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Temperature dependence of lattice vibrations and analysis of the specific heat of graphite
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In the semicontinuum model of lattice vibrations in graphite proposed by Komatsu and Nagamiya, the
expressions of the dispersion relation contain the elastic constanisC,,, C13, Cs3, C44, and«x and the
interlayer spacing as parameters, wheop «? is the bending elastic constant of a graphite layer aisithe
density. We improve this semicontinuum model by taking these parameters as a function of temperature. For
the parameters except we use the experimental data already known and the relations derived fromahem.
is determined by fitting the calculated specific heat to the experimental one. The experimental specific heat for
single-crystal graphite is derived by evaluating the data reported in the literature. With the vatudcf
determined, the improved semicontinuum model can explain the experimental specific heat well in the tem-
perature range below 350 K. Thendecreases more rapidly with increasing temperature than the other elastic
constants; this result means that softening of the out-of-plane vibrations occurs. It is suggested that the
softening is closely related to the negative thermal expansion parallel to the layer planes. The calculated
Grineisen constants are compared with the experimental ones. The second derivative of the specific heat curve
with respect to temperature gives information on the frequency distribution function of lattice vibrations. From
the analysis of the low-temperature specific heat, the valugé,gfat room temperature is determined to be

0.425x 10 dyn/cn?.
DOI: 10.1103/PhysRevB.68.134305 PACS nuniber63.20.Dj, 65.40.Ba
[. INTRODUCTION the suitable values of parameters, can well explain the spe-

cific heat below 20 K. As the temperature increases above 20
It is well known that the forces between the atoms inK, however, if the same parameters are used, the calculated
graphite are extremely anisotropic; those between adjacespecific heat values by the model deviate gradually from the
basal planes are about two orders of magnitude smaller thaaxperimental ones.
the forces between neighboring atoms in the same plane. The The elastic constants and the interlayer spacing change
strong anisotropy of the forces affects the lattice vibrationswith temperature, which is due to the anharmonicity of the
For the lattice vibrations of graphite, a number of theoreticabotential energy. As a result, the dispersion relation of lattice
and experimental studies have already been madeOf  vibrations should change with temperature. In the present
these, the semicontinuum model proposed by Komatsu angaper, we improve the semicontinuum model by taking the
Nagamiy&2is the only one that has succeeded in expressmodel parameteré.e., the elastic constants and the inter-
ing the dispersion relation of lattice vibrat_ions analytically. layer spacingas a function of temperature. Incidentally, in
The model has been used o calculate various physical profre pebye model of lattice vibrations in isotropic solids, the
erties, such as S.pgﬁc'ﬂc heat *hermal CO.”d“e%}g'gﬁ temperature dependence of the frequency distribution func-
glegﬁlsg;ﬁgg séféc’t:gﬁr?:rl];"%rguor% ag;t?gélffz ah d ?Il?:r- tion is such that the Debye characteristic temperaorehe
: port prop : Debye frequencychanges with temperatuf&-*¢For all pa-

moelectric powel‘? rameters excepk, we use the experimental data alread
In the semicontinuum model of graphite, the lattice vibra- P, W : P . y
nown and the relations derived from them. Sinceannot

tions are separated into three modes; the in-plane longitud|- . .
b b d ’_Ee measured by the conventional mechanical methods, we

nal mode, the in-plane transverse mode, and the out-of-plal e ) .
mode. The expressions of the dispersion relation contain thE€€rmine it as a function of temperature by fitting the cal-
culated specific heat values to the experimental ones.

elastic constant€;, C4», Cq3, Ca3, Cys, and « and the ) .
interlayer spacing as parameters, whemp«? is the bend- We derive the s_pecn‘lc heat v_alues that are proper to
ing elastic constant of a graphite layer ands the density. single-crystal graphite by evaluating the specific heat data
The usefulness of a lattice vibration model can be evaluatetgported in the literature, and formulate them. The formu-
by comparing the calculated specific heat values by théated data are adopted as the experimental specific heat val-
model with the experimental ones. Komatsu calculated théles for fitting.

specific heat by using the semicontinuum model vitf, The improved semicontinuum model, if we assume the
C.4, and x as adjustable parameters and determined thedemperature dependence af determined in the present
parameters so as to fit the calculated values to the experimeanalysis, can explain the specific heat well in the temperature
tal ones for various kinds of graphite specimens below 2Gange below 350 K. The introduction of temperature depen-
K.2%24Thus, he showed that the semicontinuum model, withdence into the model parameters extends the temperature
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range in which the semicontinuum model is applicable fromwherew is the angular frequency is the wave vector, and
below 20 K to below 350 K. the subscriptd, t, and c refer to the in-plane longitudinal
The present analysis predicts thatlecreases more rap- mode, the in-plane transverse mode, and the out-of-plane
idly with increasing temperature than the other elastic conmode, respectively:;; andv, are the wave velocities and are
stants; this means that softening of the out-of-plane vibratiogiven by using the elastic constarg as follows:
occurs. We suggest that the rapid decreasewith tempera-
ture is related to the contraction of tleespacing, i.e., the 2\ 11/2
negative thermal expansion parallel to the layer planes below 1( _ C_BH
: ; ; Cu , (4)
about 650 K. It is conceivable, however, that the inadequacy P Css
of the model results in the unusual temperature dependence
of k. Whether the predicted decreasexaf physically valid 1 12
or not should be tested by experiments, such as neutron scat- vt:[_(cﬂ_ Clz)} ) (5)
tering, infrared reflection, electron energy loss spectroscopy, 2p
and x-ray and neutron Bragg reflection.
In addition, we calculate the Gmeisen constants and The two constantg andu are related to the elastic constants
compare them with the experimental ones. It is shown thaC;; as
the second derivative of the specific heat curve with respect
to temperature gives information on the frequency distribu- _
t. . . . . . p§— C44 (6)
ion function of lattice vibrations. From the analysis of the
low-temperature specific heat, the valueQyf, at room tem- and
perature is determined to be 0.4250' dyn/cnt.

=

c’pu?=Cgs, )
Il. THE SEMI-CONTINUUM MODEL . . . . .
OF KOMATSU AND NAGAMIYA Whezre_p is the voll_Jme den_sny andis the mterlaye_r spacing.
cpk” is the bending elastic constant of a graphite layer.
Komatsu and Nagamiya proposed the semicontinuum The frequency distribution function®er mo) D(w) for
model of the lattice vibrations of graphite, in which the the two in-plane modes are derived from the dispersion rela-
graphite crystal is assumed as an assembly of thin elastifons of Eqgs.(1) and(2):
plates equally spaced and with compressional and shearing
couplings between adjacent plateés.We summarize the Vv
semlcontln_uum_mod_el briefly. _ w<w,: D(w)=— zwsinl(—), 8)
The lattice vibrations of graphite are almost completely 7CU;
separated into three kinds of modes; namely, the in-plane
longitudinal mode, the in-plane transverse mode, and the

