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We show that a wide range of spin clusters with antiferromagnetic intracluster exchange interaction allows
one to define a qubit. For these spin cluster qubits, initialization, quantum gate operation, and readout are
possible using the same techniques as for single spins. Quantum gate operation for the spin cluster qubit does
not require control over the intracluster exchange interaction. Electric and magnetic fields necessary to effect
guantum gates need only be controlled on the length scale of the spin cluster rather than the scale for a single
spin. Here, we calculate the energy gap separating the logical qubit states from the next excited state and the
matrix elements which determine quantum gate operation times. We discuss spin cluster qubits formed by one-
and two-dimensional arrays &f=1/2 spins as well as clusters formed by spsrs1/2. We illustrate the
advantages of spin cluster qubits for various suggested implementations of spin qubits and analyze the scaling
of decoherence time with spin cluster size.
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[. INTRODUCTION spins*® The main advantage of spin clusters is that the re-
quirements on spatial control can be traded for gate operation
During the past years, the discovery of several powerfutimes. The scaling of the decoherence rate with the size of
quantum algorithmshas triggered substantial research ef-the spin cluster depends on the microscopic decoherence
forts aimed at the imp|ementa’[ion of a quantum computer ir{nechanism. While the decoherence rate induced by fluctuat-
a physical system. The main difficulty is that qubits must belng local magnetic fields increases with cluster size, we show
prepared, manipulated, and read out with high fidelity whilethat magnetic dipolar interactions for the spin cluster qubit
decoherence is required to remain smafolid-state imple- ~are smaller than for single spins. The optimum size of the
mentations of qubits exploit the versatility of nanoscale fab-spin cluster qubit is determined by a trade-off between the
rication, but suffer from decoherence times which are usuallyncrease in gate operation times and the decoherence rate
shorter than in many quantum optics proposaiectrorf—®  effected by local fluctuating magnetic fields, the decrease in
and nucledr® spins have been identified as promising candi-magnetic dipolar interaction energy, and the relaxed condi-
dates for qubits in a solid-state system. The main advantagéns on local control.
of electron or nuclear spins is that they are natural two-state Any guantum computation can be decomposed into a se-
systems and that decoherence times for the spin degree @gence of one- and two-qubit quantum gafeBor a single-
freedon?!® are usually larger than for charge degrees ofspin qubit, thes, eigenstates]) and||) are identified as
freedom. logical basis statef0) and |1), respectively:® The phase
Here we show that a wide variety of spin clusters areshift gate can then be realized by a magnetic figJ¢t) and
promising candidate systems for qubits. Qubits formed bythe one-qubit rotation gatd,.; by a transverse field,(t)
several spins have so far mainly been discussed in the cowvhich rotateg?) into||) and vice versa. More generally, the
text of exchange-only quantum computiHg!® coherence- equations
preserving qubitd? and quantum computing schemes in
which the requirements on the control of exchange interac- (O|]A’|0Y=(1|A’|1) and (1|H’|0)#0 (1)
tions between spins are relax€d.However, all these R
schemes require control at the single-spin level, either witltonstitute a sufficient condition for a Hamiltoni&ti to in-
local magnetic fieldS or exchange interactiot$}* For the  duce the unitary time evolution required for,,. For single
spin clusters considered here, control for both magnetigpins, ﬂ':gMBBX(t)gx fulfills Eq. (1). Similarly, an ex-

fields and exchange interactions is required only on thechange interactiom:l*=J*§l-§2 generates the unitary time

length scale of the spin cluster diameter. As we have showg,,q|ution required for the square rootsfap gaté because,
in Ref. 16, spin chains formed by an odd number of antifer{, e two-qubit product basis

romagnetically coupled spins=1/2 allow one to define a

logical qubit. The logical state of the qubit is encoded in the (1O||3| 101)#0. )
collective state of the spin cluster. Here we detail that this *

construction remains valid for a wide range of spin clusters|n contrast to a single spis=1/2, clusters formed by,
independent of the details of intracluster exchange interaczoupled spins are not intrinsically two-state systems. In order
tion and spin placement. Initialization and readout of the spino prove that a logical qubit can be defined in terms of the
cluster is achieved with the methods developed for singleenergy eigenstates of a spin cluster we \ajl identify spin
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clusters with a ground-state doub{¢d),|1)} separated from 2T T2
the next excjted sta}te by an energy gap (b) identify 1L t33 o] [ : i i z s |
HamiltoniansH’ andH, which satisfy Eqs(1) and(2) and, = oL *%se 1 [ o8 i SR
hence, allow one to generate a universal set of quantum R R MEEERER
gates, andc) quantify leakage and decoherence for the spin Ir .. 1 T : ¥ : 1!
cluster qubit. In particular, the evaluation of the matrix ele- 2r v . 41 F RIS {2
ments in Egs(1) and(2) and the quantification of excitation sl L M 5
321012 3210123

out of the computational basi¢eakage require a detailed
characterization of the statéf0),|1)} which is, in general,

nontrivial. FIG. 1. Energy spectrum of an isotropic spin chain witl+5

This paper is organized as follows. In Sec. Il we diSCUSSjeft pane) andn,=6 (right panel. Energy eigenstates are sorted
the computational .b"?\SIS Sta.tes for Spl]EVZ Chalns.. For this according to their quantum numbers%jand their eigenenergies.
simple geometry, it is possible to derive analytical expres-

sions for the matrix elements in Eq4) and(2) for various

3 B
(S, Iy

. . ) LR . for a=x,y,z. Energy eigenstates can be labeled according to
anisotropies and spatially varying intracluster exchange in- « y g9y €19 9

teraction. Section IIl discusses the insensitivity of spin clus"€ll quantum numbers of total spfiand thez component

ter qubits to the details of interactions within the cluster, suctpf total spin,S,, because

as the relative placement of spins and the exchange o o

strengths. In Sec. IV, spins with spin quantum numbers larger [H,$]=[H,S,]=0. (6)

than 1/2 are discussed. In Sec. V, we draw our c:onclusionsD . . .
ue to the antiferromagnetic exchange coupling,

states in
which the total spin of the chain is minimized are energeti-
Il. SPIN CHAINS cally the most favorabl& For evenn,, the minimum pos-
For simplicity, we first consider a spin cluster qubit SIPle Spin isS=0, and the system has a nondegenerate
formed by a spin chain, ground state. In contrast, _for oadq , _there is a ground-state
doublet(Fig. 1).2* This parity effect is well known for ther-
ne—1 modynamic quantitie$> The energy gap\ separating the
A= 21 fj[JL(gj,x’éj-#l,x"’_%j,ygj+l,y)+‘]z§j,z§j+l,z]a (3)  9round-state doublet from the next excited state,
<
Jm Jm?
wheren, is odd andJ, ,J,>0. The real number§;>0 ac- A= 7kmin~2_ncy (7)

count for a spatial variation of the exchange interaction, and
J, fj(J.f;) denotes the transvergengitudina) exchange in- can be estimated from the lower bound of the des

teraction between sitgsandj +1. Cloiseaux—Pearson spectrum and the minimum wave vector
Kmin=7/n; (Ref. 23. Henceforth, we will restrict our atten-
A. Isotropic spin chains tion to spin chains with odd, .

The requirements on a candidate system for qubits include
tialization of the quantum computer, a universal set of
quantum gates, decoherence times long compared to gate
operation times, and readout of the qubit.

