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Quantum computing with antiferromagnetic spin clusters
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We show that a wide range of spin clusters with antiferromagnetic intracluster exchange interaction allows
one to define a qubit. For these spin cluster qubits, initialization, quantum gate operation, and readout are
possible using the same techniques as for single spins. Quantum gate operation for the spin cluster qubit does
not require control over the intracluster exchange interaction. Electric and magnetic fields necessary to effect
quantum gates need only be controlled on the length scale of the spin cluster rather than the scale for a single
spin. Here, we calculate the energy gap separating the logical qubit states from the next excited state and the
matrix elements which determine quantum gate operation times. We discuss spin cluster qubits formed by one-
and two-dimensional arrays ofs51/2 spins as well as clusters formed by spinss.1/2. We illustrate the
advantages of spin cluster qubits for various suggested implementations of spin qubits and analyze the scaling
of decoherence time with spin cluster size.
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I. INTRODUCTION

During the past years, the discovery of several powe
quantum algorithms1 has triggered substantial research
forts aimed at the implementation of a quantum compute
a physical system. The main difficulty is that qubits must
prepared, manipulated, and read out with high fidelity wh
decoherence is required to remain small.2 Solid-state imple-
mentations of qubits exploit the versatility of nanoscale fa
rication, but suffer from decoherence times which are usu
shorter than in many quantum optics proposals.3 Electron4–6

and nuclear7,8 spins have been identified as promising can
dates for qubits in a solid-state system. The main advan
of electron or nuclear spins is that they are natural two-s
systems and that decoherence times for the spin degre
freedom9,10 are usually larger than for charge degrees
freedom.

Here we show that a wide variety of spin clusters a
promising candidate systems for qubits. Qubits formed
several spins have so far mainly been discussed in the
text of exchange-only quantum computing,11–13 coherence-
preserving qubits,14 and quantum computing schemes
which the requirements on the control of exchange inter
tions between spins are relaxed.15 However, all these
schemes require control at the single-spin level, either w
local magnetic fields15 or exchange interactions.11,14 For the
spin clusters considered here, control for both magn
fields and exchange interactions is required only on
length scale of the spin cluster diameter. As we have sho
in Ref. 16, spin chains formed by an odd number of antif
romagnetically coupled spinss51/2 allow one to define a
logical qubit. The logical state of the qubit is encoded in t
collective state of the spin cluster. Here we detail that t
construction remains valid for a wide range of spin cluste
independent of the details of intracluster exchange inte
tion and spin placement. Initialization and readout of the s
cluster is achieved with the methods developed for sin
0163-1829/2003/68~13!/134417~15!/$20.00 68 1344
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spins.4,5 The main advantage of spin clusters is that the
quirements on spatial control can be traded for gate opera
times. The scaling of the decoherence rate with the size
the spin cluster depends on the microscopic decohere
mechanism. While the decoherence rate induced by fluct
ing local magnetic fields increases with cluster size, we sh
that magnetic dipolar interactions for the spin cluster qu
are smaller than for single spins. The optimum size of
spin cluster qubit is determined by a trade-off between
increase in gate operation times and the decoherence
effected by local fluctuating magnetic fields, the decrease
magnetic dipolar interaction energy, and the relaxed con
tions on local control.

Any quantum computation can be decomposed into a
quence of one- and two-qubit quantum gates.17 For a single-
spin qubit, theŝz eigenstatesu↑& and u↓& are identified as
logical basis statesu0& and u1&, respectively.4,5 The phase
shift gate can then be realized by a magnetic fieldBz(t) and
the one-qubit rotation gateU rot by a transverse fieldBx(t)
which rotatesu↑& into u↓& and vice versa. More generally, th
equations

^0uĤ8u0&5^1uĤ8u1& and ^1uĤ8u0&Þ0 ~1!

constitute a sufficient condition for a HamiltonianĤ8 to in-
duce the unitary time evolution required forU rot . For single
spins, Ĥ85gmBBx(t) ŝx fulfills Eq. ~1!. Similarly, an ex-
change interactionĤ* 5J* ŝ1• ŝ2 generates the unitary tim
evolution required for the square root ofSWAP gate4 because,
in the two-qubit product basis,

^10uĤ* u01&Þ0. ~2!

In contrast to a single spins51/2, clusters formed bync
coupled spins are not intrinsically two-state systems. In or
to prove that a logical qubit can be defined in terms of
energy eigenstates of a spin cluster we will~a! identify spin
©2003 The American Physical Society17-1
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clusters with a ground-state doublet$u0&,u1&% separated from
the next excited state by an energy gapD, ~b! identify
HamiltoniansĤ8 andĤ* which satisfy Eqs.~1! and~2! and,
hence, allow one to generate a universal set of quan
gates, and~c! quantify leakage and decoherence for the s
cluster qubit. In particular, the evaluation of the matrix e
ments in Eqs.~1! and~2! and the quantification of excitatio
out of the computational basis~leakage! require a detailed
characterization of the states$u0&,u1&% which is, in general,
nontrivial.

This paper is organized as follows. In Sec. II we discu
the computational basis states for spin21/2 chains. For this
simple geometry, it is possible to derive analytical expr
sions for the matrix elements in Eqs.~1! and ~2! for various
anisotropies and spatially varying intracluster exchange
teraction. Section III discusses the insensitivity of spin cl
ter qubits to the details of interactions within the cluster, su
as the relative placement of spins and the excha
strengths. In Sec. IV, spins with spin quantum numbers la
than 1/2 are discussed. In Sec. V, we draw our conclusio

II. SPIN CHAINS

For simplicity, we first consider a spin cluster qub
formed by a spin chain,

Ĥ5 (
i 51

nc21

f j@J'~ ŝj ,xŝj 11,x1 ŝj ,yŝj 11,y!1Jzŝj ,zŝj 11,z#, ~3!

wherenc is odd andJ' ,Jz.0. The real numbersf j.0 ac-
count for a spatial variation of the exchange interaction, a
J' f j (Jzf j ) denotes the transverse~longitudinal! exchange in-
teraction between sitesj and j 11.

A. Isotropic spin chains

For electron spins in quantum dots, the nearest-neigh
exchange is usually of the Heisenberg form5 J5J'5Jz . We
first considerf j[1,

Ĥ5J (
j 51

nc21

ŝj• ŝj 11 , ~4!

with J.0. Note that this is an open spin chain; a closed s
chain would have a fourfold-degenerate ground-state mu
let for oddnc that would make it unsuitable for representin
a single qubit. Because the intracluster exchange interac
J is time independent and no external control is requiredJ
can be adjusted already during sample growth.

Spin chains have been studied in great detail during
past decades.18–20 The theoretical description of the antife
romagnetic spin chain, Eq.~4!, is particularly challenging
because the classical Ne´el-ordered state is not an energ
eigenstate and quantum fluctuations are pronounced. We
fine the operator of total spin,

Ŝa5(
j 51

nc

ŝj ,a , ~5!
13441
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for a5x,y,z. Energy eigenstates can be labeled accordin
their quantum numbers of total spinŜ and thez component
of total spin,Ŝz , because

@Ĥ,Ŝ2#5@Ĥ,Ŝz#50. ~6!

Due to the antiferromagnetic exchange coupling, states
which the total spin of the chain is minimized are energe
cally the most favorable.21 For evennc , the minimum pos-
sible spin is S50, and the system has a nondegener
ground state. In contrast, for oddnc , there is a ground-state
doublet~Fig. 1!.21 This parity effect is well known for ther-
modynamic quantities.22 The energy gapD separating the
ground-state doublet from the next excited state,

D.
Jp

2
kmin;

Jp2

2nc
, ~7!

can be estimated from the lower bound of the d
Cloiseaux–Pearson spectrum and the minimum wave ve
kmin5p/nc ~Ref. 23!. Henceforth, we will restrict our atten
tion to spin chains with oddnc .

The requirements on a candidate system for qubits incl
initialization of the quantum computer, a universal set
quantum gates, decoherence times long compared to
operation times, and readout of the qubit.2

1. Definition of the spin cluster qubit

For the chain with an odd number of sites@Fig. 2~a!#, we
define the spin cluster qubit in terms of theS51/2 ground-
state doublet by

Ŝzu0&5
1

2
u0&,

Ŝzu1&52
1

2
u1&. ~8!