. . . . \% T
out-of-plane mode. The respective dispersion relations are 0=, D(o)=——o05, 9)
given by mcoi 2
where
2_ 2,2 2y 4 7% iR % 1
o =vi(G+ay)+ Zsim| ==, ) 112 112
¢ _25__ &‘ (10)
w;= C = C2 .
47 . ,[cq
wi=vi(ai+q)) + ?SIHZ(TZ), (20 The subscripi indicates! andt for the longitudinal mode

and the transverse mode, respectively, &hdis the molar

volume.
. 5[ €0 Similarly, the frequency distribution functiofper mo)
2_ 2,2 (2\2 2 Mz 2, 42 f
0= K (Gt dy) "+ 4p sz( 2 )+£(qx+qy), @ for the out-of-plane mode is derived from E®):

2 2

—-1/2
1+ 4—52?) sir? 4 deo, (11

!
z

Jsinl{[1+(§2/4;<2w2)]1/2}[1 ( I
0

V w
D(w)=2—2—<—)

!
T KC\ w,
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w=w): C,4 values obtained by these mechanical measurements have
been considered to be much lower than the intrirSig
;2o\ 1?2 value because of the existence of mobile basal dislocations.
P ( 1+ 4K2w2) Therefore, when the dislocations were pinned by doped bo-
te] R ; 0
ron atom&® or defects produced by neutron irradiatfor!
w2 w, 2 2\t -1z the C44 value at room temperature increased rapidly up to a
X fo -1 ( + 4K2w2) sif¢|  de, saturation value of approximately 04A0" dyn/cnf. On
the other hand, from the analysis of the specific heat at low
(12 temperatures, th€,, value for natural graphite was esti-
mated to be 0.2810'dyn/cnf by Bowman and
KrumhansP! and 0.40% 10 dyn/cn? and 0.452
, Cas| 12 X 10'* dyn/cnt by Komatsu?®?* Then, from the analysis of
w,=2u= 2( grp) (13 neutron scattering measurements, @e value at room tem-
perature for HOPG was deduced to be (&4R2)
The Debye frequencyp, for each mode is obtained from X 10'* dyn/cn? by Dolling and Brockhouse and (0.46
+0.02)x 10 dyn/cn? by Nicklow et al** Thus, theCyy,
value at room temperature has not yet been determined un-
ambiguously. As stated in Sec. VI, we determine from the

) ' ) analysis of the specific heat at low temperatures that the in-
whereN, is Avogadro’s numbery/No=(3v3/4)a°c, anda  ginsic C,, value at room temperature is 0.425

is the nearest neighbor atomic spacing in the layer plane. y qqtt dyn/cr.

In graphite the unit cell has four atoms and therefore the - gaster and Fritz measured changes of ultrasonic transit
lattice vibrations consist of three branches of acoustic modegnes in HOPG as a function of temperature between 4 and
and nine branches of optical modes. On the other hand, in theng K and calculated the temperature dependence of five
present semicontinuum model it is assumed that the graphitgastic constante.. .52 Hwang measured sound velocities
layer is a thin elastic plate and the virtual unit cell has ON&jong thec axis 0}’ HOPG between 4 and 325 K with an
atom. As a result, there are three branches of vibrationgljyasonic pulse-echo phase comparison method and deter-
modes as described above. Under the condition oflEf),  yined the temperature dependenceCaj with considerable
however, the total number of vibrational modes belonging G ccuracy® On the other hand, Roy measured the tempera-
all the branches in the semicontinuum model is equal to thaf, o dependence of the Ioﬁgitudinal phonon frequency.
in graphite. The optical modes in graphite are treated as 'E)ropagating along the axis, in pyrolytic graphite with a
they were merely elastic waves of very short wavelength iny,qsaic spread of approximately 10° by neutron scattering

D(w)

where

waD(w)dw=No, (14)
0

the semicontinuum model. over a temperature range of 190 to 890“KThe measured
phonons correspond ,=0, q,=q"®, and w= w, of the
e o e R AL LS S out-of-plane mode in the present model, whefe= %+ q?
PARAMETERS

and q)*=m/c. From this measurement we obtai@s;

We improve the semicontinuum model by taking accounthrough Egs(3), (7), and(13). Brockhouse and Shirane mea-
of the temperature dependence of elastic constants and t&ered the temperature dependence of longitudinal and trans-
thermal expansion. The independent model parameter¥erse phonons along or near theaxis betwea 4 K and
which are functions of temperature, are the elastic constant500°C on HOPG of mosaic spread0.8°° The latter

Cy1, C12, Ci3, Ca3, Cas, and« and the interlayer spacing transverse phonons corresponddg=0, q,=q5*, and
c. We assume that the thermal expansion indtaxis direc- = w, of the present in-plane mode and gi®g, through Egs.
tion can be neglected so thep is independent of tempera- (1) or (2), (6), and(10). Then, Ross measured the longitudi-
ture. nal phonons along the axis on polycrystalline graphite at
temperatures up to 1920 €.
A. Elastic constants Based on the above several measurements, we have deter-
) ) ) mined the relative temperature dependenc€ gf.
Blakslee et al. determined five elastic constan®; at
room temperature of highly oriented pyrolytic graphite g<T<146 K:
(HOPG by ultrasonic, sonic resonance, and static test
methods!’ Their results foiC;; exceptC,4 have been widely Cay(T)
accepted as typical of the graphite single crystal. 7 f(T)=1.0-6.50x 10" 'T?, (15)

Reported values o 4, have varied considerably, depend- Cs3(0)

ing on the specimens and the method of measurement. Blak-

slee etal. obtained C,, values of (0.018-0.035) 146<T=1800 K:
X 10'* dyn/cnt at room temperature for HOP% Soule and

Nezbeda observed values of (0.013—0.2669' dyn/cnf Cay(T)
at room temperature for natural graphite single crystals by C;40)
the static-shear stress strain and the ultrasonic métibide (16)

=f(T)=1.0145-1.990< 10 *T+3.20x 107872,
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TABLE I. Physical constants of graphite at room temperature. tgined ax value of 3.8% 103 cn?/s from the specific heat

above 250 K by assuming,,=0.! Later, Komatsu obtained

1
Cu 106 ><1011: dyn/cr? anotherk of 6.11x 10 2 cn¥/s from the specific heat be-
Ci 18 ><1011a dyn/cn? tween 15 and 60 K with a calculate@,,.> Komatsu has
Cis 15 Xlolla dyn/cnf given no explanation for the adoption of two differenval-
Cas 3.65 Xlollb dyn/en? ues. We consider that varies with temperature. The relative
Cua 0.425 x 10" ] dyn/cnt change ofxk as a function of temperature is not necessarily
K 313 x10°° cnls the same as that @@;; . In the present analysis we assure
c 3.3544x 1078 cm as a parameter and determine its temperature dependence in
) 2.26 g/ent Sec. VI by fitting the calculated specific heat values to the
\Y, 5.30 cnt/mol experimental ones. Table | gives the values at room tempera-
v 2.16 x10°°¢ cm/s ture of the elastic constants and other physical quantities that
N 1.40 x10°¢ cm/s are used in the improved semicontinuum model.
¢ 1.88 x10w°¢ cn/s
w 1.20 x10%f st B. Thermal expansion
29
w,z 2"115 iig?’h ra(cji;s Bailey and Yates measured the thermal expansion coeffi-
“I’Z 2' 1o-12i r:Z/dS cients in thec- and a-axes directions of HOPG between 20
80 10 chrayn and 270 K% The thermal expansion coefficient in theaxis
. . l . _ . . .
aReference 47. 'Equation?). direction a; was abouty; of that in thec-axis directiona,
b . i over the whole temperature range of measurement. There-
Present analysis. 9Equatior(10).
c . h i fore, as stated already, we neglegtand take account af,
Equation(4). Equatior{13). only
d i i : .
Equation(S). Equation37). The thermal expansion coefficient in theaxis direction
€Equation(6).

as a function of temperature, which was obtained by Bailey

. and Yates, is formulated as follows:
whereT is the temperature.