For electron spins in quantum dots, the nearest-neighbqr1i
exchange is usually of the Heisenberg fordJ, =J,. We
first considerf;=1,

ne—1

A ~A A 1. Definition of the spin cluster qubit
H=J2 §-§.4, (4) o -
j=1 For the chain with an odd number of sifdsg. 2(a)], we

. . ) ) _define the spin cluster qubit in terms of tBe- 1/2 ground-
with J>0. Note that this is an open spin chain; a closed spiniaie doublet by

chain would have a fourfold-degenerate ground-state multip-
let for oddn, that would make it unsuitable for representing R 1
a single qubit. Because the intracluster exchange interaction S,|0)= §|0>'
J is time independent and no external control is requided,
can be adjusted already during sample growth.
Spin chains have been studied in great detail during the éz|l>: — E|1>_ (8)
past decade¥~2° The theoretical description of the antifer- 2

romagnetic spin chain, Ed4), is particularly challenging The stateq|0),|1)} do not in general have a simple repre-

because the classical beordered state is not an energy entation in the single-spin product basis, but rather are com-
eigenstate and quantum fluctuations are pronounced. We d&S g'e-spin b ;

. - plicated superpositions ofn !/[(n.—1)/2]![(n.+1)/2]!
fine the operator of total spin, stateq Figs. 2b) and Zc)] as evidenced by the local magne-
ne tization density{Fig. 2(d)]. The largest amplitude in this su-
g = 2 gj (5) perposition corresponds to the &leordered statef )| | ),
=

[ 1n, (10)) and| 11l 1)z~ 1)n, (1)), respectively. For
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(a) tated by the measurement of the spins within the clusters,
J J J J J J J J possibly followed by local operations. In this way, a state
OCOO0OOOOO0O which is energetically close to the ground state could be
51 8, 85 8, 85 8¢ 8, 8 § prepared.
(b) 0 3. Quantum gate operation
A | > The one-qubit phase shift gaté,, one-qubit rotation
it gateU,;, and CNOT gatdJ -yot CONstitute a universal set
AVAVAVAVA of quantum gates. According to E(), a magnetic field that

WA VAVAVAY is constant over the spin cluster qubit acts on the states of the
I$3vaze spin cluster qubit in the same way as on a single-spin dfibit.
Constant magnetic fieldB,(B,) effect the one-qubit phase
shift (one-qubit rotationquantum gate without leakage. Be-
causg0) and|1) are degenerate and separated from the next
excited state byA, one-qubit quantum gates can be realized
with high fidelity also by any spatially varying magnetic field
for  which  [(1[=]° g;ueB; S «0)|#0 (U)  and
(O|E?§lngBBj,Z§j,Z|O>¢O (U,), respectively. Hereg; is

the electron spirg factor at sitej. Such spatially varying

1.2 3 4 5 6 7 8 9
i

() ~ fields can potentially cause leakage. However, if
JJ J TN T J J T |gjuBj|/A<1 and if all B; are switched on and off adia-
1N BB batically, i.e., on t_ime_ scales long compared hm the _
§ % 8 & § 8 8 8, 8§ quantum gate fidelity is close to 100% as we will discuss in
Cluster I Cluster II detail in Sec. Il C.

For the CNOT gate, one requires an exchange interaction

FIG. 2. Spin cluster qubit(a) The energy eigenstates of an H_ hetween one or several spins of neighboring spin cluster
antiferromagnetic spin chain with an odd number of sites define th%]ubits | and Il which can be switched on and off, e.g., by
spin cluster qubit(b) Wave function ofl0) in the single-spin prod-  glectrical gateé.The simplest case of an exchange interac-
uct basis fom.=9. The size of each configuration is proportional iy petween the outermost spins of neighboring clusters
to the probability of finding the corresponding product stat&in [Fig. 26)] B.=3 (1) gl, i lates int iSOtrOD
(c) Similar to (b) but for state|1). (d) Spin density(#|s; ,|#) for g- 481 M= # (0%, 5, translates Into an isotropic ex-
|#)=10) and |)=|1) (solid lineg for constant intrachain ex- change interaction aAIso for the two-qubit product basis. This
change coupling. Dashed lines indicate the corresponding data feemains true for anyd, of the form
spatially varying intrachain exchange with= sin (jz/n;). (€) Spin
cluster qubits are coupled by a switchable interchain exchange N1

couplingd, (t). Ho =3, (D8, -8+, (1) JEl (vj§-§+110]'S -5 0).

n.=9, the Nel configuration has only a 20% probability; (10
the remaining 80% represent quantum fluctuatise® Figs. Here the factorg; allow for a spatial variation of the intra-
2(b) and Zc)]. cluster exchange coupling constants during gate operation,
In spite of their complicated representation in the single-where|v;|<1 and|J,|<J is the limit relevant for experi-
spin product basis\0) and |1) are in many respects very ments.A, will in general not only couple states within the
similar to the state$]) and||) of a single spin and, hence, two-qubit product basig|00),|01),|10),|11)}, but will also
define the computational basis for universal quantum compead to leakage. As long ak, (t) changes adiabatically and
puting with spin cluster qubitsThe reason for this is that |j_(t)|<A for all imes, leakage remains small. It should be

{10),/1)} belong to oneS=1/2 doublet such that noted that this adiabaticity condition also holds for single
~ ~ electrons in quantum dots where, however, the energy\gap
S7|0)=]1), S*|1)=]0), (9 is usually larger than for the spin cluster qubit. The action of

H, can then be described by an effective Hamiltonian in the
two-qubit product basis,

N ayay el (B o a o a
2. Initialization A, =J,,0)388+ %(S’*S"‘ +8-8) 43,01,
Initialization of the spin cluster qubit can be achieved by 11
cooling in a magnetic field witlyugB,<A to temperatures
T<gugB,/kg. The spin cluster will relax t¢0) within the
spin relaxation time. Because thermalization is typically

— ol <l
slow, the preparation of a given initial state could be facili- Jx Z(t)_4J*(t)|'<O|Snc,z|0>l||II<0|51,z|0>u|:

whereS*=S,+iS, are the spin ladder operators of the spin
chain.

where the roman numbers label the spin clusters, and
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3,1 ()=43, (O] (L]s,_(|O)llu(2ISLulONl,

n.—1

(0| 121 V]S, 4/0),

|

For the derivation of Eq(1l), see Appendix A.
Because, for the isotropic chain,

Jo(t):J*(t)[

ne—1

+1(0| 121 vi's' -5, 1/0)y (12)

I<O|§|nc,z|o>|:||<1|§:1C,X|O>I|! 13

the couplingH, is isotropic also in the two-qubit product
basis and acts on the sta{€ and|1) of neighboring spin

chainsin the same way as an isotropic exchange interaction

between two single spins

PHYSICAL REVIEW B68, 134417 (2003

model in which decoherence is effected by a fluctuating clas-
sical fieldzb(t). In case(i),

HB=7%b(1)S,. (15)
The decoherence rate is obtained ffm
1 o
= 2 _
r =T (KIS0 PC(EEo)
A ) B
*“\@;D |(k|S,|1)[>C(E—Ey)
+m((0]8,]0)—(1/§,]1))C(0), (16)
where
C(E>=$ f " dteE(b(t)b(0)) (17

An explicit switching sequence for the CNOT gate based ) o
on single-qubit rotations and the unitary time evolution gov-iS the spectral density of the random field in Eg5). Be-

erned by the exchange interaction in Etjl) is'®

s Il . d . dll
UCNOTNe Iﬂ'Sy/ZeIZﬂ'nl S/3el27rr‘|2 S /3U*(7T/2)

X T, (m/2)e T2 TS T2 (14)
for the general case wherd,,#J,, . Here, n;=(1,
—1,1)/J/3 andn,=(1,1,-1)/y/3, and we have defined the
unitary time evolution operator U, (m/2)=Texp
(=i JdtH, /4), with — [ dtd, | (t)/h= /2.

