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First-principles relativistic theory of the magnetic response of paramagnetic metals:
Application to yttrium and scandium
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We describe a first-principles theoretical formalism for the magnetic response of paramagnetic metals in
which all relativistic effects such as spin-orbit coupling are included. In particular, theeasy axisand depen-
dence upon wave vectorq of the paramagnetic spin susceptibilityx(q) can be calculated. To illustrate we
apply the method to two transition metals, yttrium and scandium. In each case we findx(q) to peak at a wave
vectorq5(0,0,0.57)p/c, coincident with a Fermi surface nesting vector, and to have an easy axis perpendicu-
lar to q. Sincex(q) plays a key role in determining the interaction between magnetic impurities in these
metals, these results are consistent with thehelical antiferromagnetic order found in many dilute rare-earth Y
alloys. Conversely, the easy axis for the response to a uniform magnetic field,q50, lies along thec axis.

DOI: 10.1103/PhysRevB.68.134412 PACS number~s!: 75.40.Cx, 71.15.Rf, 71.20.Be, 71.20.Eh
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I. INTRODUCTION

A useful tool for studying metallic magnetism is the par
magnetic spin susceptibility,x(q). It determines the re-
sponse of a paramagnetic metal to a magnetic perturba
For materials which order magnetically at low temperatur
a study ofx(q) for their higher temperature paramagne
phases indicates the type of magnetic order to be found
low the magnetic transition temperatures. The precursor
fluctuations are described. If the greatest value ofx(q) is at
q5(0,0,0), as ina-Fe, for example, ferromagnetic order
expected below the Curie temperature.1 A peak forx(Q) at
some finiteq5Q, on the other hand, signifies a more com
plicated antiferromagnetic~AF! structure with a modulation
wave vector equal toQ as found in, say, Cr.2 For metals
which do not possess magnetic order at any tempera
x(q) shows how the system reacts when doped by sm
concentrations of magnetic impurities.

If relativistic effects upon the motion of the itinerant ele
trons are neglected, the paramagnetic spin susceptibilit
independent of the orientation of the applied magnetic fi
with respect to any crystalline axis of the material. On
however, relativistic effects are included, the spin and orb
motion of the electrons are coupled and the spin rotatio
symmetry is broken, giving a preferred direction oreasy axis
to the magnetic response of the system. An example o
phenomenon which may be explained by a quantitative
scription of this effect is the relatively large anisotropic pa
magnetostriction observed in some nearly magnetic met3

When a magnetic field is applied to a cubic paramagnet s
as Pd, PdRh, a strain is set up. The volume component
be explained quite straightforwardly in terms of the volum
dependence of the spin susceptibility obtained from a n
relativistic theory. The anisotropic~shape! paramagnetostric
tion, however, requires spin-orbit coupling effects to
included.3

In this paper we describe a ‘‘first-principles’’ theoretic
formalism for the magnetic response of paramagnetic me
0163-1829/2003/68~13!/134412~5!/$20.00 68 1344
-

n.
s,

e-
in

re,
ll

is
d
,
l

al

a
e-
-
s.
ch
an

-

ls

in which all relativistic effects such as spin-orbit couplin
are considered. We show that theeasy axisand its depen-
dence upon wave vectorq for the magnetic response can b
calculated. We present specific calculations of the magn
response of the transition metals yttrium and scandiu
These case studies provide useful preparation for invest
tion of the magnetic response of the conduction electron
rare-earth materials. Here the indirect exchange interact
which connect the localized 4f magnetic moments are typi
cally described as Ruderman-Kittel-Kasuya-Yosida~RKKY !
like and depend uponx(q) of the conduction electrons.4

Although yttrium and scandium are not lanthanides, th
do have several aspects in common with the heavier r
earth ~RE! metals. Both Y and Sc have similar hexagon
close packed~hcp! crystal structures and electronic config
rations apart from thef electrons@i.e., 3d14s2 ~Sc!, 4d15s2

~Y!, and 4f 75d16s2 ~Gd!# to the rare-earth elements. The
also have similar electronic band structures near the Fe
energy.5 Consequently, the topology of the Fermi surfaces
Y and Sc is similar to those of the RE’s.5 The salient feature
is thewebbingthat contains flat parallel sheets perpendicu
to thec axis leading to a strong Fermi nesting effect.6 High
quality samples of yttrium are more easily come by than
heavy rare earths and recent experiments8 have measured
directly the ‘‘webbing’’ feature of its Fermi surface. Thi
strong Fermi nesting is thought to drive the helical antifer
magnetic ordering that many RE metals~i.e., Tb, Dy, Ho, Er!
display, whereby the moments typically align in the ba
plane and rotate their orientations in successive pla
around thec axis. The anisotropic crystal field of the heavi
lanthanides acts on the 4f electrons, which in turn deter
mines the orientation of the local moments. The lack of m
netic moments~no f electrons! excludes magnetic ordering i
pure Y and Sc. However, when Y is alloyed with very sm
amounts of magnetic impurities as low as;0.5%,7,9,10 the
result is helical antiferromagnetism with nesting vector clo
to that of Y.

