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Temperature dependence of lattice vibrations and analysis of the specific heat of graphite

Takeshi Nihira*
Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki-ken 316-8511, Japan
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In the semicontinuum model of lattice vibrations in graphite proposed by Komatsu and Nagamiya, the
expressions of the dispersion relation contain the elastic constantsC11, C12, C13, C33, C44, andk and the
interlayer spacingc as parameters, wherecrk2 is the bending elastic constant of a graphite layer andr is the
density. We improve this semicontinuum model by taking these parameters as a function of temperature. For
the parameters exceptk, we use the experimental data already known and the relations derived from them.k
is determined by fitting the calculated specific heat to the experimental one. The experimental specific heat for
single-crystal graphite is derived by evaluating the data reported in the literature. With the value ofk thus
determined, the improved semicontinuum model can explain the experimental specific heat well in the tem-
perature range below 350 K. Then,k decreases more rapidly with increasing temperature than the other elastic
constants; this result means that softening of the out-of-plane vibrations occurs. It is suggested that the
softening is closely related to the negative thermal expansion parallel to the layer planes. The calculated
Grüneisen constants are compared with the experimental ones. The second derivative of the specific heat curve
with respect to temperature gives information on the frequency distribution function of lattice vibrations. From
the analysis of the low-temperature specific heat, the value ofC44 at room temperature is determined to be
0.42531011 dyn/cm2.

DOI: 10.1103/PhysRevB.68.134305 PACS number~s!: 63.20.Dj, 65.40.Ba
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I. INTRODUCTION

It is well known that the forces between the atoms
graphite are extremely anisotropic; those between adja
basal planes are about two orders of magnitude smaller
the forces between neighboring atoms in the same plane.
strong anisotropy of the forces affects the lattice vibratio
For the lattice vibrations of graphite, a number of theoreti
and experimental studies have already been made.1–22 Of
these, the semicontinuum model proposed by Komatsu
Nagamiya1–3 is the only one that has succeeded in expre
ing the dispersion relation of lattice vibrations analytical
The model has been used to calculate various physical p
erties, such as specific heat,1,3,23–25thermal conductivity,26–35

thermal expansion,36 thermal vibration amplitudes,37,38 elas-
tic constants,39 electron transport properties,40–42 and ther-
moelectric power.43

In the semicontinuum model of graphite, the lattice vib
tions are separated into three modes; the in-plane longit
nal mode, the in-plane transverse mode, and the out-of-p
mode. The expressions of the dispersion relation contain
elastic constantsC11, C12, C13, C33, C44, and k and the
interlayer spacingc as parameters, wherecrk2 is the bend-
ing elastic constant of a graphite layer andr is the density.
The usefulness of a lattice vibration model can be evalua
by comparing the calculated specific heat values by
model with the experimental ones. Komatsu calculated
specific heat by using the semicontinuum model withC33,
C44, and k as adjustable parameters and determined th
parameters so as to fit the calculated values to the experim
tal ones for various kinds of graphite specimens below
K.23,24Thus, he showed that the semicontinuum model, w
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the suitable values of parameters, can well explain the s
cific heat below 20 K. As the temperature increases above
K, however, if the same parameters are used, the calcul
specific heat values by the model deviate gradually from
experimental ones.

The elastic constants and the interlayer spacing cha
with temperature, which is due to the anharmonicity of t
potential energy. As a result, the dispersion relation of latt
vibrations should change with temperature. In the pres
paper, we improve the semicontinuum model by taking
model parameters~i.e., the elastic constants and the inte
layer spacing! as a function of temperature. Incidentally,
the Debye model of lattice vibrations in isotropic solids, t
temperature dependence of the frequency distribution fu
tion is such that the Debye characteristic temperature~or the
Debye frequency! changes with temperature.44–46For all pa-
rameters exceptk, we use the experimental data alrea
known and the relations derived from them. Sincek cannot
be measured by the conventional mechanical methods,
determine it as a function of temperature by fitting the c
culated specific heat values to the experimental ones.

We derive the specific heat values that are proper
single-crystal graphite by evaluating the specific heat d
reported in the literature, and formulate them. The form
lated data are adopted as the experimental specific heat
ues for fitting.

The improved semicontinuum model, if we assume
temperature dependence ofk determined in the presen
analysis, can explain the specific heat well in the tempera
range below 350 K. The introduction of temperature dep
dence into the model parameters extends the tempera
©2003 The American Physical Society05-1
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range in which the semicontinuum model is applicable fr
below 20 K to below 350 K.

The present analysis predicts thatk decreases more rap
idly with increasing temperature than the other elastic c
stants; this means that softening of the out-of-plane vibra
occurs. We suggest that the rapid decrease ofk with tempera-
ture is related to the contraction of thea spacing, i.e., the
negative thermal expansion parallel to the layer planes be
about 650 K. It is conceivable, however, that the inadequ
of the model results in the unusual temperature depend
of k. Whether the predicted decrease ofk is physically valid
or not should be tested by experiments, such as neutron
tering, infrared reflection, electron energy loss spectrosc
and x-ray and neutron Bragg reflection.

In addition, we calculate the Gru¨neisen constants an
compare them with the experimental ones. It is shown t
the second derivative of the specific heat curve with resp
to temperature gives information on the frequency distri
tion function of lattice vibrations. From the analysis of th
low-temperature specific heat, the value ofC44 at room tem-
perature is determined to be 0.42531011 dyn/cm2.