The gate operation time fdd, (#/2) is limited from be-
low by h/160,,[\(1]s,_«|O)l[1(L[s1,0)u|, whered, is the
maximum value of the exchange coupling. Matrix element
such as|,(1|§:10,x|0>,| decrease with increasing., which

leads to an increase in gate operation time. For realistic pa-

rameters and smafl, (see Sec. Il F belowJ, is limited by
experimental constraints rather than the conditign<A.

cause of Eq.(8), we find that the decoherence rater g/
= C(0) is independent afi, . This result, which is in stark
contrast to the standard result where the decoherence rate
increases with system size, can be traced back to the fact that
in Eq. (15 only the total magnetic moment couples to the
fluctuating field and the magnetic momentgug/2 of the
spin cluster qubit is identical to the one of a single spin.
Similarly, for a nondiagonal couplingi®=#%b(t)S,, from
Eq. (16) we find 1/ ,=mC(0)/2.

Decoherence due to the coupling to nuclear spins is a
complicated theoretical problem in its own right?®In or-
der to obtain a heuristic estimate for the scaling of the deco-
herence time wit, for this decoherence scenario, we con-

Ssider fluctuating classical fields which act independently on

each site of the spin cluster,
Ne

HB=21 fib;(1)S; 2, (18)
=

Then, the increase in gate operation time compared to single-

spin qubits is 1/(4<1|§|nc,x|0>|||ll<1|§2,x|0>ll|) and depends

only on the matrix elements of the spin operators. Similarly,

where(b;(t)b;(0))x ;. For Gaussian white noise with

(bi(Hbj(0))=2my"5; (1), (19

for a given magnetic field, the increase of the time required 5 _ _ o o
for a one-qubit rotation depends only on the matrix elementd/74=n.7y" scales linearly witm; i.e., if fluctuating fields

(115} ,/0)]

4. Decoherence

act independently on the individual spins of the cluster, the
decoherence rate increases with This result for the scal-

ing of 1/7, with system size agrees with the standard result
for n. qubits which are subject to independently fluctuating

For spin clusters, decoherence usually is faster than fofig|s30 Note that an increase in the decoherence rate by a

single spins. The scaling of the decoherence tirgewith

system size depends on the microscopic decoherence mec

factorn; implies that the probability for the state of the spin

Rduster qubit to remain unaffected by the fluctuating fields for

nism. For electron spins in quantum dots, fluctuating fields; .ertain time decreases exponentially with, (Ref. 30.
and nuclear spins have been identified as dominant yagnetic dipolar interactions are another source of deco-

sources:>?4-28|n the following, we discuss two scenarios
for decoherence in whichi) a fluctuating field couples to the
total magnetic moment of the spin cluster qubit &ndlin-

dependent fluctuating fields act on each spin of the spin clus-=

ter qubit individually.

In order to obtain analytical estimates for the scaling of
74 With ng, we restrict our analysis to a phenomenological

herence. Consider two single-spin quis{sands, with co-
ordinate vectors, andr,, respectively, which are coupled
by the magnetic dipolar interaction,

. mo(gue)® S5 3(56)(S- )
Hap="—"7- e ;

(20
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wherer=r,—r,, d=|r| is the distance between the single- ergy Egr, decreases with increasing, We find E§/Egp

spin qubits, and, =r/|r|. In first-order perturbation theory, =0.42,0.25,0.16, and 0.12 far,.=3,5,7, and 9, respec-
the dipolar interaction leads to an energy sHifE g, for the  tively, whereEy;, is the dipolar energy for single-spin qubits.
product states with parallel and antiparallel spin configuraThis shows that decoherence effected by magnetic dipolar

tions, respectively. For lateral quantum dots with spin quaninteractions is indeed smaller for spin cluster qubits than for
tization axis perpendicular te , single spins.

po(gue)? (1,1181-5/1,1) 5. Readout

Edip:<TiT||:|dip|T-T>:

4 d? Readout of the spin cluster qubit is achieved by measur-
(Oie)? ing the individual spins within the clustefsi(z) or the state
:%, (21 of the total spin of the clusterY)). The measurement of
T

individual spins still is a considerable experimental chal-
lenge. However, as has been shown theoretiéaflymea-
surement of single spins is feasible via charge degrees of
freedom. More specifically, the state of a single spin on a
quantum dot can be detected by a current flowing between
spir;lpolarized leads that are tunnel coupled to the quantum
dot:

If an experimental technique is established that allows one
. to measure the state of a single spin, it will also be possible
(T HHapl T,1)= —Egpp- (22 to measure the state of a spin cluster qubit by measurement

The deterministic phase shift due to the different dipolar enof all spins of the cluster. Becau$@|2i”§ 1§i,z|0)= 1/2 and

ergies for parallel and antiparallel spin configurations could<1|2inil§i J1)=—1/2, this will allow one to unambiguously

be accounted for at the end of a quantum .algonthm i NCdetermine the state of the cluster qubit. However, the state of
other error sources were present. However, it leads to corr

because the expectation value o -@€)(s,-€) vanishes
identically. Similarly, we find

(L LAl L, 1) = +Egp,

(1, T[Haipl L, 1)=—Egip,

lated errors when spins are coupled to an environment th

induces, e.g., spin-flip errors. Whikg;, is too small to in-

duce errors of the order of 10 for electron spins in quan-
tum dots, dipolar interactions are large for, e.g., P dopants i
a Si matrix(see Sec. Il . We show next that dipolar inter-
actions for spin cluster qubits are smaller than for single-spi
qubits. For definiteness, we consider two clusters with spins

at sitesrj=jde, andrj=(j+n)de, for clusters I and I,
respectively, withj=1,2, ... n. [Fig. 2(c)]. The intracluster

n

She cluster determines the local spin density at eacH Bite

(d)], and a probabilistic readout is possible also by mea-
surement of single spins only. For example, ige=9, if the
measurement of the central spin of the chain yield$/2,
the spin cluster qubit has been in stgdg with a probability
of 70%. A selective readout of several spins of the spin
cluster qubit would also reduce the requirements on the read-

out sensitivity. For example, the sublattice sp@1§11+ §3,Z
+85,+S7,+S9,/0)=1 for n,=9 is twice as large as the

dipolar interactions lead to an unimportant energy shift thatotal magnetic momer(®|S,|0) and could be measured after

is identical for both0) and|1),

pol(Que)® 5 §-35,8,
> LT B M F )
i>j  4md (i—))
mo(9ue)? | S-5—35 8,
_y, ROl 3ATRAY (o)
i>]  4xd (i—j)
because of symmetry. The interqubit dipolar interaction
~sc o(9ue)’ géil B 3:°ﬂ|,y§1“,y
Hdip_ . (24)
Amzd® 7 (i—j+ny)?

gives rise to an energy shift of the sta{ég) and|11) rela-
tive to |01) and|10), where|0) and|1) denote the logical
basis of the spin cluster qubit,

(00 HEE00) = (11 HEE/ 11 = EGE,,

(01A5E 01 = (10/A5e[10) = — EE

c. (25)

separating the electron spins at even and odd sites of the
cluster. This illustrates that readout of single spins is suffi-
cient but not necessary to measure the state of the spin clus-
ter qubit.

Spin readout can also be effected by optical means. A
scheme for gate operation based on Pauli blocking has been
suggested recentf.In a similar way, the creation of a spin-
polarized exciton by a circularly polarized laser beam and
the subsequent obervation of the reemitted photon would al-
low one to determine the spin state of a single electron. The
underlying principle is that, for a quantum dot with an elec-
tron spin pointing up, Pauli’s exclusion principle prohibits
the creation of an exciton in which the electron with spin up
occupies the same orbital state. The creation of an exciton,
which can be observed by the photon emitted on recombina-
tion, is possible only if the electron spin in the quantum dot
points opposite to the one of the exciton created by the laser
beam. However, for qubits based on spins in a single quan-
tum dot, the minimum laser focus on the order of the wave-
length puts severe constraints on an optical readout scheme.
These constraints are relaxed for spin cluster qubits where it

similarly to single-spin qubits. Evaluating the matrix ele- is sufficient to have a laser spot size with a diamater smaller
ments numerically, we find that the characteristic dipolar enthan the size of the spin cluster qubit.
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B. Varying exchange constants

The formation of a spin cluster qubit from an odd number
of antiferromagnetically coupled spins requires little control
over intracluster exchange constants. Although both the en-

ergy gapA and matrix elements such &b| éjyx|0) depend on

the spatial variation of exchange constants, the general prin-
ciple of assembling several spins into a cluster qubit remains
valid.

