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Dynamical structure factor of the anisotropic Heisenberg chain in a transverse field
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We consider the anisotropic Heisenberg spin-1/2 chain in a transverse magnetic field at zero temperature. We
first determine all components of the dynamical structure factor by combining exact results with a mean-field
approximation recently proposed by Dmitriev al. [JETP95, 538 (2002]. We then turn to the small anisot-
ropy limit, in which we use field theory methods to obtain exact results. We discuss the relevance of our results
to neutron scattering experiments on the one-dimensional Heisenberg chain compeGo€ICs
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[. INTRODUCTION with A~0.25. In view of our interest in GEoCl,, we will
often considerA=0.25 in what follows, but our results are

The spini Heisenberg chain is one of the most well- more general. The inelastic neutron scattering intensity is
understood paradigms for quantum critical behavior. The latproportional to
ter term is coined to describe a situation in which quantum
fluctuations induce a critical behavior as a parameter such as «Kg
doping or a magnetic field is varied. There are many physical |(“”k)°‘2 Sap~ K2 S*(w k), @)
realizations of models of(weakly coupledl Heisenberg @b
chains in anisotropic antiferromagnets. Whereas these mat@herea, 3=x,y,z and the dynamical structure factst” is
rials usually display a magnetic long-range order at very lowgefined by
temperature3 <T,, which is induced by the weak coupling
between chains, there is a large “window” aboVg where 1 N P , _
quantum fluctuations dominate and a scaling associated witls*?(w,k)= SN > dte” kRitiotigr)sP (0)),.

. K . N =1 ) ] ]

a quantum critical disordered ground state is obsetvd.
obvious question concerns the fate of the intriguing physical (3
properties such as the absence of coherent magnon excitgere the subindex denotes the connected part of the cor-
tions associated with the “Heisenberg quantum criticalrelator. For a three-dimensional system of uncoupled one-
point,” if a magnetic field is applied or XY"-like exchange  dimensional chains we ha®=lage, whereeis a unit vec-
anisotropies are present. It has been known for a long timgyr pointing along the chain direction. The dynamical
that critical behavior persists in both cases and there is astructure factor then depends 0n|y on the component of the
entire quantum critical manifold rather than just a point. Inmomentum transfer along which we will denote byk.
this regime a host of exact results on thermodynamic quan- The outline of this paper is as follows: In Sec. Il we
tities as well as dynamical correlation functions is ava”ablesummarize essential steps of the mean-field approximation of
(see, e.g., Ref. 2 and references theredn the other hand, pmitriev et al. We then discuss the region of applied fields in
if one combines an exchange anisotropy with a magnetigyhich we believe the mean-field approximation to be appli-
field that is at an angle to the anisotropy axis, altogethegaple. In Sec. Ill we use exact methods to determine all
different physics emergésThe transverse field breaks the nonzero components of the dynamical structure factor within
continuous W1) symmetry of rotations around the anisotropy the framework of the mean-field approximation. In Sec. IV
axis and the ground state develops a long-rangel Neder. e derive exact results for the structure factor in the small
Another interesting feature is that the transversa“ty of th%nisotropy limit by emp|oying field theory methods. In Sec.
field prevents the uniform magnetization from reaching satuy we discuss a field theory approach to the weak field limit.

ration except for infinitely strong fields. Section VI contains a discussion of our results in the context
The main motivation for our work are recent neutron Scat'of the neutron Scattering experiments OI’}Z(CBC|4

tering experiments on the quasi-one-dimensional antiferro-
magnet CsgCoCl, (Ref. 4 in the presence of a magnetic
field. It was suggested in Ref. 4 that an appropriate starting
point for a description of these experiments is the anisotropic Let us first review the main ingredients of the mean-field
spin-1/2 Heisenberg chain in a transverse magnetic field approximation(MFA) proposed by Dmitriewet al. in Ref. 5.
We note that the MFA can be applied to tk&Z chain in a
magnetic field as well. One first performs a Jordan-Wigner
H=J, SIS A, + S +HHS, (1)  transformation, which yields the spinless fermion
] Hamiltonian

Il. MEAN-FIELD APPROXIMATION
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J, J
HO:; 7(C}Cj+l+ H.C.)+ ?(CJTC]TJFJ.‘F HC)

+(nj=1/2)(nj 41— 12 +H(n;—1/2). (4) 1.5

Here the hopping and pairing matrix elements are=(1 1.25E
+A)/2 and we have pul=1. The pairing term is a conse-

guence of the anisotropy of the model: it vanishes at the
isotropic pointA=1. In the MFA the four-fermion interaction ¢ . 7s}
term is decoupled in all possible ways. The relevant expec-
tation values for the on-site magnetization, pairing, and ki-

1 L

netic term are denoted by 0.25}
M=(n))=1/2, P=(cj,1Cj), K=(c],1c;). (5 k
The mean-field Hamiltonian is then FIG. 1. Dispersion relation foA=0.25 and external magnetic
fields H=0.05, 0.2, 0.4, 0.8, 1.2, and 1{@op to bottom atk