II. THE SEMI-CONTINUUM MODEL
OF KOMATSU AND NAGAMIYA

Komatsu and Nagamiya proposed the semicontinu
model of the lattice vibrations of graphite, in which th
graphite crystal is assumed as an assembly of thin ela
plates equally spaced and with compressional and shea
couplings between adjacent plates.1–3 We summarize the
semicontinuum model briefly.

The lattice vibrations of graphite are almost complet
separated into three kinds of modes; namely, the in-pl
longitudinal mode, the in-plane transverse mode, and
out-of-plane mode. The respective dispersion relations
given by

v l
25v l

2~qx
21qy

2!1
4z

c2 sin2S cqz

2 D , ~1!

v t
25v t

2~qx
21qy

2!1
4z

c2 sin2S cqz

2 D , ~2!

vc
25k2~qx

21qy
2!214m2 sin2S cqz

2 D1z~qx
21qy

2!, ~3!
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wherev is the angular frequency,q is the wave vector, and
the subscriptsl, t, and c refer to the in-plane longitudina
mode, the in-plane transverse mode, and the out-of-p
mode, respectively.v l andv t are the wave velocities and ar
given by using the elastic constantsCi j as follows:

v l5F1

r S C112
C13

2

C33
D G1/2

, ~4!

v t5F 1

2r
~C112C12!G1/2

. ~5!

The two constantsz andm are related to the elastic constan
Ci j as

rz5C44 ~6!

and

c2rm25C33, ~7!

wherer is the volume density andc is the interlayer spacing
crk2 is the bending elastic constant of a graphite layer.

The frequency distribution functions~per mol! D(v) for
the two in-plane modes are derived from the dispersion r
tions of Eqs.~1! and ~2!:

v<vz : D~v!5
V

p2cv i
2 v sin21S v

vz
D , ~8!

v>vz : D~v!5
V

p2cv i
2 v

p

2
, ~9!

where

vz52
z1/2

c
52S C44

c2r D 1/2

. ~10!

The subscripti indicatesl and t for the longitudinal mode
and the transverse mode, respectively, andV is the molar
volume.

Similarly, the frequency distribution function~per mol!
for the out-of-plane mode is derived from Eq.~3!:
v<vz8 :

D~v!5
V

2p2kc S v

vz8
D E

0

sin21$@11~z2/4k2v2!#21/2%F12S v

vz8
D 2S 11

z2

4k2v2D sin2 fG21/2

df, ~11!
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v>vz8 :

D~v!5
V

2p2kc S 11
z2

4k2v2D 21/2

3E
0

p/2F12S vz8

v D 2S 11
z2

4k2v2D 21

sin2 fG21/2

df,

~12!

where

vz852m52S C33

c2r D 1/2

. ~13!

The Debye frequencyvD for each mode is obtained from

E
0

vD
D~v!dv5N0 , ~14!

whereN0 is Avogadro’s number,V/N05(3)/4)a2c, anda
is the nearest neighbor atomic spacing in the layer plane

In graphite the unit cell has four atoms and therefore
lattice vibrations consist of three branches of acoustic mo
and nine branches of optical modes. On the other hand, in
present semicontinuum model it is assumed that the grap
layer is a thin elastic plate and the virtual unit cell has o
atom. As a result, there are three branches of vibratio
modes as described above. Under the condition of Eq.~14!,
however, the total number of vibrational modes belonging
all the branches in the semicontinuum model is equal to
in graphite. The optical modes in graphite are treated a
they were merely elastic waves of very short wavelength
the semicontinuum model.

III. TEMPERATURE DEPENDENCE OF MODEL
PARAMETERS

We improve the semicontinuum model by taking acco
of the temperature dependence of elastic constants and
thermal expansion. The independent model parame
which are functions of temperature, are the elastic const
C11, C12, C13, C33, C44, andk and the interlayer spacin
c. We assume that the thermal expansion in thea-axis direc-
tion can be neglected so thatcr is independent of tempera
ture.

A. Elastic constants

Blakslee et al. determined five elastic constantsCi j at
room temperature of highly oriented pyrolytic graph
~HOPG! by ultrasonic, sonic resonance, and static t
methods.47 Their results forCi j exceptC44 have been widely
accepted as typical of the graphite single crystal.

Reported values ofC44 have varied considerably, depen
ing on the specimens and the method of measurement. B
slee et al. obtained C44 values of (0.018– 0.035)
31011 dyn/cm2 at room temperature for HOPG.47 Soule and
Nezbeda observed values of (0.013– 0.166)31011 dyn/cm2

at room temperature for natural graphite single crystals
the static-shear stress strain and the ultrasonic method.48 The
13430
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C44 values obtained by these mechanical measurements
been considered to be much lower than the intrinsicC44
value because of the existence of mobile basal dislocati
Therefore, when the dislocations were pinned by doped
ron atoms48 or defects produced by neutron irradiation,49,50

the C44 value at room temperature increased rapidly up t
saturation value of approximately 0.4031011 dyn/cm2. On
the other hand, from the analysis of the specific heat at
temperatures, theC44 value for natural graphite was est
mated to be 0.2331011 dyn/cm2 by Bowman and
Krumhansl,51 and 0.40531011 dyn/cm2 and 0.452
31011 dyn/cm2 by Komatsu.23,24 Then, from the analysis o
neutron scattering measurements, theC44 value at room tem-
perature for HOPG was deduced to be (0.4260.2)
31011 dyn/cm2 by Dolling and Brockhouse9 and (0.46
60.02)31011 dyn/cm2 by Nicklow et al.11 Thus, theC44
value at room temperature has not yet been determined
ambiguously. As stated in Sec. VI, we determine from t
analysis of the specific heat at low temperatures that the
trinsic C44 value at room temperature is 0.42
31011 dyn/cm2.