The outline of this paper is as follows. In the next secti
©2003 The American Physical Society12-1
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we describe our theory for the paramagnetic spin suscept
ity in which relativistic effects are included. Following som
calculational details we then discuss our study of the wa
vector dependence and easy axis of the magnetic respon
both yttrium and scandium. The relation to the topology
the Fermi surfaces is shown. Since our formalism inclu
the effects of the Fermi-Dirac distribution on the effecti
single-electron energies, the calculated susceptibilities ha
temperature dependence which we also show. In the fi
section we draw some conclusions and indicate what m
be expected from future studies of rare-earth materials u
this formalism.

II. RELATIVISTIC, PARAMAGNETIC, SPIN
SUSCEPTIBILITY

We begin by considering a paramagnetic metal subjec
to a small, external, inhomogeneous magnetic fie
dbext(r ), and obtain an expression for the induced magn
zation dm(r ). We use relativistic density-functional theor
~RDFT! ~Ref. 11! for finite temperatures12 to treat the inter-
acting electrons of the system and derive an expression v
variational linear-response approach.13–15Although there are
a number of nonrelativistic studies of this type16 here we
include relativistic effects and pay particular attention to
magnetic anisotropy of the response. From our RDFT st
ing point we make a Gordon decomposition of the curr
density11 and retain the spin-only part of the current, name
the spin magnetizationm(r ). This results in aspin-onlyver-
sion of RDFT,11 in which the self-consistent solution o
Kohn-Sham-Dirac equations is sought, i.e.,

†cã•p̂1b̃mc211̃Ve f f@r,m#2b̃s̃•be f f@r,m#2«‡

3G~r ,r 8;«!51̃d~r2r 8! ~1!

which describes the motion of a single electron through
fective fields and ã and b̃ are Dirac 434 matrices.
G(r ,r 8;«) is the one-electron Green’s function and t
charger(r ) and magnetization densitiesm(r ) can be written
in terms of it, i.e.,

r~r !52TrE d« f ~«,m,T!
Im

p
G~r ,r ;«!,

m~r !52Tr b̃s̃E d« f ~«,m,T!
Im

p
G~r ,r ;«!, ~2!

where m is the chemical potential,T the temperature, and
f («,m,T) the Fermi-Dirac function. These expressions a
equivalent to sums over Fermionic Matsubara frequen
vn5 i (2n11)pkBT.17 This equivalence can be exploited
the design of computational schemes for calculating s
temperature-dependent quantities. The effective poten
Ve f f@r,m# consists of the usual combination of external p
tential ~from the lattice of nuclei!, the Hartree potential, an
functional derivative of exchange-correlation ener
Exc@r,m# with respect tor while the effective magnetic field
be f f@r,m# is the sum of any external magnetic field~from
13441
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magnetic impurities, for example! and the functional deriva-
tive of Exc with respect to magnetization. We use the loc
density approximation~LDA ! ~Ref. 18! for Exc . The leading
relativistic effects contained in the Kohn-Sham-Dirac Ham
tonian of Eq.~1! are the well-known mass-velocity, Darwin
and spin-orbit coupling effects.

If a small external fielddbext is applied along a direction
n̂ with respect to the crystal axes of a paramagnetic syst
a small magnetizationdm(r ) and effective magnetic field
dbe f f are set up. The effective magnetic field is given
dbe f f@r(r ),m(r )#5dbext(r )1I xc(r )dm(r ) where I xc(r ) is
the functional derivative of the effective exchange and c
relation magnetic field~within the LDA! with respect to the
induced magnetization density. The Green’s function satis
ing Eq.~1! can be expanded in a Dyson equation in terms
the unperturbed Green’s function,Go(r ,r 8;«) of the para-
magnetic system (dbe f f50) and perturbationb̃s̃.dbe f f and
the first-order terms enable the magnetic response functio
be obtained.

For a general crystal lattice withNs atoms located at po
sitions al( l 51, . . . ,Ns) in each unit cell, a lattice Fourie
transform can be carried out over lattice vectors$Ri%. This
can be written

x n̂~xl ,xl 8
8 ,q!5xo

n̂~xl ,xl 8
8 ,q!1(

l 9

Ns E xo
n̂~xl ,xl 9

9 ,q!