The states$u0&,u1&% do not in general have a simple repr
sentation in the single-spin product basis, but rather are c
plicated superpositions ofnc!/ @(nc21)/2#! @(nc11)/2#!
states@Figs. 2~b! and 2~c!# as evidenced by the local magn
tization density@Fig. 2~d!#. The largest amplitude in this su
perposition corresponds to the Ne´el-ordered statesu↑&1u↓&2
•••u↑&nc

(u0&) andu↓&1u↑&2•••u↓&nc
(u1&), respectively. For

FIG. 1. Energy spectrum of an isotropic spin chain withnc55
~left panel! and nc56 ~right panel!. Energy eigenstates are sorte

according to their quantum numbers ofŜz and their eigenenergies
7-2
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QUANTUM COMPUTING WITH ANTIFERROMAGNETIC . . . PHYSICAL REVIEW B 68, 134417 ~2003!
nc59, the Néel configuration has only a 20% probability
the remaining 80% represent quantum fluctuations@see Figs.
2~b! and 2~c!#.

In spite of their complicated representation in the sing
spin product basis,u0& and u1& are in many respects ver
similar to the statesu↑& and u↓& of a single spin and, hence
define the computational basis for universal quantum co
puting with spin cluster qubits. The reason for this is tha
$u0&,u1&% belong to oneS51/2 doublet such that

Ŝ2u0&5u1&, Ŝ1u1&5u0&, ~9!

whereŜ65Ŝx6 iŜy are the spin ladder operators of the sp
chain.

2. Initialization

Initialization of the spin cluster qubit can be achieved
cooling in a magnetic field withgmBBz!D to temperatures
T!gmBBz /kB . The spin cluster will relax tou0& within the
spin relaxation time. Because thermalization is typica
slow, the preparation of a given initial state could be fac

FIG. 2. Spin cluster qubit.~a! The energy eigenstates of a
antiferromagnetic spin chain with an odd number of sites define
spin cluster qubit.~b! Wave function ofu0& in the single-spin prod-
uct basis fornc59. The size of each configuration is proportion
to the probability of finding the corresponding product state inu0&.
~c! Similar to ~b! but for stateu1&. ~d! Spin densitŷ cuŝi ,zuc& for
uc&5u0& and uc&5u1& ~solid lines! for constant intrachain ex
change coupling. Dashed lines indicate the corresponding dat
spatially varying intrachain exchange withf j5 sin (jp/nc). ~e! Spin
cluster qubits are coupled by a switchable interchain excha
couplingJ* (t).
13441
-

-

-

tated by the measurement of the spins within the clust
possibly followed by local operations. In this way, a sta
which is energetically close to the ground state could
prepared.

3. Quantum gate operation

The one-qubit phase shift gateUf , one-qubit rotation
gateU rot , and CNOT gateUCNOT constitute a universal se
of quantum gates. According to Eq.~9!, a magnetic field that
is constant over the spin cluster qubit acts on the states o
spin cluster qubit in the same way as on a single-spin qub16

Constant magnetic fieldsBz(Bx) effect the one-qubit phas
shift ~one-qubit rotation! quantum gate without leakage. Be
causeu0& andu1& are degenerate and separated from the n
excited state byD, one-qubit quantum gates can be realiz
with high fidelity also by any spatially varying magnetic fie
for which u^1u( j 51

nc gjmBBj ,xŝj ,xu0&uÞ0 (U rot) and

^0u( j 51
nc gjmBBj ,zŝj ,zu0&Þ0 (Uf), respectively. Here,gj is

the electron sping factor at sitej. Such spatially varying
fields can potentially cause leakage. However,
ugjmBBj u/D!1 and if all Bj are switched on and off adia
batically, i.e., on time scales long compared toh/D, the
quantum gate fidelity is close to 100% as we will discuss
detail in Sec. II C.

For the CNOT gate, one requires an exchange interac
Ĥ* between one or several spins of neighboring spin clu
qubits I and II which can be switched on and off, e.g.,
electrical gates.4 The simplest case of an exchange intera
tion between the outermost spins of neighboring clust
@Fig. 2~e!#, Ĥ* 5J* (t) ŝnc

I
• ŝ1

II , translates into an isotropic ex

change interaction also for the two-qubit product basis. T
remains true for anyĤ* of the form

Ĥ* 5J* ~ t !ŝnc

I
• ŝ1

II1J* ~ t ! (
j 51

nc21

~v j
I ŝj

I
• ŝj 11

I 1v j
II ŝj

II
• ŝj 11

II !.

~10!

Here the factorsv j allow for a spatial variation of the intra
cluster exchange coupling constants during gate opera
where uv j u,1 and uJ* u!J is the limit relevant for experi-
ments.Ĥ* will in general not only couple states within th
two-qubit product basis$u00&,u01&,u10&,u11&%, but will also
lead to leakage. As long asJ* (t) changes adiabatically an
uJ* (t)u!D for all times, leakage remains small. It should
noted that this adiabaticity condition also holds for sing
electrons in quantum dots where, however, the energy gaD
is usually larger than for the spin cluster qubit. The action
Ĥ* can then be described by an effective Hamiltonian in
two-qubit product basis,

Ĥ* 5J* z~ t !Ŝz
I Ŝz

II1
J*'~ t !

2
~ŜI1ŜII21ŜI2ŜII1!1Jo~ t !1,

~11!

where the roman numbers label the spin clusters, and

J* z~ t !54J* ~ t !u I^0uŝnc ,z
I u0& Iuu II^0uŝ1,z

II u0& IIu,

e

for

e
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J*'~ t !54J* ~ t !u I^1uŝnc ,x
I u0& Iuu II^1uŝ1,x

II u0& IIu,

Jo~ t !5J* ~ t !F I^0u (
j 51

nc21

v j
I ŝj

I
• ŝj 11

I u0& I

1 II^0u (
j 51

nc21

v j
II ŝj

II
• ŝj 11

II u0& IIG . ~12!

For the derivation of Eq.~11!, see Appendix A.
Because, for the isotropic chain,

I^0uŝnc ,z
I u0& I5u I^1uŝnc ,x

I u0& Iu, ~13!

the couplingĤ* is isotropic also in the two-qubit produc
basis and acts on the statesu0& and u1& of neighboring spin
chainsin the same way as an isotropic exchange interact
between two single spins.

An explicit switching sequence for the CNOT gate bas
on single-qubit rotations and the unitary time evolution go
erned by the exchange interaction in Eq.~11! is16

UCNOT;e2 ipSy
II /2ei2pn1•SI/3ei2pn2•SII /3U* ~p/2!

3eipSy
I
U* ~p/2!e2 ipSx

I /2e2 ipSx
II /2eipSy

II /2 ~14!

for the general case whereJ* zÞJ*' . Here, n15(1,
21,1)/A3 andn25(1,1,21)/A3, and we have defined th
unitary time evolution operator U* (p/2)5T̂texp
(2i * dt Ĥ* /\), with 2 * dtJ*'(t)/\5p/2.

The gate operation time forU* (p/2) is limited from be-
low by h/16J* u I^1uŝnc ,x

I u0& Iuu II^1uŝ1,x
II u0& IIu, whereJ* is the

maximum value of the exchange coupling. Matrix eleme
such asu I^1uŝnc ,x

I u0& Iu decrease with increasingnc , which

leads to an increase in gate operation time. For realistic
rameters and smallnc ~see Sec. II F below!, J* is limited by
experimental constraints rather than the conditionJ* !D.
Then, the increase in gate operation time compared to sin
spin qubits is 1/(4u I^1uŝnc ,x

I u0& Iuu II^1uŝ1,x
II u0& IIu) and depends

only on the matrix elements of the spin operators. Simila
for a given magnetic field, the increase of the time requi
for a one-qubit rotation depends only on the matrix eleme
u^1uŝj ,xu0&u.

4. Decoherence

For spin clusters, decoherence usually is faster than
single spins. The scaling of the decoherence timetf with
system size depends on the microscopic decoherence m
nism. For electron spins in quantum dots, fluctuating fie
and nuclear spins have been identified as domin
sources.4,5,24–28 In the following, we discuss two scenario
for decoherence in which~i! a fluctuating field couples to th
total magnetic moment of the spin cluster qubit and~ii ! in-
dependent fluctuating fields act on each spin of the spin c
ter qubit individually.