J J_ ~ =1).
Hye= 2,: %CJ-TC]-H-F 7CJ-TC]-T+1+ H.c.+ H}j: (nj—1/2),
(6) This dispersion relation is plotted in Fig. 1 fa=0.25 and
various values of the external field. F&r=0.25 the gap
where we have dropped an unimportant constant, and definegnishes for a critical field oH,=1.604 (corresponding to
the (rea) parameters h=1). The self-consistency conditions B0 can be cast
in the form

J,=J,—2K, J_=J_+2P, H=H+2M. (7

The theory is now purely quadratic in fermion operators, and _ ’T% do (k) (13)
can thus be solved exactly. An alternative picture of this Y Jo2m R,
theory is obtained by Jordan-Wigner transforming back to
spin variables, yielding an anisotropiy model in a field, where we have defined the shorthand notatiofg,
=M,M;=K,M,=P,Ho=H,H,;=3,, andH,=J_. The
Hyy XX numerical solution of these three coupled equations deter-
3, :; [(1+ 9SS+ (1~ 7)Sjysjy+1+hsiz] ®) mines all the necessary mean-field parameters for given val-
ues of the anisotropy and of the external magnetic field.

with y=J_/3, andh=H/J. . This model has been exten-
sively studied in the literature and many useful results on A. Mean-field phase diagram

rrelation functions are availabie'® For our pur w . . .
correlation functions are availabie:® For our purposes, we _ The mean-field phase diagrafsee Fig. 2 has already

first need to complete the mean-field setup above by provid : . )

ing the necessary self-consistency conditions. First, we usggggn‘/j;ﬁ)unsssecgr:ge?rﬁg slchge;?:avl\ilr? V\ii?g.ld I'(i)(ea;% addlsome
the fact that the free fermionic theory can be Fourier trans- tivelv. For smal 9 nd he 1 v% mwb niyzﬂ t’h
formed and diagonalized using a Bogoliubov—de GenneLESPeCtively. For s aly a € may bosonize the

(BAG) transformation, which reads, explicitly,

1

c=a.(k)ci+ia_(k)c'T,, Sine-Gordon like H()
e8¢+~ s
¢l = —ia_(kcp+as (k' (9) Ha(4)
with parameters 06
(= 1 {1+3+cosk+ﬁ 12 o <
e - \/E a)(k) 0.4 -
In the thermodynamic limit, the Hamiltonian becomes
0 Transverse
Hue mdk + w (k) , i Ising—like
il G Gl N L C T N |

2 25 3 35 4
in which the Nambu spinors have bands (k)= = o (Kk), HiJ
FIG. 2. Mean-field phase diagram. The critical line is denoted

(k) =3, (cosk+h)Z+ y2sirPk. (120 byH.(A) and the classical line b (A).
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mean-field Hamiltonian(8) and obtain a quantum sine- 0.5
Gordon model, described by the Hamiltonian density

H=S1(5x0)%+(5®)?]~ yA cos\Am0O,  (14) )

where® is a canonical Bose field arfdl its dual field,A is a 0.3 -

constant, and =J, \/1—h? is the mean-field spin velocity at #
y=0. Forh>1 the y=0 mean-field Hamiltonian has a fer-
romagnetic ground state and an excitation gap and bosoniza-
tion cannot be carried out. The physics of the sine-Gordon
model (SGM) (14) is very well understood. There are two 01 |
elementary excitations known as soliton and antisoliton. The
spectrum consists of scattering states of an even number of
solitons and antisolitons. By solving the mean-field equa- 0
tions numerically we find that smalt is obtained for small H

fieldsH and goes to zero as—1 from below. This suggests

that the physics of the mean-field theory at small fields is i, 3. staggered magnetization as a function of external field
approximately described by the SGM. We note that for oy gifferent anisotropiest=0.25, 0.5, and 0.75.

slightly smaller than 1 it was shown in Ref. 11 that the full

Hamiltonian(1) maps onto a sine-Gordon model. We elabo-

rate on this fact in Sec. IV. Fow~1 it is convenient to

0.2

rewrite the Hamiltonian in terms of the real, fermionic op- Q)Y 1-R%32 v L
erators B = ap [H|<J,
Mg= (2(3++32)) (18
n—1 n 0 |'-|:||>':j
77n:o-ﬁl_[ o5, L=—ill ajoy. (15 ’ o
=1 =1
Then one performs a rotation The mean-field resul(18) becomes exact on the classical
. line hy=\2(1+A), wheré® my=1%./1—(h%/4). We plot
£n _ ot 7 £ _Sn" (169 Ms as a function of magnetic field for several valuesiah
AN RN Fig. 3.

