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Tricritical behavior and magnetic properties for a mixed spin-1 and spin3 transverse Ising
model with a crystal field
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An effective-field theory is developed for a mixed Ising system, consisting of spin 1 ané wyitim different
anisotropies in a transverse field on a honeycomb3) lattice. The general formula for determining the phase
diagram of transition temperatures and tricritical points is derived and the temperature dependence of the total
magnetization of the system is calculated. Some interesting phenomena, such as the appearance of two tric-
ritical points and the existence of two compensation points in a ferrimagnet, are found and the physics beyond
these phenomena are discussed in detail. The competition among the exchange coupling, the anisotropies, the
transverse field, and the temperature has a profound effect on the characteristic of magnetic phases in the
mixed-spin systems.
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[. INTRODUCTION mean-field theory. It has been applied successfully to various
physical problems. As far as we know, however, the proper-
Mixed-spin Ising systems provide simple but interestingties of the mixed spin-1 and spéiransverse Ising model
models to study molecular magnetic materials that are corwith different single-ion anisotropies have not been exam-
sidered to be possibly useful materials for magneto-opticained in detail, owing to the difficulty that the eigenvalues of
recording'~ The investigation of ferrimagnetism in these the Hamiltonian in this system cannot be given analytically.
systems has rapidly become a very active research field,he purpose of this work is to find out whether there are
which is very important from the point of view of either tricritical points in the mixed spin-1 and spiitransverse
fundamental research or technologies, since the ferrimadsing model with different crystal fields for a honeycomb
netic order plays an important role in these materials. Mostattice. The magnetic properties of the present systems are
of these studies treated the mixed-spin Ising systems witktudied systematically. Some interesting phenomena, such as
spin 3 and spinS (S>3) in a uniaxial crystal field or a the appearance of two tricritical points and the existence of
transverse field. The systems have been discussed by the uge® compensation points in a ferrimagnet, are found.
of the exact methodl,the Monte Carlo simulatior;’ the The paper is organized as follows. In Sec. Il, we introduce
effective-field theory(EFT),2~*2 the high-temperature series briefly the basic framework of the EFT thedty® and give
expansion methotf**the method of combining the pair ap- the formulation for the mixed spin-1 and spintransverse
proximation with the discretized path integral Ising model with different crystal fields for the honeycomb
representatiof and the renormalization-group technicgf§e. lattice. In Sec. Ill, the numerical results for the phase dia-
Recently, attention has been directed to mixed-spin sysgrams and the magnetization are studied in detail. Finally, we
tems where both constituents have spin values largegive the summary in Sec. IV.
than 1.178 various types of magnetic anisotropies have a
profound effect on the characteristic of magnetic phases in Il. FORMULATIONS
the spin systems. An example is the anisotropy due to the o ] ) )
crystal field, which affects the symmetries of the magnetic The Hamiltonian of the mixed spin-1 and spinising
systems. In our recent papérthe EFT was applied to the model is given by
mixed spins and spin3 transverse Ising model, in which a
single-ion anisotropy was considered. It was found that the ,_ -3 UiZSjZ—QEi of‘—Q; S DAEi (07)?

tricritical behavior does not exist in that system. The EFT in

method, without introducing mathematical complexities, can

include some effects of spin-spin correlations and provide _DBZ (sz)z, (1)
J

results that are quite superior to those obtained by a normal
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with spin 1 and spin moments” ando] at sitei in sublattice i Mp 3

A, spin§ and spin momentS; andSf at sitej in sublattice Ma=(of)=|costdnV)+ 75'”“377V) Fa(X)[x-0.

B, and where the first summation is carried out only over (9)

nearest-neighbor pairs of spinkis the exchange interaction

constant, and , andDg are the crystal field interactions that M bE<SJ-Z> =[qcoshIV)+M,sin(IV)+1—q]?

come from the sublatticed and B, respectively.() repre-

sents the transverse field. XFg(X)|x=0, (10
The starting point for the statistics of our spin system foryhereV = g/9x is the differential operator, angl and 7 are

any operatoi; at sitei is given by
3

My
(A= TriA eXFi_,BHi)> T @ q=((07)%)=| cosh nIV) + 75|”W7IJV) Ga(X)|x=0
v Tr(i)exq_ﬂHi) ’ B_ B (11)
whereT is the absolute temperature akg is Boltzmann 7°=(($H)2)=[q coshIV)+M,sinh(IV)+1—q]®
constant. Tgy denotes a partial trace for the site(: --) de-
notes the canonical ensemble average. For the derivation, let X Gg(X)|x=0- (12

us separate the Hamiltonigd) into two parts®2 one (de-
noted byH;) includes all contributions associated with the
sitei, and the othefdenoted byH/) does not depend on the