The neutron scattering result shows that the relative temy<t<gg k-
perature dependence @f,, is nearly the same as that of

55
Cas.™ Hence, we assume that ao(T)=5.350< 107 °T2-3,755¢ 10 1113, (20)

SCAENE (17)
= ) < .
C40) 80=T=<273 K:
The measurement of ultrasonic transit times indicates tha&c(T)z2.4352<10*7T—7.690>< 10-10T24-8.875¢ 10 13T3.
the relative changes i@, andC,, as a function of tempera- (21)

ture are about of that in Cs3.%% The relative temperature

dependence of 3 is not clear, but it is probably intermedi- These formulas agree with their experimental data with a
ate between that o€3; and that ofC,; andCy,. SinceC,,  precision of 1%.

>C§3/C33 in Eq. (4), the temperature dependence; has The interlayer spacing in theaxis directionc is derived
only a negligible effect on this analysis. Here, we assumdy integrating the above thermal expansion coefficients, that
conservatively that the relative temperature dependence % ac=(1/c)(dc/dT), and substituting the interlayer spacing
C,5 is the same as that &,, and C,. Therefore, we as- Values at 4.2 KRef. 58 and at room temperaturé(in A):

sume that
0=T=80 K:

Cu(T) _ CiAT) _ Cyy(T) _ 1+f(T)
C11(0) Cyx0) Cy40) 2

Then, the elastic constant;;(T) at a temperaturd are
given by usingC;;(293) at 293 K as follows:

(18) c(T)=3.3360+5.95< 10 9T3—3.13x 10 1T, (22)

80=T=273 K:

f(T) c(T)=3.3355+4.061x 10" 'T?
Cij(293)| —=re for Csg and Cyy,
C.(T)= 0.95 —8.55x10 1013+ 7.65¢10 1°T%. (23
A 1+£(T)
Cij(293)( 1.959 ) for Cy1, Cip, and Cys. The a, andc above 273 K are derived by connecting Egs.

(19 (21) and(23) with the corresponding data above room tem-
perature, which were obtained by Nelson and Rifegtew-
The value ofx cannot be measured by using the conven-ard and Cook*®?and Morgarf®
tional mechanical methods, but it can be estimated from the
analysis of the specific heat. Komatsu and Nagamiya ob273<T<1000 K:
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— —5 — 9/ T _ Ly
a(T)=2.723< 10 °+3.32x10 %(T—-273 E(m):f ’2(1_msin2¢)1,2d¢_
~1.15¢ 10 (T-273?2, (24) °

Then, sincen<1, E(m) is approximately given B}
c(T)=3.3526+9.128<10 >(T—273 +6.81

1 3 5
10~ 9(T— 2_q 12 3 L PR S ey T
10 °(T—273°—1.12x10 *AT—-273°, (25 E(m) 5 (1 Zm 64m 256m )

1000<T=2873 K: The temperature dependenceaf and{ is given by
a(T)=2.734X10 °+2.41x 10 (T-273 ol = 0!(293) (f(T)g)(c(zga)””Z, 32
~1.00¢10 3¥T— 2732, (26) 0.9591 ¢(T)
c(T)=3.3527+9.166x 10" 5(T— 273 (= g(293)( (;(;5)9> (;(2—;)3)> . (33)
+5.29x10" %(T—273°2. (27

In Eq. (31), not only wp ¢ but alsox is included as the
unknown. To determine bothy . and , another condition
in addition to Eq(31) is necessary. The condition we choose
1. In-plane modes is that the calculated specific heat values agree with the ex-
perimental ones. The procedure to determine kath, and
d x is stated in Sec. VI.

Since wp > w,>{/2x, EQ. (31) is expressed approxi-
mately by

C. Debye frequency

The Debye frequencies of the in-plane longitudinal an
transverse modeep ; (i=1,t) are given by the following
equation, which is derived either from E@8), (9), and(14),
or from the total number of modes within the volume en-
closed withq,= 7/c, q,= — w/c, and the frequency surface vV

w=wp; in the wave vector space: meYCQNO, (34)
5| w3 - = 2) = N,. 29) which is useful for estimation obp ;. and «.
4mCu; 2

L IV. CALCULATION OF SPECIFIC HEAT
Here, V/c is independent of temperature. The temperature

dependence of; and w, is as follows: The calculated specific heat which should be compared
with the experimental specific heat at constant pressure is the

1+f(T)\ [ c(T) \]¥? sum of the lattice specific heat at constant volume, @he

vi=v;(293 ( 1959 )(c(ZQS)” - (29 —c, correction, and the electronic specific heat, whee
' —C, is the difference between the specific heat at constant

F(T) | c(293)| Y2 pressure and that at constant volume.
“’2(293)H0 959)( o) ” 40
A. Lattice specific heat at constant volume
2. Out-of-plane mode The lattice specific heat at constant volu@g for each

_ mode is calculated by using its respective frequency distri-
The Debye frequency of the out-of-plane modg ;. is  pution functionD(w) and Debye frequencyp :®°
given by the following equation, which is derived either

from Egs.(11), (12), and(14), or from the total number of op[iw\? kT
modes within the volume enclosed with,==/c, q, C,= f
=—m/c, and the frequency surface=wp ¢ in the wave

mD(a))dw, (35)

vector space: wherek is the Boltzmann constant arfdis the Planck con-

5 1o stant divided by 2. The calculatedC, for the in-plane lon-

\4 ) 1+ ¢ { °N gitudinal, the in-plane transverse, and the out-of-plane mode
Zmwc| 7o Mene Ak sz . 2k will be referred to a<C;, C,, andC,, respectively.
(31
B. C,—C, correction
where
The differenceC,— C, can be obtained from general ther-
( o, 2 L 2 )1 modynamical conS|derat|ons as follo@fs:
m wp ¢ * 4k? wD c aiVT

and Co=Com— (36)
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where «, is the coefficient of volume expansion arng, V. EVALUATION OF SPECIFIC HEAT DATA
~a, in the present model. The temperature dependence of FOR SINGLE-CRYSTAL GRAPHITE
a. is given in Sec. Il B. ThenK is the compressibility and

_c ; . . ) A considerable amount of experimental work has been
is given by using the elastic compliancgs:

done on the low-temperature specific heat of
graphite?®®”"9-"®The experimental results, however, have
C11F C1p#2C33~4Cy3 shown a significant difference between different types of
(C11+C1)Ca3—2CH; graphite specimens, which differ in the degree of stacking
(387)  faults, the crystallite size, and/or the impurity concentration.
It has been established that, at low temperatures, the specific
heat values of more imperfect graphites are larger than those
of pure and structurally perfect graphite. On the other hand,
KwK(Z%)(ﬁj (39) at high temperatures above room temperature, there is no
f(T) significant difference in the specific heat between different
types of graphite specimen§.®
and We estimate the intrinsic specific heat proper to single-
crystal graphite, viz. pure and structurally perfect graphite,
c(T) which should be compared with the calculated specific heat
c(293 /" in the present analysis. We have evaluated almost all the data
reported in the literature and chosen the following data for
estimation of the intrinsic specific heat.

