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Dynamical structure factor of the anisotropic Heisenberg chain in a transverse field
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1ITFA, U. of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
2Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

3Institut für Theoretische Physik, Universita¨t zu Köln, Zülpicher Strasse 77, 50937 Ko¨ln, Germany
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We consider the anisotropic Heisenberg spin-1/2 chain in a transverse magnetic field at zero temperature. We
first determine all components of the dynamical structure factor by combining exact results with a mean-field
approximation recently proposed by Dmitrievet al. @JETP95, 538 ~2002!#. We then turn to the small anisot-
ropy limit, in which we use field theory methods to obtain exact results. We discuss the relevance of our results
to neutron scattering experiments on the one-dimensional Heisenberg chain compound Cs2CoCl4.
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I. INTRODUCTION

The spin-12 Heisenberg chain is one of the most we
understood paradigms for quantum critical behavior. The
ter term is coined to describe a situation in which quant
fluctuations induce a critical behavior as a parameter suc
doping or a magnetic field is varied. There are many phys
realizations of models of~weakly coupled! Heisenberg
chains in anisotropic antiferromagnets. Whereas these m
rials usually display a magnetic long-range order at very l
temperaturesT,TN , which is induced by the weak couplin
between chains, there is a large ‘‘window’’ aboveTN where
quantum fluctuations dominate and a scaling associated
a quantum critical disordered ground state is observed.1 An
obvious question concerns the fate of the intriguing phys
properties such as the absence of coherent magnon ex
tions associated with the ‘‘Heisenberg quantum criti
point,’’ if a magnetic field is applied or ‘‘XY’’-like exchange
anisotropies are present. It has been known for a long t
that critical behavior persists in both cases and there is
entire quantum critical manifold rather than just a point.
this regime a host of exact results on thermodynamic qu
tities as well as dynamical correlation functions is availa
~see, e.g., Ref. 2 and references therein!. On the other hand
if one combines an exchange anisotropy with a magn
field that is at an angle to the anisotropy axis, altoget
different physics emerges.3 The transverse field breaks th
continuous U~1! symmetry of rotations around the anisotro
axis and the ground state develops a long-range Ne´el order.
Another interesting feature is that the transversality of
field prevents the uniform magnetization from reaching sa
ration except for infinitely strong fields.

The main motivation for our work are recent neutron sc
tering experiments on the quasi-one-dimensional antife
magnet Cs2CoCl4 ~Ref. 4! in the presence of a magnet
field. It was suggested in Ref. 4 that an appropriate star
point for a description of these experiments is the anisotro
spin-1/2 Heisenberg chain in a transverse magnetic field

H5J(
j

Sj
xSj 11

x 1DSj
ySj 11

y 1Sj
zSj 11

z 1HSj
z, ~1!
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with D'0.25. In view of our interest in Cs2CoCl4, we will
often considerD50.25 in what follows, but our results ar
more general. The inelastic neutron scattering intensity
proportional to

I ~v,k!}(
a,b

S dab2
kakb

k2 D Sab~v,k!, ~2!

wherea,b5x,y,z and the dynamical structure factorSab is
defined by

Sab~v,k!5
1

2pN (
j ,l 51

N E
2`

`

dte2 ik•Rl1 ivt^Sj
a~ t !Sj 2 l

b ~0!&c .

~3!

Here the subindex denotes the connected part of the
relator. For a three-dimensional system of uncoupled o
dimensional chains we haveRl5 la0e, wheree is a unit vec-
tor pointing along the chain direction. The dynamic
structure factor then depends only on the component of
momentum transfer alonge, which we will denote byk.

The outline of this paper is as follows: In Sec. II w
summarize essential steps of the mean-field approximatio
Dmitriev et al. We then discuss the region of applied fields
which we believe the mean-field approximation to be app
cable. In Sec. III we use exact methods to determine
nonzero components of the dynamical structure factor wit
the framework of the mean-field approximation. In Sec.
we derive exact results for the structure factor in the sm
anisotropy limit by employing field theory methods. In Se
V we discuss a field theory approach to the weak field lim
Section VI contains a discussion of our results in the cont
of the neutron scattering experiments on Cs2CoCl4.

II. MEAN-FIELD APPROXIMATION

Let us first review the main ingredients of the mean-fie
approximation~MFA! proposed by Dmitrievet al. in Ref. 5.
We note that the MFA can be applied to theXYZchain in a
magnetic field as well. One first performs a Jordan-Wign
transformation, which yields the spinless fermio
Hamiltonian
©2003 The American Physical Society31-1
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H05(
j

J1

2
~cj

†cj 111H.c.!1
J2

2
~cj

†cj 11
† 1H.c.!

1~nj21/2!~nj 1121/2!1H~nj21/2!. ~4!

Here the hopping and pairing matrix elements areJ65(1
6D)/2 and we have putJ51. The pairing term is a conse
quence of the anisotropy of the model: it vanishes at
isotropic pointD51. In the MFA the four-fermion interaction
term is decoupled in all possible ways. The relevant exp
tation values for the on-site magnetization, pairing, and
netic term are denoted by

M5^nj&21/2, P5^cj 11cj&, K5^cj 11
† cj&. ~5!

The mean-field Hamiltonian is then

HMF5(
j

J̃1

2
cj

†cj 111
J̃2

2
cj

†cj 11
† 1H.c.1H̃(

j
~nj21/2!,

~6!

where we have dropped an unimportant constant, and defi
the ~real! parameters

J̃15J122K, J̃25J212P, H̃5H12M. ~7!