and finally takes the continuum limi, ,— \Jag&.(x). In

this way one finds that Hamiltoniai8) reduces to C. Applicability of the mean-field approximation

v ) It is immediately clear from the results for the staggered
H:_'EJ’ dX[éRafo_%Lafo]_'mJ dxéréL . magnetization shown in Fig. 3 that the mean-field theory
(17)  fails to describe modéll) in the limit of small applied mag-
netic fieldsH. In zero field Eq.(1) reduces to a criticakZX
spin chain, for which the staggered magnetization vanishes.
The XZX chain has a () symmetry corresponding to rota-
tions around the y axis, whereas the MFA breaks this sym-
metry and is therefore invalid. Simple scaling arguments
suggest that in the limiH—0, mg, should be proportional

h<1 corresponds to the ordered phase, whehea$ corre- 0 !;'a’ where the exponent _is a function of the an!sotropy
sponds to the disordered phase of the TFIM. In the ordered- Howeve.r, a renormallsgtlon group analysis 9f the
phase the spin operatar(x) has a nonzero expectation SMall H regime of Eq.(1) is nontrivial because in a
value, which corresponds to the staggered magnetizatioho_son'zed dgscrlptlon t_he transverse field carries confo_rmal
in the underlying Heisenberg model. By solving the mean-SPiN- We review some important features of this analysis in
field equations numerically we find thag~1 is only  S€C: V.

achieved for smald~0 and fieldsH that are significantly In order to get some rough measure concerning the region
larger thanH. . of magnetic fieldH in which the MFA may work well, we

have computed the one-loop corrections to the mean-field
values of values\, K, andP. As there is no small parameter
in the problem, this calculation should be understood as a

Order in the system is represented by the staggered magemiclassical approximation. The corrections\tg K, andP
netizationmg=((—1)'S}), which is obtained from Ref. 12 are obtained by taking partial derivatives of the correction to
as the ground state energy. The latter is found to be

whereég | are right and left moving redMajorang fermi-
ons, respectively, and=yJ,a,/2, m=(J,/2)(h—1). The
Majorana fermion theoryl7) is the same as the continuum
limit of the transverse field Ising mode(TFIM), i.e.,
the mean-field Hamiltonian fory=1, with a renormalized
velocity. The elementary excitations afg kinks. The region

B. Staggered magnetization

134431-3



JEAN-SEBASTIEN CAUX, FABIAN H. L. ESSLER, AND UTE LON PHYSICAL REVIEW B 68, 134431 (2003

1
- —fﬂ dpdqu{EF(p+Q,p)F(q+Q.q)COSQ—F(p.q)F(p+Q.q+Q)cos{p—q) F(p+Q,p)F(a+Q,a)cosQ
0=

— (2m) o(p) T w(a)+o(p+ Q) +w(q+Q) ‘

where F(p,Q)=a.(p)a_(q)+a_(p)a,(q). The correc- In the infinite volume translational invariance is spontane-
tions to the mean-field parametetd, K, andP turn out to ously broken and the ground state beg:o_mes a linear combi-
be quite small except for low fields and near the transition: agiation of [0) and|[1). We note that the finite-size effects for
the gap becomes smaller, fluctuations become more impoweak and strong fields are still rather pronounced. Such a
tant. behavior for the staggered magnetization in finite systems
A better way to study the regime of applicability of the Was previously observed in, e.g., Ref. 14. Nevertheless it is
mean-field approximation is to compare some of its predicclear that the staggered magnetization vanishes above a criti-
tions to the results of numerical density matrix renormaliza-C2! field and approaches zero in the weak field limit. The
tion group(DMRG) calculations. Results for some values of 2gréement between the DMRG results and the MFA for weak
A have been already been reported by Capraro and Gros [if!dS is as expected quite poor. For sufficiently large field
Ref. 13. H=1.2] the MFA gives good results. Last but not least we
In Fig. 4 we compare DMRG results for the magnetiza-have used the DMRG to determine the gaps of the two low-
tion per site with the MFA forA=0.25. We work with peri- €St lying excited states. The results are shown in Fig. 6. Both
odic boundary conditions and consider system sizes of up t§aPS vanish at the critical fieltd.. For H<H. the first
60 sites. The agreement between DMRG calculations and tgxcited state is really a degenerate ground state with the op-
MFA is quite satisfactory, particularly for sufficiently large POSite sign of the staggered magnetization. This degeneracy
fieldsH=1.2]. is removed in the thermodynamic limit by spontaneous sym-
In Fig. 5 we compare DMRG results for the staggeredMetry breaking. Hence the true excitation gap is given by the
magnetization per site with the MFA fok=0.25. ForH second excited state. We see that the MFA is in very good

<H, the staggered magnetization is computed as agreement with the DMRG results for fields that are larger
¢ than approximately 15 This is only slightly below the
n 1