K=2(S11+ S12) + S35+ 4S,5=

The temperature dependencekoindV is as follows:

V=V(293 ( (39

C. Electronic specific heat

From the specific heat measurement below 1.2 K of natu- (1) 0.4-2.0 K: Data on Madagascar natural graphite mea-
ral Madagascar graphite, van der Hoeven and Keesom déured by van der Hoeven and Kees®m.

duced the electronic specific he@f of a pure single crystal (2) 1.3-20 K: Data on Canadian natural graphite mea-
of graphite[in xJ(mol K)1:57 sured by DeSorbo and Nichof3.
(3) 9.7-17 K: Data on atrtificial polycrystalline graphite
C.=13.8T. (40)  (pile graphite measured by DeSorbo and Nichéts.

(4) 20-120 K: Data on Ceylon natural graphite measured
by DeSorbd’?

(5) 40—300 K: Data on artificial polycrystalline graphite
Acheson graphitemeasured by DeSorbo and Tylér.
" (6) 300—1800 K: JANAF Thermochemical Tabl€s.

Since it is difficult to deduce experimentally the electronic
specific heat above 2 K, we calculate it from the density of
states near the Fermi level in the electronic energy ban
Using the density of states given by Wallace’s three-
dimensional band mod&%, Komatsu and Nagamiya calcu-

lated the electronic specific heat per mol: In the temperature range between 0.4 and 300 K, first, we

plot the experimental raw data in ti@, vs T plane, and
draw a smooth curve so that it runs through the data points.

~2Ng (7 7 P T\ 35 Then, we subdivide the temperature range into several sub-
Ce= — || =5k T+5.41 —|k°T : :
V3a2\yg/| 3 V1 ranges. In each subrange we fit a polynomialTirto the
smooth curve under the boundary conditions that not only
N 7t i KAT3 4. 41 the absolute values of the polynomials but also their first and
30 4% ' (41) second derivatives with respect Toare continuous at the

boundaries between adjacent subranges. The choice of sub-
wherey, is the resonance integral between nearest neighborsinges and the curve fitting are tried by the trial-and-error
in the plane, andy, is that between nearest neighbors in method. Then, in the final stage of data evaluation and fit-
adjacent planes. Putting,=3.11eV andy;=0.385eV ting, we refer to the result of the present analysis. The poly-
(¥4l y1=25eV) (Ref. 69 into Eq. (41), we have[in xJ/  nomials thus obtained are shown in Table Il. The values of

(mol K)] these polynomials are continuous at the boundaries between

adjacent subranges with an accuracy of 0.1%, and their first

Co=11.0T(1+1.16x10 3T+2.6X10 "T2+--+). and second derivatives are continuous with an accuracy of
(42) 1%.

In the temperature range between 300 and 1800 K, we
We combine the experimental result of E40) at low tem-  adopt the specific heat data given in JANAF Thermochemi-
peratures with the calculated temperature dependence in thel Tables.” They are not the experimental raw data, but
bracket of Eq.(42), and assume that the electronic specificalready evaluated data at 100-K intervals. All the JANAF
heat is given as a function of temperature as folldivs data for this temperature range can be expressed as a single

uJi(mol K)]: polynomial inT of degree 4. The absolute value of this poly-
nomial is continuous to the low-temperature one at 300 K.
Ce=13.8T(1+1.16x10 3T+2.6xX10 'T?+---). However, its first and second derivatives are not continuous

(43 to the low-temperature ones. Hence, we subdivide the tem-

134305-6



L-SOEVET

TABLE Il. Formulation of the experimental specific heat values for single-crystal graphita J(mol K). C,=ay+a; T+ a,T?+a3T3+a,T*+agT°, whereT is the temperature in
K and coefficientsa; are given below.

T (K) Qo a; a, ag a, as

0.4-1 0 1.39149x10°° —7.73968 x 107”7 3.00339 x107° —2.47272x10°° 0

1-35 3.22746x10° 7 1.35965 x10 ° —1.84848 x10°° 3.20928 x10°° —3.66711x10°© 2.05568 X 10’
3.5-12.5 1.37472x10°* —1.58926 x10™* 8.76411 x10°° 7.96100 x10°° —2.64028%x10°7 4.53855 x10°°
12.5-18.5 1.64368<10°3 —8.30203 x10°*4 2.04144 x 1074 —1.90377 x10°© 1.44304x10°7 —2.08333x10°°
18.5-35 —2.16046 X102 4.72346 X102 —3.16882 x10° 4 2.19573x10°° —3.84143%x10°7 2.36843 x10°°
35-65 1.33496x 107! —1.68193 x107?2 8.82944 x 1074 —1.15240 X 10°° 8.36137x10°8 —2.45865 x 10710
65-118 —4.67327 X 1072 —2.31051x10°8 417331 x10°* —4.07465x10°° 2.41736x10°8 —5.65008 x 10!
118-185 —2.95247 x107! 1.047 67 X102 1.107 14 1074 —2.83816 X107 1.25295x10° —2.97510 x 107 *?
185-222 1.909 46010 —4.763194 107 4.967 278108 —2.432 463107 ° 6.02145% 1078 —6.017 76810 11
222-300 7.12404x 1071 —1.34372 %1072 2.84242 x10°* —5.92401 x10° 7 8.74120x 10 % 6.68213 x10 13
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510-620 —1.446 12K 107 1.158 705¢ 1¢° —3.439530x 103 5.104 493 10°© —3.671931x10°° 1.00100% 1012
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760—1000 —5.828 411x 10" 3.611 08810 ! —7.127680x 104 7.347 00 1077 —3.83610% 10710 8.038670x 10
1000-1800 5.752 91x 10° 2.65547 X102 —1.29297 x10°° 2.15489x10°° 0 0
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perature range into several subranges, and determine the 12 o A I U LML
polynomials fitted to the JANAF data in the respective sub-
ranges under the boundary conditions that both the values
and the first and second derivatives of the polynomials are -
continuous to the low-temperature ones and between sub-
ranges. The polynomials obtained are shown in Table II.
They fit the JANAF data at 100-K intervals with an accuracy
of less than 0.6% and the continuity of their first and second
derivatives is very satisfactory. However, because the data
available for evaluation are scarce, the polynomials above
300 K have some ambiguity. In particular, the oscillatory
behavior of the second derivatives seems to be artificial. We
conclude that the intrinsic specific heat of single-crystal
graphite is given by the polynomials of Table Il, although the
polynomials above 300 K are not so well established.

