result is difficult to reconcile with the recentN/2 even(odd), the data are monotonically increasitae-
findings®?° of a nonzero Drude weight in the continuum creasing at low temperatures. The latter may be attributed to
limit as we have discussed above that a crossover from the fact thatD (N, T) is diverging for decoupled chains and
nonzero to a zero Drude weight as a function of temperaturedd N.
is not likely. It should be stressed that the restricted number of system

Spin ladder and dimerized chaitNow we turn to the sizes analyzed here precludes any conclusions from the
cases of the dimerized chain and the spin ladder. First, wénite-size scaling at temperaturds<0.6J; in particular
discuss the numerical data for the thermal Drude weighsince theN dependence is nonmonotonic. Note that even a
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FIG. 12. Thermal transpor€,(N) for spin laddergpanel(a)]

and dimerized chains[panel (b)]. Data are shown forN
=8, ...,16spins(i.e., ladders with 4. .. ,8rungs.

FIG. 13. Spin transport, frustrated chain: Drude weight

11 _ _ —
monotonic increase d (N, T) with system size at oW as ~ Ds (N,T) for N=8,11,12,13,15,16,18 and=0.2A =1 [dashed

. | . . . || . . . .
observed in the case of frustrated chains with, ed., lines, D¢(N,T); solid lines,D¢ (N, T)]. Arrows indicate increasing

—0.35 does not unambigously paint to a finite Drude Weightsystems size. Inset: Drude weight at the Majumdar-Ghosh point

[see the discussion dby,(N,T) of frustrated chains and (a=0.5r=1) forN=12,16.
Ref. 21].

While our numerical data for the specific heat are in quan- Kmag= > Cv.k vilk- (47)
titative agreement with the results from Ref. 15 for the same K

choice of parameters, only qualitative consistency is fOU“CHere,CV,k is the specific heat péespace volumey, is the
for the thermal Drude weight regarding poittig—(iv). Note  triplet velocity, andl, the momentum-dependent mean free
that the Drude weighD, in Ref. 15 is measured in units of path. This approach results in very large mean free pﬁﬂ@s
Jj~a J instead ofJ, =J used in this work. The specific of the order of 3000 A at 100 K corresponding 40770
heat, however, is dimensionless. Also, compared to guint lattice constants. Following this work, Alvarez and Gros
the opposite monotony behavior is observed at low temperdhave suggested a much smaller value Fgg,: namely,
tures in Ref. 15. One may speculate that this difference i476 A ~45 lattice constants =100 K. They have attrib-
due to the use of twisted boundary conditions and differentited this significant difference to the fact thBt,(N,T)
definitions for the energy-current operajg{ in Ref. 15. +Cy as is seen in the numerical data. It is, however,
The finite-size analysis of the high-temperature prefactostraightforward to check that E¢47) leads toxmag# Cy/,
Cin(N) reveals a systematic decrease with system size famplying that this alone does not explain the different values
N>8 both for the case of the spin ladder and dimerizedound forl,4in Refs. 3 and 15.
chain as it is evident from Fig. 12. In particular, by normal-  The result forl ,,,4 of Ref. 15 is explicitly based on the
izing the data on the respective values ©f(N=8) the assumption of &inite Drude weightDy, for spin ladders
finite-size dependence of the data for the spin ladganel  which is questionable in view of the detailed numerical re-
(8) in Fig. 12] appears to be almost independent of the intersults presented in this paper.
chain couplinga=J;/J, for the choice of parameters con-
sidered here 4:0.1,0.5,1,2) including the isotropic ladder C. Spin transport in nonintegrable models
(a=1). Only the results for the dimerized chain with
=0.9 show less evidence for a vanishing@jf,. This does,
however, not question the conclusion of a vanishing therm

Drude weight because=0.9 is still very close to the homo- systematically discussed. Our analysis of the Drude weight at

geneous Heisenberg chain wh@g(T>0) is finite. finite temperatures includes next-nearest-neighbor interac-
To summarize the finite-size analysis, one can conclude P 9

that the numerical data f@,, of spin ladders and dimerized fions 2 S-Sy, extending previous numerical studies of

In this last section, we give an overview of our results for
he Drude weight for spin transport in nonintegrable models.
he dependence @ on frustration and dimerization will be

chains indicate a vanishing Drude weight fdro. In par-  honintegrable lattice modéfs®3>* where different kinds of
ticular, this includes the isotropic spin laddei, Jj, «  !Sing-like interactions , S'S;i. i1=2,3) have been consid-
=1) which is of relevance because the magnetic propertie§'ed. Note in this context that frustration cannot be treated
of LasCayCu,,04 are well described by, ~J;.772 with QMC simulations due to the sign probleth.