The theory is now purely quadratic in fermion operators, a
can thus be solved exactly. An alternative picture of t
theory is obtained by Jordan-Wigner transforming back
spin variables, yielding an anisotropicxy model in a field,

Hxy

J̃1

5(
j

@~11g!Sj
xSj 11

x 1~12g!Sj
ySj 11

y 1hSj
z# ~8!

with g5 J̃2 / J̃1 andh5H̃/ J̃1 . This model has been exten
sively studied in the literature and many useful results
correlation functions are available.6–10 For our purposes, we
first need to complete the mean-field setup above by pro
ing the necessary self-consistency conditions. First, we
the fact that the free fermionic theory can be Fourier tra
formed and diagonalized using a Bogoliubov–de Gen
~BdG! transformation, which reads, explicitly,

ck5a1~k!ck81 ia2~k!c82k
† ,

c2k
† 52 ia2~k!ck81a1~k!c82k

† ~9!

with parameters

a6~k!5
1

A2
F16

J̃1cosk1H̃

v~k!
G1/2

. ~10!

In the thermodynamic limit, the Hamiltonian becomes

HMF

N
5E

0

p dk

2p
c8†~k!S v1~k! 0

0 v2~k!
D c8~k!, ~11!

in which the Nambu spinors have bandsv6(k)56v(k),

v~k!5 J̃1A~cosk1h!21g2sin2k. ~12!
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This dispersion relation is plotted in Fig. 1 forD50.25 and
various values of the external field. ForD50.25 the gap
vanishes for a critical field ofHc51.604 ~corresponding to
h51). The self-consistency conditions atT50 can be cast
in the form

Mi5E
0

p dk

2p

]v2~k!

]H̃ i

, ~13!

where we have defined the shorthand notationsM0

5M,M15K,M25P,H̃05H̃,H̃15 J̃1 , and H̃25 J̃2 . The
numerical solution of these three coupled equations de
mines all the necessary mean-field parameters for given
ues of the anisotropy and of the external magnetic field.

A. Mean-field phase diagram

The mean-field phase diagram~see Fig. 2! has already
been discussed in Ref. 5. Here we would like to add so
observations concerning the scaling limitsg→0 and g→1,
respectively. For smallg and h,1 we may bosonize the

FIG. 1. Dispersion relation forD50.25 and external magneti
fields H50.05, 0.2, 0.4, 0.8, 1.2, and 1.6~top to bottom atk
5p).

FIG. 2. Mean-field phase diagram. The critical line is deno
by Hc(D) and the classical line byHcl(D).
1-2
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mean-field Hamiltonian~8! and obtain a quantum sine
Gordon model, described by the Hamiltonian density

H5
v
2

@~]xQ!21~]xF!2#2gL cosA4pQ, ~14!

whereF is a canonical Bose field andQ its dual field,L is a
constant, andv5 J̃1A12h2 is the mean-field spin velocity a
g50. For h.1 the g50 mean-field Hamiltonian has a fe
romagnetic ground state and an excitation gap and boson
tion cannot be carried out. The physics of the sine-Gord
model ~SGM! ~14! is very well understood. There are tw
elementary excitations known as soliton and antisoliton. T
spectrum consists of scattering states of an even numbe
solitons and antisolitons. By solving the mean-field eq
tions numerically we find that smallg is obtained for small
fieldsH and goes to zero asD→1 from below. This suggest
that the physics of the mean-field theory at small fields
approximately described by the SGM. We note that forD
slightly smaller than 1 it was shown in Ref. 11 that the f
Hamiltonian~1! maps onto a sine-Gordon model. We elab
rate on this fact in Sec. IV. Forg'1 it is convenient to
rewrite the Hamiltonian in terms of the real, fermionic o
erators

hn5sn
x )

j 51

n21

s j
z , zn52 i )

j 51

n

s j
zsn

x . ~15!

Then one performs a rotation

jR,n5
zn1hn

A2
, jL,n5

zn2hn

A2
, ~16!

and finally takes the continuum limitja,n→Aa0ja(x). In
this way one finds that Hamiltonian~8! reduces to

H52 i
v
2E dx@jR]xjR2jL]xjL#2 imE dxjRjL ,

~17!

wherejR,L are right and left moving real~Majorana! fermi-
ons, respectively, andv5g J̃1a0/2, m5( J̃1/2)(h21). The
Majorana fermion theory~17! is the same as the continuu
limit of the transverse field Ising model~TFIM!, i.e.,
the mean-field Hamiltonian forg51, with a renormalized
velocity. The elementary excitations areZ2 kinks. The region
h,1 corresponds to the ordered phase, whereash.1 corre-
sponds to the disordered phase of the TFIM. In the orde
phase the spin operators(x) has a nonzero expectatio
value, which corresponds to the staggered magnetiza
in the underlying Heisenberg model. By solving the mea
field equations numerically we find thatg'1 is only
achieved for smallD'0 and fieldsH that are significantly
larger thanHc .

B. Staggered magnetization

Order in the system is represented by the staggered m
netizationmst5^(21) jSj

x&, which is obtained from Ref. 12
as
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mst5H ~ J̃1J̃2!1/4@12H̃2/ J̃1
2 #1/8

~2~ J̃11 J̃2!!1/2
, uH̃u, J̃1

0, uH̃u. J̃1 .