K (10"3 cm?/ s)
\'

(3]
T

VI. DETERMINATION OF & BY FITTING
OF CALCULATED SPECIFIC HEAT 3r
VALUES TO EXPERIMENTAL ONES

L0 el L P
1 10 100

As wp . is related tox in Eq. (31), the only unknown in Temperature (K)

the present analysis is Practically, howeverk andwp, . are
determined simultaneously. Then, as stated in Sec. lll A, the g, 1. Temperature dependence wof Parameters ar€,, at
value of Cy, at room temperature,,(293) is uncertain, room temperature.

ranging from 0.013 to 0.4610 dyn/cnf. Therefore, after

assigning a trial value taC44(293), we determinex and The values of x calculated with C,(293)=0.425
wp. In the following, we assume that the experimental x 10'* dyn/cnf are formulated as follow&n cnf/s).
specific heat values are given by the polynomial formulas of

Table II. 0=T=44.5 K:
The procedure to determine battandwp, ¢ is as follows. . ovs
First, we estimate the approximate valuescaind wp, . In k=5.265<10 3—9.45< 10" T3, (44)

the low-temperature region, the calculated specific heat val-

ues is almost independent af, .. Therefore, the approxi- 44.5<T<120 K

mate value ofx can be obtained by fitting the calculated

specific heat values to the experimental ones only if a trial k=5.113x10"°+1.021x 10" °T—2.290

high valge is assu_med f(b;[,,C . Then, the approximate value X 10™ T2+ 7.69x 101073, (45)

of wp ¢ is determined using Edq34). We proceed from the

low-temperature region to the high-temperature region with =120 K-

step-by-step increase of temperature. In the high-temperature

region, the approximate values efand wp, . are estimated «=1.0990< 10 2—1.3830< 10~ 3In T. (46)

from their low-temperature values and E&4). Secondly,

starting with the approximate values efand wp ., we de-  Above 50 K, the decreasing rate efwith increasing tem-

termine the final values of andwp, . self-consistently under perature is much larger than that ©f; .

the two conditions such that E@31) is satisfied and the The final calculation of the specific heat values is made by

calculated specific heat agrees with the experimental one. using the above formulas of. Tables Il and IV show the
Figure 1 shows the temperature dependencex afith  calculated specific heat values, which are compared to the

C.4(293) as a parameter. In the temperature range above Sxperimental ones given by the formulas of Table II. In the

K, the temperature dependencerofs almost the same for temperature range below 350 K, the calculated values agree

different C,,(293) values. Below 50 K, however, the tem- with the experimental ones with an accuracy of less than 1%.

perature dependence of differs markedly for different Above 350 K, the calculated values become smaller than the

C44(293) values. If C4(293) is smaller than 0.425 experimental ones.

X 10 dyn/cn?, when the temperature approaches to abso-

lute zero,« increases rapidly. On the contraryGf,,(293) is VIl. DISCUSSION

larger than 0.42% 10 dyn/cn?,  decreases rapidly. Such a

rapid change ink near absolute zero cannot be accepted

physically®? Thus, based on this specific heat analysis at low

temperatures, we conclude unambiguously Baf(293) is The usefulness of a lattice vibration model can be evalu-

0.425< 10" dyn/cn. ated by comparing the calculated specific heat values by the

A. Models of lattice vibrations and calculated results
of specific heat

134305-8
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TABLE Ill. Calculated specific heat values of graphite for€8<10 K. C,, C;, andC. are the lattice specific heat at constant volume
due to the in-plane longitudinal, the in-plane transverse, and the out-of-plane mode vibrations, respadviblgC,— C, correction and
C. is the electronic specific heat. Observed value€ pfare from Table 1.

T C C, C. A Ce CalculatedC, ObservedC,
(K) [mJfmol K)] [mJ{mol K)] [mJ{mol K)] [mJ{mol K)] [mJ(mol K)] [mJ{mol K)] [mJ{mol K)]

0.4 0.000 021 0.000 049 0.001 708 0.000 000 0.005 523 0.007 30 0.007 30
0.5 0.000 041 0.000 097 0.003 322 0.000 000 0.006 904 0.01036 0.01036
0.6 0.000070 0.000 167 0.005714 0.000 000 0.008 286 0.014 24 0.014 24
0.7 0.000111 0.000 265 0.009 024 0.000 000 0.009 668 0.01907 0.01907
0.8 0.000 17 0.000 40 0.01339 0.000 00 0.011 05 0.0250 0.0250
0.9 0.000 24 0.000 56 0.01893 0.000 00 0.01243 0.0322 0.0322
1.0 0.000 33 0.00077 0.02579 0.000 00 0.01382 0.0407 0.0407
1.2 0.000 56 0.001 34 0.04386 0.000 00 0.016 58 0.0623 0.0623
1.4 0.000 89 0.002 13 0.06844 0.000 00 0.01935 0.0908 0.0908
1.6 0.001 33 0.00318 0.100 29 0.000 00 0.02212 0.1269 0.1269
1.8 0.001 90 0.004 53 0.14004 0.000 00 0.024 89 0.1714 0.1714
2.0 0.002 6 0.006 2 0.1883 0.0000 0.0277 0.225 0.225

2.5 0.0051 0.0122 0.3492 0.0000 0.034 6 0.401 0.401

3.0 0.0089 0.0211 0.5724 0.0000 0.0415 0.644 0.644

35 0.0141 0.0337 0.862 6 0.0000 0.0485 0.959 0.959

4.0 0.0212 0.0505 1.2234 0.0000 0.0555 1.351 1.351

4.5 0.0304 0.0724 1.657 3 0.0000 0.0624 1.823 1.823
5.0 0.042 0.100 2.167 0.000 0.069 2.38 2.38

6.0 0.074 0.176 3.418 0.000 0.083 3.75 3.75

7.0 0.120 0.287 4.988 0.000 0.097 5.49 5.49

8.0 0.184 0.437 6.885 0.000 0.111 7.62 7.62

9.0 0.267 0.635 9.118 0.000 0.125 10.15 10.15
10.0 0.371 0.883 11.693 0.000 0.140 13.09 13.09

model with the experimental ones. Komatsu calculated thenodel gives a valid approximation of lattice vibrations in the

specific heat by using the semicontinuum model v@tfy, region of low frequencies and small wave vectors, but it
C4,, and « as adjustable parameters and could determin®ecomes invalid for high frequencies or large wave vectors.
these parameters so as to fit the calculated values to the eA-more rigorous model of lattice vibrations should be based
perimental ones for various kinds of graphite specimens bedpon the Born—von Kanan approact 810~

low 20 K23?* The value ofC,, varied with the crystallite ~_ Al-Jishi and Dresselhaus calculated the phonon-
size or the degree of stacking faults of the specimens. Thu%lspersmn relations and the frequency distribution function

ape . PA s 8 -
the semicontinuum model, with the suitable choice of paramPY Utilizing a Born—von Kamen model-™ In their calcula- -
eters, can well explain the specific heat below 20 K. As thdion, interactions up to fourth-nearest both intraplane and in-

temperature increases above 20 K, however, if the same pic/Plane neighbors were considered and the force constants
ere determined from the experimental data on Raman, in-

:r?cr::jeetleése\i;eteuZ?SGJZﬁny?clfrw?;%dei%eecr:];:qceztta;t(;/r?éies by tk\%red, and neutron scattering measurements and the mea-
In th i h . d th . §ured elas_,tlc constantdTo calculate the frequencxdlstrlbu—
_'n the present paper, we have improve € SeMICONG,n function, the frequency range of 0—-1650 chwas
tinuum model by taking the model parameters as afuncUoraivided into 165 intervals of width 10 crt (i.e., about
of temperature. If we assume that the temperature depen-ggx 102 rad/s). We have calculated the specific heat by
dence ofx is given by Eqs(44)—(46), the improved semi- sing their frequency distribution function. The width of in-
continuum model can explain the specific heat well in theteryals, however, is too broad to calculate accurately the spe-
temperature range below 350 ®ables Il and IM. The  cific heat at low temperatures below 50 K. In the temperature
introduction of temperature dependence into the model paange from 50 to 1800 K, the calculated specific heat values
rameters extends the temperature range in which the semigree with the experimental ones with a precision of
continuum model is applicable from below 20 K to below about 2%.
350 K. Thus, the improved semicontinuum model can be
used more reliably below 350 K for the analysis of various B. Temperature dependence of lattice vibrations
physical properties than the previous model.
In the temperature range above 350 K, the calculated spe-
cific heat values by the improved semicontinuum model de- A conventional parameter to measure the temperature de-
viate gradually from the experimental ones. Namely, thependence of lattice vibrations is the Debye temperatre

1. Debye temperature

134305-9
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TABLE IV. Calculated specific heat values of graphite for<ID<500 K. Refer to the caption of Table IlI.