In order to demonstrate the robustness of our spin cluster
gubit against a variation of exchange constants, we return to
the isotropic spin chain but now allow for varyirfg in Eq.
(3). Because the isotropic spin chain still exhibitSa 1/2
ground-state doublét, quantum computing is possible as
discussed fof ;=1 in Sec. Il A. From an experimental point
of view, a priori knowledge of the factor§; is not necessary R : :
for quantum computing. Rather, the relevant matrix elements 9#eBxSx, coherently rotatef0) into |1) without leakage. Here,
such a$<1|§- |0>| can be determined experimentally. Simi- ¢>=g_,uBBXt/h. Th(_e coherent rota_tlon is evidenced by the _m-phase

J,X ’ rotation of all spins.(b)—(d) An inhomogeneous magnetic field
larly, a quantum computer could even be assembled frorﬁ,_ - . . A
=gupBsxS3x effects the one-qubit rotation gate with high gate

spin cluster qubits which are not identical. - A
If the exchange constants can be controlled during samplfdelity if [gueBs,|<A. Here,¢=gugBs,(2|(1|s5,{0)|)/fi. The
eases from 99.8% to 93.4% and 78.5% for in-

; ; : -gate fildelity decr
growth, the properties of the spin cluster qubit can be engi¥2*€ ! )
. . . B;,=0.1J (b), 0.5 (c), and 1] (d), respectively. In
neered to a certain extent. For clusters with centrosymmetrlf;:easmgg“ B=3x > . . ;
. . e local spin density, leakage is evidenced by high-frequency os-
exchange constants, the time req.UIred to perform the .Squai:‘ﬁlations of neighboring spins, i.e., the excitation of magnons.
root of swap gate U, (7/2) for given J, increases with

FIG. 3. Local spin density for all sitesof a spin chain with
n.=5 as a function of time ¢oct) during the one-qubit rotation

gate. (8 A magnetic field constant over the clusteH’

1/{0[s1,|0)|2. Forn,=9 andf;=1,|(0|s,,0)|=0.18 cor- ne
responding to an increase in the gate operation time for A= i ueBi (1)S; (27)
U, (7/2) by a factor (0.5/0.18=7.7 compared to the S DB

single-spin qubit for gived, . However, by tuning the out-

: will in general lead to leakage because of finite matrix ele-
ermost  couplings to  small  values f;=f, ;

_ _ _ . ments(i|A’|0Y#0 and(i|A’|1)#0 coupling the computa-
<minj—y, _n -2fj, the spin density at the outermost sitesjona| pasis to higher excited statB+|0),|1). The adia-
increases and approaches [¢8e dashed lines in Fig(®  batic theorem guarantees that leakage remains small if the
and Appendix B for a proof of this stateménalthough the  Fourier transform oB; , vanishes for frequencies larger than
energy gapd also decreases and is approximated)by in - A/#. Even if this adiabaticity requirement is not met, admix-
this limit, a trade-off between the increasing matrix elementsng of higher excited states 90),|1)} is controlled by the

and the decreasing energy gap would allow one to deCfea?ﬁrametersngBBj’X/A and remains small iﬂngBBj,x|
gate operation times compared to the chain with spatially<A for all j.

constant exchange coupling. In the following, we concentrate on,=5 spins. As
shown in Figs. 8) and 4, a magnetic field constant over the
C. Leakage cluster coherently rotatd®) into |1). This is also evidenced

) ) ) ) ) by the in-phase rotation of all spins. In order to illustrate that
We next discuss in more detail the one-qubit rotation gategq 4 spatially inhomogeneous field can induce the one-

induced by a transverse r_nagnetic field in order to quantii‘yqubit rotation with high gate fidelity, we now consider a
Ieakage_. A related analysis for tleoT gate has been re- magnetic fieldB;, acting only on the central spirj € 3) of
ported in R?f' 16. R the cluster. The field is switched on instantaneouslyt at
BecauseS,|0)=(%/2)|1) and S,|1)=(%/2)|0), a mag- =0. Fort>0, the time evolution is then governed by the
netic field that is uniform over the spin cluster acts on thesum of the time-independent Hamiltonian of the spin cluster,
spin cluster qublt in the same way as on a single spin A and the Zeeman Hamiltonidﬁ’=gMBB3x§3VX. In Fig.
=1/2. In particular, the Hamiltonian 4(a), for an initial statel(t=0))=|0), we plot the projec-
tion of the state|y(t)) onto the qubit basis states for
H' =guBy(t)S, (26)  gupBsx/J=0.1 (dashed line, coinciding with the solid line
on this scalgand 0.5(dashed-dotted linerespectively. The
induces a coherent rotation frok@) to |1> without |eakage, time"evolution is obtained by numerical integration of the
as implied by quantum mechanical selection rules. The gat8chralinger equation. For smaljugBs,<A=0.72], the
operation time for a rotation by is determined by Spatially inhomogeneous field rotati into [1) with high
JLdt’ gusBy(t')/h= ¢ and is identical to the one for single fidelity. The gate fidelity [(1|U{0)|* decreases from
spins. In contrast, the one-qubit rotation effected by a spa?9-8% @uBy/J=0.1) to 93.4% forgugB,=0.5, where
tially varying magnetic field the typical energy scale dfi’ becomes comparable td.
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=== — prone to leakage than the antiferromagnetic systems consid-
o | TSI Lo ered here because gquantum mechanical selection rules no
=~ |@)=10) N e longer prevent transitions from the computational basis to
\‘; 0.5 << . other states in the ground-state multiplet.

£ L ]

— v e @ D. XY-like chains

e

e | Our considerations have so far been focused on an isotro-
; “ UGN pic exchange coupling which is found, e.g., for coupled
0.05F N _ s - quantum dots.However, spin cluster qubits could not only
/ ST be realized in such artificial superstructures. Rather, a wide

] variety of spin—1/2 chains in which magnetic ions are
NS GO coupled by an exchange interaction has been synthe%?zed.
0 /4 /2 3n/4 n The control of single ion spins in a molecule or solid in
¢ which the ions are rather closely spaced is even more chal-
FIG. 4. Time evolution of a statiy(t)) with |¢(0))=|0) dur- lenging than the control of a single spin in a quantum dot.

ing the one-qubit rotation induced by a spatially constant magneti(I:D(Efmmg a qubit in terms of the collective state of a short

f o C . - 8pin chain will make it substantially simpler to address qu-
ield (solid line) and a magnetic field acting only on the central spin bits. However, in contrast to coupled quantum dots, the ex-
of the clusterdashed and dashed-dotted linés n,=5 as a func- ) ' . : . . ’ ;
tion of time, ¢t. The constant magnetic field effects the quc’;\ntumCh‘_"‘nge C_O%P“”g in many spin chains _found_ n natur.e IS
gate with 100% fildelity. In order to illustrate the effect of leakage anIS.OtI’Opr:Q.’ Hence, we next turn to a discussion of aniso-
with increasing Zeeman energy for a spatially inhomogeneous fieldOPIC chainsJ, #J,. _ o
A" =gusBaydsx, We assume thal’ is switched on instanta- For qddnc, the spectrum still exhibits a ground-state dou-
neously att=0. (a) For gugBs,=0.1] (dashed ling the inhomo-  blet of S, eigenstates with eigenvaluesfi/2, respectively.
geneous magnetic field still effects the one-qubit rotation WithH()Wever,Q2 is no longer a good quantum number. Both for
99.8% fidelity. (b) Leakage out of the computational basis, 1 J >J, (XY-like systems andJ, <J, (Ising-like systemg
— (€Ol g(t) ) |2+ (1] (1))]?), remains smaller than 0.3%. In con- |0) and|1) can be explicitly constructed.
trast, forg,uBB%X=_0.5_] (dashed-dotted lingsi.e., t_:omparable to We first consider th&'Y model withJ,=0 in Eq.(3). By
A=0.72], the fidelity is only 93.4% and leakage is of order 7%. 4 Jordan-Wigner transformatidhthe XY chain is mapped
. b A ) onto a system of noninteracting spinless fermions on a lattice

Here U =Texd—i [F™di(H+H')/A]  with  tnax  with spatially varying hopping amplitudes,
=h/(4|(1]s, 40)|gugB,) describes the time evolution dur-
ing a 7 rotation.