~18!

The mean-field result~18! becomes exact on the classic
line hcl5A2(11D), where15 mst5

1
2 A12(hcl

2 /4). We plot
mst as a function of magnetic field for several values ofD in
Fig. 3.

C. Applicability of the mean-field approximation

It is immediately clear from the results for the stagger
magnetization shown in Fig. 3 that the mean-field theo
fails to describe model~1! in the limit of small applied mag-
netic fieldsH. In zero field Eq.~1! reduces to a criticalXZX
spin chain, for which the staggered magnetization vanish
The XZX chain has a U~1! symmetry corresponding to rota
tions around the y axis, whereas the MFA breaks this sy
metry and is therefore invalid. Simple scaling argume
suggest that in the limitH→0, mst should be proportiona
to Ha, where the exponenta is a function of the anisotropy
D.5 However, a renormalisation group analysis of t
small H regime of Eq. ~1! is nontrivial because in a
bosonized description the transverse field carries confor
spin. We review some important features of this analysis
Sec. V.

In order to get some rough measure concerning the reg
of magnetic fieldsH in which the MFA may work well, we
have computed the one-loop corrections to the mean-fi
values of valuesM, K, andP. As there is no small paramete
in the problem, this calculation should be understood a
semiclassical approximation. The corrections toM, K, andP
are obtained by taking partial derivatives of the correction
the ground state energy. The latter is found to be

FIG. 3. Staggered magnetization as a function of external fi
for different anisotropiesD50.25, 0.5, and 0.75.
1-3
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dE05E
2p

dpdqdQ

~2p!3

2
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where F(p,q)5a1(p)a2(q)1a2(p)a1(q). The correc-
tions to the mean-field parametersM, K, andP turn out to
be quite small except for low fields and near the transition
the gap becomes smaller, fluctuations become more im
tant.

A better way to study the regime of applicability of th
mean-field approximation is to compare some of its pred
tions to the results of numerical density matrix renormali
tion group~DMRG! calculations. Results for some values
D have been already been reported by Capraro and Gro
Ref. 13.

In Fig. 4 we compare DMRG results for the magnetiz
tion per site with the MFA forD50.25. We work with peri-
odic boundary conditions and consider system sizes of u
60 sites. The agreement between DMRG calculations and
MFA is quite satisfactory, particularly for sufficiently larg
fields H*1.2J.

In Fig. 5 we compare DMRG results for the stagger
magnetization per site with the MFA forD50.25. For H
,Hc the staggered magnetization is computed as

^0uSn
x~21!nu1&, ~19!

where u0& and u1& are the two degenerate ground states c
responding to momenta 0 andp, respectively. It is necessar
to consider the overlap~19!, because, in a finite volume wit
periodic boundary conditions, translational invariance i
plies that

^0uSn
x~21!nu0&5^1uSn

x~21!nu1&50. ~20!

FIG. 4. Magnetization per site calculated from the MFA co
pared to the results of DMRG computations forD50.25.
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In the infinite volume translational invariance is spontan
ously broken and the ground state becomes a linear com
nation of u0& and u1&. We note that the finite-size effects fo
weak and strong fields are still rather pronounced. Suc
behavior for the staggered magnetization in finite syste
was previously observed in, e.g., Ref. 14. Nevertheless
clear that the staggered magnetization vanishes above a
cal field and approaches zero in the weak field limit. T
agreement between the DMRG results and the MFA for w
fields is as expected quite poor. For sufficiently large fie
H*1.2J the MFA gives good results. Last but not least w
have used the DMRG to determine the gaps of the two lo
est lying excited states. The results are shown in Fig. 6. B
gaps vanish at the critical fieldHc . For H,Hc the first
excited state is really a degenerate ground state with the
posite sign of the staggered magnetization. This degene
is removed in the thermodynamic limit by spontaneous sy
metry breaking. Hence the true excitation gap is given by
second excited state. We see that the MFA is in very go
agreement with the DMRG results for fields that are larg
than approximately 1.5J. This is only slightly below the
critical field Hc .

The above considerations suggest that the MFA wo
very well for both ground state and excited states proper
as long as the applied field is sufficiently strongH*1.5J.
For intermediate field strengths 0.5J&H&1.5J we expect
the MFA to give at least qualitatively correct results. In t
small-field regime the MFA gives very poor results and fa
complately in the limitH→0. Having in mind these limita-
tions we will now determine the dynamical structure fac
in the MFA.

FIG. 5. Staggered magnetization calculated from the MFA co
pared to the results of DMRG computations forD50.25.
1-4
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III. DYNAMICAL STRUCTURE FACTOR
IN THE MEAN-FIELD APPROXIMATION

The transverse correlators are determined in the fra
work of the mean-field theory as follows. Let us denote
true ground state byu0& and the mean-field ground state b
u0&MF . Then we employ the following approximation:

^0uSn
a~ t !Sm

b u0&5^0ueiH 0tSn
ae2 iH 0tSm

b u0&

' MF^0ueiH xytSn
ae2 iH xytSm

b u0&MF . ~21!