The four functionsF4(x), Fg(Xx), Ga(X), and Gg(x) are
defined as

sitei. Then, we rewrite the Hamiltonian at sitén the sub- 1 3
lattice A in the following form: Fa(X)= ﬁ| Z (pmlof| qu)exqm\m)],
S e
— z 7 Z oz 72 zZ.\2 e
H= J; S JIEJ ol S'=Da(o?) DAiZ (of) 13
4
_Qa?—QZ aT,—DBEj) (S,—Z)z_QEJ_) S FB(x):L‘;| 21 (¢n|SjZ|<pn>exp(,6’)\n)],
=Hi+H] (#07), @) &, BN
(14
where
1 3
—Hi=Ejo{+Da(0])?+ Qo (4) Ga(x)= 3—[ 2:1 <¢m|(0iz)2|¢m>e><p(,3?\m)],
and Z exp( SN m)
(15
E=J> &, (5)
i

1 4
GB(X):4—: > <<Pn|(SjZ)2|<Pn>eXp(/3>\n)’,

whereE; is the operator expressing the local field on the site n=1
i. Owing to the term of including the transverse field ) nzl exp(BAn)

in HamiltonianH;, the termsH; and H{ do not commute (16)
with each other. In ther?, o, representation, the diagonal- ) ,
ization of —H, becomes extremely complicated. The eigen-1€ré, WherE; (or E)) is replaced by, A, and\, in Egs.
values and eigenvectors efH; cannot be expressed analyti- (13—(16) are eigenvalues of-H; and —H;, respectively.
cally, but can only be given numerically. Meanwhile, the $m @nd ¢, are eigenfunctions of-H; and —H;, respec-
Hamiltonian at sitg in the sublatticed can also be rewritten UVely. It can be easily proved that functiorfs(x) and

as Fg(x) are odd functions, an&,(x) and Gg(x) are even
functions.
H=H +H/, (6) We use the fact that even functions Bfmust be zero
b when operating to the odd functid#.?! In this way, Egs.
_ szEijz+ DB(S]-Z)2+QSJ*, @) (9—(12) can be rewritten as
and Ma=Ay(n)Mp+Ax (M3, (17)
Mp=B1(q)M,+By(q)M3, (18)
£-33 o7, ® b=B1(q)M,+Bo(q)M3
I
q=Ci(n)+Co(mM§, (19

Within the effective-field theory, the average sublattice 5 )
magnetizations for the honeycomb lattice are givet?BY 7°=D1(q) +Da(q)M3. (20)
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The coefficientsA;(7), Bi(q), Ci(#%), andD;(q) (i=1,2)
can be easily calculated by applying a mathematical relation
e*Vf(x)=f(x+a) as given in the Appendix.

Then the average total magnetization per site is given by

7.0

M=(M,+Myp)/2. (21
: o : _ . 35
The sublattice magnetizatidl , in the vicinity of transi- '8
tion point can be written as
M2=(1—a)/b. (22
The parametera andb are obtained as follows: 0.0 5
a:AlBl, (23) 0
; \
(2m0A1B1+B1A1D1)C, O 5 O
=B,A,+BA +
° v 2m0—CiD; =
(BlAiAi_FAiBiCi)DZ FIG. 1. Phase diagram of the ground states for the system in the

— , (24 parametric {)/J, D,/J, Dg/J) space. The bold dotted curve rep-
270~ C1Dy resents the positions of tricritical points.