T C C, C. A Ce CalculatedC,, ObservedC,
(K) [Jmol K)] [Imol K)] [I(mol K)] [Jmol K)] [I(mol K)] [Imol K)] [Jmol K)]
10 0.000 371 0.000 883 0.011 693 0.000 000 0.000 140 0.013 09 0.013 09
12 0.000 65 0.001 54 0.017 90 0.000 00 0.000 17 0.0203 0.020 3
14 0.001 02 0.002 42 0.025 60 0.000 00 0.000 20 0.0292 0.029 2
16 0.001 48 0.00351 0.034 88 0.000 00 0.000 22 0.0401 0.0401
18 0.002 03 0.004 82 0.045 85 0.000 01 0.000 25 0.0530 0.0530
20 0.002 66 0.006 33 0.058 61 0.000 01 0.000 28 0.067 9 0.067 9
25 0.004 60 0.010 95 0.098 64 0.000 04 0.000 36 0.1146 0.1146
30 0.007 03 0.016 75 0.149 86 0.000 09 0.000 43 0.1742 0.1741
35 0.009 9 0.0237 0.2106 0.000 2 0.0005 0.245 0.245
40 0.0133 0.0317 0.2789 0.000 3 0.000 6 0.325 0.325
45 0.0171 0.040 8 0.3529 0.0005 0.000 7 0.412 0.412
50 0.0214 0.0510 0.4312 0.0007 0.000 7 0.505 0.505
55 0.026 2 0.062 4 0.5130 0.0011 0.000 8 0.603 0.603
60 0.0314 0.074 8 0.5977 0.0015 0.0009 0.706 0.706
65 0.0371 0.088 2 0.6850 0.001 9 0.0010 0.813 0.813
70 0.043 2 0.1028 0.7747 0.002 4 0.0010 0.924 0.924
75 0.049 8 0.1185 0.866 7 0.0030 0.0011 1.039 1.039
80 0.056 8 0.1353 0.961 2 0.0035 0.001 2 1.158 1.158
85 0.064 3 0.1531 1.058 0 0.004 1 0.001 3 1.281 1.281
90 0.072 3 0.1720 1.157 2 0.004 7 0.0014 1.408 1.408
95 0.080 7 0.1920 1.2589 0.0053 0.0015 1.538 1.538
100 0.089 6 0.2132 1.3630 0.006 0 0.0015 1.673 1.673
110 0.108 7 0.258 7 15783 0.007 5 0.001 7 1.955 1.955
120 0.130 0.309 1.802 0.009 0.002 2.25 2.25
130 0.152 0.363 2.033 0.011 0.002 2.56 2.56
140 0.177 0.422 2.270 0.013 0.002 2.88 2.88
150 0.204 0.485 2.512 0.014 0.002 3.22 3.22
160 0.232 0.552 2.758 0.016 0.003 3.56 3.56
170 0.262 0.624 3.007 0.018 0.003 3.92 3.92
180 0.295 0.701 3.257 0.020 0.003 4.28 4.28
190 0.329 0.781 3.507 0.022 0.003 4.64 4.64
200 0.365 0.866 3.754 0.024 0.003 5.01 5.01
210 0.402 0.954 3.997 0.026 0.004 5.38 5.38
220 0.442 1.046 4.234 0.028 0.004 5.75 5.75
230 0.483 1.142 4.465 0.030 0.004 6.12 6.13
240 0.527 1.241 4.687 0.032 0.004 6.49 6.49
250 0.572 1.343 4.901 0.034 0.005 6.85 6.86
260 0.619 1.448 5.105 0.036 0.005 7.21 7.21
270 0.668 1.556 5.299 0.038 0.005 7.57 7.57
280 0.719 1.665 5.483 0.039 0.005 7.91 7.92
290 0.771 1.777 5.656 0.041 0.005 8.25 8.26
300 0.826 1.889 5.820 0.042 0.006 8.58 8.60
320 0.939 2.118 6.118 0.045 0.006 9.23 9.27
340 1.060 2.349 6.380 0.048 0.007 9.84 9.93
360 1.186 2.580 6.609 0.051 0.007 10.43 10.58
380 1.318 2.809 6.808 0.054 0.008 11.00 11.23
400 1.455 3.034 6.982 0.057 0.008 11.54 11.87
450 1.813 3.573 7.323 0.064 0.010 12.78 13.38
500 2.187 4.068 7.566 0.071 0.011 13.90 14.70
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FIG. 2. Temperature dependence of Debye temperat@ies FIG. 3. Dispersion curves of the two in-plane modes along the
0,, and . for in-plane longitudinal mode, in-plane transverse q, direction forg,=0 at 0 and 293 qu“aX:4(w/3x/3)l’2/a andais
mode, and out-of-plane mode, respectively. the nearest neighbor atomic spacing. Effectipfon the curves is

negligibly small except for neag,=0.

which is defined bk® =% wp . Figure 2 shows the tempera-
ture dependence of the Debye temperatures for three vibra-
tional modes. The Debye temperature of the out-of-planéhangeAV/v’ caused when the temperatdrer pressure

mode decreases drastically with increasing temperaturéS changed, i.e.y=—(Aw/w)/(AVIV). ,
which is related to the rapid decreasexof Table V compares the Gneisen constants obtained by

Raman scattering, neutron scattering, and the present analy-

2. Dispersion relation sis. Foro=w, atq,=0 andq,= g5 of the in-plane longi-

Figures 3-7 show typical examples of the dispersion
curves of lattice vibrations fof =0 and 293 K. The disper-
sion curves of the out-of-plane mode shown in Figs. 6 and 7 .
change remarkably with temperature, which is related to the [ in—plane mode ]
rapid change ok. sl (9,=0) —

It is worth noting that the dispersion curves of the out-of- P
plane mode along thg, direction shown in Fig. 6 are con- y
cave upwards. In usual cases, however, the geometry of the 2 293K
dispersion curves is such that they are convex upwards and 7
tend to a horizontal tangent at the zone boundary, so that
there is no three-phonon process in which all three phonons
belong to the same polarization branch of lattice vibratftns.
On the contrary, in the present case of graphite, as the dis-
persion curves are concave upwards, the three-phonon pro-
cess in the out-of-plane branch can exist. The three-phonon - .
process is important in analyzing the thermal conductivity.

