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Tricritical behavior and magnetic properties for a mixed spin-1 and spin-32 transverse Ising
model with a crystal field
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An effective-field theory is developed for a mixed Ising system, consisting of spin 1 and spin3
2 with different

anisotropies in a transverse field on a honeycomb (z53) lattice. The general formula for determining the phase
diagram of transition temperatures and tricritical points is derived and the temperature dependence of the total
magnetization of the system is calculated. Some interesting phenomena, such as the appearance of two tric-
ritical points and the existence of two compensation points in a ferrimagnet, are found and the physics beyond
these phenomena are discussed in detail. The competition among the exchange coupling, the anisotropies, the
transverse field, and the temperature has a profound effect on the characteristic of magnetic phases in the
mixed-spin systems.
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I. INTRODUCTION

Mixed-spin Ising systems provide simple but interesti
models to study molecular magnetic materials that are c
sidered to be possibly useful materials for magneto-opt
recording.1–3 The investigation of ferrimagnetism in thes
systems has rapidly become a very active research fi
which is very important from the point of view of eithe
fundamental research or technologies, since the ferrim
netic order plays an important role in these materials. M
of these studies treated the mixed-spin Ising systems
spin 1

2 and spinS (S. 1
2) in a uniaxial crystal field or a

transverse field. The systems have been discussed by th
of the exact method,4 the Monte Carlo simulation,5–7 the
effective-field theory~EFT!,8–12 the high-temperature serie
expansion method,13,14 the method of combining the pair ap
proximation with the discretized path integr
representation,15 and the renormalization-group technique.16

Recently, attention has been directed to mixed-spin s
tems where both constituents have spin values la
than 1

2 .17,18 Various types of magnetic anisotropies have
profound effect on the characteristic of magnetic phase
the spin systems. An example is the anisotropy due to
crystal field, which affects the symmetries of the magne
systems. In our recent paper,19 the EFT was applied to the
mixed spin-12 and spin-32 transverse Ising model, in which
single-ion anisotropy was considered. It was found that
tricritical behavior does not exist in that system. The E
method, without introducing mathematical complexities, c
include some effects of spin-spin correlations and prov
results that are quite superior to those obtained by a nor
0163-1829/2003/68~13!/134432~8!/$20.00 68 1344
n-
al

ld,

g-
st
th

use

s-
er

in
e

c

e

n
e
al

mean-field theory. It has been applied successfully to vari
physical problems. As far as we know, however, the prop
ties of the mixed spin-1 and spin-3

2 transverse Ising mode
with different single-ion anisotropies have not been exa
ined in detail, owing to the difficulty that the eigenvalues
the Hamiltonian in this system cannot be given analytica
The purpose of this work is to find out whether there a
tricritical points in the mixed spin-1 and spin-3

2 transverse
Ising model with different crystal fields for a honeycom
lattice. The magnetic properties of the present systems
studied systematically. Some interesting phenomena, suc
the appearance of two tricritical points and the existence
two compensation points in a ferrimagnet, are found.

The paper is organized as follows. In Sec. II, we introdu
briefly the basic framework of the EFT theory19,20 and give
the formulation for the mixed spin-1 and spin-3

2 transverse
Ising model with different crystal fields for the honeycom
lattice. In Sec. III, the numerical results for the phase d
grams and the magnetization are studied in detail. Finally,
give the summary in Sec. IV.

II. FORMULATIONS

The Hamiltonian of the mixed spin-1 and spin-3
2 Ising

model is given by

H52J(
^ i , j &

s i
zSj

z2V(
i

s i
x2V(

j
Sj

x2DA(
i

~s i
z!2

2DB(
j

~Sj
z!2, ~1!
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with spin 1 and spin momentss i
z ands i

x at sitei in sublattice
A, spin 3

2 and spin momentsSj
z andSj

x at site j in sublattice
B, and where the first summation is carried out only ov
nearest-neighbor pairs of spins.J is the exchange interactio
constant, andDA andDB are the crystal field interactions tha
come from the sublatticesA and B, respectively.V repre-
sents the transverse field.

The starting point for the statistics of our spin system
any operatorAi at sitei is given by21

^Ai&5 K Tr( i )Ai exp~2bHi !