Recently, first attempts have been made to extract mag- Frustrated —chain. Results for the Drude weight
netic mean free paths,,, from the experimental data for the Ds™ (N, T) are shown in Fig. 13 fow=0.2 (main paneland
magnetic part kp,, Of the thermal conductivity of @=0.5(inse). In the gapless regimen(< acyy), the finite-
LasCayCu,40,4; . Assuming that heat is carried mainly by the size data display features similar to theXZ model: (i)
elementary excitations of spin ladddi=., dispersive triplet D¢ (N,T=0)>0; (ii) D¢ (N,T)~const at small tempera-
mode$ Hesset al® have used a relaxation time ansatz fortures; (i) DYN,T)=DY(N,T) at high temperatures, but
the respective kinetic equation reading significant deviations at low temperaturés;) a monotonic
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FIG. 14. Spin transport: high-temperature prefad@gfN) for o

frustrated chains. Pan@): C{(N)/C«(8) vs 1N for various values 0 03
of a both in the gapless and gapped reginié=@8,9, .. ., 18).
Panel(b): C(N) for N=14,16,18 as a function of frustratiom. FIG. 15. Spin transport, dimerized chain: Drude weight
The inset shows a blowup for smail andN=14,16. DL'(N,T) for N=10, ...,16(top to bottom as indicated by the
arron) and a=0\=0.5 [dashed Iines,D's(N,T); solid lines,
decrease with system size at high temperatdre.5 J. I_D'S'(N,T)]. In the insetf the exact_resglt from Eq_SO) ((_jot-dashed
Similar to the case of the thermal Drude weight of frustrated® for the Drude weight of a dimerizedY chain with A =0,
chains, we observe that for evéf the monotonic decrease — 9 =0.5 and numerical datésolid line) for N=16 sites are
of DL"'(N, T) with system size at high temperatures changes """
to an increase at lower. However, the temperature, where
this change in the monotony behavior occurs, is strongl
shifted to lower temperatures &sgrows; see Fig. 13. This
resembles the case &,(N,T) for «=0.35 discussed in Dr

Ref. 21 and we conclude that the numerical databgrat ity for 5 nonzeroC, cannot be ruled out by our data al-

Ipvy temperaturgs do not give unambiguous evidence for fhough the absence of degeneracis Fig. 1Dsupports the
finite Drude weight. conclusion ofC¢=0 for all a>0.

The observation ob{ (N,T=0)>0 for smalle has also Dimerized chain, spin laddeMhile for the frustrated
been reported in Ref. 26. There, using the Lanczos methoghain and the spin ladder the fermionized Hamiltonian, Eq.
and truncation in theS;,;=0 subspace, a nonzero Drude (5), contains interaction terms even/t=0, the case of the
weight atT=0 has been found fox<<0.43 andN=20. To  dimerizedXY model, A=0\+1,0=0) corresponds to a
clarify whetherD(T=0)>0 survives in the thermodynamic model of free, but massive fermions which can be solved
limit, one should exploit Kohn's formula fof=0 using, e€xactly(see, e.g., Ref. 18We will start with a discussion of
e.g., the Lanczos algorithm, which is, however, not the purthis limiting case where a finite Drude weight, exists.
pose of the present paper. The Hamiltonian in terms of spinless fermiofsee Eq.

Consistent with Ref. 26, we finB!'(N,T=0)=0 in the (5] reads
case ofa=0.5 (see inset of Fig. 13 Notice thatDY(N,T) N
=DY(N,T) at all temperatures foX=16. HXY= ?l (¢, c+H.c) (48)