In order to obtain analytical estimates for the scaling
tf with nc , we restrict our analysis to a phenomenologic
13441
n

d
-

s

a-

le-

,
d
ts

or

ha-
s
nt

s-

f
l

model in which decoherence is effected by a fluctuating c
sical field\b(t). In case~i!,

ĤB5\b~ t !Ŝz . ~15!

The decoherence rate is obtained from29

1

tf
5p (

uk&Þu0&
u^kuŜzu0&u2C~Ek2E0!

1p (
uk&Þu1&

u^kuŜzu1&u2C~Ek2E1!

1p~^0uŜzu0&2^1uŜzu1&!2C~0!, ~16!

where

C~E!5
1

2p E
2`

`

dteiEt/\^b~ t !b~0!& ~17!

is the spectral density of the random field in Eq.~15!. Be-
cause of Eq.~8!, we find that the decoherence rate 1/tf
5pC(0) is independent ofnc . This result, which is in stark
contrast to the standard result where the decoherence
increases with system size, can be traced back to the fact
in Eq. ~15! only the total magnetic moment couples to t
fluctuating field and the magnetic moment6gmB/2 of the
spin cluster qubit is identical to the one of a single sp
Similarly, for a nondiagonal couplingĤB5\b(t)Ŝx , from
Eq. ~16! we find 1/tf5pC(0)/2.

Decoherence due to the coupling to nuclear spins i
complicated theoretical problem in its own right.24–28 In or-
der to obtain a heuristic estimate for the scaling of the de
herence time withnc for this decoherence scenario, we co
sider fluctuating classical fields which act independently
each site of the spin cluster,

ĤB5(
j 51

nc

\bj~ t !ŝj ,z , ~18!

where^bi(t)bj (0)&}d i j . For Gaussian white noise with

^bi~ t !bj~0!&52pgBd i j d~ t !, ~19!

1/tf.ncpgB scales linearly withnc; i.e., if fluctuating fields
act independently on the individual spins of the cluster,
decoherence rate increases withnc . This result for the scal-
ing of 1/tf with system size agrees with the standard res
for nc qubits which are subject to independently fluctuati
fields.30 Note that an increase in the decoherence rate b
factornc implies that the probability for the state of the sp
cluster qubit to remain unaffected by the fluctuating fields
a certain timet decreases exponentially withnc ~Ref. 30!.

Magnetic dipolar interactions are another source of de
herence. Consider two single-spin qubitsŝ1 and ŝ2 with co-
ordinate vectorsr1 and r2, respectively, which are couple
by the magnetic dipolar interaction,

Ĥdip5
m0~gmB!2

4p

ŝ1• ŝ223~ ŝ1•er !~ ŝ2•er !

d3
, ~20!
7-4
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wherer5r12r2 , d5ur u is the distance between the singl
spin qubits, ander5r /ur u. In first-order perturbation theory
the dipolar interaction leads to an energy shift6Edip for the
product states with parallel and antiparallel spin configu
tions, respectively. For lateral quantum dots with spin qu
tization axis perpendicular toer ,

Edip5^↑,↑uĤdipu↑,↑&5
m0~gmB!2

4p

^↑,↑uŝ1• ŝ2u↑,↑&

d3

5
m0~gmB!2

16pd3
, ~21!

because the expectation value of (ŝ1•er)( ŝ2•er) vanishes
identically. Similarly, we find

^↓,↓uĤdipu↓,↓&51Edip ,

^↓,↑uĤdipu↓,↑&52Edip ,

^↑,↓uĤdipu↑,↓&52Edip . ~22!

The deterministic phase shift due to the different dipolar
ergies for parallel and antiparallel spin configurations co
be accounted for at the end of a quantum algorithm if
other error sources were present. However, it leads to co
lated errors when spins are coupled to an environment
induces, e.g., spin-flip errors. WhileEdip is too small to in-
duce errors of the order of 1024 for electron spins in quan
tum dots, dipolar interactions are large for, e.g., P dopant
a Si matrix~see Sec. II F!. We show next that dipolar inter
actions for spin cluster qubits are smaller than for single-s
qubits. For definiteness, we consider two clusters with sp
at sitesr j

I5 jdey and r j
II5( j 1nc)dey for clusters I and II,

respectively, withj 51,2, . . . ,nc @Fig. 2~c!#. The intracluster
dipolar interactions lead to an unimportant energy shift t
is identical for bothu0& and u1&,

(
i . j

m0~gmB!2

4pd3
^0u

ŝi• ŝj23ŝi ,yŝj ,y

~ i 2 j !3
u0&

5(
i . j

m0~gmB!2

4pd3
^1u

ŝi• ŝj23ŝi ,yŝj ,y

~ i 2 j !3
u1& ~23!

because of symmetry. The interqubit dipolar interaction

Ĥdip
sc 5

m0~gmB!2

4pd3 (
i , j

ŝi
I
• ŝj

II23ŝi ,y
I ŝj ,y

II

~ i 2 j 1nc!
3

~24!

gives rise to an energy shift of the statesu00& and u11& rela-
tive to u01& and u10&, whereu0& and u1& denote the logical
basis of the spin cluster qubit,

^00uĤdip
sc u00&5^11uĤdip

sc u11&5Edip
sc ,

^01uĤdip
sc u01&5^10uĤdip

sc u10&52Edip
sc , ~25!

similarly to single-spin qubits. Evaluating the matrix el
ments numerically, we find that the characteristic dipolar
13441
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ergy Edip
sc decreases with increasingnc We find Edip

sc /Edip

50.42,0.25,0.16, and 0.12 fornc53,5,7, and 9, respec
tively, whereEdip is the dipolar energy for single-spin qubit
This shows that decoherence effected by magnetic dip
interactions is indeed smaller for spin cluster qubits than
single spins.

5. Readout

Readout of the spin cluster qubit is achieved by meas
ing the individual spins within the cluster (ŝi ,z) or the state
of the total spin of the cluster (Ŝz). The measurement o
individual spins still is a considerable experimental ch
lenge. However, as has been shown theoretically,4,31 mea-
surement of single spins is feasible via charge degree
freedom. More specifically, the state of a single spin on
quantum dot can be detected by a current flowing betw
spin polarized leads that are tunnel coupled to the quan
dot.31

If an experimental technique is established that allows
to measure the state of a single spin, it will also be poss
to measure the state of a spin cluster qubit by measurem
of all spins of the cluster. Because^0u( i 51

nc ŝi ,zu0&51/2 and

^1u( i 51
nc ŝi ,zu1&521/2, this will allow one to unambiguously

determine the state of the cluster qubit. However, the stat
the cluster determines the local spin density at each site@Fig.
2~d!#, and a probabilistic readout is possible also by m
surement of single spins only. For example, fornc59, if the
measurement of the central spin of the chain yields11/2,
the spin cluster qubit has been in stateu0& with a probability
of 70%. A selective readout of several spins of the s
cluster qubit would also reduce the requirements on the re
out sensitivity. For example, the sublattice spin^0uŝ1,z1 ŝ3,z

1 ŝ5,z1 ŝ7,z1 ŝ9,zu0&.1 for nc59 is twice as large as the
total magnetic moment̂0uŜzu0& and could be measured afte
separating the electron spins at even and odd sites of
cluster. This illustrates that readout of single spins is su
cient but not necessary to measure the state of the spin
ter qubit.

Spin readout can also be effected by optical means
scheme for gate operation based on Pauli blocking has b
suggested recently.32 In a similar way, the creation of a spin
polarized exciton by a circularly polarized laser beam a
the subsequent obervation of the reemitted photon would
low one to determine the spin state of a single electron. T
underlying principle is that, for a quantum dot with an ele
tron spin pointing up, Pauli’s exclusion principle prohibi
the creation of an exciton in which the electron with spin
occupies the same orbital state. The creation of an exci
which can be observed by the photon emitted on recomb
tion, is possible only if the electron spin in the quantum d
points opposite to the one of the exciton created by the la
beam. However, for qubits based on spins in a single qu
tum dot, the minimum laser focus on the order of the wa
length puts severe constraints on an optical readout sche
These constraints are relaxed for spin cluster qubits whe
is sufficient to have a laser spot size with a diamater sma
than the size of the spin cluster qubit.
7-5
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B. Varying exchange constants

The formation of a spin cluster qubit from an odd numb
of antiferromagnetically coupled spins requires little cont
over intracluster exchange constants. Although both the
ergy gapD and matrix elements such as^1uŝj ,xu0& depend on
the spatial variation of exchange constants, the general p
ciple of assembling several spins into a cluster qubit rema
valid.