Tr( i ) exp~2bHi !
L , b51/kBT ~2!

where T is the absolute temperature andkB is Boltzmann
constant. Tr( i ) denotes a partial trace for the sitei . ^¯& de-
notes the canonical ensemble average. For the derivation
us separate the Hamiltonian~1! into two parts:22 one ~de-
noted byHi) includes all contributions associated with th
site i , and the other~denoted byHi8) does not depend on th
site i . Then, we rewrite the Hamiltonian at sitei in the sub-
lattice A in the following form:

H52J(
j

Sj
zs i

z2J(
i 8 j

s i 8
z Sj

z2DA~s i
z!22DA(

i 8
~s i 8

z
!2

2Vs i
x2V(

i 8
s i 8

x
2DB(

j
~Sj

z!22V(
j

Sj
x

5Hi1Hi8 ~ iÞ i 8!, ~3!

where

2Hi5Eis i
z1DA~s i

z!21Vs i
x ~4!

and

Ei5J(
j

Sj
z , ~5!

whereEi is the operator expressing the local field on the s
i . Owing to the term of including the transverse field (Vs i

x)
in HamiltonianHi , the termsHi and Hi8 do not commute
with each other. In thes2, sz representation, the diagona
ization of 2Hi becomes extremely complicated. The eige
values and eigenvectors of2Hi cannot be expressed analy
cally, but can only be given numerically. Meanwhile, th
Hamiltonian at sitej in the sublatticeB can also be rewritten
as

H5H j1H j8 , ~6!

2H j5EjSj
z1DB~Sj

z!21VSj
x , ~7!

and

Ej5J(
i

s i
z . ~8!

Within the effective-field theory, the average sublatti
magnetizations for the honeycomb lattice are given by19,20
13443
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Ma[^s i
z&5Fcosh~Jh¹!1

Mb

h
sinh~Jh¹!G3

FA~x!ux50 ,

~9!

Mb[^Sj
z&5@q cosh~J¹!1Ma sinh~J¹!112q#3

3FB~x!ux50 , ~10!

where¹5]/]x is the differential operator, andq andh are

q[^~s i
z!2&5Fcosh~hJ¹!1

Mb

h
sinh~hJ¹!G3

GA~x!ux50 ,

~11!

h2[^~Sj
z!2&5@q cosh~J¹!1Ma sinh~J¹!112q#3

3GB~x!ux50 . ~12!

The four functionsFA(x), FB(x), GA(x), and GB(x) are
defined as

FA~x!5
1

(
m51

3

exp~blm!

H (
m51

3

^fmus i
zufm&exp~blm!J ,

~13!

FB~x!5
1

(
n51

4

exp~bln!

H (
n51

4

^wnuSj
zuwn&exp~bln!J ,

~14!

GA~x!5
1

(
m51

3

exp~blm!

H (
m51

3

^fmu~s i
z!2ufm&exp~blm!J ,

~15!

GB~x!5
1

(
n51

4

exp~bln!

H (
n51

4

^wnu~Sj
z!2uwn&exp~bln!J ,

~16!

Here, whenEi ~or Ej ) is replaced byx, lm , andln in Eqs.
~13!–~16! are eigenvalues of2Hi and 2H j , respectively.
fm and wn are eigenfunctions of2Hi and 2H j , respec-
tively. It can be easily proved that functionsFA(x) and
FB(x) are odd functions, andGA(x) and GB(x) are even
functions.

We use the fact that even functions of¹ must be zero
when operating to the odd function.19–21 In this way, Eqs.
~9!–~12! can be rewritten as

Ma5A1~h!Mb1A2~h!Mb
3 , ~17!

Mb5B1~q!Ma1B2~q!Ma
3 , ~18!

q5C1~h!1C2~h!Mb
2 , ~19!

h25D1~q!1D2~q!Ma
2 . ~20!
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The coefficientsAi(h), Bi(q), Ci(h), and Di(q) ( i 51,2)
can be easily calculated by applying a mathematical rela
ea¹ f (x)5 f (x1a) as given in the Appendix.

Then the average total magnetization per site is given

M5~Ma1Mb!/2. ~21!

The sublattice magnetizationMa in the vicinity of transi-
tion point can be written as

Ma
25~12a!/b. ~22!

The parametersa andb are obtained as follows:

a5A1B1 , ~23!

b5B1A21B2A1
31

~2h0A1B181B1A18D18!C2

2h02C18D18

1
~B1A18A1

21A1
3B18C18!D2

2h02C18D18
, ~24!