Gauster and Fritz measured changes of ultrasonic tra
times in HOPG as a function of temperature between 4
300 K and calculated the temperature dependence of
elastic constantsCi j .52 Hwang measured sound velocitie
along thec axis of HOPG between 4 and 325 K with a
ultrasonic pulse-echo phase comparison method and d
mined the temperature dependence ofC33 with considerable
accuracy.53 On the other hand, Roy measured the tempe
ture dependence of the longitudinal phonon frequen
propagating along thec axis, in pyrolytic graphite with a
mosaic spread of approximately 10° by neutron scatter
over a temperature range of 190 to 890 K.54 The measured
phonons correspond toqa50, qz5qz

max, andv5vz8 of the
out-of-plane mode in the present model, whereqa

25qx
21qy

2

and qz
max5p/c. From this measurement we obtainC33

through Eqs.~3!, ~7!, and~13!. Brockhouse and Shirane mea
sured the temperature dependence of longitudinal and tr
verse phonons along or near thec axis between 4 K and
1500 °C on HOPG of mosaic spread;0.8°.55 The latter
transverse phonons correspond toqa50, qz5qz

max, and v
5vz of the present in-plane mode and giveC44 through Eqs.
~1! or ~2!, ~6!, and~10!. Then, Ross measured the longitud
nal phonons along thec axis on polycrystalline graphite a
temperatures up to 1920 °C.56

Based on the above several measurements, we have d
mined the relative temperature dependence ofC33.

0<T<146 K:

C33~T!

C33~0!
5 f ~T!51.026.5031027T2, ~15!

146<T<1800 K:

C33~T!

C33~0!
5 f ~T!51.014521.99031024T13.2031028T2,

~16!
5-3
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whereT is the temperature.
The neutron scattering result shows that the relative t

perature dependence ofC44 is nearly the same as that o
C33.55 Hence, we assume that

C44~T!

C44~0!
5 f ~T!. ~17!

The measurement of ultrasonic transit times indicates
the relative changes inC11 andC12 as a function of tempera
ture are about12 of that in C33.52 The relative temperature
dependence ofC13 is not clear, but it is probably intermed
ate between that ofC33 and that ofC11 andC12. SinceC11

@C13
2 /C33 in Eq. ~4!, the temperature dependence ofC13 has

only a negligible effect on this analysis. Here, we assu
conservatively that the relative temperature dependenc
C13 is the same as that ofC11 and C12. Therefore, we as-
sume that

C11~T!

C11~0!
5

C12~T!

C12~0!
5

C13~T!

C13~0!
5

11 f ~T!

2
. ~18!

Then, the elastic constantsCi j (T) at a temperatureT are
given by usingCi j (293) at 293 K as follows:

Ci j ~T!5HCi j ~293!S f ~T!

0.959D for C33 and C44,

Ci j ~293!S 11 f ~T!

1.959 D for C11, C12, and C13.

~19!

The value ofk cannot be measured by using the conve
tional mechanical methods, but it can be estimated from
analysis of the specific heat. Komatsu and Nagamiya

TABLE I. Physical constants of graphite at room temperatur

C11 106 31011 a dyn/cm2

C12 18 31011 a dyn/cm2

C13 1.5 31011 a dyn/cm2

C33 3.65 31011 a dyn/cm2

C44 0.425 31011 b dyn/cm2

k 3.13 31023 b cm2/s
c 3.354431028 cm
r 2.26 g/cm3

V 5.30 cm3/mol
v l 2.16 3106 c cm/s
v t 1.40 3106 d cm/s
z 1.88 31010 e cm2/s2

m 1.20 31013 f s21

vz 8.18 31012 g rad/s
vz8 2.40 31013 h rad/s
K 2.80 310212 i cm2/dyn

aReference 47. fEquation~7!.
bPresent analysis. gEquation~10!.
cEquation~4!. hEquation~13!.
dEquation~5!. iEquation~37!.
eEquation~6!.
13430
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tained ak value of 3.8331023 cm2/s from the specific hea
above 250 K by assumingC4450.1 Later, Komatsu obtained
anotherk of 6.1131023 cm2/s from the specific heat be
tween 15 and 60 K with a calculatedC44.3 Komatsu has
given no explanation for the adoption of two differentk val-
ues. We consider thatk varies with temperature. The relativ
change ofk as a function of temperature is not necessa
the same as that ofCi j . In the present analysis we assumek
as a parameter and determine its temperature dependen
Sec. VI by fitting the calculated specific heat values to
experimental ones. Table I gives the values at room temp
ture of the elastic constants and other physical quantities
are used in the improved semicontinuum model.

B. Thermal expansion

Bailey and Yates measured the thermal expansion co
cients in thec- anda-axes directions of HOPG between 2
and 270 K.57 The thermal expansion coefficient in thea-axis
direction aa was about 1

20 of that in thec-axis directionac
over the whole temperature range of measurement. Th
fore, as stated already, we neglectaa and take account ofac
only.

The thermal expansion coefficient in thec-axis direction
as a function of temperature, which was obtained by Bai
and Yates, is formulated as follows:

0<T<80 K:

ac~T!55.35031029T223.755310211T3, ~20!

80<T<273 K:

ac~T!52.435231027T27.690310210T218.875310213T3.
~21!

These formulas agree with their experimental data with
precision of 1%.