In other words we replace the ground state expectation v
by the expectation value with respect to the mean-fi
ground state and substitute thexy Hamiltonian~8! for the full
Hamiltonian in the time evolution operator. It is clear th
Eq. ~21! will be a good approximation as long as the mea
field theory gives an accurate description of the ground s
and low-lying excited states. The transverse spin correla
in theory ~8! have been determined as a spectral sum o
intermediate multiparticle states in Refs. 7–9.

A. Transverse correlations in the ‘‘low-field phase’’: hË1

For h,1, the leading contribution comes from two
particle intermediate states. As a result all components of
structure factor are completely incoherent. The other con
butions are due to states with 4, 6, . . . particles, but they are
expected to contribute less spectral weight so that we ign
them here. The two-particle contributions to the struct
factor are given by

Sab~v,k!5E
2p

p dk1dk2

2p
d~v2v~k1!2v~k2!!

3d~k2k12k21p!gab~k1 ,k2!. ~22!

Here

FIG. 6. Excitation gap calculated from the MFA compared to
results of DMRG computations forD50.25.
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gxx~k1 ,k2!5
C~11g!21

8@12cos~k11k2!#

@v~k1!2v~k2!#2

v~k1!v~k2!
,

gyy~k1 ,k2!5
C~11g!

8

12cos~k12k2!

v~k1!v~k2!
J̃1

2 , ~23!

gxy~k1 ,k2!5 i
C

8

sinS k12k2

2 D
sinS k11k2

2 D F J̃1

v~k1!
2

J̃1

v~k2!
G ,

where C5@g2(12h2)#1/4 and where we have corrected
typo in Ref. 9. The result forgxy is a conjecture based o
calculations we have performed in the Ising and sine-Gor
scaling limits and agrees with the known result on the cl
sical line.15 We note that the results forSaa(v,k) reduce to
the exact results15 for model~8! on the classical line as well
which implies that all multiparticle matrix elements vanis
We see that the two-particle contribution to the off-diagon
elementSxy(v,k) is purely imaginary. This means that
cannot be seen in neutron scattering experiments as it e
expression~2! for the intensity in the form

S dab2
kxky

k2 D @Sxy~v,k!1Syx~v,k!#, ~24!

where we recall thatk5k•e is the component of the momen
tum transfer along the chain direction. Using the relation

Syx~v,k!5~Sxy~v,k!!* , ~25!

we see thatSxy(v,q)1Syx(v,q) is zero wheneverSxy is
purely imaginary.

The intensity of the structure factorSaa is plotted as a
function ofk andv in Figs. 7–10 for anisotropyD50.25 and
for external magnetic fieldsH50.8J and H51.4J, corre-
sponding to the effective mean-field valuesh50.44 and
0.82, respectively. It follows from our discussion in Sec. II
that we do not expect the results forh50.44 to provide a

FIG. 7. Structure factorSxx as a function ofk andv for anisot-
ropy D50.25 and external magnetic fieldH50.8J.
1-5
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quantitative description of the structure factor of the tra
verse fieldXXZ chain. However the mean-field approxim
tion may still capture the redistribution of spectral weight
the various components of the structure factor as the tr
verse field is increased on a qualitative level. One clea
sees in, e.g., Fig. 7 that the magnetic field splits the low
boundary into two branches. Experimentally, one would th
expect to see a double peak in the intensity when scannin
frequency for fixed momentum. In Fig. 8, the evolution
the structure factor with increasing magnetic field can
seen: the branches recollapse aroundk5p, with diminishing
gap ~the gap vanishes atHc51.604J, corresponding toh
51). As the field gets closer to the critical field, the intens
of the structure factor collapses from an incoherent c
tinuum onto an emergent single coherent mode.

B. Transverse correlations in the ‘‘high-field phase’’: hÌ1

For fieldsh.1 the dominant contribution to the dynam
cal structure factor is due to a single-particle coherent m
with a dispersion relation given by Eq.~12!. We have7–9

FIG. 8. Structure factorSxx as a function ofk andv for anisot-
ropy D50.25 and external magnetic fieldH51.4J.

FIG. 9. Structure factorSyy as a function ofk andv for anisot-
ropy D50.25 and external magnetic fieldH50.8J.
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Sab~v,k!5 f ab~k2p!d„v2v~k!…, ~26!

where

f xx~k!5
r`

@A~k!#
, f yy~k!5r`A~k!,

f xy~k!52 ir` , f xz~k!5 f yz~k!50. ~27!

Here we have introduced the parameters

l1,25
h6Ah21g221

12g
,

r`5
1

4
@~12l2

2!~12l1
22!~12l2l1

21!#1/4, ~28!

A~k!5F l2
222l2cos~k!11

l1
2222l1

21cos~k!11
G 1/2

.

We note thatf xy is purely imaginary, which again means th
the mixed correlations cannot be observed in neutron sca
ing experiments.

Near the transition, the amplitudef xx diverges atk5p.
For fields higher than the critical field, the divergence
smoothed out, as can be seen in Fig. 11. The gap also
opens, as can be seen from Eq.~12!.

C. Longitudinal correlations

The longitudinal correlation functionSzz can be computed
directly in terms of a density-density correlator of thec fer-
mions. After the BdG transformation toc8 Fermions, a
straightforward vacuum expectation value yields10

FIG. 10. Structure factorSyy as a function ofk and v for an-
isotropyD50.25 and external magnetic fieldH51.4J.
1-6
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Szz~v,k!5E
0

p dq

4p
@12 f ~q,k!#d„v2v~q,k!…,

f S q1
k

2
,kD5

a~q!a~q1k!2b~q!b~q1k!

v~q!v~q1k!
, ~29!

v~q,k!5v~q2k/2!1v~q1k/2!,

where a(k)5 J̃1cos(k)1H̃ and b(k)5 J̃2sin(k). Equations
~29! are valid in both the low-field and in the high-fiel
phase. As a result, the longitudinal correlations are incoh
ent for any value of the applied magnetic field.