3I xc~xl 9
9 !x n̂~xl 9

9 ,xl 8
8 ,q!dxl 9

9 , ~3!

where thexl are measured relative to the positions of ato
centered onal . The noninteracting susceptibility of the stat
unperturbed system is given by

xo
n̂~xl ,xl 8

8 ,q!52~kBT!Tr b̃s̃•n̂(
n
E dk

nBZ
Go~xl ,xl 8

8 ,k,m

1 ivn!b̃s̃•n̂Go~xl 8
8 ,xl ,k1q,m1 ivn!. ~4!

The integral is over the Brillouin zone with wave vectorsk,
q, andk1q within the Brillouin zone of volumenBZ . The
sum is over the Fermionic Matsubara frequencies. T
Green’s function for the unperturbed, paramagnetic sys
containing the band-structure effects is obtained via rela
istic multiple-scattering@Korringa-Kohn-Rostoker~KKR!#
theory.19 We solve Eq.~3! using a direct method of matrix
inversion. The full Fourier transform is then generated

x n̂~q!5~1/V!(
l

(
l 8

eiq•(al2a
l 8
8 )

3E dxlE dxl 8
8 eiq•(xl2x

l 8
8 )x n̂~xl ,xl 8

8 ,q!, ~5!

whereV is the volume of the unit cell. Some aspects of t
numerical methods used to evaluate Eqs.~3!–~5! of this type
can be found in Refs. 15 and 20. Note that this expression
the noninteracting susceptibility can be shown to be forma
equivalent to one of the familiar type
2-2
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xo
n̂~q!}E dk(

j , j 8

uM j , j 8~k,k1q,n̂!u2f k, j~12 f k1q, j 8!

« j 8
n̂

~k1q!2« j
n̂~k!

,

~6!

where j and j 8 are electronic-band indices,« j
n̂(k) a single-

electron energy, M is a matrix element, and f k, j

5 f „« j
n̂(k),m,T…, the Fermi-Dirac function.

The important feature of the response function@Eqs.~3!–
~5!#, is its dependence on the direction of the magnetic fi
n̂. This vanishes for the nonrelativistic version of the form
ism since it is caused by spin-orbit coupling. A measure
this anisotropy is given as the difference in the nonintera
ing susceptibility when an external magnetic field is appl
in two directions with respect to the crystal axes, i.e., (xo

n̂1

2xo
n̂2). The anisotropy of the full susceptibility (x n̂12x n̂2)

can be calculated from Eq.~3!. The approach presented he
is applicable to ordered compounds and elemental me
and can be modified to study disordered alloys15 owing to its
KKR multiple-scattering framework. In the next section w
describe calculations of the magnetic response of the 4d hcp
metal yttrium and in order to gauge the importance of th
relativistic effects with atomic number, we compare our c
culations with those for Y’s lighter 3d counterpart Sc.

III. WAVE-VECTOR DEPENDENCE
AND EASY AXIS OF THE MAGNETIC RESPONSE

OF YTTRIUM AND SCANDIUM

We use atomic sphere approximation~ASA!, effective
one-electron potentials and charge densities in the calc
tions for Y and Sc with experimental lattice constantsa
56.89, c510.83 anda56.24, c59.91, respectively, in
atomic unitsa0.21 The details of the electronic structure
using a fully relativistic KKR method compare well wit
those from full-potential calculations.22 The Fermi surface
for Y in the H-L-M-K plane is shown in Fig. 1~a!. It shows
two relatively flat parallel sheets. The nesting vectorqinc
5p/c(0,0,0.57) is indicated by the arrow. Figure 1~a! is in
very good agreement with previous calculations6 and
experiments.8,23 Dugdale et al.8 have recently carried ou
positron annihilation Fermiology experiments and measu
qinc5p/c(0,0,0.5560.02) for Y. Also, Vinokurovaet al.23

measured qinc'p/c(0,0,0.58). We find a similar
Fermi surface for Sc with the same nesting vectorqinc
5p/c(0,0,0.57), also in good agreement with earl
calculations.24

Our calculations of the enhanced static susceptibility,
fined by Eq. ~3!, show a peak at this same wave vec
qinc5p/c(0,0,0.57) for both Y and Sc. This is shown in Fi
1~b!, where we probe wave vectors along thec axis fromG
to A. @The special point A for hcp crystal structures
(0,0,p/c).# Results are shown for a temperature of 100 K
these calculations.