The interlayer spacing in thec-axis directionc is derived
by integrating the above thermal expansion coefficients,
is, ac5(1/c)(dc/dT), and substituting the interlayer spacin
values at 4.2 K~Ref. 58! and at room temperature59 ~in Å!:

0<T<80 K:

c~T!53.336015.9531029T323.13310211T4, ~22!

80<T<273 K:

c~T!53.335514.06131027T2

28.55310210T317.65310213T4. ~23!

Theac andc above 273 K are derived by connecting Eq
~21! and ~23! with the corresponding data above room te
perature, which were obtained by Nelson and Riley,60 Stew-
ard and Cook,61,62 and Morgan:63

273<T<1000 K:
5-4
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ac~T!52.7233102513.3231029~T2273!

21.15310212~T2273!2, ~24!

c~T!53.352619.12831025~T2273!16.81

31029~T2273!221.12310212~T2273!3, ~25!

1000<T<2873 K:

ac~T!52.7343102512.4131029~T2273!

21.09310213~T2273!2, ~26!

c~T!53.352719.16631025~T2273!

15.2931029~T2273!2. ~27!

C. Debye frequency

1. In-plane modes

The Debye frequencies of the in-plane longitudinal a
transverse modesvD,i ( i 5 l ,t) are given by the following
equation, which is derived either from Eqs.~8!, ~9!, and~14!,
or from the total number of modes within the volume e
closed withqz5p/c, qz52p/c, and the frequency surfac
v5vD,i in the wave vector space:

V

4pcv i
2 S vD,i

2 2
1

2
vz

2D5N0 . ~28!

Here, V/c is independent of temperature. The temperat
dependence ofv i andvz is as follows:

v i5v i~293!F S 11 f ~T!

1.959 D S c~T!

c~293! D G
1/2

, ~29!

vz5vz~293!F S f ~T!

0.959D S c~293!

c~T! D G1/2

. ~30!

2. Out-of-plane mode

The Debye frequency of the out-of-plane modevD,c is
given by the following equation, which is derived eith
from Eqs.~11!, ~12!, and ~14!, or from the total number of
modes within the volume enclosed withqz5p/c, qz
52p/c, and the frequency surfacev5vD,c in the wave
vector space:

V

4pkc F 2

p
E~m!vD,cS 11

z2

4k2vD,c
2 D 1/2

2
z

2kG5N0 ,

~31!

where

m5S vz8

vD,c
D 2S 11

z2

4k2vD,c
2 D 21

and
13430
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E~m!5E
0

p/2

~12m sin2 f!1/2df.

Then, sincem,1, E(m) is approximately given by64

E~m!5
p

2 S 12
1

4
m2

3

64
m22

5

256
m32¯ D .

The temperature dependence ofvz8 andz is given by

vz85vz8~293!F S f ~T!

0.959D S c~293!

c~T! D G1/2

, ~32!

z5z~293!S f ~T!

0.959D S c~T!

c~293! D . ~33!

In Eq. ~31!, not only vD,c but alsok is included as the
unknown. To determine bothvD,c andk, another condition
in addition to Eq.~31! is necessary. The condition we choo
is that the calculated specific heat values agree with the
perimental ones. The procedure to determine bothvD,c and
k is stated in Sec. VI.

Since vD,c.vz8.z/2k, Eq. ~31! is expressed approxi
mately by

V

4pkc
vD,c'N0 , ~34!

which is useful for estimation ofvD,c andk.

IV. CALCULATION OF SPECIFIC HEAT

The calculated specific heat which should be compa
with the experimental specific heat at constant pressure is
sum of the lattice specific heat at constant volume, theCp
2Cv correction, and the electronic specific heat, whereCp
2Cv is the difference between the specific heat at cons
pressure and that at constant volume.

A. Lattice specific heat at constant volume

The lattice specific heat at constant volumeCv for each
mode is calculated by using its respective frequency dis
bution functionD(v) and Debye frequencyvD :65

Cv5kE
0

vDS \v

kT
D 2 e\v/kT

~e\v/kT21!2 D~v!dv, ~35!

wherek is the Boltzmann constant and\ is the Planck con-
stant divided by 2p. The calculatedCv for the in-plane lon-
gitudinal, the in-plane transverse, and the out-of-plane m
will be referred to asCl , Ct , andCc , respectively.

B. CpÀCv correction

The differenceCp2Cv can be obtained from general the
modynamical considerations as follows:66

Cp2Cv5
av

2VT

K
, ~36!
5-5
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where av is the coefficient of volume expansion andav
'ac in the present model. The temperature dependenc
ac is given in Sec. III B. Then,K is the compressibility and
is given by using the elastic compliancesSi j :

K52~S111S12!1S3314S135
C111C1212C3324C13

~C111C12!C3322C13
2 .

~37!

The temperature dependence ofK andV is as follows:

K'K~293!S 0.959

f ~T! D ~38!

and

V5V~293!S c~T!

c~293! D . ~39!

C. Electronic specific heat

From the specific heat measurement below 1.2 K of na
ral Madagascar graphite, van der Hoeven and Keesom
duced the electronic specific heatCe of a pure single crysta
of graphite@in mJ/~mol K!#:67

Ce513.8T. ~40!