The above considerations suggest that the MFA works
where|0) and|1) are the two degenerate ground states corVery well for both grpunq state and.e.xcited states properties
responding to momenta O angl respectively. It is necessary @s long as the applied field is sufficiently strohig=1.5J.
to consider the overlafl9), because, in a finite volume with For intermediate field strengths 0SH=<1.5] we expect
periodic boundary conditions, translational invariance im-the MFA to give at least qualitatively correct results. In the

plies that small-field regime the MFA gives very poor results and fails
complately in the limitH—0. Having in mind these limita-
(0]SX(—1)"[0)=(1|S*(—1)"|1)=0. (20) tions we will now determine the dynamical structure factor
in the MFA.
o N=30
050 ||  on=4o
o N=60 ) ) '
040 | mean-field approximation E 0.40 |
0.30 |
0.20 |
A=0.25
010 | oot
0.00
o "2 : -
050 } [—nN=30 020 | * Hr;jf:—ﬂeldapprcxlmatlon ]
extrapolation —oN=16
0.40 | | ——_mean-field approximati B A—AN=18 a
—v N=20
030 | . Oy
ON=40
0.20 | ON=50
KN=60
o.10 |
‘ s 0.00 ‘ . ‘
0'Ooo.o 1.0 2.0 0.0 0.5 1.0 1.5
H H

FIG. 4. Magnetization per site calculated from the MFA com-  FIG. 5. Staggered magnetization calculated from the MFA com-
pared to the results of DMRG computations fior-0.25. pared to the results of DMRG computations fior-0.25.
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k
0.0 10 2.0 FIG. 7. Structure facto8* as a function ok and w for anisot-
H ropy A=0.25 and external magnetic fiekii=0.8].

FIG. 6. Excitation gap calculated from the MFA compared to the

-1 2
results of DMRG computations fak=0.25. C(1l+vy) [w(k1) —w(ky)]

Ixx(K1 ko) = 8[1—cogk;tky)] w(ky)w(ky)

I1l. DYNAMICAL STRUCTURE FACTOR

IN THE MEAN-FIELD APPROXIMATION C(1+vy) 1—cogk;—ksy)~

_ 2
9yy(Ky, k)= 8 ARTS 32, (23

The transverse correlators are determined in the frame-
work of the mean-field theory as follows. Let us denote the
true ground state by0) and the mean-field ground state by sin( kl_kZ)
|0)me. Then we employ the following approximation: C 2

k,+ kz)
2

~ ue(0l€M0tSre MutSEI0) e, (21)  where C=[73(1—h?)]¥4 and where we have corrected a
) typo in Ref. 9. The result fog,, is a conjecture based on

In other words we replace the ground state expectation valuga|culations we have performed in the Ising and sine-Gordon
by the expectation value with respect to the mean-fieldscaling limits and agrees with the known result on the clas-
ground state and substitute tkieHamiltonian(8) for the full  sjcal linel® We note that the results f8**(w,k) reduce to
Hamiltonian in the time evolution operator. It is clear thatthe exact results for model(8) on the classical line as well,
Eqg. (21) will be a good approximation as long as the mean-whijch implies that all multiparticle matrix elements vanish.
field theory gives an accurate description of the ground statgye see that the two-particle contribution to the off-diagonal
and low-lying excited states. The transverse spin correlator§|emem5xy(w,k) is purely imaginary. This means that it
in theory (8) have been determined as a spectral sum ovegannot be seen in neutron scattering experiments as it enters

R
o(ky)  w(ky)

gxy(klvkz) =i §
(0|S5(1)Sh|0) = (0]e™Metsre Motsh|0) sin

A. Transverse correlations in the “low-field phase™ h<1 k,k
) onneee ( bup— 2|10 0+ MW k)], (24
For h<1, the leading contribution comes from two- k

particle intermediate states. As a result all components of th\(/avhere we recall that=k- e is the component of the momen-
structure factor are completely incoherent. The other contri: fer al the chain directi P Using th lati
butions are due to states with 4,.6 . particles, but they are tum transfer along the chain direction. Using the relation
expected to contribute less spectral weight so that we ignore ¥ (w,K)=(SY(w,k))* (25)
them here. The two-particle contributions to the structure ' ’ ’
factor are given by we see thatSY(w,q)+S*(w,q) is zero whenevelSY is
purely imaginary.
= dk,dk, The intensity of the structure fact@*“ is plotted as a
S*(w,k)= f 5 de—w(k)—o(ky) function ofk andw in Figs. 7—10 for anisotropyt=0.25 and
for external magnetic fieldé1=0.8) and H=1.4J, corre-
X S(k—ky— Ko+ ) g,p(Ke k). (22) sponding to the effective mean-field values-0.44 and
0.82, respectively. It follows from our discussion in Sec. Il C
Here that we do not expect the results for=0.44 to provide a

-
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k k
FIG. 8. Structure facto8** as a function ok and w for anisot- FIG. 10. Structure facto®” as a function ok and w for an-
ropy A=0.25 and external magnetic fiedl=1.4J. iSOtI’OpyA:O.ZS and external magnetic fie=1.4J.
guantitative description of the structure factor of the trans- S“B(w,k)Zfalg(k—rr)é(w—w(k)), (26)

verse fieldXXZ chain. However the mean-field approxima-

tion may still capture the redistribution of spectral weight in

the various components of the structure factor as the trandvhere

verse field is increased on a qualitative level. One clearly

sees in, e.g., Fig. 7 that the magnetic field splits the lower Poc

boundary into two branches. Experimentally, one would thus fux(K)= 77 AR fyy(K) = p=A(k),

expect to see a double peak in the intensity when scanning in

frequency for fixed momentum. In Fig. 8, the evolution of

the structure factor with increasing magnetic field can be fry(K)=—ip., fu(k)="Ffy,(k)=0. (27

seen: the branches recollapse arokrdr, with diminishing

gap (the gap vanishes atl.=1.604), corresponding th  pere we have introduced the parameters