The coefficient#\; andC; (B; andD;, i=1,2) are defined as ) )

a function of 75 (do) [do=C1(70), 72=D1(do)], A, and havior of T, as a function of the parameters.
C; (B; andD;) denote the first derivative &, andC, (B,

andD ;) with 74 (qo). Whena=1 andb<0 the transition is A. The ground states

the second order; whem=1 andb>0 the transition is the . .
first order; and the tricritical point at which the phase transi- Figure 1 shows the phase diagrams of the ground states of

. . ) the system in the parametric(){(J,D,/J,Dg/J) space,
:Ieorr:nicnheadngbezir?_mart]r(]jebie(;:gﬂg5ol:rg|i|2é? tl?esrl:l(gitl dogjlg) IEede\ivhere the bold dotted curve is the positions of tricritical
noticed tha¥the coefficiené andb are e\’/en functions of points. Each solid curve separates the parametric space into
The phvsical ¢ this fact is that the crit 'I b two regions: one is the ferromagnetior ferrimagneti¢
ha\?i(?rsyzlrzathcggzﬁqgigﬁhg ferlforigglr?e t]; 0) %f;gﬁ? e[:)hase that is located below the phase transition curve, and

. . X . the other is for the paramagnetic phase above the phase tran-
magnetic §<0) ground state. However, in the ferrimagnetic P g P P

the si i blati tizati diff ition curve. From numerical results, wh&y/J<—1.25,
case, the signs ot two sublatlice magnetizations are difterent, o yicritical points do exist in the system. Whéh, /J

>-—1.25 and the value of transverse magnetic field]
1. NUMERICAL RESULTS AND DISCUSSIONS <0.75, the system is always in the ferromagnétic ferri-

In this section, we show some typical results for theMagnetic phase, independent of the crystal fiéld. Physi-
mixed spin-1 and spif-transverse Ising model with differ- cally, this resultZ conles from the fact that. the sublattie
ent crystal fields for the honeycomb lattice in the ground@PProaches thgj= =+ ; state and the sublatti¢e approaches
state. The phase diagrams of the systems can be determiné§ o; =0 state, but the total magnetic order of the mixed-
by solving the two conditionsa=1 andb<O0 for the second Spin system does exist.
order transitona=1 andb=0 for the tricritical poing nu-  In Figs. 2a)—2(c), the sublattice and total magnetization
merically. In order to determine the first-order transition, oneln the ground states are given for the mixed spin-1 and spin-
usually needs to calculate the free energy for two phases arigtransverse Ising model with different crystal fields. From
to find a point of intersection. However, it is true that the Figs. 2a)—2(c), the magnetizatioM, (or M) of sublattice
first-order transition line is determined =1 andb>0, A (or B) and the total magnetizatioh decrease with in-
which is similar to the criterion of the Landau phase transi-creasing the transvere/J whenDg/J (or Do/J) is fixed.
tion theory. The application of this method can be found inThis interesting effect is attributed to that the quantum fluc-
the literaturé>3-%|n Refs. 24 and 25 the general expres-tuations become stronger when the valuedf increases.
sions for evaluating the second-order phase transition and tHgom Fig. 2a), we note that forD,/J— +, the value of
tricritical point are obtained by the use of effective-field sublattice magnetization approachéd,=1, while for
theory with correlations. Their result for the tricritical point Da/J— —, the value of sublattice magnetization ap-
at which the system exhibits a first-order phase transition iproachesM ,=0. From Fig. 2b), we can see that fdDg/J
in quite good agreement with those obtained by using the—+%, the value of sublattice magnetization approaches
series expansion methods. In the remainder of this sectioé,=3/2, while for Dg/J— —, the value of sublattice
we shall represent our results in the following order: first, themagnetization approachéd,=3 when the value of(2/J
ground states, as a function of the parameters; second, the0.75. From Fig. &), we again find that fof)/J<0.75, the
temperature dependence of the magnetization; third, the béstal magnetizatio® does not reduce to zero for aby /J.
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does exist. This result is consistent with the phase diagram of

L5 5 the ground states in Fig. 1.
a

D/I=0 .
B. Temperature dependence of magnetizations

10 —
% It is known that the role of the crystal fields and trans-

verse field is important for magnetization of the Ising sys-
tem. The temperature dependence of magnetizations in the
0.5 | mixed spin-1 and spig-system is calculated by solving Egs.
I (17)—(20) numerically. Figures & —-3(c) show the tempera-
ture dependencies of the sublatticés,(,M ) and total mag-
0000 /) 10 netization M) with the values oft) andD, are fixed at()