Since it is difficult to deduce experimentally the electron
specific heat above 2 K, we calculate it from the density
states near the Fermi level in the electronic energy ba
Using the density of states given by Wallace’s thre
dimensional band model,68 Komatsu and Nagamiya calcu
lated the electronic specific heat per mol:1

Ce5
2N0

)p2 S g1

g0
2D Fp2

3
k2T15.41S p

g1
D k3T2

1
7p4

30 S 3

4g1
2D k4T31¯G , ~41!

whereg0 is the resonance integral between nearest neigh
in the plane, andg1 is that between nearest neighbors
adjacent planes. Puttingg053.11 eV and g150.385 eV
(g0

2/g1>25 eV) ~Ref. 69! into Eq. ~41!, we have@in mJ/
~mol K!#

Ce511.0T~111.1631023T12.631027T21¯ !.
~42!

We combine the experimental result of Eq.~40! at low tem-
peratures with the calculated temperature dependence in
bracket of Eq.~42!, and assume that the electronic spec
heat is given as a function of temperature as follows@in
mJ/~mol K!#:

Ce513.8T~111.1631023T12.631027T21¯ !.
~43!
13430
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V. EVALUATION OF SPECIFIC HEAT DATA
FOR SINGLE-CRYSTAL GRAPHITE

A considerable amount of experimental work has be
done on the low-temperature specific heat
graphite.25,67,70–76The experimental results, however, ha
shown a significant difference between different types
graphite specimens, which differ in the degree of stack
faults, the crystallite size, and/or the impurity concentratio
It has been established that, at low temperatures, the spe
heat values of more imperfect graphites are larger than th
of pure and structurally perfect graphite. On the other ha
at high temperatures above room temperature, there is
significant difference in the specific heat between differ
types of graphite specimens.77–81

We estimate the intrinsic specific heat proper to sing
crystal graphite, viz. pure and structurally perfect graph
which should be compared with the calculated specific h
in the present analysis. We have evaluated almost all the
reported in the literature and chosen the following data
estimation of the intrinsic specific heat.

~1! 0.4–2.0 K: Data on Madagascar natural graphite m
sured by van der Hoeven and Keesom.67

~2! 1.3–20 K: Data on Canadian natural graphite me
sured by DeSorbo and Nichols.75

~3! 9.7–17 K: Data on artificial polycrystalline graphit
~pile graphite! measured by DeSorbo and Nichols.75

~4! 20–120 K: Data on Ceylon natural graphite measu
by DeSorbo.72

~5! 40–300 K: Data on artificial polycrystalline graphit
~Acheson graphite! measured by DeSorbo and Tyler.70

~6! 300–1800 K: JANAF Thermochemical Tables.77

In the temperature range between 0.4 and 300 K, first,
plot the experimental raw data in theCp vs T plane, and
draw a smooth curve so that it runs through the data poi
Then, we subdivide the temperature range into several s
ranges. In each subrange we fit a polynomial inT to the
smooth curve under the boundary conditions that not o
the absolute values of the polynomials but also their first a
second derivatives with respect toT are continuous at the
boundaries between adjacent subranges. The choice of
ranges and the curve fitting are tried by the trial-and-er
method. Then, in the final stage of data evaluation and
ting, we refer to the result of the present analysis. The po
nomials thus obtained are shown in Table II. The values
these polynomials are continuous at the boundaries betw
adjacent subranges with an accuracy of 0.1%, and their
and second derivatives are continuous with an accurac
1%.

In the temperature range between 300 and 1800 K,
adopt the specific heat data given in JANAF Thermoche
cal Tables.77 They are not the experimental raw data, b
already evaluated data at 100-K intervals. All the JANA
data for this temperature range can be expressed as a s
polynomial inT of degree 4. The absolute value of this pol
nomial is continuous to the low-temperature one at 300
However, its first and second derivatives are not continu
to the low-temperature ones. Hence, we subdivide the t
5-6



2 a3T31a4T41a5T5, whereT is the temperature in

a4 a5

2.472 7231026 0

3.667 1131026 2.055 68 31027

2.640 2831027 4.538 55 31029

1.443 0431027 22.083 33 31029

3.841 4331027 2.368 43 31029

8.361 3731028 22.458 65 310210

2.417 3631028 25.650 08 310211

1.252 9531029 22.975 10 310212

6.021 45731028 26.017 768310211

8.741 20310211 6.682 13 310213

7.302 88031029 3.572 450310212

3.671 93131029 1.001 007310212

5.067 04631029 21.364 005310212

3.836 109310210 8.038 670310214
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TABLE II. Formulation of the experimental specific heat values for single-crystal graphiteCp in J/~mol K!. Cp5a01a1T1a2T 1
K and coefficientsai are given below.