The decrease in gate fidelity with increasiBg, can be
understood from the local spin densit[ésgs. 3b), 3(c), and
3 (d)]. Although only the central spin is acted on By, , for ~ Where
|gugBsy| <A all spins of the spin cluster corotate with the j-1
central spin due to the exchange field. The condition &j=ex;{iw2
|gugBsy| <A guarantees that the externally induced rotation k=1
of the central spin is sufficiently slow that all spins of the
chain corotate in phase. F{gugBs,| of orderA, the rota-
tion of the central spin induced b;, is too fast for the
remaining spins of the chain to follow in phaksee, e.g.,
Fig. 3(c) for short times,$»<1]. The spins of the chain no
longer rotate in phase and magnons are exdifég. 4(b)].
Quantum gate operation probes the spin dynamics in re
time and, hence, may provide new insight into the low- & =(e1,%€5.83.%€5 ...), (30)
energy physics of spin chains. That leakage is controlled by
the parametefgugBs,//A can be traced back to the exis- wheree, ; are real numbers. In addition, there is one eigen-
tence of a ground-state doublet. state

To illustrate this point, we next contrast our results for a
system with antiferromagnetic exchange coupling and a
ground-state doublet with a ferromagnetic chain with ex-
change couplingJ<0 in Eq. (4). For the ferromagnetic
chain, the ground state has degeneragy 1. A computa-  Wwith energy eigenvalue 0. The ground-state doublet of the
tional basis could be defined also in terms of a subset of th&Y chain corresponds to the lowesh.1)/2 and (
ground-state multiplet fod<0, e.g., by the statetS,= +1)/2 Jordan-Wigner fermion levels filled. Similarly to the
—nJ/2) and|S,= —n/2+1). Due to the fi.+1)-fold de- spin chain with isotropic exchange interactions, one-qubit
generacy of the ground-state multiplet, the system is morg@ates can be realized by magnetic fieBj$t) andB,(t). By

ne—1

o o
H:_% Z‘l B adh+ ), (28)

Sk.zt > Sk (29
annihilates a Jordan-Wigner fermion at git& he problem is
thus reduced to calculating the one-particle eigenenergies
and eigenstates of E(R8). The one-particle Hamiltonian has
(nc—1)/2 pairs of states with negative and positive energy
FE;, respectively, which are related to each other by stag-
Egering of the wave function,

e 1,0 o113 g ffa e Ine-2

1, 1 y - ’i Y 31
P F e B o L
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numerical exact diagonalization of small spin chaimg ( I R
=9), we have shown that1|S,|0)| remains of order 1/2 for S . ]
various set off; [e.g., f;=1, f;= sin (j@/ny)], such that the P

operation time for the one-qubit rotation gate is only limited = oorr ]

by #%/A. An isotropic interqubit coupling:l*=J*(t)§nc-§l' oootf, £ | B B ]
for two-qubit gates still translates into the effective Hamil- - - N

tonian in Eq.(11). With Egs.(30) and (31), from the com- §x 0.1 .
pleteness relation Eficfl)/z(efj2+ e ) tes=1 for | & oolf ¢ ]
=1,...nc and §j,z=_ Pl - 112, one can calculate all ma- = ootk / i
':Erl(;( (ellf)ments entering the effective coupling Hamiltonian T e e S
hand J A,
- eg,l - ) A -
<O|5nc,z|0>: - (32 FIG. 5. Transition matrix elementé1|S,|0)| and|{1|s;,|0)| as

a function of exchange anisotropy (#J,). The matrix elements
determine gate operation times for the one-qubit rotationcawir

gate. Diamonds show numerical results obtainechfer9 and spa-
tially constant exchange interaction§=1, in comparison with

) ) _ analytical resultgsolid lineg [see Eq.(36)].
whereey ; is the first component of the normed one-particle

eigenstate defined in Eq31). In particular, for fj=1,
(O[sn_ /0y =1(nc+1) and [(1|s, x0)|=1/y2(n.+1).
Due to the anisotropy of the intrachain exchange coupling
H, (which is isotropic in the single-spin operatptsanslates
into an effectiveXXZ Hamiltonian in the two-qubit product
basis. Nevertheless, theNOT gate can still be realized ac-
cording to Eq.(14). For the anisotropic chain, a magnetic
field applied along an axis translates into a rotation around
the axis hx,ny,n2/2|<1|§x|0>|) in the Hilbert space spanned

~ eoll
[(1[sn, .0} = > (33

decrease exponentially with system size bec&gmd%nc X

only flip one spin within the chain. Expanding the std@s
and|1) in powers ofd, /J, it follows that finite matrix ele-

ment ofs,, andS, between|0) and|1) occur only in order
(ng—1)/2 in J, /3,.% Even for medium sized chains,
=9 andJ, /J,<0.2, an isotropic interqubit coupling Hamil-
tonianI:I* translates into an effective Hamiltonian, Edl),
of Ising form (Fig. 5. Because of the long gate operation
times implied by Eq(36) for the one-qubit rotation and, in
by {10).|1)}, particular, thecNOT gate, only quantum computing schemes
- N . which require a small number of such operatiSnsppear
H'=gueBn- S=gusB2|(1|S|0)[[n(|0)(L[+|1){0)/2  feasible.
+nyi(|1><0|—|0)(1|)/2] .In Fig. 5, for g c_hain withn,=9, We compare our ana-
lytical results(solid lineg for the matrix elementg1|S,|0)|

and|(1]s,,/0)| as functions of anisotropy with exact diago-
_ _ _ _ _ nalization for the chain witlf;=1 (symbols. Because ma-
A one-qubit rotation around an arbitrary axis—ery.in Eq.  trix elements of order unity imply quantum gate operation
(14— hence requires appropriate rescaling of the magnetimes comparable to single spins, the results in Fig. 5 show
fields*® that universal quantum computing based on a sequence of
one-qubit rotation andcNOT gates is feasible for a wide
E. Ising-like chains range of spin cluster qubits.