The evolution ofSzz with increasing applied fieldH is
shown in Figs 12 and 13. First, the longitudinal correlatio
are generally incommensurate. Second, in low fields the
tensity is concentrated at the upper boundary of the c
tinuum, as is expected asD is small, whereas for larger field
a shift towards lower energies is visible.

FIG. 11. f xx structure factor amplitude as a function ofk for
external magnetic fieldsH51.604, 1.7, and 2.4~above the critical
field!. This is the amplitude of the structure factor along the disp
sion relationd function.

FIG. 12. Structure factorSzz as a function ofk andv for anisot-
ropy D50.25 and external magnetic fieldH50.8J.
13443
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IV. FIELD THEORY APPROACH
TO THE SMALL-ANISOTROPY LIMIT

The easiest case to deal with by field theory method
the one where the magnetic fieldH is much stronger than the
anisotropy 12D. The field theory limit in this case was stud
ied in Ref. 11 and subsequently in Ref. 16. Let us consi
the Hamiltonian

HZXX,H5J(
j ,a

Sj
aSj 11

a 1H(
j

Sj
z1~D21!Sj

ySj 11
y

[H01H1 . ~30!

As we assume the fieldH to be much larger than the aniso
ropy 12D, we bosonize at the pointD51 in the presence o
a strong field and then switch on the exchange anisotrop
a perturbation.

At low energiesH0 is described by a free massless bos
compactified on a ring of radiusR, i.e., F andF12pR are
identified. The dual field Q fulfills Q5Q11/R. The
bosonization rules are

SW n→JW~x!1~21!nnW ~x!1higher harmonics, ~31!

wherea0 is the lattice spacing,x5na0 and

Jx5b cos@bQ~x!#sinS 2p

b
F~x!22dxD ,

Jy52b sin@bQ~x!#sinS 2p

b
F~x!22dxD ,

Jz5
a0

b
]xF~x!, ~32!

nx~x!5c cos@bQ~x!#, ny~x!5c sin@bQ~x!#,

nz~x!5a sinS 2p

b
F~x!22dxD .

r- FIG. 13. Structure factorSzz as a function ofk andv for anisot-
ropy D50.25 and external magnetic fieldH51.4J.
1-7
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Hereb52pR and the coefficientsa,c are known exactly in
the absence of a magnetic field17 and numerically for severa
values of the applied fieldH.18,19The ~magnetic-field depen
dent! constantb, the incommensurabilityd and spin velocity
vs(H) are determined by the microscopic parametersD, J
and H of the lattice model by using the exact Bethe ans
solution. This entails solving some linear integral equatio
numerically ~see, e.g., Refs. 11 and 20–22!. The bosoniza-
tion formulas~32! hold as long asH,2J. For H.2J the
ground state ofH0 is the saturated ferromagnetic state a
the excitation spectrum is gapped. For later convenience
define

j5
4b2

8p24b2
. ~33!

The perturbing HamiltonianH1 can now be bosonized usin
Eq. ~32! and fusion of the staggered magnetizationsny gives
a contribution proportional to

cos~2bQ!. ~34!

In addition there is a small marginal contribution that shi
the compactification radius. For simplicity we neglect it he

Thus, at low energies compared to the scale set by
applied fieldH,2J, the effective Hamiltonian is given by
sine-Gordon model

H5
vs

2
@~]xF!21~]xQ!2#2m~D!cos~2bQ!. ~35!

The cosine term in the sine-Gordon model is relevant
generates a spectral gap. As 2b.A4p ~see, e.g., Fig. 1 of
Ref. 20!, the spectrum of the sine-Gordon model consists
soliton and antisoliton only. We can immediately read off t
scaling of the gap as a function of 12D:

M}~12D!p/(2p2b2). ~36!

The magnetic field dependence enters both via the prefa
and via theH dependence ofb. In order to calculate the
prefactor as well as quantities like the magnetization we n
to know the normalization of the operator

Oj5Sj
ySj 11

y →2C cos~2bQ! ~37!

in the Heisenberg chain in a field, i.e., Hamiltonian~30! with
D51. At present the normalizationC is not known. In Ref. 19
the issue of how to determineC from the large-distance as
ymptotics of appropriately chosen correlation functions
the Heisenberg chain in a uniform field has been inve
gated. In what follows we will considerC as a yet unknown
function of the magnetic fieldH. The gap is given by

M

J
5

2ṽ

Ap

GS h

222h D
GS 1

222h D S ~12D!Cp

2ṽ

G~12h!

G~h! D 1/(222h)

,

~38!

where
13443
z
s

e

.
e

d

f

tor

d

i-

h5b2/2p, ~39!

and ṽ is the dimensionless spin velocity

ṽ5
vs

Ja0
. ~40!

The staggered magnetization in thex direction is nonzero in
the presence of a transverse field. We have

^~21!nSn
x&5c^cosbQ&, ~41!

where23

^cosbQ&

5F MApGS 1

222h D
2ṽJGS h

222h D G
h/2

3expF E
0

`dt

t S sinh~ht !