In terms of polar and azimuth anglesu,w the direction is
written n̂5(sinu cosw,sinu sinw,cosu). For hcp systems
such as Y or Sc, if an external magnetic field is applied alo
the n̂5(0,0,1) direction, i.e., thec axis, where (u,w)
13441
d
-
f
t-
d

ls

e
-

la-

d

r

-
r

r

g

→(0,0), xo
z is produced. On the other hand,xo

x is the re-
sponse of the system when the field is applied in theab
plane, n̂5(1,0,0) and (u,w)→(p/2,0). Figure 2~a! shows
the anisotropyxo

n̂(q,u,w)2xo
z(q) as a function ofu for Y

and Sc atqinc and qo.(0,0,0). We find the anisotropy o
this linear-response function to be invariant inw so that the
magnetic response is insensitive to the direction along wh
an external magnetic field is applied in theab plane. Asu is
increased, an anisotropy is observed which reaches a m
mum atu5p/2 as shown in Fig. 2~a!. In fact, we observe
that the anisotropy takes the rather simple form

xo
n̂~q,u,w!2xo

z~q!5@xo
x~q!2xo

z~q!#•uq̂3n̂u2 ~7!

for hcp crystal structures25 (uq̂3n̂u5sinu). It is therefore
sufficient to showxo

x(q)2xo
z(q), to determine the easy axe

of the magnetic response. Figure 2~b! shows the weak tem
perature dependence of the anisotropy of Y and Sc at b
the nesting vectorqinc and also atqo.(0,0,0). As expected
the anisotropy is an order of magnitude larger for Y than
Sc. This difference is a result of spin-orbit coupling bei
more pronounced in the heavier 4d metal Y than in the 3d
Sc. We infer that a still greater but similar anisotropy shou
be evident in the magnetic response of the 5d conduction
electrons in the heavier still RE materials.

IV. CONCLUSION

It is apparent from Figs. 1 and 2 that Y shows its strong
response at the wave vectorqinc which corresponds to the

FIG. 1. ~a! Cross section of the webbing Fermi surface in t
H-L-M-K plane for Y. The nesting vector is indicated by the arro
The special point L lies at the center.~b! The enhanced susceptibi
ity for Y and Sc along theG-A direction forT5100 K. For wave
vectorsq close toA the gradient of the function diminishes and
zero atA.
2-3
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Fermi Surface~FS! nesting and that the response here
strongest to magnetic fields directed in the basalab plane.
This is consistent with onset of long-range helical an
ferromagnetic ordering found in very dilute rare-ea
yttrium alloys such as Tb-Y, Dy-Y, and Ho-Y.7 A simple
description can be given in terms of the indirect Ruderm
Kittel-Kasuya-Yosida~RKKY ! exchange interaction.4 Here
the localized 4f moments of the RE impurities interact v
the conduction electrons of yttrium whose magnetic prop
ties are described by the spin susceptibilityx(q). Since
x(qinc) has an easy axis perpendicular toqinc a helical in-
commensurate antiferromagnetic structure is favored for
magnetic impurities.

FIG. 2. ~a! The anisotropy as a function ofu for Y and Sc at
qinc5p/c(0,0,0.57) andqo.(0,0,0) and atT5100 K. ~b! The
temperature dependence of the anisotropy of Y and Sc at both
nesting vectorqinc andqo .
l

ys
.
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Potential future applications of this magnetic respon
formalism include studies of more concentrated RE-Y allo
and also the RE elements themselves. The 4f electrons
would need to be considered explicitly andx(q) used to
describe their coupling to the conduction electrons. T
Gd-Y alloy system presents an interesting range of behav
Pure gadolinium has a ferromagnetic phase with the e
axis along thec axis so that in the paramagnetic phase
higher temperaturesx(q) should peak atq5(0,0,0). More-
over, its FS has been observed not to possess a web
feature.26 Some recent experiments26 have shown that adding
more than around 30% Y to Gd changes the topology of
Fermi surface of the paramagnetic phase and the webbin
observed again. This is coincident with the alloys’ formin
helical AF states at lower temperatures. Calculations ofx(q)
above the Ne´el temperature should then peak at this nest
vector. Moreover, in this concentration range, neutr
diffraction10,26 has shown that application of a modest un
form magnetic field along thec axis can lead to a ferromag
netic alignment of the Gd moments along thec axis. Once
the magnetic field is switched off the system reverts to
helical AF state. This suggests that the alloys’x(q)’s and
anisotropies are similar to those shown in Figs. 1~b! and 2~a!
but with the relative peak heights ofx(q) at q5(0,0,0) and
qinc to be finely balanced.

In summary, we have described anab initio theoretical
formalism to calculate the relativistic static paramagne
spin susceptibility for metals at finite temperatures. Sin
relativistic effects such as spin-orbit coupling are includ
we can identify the anisotropy oreasy axesof the magnetic
response. We applied this formalism to the 4d metal Y and
for comparison with the lighter 3d Sc. The enhanced susce
tibility for both these metals displays a peak at the inco
mensurate wave vectorqinc5(0,0,0.57p/c), traceable to a
FS nesting feature found in the calculated electronic str
ture and Fermiology experiments.8,23 The anisotropy results
for both Y and Sc indicate that the easy axis atqinc lies in the
basal plane, while forq5(0,0,0) is parallel to the crystalc
axis.
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