’ =0 and D,/J=—0.5, respectively, for mixed-spin ferro-
0.5 magnets. From these figures we can see that all curves except
for that labeled byDg/J=—1.5 correspond to a collinear
Lo 10 spin configuration withM,=1.0, M,=0.5 or 1.5, M
=1.25, orM=0.75 at the ground state. The curve labeled by
Dg/J=—1.5 corresponds tM ,=M,=M=0.985. It is seen
that this result comes from the use of the approximate Van
der Waerden identity for the high-spin systéhrom Figs.
3(b)—3(c), when Dg/J<—1.6, the curves of thévl, and
total magnetizatio™ haveP-type behavior that usually can
be observed only for a ferrimagnet. According to theeNe
theory, the shape of the magnetization verSusurve can
exhibit five characteristic features classified as@eP, N,

L, andM types?® depending on the direction and magnitude
of the respective sublattice magnetizations. A mean-field cal-
culation based on a two-sublattice model also revealed that
such ferrimagneticlike behavior could exist for a ferromag-
net, due to the competition among the comparatively week
exchange coupling and the opposite sublattice anisotrdpies.
In the present system, the existence of the ferrimagneticlike
P-type curves is ascribed mainly to the competition between
the effects of the exchange coupling, the sublattice anisotro-
15 pies and temperature on the spin configurations in the sys-
tem. The influence of the transverse fi€ldcan be seen from

a comparison between FiggcBand 3d). Figure 3c) shows
three fixed valuesNl = 1.25, 0.985, and 0)%f total magne-
tization atkgT/J=0, while seven valuesM =1.247, 1.244,
1.215, 1.047, 0.932, 0.825, and 0.7 Exist atkgT/J=0 in

= Fig. 3(d). The role of the transverse field is to destroy the

05 collinear spin configurations to create more noncollinear spin
configurations at the ground state. It is thought that in a
certain sense, the temperature has an effect similar to that of

0.0 10 the transverse field, so that when the temperature is arisen,
00 the magnetization curve labeled Byg/J=—1.4 (or —1.6)
i 0 in Fig. 3(d) drops down(or rises up fast to the value close to
2 0? the magnetizationM =1.047 (or 0.825. However, the
0 10 P-type ferrimagneticlike curve disappears in Figd)3 since

the transverse field alters the spin configurations at the whole
temperature range, but the effect of the temperature becomes

FIG. 2. Magnetization of the ground states for the mixed-spin ; . )
more pronounced only at intermediate/high temperatures.

ferromagnet(a) In the parametric¥1,, Q/J, DA/J) space when

the value ofDg/J=0. (b) In the parametric 1, Q/J, Dg/J) The thermal variations of the total magnetizatiom| for
space when the value &f,/J=0. (c) In the parametricit, 0/J,  the mixed-spin ferrimagnets with,/J= —O.5_anc_i Dg/J
D /J) space when the value & ,/J=0. =-1.5andQ/J=0, 0.05, 0.1, 0.5 are shown in Fig. 4. The

two compensation points exist when the value of transverse
This is due to the finding that the sublattiBeapproaches the field is 1/J=0.05. In anN-type ferrimagnet, there is the
sz: +3 state and the sublatticA approaches ther’=0 existence of a finite compensation temperature at which the
state, but the total magnetic order of the mixed-spin systertotal magnetization vanishes below the transition tempera-
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FIG. 3. Temperature dependence of the magnetization for the mixed-spin ferromagnet when the vBIyesndf()/J are fixed at
D,/J=—0.5 andQ)/J=0, respectively(a) In the (M., kgT/J) plane.(b) In the (M, kgT/J) plane.(c) In the (M, kgT/J) plane.(d) In
the (M, kgT/J) plane when the values &, and(Q/J are fixed aD,/J=—0.5 and(2/J= 0.3, respectively. The numbers at the curves are

the values oDg/J.

ture. As far as we know, it is noted in the standard textbooks
on magnetisif that only one compensation point may exist
in a ferrimagnetic material. However, very recently, Ohkoshi
etal?® reported that the molecular based ferrimagnets
((NidMnfFe!), 4 CM'(CN)g]- 7.6H,0(a+b+c=1)) show
two compensation points. Kaneyoshi also discussed exten-
sively the possibility of two compensation points in ferri-
magnets including the molecular-based magffe@ur cal-
culation results show that two compensation points could
possibly occur indeed in the ferrimagnetic materials, depend-
ing on the competition among the exchange coupling, the
anisotropies, and the transverse field and also on the magne-
tization of the sublattices.