2 sinh~ t !cosh~@12h#t !
2

h

2
e22tD G .

~42!

The magnetization per site can be calculated from the gro
state energy of the Hamiltonian by taking derivatives w
respect to the magnetic fieldH. The total ground state energ
per site is given by

etot~H !5eXXX~H !1eSG~H,D!, ~43!

where the ground state energy per site of the isotro
Heisenberg lattice modeleXXX(H) is known exactly from the
Bethe Ansatz~see, e.g., Ref. 21! and whereeSG is the ground
state energy of the sine-Gordon model24

eSG~H,D!52
M2

4ṽJ
tanS pj

2 D . ~44!

The magnetization is given by

m5
]etot~H !

]H
5mXXX1

]eSG~H,D!

]H
. ~45!

The only unknown in the expression for the staggered m
netization~41! and magnetization~45! is the normalizationC
in ~37!. Once this is known with sufficient accuracy for ta
ing derivatives with respect toH bothm and^(21)nSn

x& can
be evaluated.

Dynamical structure factor

Using the integrability of the SGM it is possible to eval
ate the low-energy asymptotics of dynamical correlat
functions. Let us start with the transverse correlations a
concentrate on momenta close top/a0. The staggered mag
netizations inx andy directions are given by Eqs.~32! and
calculating their correlation functions reduces to the calcu
tion of particular correlators in the SGM. This is by now
standard calculation~see, e.g., Ref. 20!: one determines the
first few terms in a Lehmann representation by using
1-8
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exact matrix elements25 of the operator under consideratio
between the ground state and~multi! soliton/antisoliton ex-
cited states. The leading contribution is due to intermed
states with one soliton and one antisoliton. Using the no
tions of Ref. 26 we obtain

SyyS v,
p

a0
1kD5

2ṽJc2

psAs224M2U GbG~2u0!/C1

j coshS 2u01 ip

2j DU
2

3QHS s

M
22D

1contrib. from 4,6, . . . particles, ~46!

whereQH(x) is the Heaviside function,s andu0 are defined
as

s5Av22vs
2k2, u05arccoshS s

2M D , ~47!

andGb andG(u) are given by

G~u!5 iC1sinh~u/2!

3expF E
0

`dt

t S sinh2~ t@12 iu/p#!sinh~ t@j21# !

sinh~2t !sinh~jt !cosh~ t ! D G ,

Gb5F MAp

2ṽJ

GS 1

222h D
GS h

222h D G
h/2

3expF E
0

`dt

t S sinhht

2 sinh~ t !cosh~@12h#t !
2

h

2
e22tD G ,

~48!

where

C15expF2E
0

`dt

t

sinh2~ t/2!sinh~ t@j21# !

sinh 2t sinhjt cosht G . ~49!

The analogous result forSxx@v,(p/a0)1k# is

SxxS v,
p

a0
1kD5

2ṽJc2

psAs224M2U GbG~2u0!/C1

j sinhS 2u01 ip

2j DU
2

3QHS s

M
22D

1contrib. from 4,6, . . . particles. ~50!

Finally we determine the longitudinal structure fact
Szz(v,k) by making use of recent results by Lukyanov a
Zamolodchikov.27 It is clear from the bosonization formula
~32! that the correlations ofnz are incommensurate. In othe
words the longitudinal structure factor has low-energy mo
at the incommensurate momentap/a062d. Moreover one
can easily establish that the operators
13443
te
-

s

expS 6 i
2p

b
F D , ~51!

have topological charges of72, respectively. Here the op
erator of the topological charge is defined as

Q5
b

pE2`

`

dx]xQ~x!. ~52!

The leading contribution to the longitudinal spin-spin corr
lation functions is due to intermediate states with two so
tons or two antisolitons. The form factors of vertex operat
like Eq. ~51! with definite topological charges have bee
given in Ref. 27. A short calculation leads to the followin
result:

SzzS v,
p

a0
62d1kD

5
ṽJa2Z2~0!

4psAs224M2
uG~2u0!u2QHS s

M
22D

1contrib. from 4,6, . . . particles. ~53!

The normalizationZ2(0) is

Z2~0!5
8

jC1
2F ApMGS 3

2
1

j

2D
JṽGS j

2D G 2p/b2

3expF E
0

`dt

t S cosh~ t !2exp~2@11j#t !

sinh~jt !cosh~ t !

2
2pe22t

b2 D G , ~54!

whereC1 is given in Eq.~49!. The structure factor depend
on the transverse field both through the gapM and through
the parameter 2b. The variation of 2b does not alter the
various components of the dynamical structure factor o
qualitative level: the leading contributions are always due
two particles; the structure factor is entirely incoherent a
always vanishes at the threshold~as 2b is always strictly
larger thanA4p), which occurs atv52M . However, on a
quantitative level the value ofb is quite important: decreas
ing b leads to a narrowing of the lineshape in the transve
correlations. What we mean precisely by this is illustrated
Fig. 14, where we plotJ(M /J)22hSyy(v,p/a0) as a func-
tion of v/M for several values of the magnetic fieldH. We
see that the lineshape, when measured in units of the fi
dependent gapM, sharpens with increasing magnetic fieldH.
However, asM itself depends onH, this does not necessaril
imply that the lineshape measured in physical units like m
sharpens with increasingH. It is somewhat difficult to com-
pare our field theory results to the ones obtained in the me
field approximation as we have no reliable way of determ
ing the gapM.
1-9
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V. FIELD THEORY APPROACH TO THE WEAK
FIELD LIMIT