=1). As the field gets closer to the critical field, the intensity

of the structure factor collapses from an incoherent con-

tinuum onto an emergent single coherent mode. _h=x vho+ 921
LT,

B. Transverse correlations in the “high-field phase”: h>1

For fieldsh>1 the dominant contribution to the dynami- 1
cal structure factor is due to a single-particle coherent mode po=gl(1= A)(L-A; (1= A DY (29
with a dispersion relation given by E¢L2). We havé—®

vy
5 A N2—2xn,cogk) +1 |
180 =

A %—2n;tcogk)+1
160

140

We note thaf,, is purely imaginary, which again means that
120 the mixed correlations cannot be observed in neutron scatter-
ing experiments.

Near the transition, the amplitudg, diverges atk= 7.
For fields higher than the critical field, the divergence is
smoothed out, as can be seen in Fig. 11. The gap also re-
opens, as can be seen from EtpR).

100

80

60

40

20
C. Longitudinal correlations

Q
% The longitudinal correlation functio®*? can be computed
directly in terms of a density-density correlator of théer-
FIG. 9. Structure facto®” as a function ok andw for anisot-  mions. After the BdG transformation to’ Fermions, a
ropy A=0.25 and external magnetic fieki=0.8J. straightforward vacuum expectation value yiéfds
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SFXX o6 Szz
35
180

160
140
120
100
80
60

40

20

0

FIG. 11. f** structure factor amplitude as a function lkffor k
external magnetic fieldsl =1.604, 1.7, and 2.4above the critical
field). This is the amplitude of the structure factor along the disper- FIG. 13. Structure facto8** as a function ok andw for anisot-

sion relationé function. ropy A=0.25 and external magnetic fielli=1.4J.
=dq IV. FIELD THEORY APPROACH
SZZ(w,k)=f 4—[1—f(q,k)]5(w— w(9,K)), TO THE SMALL-ANISOTROPY LIMIT
04T

The easiest case to deal with by field theory methods is
_ the one where the magnetic figttlis much stronger than the
- a(g)a(q-+k)—b(a)b(q+k) . (29 anisotropy +-A. The field theory limit in this case was stud-
w(q)o(q+k) ied in Ref. 11 and subsequently in Ref. 16. Let us consider
the Hamiltonian

f K k
q+§v

0(9,k)=w(q—k/2)+ w(q+k/2),

~ ~ L . Hoxxn=J2 SIS +HY S+(A-1)S/S!
where a(k)=J . cosk)+H and b(k)=J_sin(). Equations ha )

(29) are valid in both the I_ow-_field and in_ the high-field =Ho+H,. (30)
phase. As a result, the longitudinal correlations are incoher-
ent for any value of the applied magnetic field. As we assume the field to be much larger than the anisot-

The evolution ofS*? with increasing applied fieldd is  ropy 1—A, we bosonize at the point=1 in the presence of
shown in Figs 12 and 13. First, the longitudinal correlationsa strong field and then switch on the exchange anisotropy as
are generally incommensurate. Second, in low fields the ina perturbation.
tensity is concentrated at the upper boundary of the con- At low energiesH, is described by a free massless boson
tinuum, as is expected asis small, whereas for larger fields compactified on a ring of radiug, i.e.,® and® +27R are
a shift towards lower energies is visible. identified. The dual field® fulfills ®=0+1/R. The

bosonization rules are

200 SZZ

180

S,—J(X)+ (—1)"n(x) + higher harmonics, (31)

wherea, is the lattice spacings=na, and

160

140

J*=b coiﬁ@(x)]sin(%(b(x)—Z&x),

120

100

w 2
& Jyz—bsir[ﬂ@(x)]sin(FCI)(x)—Zéx),
’ JZ—@a D 32
20 _B X (X)v ( )

0

n‘(x)=ccog BO(x)], nY(x)=csinBO(x)],

FIG. 12. Structure facto8** as a function ok and w for anisot-

n%(x)=asin
ropy A=0.25 and external magnetic fiekdi=0.8]. )

2—W<D —26x>
3 (X) .
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Here B=2=7R and the coefficienta,c are known exactly in n=B?2m, (39
the absence of a magnetic fil@nd numerically for several
values of the applied fielt.*®° The (magnetic-field depen-
deny constan{, the incommensurability and spin velocity
vs(H) are determined by the microscopic parametkrs] v=— (40)
andH of the lattice model by using the exact Bethe ansatz Jag

solution. This entails solving some linear integral equationsrthe staggered magnetization in tkelirection is nonzero in

numerically (see, e.g., Refs. 11 and 20)2Zhe bosoniza- the presence of a transverse field. We have
tion formulas(32) hold as long adH<2J. For H>2J the

andv is the dimensionless spin velocity

ground state ofH, is the saturated ferromagnetic state and ((—=1)"S})=c(cosp0), (41

the excitation spectrum is gapped. For later convenience W erd3

define wher

42 (cosBO)
§: o a2 (33) 1 nl2
8m—4p M ﬁr(m)