In order to demonstrate the robustness of our spin clu
qubit against a variation of exchange constants, we retur
the isotropic spin chain but now allow for varyingf j in Eq.
~3!. Because the isotropic spin chain still exhibits aS51/2
ground-state doublet,21 quantum computing is possible a
discussed forf j[1 in Sec. II A. From an experimental poin
of view, a priori knowledge of the factorsf j is not necessary
for quantum computing. Rather, the relevant matrix eleme
such asu^1uŝj ,xu0&u can be determined experimentally. Sim
larly, a quantum computer could even be assembled f
spin cluster qubits which are not identical.

If the exchange constants can be controlled during sam
growth, the properties of the spin cluster qubit can be en
neered to a certain extent. For clusters with centrosymme
exchange constants, the time required to perform the sq
root of SWAP gate U* (p/2) for given J* increases with
1/u^0uŝ1,zu0&u2. For nc59 and f j[1, u^0uŝ1,zu0&u.0.18 cor-
responding to an increase in the gate operation time
U* (p/2) by a factor (0.5/0.18)2.7.7 compared to the
single-spin qubit for givenJ* . However, by tuning the out
ermost couplings to small values f 15 f nc21

!minj52, . . . ,nc22f j , the spin density at the outermost sit

increases and approaches 1/3@see dashed lines in Fig. 2~d!
and Appendix B for a proof of this statement#. Although the
energy gapD also decreases and is approximated byJ f1 in
this limit, a trade-off between the increasing matrix eleme
and the decreasing energy gap would allow one to decr
gate operation times compared to the chain with spati
constant exchange coupling.

C. Leakage

We next discuss in more detail the one-qubit rotation g
induced by a transverse magnetic field in order to quan
leakage. A related analysis for theCNOT gate has been re
ported in Ref. 16.

BecauseŜxu0&5(\/2)u1& and Ŝxu1&5(\/2)u0&, a mag-
netic field that is uniform over the spin cluster acts on
spin cluster qubit in the same way as on a single spis
51/2. In particular, the Hamiltonian

Ĥ85gmBBx~ t !Ŝx ~26!

induces a coherent rotation fromu0& to u1& without leakage,
as implied by quantum mechanical selection rules. The g
operation time for a rotation byf is determined by
*0

t dt8gmBBx(t8)/\5f and is identical to the one for singl
spins. In contrast, the one-qubit rotation effected by a s
tially varying magnetic field
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gjmBBj ,x~ t !ŝj ,x ~27!

will in general lead to leakage because of finite matrix e
ments^ i uĤ8u0&Þ0 and^ i uĤ8u1&Þ0 coupling the computa-
tional basis to higher excited statesu i &Þu0&,u1&. The adia-
batic theorem guarantees that leakage remains small if
Fourier transform ofBj ,x vanishes for frequencies larger tha
D/\. Even if this adiabaticity requirement is not met, adm
ing of higher excited states to$u0&,u1&% is controlled by the
parametersgjmBBj ,x /D and remains small ifugjmBBj ,xu
!D for all j.

In the following, we concentrate onnc55 spins. As
shown in Figs. 3~a! and 4, a magnetic field constant over th
cluster coherently rotatesu0& into u1&. This is also evidenced
by the in-phase rotation of all spins. In order to illustrate th
also a spatially inhomogeneous field can induce the o
qubit rotation with high gate fidelity, we now consider
magnetic fieldB3,x acting only on the central spin (j 53) of
the cluster. The field is switched on instantaneously at
50. For t.0, the time evolution is then governed by th
sum of the time-independent Hamiltonian of the spin clus
Ĥ, and the Zeeman HamiltonianĤ85gmBB3,xŝ3,x . In Fig.
4~a!, for an initial stateuc(t50)&5u0&, we plot the projec-
tion of the stateuc(t)& onto the qubit basis states fo
gmBB3,x /J50.1 ~dashed line, coinciding with the solid lin
on this scale! and 0.5~dashed-dotted line!, respectively. The
time evolution is obtained by numerical integration of t
Schrödinger equation. For smallgmBB3,x!D.0.72J, the
spatially inhomogeneous field rotatesu0& into u1& with high
fidelity. The gate fidelity u^1uU rotu0&u2 decreases from
99.8% (gmBBx /J50.1) to 93.4% forgmBBx50.5J, where
the typical energy scale ofĤ8 becomes comparable toD.

FIG. 3. Local spin density for all sitesj of a spin chain with
nc55 as a function of time (f}t) during the one-qubit rotation

gate. ~a! A magnetic field constant over the cluster,Ĥ8

5gmBBxŜx , coherently rotatesu0& into u1& without leakage. Here,
f5gmBBxt/\. The coherent rotation is evidenced by the in-pha
rotation of all spins.~b!–~d! An inhomogeneous magnetic fiel

Ĥ85gmBB3,xŝ3,x effects the one-qubit rotation gate with high ga

fidelity if ugmBB3,xu!D. Here,f5gmBB3,xt(2u^1uŝ3,xu0&u)/\. The
gate fildelity decreases from 99.8% to 93.4% and 78.5% for
creasinggmBB3,x50.1J ~b!, 0.5J ~c!, and 1J ~d!, respectively. In
the local spin density, leakage is evidenced by high-frequency
cillations of neighboring spins, i.e., the excitation of magnons.
7-6
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Here U rot5T̂texp@2i *0
tmaxdt(Ĥ1Ĥ8)/\# with tmax

5h/(4u^1uŝx,3u0&ugmBBx) describes the time evolution du
ing a p rotation.

The decrease in gate fidelity with increasingB3,x can be
understood from the local spin densities@Figs. 3~b!, 3~c!, and
3 ~d!#. Although only the central spin is acted on byB3,x , for
ugmBB3,xu!D all spins of the spin cluster corotate with th
central spin due to the exchange field. The condit
ugmBB3,xu!D guarantees that the externally induced rotat
of the central spin is sufficiently slow that all spins of th
chain corotate in phase. ForugmBB3,xu of orderD, the rota-
tion of the central spin induced byB3,x is too fast for the
remaining spins of the chain to follow in phase@see, e.g.,
Fig. 3~c! for short times,f!1]. The spins of the chain no
longer rotate in phase and magnons are excited@Fig. 4~b!#.
Quantum gate operation probes the spin dynamics in
time and, hence, may provide new insight into the lo
energy physics of spin chains. That leakage is controlled
the parameterugmBB3,xu/D can be traced back to the exi
tence of a ground-state doublet.

To illustrate this point, we next contrast our results fo
system with antiferromagnetic exchange coupling and
ground-state doublet with a ferromagnetic chain with e
change couplingJ,0 in Eq. ~4!. For the ferromagnetic
chain, the ground state has degeneracync11. A computa-
tional basis could be defined also in terms of a subset of
ground-state multiplet forJ,0, e.g., by the statesuSz5
2nc/2& and uSz52nc/211&. Due to the (nc11)-fold de-
generacy of the ground-state multiplet, the system is m

FIG. 4. Time evolution of a stateuc(t)& with uc(0)&5u0& dur-
ing the one-qubit rotation induced by a spatially constant magn
field ~solid line! and a magnetic field acting only on the central sp
of the cluster~dashed and dashed-dotted lines! for nc55 as a func-
tion of time,f}t. The constant magnetic field effects the quantu
gate with 100% fildelity. In order to illustrate the effect of leaka
with increasing Zeeman energy for a spatially inhomogeneous

Ĥ85gmBB3,xŝ3,x , we assume thatĤ8 is switched on instanta
neously att50. ~a! For gmBB3,x50.1J ~dashed line!, the inhomo-
geneous magnetic field still effects the one-qubit rotation w
99.8% fidelity. ~b! Leakage out of the computational basis,
2(u^0uc(t)&u21u^1uc(t)&u2), remains smaller than 0.3%. In con
trast, for gmBB3,x50.5J ~dashed-dotted lines!, i.e., comparable to
D.0.72J, the fidelity is only 93.4% and leakage is of order 7%
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prone to leakage than the antiferromagnetic systems con
ered here because quantum mechanical selection rule
longer prevent transitions from the computational basis
other states in the ground-state multiplet.