Figure 8 shows the frequency distribution functions of 2t 1
three vibrational modes at 0 and 293 K. Figure 9 is the en-
larged frequency distribution functions for the low frequency
region of Fig. 8. A marked change in the frequency distribu-
tion function with temperature is shown clearly in the case of 0 A
the out-of-plane mode.

10— T

/ longitudinal
& transverse

w (1012 rad/s)
N

max)

Reduced Wave Vector (q,/q,

3. Gruneisen constant . . .
FIG. 4. Dispersion curves of the two in-plane modes along the

The Grineisen constany is defined as the negative ratio q, direction for g,=0 at 0 and 293 Kq'™™=/c and c is the
of the relative frequency chandew/w to the relative volume interlayer spacing.
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FIG. 5. Dispersion curves of the two in-plane modes along the ' max
g, direction forg,=qT at 0 and 293 K. Reduced Wave Vector (g,/q, ")

FIG. 7. Dispersion curves of the out-of-plane mode alonggthe

tudinal and transverse modes and torw, atq,=0 and i ection forg,=0 andg,=q™™ at 0 and 293 K.

d,=0qy® of the out-of-plane mode, the experimentalal-
ues agree rather well ":ﬂg‘ the calculated ones. in the layer plane. Hanflandt al. used 3\a/a instead of
Foro=wp tatg,=q, " andqg,=0 of the |n-plan?1trans- AV/V so that they raised the value to 1.06"* Graphite is
verse mode, the Raman scatterifigy(2) at 1579 cm*, has  ynown to have negative thermal expansion coefficients par-
given a low y value of 0.10 under pressure, whesl§®  ajie| to the layer plane, i.e., (8)(da/dT)<0, below about
=4(m/3v3)"4a anda s the nearest neighbor atomic spacinggsg k5 Therefore, if we use 8a/a instead of AV/V in

deriving y by changing temperature, we will have a negative

. v value.
250 Then, foro=wp . atg,=q5° andqg,=0 of the out-of-

] plane mode, the present analysis gives an extraordinarily
large y value of about 50, which is related to the rapid de-
crease ofk with temperature. There is no measuremeny of

200k out-of-plane mode for this wp, ¢, although Ivanowet al®” measured the pressure
R 6 T T T r
2]
T 1501 L .
= = out—of-plane
S S 203K
e & E 4} ]
3 100 I Jov ] = |
OV, i » Wl 1
/ o 293K o A
Vi = ol oK :
50+ 77 . 3 |
7 = |
ey Q
= / i
v/ I
-~ |
P
, |
Ol—"" 0 : s i . .
0 0.5 1 0 100 200 300 400 500
Reduced Wave Vector (q, /q,"®) w (10" rad / s)
FIG. 6. Dispersion curves of the out-of-plane mode alongithe FIG. 8. Frequency distribution functions of in-plane longitudi-
direction forq,=0 andq,=q* at 0 and 293 K. nal, in-plane transverse, and out-of-plane vibrations at 0 and 293 K.
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dependence of the out-of-plane dispersion curve alongthe
axis forgq,<0.2517% andqg,=0, and found that increases
with pressure buk decreases with it.

When the lattice specific heat at constant volume of the
vibrational modei is C, ; and the Graeisen constant of the
modei is vy;, if the average Gmeisen constany is defined

by

D(w) [10° s/ (rad mol)]

7
v

y in—plane transverse E
d in—plane longitudinal
T .

0 10 20 30
w (10" rad / s)

0.02

0 0.01 :

scattering.

fiw (eV) 9

FIG. 9. Enlarged frequency distribution functions for the low
frequency region.

217Gy,

o,V
Y7 ke,

VZLTN (CUZZ Cv,i)-

] the following relation hold$®

4. Temperature dependence &f

(47)

(48)

Putting, at 293 K,a,=2.73x10 /K, V=5.30 cni/mol,
K=2.80x 10" 12 cn?/dyn, andC,=8.30 J/(molK), we ob-
tain y=~0.62 at 293 K. Thisy value is smaller than the
experimentaly values given in Table V, except thefor w
=wp of the in-plane transverse mode obtained by Raman

The present analysis predicts thatlecreases rapidly with

TABLE V. Griineisen constantg in graphite.q§:q§+q§, qr*=4(m/3v3) % a and qi'*=mic, wherea is the nearest neighbor atomic

spacing and is the interlayer spacing.

Vibrational (da, 9z, o) Temp. Method 1 dw 1dv 1 dw 1dv 0%
mode (K) wdT vdT wdP vdpP
(K™ (K™Y (kbar™%) (Kbar 1)
In-plane (0, 9", wy) 300 Raman scatterifig 1.10x10°2 —-296x10°% 37
longitudinal Present analysis —1.075x10° % 2.73x10°° 3.9
and transverse
296-1463 Neutron scatteritg —1.049x 104 2.88x10°° 3.6
Present analysis —9.61x10°° 2.88x10°° 3.3
In-plane (a5 0, wpy) 300 Raman scatterifig 2.96x10°% -2.96x10°% 0.10
transverse Present analysis —3.23x10°° 2.73x10°° 1.2
Out-of-plane (0, qI'"™, »,) 190-296 Neutron scatteriig —1.236<10° % 2.82<10 ° 4.4
Present analysis —1.080<10™ 4 2.65x10 ® 4.1
190-890 Neutron scatterifg —9.61x10°° 2.81x10°° 3.4
Present analysis —1.034<10™4 2.79x10 ® 3.7
4-1763  Neutron scatteriflg —8.73<107° 2.74x107° 3.2
Present analysis —9.04x10°° 2.74x10°° 3.3
293 Neutron scatterifig 152x10°2 —2.34x10°3¢ 65
Neutron scatterirlg 1.7 X1072 —-2.3x107%® 7.4
Present analysis —1.076x10 % 2.73x10°° 3.9
(3™ 0, wp,c) 293 Present analysis —1.43 X103 2.73x10°° 52

3Reference 84.
bReference 565.
‘Reference 54.
dReference 85.
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0.8 — T T — same under pressure and upon increasing the temperature.
This indicates that the decreasesois closely related to the
— 0.5 7 contraction of thea spacing. The above difference may be
% 04 | due mainly to the fact that thespacing decreases with pres-
E ' sure as @c/c)/(da/a) =44, whereas it increases with tem-
I 03 il perature as dc/c)/(da/a)=—20. On the other hand,
g (dk/k)/(dclc)=1.7 under pressure, whereas
o 02 . (dk/k)/(dc/c)=—55 upon increasing the temperature; the
'§ two cases are in opposite directions to each other. Therefore,
& 017 — :Experiment d«/« has no direct relation tdc/c.
RS o : Revised Komatsu-Nagamiya Model The predicted rapid decrease efwith increasing tem-
0.0 o : Al-Jishi-Dresselhaus Model perature should be tested by such experiments as neutron
P T scattering, electron energy loss spectrosc@iLS), infra-
05 1 3 5 10 30 50 100 300 500 red reflection, and x-ray and neutron Bragg reflection. The
Temperature (K) neutron scattering experiment gives the dispersion relations

directly as shown in Figs. 6 and 7. The surface phonon dis-
FIG. 10. Comparison of the experimental and the calculatedoersion curves have been measured by using EEf%As
second derivatives of the specific heat of graphite with respect tthe measured surface phonon dispersion curves in graphite
temperature. are in good agreement with the calculated bulk dispersion
curves®® EELS is useful to test the temperature dependence
£f « in the bulk. The infrared reflection observed at 868

graphite layer decreases and the layers become easy to beiH] at room temperature has been identified as due to the
2u