We now turn to the question of a nonzero Drude weight in !
the thermodynamic limit by a finite-size analysis of the high-(\;=\ for | odd and\,=1 otherwis¢. A straightforward
temperature pre-fact@(N). C4(N) is plotted versus Nin  computation diagonalized™" (see, e.g., Ref. 18 for detali)s
Fig. 14(a) for «=0.2,0.35,0.5,1. FirsC(N) monotonically
decreases with system sigexcept for odd-even effegtor B
all values ofa presented here and exhibits a discontinuity at HXY= ; €k (al&ak& —al,_ak,_), (49
a=0 analogous t&€,(N) (see inset of Fig. 14 Second, the
data fora=0.2 may in principle be extrapolated to a finite leading to two modes with a gapped dispersieq
value in the thermodynamic limisee, however, remarks be- =J\(1—\)%4+\ cos K). Obviously, the spin-current op-
low). The behavior fora> a.; is similar to the case of the eratorjs= S vi(a) ;a,+—aj ac_) is conserved and the
thermal Drude weight sincE((N) decreases rapidly with  Drude weight can be computed exactly:
and faster than N.

1
T [J]

larger «=0.7, C4(N) increases withe again analogous to
¥he case of the thermal Drude weigkee Fig. 9.

We interpret the data fo> «;; in terms of a vanishing
ude weight forN—c. For the gapless regime, the possi-

Another remarkable difference between the gapped and vﬁ
the gapless regime is revealed in Fig(4where we show Dy(T)= 4T dk cosi[ e /(2.'.)]- (50)
C(N) as a function of frustrationx for N=14,16,18. In k
contrast to the thermal Drude weiglsee Fig. 9 C4(N) first  v,=de, /K is the velocity.
grows with @ and exhibits a maximum aroung~0.2. For In Fig. 15, the Drude weight on finite systems is plotted
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sl % ) VI. CONCLUSION
(a) Dimerized chain /', (b) Spin ladder (A=0) A///7)!1 ) .
(0=0) foN ¥y In this paper, we have presented a detailed study of the
Pl onm09 . /A0 aecaas0s d Drude weights for thermal and spin transport in one-
© |o--or=05 /&\6/7 B v vgsl //«/’/ © dimensional spin systems at finite temperatures. Let us focus
O [e--ar=01 pa eomeom2 Y Y here on the main results while more detailed summaries can
€, 06 24 Ny 1%°2,  be found in the preceding sections.
o d’fr e © Thermal transport in th&XZ model is generically dissi-
03 " 4f pationless due to the conservation of the energy current
¥ operator® Our data for the thermal Drude weight are in
0 . . . . o excellent agreement with the Bethe an&t2 For spin
0 ! N or 0 % N 0l transport in this model, we have presented numerical results

for various values of the anisotropy. Our data confirm the
FIG. 16. Spin transport: high-temperature prefadiN) of  observatiof?3%33374143.4%f g finjte Drude weighDy in the
the Drude weight for the dimerized chdipanel(a)] and the spin  gapless regime|(|<1). We have discussed some so far
ladder[panel(b)], both for N<16. unresolved issues: first, the exact temperature dependence of
the Drude weight in the critical regimgA|<1) and, sec-
for a dimerized chain with =0.5 and botl\ =0 (insey and ~ ond, the question of wheth@&(T>0) is finite for the iso-
A=1 (main panel. In the former case, we see that the nu-tropic chain @ =1). Regarding the first point, analyti¢a
merical data for 16 sites agree with the exact expression foad numericdf results are compatible with the finite-size
N—, Eq.(50), at temperature$=0.2 J. The same holds dfata pre.sen_ted here. R_egardlng the second issue, the exact
for smaller system size®ot shown in the figurefor high 7. diagonalization data of finite systems with=18 do favor a
This is in contrast to the curves fak=1 (main pane, fnite Drude weight ai\ =1. .
where no convergence is observed at all temperatures. _In the case of nonintegrable modefBustrated chain,
dimerized chain, spin ladderour main result is that the

- finite-size analysis of the ED data does not indicate a finite

(solid lines have been evaluated proving their equivalence apy,de weight in the thermodynamic limit either for thermal

high temperatures. Sml?” systen$< 10,12) still exhibita o1 spin transport, but rather supports the conclusion that

large nonzero value ddg (N, T=0) which rapidly decreases transport in these systems is dissipative. While we have con-

with system size. centrated our numerical analysis on the finite-size scaling at
The data for the high-temperature pre-fac@y(N) are  high temperatures, this result is corroborated by bosonization

collected in Figs. 1@ (dimerized chaip and 16b) (spin  in the low-temperature limit.

ladde). A substantial decrease 6f(N) with system size is

observed for all choices of parameters &hd 8, indicating ACKNOWLEDGMENTS
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