D. XY-like chains

Our considerations have so far been focused on an iso
pic exchange coupling which is found, e.g., for coupl
quantum dots.5 However, spin cluster qubits could not on
be realized in such artificial superstructures. Rather, a w
variety of spin–1/2 chains in which magnetic ions a
coupled by an exchange interaction has been synthesiz33

The control of single ion spins in a molecule or solid
which the ions are rather closely spaced is even more c
lenging than the control of a single spin in a quantum d
Defining a qubit in terms of the collective state of a sh
spin chain will make it substantially simpler to address q
bits. However, in contrast to coupled quantum dots, the
change coupling in many spin chains found in nature
anisotropic.33 Hence, we next turn to a discussion of anis
tropic chains,J'ÞJz .

For oddnc , the spectrum still exhibits a ground-state do
blet of Ŝz eigenstates with eigenvalues6\/2, respectively.
However,Ŝ2 is no longer a good quantum number. Both f
J'@Jz (XY-like systems! and J'!Jz ~Ising-like systems!,
u0& and u1& can be explicitly constructed.

We first consider theXY model withJz50 in Eq.~3!. By
the Jordan-Wigner transformation,34 theXY chain is mapped
onto a system of noninteracting spinless fermions on a lat
with spatially varying hopping amplitudes,

Ĥ52
J'

2 (
j 51

nc21

f j~ ĉ j 11
† ĉ j1ĉ j

†ĉ j 11!, ~28!

where

ĉ j5expF ip(
k51

j 21 S ŝk,z1
1

2D G ŝj
2 ~29!

annihilates a Jordan-Wigner fermion at sitej. The problem is
thus reduced to calculating the one-particle eigenener
and eigenstates of Eq.~28!. The one-particle Hamiltonian ha
(nc21)/2 pairs of states with negative and positive ene
7Ei , respectively, which are related to each other by st
gering of the wave function,

ei
65~ei ,1 ,6ei ,2 ,ei ,3 ,6ei ,5 , . . . !, ~30!

whereei , j are real numbers. In addition, there is one eige
state

e0}S 1,0,2
f 1

f 2
,0,

f 1f 3

f 2f 4
,0, . . . ,6

f 1f 3••• f nc22

f 2f 4••• f nc21
D , ~31!

with energy eigenvalue 0. The ground-state doublet of
XY chain corresponds to the lowest (nc21)/2 and (nc
11)/2 Jordan-Wigner fermion levels filled. Similarly to th
spin chain with isotropic exchange interactions, one-qu
gates can be realized by magnetic fieldsBz(t) andBx(t). By

ic

ld
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numerical exact diagonalization of small spin chains (nc

59), we have shown thatu^1uŜxu0&u remains of order 1/2 for
various set off j @e.g., f j[1, f j5 sin (jp/nc)], such that the
operation time for the one-qubit rotation gate is only limit
by \/D. An isotropic interqubit couplingĤ* 5J* (t) ŝnc

I
• ŝ1

II

for two-qubit gates still translates into the effective Ham
tonian in Eq.~11!. With Eqs.~30! and ~31!, from the com-
pleteness relation ( i 51

(nc21)/2(ei , j
121ei , j

22)1e0,j
2 51 for j

51, . . . ,nc and ŝj ,z5ĉ j
†c j21/2, one can calculate all ma

trix elements entering the effective coupling Hamiltoni
Eq. ~11!,

^0uŝnc ,zu0&5
e0,1

2

2
, ~32!

u^1uŝnc ,xu0&u5
e0,1

2
, ~33!

wheree0,1 is the first component of the normed one-partic
eigenstate defined in Eq.~31!. In particular, for f j[1,

^0uŝnc ,zu0&51/(nc11) and u^1uŝnc ,xu0&u51/A2(nc11).
Due to the anisotropy of the intrachain exchange coupli
Ĥ* ~which is isotropic in the single-spin operators! translates
into an effectiveXXZ Hamiltonian in the two-qubit produc
basis. Nevertheless, theCNOT gate can still be realized ac
cording to Eq.~14!. For the anisotropic chain, a magnet
field applied along an axisn translates into a rotation aroun
the axis (nx ,ny ,nz/2u^1uŜxu0&u) in the Hilbert space spanne
by $u0&,u1&%,

Ĥ85gmBBn•Ŝ.gmBB2u^1uŜxu0&u@nx~ u0&^1u1u1&^0u!/2

1nyi ~ u1&^0u2u0&^1u!/2#

1gmBBnz~ u0&^0u2u1&^1u!/2. ~34!

A one-qubit rotation around an arbitrary axis—e.g.,n1 in Eq.
~14!— hence requires appropriate rescaling of the magn
fields.16

E. Ising-like chains

In the Ising limit Jz@J' the ground-state doublet

u0&5u↑&1u↓&2•••u↑&nc
1O~J' /Jz!,

u1&5u↓&1u↑&2•••u↓&nc
1O~J' /Jz! ~35!

is separated from the next excited state by annc-independent
D;Jzmin(f j). In perturbation theory inJ' /Jz , for f j[1, the
matrix elements

u^1uŜxu0&u.
nc11

4 S 2J'

Jz
D (nc21)/2

,

u^1uŝnc ,xu0&u.
1

2 S 2J'

Jz
D (nc21)/2

~36!
13441
,

ic

decrease exponentially with system size becauseŜx andŝnc ,x

only flip one spin within the chain. Expanding the statesu0&
and u1& in powers ofJ' /Jz it follows that finite matrix ele-
ment of ŝ1,x andŜx betweenu0& and u1& occur only in order
(nc21)/2 in J' /Jz .35 Even for medium sized chainsnc
*9 andJ' /Jz,0.2, an isotropic interqubit coupling Hamil
tonianĤ* translates into an effective Hamiltonian, Eq.~11!,
of Ising form ~Fig. 5!. Because of the long gate operatio
times implied by Eq.~36! for the one-qubit rotation and, in
particular, theCNOT gate, only quantum computing schem
which require a small number of such operations36 appear
feasible.

In Fig. 5, for a chain withnc59, we compare our ana
lytical results~solid lines! for the matrix elementsu^1uŜxu0&u
and u^1uŝ1,xu0&u as functions of anisotropy with exact diago
nalization for the chain withf j[1 ~symbols!. Because ma-
trix elements of order unity imply quantum gate operati
times comparable to single spins, the results in Fig. 5 sh
that universal quantum computing based on a sequenc
one-qubit rotation andCNOT gates is feasible for a wide
range of spin cluster qubits.

F. Experimental realization

We illustrate the advantages of a spin cluster qubit form
by nc55 spinss51/2 in a one-dimensional array of quan
tum dots with diameterd.50 nm. For realistic parameters5

(J.10 KkB , J* .2.3 KkB , gmBB.0.7 KkB) and a mag-
netic field which decreases from its maximum valueBx at
the central site of the chain to 0.2Bx at sites j 52,4, the
operation time for one-qubit gates increases by a fac
1/2u^1u0.2ŝ2,x1 ŝ3,x10.2ŝ4,xu0&u.2.2 compared to a single
spin. The operation time for the square root ofSWAP gate is
increased by a factor of 1/(2u^0uŝ1,zu0&u)2.4 compared to
the single-spin qubit. However, the operation time for t
CNOT gate as defined in Eq.~14! is mainly determined by the
single-qubit operations of the sequence. Hence, for the m

FIG. 5. Transition matrix elementsu^1uŜxu0&u andu^1uŝ1,xu0&u as
a function of exchange anisotropy (J'ÞJz). The matrix elements
determine gate operation times for the one-qubit rotation andCNOT

gate. Diamonds show numerical results obtained fornc59 and spa-
tially constant exchange interactions,f j[1, in comparison with
analytical results~solid lines! @see Eq.~36!#.
7-8
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mum operation time of theCNOT gate we find 386 ps for spin
clusters instead of 165 ps for single spins. The decreas
decoherence time strongly depends on the microscopic o
of decoherence. From the heuristic argument in Sec. II A
find that the decoherence rate due to globally fluctuat
magnetic fields does not scale withnc and is equal to the one
of the single-spin qubit. Decoherence caused by fluctua
local fields scales linearly withnc . For a spin cluster qubi
with nc55, we estimate that the number of quantum ga
which can be performed during the decoherence time
creases by at most a factor of 10 compared to the single-
qubit. However, in contrast to single-spin qubits, magne
fields and exchange constants must be controlled only o
length scalesncd5250 nm and 2ncd5500 nm, respectively
instead ofd550 nm. This would allow one to control th
exchange interaction between neighboring clusters optica6

Note that, for the small clusters analyzed here,D is so large
that neither adiabaticity nor the requirement that the Zeem
energy andJ* be small compared toD provides a serious
restriction on quantum gate operation times.