. wire a
In other words, the softening of the out-of-plane mode oc?'2u Cut-of-plane modé which corresponds te)=wp  at

curs such that the frequency of each out-of-plane mode déla=da  andg,=0 of the out-of-plane mode in the present
creases rapidly with temperature. model. If the predicted temperature dependence isfvalid,

We suppose that the decreasexois related to the con- when the sample temperature is decreased frgm room tem-
traction of thea spacing in the layer planes. As previously Perature to 77 K, the frequency of the, mode will shift to
mentioned, the spacing decreases with increasing tempera@ Nigher frequency of about 50% increase. Then, the inten-
ture below about 650 K, while thespacing increasé€.ltis  Sity of x-ray and neutron Bragg reflections depends on tem-
probable that the rapid increase in excitation of the out-ofPerature and the fregéjzlency distribution function through the
plane vibrations with temperature results in the contractiorP€bye-Waller factoP>** The present analysis suggests that,
of the a spacing. except for the fgctor of the scattering veptor, the |.nten5|t¥ of

The results of high-pressure experiments are suggestive the (00) reflection decreases more rap|dly with increasing
this respect. Both the anda spacing decrease with pressure. temperature than that of thék0) reflection.

Then, u increases with pressure. Namely, Xdc/dP)
=—2.2x10 %/kbar?48¢ (1/a)(da/dP)=—5x10 °/kbar
(from elastic constantd* and (1f)(du/dP)=1.6

X 10" ?/kbar8-8In the above measurement of the out-of-
plane dispersion curve along thg axis, Ivanovet al. found
that, although? increases with pressure? decreases with it The dispersion relations of lattice vibrations have been
and drops to about 60% of its initial value at 60 kBathat ~ determined from neutron scattering experiments. Since the
is, (1K)(d¢/dP)=2.2x10 %/kbar and (1£)(dx/dP) available flux of slow neutrons is limited, in practice the

= —3.8x 10 %/kbar. They considered that the decreas& of measurements are made in the rangawef1x 10* rad/s,

with pressure is the precursor of the phase transition fromvhich is less tha of the maximum frequency in the case of
graphite to hexagonal diamond at around 140 Rbahese graphite. Then, Raman scattering and infrared measurements
results suggest that the decreaseapacing favors the de- can probe only the optically active region of the wave vector
crease of, although the decrease ofpacing is against the space. On the contrary, the specific heat is unique in giving
decrease ok. information integrating the whole wave vector space.

We estimate the relation of to thea spacing under pres- In the past the problem of “inversion” of specific heat
sure and upon increasing the temperature. The above resualirves was considered, in which the frequency distribution
of lvanovet al. gives d«/«)/(da/a)=7.6x 10" under pres- function D(w) is calculated from the experimental specific
sure. Then, when the temperature is increased at room terheat curvé The result, however, was not so fruitful, be-
perature, we have dk/«)/(da/a)=1.1x10°, because cause the specific heat curve is remarkably insensitive to
(1/k)(dx/dT)=—1.5x10 %/K from Eq. (46) and (14) changes irD(w). Here, we show that the second derivative
X(da/dT)=—1.4x10 6/K.%° There is a difference of one of the specific heat curve with respect to temperature gives
order of magnitude in these estimates dfx(x)/(da/a). information onD (w).

However, if we can exclude the effect of changes in the The second derivative of the specific heat at constant vol-
spacing, the ratio ofix/ x to da/a may be approximately the ume is derived from Eq(35) as follows:

increasing temperature; the bending elastic constant of

C. Second derivative of specific heat curve and frequency
distribution function
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d’c, wp| ’E(T,w) JE(T,w) dD(T,w) K. We consider that the experimental curve is not good, be-
a2z = [&T D(T,w)+2 aT aT cause the integral of E¢49) becomes insensitive to the form
of D(w) at high temperatures and therefore the second de-
#*D(T,w) rivative curve cannot oscillate rapidly with temperature. As
+E(T,0) — 77— |do, (49)  stated in Sec. V, the oscillatory behavior of the second de-
rivative in the range of 300 to 760 K seems to be atrtificial,
where which is due to the continuity condition of the first and sec-
72e? Lo ond derivatives imposed in determining the experimental for-
E(T,w)= (=12 z= 17 mulas of Table Il. We recommend that the raw data of the
specific heat above 300 K cited in the literafiré® should
E(T,w) 1 2% 24 (2 2] be reevaluated.
=—-——F3[z z—2)e?],
T T(e—1) VIIl. SUMMARY
FPE(T,w) 1 7% The semicontinuum model of lattice vibrations in graphite

P C o 1)4[22+ 6z+ 6+ (4z2—12)€?

proposed by Komatsu and Nagamiya has been improved by
taking account of the temperature dependence of elastic con-
+(z—6z+6)e”]. stants and the thermal expansion. The specific heat proper to
ingle-crystal graphite has been derived by evaluating the
ata reported in the literature. The bending elastic constant of
graphite layer has been determined by fitting the calculated
specific heat to the experimental one. With the bending elas-
tic constant thus determined, the improved semicontinuum
model can explain the specific heat well in the temperature
range below 350 K. Then, the bending elastic constant de-
creases more rapidly with increasing temperature than the
ther elastic constants, which means that softening of the
ut-of-plane vibrations occurs. It has been suggested that the
§oftening of the out-of-plane vibrations with increasing tem-
perature is closely related to the contractionao§pacing,
Dressclnaus mode (o) is independent of temperature. As iz o 1® nEIELC, O BRI PEEIE 12 TE
their calculate_d data points f@(“’) are scarce in t_he I_OW .compared with the experimental ones. The second derivative
frequency region, the calculatlon.of. the second derivatives I3 the specific heat curve with respect to temperature gives
made above 15 K. The characteristicsX{fw) for both mod-  jy¢ormation on the frequency distribution function of lattice

els are reflected on the respective second derivatives. Hergrations. The value o€, at room temperature has been
we do not discuss further the relation of the second derivaaetermined to be 0 42516f1 dyn/cn?

tives andD(w), but would like to emphasize that the second
derivative of the specific heat curve with respect to tempera-
ture is useful in examining the validity @ (w).

The second derivative of the experimental specific heat We gratefully acknowledge discussions with Dr. A. Iwase
curve oscillates with temperature in the range of 300 to 76@f Japan Atomic Energy Research Institute.

Figure 10 compares the experimental and the calculate
results on the second derivative of the specific heat witr}:l
respect to temperature. The experimental cisedid line) is
the second derivative of the formulas given in Table Il. The
calculated pointgwhite and black circlesare derived by
substituting D(w) of the present revised semicontinuum
model and that of Al-Jishi and Dresselh&listo Eq.(49). In
the calculation, the second derivatives of G- C, correc-
tion and the electronic specific heat are neglected. The cal:
culated result for the revised semicontinuum model agree,
well with the experimental curve below 120 K, but deviates
gradually from it above 120 K. Then, for the Al-Jishi and
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