T ~K! a0 a1 a2 a3

0.4–1 0 1.391 4931025 27.739 68 31027 3.003 39 31025 2

1–3.5 3.227 4631027 1.359 65 31025 21.848 48 31026 3.209 28 31025 2

3.5–12.5 1.374 7231024 21.589 26 31024 8.764 11 31025 7.961 00 31026 2

12.5–18.5 1.643 6831023 28.302 03 31024 2.041 44 31024 21.903 77 31026

18.5–35 22.160 46 31022 4.723 46 31023 23.168 82 31024 2.195 73 31025 2

35–65 1.334 9631021 21.681 93 31022 8.829 44 31024 21.152 40 31025

65–118 24.673 27 31022 22.310 51 31023 4.173 31 31024 24.074 65 31026

118–185 22.952 47 31021 1.047 67 31022 1.107 14 31024 22.838 16 31027

185–222 1.909 4603101 24.763 19431021 4.967 27831023 22.432 46331025

222–300 7.124 0431021 21.343 72 31022 2.842 42 31024 25.924 01 31027

300–510 23.526 1203101 4.752 16031021 22.282 65031023 5.822 49031026 2

510–620 21.446 1273102 1.158 7053100 23.439 53031023 5.104 49331026 2

620–760 2.699 7373102 21.881 7063100 5.364 63531023 27.434 89231026

760–1000 25.828 4113101 3.611 08831021 27.127 68031024 7.347 00331027 2

1000–1800 5.752 913100 2.655 47 31022 21.292 97 31025 2.154 8931029
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TAKESHI NIHIRA AND TADAO IWATA PHYSICAL REVIEW B 68, 134305 ~2003!
perature range into several subranges, and determine
polynomials fitted to the JANAF data in the respective su
ranges under the boundary conditions that both the va
and the first and second derivatives of the polynomials
continuous to the low-temperature ones and between
ranges. The polynomials obtained are shown in Table
They fit the JANAF data at 100-K intervals with an accura
of less than 0.6% and the continuity of their first and seco
derivatives is very satisfactory. However, because the d
available for evaluation are scarce, the polynomials ab
300 K have some ambiguity. In particular, the oscillato
behavior of the second derivatives seems to be artificial.
conclude that the intrinsic specific heat of single-crys
graphite is given by the polynomials of Table II, although t
polynomials above 300 K are not so well established.

VI. DETERMINATION OF k BY FITTING
OF CALCULATED SPECIFIC HEAT
VALUES TO EXPERIMENTAL ONES

As vD,c is related tok in Eq. ~31!, the only unknown in
the present analysis isk. Practically, however,k andvD,c are
determined simultaneously. Then, as stated in Sec. III A,
value of C44 at room temperatureC44(293) is uncertain,
ranging from 0.013 to 0.4631011 dyn/cm2. Therefore, after
assigning a trial value toC44(293), we determinek and
vD,c . In the following, we assume that the experimen
specific heat values are given by the polynomial formulas
Table II.

The procedure to determine bothk andvD,c is as follows.
First, we estimate the approximate values ofk andvD,c . In
the low-temperature region, the calculated specific heat
ues is almost independent ofvD,c . Therefore, the approxi
mate value ofk can be obtained by fitting the calculate
specific heat values to the experimental ones only if a t
high value is assumed forvD,c . Then, the approximate valu
of vD,c is determined using Eq.~34!. We proceed from the
low-temperature region to the high-temperature region wit
step-by-step increase of temperature. In the high-tempera
region, the approximate values ofk andvD,c are estimated
from their low-temperature values and Eq.~34!. Secondly,
starting with the approximate values ofk andvD,c , we de-
termine the final values ofk andvD,c self-consistently unde
the two conditions such that Eq.~31! is satisfied and the
calculated specific heat agrees with the experimental on

Figure 1 shows the temperature dependence ofk with
C44(293) as a parameter. In the temperature range abov
K, the temperature dependence ofk is almost the same fo
different C44(293) values. Below 50 K, however, the tem
perature dependence ofk differs markedly for different
C44(293) values. If C44(293) is smaller than 0.425
31011 dyn/cm2, when the temperature approaches to ab
lute zero,k increases rapidly. On the contrary, ifC44(293) is
larger than 0.42531011 dyn/cm2, k decreases rapidly. Such
rapid change ink near absolute zero cannot be accep
physically.82 Thus, based on this specific heat analysis at l
temperatures, we conclude unambiguously thatC44(293) is
0.42531011 dyn/cm2.
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The values of k calculated with C44(293)50.425
31011 dyn/cm2 are formulated as follows~in cm2/s!.

0<T<44.5 K:

k55.2653102329.45310210T3, ~44!

44.5<T<120 K:

k55.1133102311.02131025T22.290

31027T217.69310210T3, ~45!

T>120 K:

k51.09903102221.383031023 ln T. ~46!

Above 50 K, the decreasing rate ofk with increasing tem-
perature is much larger than that ofCi j .

The final calculation of the specific heat values is made
using the above formulas ofk. Tables III and IV show the
calculated specific heat values, which are compared to
experimental ones given by the formulas of Table II. In t
temperature range below 350 K, the calculated values a
with the experimental ones with an accuracy of less than 1
Above 350 K, the calculated values become smaller than
experimental ones.

VII. DISCUSSION

A. Models of lattice vibrations and calculated results
of specific heat

The usefulness of a lattice vibration model can be eva
ated by comparing the calculated specific heat values by

FIG. 1. Temperature dependence ofk. Parameters areC44 at
room temperature.
5-8
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TABLE III. Calculated specific heat values of graphite for 0.4<T<10 K. Cl , Ct , andCc are the lattice specific heat at constant volum
due to the in-plane longitudinal, the in-plane transverse, and the out-of-plane mode vibrations, respectively.D is theCp2Cv correction and
Ce is the electronic specific heat. Observed values ofCp are from Table II.

T
~K!