i

C. Transition temperatures

In this section, we show results for the phase diagrams of
the present systems. Figure&@5and 3b) give the phase
diagram for the system in the parametrikg{./J,

0.012
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0.008

0.008

0.004

0.002

0.000
0.0

05 1.0 15

kg T

FIG. 4. Temperature dependence of the magnetizatibnfor
the mixed-spin ferrimagnet, when the valuesf/|J| andDg/|J|

DA/J,Dg/J) space, when the value of the transverse field isare fixed atD 5 /|J|= —0.5 andDg/|J| = — 1.5. The numbers at the
selected ag)/J=0.1 andQ)/J=0.3, respectively. The solid curves are the values 61/|J].
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Sl-zz + 3 there is no tricritical point on the phase diagrams.
3.0 2, In the other limit, forDg/J— —, the szzi% states are
-1 @ 7 suppressed and the system becomes equivalent to a mixed

spin4 and spin-1 Ising model. AD,/J=0, the transition

| Q=01 temperature igT./J=0.891 and no tricritical point exists
for this situation, which is the same as the result given in
Ref. 8. In particular, the value of the transition temperature in
15 A the absence of the crystal fieldD/(/J=Dg/J=0) is
kgT./J=2.119 at the transverse field/J=0.1. From Fig.
5(a), we also know that when the value Bfg/J (D,/J)

satisfiedDg/J<—2.10rDg/J=0.79 D,/J=—1.37) while
the values oD ,/J (Dg/J) vary in the system, no tricritical
point exists. Namely, only the second-order magnetic phase
5 transition exists. When-2.1<Dg/J<0.79, the tricritical
0 point appears at the transverse fi€éddJ=0.1, where both
N the first- and the second-order phase transitions coexist. In
Ov the region —1.639<Dg/J<—1.627 (or —1.49<D,/J<
—1.42), two tricritical points exist when the valuesf /J
(or Dg/J) vary in the system.
Where a second-order phase line meets a first-order phase
boundary, a tricritical point occurs. The occurrence of the
1 7 multicritical points depends on the values DBf,/J and
®) Dg/J. For —1.639<Dg/J<—1.627 and —1.49<D,/J

Q=03 <—1.42, the spin configuration of the system at the ground
state should be the following situation: most of #gspins
15 are in thes{=0 state and the remainder are randomly occu-
pied by of=*1, while all sz spins are randomly occupied
j by SjZ: + 3 states because the lower-energy state is favored.

k,T/J

Dy 2

3.0

kT3

In this case, the effect of the sublattice magnetiza#hois
very weak because most of spins are in ther’=0 state.
The system behaves like the sgiBlume-Capel modet!
since when the transverse field is absent, (BJ=0, the
present model could be reduced to the Blume-Capel model.
The sublattice magnetizatid does exist Mg+ 0); thus the
total magnetization is not zerdM(#0) at zero temperature.

2 -5 o When the temperature increases from zero, some ofrfhe
spins in theo?=0 state can suddenly occupy thf=+ 1 (or
of=—1) state, while half of the spins take té=+3 (or

FIG. 5. Phase diagram for the system in the parametrlcs_zz_%) state and others takﬁjz=—% (or sz:+%)_ The

kgT./J, DA/J, Dg/J) space.(a) as the transverse fiel€)/J ] . . .
(:81" ®) As the trgnszxerse fiel(d))/J=0.3. The solid circles and  €Tfects of the occupations in the states of the spins could lead

dotted curve represent the positions of tricritical points. The light!0 vanishing of the total magnetizatioM(=0) at a certain

and bold curves are the second-order and first-order phase transiti@mperature, resulting in the occurrence of the first-order
lines, respectively. phase transitioR’ The discussion above explains why the

first tricritical point(solid circle occurs. With increasing the

value of crystal fields, most of the spirtﬁZ are in the
circles and dotted curve represent the positions of tricriticaBjZ= +3 state, so the total magnetization appeaws#0)
points. The light and bold curves are the second-order andgain on the curve, namely, the additional tricritical point
first-order phase transition lines, respectively. These two fig¢solid circle appears in the system with appropriate negative
ures clearly illustrate how the transition temperature changegalues ofD,/J andDg/J on the curve. The first tricritical
with the values of the crystal fields and the transverse fieldpoint probably comes from the fact that the spiBlume-
At a certain value of the crystal fields, the transverse fieldCapel model exhibits an unstable first-order transition, and
makes the transition temperature decrease. The results aldwe second tricritical point has its origin in the spin-1 Blume-
indicate that applying the transverse magnetic field can conCapel modef? In Fig. 5(b), we also find from the numerical
trol the transition temperatures and the tricritical points ofcalculation that when the transverse field increas@sJ(
the system. From our calculation, we note that Bgy/J— =0.3), the phenomena of the existence of two ftricritical
+0o when the spirg behaves like a two-level system with points disappear on the curve. It is concluded that within the