The perturbing Hamiltoniaft{; can now be bosonized using Y E——

Eq. (32) and fusion of the staggered magnetizatiofgjives ZZJF(L)

a contribution proportional to 2-27y
=dt i t

cog2p30). (34) < ex f _( ___sinf(zt) _ ze-m) .

o t \2sinHt)cosi[1—7n]t) 2

In addition there is a small marginal contribution that shifts
the compactification radius. For simplicity we neglect it here. (42
Thus, at low energies compared to the scale set by th¢pe magnetization per site can be calculated from the ground
applied fieldH<2J, the effective Hamiltonian is given by @ state energy of the Hamiltonian by taking derivatives with
sine-Gordon model respect to the magnetic fiek. The total ground state energy
v per site is given by
H=—[(3D)%+(00)2]— u(A)cog280). (35
2[( KP)7H(9,0)7] - p(A)cod250). (39 ol H) = exxx(H) +esg(H,A), (43
The cosine term in the sine-Gordon model is relevant anthfEre the gro.und state energy per site of the isotropic
generates a spectral gap. A2 4 (see, e.g., Fig. 1 of Heisenberg lattice modekyx(H) is known exactly from the
Ref. 20, the spectrum of the sine-Gordon model consists oBethe AnsatZsee, e.g., Ref. 31and whereeg; is the ground
soliton and antisoliton only. We can immediately read off thestate energy of the sine-Gordon maddel
scaling of the gap as a function of-1A:

M? wé
Moc(l—A)'"'/(z‘"'*ﬁz)_ (36) eSG(H,A):—Lﬁ},—Jta 7 . (44)

The magnetic field dependence enters both via the prefactgiye magnetization is given by
and via theH dependence of3. In order to calculate the

prefactor as well as quantities like the magnetization we need dep H) desg(H,A)
to know the normalization of the operator m=—g—=Moxt — g (45)
(’),—zS}’S}’+1—>—Cc032B®) (37 The only unknown in the expression for the staggered mag-

netization(41) and magnetizatiod5) is the normalizatior®

in (37). Once this is known with sufficient accuracy for tak-
ing derivatives with respect td bothm and((—1)"Sy) can
be evaluated.

in the Heisenberg chain in a field, i.e., Hamiltoni@®) with
A=1. At present the normalizatiahis not known. In Ref. 19
the issue of how to determingfrom the large-distance as-
ymptotics of appropriately chosen correlation functions in
the Heisenberg chain in a uniform field has been investi-

gated. In what follows we will considet as a yet unknown Dynamical structure factor
function of the magnetic fielt. The gap is given by Using the integrability of the SGM it is possible to evalu-
ate the low-energy asymptotics of dynamical correlation
F( n ) Y2-27) functions. Let us start with the transverse correlations and
M 20 \2-2%) [ (1-A)Cm T(1-1n) K concentrate on momenta closeitta,. The staggered mag-
3 \/_; 1 ( o5 T(7) ) ' netizations inx andy directions are given by Eg$32) and
F( 5 % ) calculating their correlation functions reduces to the calcula-
K (38) tion of particular correlators in the SGM. This is by now a
standard calculatiofsee, e.g., Ref. 20one determines the
where first few terms in a Lehmann representation by using the
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between the ground state afmulti) soliton/antisoliton ex- iiffb (51
cited states. The leading contribution is due to intermediate

states with one soliton and one antisoliton. Using the notahave topological charges o2, respectively. Here the op-

exact matrix elements of the operator under consideration p( 2 )
ex ;

tions of Ref. 26 we obtain erator of the topological charge is defined as
- 2vJ¢c? G5G(260)1C, |2 B (=
Y o — — _B
Sy (C!)!ao+k s /SZ_4M2 }‘(200+|’7T Q WJLQQdX&X@(X). (52)
&cos 2—5

The leading contribution to the longitudinal spin-spin corre-
S lation functions is due to intermediate states with two soli-
X Oy M 2) tons or two antisolitons. The form factors of vertex operators
like Eq. (51) with definite topological charges have been
+contrib. from 4,6. . . particles, (46) given in Ref. 27. A short calculation leads to the following