+gueBn,(|0)(0[—[1)(1])/2. (34

In the Ising limitJ,>J, the ground-state doublet

[0y =111l 2- -+ [ 1), + O 13,),

F. Experimental realization

We illustrate the advantages of a spin cluster qubit formed
by n.=5 spinss=1/2 in a one-dimensional array of quan-
11)=[1)al )2 [ 1)n, + O 13y) (5 tum dots with diameted=50 nm. For realistic parametérs
(J=10 Kkg, J,=2.3 Kkg, gugB=0.7 Kkg) and a mag-
netic field which decreases from its maximum vaBig at
the central site of the chain to B2 at sitesj=2,4, the
operation time for one-qubit gates increases by a factor

i no+1/[2J, | (172 1/2/(1]0.25,,+ S5+ 0.254,]0)|=2.2 compared to a single
(1] S| 0)|= °4 ( ) spin. The operation time for the square rootswfAp gate is
increased by a factor of 1/{@]s,,|0)|)2=4 compared to

is separated from the next excited state byngindependent
A~J,min(f;). In perturbation theory id, /J,, for f;=1, the
matrix elements

J;

1/23 | (-1 the single-spin qubit. However, the operation time for the
(1[5, /0)|= _(_i) (36)  CNOTgate as defined in E¢l14) is mainly determined by the
c 2\ J,; single-qubit operations of the sequence. Hence, for the mini-
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mum operation time of theNoT gate we find 386 ps for spin

clusters instead of 165 ps for single spins. The decrease of
decoherence time strongly depends on the microscopic origin

of decoherence. From the heuristic argument in Sec. Il A we

find that the decoherence rate due to globally fluctuating

magnetic fields does not scale with and is equal to the one (a
of the single-spin qubit. Decoherence caused by fluctuating

local fields scales linearly with,. For a spin cluster qubit

)
with n.=5, we estimate that the number of quantum gates
which can be performed during the decoherence time de-
creases by at most a factor of 10 compared to the single-spin
gubit. However, in contrast to single-spin qubits, magnetic (b) (C)
fields and exchange constants must be controlled only over

length scalesi.d=250 nm and 2.d=500 nm, respectively FIG. 6. Two-dimensional spin clusters. Each dot represents a
instead ofd=50 nm. This would allow one to control the gjngie-spin qubit(a) The spin cluster qubit scheme is readily ex-
exchange interaction between neighboring clusters optitallyended from spin chains to any bipartite lattié®. Spin arrays with
Note that, for the small clusters analyzed heXeis so large  frustrated bonds have a highly degenerate ground $tatefold
that neither adiabaticity nor the requirement that the Zeemagegeneracy for three spingc) If the frustrated bonds are part of a
energy and], be small compared ta provides a serious larger array, the high degeneracy is usually lifted and a ground state
restriction on quantum gate operation times. doublet remains.

Decoherence due to dipolar interactions is unimportant
for electron spins in quantum dots with a typical distadce
=50-100 nm, wherdy, [Eq. (21)] is of order 101Kks  the elementary excitations, the energy gapseparating the
=110.25 s. However, for P dopants in a Si matrix with a ground-state doublet from the next excited state can be
typical distanced=100 A, E,=6.2<10" 'Kkg=#/12 us.  estimated as
Recent experiments show that magnetic dipolar interac-
tions are indeed among the most dominant decoherence Jr
mechanisms for P dopants in a Si matrix. The characteristic A= MLy (37
time scale for dephasing by dipolar interactions, (i<, is =2

Ia(;zger(;h%nsgrealistic gate operation times by only a factofgecayse the characteristic features of the ground-state dou-
10°-10°."* However, for a spin cluster formed by.=9  pjet carry over from the one- to the two-dimensional spin
spins with a dominant nearest-neighbor exchange interactiopyster qubit, quantum computing with two-dimensional spin
the intercluster dipolar interaction energy is reduced COMurrays on bipartite lattices is possible with the techniques

pﬁred EO ,tht? %ne Or‘: single ?_pinsfbyg falctor' ?f 8; ti_-e-- thegiscussed in Sec. Il A. Gate operation times are determined
characteristic decoherence time for dipolar interactions in, "o o clements(0]3; /0 = (115, /O)|. For the 3

creases to 10fs. X 3 lattice shown in Fig. @), from exact diagonalization we
find <O|§jyz|0>=0.15 for sitesj in the center of the edges,

IIl. SPIN CLUSTERS IN d>2 (0[s; ,/0)=0.23 for sitesj at the corners, and0|s; ,|0)
=0.17 for the central site of the cluster. Similarly to the spin
So far, our considerations have been restricted to spighain, the ground-state doublet is robust against a spatial
chains. The main ideas discussed above apply to a mudfariation in the exchange constants as long as all exchange
larger class of antiferromagnetic systems with uncompenconstants remain antiferromagnetic.
sated sublattices. We illustrate next that quantum gates are
feasible also if spins=1/2 are arranged in a two- or three-
dimensional cluster. For definiteness, we restrict our atten-
tion to an isotropic exchange interactiom-0. For nonbipartite lattices, a ground-state doublet is not
guaranteed to emerge. The simplest example is the geometri-
cally frustrated system of three spirs=1/2 shown in

B. Geometrically frustrated systems

A. Bipartite lattice Fig. 60b),
We first consider an odd number of spins arranged on a ~ o
bipartite lattice with the number of sublattice sites differing H=J(s"+ 5 3+ 5 3)
by 1, e.g., a rectangular lattice with X L, sites, wherd., ,
are odd. This two-dimensional lattice exhibits a ground-state J/.. 9
doublet?® Similarly to the spin chain, the computational ba- =§<52— Z)’ (38)

sis{|0),|1)} can be defined in terms of & eigenstates of

the ground-state doublet. Hei®js the operator of total spin which has a fourfold degenerate ground state with energy
of the two-dimensional array. From a spin-wave ansatz foeigenvalueE= —0.75J. The eigenstates can be chosen as
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|0>=(|TTl>—|TlT>)/\E, arrangement of three spins, the exchange couplings will dif-
fer with high probability and the system is not frustrated.

11y=11 =1LV,
IV. LARGER SPINS

|2>=(2|”l>_|“l>_|l”>)/‘/6’ So far, our considerations have been restricted to clusters

formed by spins=1/2. We next consider antiferromagnetic
13y=ILT1) =111y =111/ 6. (B9 systems with larger spirs>1/2.

As demonstrated in Ref. 40, these states could still define a
logical qubit robust against certain sources of decoherence. A. Antiferromagnetic molecular clusters
However, quantum gate operation would always require con-  oniy very recently it has been shown theoretically that
trol over single exchange interactions or local magneticroyer's algorithm can be implemented with ferromagnetic
fields an_d exclude quantum computing with control paramygjecular magnets using a unary encodtht? In view of
eters wh|ch_vary slowly in space. ) universal quantum computing, ferromagnetic clusters such as
Geome;rlcal frustration does, however, not in general rul§,e molecular magnets Mpand Fg (Ref. 43 suffer from
out the existence of a ground-state doublet. In the more g&pe |arge net spin which usually means large matrix elements
neric case that geometrically frustrated bonds are part of Boupling the spin to the environment and, hence, short deco-
larger systen{Fig. 6(c)] or the exchange constants in Fig. harence times.
6(b) are not all equal, a ground-state doublet emerges. In this |, cqntrast, in antiferromagnetic systems, such as various
case, the logical states of the spin cluster qubit again can %g compound4? the spins couple such that they form a
defined in terms of the5, eigenstates of the ground-state small total magnetic moment. Antiferromagnetic clusters
doublet and quantum gate operation is possible with magwhich have unequal sublattice magnetization will in general
netic fields and exchange constants varying slowly over théave a ground-state multiplet rather than the singlet found
cluster. For systems as shown in Figc)g in which some  for systems with compensated sublattice sffrSeveral an-
bonds are frustrated) is usually smaller than in the case of tiferromagnetic molecular magnets comprised of spins with
bipartite lattices. For example, for Fig(@®, A=0.157 com-  quantum numbers larger than 1/2 have been synthesized to
pared toA=0.991 for Fig. 6a). According to the adiaba- daté®~*°including several compounds with uncompensated
ticity requirement, the small gap limits gate operation timessublattice spins® As a paradigm, we consider systems with
more severely for the system in Figch isotropic exchange interactiofy but allow for an easy or
hard axis single-spin anisotropy,

C. Experimental realization

I T A 2 2
Because spin cluster qubits emerge also in two- H=Js1 S+ koS, 1 52,). (40

dimensional regular spin arrays, spin cluster qubits can bgyoro s, ands,=s,*1/2 are the spin quantum numbers of

arranged in a plane if the positions of sir_lgle spins can bgna two sublattices, respectively>0 is an effective ex-
controlled as, e.g., for lateral quantum dffésg. 6(a)]. For a change constant, arld the single ion anisotropy. Equation

spin cluster qubit formed by XL=n; quantum dotsA PO -
«1/L. Decoherence due to globally fluctuating fields does(A.'o) has a gro.und—'state doublD),[1)} of .SZ_ S1zt Sp,
not increase witm., whereas independent local GaussianelgerJStateS with elgenyalu_e;sﬁ/ 2, respectlvely_. Becau.se
white noise gives rise to a decoherence rate,h,. Two-  [S;,H]=0 for the Hamiltonian Eq(40), the logical qubit
dimensional spin cluster qubits are hence particularly interbasis states have an expansion of the fotfor s,
esting for qubits in which decoherence is induced mainly by=S1— 1/2)

global rather than local fluctuating fields.