The situation where the field is weak compared to
anisotropy, i.e.,H!(12D), has been analyzed by renorma
ization group methods by Nersesyanet al. in Ref. 28. It is
convenient to rotate the quantization axis such that the
isotropy is in thez direction and the field is along thex
direction. The effect of the magnetic field is to generate
excitation gap and a nonzero expectation value for the s
gered magnetization in they direction. This can be seen a
follows. The chain Hamiltonian is

HXXZ,H5J(
j

Sj
xSj 11

x 1Sj
ySj 11

y 1DSj
zSj 11

z 1H(
j

Sj
x

5H01H1 , ~55!

where H0 is the Hamiltonian of the anisotropic spin-1
chain and

H15H(
j

Sj
x . ~56!

What we do now is to bosonize at the critical point defin
by H0, i.e., the anisotropic Heisenberg chain, and then
perturb away from this fixed point theory by Eq.~56!. The
bosonized form ofH0 is

H05
vs

2 E dx@~]xQ!21~]xF!2#, ~57!

whereF is a canonical bosonic field andQ is the dual field.
The perturbing operator is given by

H15
bH

a0
E dxFcos~bQ!sinS 2p

b
F D G , ~58!

where

FIG. 14. J(M /J)22hSyy(v,p/a0) as a function ofv/M for H
51.373J andH51.748J, corresponding to a magnetization per s
of 0.2 and 0.3, respectively. The scales of bothx andy axes depends
on H through the gapM.
13443
e

n-

n
g-

o

b5A2p22 arccos~D!. ~59!

The perturbing operator~58! is formally relevant, but as it is
not a Lorentz scalar it requires special treatment. As has b
shown explicitly for the caseD50 in Ref. 28 the Hamil-
tonian ~55! can be related to a two chain model of spinle
Luttinger liquids coupled by a weak interchain hopping. T
generalization to 0<D,1 is straightforward. In order to
match the notations of Ref. 28 we perform a shift

F~x!→F~x!1
b

4
, ~60!

while keeping the dual field unchanged. The one-loop ren
malization group~RG! analysis can then be read off from
Refs. 28 and 29. At second order in the coupling the follo
ing two scalar operators are generated radiatively

cos~2bQ!, cosS 4p

b
F D . ~61!

Altogether we thus have three perturbing operators with c
responding dimensionless couplingsz ~of cos~bQ! cos~2p/
bF!!, g1 ~of 2cos~4p/bF!! andg2 @of 2cos~2bQ!#. The RG
equations read28,29

dz

dl
5F22

1

2 S h1
1

h D Gz,

dg1

dl
52S 12

1

h Dg12S h2
1

h D z2, ~62!

dg2

dl
52~12h!g21S h2

1

h D z2,

d ln h

dl
52

1

2 S g2
2h2

g1
2

h D ,

where

h~0!5
b2

2p
512

1

p
arccos~D!. ~63!

In general these equations have to be solved numeric
However, in the caseh~0!'1, i.e., a small exchange aniso
ropy, one can analyze the equations by a two-cutoff sca
procedure.28 This is becausez reaches strong coupling whil
g1,2 remain small. The gap can then be estimated as

M}H expS 2
p

424h~0! D . ~64!

The gap is linear inH, but the coefficient is very small a
h~0!'1. As is also shown in Ref. 28, at the pointl 0 in the
RG flow wherez stops renormalizing the Hamiltonian i
given by
1-10
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H5
vs

2 E dx@~]xQ!21~]xF!2#

1
gpvs

~2pa0!2E dx@cos~A8p/hF!2cos~A8phQ!#,

~65!

where

g52
12h22

11h2
,0. ~66!

As h,1, the first cosine term is irrelevant and can
dropped. TheQ field gets pinned at the valuep/2b, which
implies that the staggered magnetization in they direction is
nonzero:

^~21!nSn
y&}^sinbQ&5const. ~67!

If D is not close to 1, the RG equations~62! have to be
integrated numerically. Now several couplings grow simul
neously. Eventuallyh becomes very small, whileg2 be-
comes very large and negative. This means that we a
flow toward a sine-Gordon model for the dual field and
the same argument as before we find that the staggered
netization in they direction is nonzero.

VI. DISCUSSION AND CONCLUSIONS

As discussed recently in Ref. 4, Cs2CoCl4 is a quasi-one-
dimensional spin-3/2 antiferromagnet with a strong sing
ion anisotropyD. At energies small compared toD the spin
degrees of freedom are described by the anisotropic spin
Heisenberg model~1!.4 Due to the smallness of the exchan
constant (J50.23 meV) it is possible to perform inelast
neutron scattering experiments in magnetic fields that
fairly large compared toJ. Hence it should be possible t
explore much of the magnetic phase diagram experiment

Our analysis suggests that at low fieldsH,Hc , all com-
ponents of the dynamical structure factor are incoherent
the leading contributions come from intermediate states w
two particles. These particles are different from the spin
of the criticalXZX chain in that they are gapped and do n
carry any definite spin (Sz is not a good quantum number!. In
a simple picture these particles have an interpretation as
main walls between the two possible antiferromagnetic s
alignments in thex direction. An argument in favor of this
qualitative picture may be obtained by considering the c
sical line. Here it has been shown in Refs. 3 and 15 that
ground state is twofold degenerate. The expectation value
the staggered magnetization in the two ground states d
by an overall minus sign. This suggests that low-lying ex
tations can be loosely thought of as domain walls betw
the two possible ground states.