Cl

@mJ/~mol K!#
Ct

@mJ/~mol K!#
Cc

@mJ/~mol K!#
D

@mJ/~mol K!#
Ce

@mJ/~mol K!#
CalculatedCp

@mJ/~mol K!#
ObservedCp

@mJ/~mol K!#

0.4 0.000 021 0.000 049 0.001 708 0.000 000 0.005 523 0.007 30 0.007 3
0.5 0.000 041 0.000 097 0.003 322 0.000 000 0.006 904 0.010 36 0.010 3
0.6 0.000 070 0.000 167 0.005 714 0.000 000 0.008 286 0.014 24 0.014 2
0.7 0.000 111 0.000 265 0.009 024 0.000 000 0.009 668 0.019 07 0.019 0
0.8 0.000 17 0.000 40 0.013 39 0.000 00 0.011 05 0.025 0 0.025 0
0.9 0.000 24 0.000 56 0.018 93 0.000 00 0.012 43 0.032 2 0.032 2
1.0 0.000 33 0.000 77 0.025 79 0.000 00 0.013 82 0.040 7 0.040 7
1.2 0.000 56 0.001 34 0.043 86 0.000 00 0.016 58 0.062 3 0.062 3
1.4 0.000 89 0.002 13 0.068 44 0.000 00 0.019 35 0.090 8 0.090 8
1.6 0.001 33 0.003 18 0.100 29 0.000 00 0.022 12 0.126 9 0.126 9
1.8 0.001 90 0.004 53 0.140 04 0.000 00 0.024 89 0.171 4 0.171 4
2.0 0.002 6 0.006 2 0.188 3 0.000 0 0.027 7 0.225 0.225
2.5 0.005 1 0.012 2 0.349 2 0.000 0 0.034 6 0.401 0.401
3.0 0.008 9 0.021 1 0.572 4 0.000 0 0.041 5 0.644 0.644
3.5 0.014 1 0.033 7 0.862 6 0.000 0 0.048 5 0.959 0.959
4.0 0.021 2 0.050 5 1.223 4 0.000 0 0.055 5 1.351 1.351
4.5 0.030 4 0.072 4 1.657 3 0.000 0 0.062 4 1.823 1.823
5.0 0.042 0.100 2.167 0.000 0.069 2.38 2.38
6.0 0.074 0.176 3.418 0.000 0.083 3.75 3.75
7.0 0.120 0.287 4.988 0.000 0.097 5.49 5.49
8.0 0.184 0.437 6.885 0.000 0.111 7.62 7.62
9.0 0.267 0.635 9.118 0.000 0.125 10.15 10.15

10.0 0.371 0.883 11.693 0.000 0.140 13.09 13.09
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model with the experimental ones. Komatsu calculated
specific heat by using the semicontinuum model withC33,
C44, and k as adjustable parameters and could determ
these parameters so as to fit the calculated values to the
perimental ones for various kinds of graphite specimens
low 20 K.23,24 The value ofC44 varied with the crystallite
size or the degree of stacking faults of the specimens. T
the semicontinuum model, with the suitable choice of para
eters, can well explain the specific heat below 20 K. As
temperature increases above 20 K, however, if the same
rameters are used, the calculated specific heat values b
model deviate gradually from the experimental ones.

In the present paper, we have improved the semic
tinuum model by taking the model parameters as a func
of temperature. If we assume that the temperature de
dence ofk is given by Eqs.~44!–~46!, the improved semi-
continuum model can explain the specific heat well in
temperature range below 350 K~Tables III and IV!. The
introduction of temperature dependence into the model
rameters extends the temperature range in which the s
continuum model is applicable from below 20 K to belo
350 K. Thus, the improved semicontinuum model can
used more reliably below 350 K for the analysis of vario
physical properties than the previous model.

In the temperature range above 350 K, the calculated
cific heat values by the improved semicontinuum model
viate gradually from the experimental ones. Namely,
13430
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model gives a valid approximation of lattice vibrations in t
region of low frequencies and small wave vectors, but
becomes invalid for high frequencies or large wave vecto
A more rigorous model of lattice vibrations should be bas
upon the Born–von Ka´rmán approach.4–8,10–21

Al-Jishi and Dresselhaus calculated the phono
dispersion relations and the frequency distribution funct
by utilizing a Born–von Ka´rmán model.18 In their calcula-
tion, interactions up to fourth-nearest both intraplane and
terplane neighbors were considered and the force cons
were determined from the experimental data on Raman,
frared, and neutron scattering measurements and the m
sured elastic constants.18 To calculate the frequency distribu
tion function, the frequency range of 0–1650 cm21 was
divided into 165 intervals of width 10 cm21 ~i.e., about
1.8831012 rad/s). We have calculated the specific heat
using their frequency distribution function. The width of in
tervals, however, is too broad to calculate accurately the s
cific heat at low temperatures below 50 K. In the temperat
range from 50 to 1800 K, the calculated specific heat val
agree with the experimental ones with a precision
about 2%.

B. Temperature dependence of lattice vibrations

1. Debye temperature

A conventional parameter to measure the temperature
pendence of lattice vibrations is the Debye temperatureQ
5-9
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TABLE IV. Calculated specific heat values of graphite for 10<T<500 K. Refer to the caption of Table III.

T
~K!