More importantly, a spin cluster qubit can be defined ever]
for a wide range of systems in which the positions and ex
change constants cannot be accurately controlled. For
P-atom electron spins in a Si matrix, because of rapid oscil-
lations of the exchange coupling between atoms at large dis-
tances, placement of atoms with lattice spacing precisionis . |—5,+2,-3/2)+ - +ag|s;,—S;+1/2)
required for single-spin qubif§. Without this precision, the 1 1
exchange interaction at large distances vanishes with a prob- (41
ability of 50%. In contrast, for spin cluster qubits formed by . . . .
a small numbere.g., 3 of P dopants located close to each " ©€ms of the spin product basis. Fey,>1, analytical

other, the spin defining the logical state of the qubit is delo_expressions can be derived both for the action of a magnetic

calized over the cluster. The effective exchange coupling bef-'eId (one-qubit rotation gajeand for the action of an inter-

tween neighboring qubits obtained by integration of the ex-duPit coupling Hamiltoniar{two-qubit gates between clus-
change interaction over the clusters is finite with a high
probability. Because the intracluster exchange interaction at . o A

small distances varies strongly with distaritéor a random He=di ()-8, (42

S1

0)= E L amllmlvllz_ my)

mp=-s;+

:a751+1|_51+ 1,31_1/2>

ters | and Il,
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within a coherent-state path integral formalishi? We only ' ' ' ' '
. . . 4+ i
state the main results of our calculations here. Further details o K50 b
are given in Appendix C. -2 |<l|s1XX|0>I :
Lo K1, Jox A |
B. Hard-axis systems
For strong hard-axis anisotropg,>0 and k,s2 JJ>1, I b |
the spinss; ands, lie close to thex-y plane for both states of 0 —eosesecssseseaccer® m
the ground-state doublet. A large contribution in the expan- 5 ) 03
sion, Eq.(41), comes from the statdm; =0)|m,=1/2) and ' k/J ’

|m;=0)|m,=—1/2), respectively. For illustration, fos;
=3, 5,=5/2, andk,/J=0.2, by numerical diagonalization  FIG. 7. Matrix elements of spin operators of a qubit formed by

of Eq. (40), we find two spins with spin quantum numbess=7 ands,=6.5. Numeri-
cal data(symbolg obtained from exact diagonalization are in good
5 3 1 agreement with analytical resulgsolid lines.
|0)=0.253,— > —-0.412,— > +0.521,— >
C. Easy-axis systems
— 0.5#03> + 0.44 -1 §> - 0.24} -2 §> . (43 For k,<0, configurations with spins aligned along the
2 2 2 axis are energetically favorable. We restrict our attention to

systems with large anisotropy|k|(s3+s3)/J>1. Because
a transition from|0) to |1) requires a rotation of both
spins through a large energy barrier, from the theory
of spin quantum tunneling in antiferromagnetic sys-

The statd1) is obtained bym;,m,)—|—m;,—m,) on the
right-hand side of Eq(43). In agreement with the semiclas-
sical theory, a major contribution t0),|1)} comes from
states with smalin; andm,. 553 ) N A A
In the following, we restrict our attention to systems with tems*** we find _that |<1|5x|0>|'|<1|51,x|0>|'!<1|32,x|0>|
large anisotropk,(s2+s2)/J>1. ThenA=J (Appendix @  *€XH— 8|k |(si+s3)/J]<1 are exponentially small.
and Similarly to a spin chain in the Ising limitSec. Il B, the
easy-axis system is a candidate for quantum computing
& _ schemes as suggested in Ref. 36.
11540y =174, The analytical results for the matrix elements discussed
- here are compared with numerical exact diagonalization for
[(1]s14/0)|=51/2, s,=7 in Fig. 7. We find good agreement with our semiclas-
. sical results.
[(1[s2x/0)| =s,/2. (44)

. . . . D.E i tal lizati
In particular, Eqg.(42) translates into the effective Hamil- xpenmental realization

tonian Single-molecule electrical switch¥s®” have nourished
hopes that, in the future, it will be possible to down scale

1 0 0O 0 computers to the level at which bits or qubits are represented

0 - 0 by single molecules. The results in Secs.. I\_/B and I\(C
A= |<0|§1 |0)||<0|§2 |0Y| show that, in such bottom-up approaches aiming at a univer-
o g z 0O 0 -1 0 sal quantum computer, control is not required at the level of
0 0 0 1 single-atom spins but only on the scale of molecule spins. In

particular, molecular magnetic clusters with an effective spin

0O 0 0 O S=1/2 define a qubit. One-qubit quantum gates could be
Jss, /0 0 1 0 effected, for example, by a magnetic tip as used in magnetic
* 2122 (45)  force microscopy® The spatial resolution of these tech-
2 |01 00 niques currently lies in the range of 10-100 riRef. 59
0 0 0O and approaches the typical size of molecular magnetic
clusters®

in the two-qubit product basis. As discussed in Sec. Il A, the Control of the exchange interaction between molecules is
CNOT gate can be realized with a unitary time evolution gov-challenging. As has been demonstrated recérfi§the elec-

erned by this effective qubit coupling of thexXZ form. trical conductivity of individual molecules can be switched
Matrix elements of order unity in Eq¢44) show that, e.g., between two states in a controlled way. By connecting mo-
a magnetic fieldB, efficiently rotates the stat®) into |1). lecular magnetic clusters by reversible redox switches one

This is nota priori evident given the rather complicated could also switch intercluster exchange paths. Alternatively,
representation of the ground-state doublet in the single-spiif the relative position of molecular magnetic clusters can be
product basi$Eq. (41)]. The large matrix elements arise be- controlled, the intercluster exchange interaction can be
cause, for botH0) and|1), the spins lie close to the-y  switched on and off via the overlap of electron orbital wave
plane in the hard-axis system. functions by moving clusters relative to each other.
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V. CONCLUSION in Eq. (1) result fromJ*(t)%C@l’ in the microscopic cou-

In conclusion, we have shown that quantum computing igling. Decomposings, - S/ =S| S Es T +s s e

possible with a wide variety of clusters assembled from anc terms of spin | ddcr rct ‘s on ¢ nr élil valuat

tiferromagnetically coupled spins which form an effective : pin fadder operators, one can readily evaluate
o S . the matrix elements in the two-qubit product basis. Because,

total spinS=1/2. For arrays of spins=1/2, the existence of ST .

a spin cluster qubit requires little control over the placemenfy definition, S,|0)=(%/2)|0) and S)|1)=(—#/2)[1) and

and intracluster coupling of the spins and the spatial dimens'ncyzs{z conserves the component of total spin in each clus-

sion of the array. This remains true for a wide range of syster separately, it follows that

tems with uncompensated sublattice spins differing by 1/2.