The coefficientsAi andCi (Bi andDi , i 51,2) are defined as
a function of h0 (q0) @q05C1(h0),h0

25D1(q0)#, A18 and
C18 (B18 andD18) denote the first derivative ofA1 andC1 (B1

andD1) with h0 (q0). Whena51 andb,0 the transition is
the second order; whena51 andb.0 the transition is the
first order; and the tricritical point at which the phase tran
tion changes from the second order to the first order is
termined bya51 andb50.21–25 Further, it should also be
noticed that the coefficientsa andb are even functions ofJ.
The physical consequence of this fact is that the critical
haviors are the same for the ferromagnetic (J.0) or ferri-
magnetic (J,0) ground state. However, in the ferrimagne
case, the signs of two sublattice magnetizations are differ

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we show some typical results for t
mixed spin-1 and spin-3

2 transverse Ising model with differ
ent crystal fields for the honeycomb lattice in the grou
state. The phase diagrams of the systems can be determ
by solving the two conditions (a51 andb,0 for the second
order transition,a51 andb50 for the tricritical point! nu-
merically. In order to determine the first-order transition, o
usually needs to calculate the free energy for two phases
to find a point of intersection. However, it is true that t
first-order transition line is determined bya51 and b.0,
which is similar to the criterion of the Landau phase tran
tion theory. The application of this method can be found
the literature.21,23–25In Refs. 24 and 25 the general expre
sions for evaluating the second-order phase transition and
tricritical point are obtained by the use of effective-fie
theory with correlations. Their result for the tricritical poin
at which the system exhibits a first-order phase transitio
in quite good agreement with those obtained by using
series expansion methods. In the remainder of this sec
we shall represent our results in the following order: first,
ground states, as a function of the parameters; second
temperature dependence of the magnetization; third, the
13443
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A. The ground states

Figure 1 shows the phase diagrams of the ground state
the system in the parametric (V/J,DA /J,DB /J) space,
where the bold dotted curve is the positions of tricritic
points. Each solid curve separates the parametric space
two regions: one is the ferromagnetic~or ferrimagnetic!
phase that is located below the phase transition curve,
the other is for the paramagnetic phase above the phase
sition curve. From numerical results, whenDA /J,21.25,
the tricritical points do exist in the system. WhenDA /J
.21.25 and the value of transverse magnetic fieldV/J
,0.75, the system is always in the ferromagnetic~or ferri-
magnetic! phase, independent of the crystal fieldDB . Physi-
cally, this result comes from the fact that the sublatticeB
approaches theSj

z56 1
2 state and the sublatticeA approaches

the s i
z50 state, but the total magnetic order of the mixe

spin system does exist.
In Figs. 2~a!–2~c!, the sublattice and total magnetizatio

in the ground states are given for the mixed spin-1 and s
3
2 transverse Ising model with different crystal fields. Fro
Figs. 2~a!–2~c!, the magnetizationMa ~or Mb) of sublattice
A ~or B) and the total magnetizationM decrease with in-
creasing the transverseV/J whenDB /J ~or DA /J) is fixed.
This interesting effect is attributed to that the quantum flu
tuations become stronger when the value ofV/J increases.
From Fig. 2~a!, we note that forDA /J→1`, the value of
sublattice magnetization approachesMa51, while for
DA /J→2`, the value of sublattice magnetization a
proachesMa50. From Fig. 2~b!, we can see that forDB /J
→1`, the value of sublattice magnetization approach
Mb53/2, while for DB /J→2`, the value of sublattice
magnetization approachesMb5 1

2 when the value ofV/J
,0.75. From Fig. 2~c!, we again find that forV/J,0.75, the
total magnetizationM does not reduce to zero for anyDB /J.

FIG. 1. Phase diagram of the ground states for the system in
parametric (V/J, DA /J, DB /J) space. The bold dotted curve rep
resents the positions of tricritical points.
2-3
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This is due to the finding that the sublatticeB approaches the
Sj

z56 1
2 state and the sublatticeA approaches thes i

z50
state, but the total magnetic order of the mixed-spin sys

FIG. 2. Magnetization of the ground states for the mixed-s
ferromagnet.~a! In the parametric (Ma , V/J, DA /J) space when
the value ofDB /J50. ~b! In the parametric (Mb , V/J, DB /J)
space when the value ofDA /J50. ~c! In the parametric (M , V/J,
DB /J) space when the value ofDA /J50.
13443
m

does exist. This result is consistent with the phase diagram
the ground states in Fig. 1.