For high fields, thezzcomponent of the dynamical struc
ture factor remains incoherent, whereas thexx, xy, and yy
components now feature a single-particle coherent mode.
very large fields and smallD this particle is similar in nature
to the Z2 kinks of the transverse field Ising model in th
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strong field limit. A physical picture of these excitations
presented in Ref. 30. It would be interesting to compare
results for the dynamical structure factor to inelastic neut
scattering experiments on Cs2CoCl4 or similar compounds.

An interesting question which we have not addressed
what happens when the magnetic field is applied at an a
trary angle to the exchange anisotropy. The most gen
case is given by

H5J(
j

Sj•Sj 111~D21!Sj
ySj 11

y 1H•Sj , ~68!

where we may setHx50 without loss of generality~this can
always be achieved by an appropriate rotation of the qua

FIG. 15. DMRG results for the magnetization in thez direction
for a magnetic field applied in theyzplane at af545° angle to the
y axis. The results for a purely transverse fieldf50 are shown for
comparison.

FIG. 16. DMRG results for the total magnetization for a ma
netic field applied in theyz plane at various values off.
1-11



-
w

ns
io
m
ti

et
s
iz

for

ent

s
on

for
raro

l-
T.

ar-
i-
.C.
lex
A.
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zation axis around they direction!. Rotating the spin quanti
zation axis onto the direction of the field leads to the follo
ing Hamiltonian:

H5J(
j

S̃j•S̃j 111HS̃j
z1~D21!H j , j 118 , ~69!

whereH5sgn(Hz)uHu and

H j , j 118 5cos2uS̃j
yS̃j 11

y 1sin2uS̃j
zS̃j 11

z

1sinu cosu@S̃j
yS̃j 11

z 1S̃j
zS̃j 11

y #. ~70!

Due to the presence of theSj
ySj 11

z terms in Eq.~70! the
resulting Hamiltonian can no longer be Jordan-Wigner tra
formed into an expression that is local in terms of Ferm
operators. Hence the extension of the mean-field approxi
tion to the case of an arbitrary orientation of the magne
field is not straightforward.

We have investigated the effects of applying the magn
field at an angle to the exchange anisotropy by mean
DMRG computations of the magnetization. We parametr
the magnetic field by

H5uHu@cosfez1sinfey#. ~71!
,

f-
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We have determinedM5A^Sz&21^Sy&2 and Mz5^Sz& by
means of DMRG calculations for lattices of up to 50 sites
different values off. In Fig. 15 we show results forMz and
a field applied at an angle off545°. As expected we find
that Mz(f545°),Mz(f50), but in addition the kink in
the magnetization curve occurs at a smaller value ofuHu/J.
In Fig. 16 we show the total ordered ferromagnetic mom
M as a function of the magnitude of the applied fielduHu/J
’for several values off. The magnetization curve become
steeper with increasingf and approaches the magnetizati
curve for theXXZ chain in a longitudinal field forf→p/2.
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14K. Fabricius, U. Löw, and K.H. Mütter, Phys. Rev. B44, 9981
~1991!.
15G. Müller and R.E. Shrock, Phys. Rev. B32, 5845~1985!.
16M. Oshikawa and I. Affleck, Phys. Rev. B65, 134410~2002!.
17S. Lukyanov, Nucl. Phys. B522, 533 ~1998!; S. Lukyanov, Phys.

Rev. B59, 11 163~1999!.
18T. Hikihara and A. Furusaki, Phys. Rev. B63, 134438~2001!.
19T. Hikihara and A. Furusaki~unpublished!.
20F.H.L. Essler and A.M. Tsvelik, Phys. Rev. B57, 10 592~1998!.
21V.E. Korepin, A.G. Izergin, and N.M. Bogoliubov,Quantum In-

verse Scattering Method, Correlation Functions and Algebraic
Bethe Ansatz~Cambridge University Press, Cambridge, 1993!.

22I. Affleck and M. Oshikawa, Phys. Rev. B60, 1038~1999!.
23S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B493, 571

~1997!.
24C. Destri and H. de Vega, Nucl. Phys. B358, 251 ~1991!.
25F. Smirnov,Form Factors in Completely Integrable Models o

Quantum Field Theory~World Scientific, Singapore, 1992!.
26S. Lukyanov, Mod. Phys. Lett. A12, 2911~1997!.
27S. Lukyanov and A. Zamolodchikov, Nucl. Phys. B607, 437

~2001!.
28A.A. Nersesyan, A. Luther, and F.V. Kusmartsev, Phys. Lett

176, 363 ~1993!; A.O. Gogolin, A.A. Nersesyan, and A.M. Ts
velik, Bosonization and Strongly Correlated Systems~Cam-
bridge University Press, Cambridge, 1998!, Chap. 20.

29V.M. Yakovenko, JETP Lett.56, 510 ~1992!.
30S. Sachdev,Quantum Phase Transitions~Cambridge University

Press, Cambridge, 1999!.
1-12