Decoherence due to dipolar interactions is unimport
for electron spins in quantum dots with a typical distanced
550–100 nm, whereEdip @Eq. ~21!# is of order 10211KkB
5\/0.25 s. However, for P dopants in a Si matrix with
typical distanced5100 Å, Edip56.231027KkB5\/12 ms.
Recent experiments37 show that magnetic dipolar interac
tions are indeed among the most dominant decohere
mechanisms for P dopants in a Si matrix. The character
time scale for dephasing by dipolar interactions, 12ms, is
larger than realistic gate operation times by only a fac
102–103.38,39 However, for a spin cluster formed bync59
spins with a dominant nearest-neighbor exchange interac
the intercluster dipolar interaction energy is reduced co
pared to the one of single spins by a factor of 8; i.e.,
characteristic decoherence time for dipolar interactions
creases to 100ms.

III. SPIN CLUSTERS IN dÌ2

So far, our considerations have been restricted to s
chains. The main ideas discussed above apply to a m
larger class of antiferromagnetic systems with uncomp
sated sublattices. We illustrate next that quantum gates
feasible also if spinss51/2 are arranged in a two- or three
dimensional cluster. For definiteness, we restrict our at
tion to an isotropic exchange interactionJ.0.

A. Bipartite lattice

We first consider an odd number of spins arranged o
bipartite lattice with the number of sublattice sites differi
by 1, e.g., a rectangular lattice withL13L2 sites, whereL1,2
are odd. This two-dimensional lattice exhibits a ground-st
doublet.21 Similarly to the spin chain, the computational b
sis $u0&,u1&% can be defined in terms of theŜz eigenstates of
the ground-state doublet. Here,Ŝ is the operator of total spin
of the two-dimensional array. From a spin-wave ansatz
13441
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the elementary excitations, the energy gapD separating the
ground-state doublet from the next excited state can
estimated as

D.
Jp

min~L1 ,L2!
. ~37!

Because the characteristic features of the ground-state
blet carry over from the one- to the two-dimensional sp
cluster qubit, quantum computing with two-dimensional sp
arrays on bipartite lattices is possible with the techniqu
discussed in Sec. II A. Gate operation times are determi
by the matrix elementsu^0uŝj ,zu0&u5u^1uŝj ,xu0&u. For the 3
33 lattice shown in Fig. 6~a!, from exact diagonalization we
find ^0uŝj ,zu0&50.15 for sitesj in the center of the edges

^0uŝj ,zu0&50.23 for sitesj at the corners, and̂0uŝj ,zu0&
50.17 for the central site of the cluster. Similarly to the sp
chain, the ground-state doublet is robust against a sp
variation in the exchange constants as long as all excha
constants remain antiferromagnetic.

B. Geometrically frustrated systems

For nonbipartite lattices, a ground-state doublet is
guaranteed to emerge. The simplest example is the geom
cally frustrated system of three spinss51/2 shown in
Fig. 6~b!,

Ĥ5J~ ŝ1• ŝ21 ŝ1• ŝ31 ŝ2• ŝ3!

5
J

2 S Ŝ22
9

4D , ~38!

which has a fourfold degenerate ground state with ene
eigenvalueE520.75J. The eigenstates can be chosen a

FIG. 6. Two-dimensional spin clusters. Each dot represen
single-spin qubit.~a! The spin cluster qubit scheme is readily e
tended from spin chains to any bipartite lattice.~b! Spin arrays with
frustrated bonds have a highly degenerate ground state~fourfold
degeneracy for three spins!. ~c! If the frustrated bonds are part of
larger array, the high degeneracy is usually lifted and a ground s
doublet remains.
7-9
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FLORIAN MEIER, JEREMY LEVY, AND DANIEL LOSS PHYSICAL REVIEW B68, 134417 ~2003!
u0&5~ u↑↑↓&2u↑↓↑&)/A2,

u1&5~ u↓↑↓&2u↓↓↑&)/A2,

u2&5~2u↑↓↓&2u↓↑↓&2u↓↓↑&)/A6,

u3&5~2u↓↑↑&2u↑↑↓&2u↑↓↑&)/A6. ~39!

As demonstrated in Ref. 40, these states could still defin
logical qubit robust against certain sources of decohere
However, quantum gate operation would always require c
trol over single exchange interactions or local magne
fields and exclude quantum computing with control para
eters which vary slowly in space.

Geometrical frustration does, however, not in general r
out the existence of a ground-state doublet. In the more
neric case that geometrically frustrated bonds are part
larger system@Fig. 6~c!# or the exchange constants in Fi
6~b! are not all equal, a ground-state doublet emerges. In
case, the logical states of the spin cluster qubit again ca
defined in terms of theŜz eigenstates of the ground-sta
doublet and quantum gate operation is possible with m
netic fields and exchange constants varying slowly over
cluster. For systems as shown in Fig. 6~c!, in which some
bonds are frustrated,D is usually smaller than in the case
bipartite lattices. For example, for Fig. 6~c!, D50.157J com-
pared toD50.991J for Fig. 6~a!. According to the adiaba
ticity requirement, the small gap limits gate operation tim
more severely for the system in Fig. 6~c!.

C. Experimental realization

Because spin cluster qubits emerge also in tw
dimensional regular spin arrays, spin cluster qubits can
arranged in a plane if the positions of single spins can
controlled as, e.g., for lateral quantum dots@Fig. 6~a!#. For a
spin cluster qubit formed byL3L5nc quantum dots,D
}1/L. Decoherence due to globally fluctuating fields do
not increase withnc , whereas independent local Gaussi
white noise gives rise to a decoherence rate 1/tf}nc . Two-
dimensional spin cluster qubits are hence particularly in
esting for qubits in which decoherence is induced mainly
global rather than local fluctuating fields.

More importantly, a spin cluster qubit can be defined ev
for a wide range of systems in which the positions and
change constants cannot be accurately controlled.
P-atom electron spins in a Si matrix, because of rapid os
lations of the exchange coupling between atoms at large
tances, placement of atoms with lattice spacing precisio
required for single-spin qubits.38 Without this precision, the
exchange interaction at large distances vanishes with a p
ability of 50%. In contrast, for spin cluster qubits formed
a small number~e.g., 3! of P dopants located close to ea
other, the spin defining the logical state of the qubit is de
calized over the cluster. The effective exchange coupling
tween neighboring qubits obtained by integration of the
change interaction over the clusters is finite with a h
probability. Because the intracluster exchange interactio
small distances varies strongly with distance,38 for a random
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arrangement of three spins, the exchange couplings will
fer with high probability and the system is not frustrated.

IV. LARGER SPINS

So far, our considerations have been restricted to clus
formed by spinss51/2. We next consider antiferromagnet
systems with larger spinss.1/2.

A. Antiferromagnetic molecular clusters

Only very recently it has been shown theoretically th
Grover’s algorithm can be implemented with ferromagne
molecular magnets using a unary encoding.41,42 In view of
universal quantum computing, ferromagnetic clusters suc
the molecular magnets Mn12 and Fe8 ~Ref. 43! suffer from
the large net spin which usually means large matrix eleme
coupling the spin to the environment and, hence, short de
herence times.

In contrast, in antiferromagnetic systems, such as vari
ring compounds,43 the spins couple such that they form
small total magnetic moment. Antiferromagnetic cluste
which have unequal sublattice magnetization will in gene
have a ground-state multiplet rather than the singlet fou
for systems with compensated sublattice spins.44 Several an-
tiferromagnetic molecular magnets comprised of spins w
quantum numbers larger than 1/2 have been synthesize
date45–49 including several compounds with uncompensa
sublattice spins.50 As a paradigm, we consider systems wi
isotropic exchange interactionJ, but allow for an easy or
hard axis single-spin anisotropy,

Ĥ5Jŝ1• ŝ21kz~ ŝ1,z
2 1 ŝ2,z

2 !. ~40!