B. Temperature dependence of magnetizations

It is known that the role of the crystal fields and tran
verse field is important for magnetization of the Ising sy
tem. The temperature dependence of magnetizations in
mixed spin-1 and spin-3

2 system is calculated by solving Eq
~17!–~20! numerically. Figures 3~a!–3~c! show the tempera-
ture dependencies of the sublattices (Ma ,Mb) and total mag-
netization (M ) with the values ofV andDA are fixed atV
50 and DA /J520.5, respectively, for mixed-spin ferro
magnets. From these figures we can see that all curves ex
for that labeled byDB /J521.5 correspond to a collinea
spin configuration with Ma51.0, Mb50.5 or 1.5, M
51.25, orM50.75 at the ground state. The curve labeled
DB /J521.5 corresponds toMa5Mb5M50.985. It is seen
that this result comes from the use of the approximate V
der Waerden identity for the high-spin system.23 From Figs.
3~b!–3~c!, when DB /J<21.6, the curves of theMb and
total magnetizationM haveP-type behavior that usually ca
be observed only for a ferrimagnet. According to the Ne´el
theory, the shape of the magnetization versusT curve can
exhibit five characteristic features classified as theQ, P, N,
L, andM types,26 depending on the direction and magnitu
of the respective sublattice magnetizations. A mean-field
culation based on a two-sublattice model also revealed
such ferrimagneticlike behavior could exist for a ferroma
net, due to the competition among the comparatively we
exchange coupling and the opposite sublattice anisotropie27

In the present system, the existence of the ferrimagnetic
P-type curves is ascribed mainly to the competition betwe
the effects of the exchange coupling, the sublattice aniso
pies and temperature on the spin configurations in the
tem. The influence of the transverse fieldV can be seen from
a comparison between Figs. 3~c! and 3~d!. Figure 3~c! shows
three fixed values (M51.25, 0.985, and 0.5! of total magne-
tization atkBT/J50, while seven values (M51.247, 1.244,
1.215, 1.047, 0.932, 0.825, and 0.715! exist atkBT/J50 in
Fig. 3~d!. The role of the transverse field is to destroy t
collinear spin configurations to create more noncollinear s
configurations at the ground state. It is thought that in
certain sense, the temperature has an effect similar to th
the transverse field, so that when the temperature is ari
the magnetization curve labeled byDB /J521.4 ~or 21.6)
in Fig. 3~d! drops down~or rises up! fast to the value close to
the magnetizationM51.047 ~or 0.825!. However, the
P-type ferrimagneticlike curve disappears in Fig. 3~d!, since
the transverse field alters the spin configurations at the wh
temperature range, but the effect of the temperature beco
more pronounced only at intermediate/high temperatures

The thermal variations of the total magnetizationuM u for
the mixed-spin ferrimagnets withDA /J520.5 andDB /J
521.5 andV/J50, 0.05, 0.1, 0.5 are shown in Fig. 4. Th
two compensation points exist when the value of transve
field is V/J50.05. In anN-type ferrimagnet, there is the
existence of a finite compensation temperature at which
total magnetization vanishes below the transition tempe

n

2-4
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FIG. 3. Temperature dependence of the magnetization for the mixed-spin ferromagnet when the values ofDA and V/J are fixed at
DA /J520.5 andV/J50, respectively.~a! In the (Ma , kBT/J) plane.~b! In the (Mb , kBT/J) plane.~c! In the (M , kBT/J) plane.~d! In
the (M , kBT/J) plane when the values ofDA andV/J are fixed atDA /J520.5 andV/J50.3, respectively. The numbers at the curves
the values ofDB /J.
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ture. As far as we know, it is noted in the standard textbo
on magnetism28 that only one compensation point may ex
in a ferrimagnetic material. However, very recently, Ohko
et al.29 reported that the molecular based ferrimagn
„(Nia

IIMnb
IIFec

II)1.5@CrIII (CN)6#•7.6H2O(a1b1c51)… show
two compensation points. Kaneyoshi also discussed ex
sively the possibility of two compensation points in fer
magnets including the molecular-based magnets.30 Our cal-
culation results show that two compensation points co
possibly occur indeed in the ferrimagnetic materials, depe
ing on the competition among the exchange coupling,
anisotropies, and the transverse field and also on the ma
tization of the sublattices.