where® 4(x) is the Heaviside functiors and 6, are defined result.
as -
< SZZ( o, a—t25+ k
s=+w?—vik?, 00=arccosl(|—), 47) °
2M ~1
_ vla Z,(0) ) S
andG, andG(6) are given by —4wsm|e(26’o)| O M_Z
G(6)=iCysinh(6/2) +contrib. from 4,6. . . particles. (53
% ex Jxﬂ sinfP(t[1—i ¢/ w])sinh(t[£—11) The normalizatiorZ,(0) is
ot sinh(2t)sinh ét)cosht) '
3 é_— 277/32
1 w2 JaMT| =+ —)
J—F(22> Z(O)—8 S
M — 2V)="7"
Go=| = L €l et
2vJ I 7 2
2—-27q
dt bt y =dt [ cosht) —exp(—[1+ &]t)
o sinhy N o ex f s -
% _ i B sinh( ét)cosht)
exp{ fo t (2 sinf(t)cosi[1— n]t) 2 € ” °
2me 2t
“9 S H (54
where B
»dt sintA(t/2)sinh(t[ £— 1 whereC; is given ir] Eq.(49). The structure factor depends
Clzex[{ - — Sm. ( )§|nr( L€ ])}_ (490  on the transverse field both through the ddmnd through
o t  sinh2sinhét cosht the parameter 2 The variation of B does not alter the
The analogous result f& w, (m/ag) + k] is various components of the dynamical structure factor on a
’ 0 qualitative level: the leading contributions are always due to
25 J¢2 G(26.)/C, |2 two particles; the structure factor is entirely incoherent and
S w,a1+k Y 95G(200)1C, always vanishes at the threshdlds 23 is always strictly
0

larger thany4), which occurs atw=2M. However, on a

2¢ quantitative level the value @8 is quite important: decreas-

 7s\SP— 4M? gsink( 200 tim

ing B leads to a narrowing of the lineshape in the transverse
S ; . S ;
X Oyl — _2) correlations. What we mean precisely by this is illustrated in
M Fig. 14, where we plod(M/J)2~79Y(w,m/a,) as a func-

tion of w/M for several values of the magnetic fidid We

see that the lineshape, when measured in units of the field-
Finally we determine the longitudinal structure factor dependent gapl, sharpens with increasing magnetic field
S*q{w,k) by making use of recent results by Lukyanov andHowever, asM itself depends o, this does not necessarily
ZamolodchikoV’ It is clear from the bosonization formulas imply that the lineshape measured in physical units like meV
(32) that the correlations af” are incommensurate. In other sharpens with increasing. It is somewhat difficult to com-
words the longitudinal structure factor has low-energy modegpare our field theory results to the ones obtained in the mean-
at the incommensurate momeniday=25. Moreover one field approximation as we have no reliable way of determin-
can easily establish that the operators ing the gapM.

+contrib. from 4,6. . . particles. (50)
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B=\27—2 arcco$A). (59

0.002 - L :;jf:;;g . The perturbing operatd68) is formally relevant but as it is

’ - not a Lorentz scalar it requires special treatment. As has been
= shown explicitly for the casé&=0 in Ref. 28 the Hamil-
Tf tonian (55) can be related to a two chain model of spinless
3 Luttinger liquids coupled by a weak interchain hopping. The
i; generalization to €A<1 is straightforward. In order to
£ 0.001 match the notations of Ref. 28 we perform a shift
5
£ B
= CI>(x)—><I>(x)+Z, (60)

while keeping the dual field unchanged. The one-loop renor-
0 ‘ : ‘ malization group(RG) analysis can then be read off from

oM Refs. 28 and 29. At second order in the coupling the follow-
ing two scalar operators are generated radiatively

FIG. 14. J(M/J)2" 7SY(w,wla,) as a function ofw/M for H
=1.373 andH=1.748), corresponding to a magnetization per site 4
of 0.2 and 0.3, respectively. The scales of botndy axes depends c0g280), cos{ —<1)) . (61
on H through the gapM. B

Altogether we thus have three perturbing operators with cor-

responding dimensionless couplinggof cogB0) cog2x/

BD)), g, (of —cog4#/BP)) andg, [of —cog280)]. The RG
The situation where the field is weak compared to theequations re&d=?°

anisotropy, i.e.H<(1—A), has been analyzed by renormal-

V. FIELD THEORY APPROACH TO THE WEAK
FIELD LIMIT

ization group methods by Nersesyanal. in Ref. 28. It is dz 1 1
convenient to rotate the quantization axis such that the an- a - 2— 5 n+—|\z
isotropy is in thez direction and the field is along the
direction. The effect of the magnetic field is to generate an
excitation gap and a nonzero expectation value for the stag- %:2( 1— E)g _( n— E) 22 (62)
gered magnetization in thgdirection. This can be seen as dl 7)ot 7"’
follows. The chain Hamiltonian is
%=2(1— )92+ L 2
Hyxzn=J SIS +9/S. 1 +ASS,  +HY, S dl Mo\ o)
i i
— 2
=Ho+H, (55 din 7 1( , g1>
T 5927 — |
where H, is the Hamiltonian of the anisotropic spin-1/2 dl 2172 n
chain and
where
Hi=HX S (56) 52 1
! 7(0)= P 1- ;arccos;A). (63

What we do now is to bosonize at the critical point defined

by Ho, i.e., the anisotropic Heisenberg chain, and then tqn general these equations have to be solved numerically.