Here s1 and s25s161/2 are the spin quantum numbers
the two sublattices, respectively,J.0 is an effective ex-
change constant, andkz the single ion anisotropy. Equatio
~40! has a ground- state doublet$u0&,u1&% of Ŝz5 ŝ1,z1 ŝ2,z
eigenstates with eigenvalues6\/2, respectively. Becaus

@Ŝz ,Ĥ#50 for the Hamiltonian Eq.~40!, the logical qubit
basis states have an expansion of the form~for s2
5s121/2)

u0&5 (
m152s111

s1

am1
um1,1/22m1&

5a2s111u2s111,s121/2&

1a2s112u2s112,s123/2&1•••1as1
us1 ,2s111/2&

~41!

in terms of the spin product basis. Fors1,2@1, analytical
expressions can be derived both for the action of a magn
field ~one-qubit rotation gate! and for the action of an inter
qubit coupling Hamiltonian~two-qubit gates! between clus-
ters I and II,

Ĥ* 5J* ~ t !ŝ2
I
• ŝ1

II , ~42!
7-10
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within a coherent-state path integral formalism.51,34 We only
state the main results of our calculations here. Further de
are given in Appendix C.

B. Hard-axis systems

For strong hard-axis anisotropykz.0 and kzs1,2
2 /J@1,

the spinss1 ands2 lie close to thex-y plane for both states o
the ground-state doublet. A large contribution in the exp
sion, Eq.~41!, comes from the statesum150&um251/2& and
um150&um2521/2&, respectively. For illustration, fors1
53, s255/2, andkz /J50.2, by numerical diagonalizatio
of Eq. ~40!, we find

u0&50.25U3,2
5

2L 20.41U2,2
3

2L 10.52U1,2
1

2L
20.52U0,

1

2L 10.42U21,
3

2L 20.24U22,
5

2L . ~43!

The stateu1& is obtained byum1 ,m2&→u2m1 ,2m2& on the
right-hand side of Eq.~43!. In agreement with the semiclas
sical theory, a major contribution to$u0&,u1&% comes from
states with smallm1 andm2.

In the following, we restrict our attention to systems wi
large anisotropykz(s1

21s2
2)/J@1. Then,D.J ~Appendix C!

and

u^1uŜxu0&u51/4,

u^1uŝ1,xu0&u5s1/2,

u^1uŝ2,xu0&u5s2/2. ~44!

In particular, Eq.~42! translates into the effective Hami
tonian

Ĥ* 5J* u^0uŝ1,zu0&uu^0uŝ2,zu0&uS 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D
1

J* s1s2

2 S 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

D ~45!

in the two-qubit product basis. As discussed in Sec. II A,
CNOT gate can be realized with a unitary time evolution go
erned by this effective qubit coupling of theXXZ form.

Matrix elements of order unity in Eq.~44! show that, e.g.,
a magnetic fieldBx efficiently rotates the stateu0& into u1&.
This is not a priori evident given the rather complicate
representation of the ground-state doublet in the single-
product basis@Eq. ~41!#. The large matrix elements arise b
cause, for bothu0& and u1&, the spins lie close to thex-y
plane in the hard-axis system.
13441
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C. Easy-axis systems

For kz,0, configurations with spins aligned along thez
axis are energetically favorable. We restrict our attention
systems with large anisotropy 4ukzu(s1

21s2
2)/J@1. Because

a transition from u0& to u1& requires a rotation of both
spins through a large energy barrier, from the theo
of spin quantum tunneling in antiferromagnetic sy
tems52,53 we find that u^1uŜxu0&u,u^1uŝ1,xu0&u,u^1uŝ2,xu0&u
}exp@2A8ukzu(s1

21s2
2)/J#!1 are exponentially small

Similarly to a spin chain in the Ising limit~Sec. II E!, the
easy-axis system is a candidate for quantum compu
schemes as suggested in Ref. 36.

The analytical results for the matrix elements discus
here are compared with numerical exact diagonalization
s157 in Fig. 7. We find good agreement with our semicla
sical results.

D. Experimental realization

Single-molecule electrical switches54–57 have nourished
hopes that, in the future, it will be possible to down sca
computers to the level at which bits or qubits are represen
by single molecules. The results in Secs. IV B and IV
show that, in such bottom-up approaches aiming at a uni
sal quantum computer, control is not required at the leve
single-atom spins but only on the scale of molecule spins
particular, molecular magnetic clusters with an effective s
S51/2 define a qubit. One-qubit quantum gates could
effected, for example, by a magnetic tip as used in magn
force microscopy.58 The spatial resolution of these tech
niques currently lies in the range of 10–100 nm~Ref. 59!
and approaches the typical size of molecular magn
clusters.43

Control of the exchange interaction between molecule
challenging. As has been demonstrated recently,55,56the elec-
trical conductivity of individual molecules can be switche
between two states in a controlled way. By connecting m
lecular magnetic clusters by reversible redox switches
could also switch intercluster exchange paths. Alternativ
if the relative position of molecular magnetic clusters can
controlled, the intercluster exchange interaction can
switched on and off via the overlap of electron orbital wa
functions by moving clusters relative to each other.

FIG. 7. Matrix elements of spin operators of a qubit formed
two spins with spin quantum numberss157 ands256.5. Numeri-
cal data~symbols! obtained from exact diagonalization are in goo
agreement with analytical results~solid lines!.
7-11
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V. CONCLUSION

In conclusion, we have shown that quantum computing
possible with a wide variety of clusters assembled from
tiferromagnetically coupled spins which form an effecti
total spinS51/2. For arrays of spinss51/2, the existence o
a spin cluster qubit requires little control over the placem
and intracluster coupling of the spins and the spatial dim
sion of the array. This remains true for a wide range of s
tems with uncompensated sublattice spins differing by 1
We have shown explicitly that, for the spin cluster qub
initialization, quantum gate operation, and readout are p
sible with the techniques proposed and analyzed for sin
spins. The scaling of the decoherence time with system
strongly depends on the microscopic decoherence me
nism. Spin cluster qubits are particularly promising in situ
tions where decoherence is induced mainly by globally fl
tuating fields during quantum gate operation and
decoherence rate of the spin cluster qubit is comparabl
that of a single-spin qubit or for systems in which magne
dipolar interactions are the dominant decoherence me
nism. The main advantage of spin clusters compared
single spins is that requirements on local control of magn
fields and exchange interactions can be traded for longer
operation times. We have illustrated the feasibility and
vantages of spin cluster qubits for arrays of quantum dot
dopants in a Si matrix, and molecular magnetic clusters.

In contrast to single spins, spin clusters are not intrin
cally two-state systems and leakage during quantum gate
eration must be accounted for. For the one-qubit rotat
gate, we have shown that leakage is small if the magn
field which induces the rotation is switched on and
adiabatically or if the Zeeman energy remains small co
pared toD.

Finally, we note that, because any qubit can be map
onto a spins51/2, the results of this work do not only app
to quantum computing proposals based on spin degree
freedom but to any quantum computing scheme. More s
cifically, for any qubit for which methods for initialization
quantum gate operation, quantum error correction, and r
out have been identified, a cluster qubit can be formed
coupling several qubits. For the cluster qubit, initializatio
quantum gate operation, quantum error correction, and r
out are possible using the same techniques as for the orig
qubit.
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APPENDIX A: EFFECTIVE EXCHANGE HAMILTONIAN

Here, we derive explicitly the effective coupling Hami
tonian in Eq.~11! from Eq. ~10!. The first and second term
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in Eq. ~11! result fromJ* (t) ŝnc

I
• ŝ1

II in the microscopic cou-

pling. Decomposingŝnc

I
• ŝ1

II5 ŝnc ,z
I ŝ1,z

II 1( ŝnc

I1ŝ1
II21 ŝnc

I2ŝ1
II1)/2

in terms of spin ladder operators, one can readily evalu
the matrix elements in the two-qubit product basis. Becau
by definition, Ŝzu0&5(\/2)u0& and Ŝzu1&5(2\/2)u1& and
ŝnc ,z

I ŝ1,z
II conserves thez component of total spin in each clus

ter separately, it follows that

I^0u II^1uŝnc ,z
I ŝ1,z

II u1& Iu0& II50. ~A1!