by
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framework of the effective-field theory with correlations, two not predicted in the N theory of ferrimagnetism. However,
tricritical points could be detected in the mixed spin-1 andthese results are obtained within the framework of the EFT.
spins Ising system on a honeycomb lattice, which resultlt is necessary to indicate that these results must be subjected
from different anisotropies. From the previous wofk?one  to further tests by more adequate techniques such as Monte
of the two tricritical points is stable, whereas another is un-Carlo numerical simulations or renormalization techniques.
stable. For the difference between the unstable and stable On the other hand, according to the EFT, the Hamiltonian
tricritical points, readers should refer to the detailed investican be separated into two partsl € H;;)+Hj;)). One
gations on this topic in Refs. 17 and 32. When the value ofH,;)) includes all parts oH associated with the sitie(j),
Dg/J (Da/J) satisfiesDg/J<—2.3 orDg/J=0.82 Da/J  which do not commute withi, so the eigenvalues of H;;
=—1.37) while the values oD,/J (Dg/J) varies in the cannot be given analytically, but can only be given numeri-
system, no tricritical point exists. Namely, only the second-cally. This method can also be extended for studying other
order magnetic phase transition exists. WheR.3<Dg/J more complicated mixed transverse Ising mode with crystal
<0.82, the ftricritical point appears at the transverse fieldields.
Q/J=0.3, where both the first- and the second-order phase
transitions coexist. ACKNOWLEDGMENTS
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usually gives incorrect results of the critical exponents when
one studies the critical behaviors at the critical points. How- APPENDIX
ever, it is a fact that the mean-field theory is good enough to We have
give the exact values for the critical points, the magnetiza-
tion far from the critical points, etc. In the present work, we 3
do not investigate the critical exponents. Thus the problems A;=—[FA(3I9)+FA(Jn)],
of the accuracy of the EFT and the limitations of the method 47
do not affect the correctness of the results of the present

work. 1
A2:4_773[FA(3‘J77)_3FA(J77):|1
IV. CONCLUSIONS
2
In this work, we have studied the phase diagrams and B,=3 q_[FB(sJ)+FB(J)]+q(1_q)FB(2J)
magnetizations of the mixed spin-1 and spinransverse 4

Ising model with the presence of the crystal fields on the
honeycomb lattice by the use of the effective-field theory. We +(1- q)FB(J)] ,
have examined the critical properties of the system numeri-

cally by solving the equations given in Sec. Il. The transition
temperature determined from Eq23) and(24) is indepen-
dent of the sign ofl and thus the relation is valid for both
ferromagnetic J>0) and ferrimagnetic J<0) cases. The
magnetic properties of the ground states for the system have 1
been studied. We have also discussed in detail the influence C1=7[GCa(373)+3GCa(7I)],

of the transverse field and the crystal fields on the transition

temperatures and magnetizations. A number of interesting 3

phenomena, originating from the competition between Co=——5[Ga(373)—Ga(73)]

the transverse field and the crystal field, have been found. 4n

The system can exhibit two tricritical points when the anisot-

ropy of one of the sublattices is varied at fixed values of q 3,

the anisotropy of another sublattice and transverse D1~ [Ga(39)+3CGa(I)]+59%(1-q)[Ge(2I)
field. The mixed-spin ferromagnetic system with the pres-

ence of the transverse and crystal fields can shdivtgpe +Gg(0)]+3q(1-9)*Gg(J) +(1-0)°Gg(0),
ferrimagneticlike temperature dependence of magnetization,

which exists usually only in a ferrimagnet. The mixed-spin
ferrimagnetic system with the presence of the transverse an
crystal fields can exhibit two compensation points, which is

1
Bo=,[Fs(33)=3Fs(J)],

3q 3
%227[63(33)—GB(J)]+ 5(1-a)[Gp(23)~Gg(0)].
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