C. Transition temperatures

In this section, we show results for the phase diagram
the present systems. Figures 5~a! and 5~b! give the phase
diagram for the system in the parametric (kBTc /J,
DA /J,DB /J) space, when the value of the transverse field
selected asV/J50.1 andV/J50.3, respectively. The solid
13443
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FIG. 4. Temperature dependence of the magnetizationuM u for
the mixed-spin ferrimagnet, when the values ofDA /uJu andDB /uJu
are fixed atDA /uJu520.5 andDB /uJu521.5. The numbers at the
curves are the values ofV/uJu.
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circles and dotted curve represent the positions of tricrit
points. The light and bold curves are the second-order
first-order phase transition lines, respectively. These two
ures clearly illustrate how the transition temperature chan
with the values of the crystal fields and the transverse fi
At a certain value of the crystal fields, the transverse fi
makes the transition temperature decrease. The results
indicate that applying the transverse magnetic field can c
trol the transition temperatures and the tricritical points
the system. From our calculation, we note that forDB /J→
1` when the spin3

2 behaves like a two-level system wit

FIG. 5. Phase diagram for the system in the parame
(kBTc /J, DA /J, DB /J) space.~a! as the transverse fieldV/J
50.1. ~b! As the transverse fieldV/J50.3. The solid circles and
dotted curve represent the positions of tricritical points. The li
and bold curves are the second-order and first-order phase tran
lines, respectively.
13443
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Sj
z56 3

2 , there is no tricritical point on the phase diagram
In the other limit, forDB /J→2`, the Sj

z56 3
2 states are

suppressed and the system becomes equivalent to a m
spin-12 and spin-1 Ising model. AtDA /J50, the transition
temperature iskBTc /J50.891 and no tricritical point exists
for this situation, which is the same as the result given
Ref. 8. In particular, the value of the transition temperature
the absence of the crystal fields (DA /J5DB /J50) is
kBTc /J52.119 at the transverse fieldV/J50.1. From Fig.
5~a!, we also know that when the value ofDB /J (DA /J)
satisfiesDB /J<22.1 orDB /J>0.79 (DA /J>21.37) while
the values ofDA /J (DB /J) vary in the system, no tricritica
point exists. Namely, only the second-order magnetic ph
transition exists. When22.1,DB /J,0.79, the tricritical
point appears at the transverse fieldV/J50.1, where both
the first- and the second-order phase transitions coexis
the region 21.639,DB /J,21.627 ~or 21.49,DA /J,
21.42), two tricritical points exist when the values ofDA /J
~or DB /J) vary in the system.

Where a second-order phase line meets a first-order p
boundary, a tricritical point occurs. The occurrence of t
multicritical points depends on the values ofDA /J and
DB /J. For 21.639,DB /J,21.627 and 21.49,DA /J
,21.42, the spin configuration of the system at the grou
state should be the following situation: most of thes i

z spins
are in thes i

z50 state and the remainder are randomly oc
pied by s i

z561, while all Sj
z spins are randomly occupie

by Sj
z56 3

2 states because the lower-energy state is favo
In this case, the effect of the sublattice magnetizationA is
very weak because most ofs i

z spins are in thes i
z50 state.

The system behaves like the spin-3
2 Blume-Capel model,31

since when the transverse field is absent, i.e.,V/J50, the
present model could be reduced to the Blume-Capel mo
The sublattice magnetizationB does exist (MBÞ0); thus the
total magnetization is not zero (MÞ0) at zero temperature
When the temperature increases from zero, some of thes i

z

spins in thes i
z50 state can suddenly occupy thes i

z511 ~or
s i

z521) state, while half of the spins take theSj
z51 3

2 ~or
Sj

z52 3
2 ) state and others takeSj

z52 1
2 ~or Sj

z51 1
2 ). The

effects of the occupations in the states of the spins could
to vanishing of the total magnetization (M50) at a certain
temperature, resulting in the occurrence of the first-or
phase transition.20 The discussion above explains why th
first tricritical point ~solid circle! occurs. With increasing the
value of crystal fields, most of the spinsSj

z are in the
Sj

z56 3
2 state, so the total magnetization appears (MÞ0)

again on the curve, namely, the additional tricritical po
~solid circle! appears in the system with appropriate negat
values ofDA /J and DB /J on the curve. The first tricritical
point probably comes from the fact that the spin-3