Similarly, all other off-diagonal elements ofŝnc ,z
I ŝ1,z

II vanish.

Because of

I^0uŝnc

I6u0& I5 I^1uŝnc

I6u1& I50, ~A2!

the transverse exchange interactionJ* (t)( ŝnc

I1ŝ1
II2

1 ŝnc

I2ŝ1
II1)/2 has finite matrix elements only between t

statesu0& Iu1& II and u1& Iu0& II . This completes the proof tha
the intercluster exchange termJ* (t) ŝnc

I
• ŝ1

II leads to the first

and second terms in Eq.~11!.
It remains to show that a possible change in intraclus

exchange interaction constants during two-qubit gate op
tion, J* (t)( j 51

nc21(v j
I ŝj

I
• ŝj 11

I 1v j
II ŝj

II
• ŝj 11

II ), only leads to a
term proportional to1 in Eq. ~11!. This term conserves al
components of the total spin of clusters I and II,

F Ŝa
I , (

j 51

nc21

v j
I ŝj

I
• ŝj 11

I G50, ~A3!

for a5x,y,z and similarly for II. Hence, all off-diagona
matrix elements such asI^1uv j

I ŝj
I
• ŝj 11

I u0& I vanish. Finally,

becauseu1& I5ŜI2u0& I52Ŝx
I u0& I , with Eq. ~A3!,

I^1u II^0uJ* ~ t ! (
j 51

nc21

v j
I ŝj

I
• ŝj 11

I u1& Iu0& II

5 I^0u II^0u2Ŝx
I J* ~ t ! (

j 51

nc21

v j
I ŝj

I
• ŝj 11

I 2Ŝx
I u0& Iu0& II

5 I^0u II^0uJ* ~ t ! (
j 51

nc21

v j
I ŝj

I
• ŝj 11

I ~2Ŝx
I !2u0& Iu0& II

5 I^0u II^0uJ* ~ t ! (
j 51

nc21

v j
I ŝj

I
• ŝj 11

I u0& Iu0& II .

~A4!

In the second line of Eq.~A4! we have invoked that
$u0& I ,u1& I% belong to one spin-1/2 doublet; the third line the
follows from Eq. ~A3!. With a similar argument it can be
shown that all diagonal matrix elements in the two-qu
product basis are equal andJ* (t)( j 51

nc21(v j
I ŝj

I
• ŝj 11

I 1v j
II ŝj

II

• ŝj 11
II ) translates into a termJo(t)1 in the effective coupling

Hamiltonian, Eq.~11!.
Finally, we prove Eq.~13! which implies that, for isotro-

pic intracluster exchange interactions, the effective two-qu
7-12
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Hamiltonian is also of Heisenberg form. For simplicity, w
omit the label I of the spin cluster qubit in the following. I
order to formally calculatê0uŝnc ,zu0& and u^1uŝnc ,xu0&u, we
define the spin operators

Ŝa85Ŝ2 ŝnc ,a5 (
j 51

nc21

ŝj ,a ~A5!

of all but the outermost spinj 5nc of the cluster. Generally
u0& can be expanded as

u0&5auC&u↑&1buF&u↓&, ~A6!

where uC& and uF& describe the normed states of the le
mostnc21 spins in the array anda andb are real numbers
BecauseŜzu0&5(\/2)u0&, uC& anduF& are eigenstates ofŜz8

with eigenvalues 0 and\, respectively.Ŝxu0&5(\/2)u1& is
an Ŝz eigenstate with eigenvalue2(\/2), such thatbuF&5

2aŜ18 uC& and

u0&5a~ uC&u↑&2Ŝ18 uC&u↓&),

u1&5a~Ŝ28 uC&u↑&2~12Ŝ28 Ŝ18 !uC&u↓&),

a5
1

A11^CuŜ28 Ŝ18 uC&
. ~A7!

From Eq.~A7! we calculate

^0uŝnc ,zu0&52^1uŝnc ,zu1&5
1

2

12^CuŜ28 Ŝ18 uC&

11^CuŜ28 Ŝ18 uC&
,

^1uŝnc ,xu0&5
1

2

12^CuŜ28 Ŝ18 uC&

11^CuŜ28 Ŝ18 uC&
, ~A8!

which proves Eq.~13!.

APPENDIX B: ISOTROPIC CHAIN WITH SPATIALLY
VARYING EXCHANGE INTERACTION

The local spin density in the energy eigenstates of Eq.~3!
depends sensitively on spatial variations of the exchange
teraction @Fig. 2~d!#. Whereas forf j[1 ~solid lines! the
magnetization density in each of the sublattices increase
ward the center of the chain,60 the opposite behavior is ob
served for an exchange interactionf j5 sin (jp/nc) ~dashed
lines!. In the limit f 15 f nc21!minj52, . . . ,nc22f j , the in-
crease of local spin density toward the ends of the chain
be understood quantitatively. The ground-state doublet of
spin cluster qubit can be constructed explicitly from t
ground-state doublet$u0&nc22 ,u1&nc22% of the chain with the

outermost spins removed. ForJ f1 much smaller than the
energy gapDnc22 of the chain formed by thenc22 central
spins, the coupling of the outermost spins can be trea
perturbatively. For the chain with centrosymmetric exchan
couplings,f j5 f nc2 j , from the ansatz
13441
n-

to-

n
e

d
e

u0&5a1u↑&u1&nc22u↑&1a2u↑&u0&nc22u↓&

1a3u↓&u0&nc22u↑&1O~J f1 /Dnc22!, ~B1!

we find (a1 ,a2 ,a3)5(2,21,21)/A6 for the ground state o
the chain withnc spins and, hence,

lim
f 15 f nc21→0

u^0uŝ1,zu0&u51/3. ~B2!

APPENDIX C: LARGE SPINS

The matrix elements in Eq.~44! can be calculated from
coherent-state spin path integrals.51 We focus on strong easy
plane systemskz.0 and kz(s1

21s2
2)/J@1. Following the

standard approach for antiferromagnetic systems, the p
tion function of the two-spin system is expressed as a p
integral over the Ne´el vectorn and homogeneous magnet
zation l defined bys15s1n1 l ands252s2n1 l, wheren• l
50. Integrating outl in a saddle point approximation an
parametrizing

n5S sinu cosf

sinu sinf

cosu
D , ~C1!

the Euclidean action of the system can be written as52,53

LE5
\2

2J
~ u̇21 sin2u ḟ2!1kz~s1

21s2
2! cos2u

1 iDs\ḟ~12cosu!, ~C2!

where the last factor accounts for the differenceDs5s2

2s1 of the spin quantum numbers andḟ5]tf is the imagi-
nary time derivative. In the limit of strong anisotrop
kz(s1

21s2
2)/J@1, Eq.~C2! can be expanded to second ord

in u2p/2 and the fluctuations are integrated out, leading

Z5 E Df expS 2 E
0

\b

dt LE@f#/\ D , ~C3!

with an effective Euclidean Lagrangian

LE@f#5
\2ḟ2

2J
1 iDs\ḟ. ~C4!

After continuation to real time, by a canonical transformati
we obtain the Hamiltonian of the system in terms of the N´el
vector operator,

Ĥ5
J

2\2
~ p̂f2\Ds!2, ~C5!

where

n̂5S cosf̂

sinf̂

0
D , l̂5

1

2 S 0

0

p̂f /\2Ds
D , ~C6!
7-13
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and p̂f is the momentum operator conjugate to the in-pla
polar anglef, @ p̂f ,f̂#52 i\. By inspection of Eq.~C5!,
we find that the spin system, Eq.~40!, has been mappe
onto the Hamiltonian of a particle on a ring thread
by a magnetic flux}Ds. In particular, for half-integerDs,
Na

w-

B

r-
ys

c-

13441
ethe Hamiltonian has a ground-state doublet$u0&,u1&%
with wave functions c0(f)5exp@i(m11)f#/A2p
and c1(f)5exp(imf)/A2p, where m5 bDsc. From
ŝ1,x.s1cosf̂ and ŝ2,x.2s2cosf̂, one immediately obtains
Eq. ~44!.
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