perturb away from this fixed point theory by EG6). The  However, in the case(0)~1, i.e., a small exchange anisot-

bosonized form oft, is ropy, one can analyze the equations by a two-cutoff scaling
procedure?® This is because reaches strong coupling while

v ; .
Hozfsf dx[(0,0)2+(3,)?], (57) 01, remain small. The gap can then be estimated as
where® is a canonical bosonic field artd is the dual field. Mo H exp{ _ . _ (64)
The perturbing operator is given by 4—47(0)
bH (27 The gap is linear irH, but the coefficient is very small as
H1=a—of dx 005([9@)5'“(7@) : (58 5(0)~1. As is also shown in Ref. 28, at the polgtin the

RG flow wherez stops renormalizing the Hamiltonian is
where given by
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Vs 0.50
H= 7f dx[(940)2+ (9,D)?]
gmve 0.40 |
+ —Zj dx cog 8w/ nd)—cog\8mn®)],
(2’7Ta.0)
(65) 0.30 |
where =
0.20 | .
1-752
g=2 5 <0. (66)
1+7n
010 1 —o ¢=m/4 I
As n<1, the first cosine term is irrelevant and can be —= =0
dropped. The® field gets pinned at the valug/23, which
implies that the staggered magnetization in yigirection is 0-000<0 To >0
nonzero: ' ' '
[H|A
((—=1)"S})=(sinBO) =const. (67) FIG. 15. DMRG results for the magnetization in theirection

for a magnetic field applied in thez plane at ap=45° angle to the

_If A'is not close_ to 1, the RG equatior(l_SZ) have to_ be y axis. The results for a purely transverse fiele0 are shown for
integrated numerically. Now several couplings grow smulta—comparison_

neously. Eventuallyy becomes very small, whilg, be-

comes very large and negative. This means that we agaigyng field limit. A physical picture of these excitations is
flow toward a sine-Gordon model for the dual field and by, esented in Ref. 30. It would be interesting to compare our
the same argument as before we find that the staggered magiyits for the dynamical structure factor to inelastic neutron
netization in they direction is nonzero. scattering experiments on £20Cl, or similar compounds.
An interesting question which we have not addressed is
VI. DISCUSSION AND CONCLUSIONS what happens when the magnetic field is applied at an arbi-

As discussed recently in Ref. 4, £0Cl, is a quasi-one- trary _ang_le to the exchange anisotropy. The most general
case is given by

dimensional spin-3/2 antiferromagnet with a strong single-
ion anisotropyD. At energies small compared @ the spin
degrees of freedom are described by the anisotropic spin-1/2 _ < ey Q
Heisenberg modéll).* Due to the smallness of the exchange H J; S-S+t (A-DSS L TH-S, (68)
constant §=0.23 meV) it is possible to perform inelastic
neutron scattering experiments in magnetic fields that arehere we may setl*=0 without loss of generalitythis can
fairly large compared tdl. Hence it should be possible to always be achieved by an appropriate rotation of the quanti-
explore much of the magnetic phase diagram experimentally.

Our analysis suggests that at low fields<H_, all com- 0.5
ponents of the dynamical structure factor are incoherent anc
the leading contributions come from intermediate states with
two particles. These particles are different from the spinonsp 4 |
of the critical XZX chain in that they are gapped and do not
carry any definite sping is not a good quantum numbem
a simple picture these particles have an interpretation as dg, 5 |
main walls between the two possible antiferromagnetic spin
alignments in thex direction. An argument in favor of this
gualitative picture may be obtained by considering the clas-0 5 |
sical line. Here it has been shown in Refs. 3 and 15 that the™
ground state is twofold degenerate. The expectation values c
the staggered magnetization in the two ground states diffel
by an overall minus sign. This suggests that low-lying exci- %1 [
tations can be loosely thought of as domain walls betweer
the two possible ground states.

For high fields, theezcomponent of the dynamical struc- 0.0 ¢4

A 0.0 1.0 2.0 3.0
ture factor remains incoherent, whereas ixe xy, andyy IH|/J

components now feature a single-particle coherent mode. For

very large fields and smaA this particle is similar in nature FIG. 16. DMRG results for the total magnetization for a mag-

to the Z, kinks of the transverse field Ising model in the netic field applied in the/z plane at various values a.
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zation axis around thg direction. Rotating the spin quanti- We have determined =(S?)?+(S)? and M?*=(S?) by
zation axis onto the direction of the field leads to the follow-means of DMRG calculations for lattices of up to 50 sites for
ing Hamiltonian: different values ofp. In Fig. 15 we show results fdv1* and
a field applied at an angle ap=45°. As expected we find
H=I> 5.5 +HE+(A-1)H /. (69) that M?(¢p=45°)<M?*(¢=0), but in addition the kink in
T ! Li+Le the magnetization curve occurs at a smaller valugHjfJ.
In Fig. 16 we show the total ordered ferromagnetic moment
M as a function of the magnitude of the applied fiett|/J
'for several values ofp. The magnetization curve becomes
steeper with increasing and approaches the magnetization
+sin0cos€[§}’§?+1+§jz§}’+l]. (70) curve for theXXZ chain in a longitudinal field fokp— /2.

whereH = sgn(H)|H| and

H|11=Cc086S/S,  +sinf oSS,
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