2 Blume-
Capel model exhibits an unstable first-order transition, a
the second tricritical point has its origin in the spin-1 Blum
Capel model.32 In Fig. 5~b!, we also find from the numerica
calculation that when the transverse field increases (V/J
50.3), the phenomena of the existence of two tricritic
points disappear on the curve. It is concluded that within

ic

t
ion
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framework of the effective-field theory with correlations, tw
tricritical points could be detected in the mixed spin-1 a
spin-32 Ising system on a honeycomb lattice, which res
from different anisotropies. From the previous work,17,32one
of the two tricritical points is stable, whereas another is u
stable. For the difference between the unstable and st
tricritical points, readers should refer to the detailed inve
gations on this topic in Refs. 17 and 32. When the value
DB /J (DA /J) satisfiesDB /J<22.3 or DB /J>0.82 (DA /J
>21.37) while the values ofDA /J (DB /J) varies in the
system, no tricritical point exists. Namely, only the secon
order magnetic phase transition exists. When22.3,DB /J
,0.82, the tricritical point appears at the transverse fi
V/J50.3, where both the first- and the second-order ph
transitions coexist.

For the accuracy of the EFT and the limitations of t
method, we think that the accuracy of the EFT must be be
than the normal mean-field theory. The EFT is still within t
framework of the mean-field theory. The mean-field theo
usually gives incorrect results of the critical exponents wh
one studies the critical behaviors at the critical points. Ho
ever, it is a fact that the mean-field theory is good enough
give the exact values for the critical points, the magneti
tion far from the critical points, etc. In the present work, w
do not investigate the critical exponents. Thus the proble
of the accuracy of the EFT and the limitations of the meth
do not affect the correctness of the results of the pres
work.

IV. CONCLUSIONS

In this work, we have studied the phase diagrams
magnetizations of the mixed spin-1 and spin-3

2 transverse
Ising model with the presence of the crystal fields on
honeycomb lattice by the use of the effective-field theory.
have examined the critical properties of the system num
cally by solving the equations given in Sec. II. The transiti
temperature determined from Eqs.~23! and ~24! is indepen-
dent of the sign ofJ and thus the relation is valid for bot
ferromagnetic (J.0) and ferrimagnetic (J,0) cases. The
magnetic properties of the ground states for the system h
been studied. We have also discussed in detail the influe
of the transverse field and the crystal fields on the transi
temperatures and magnetizations. A number of interes
phenomena, originating from the competition betwe
the transverse field and the crystal field, have been fou
The system can exhibit two tricritical points when the anis
ropy of one of the sublattices is varied at fixed values
the anisotropy of another sublattice and transve
field. The mixed-spin ferromagnetic system with the pr
ence of the transverse and crystal fields can show aP-type
ferrimagneticlike temperature dependence of magnetizat
which exists usually only in a ferrimagnet. The mixed-sp
ferrimagnetic system with the presence of the transverse
crystal fields can exhibit two compensation points, which
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not predicted in the Ne´el theory of ferrimagnetism. However
these results are obtained within the framework of the E
It is necessary to indicate that these results must be subje
to further tests by more adequate techniques such as M
Carlo numerical simulations or renormalization technique

On the other hand, according to the EFT, the Hamilton
can be separated into two parts (H5Hi ( j )1Hi ( j )8 ). One
(Hi ( j )) includes all parts ofH associated with the sitei ( j ),
which do not commute withH, so the eigenvalues of2Hi ( j )
cannot be given analytically, but can only be given nume
cally. This method can also be extended for studying ot
more complicated mixed transverse Ising mode with crys
fields.
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APPENDIX

We have

A15
3

4h
@FA~3Jh!1FA~Jh!#,

A25
1

4h3 @FA~3Jh!23FA~Jh!#,

B153H q2

4
@FB~3J!1FB~J!#1q~12q!FB~2J!

1~12q!FB~J!J ,

B25
1

4
@FB~3J!23FB~J!#,

C15
1

4
@GA~3hJ!13GA~hJ!#,

C25
3

4h2 @GA~3hJ!2GA~hJ!#

D15
q3

4
@GB~3J!13GB~J!#1

3

2
q2~12q!@GB~2J!

1GB~0!#13q~12q!2GB~J!1~12q!3GB~0!,

D25
3q

4
@GB~3J!2GB~J!#1

3

2
~12q!@GB~2J!2GB~0!#.
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