We have shown explicitly that, for the spin cluster qubit, (0 ”<1|§:1 z§22|1>||o>“=o_ (A1)

initialization, quantum gate operation, and readout are pos- o

sible with the techniques proposed and analyzed for singlgimilarly, all other off-diagonal elements 8f s}, vanish.

spins. The scaling of the decoherence time with system sizg,.. se of e

strongly depends on the microscopic decoherence mecha-

nism. Spin cluster qubits are particularly promising in situa- N ETP NES PR

tions where decoherence is induced mainly by globally fluc- (Ol5n[0)= {2fsy;[1)1=0, (A2)

tuating fields during quantum gate operation and the[he

decoherence rate of the spin cluster qubit is comparable to =

that of a single-spin qubit or for systems in which magnetic+ s'n;s!*)lz has finite matrix elements only between the

dipolar interactions are the dominant decoherence mechatates|0),/1), and|1),|0),. This completes the proof that

nism. The main advantage of spin clusters compared %he intercluster exchange terdy (t)§, -S; leads to the first
single spins is that requirements on local control of magnetic c

fields and exchange interactions can be traded for longer gafé'd second terms in ELY). _ o
operation times. We have illustrated the feasibility and ad- !t remains to show that a possible change in intracluster
vantages of spin cluster qubits for arrays of quantum dots, BXchange '“techt'qn constants during two-qubit gate opera-
dopants in a Si matrix, and molecular magnetic clusters. ~tion, J, ()=, (vj§-§.1+vj's -5 ,), only leads to a

In contrast to single spins, spin clusters are not intrinsiterm proportional tol in Eq. (11). This term conserves all
cally two-state systems and leakage during quantum gate ogomponents of the total spin of clusters | and II,
eration must be accounted for. For the one-qubit rotation
gate, we have shown that leakage is small if the magnetic [A et

transverse ~ exchange interactiord, (t)(s)’ S}~

field which induces the rotation is switched on and off =0, (A3)

adiabatically or if the Zeeman energy remains small com-

pared toA. for «=x,y,z and similarly for Il. Hence, all off-diagonal
Finally, we note that, because any qubit can be mappeghatrix elements such ag1lv}s-s,,|0), vanish. Finally,

onto a spirs=1/2, the results of this work do not only apply causd1),=38]0),=280),, with Eq. (A3)

to gquantum computing proposals based on spin degrees of : ! b ' '

freedom but to any quantum computing scheme. More spe- ne—1

cifically, for any qubit for which methods for initialization, (1] 1(0]J, () > v}gj!.gj!+l|1>l|o>“

guantum gate operation, quantum error correction, and read- j=1

out have been identified, a cluster qubit can be formed by ne—1

coupling several qubits. For the cluster qubit, initialization, = (0 0128 3. (t 9.9 28 10V0

quantum gate operation, quantum error correction, and read- (O] (0125, ( ),2’1 0155412500010

out are possible using the same techniques as for the original ne—1

qubit. = 0] 1(0]J, (1) j§=:1 Vi §41(25)0),|0)y
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APPENDIX A: EFFECTIVE EXCHANGE HAMILTONIAN
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Hamiltonian is also of Heisenberg form. For simplicity, we |0y =arg| T 1)n — 2 1)+ a2 1)]0)n —5| 1)
omit the label | of the spin cluster qubit in the following. In ¢ ¢
order to formally calculaté0|s,_|0) and[(1]s,_|0)|, we +as|[)[0)y —o| )+ O3 /AL —5), (B
define the spin operators we find (@, a5, 3)=(2,— 1,— 1)/1/6 for the ground state of
ne—1 the chain withn, spins and, hence,
S =5-5, ,= > 5 A5 .
“ o 121 he (85) lim  [(0]s;,|0)|=1/3. (B2)
f1=fp —1—0

of all but the outermost spip=n, of the cluster. Generally,
|0) can be expanded as
APPENDIX C: LARGE SPINS
|0)=al¥)[1)+b|P)[1), (AB) The matrix elements in Eq44) can be calculated from
where|¥) and|®) describe the normed states of the left- Coherent-state spin path integréii/e focus on strong easy-
mostn,— 1 spins in the array and andb are real numbers. plane systems,>0 and k,(s{+s3)/J>1. Following the
Becauses,|0) = (4/2)|0), | W) and|®) are eigenstates &, standard approach for antiferromagnetic systems, the parti-

. . . : . tion function of the two-spin system is expressed as a path
W'trj eigenvalues 0 and, respectively.5|0)=(%/2)|1) is integral over the Nel vectF())rn a):nd homogepneous magneEt)i-
an S, eigenstate with eigenvalue (%/2), such thab|®)= zation| defined bys,=s;n+1 ands,= —s,n+1, wheren-|

—aS,|¥) and =0. Integrating outl in a saddle point approximation and
R parametrizing
10)=a(|W)[1) =S, [W)[1)), _
Sin @ cos¢
11)=a(S.[w)[1) = (1-58L)|w)| 1)), n=| sing sing |, (CD

coso
1

a= _ (A7)  the Euclidean action of the system can be writtetf 3%
Vi+(¥[8 5L W) 2

he . .
_ 2 H 2 2 2
From Eq.(A7) we calculate Le=55(0°+ Sin*6 ¢?) +k,(si+s3) oS 6

. . 11—(¥|S S, |W) +iAshp(1—cosd), (C2
(O[30, 40)= = (1[5, J1)=5 ——— ", |
1+(W|S.S,|¥) where the last factor accounts for the differents=s,
o —s, of the spin quantum numbers add= 7.¢ is the imagi-
R 11—(V¥|S_ S, |¥) nary time derivative. In the limit of strong anisotropy,
(Lfsn, »0)= 2 1+(V|3 &, W)’ (A8) k,(s7+5s5)/J>1, Eq.(C2) can be expanded to second order

in 6— /2 and the fluctuations are integrated out, leading to
which proves Eq(13).
Z= f Do exp
APPENDIX B: ISOTROPIC CHAIN WITH SPATIALLY
VARYING EXCHANGE INTERACTION

hp
- fo dr LE[¢]/ﬁ), (C3

with an effective Euclidean Lagrangian
The local spin density in the energy eigenstates of(By. .
depends sensitively on spatial variations of the exchange in- B hle? .
teraction [Fig. 2(d)]. Whereas forfj=1 (solid lineg the LE[‘Z’]_THASM{" (C4
magnetization density in each of the sublattices increases to- ) ) ] ) )
ward the center of the chaffl,the opposite behavior is ob- After continuation to real time, by a canonical transformation

served for an exchange interactiép= sin (jm/n;) (dashed we obtain the Hamiltonian of the system in terms of theNe
lines). In the limit f,=f, _;<min_, . f;, the in-  Vectoroperator,

crease of local spin c_len_sity toward the ends of the chain can A J

be. understood qqantltatwely. The ground—stat_e_doublet of the H= —2(p¢—ﬁAs)2' (C5)
spin cluster qubit can be constructed explicitly from the 2h

ground-state doublg{0),, —,,|1), -} of the chain with the
outermost spins removed. FAdrf; much smaller than the
energy gamnc,z of the chain formed by the,—2 central cos¢ 0

where

spins, the coupling of the outermost spins can be treated ne o~ T—E 0 (o)
perturbatively. For the chain with centrosymmetric exchange =| sing |, 1= 2| . '
couplings,fl:fnc,j , from the ansatz 0 py/h—As

134417-13
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andp,, is the momentum operator conjugate to the in-plandhe Hamiltonian has a ground-state doublgD),[1)}

polar angles, [p,,¢]=—i%. By inspection of Eq(C5),
we find that the spin system, E@0), has been mapped

with  wave  functions () =exdi(m+1)¢)\2m
and ¢,(¢)=expime)/\27w, where m=|As|. From

onto the Hamiltonian of a particle on a ring threadeds,,=s;cos¢ and s,,=—s,c0s¢, one immediately obtains

by a magnetic flux<As. In particular, for half-integeAs,

Eq. (44).
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