Cl

@J/~mol K!#
Ct

@J/~mol K!#
Cc

@J/~mol K!#
D

@J/~mol K!#
Ce

@J/~mol K!#
CalculatedCp

@J/~mol K!#
ObservedCp

@J/~mol K!#

10 0.000 371 0.000 883 0.011 693 0.000 000 0.000 140 0.013 09 0.013

12 0.000 65 0.001 54 0.017 90 0.000 00 0.000 17 0.020 3 0.020 3

14 0.001 02 0.002 42 0.025 60 0.000 00 0.000 20 0.029 2 0.029 2

16 0.001 48 0.003 51 0.034 88 0.000 00 0.000 22 0.040 1 0.040 1

18 0.002 03 0.004 82 0.045 85 0.000 01 0.000 25 0.053 0 0.053 0

20 0.002 66 0.006 33 0.058 61 0.000 01 0.000 28 0.067 9 0.067 9

25 0.004 60 0.010 95 0.098 64 0.000 04 0.000 36 0.114 6 0.114 6

30 0.007 03 0.016 75 0.149 86 0.000 09 0.000 43 0.174 2 0.174 1

35 0.009 9 0.023 7 0.210 6 0.000 2 0.000 5 0.245 0.245

40 0.013 3 0.031 7 0.278 9 0.000 3 0.000 6 0.325 0.325

45 0.017 1 0.040 8 0.352 9 0.000 5 0.000 7 0.412 0.412

50 0.021 4 0.051 0 0.431 2 0.000 7 0.000 7 0.505 0.505

55 0.026 2 0.062 4 0.513 0 0.001 1 0.000 8 0.603 0.603

60 0.031 4 0.074 8 0.597 7 0.001 5 0.000 9 0.706 0.706

65 0.037 1 0.088 2 0.685 0 0.001 9 0.001 0 0.813 0.813

70 0.043 2 0.102 8 0.774 7 0.002 4 0.001 0 0.924 0.924

75 0.049 8 0.118 5 0.866 7 0.003 0 0.001 1 1.039 1.039

80 0.056 8 0.135 3 0.961 2 0.003 5 0.001 2 1.158 1.158

85 0.064 3 0.153 1 1.058 0 0.004 1 0.001 3 1.281 1.281

90 0.072 3 0.172 0 1.157 2 0.004 7 0.001 4 1.408 1.408

95 0.080 7 0.192 0 1.258 9 0.005 3 0.001 5 1.538 1.538

100 0.089 6 0.213 2 1.363 0 0.006 0 0.001 5 1.673 1.673

110 0.108 7 0.258 7 1.578 3 0.007 5 0.001 7 1.955 1.955

120 0.130 0.309 1.802 0.009 0.002 2.25 2.25

130 0.152 0.363 2.033 0.011 0.002 2.56 2.56

140 0.177 0.422 2.270 0.013 0.002 2.88 2.88

150 0.204 0.485 2.512 0.014 0.002 3.22 3.22

160 0.232 0.552 2.758 0.016 0.003 3.56 3.56

170 0.262 0.624 3.007 0.018 0.003 3.92 3.92

180 0.295 0.701 3.257 0.020 0.003 4.28 4.28

190 0.329 0.781 3.507 0.022 0.003 4.64 4.64

200 0.365 0.866 3.754 0.024 0.003 5.01 5.01

210 0.402 0.954 3.997 0.026 0.004 5.38 5.38

220 0.442 1.046 4.234 0.028 0.004 5.75 5.75

230 0.483 1.142 4.465 0.030 0.004 6.12 6.13

240 0.527 1.241 4.687 0.032 0.004 6.49 6.49

250 0.572 1.343 4.901 0.034 0.005 6.85 6.86

260 0.619 1.448 5.105 0.036 0.005 7.21 7.21

270 0.668 1.556 5.299 0.038 0.005 7.57 7.57

280 0.719 1.665 5.483 0.039 0.005 7.91 7.92

290 0.771 1.777 5.656 0.041 0.005 8.25 8.26

300 0.826 1.889 5.820 0.042 0.006 8.58 8.60

320 0.939 2.118 6.118 0.045 0.006 9.23 9.27

340 1.060 2.349 6.380 0.048 0.007 9.84 9.93

360 1.186 2.580 6.609 0.051 0.007 10.43 10.58

380 1.318 2.809 6.808 0.054 0.008 11.00 11.23

400 1.455 3.034 6.982 0.057 0.008 11.54 11.87

450 1.813 3.573 7.323 0.064 0.010 12.78 13.38

500 2.187 4.068 7.566 0.071 0.011 13.90 14.70
134305-10
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TEMPERATURE DEPENDENCE OF LATTICE . . . PHYSICAL REVIEW B 68, 134305 ~2003!
which is defined bykQ5\vD . Figure 2 shows the tempera
ture dependence of the Debye temperatures for three v
tional modes. The Debye temperature of the out-of-pla
mode decreases drastically with increasing temperat
which is related to the rapid decrease ofk.

2. Dispersion relation

Figures 3–7 show typical examples of the dispers
curves of lattice vibrations forT50 and 293 K. The disper
sion curves of the out-of-plane mode shown in Figs. 6 an
change remarkably with temperature, which is related to
rapid change ofk.

It is worth noting that the dispersion curves of the out-
plane mode along theqa direction shown in Fig. 6 are con
cave upwards. In usual cases, however, the geometry o
dispersion curves is such that they are convex upwards
tend to a horizontal tangent at the zone boundary, so
there is no three-phonon process in which all three phon
belong to the same polarization branch of lattice vibration83

On the contrary, in the present case of graphite, as the
persion curves are concave upwards, the three-phonon
cess in the out-of-plane branch can exist. The three-pho
process is important in analyzing the thermal conductivit

Figure 8 shows the frequency distribution functions
three vibrational modes at 0 and 293 K. Figure 9 is the
larged frequency distribution functions for the low frequen
region of Fig. 8. A marked change in the frequency distrib
tion function with temperature is shown clearly in the case
the out-of-plane mode.

3. Grüneisen constant

The Grüneisen constantg is defined as the negative rat
of the relative frequency changeDv/v to the relative volume

FIG. 2. Temperature dependence of Debye temperaturesQ l ,
Q t , and Qc for in-plane longitudinal mode, in-plane transver
mode, and out-of-plane mode, respectively.
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changeDV/V, caused when the temperatureT or pressureP
is changed, i.e.,g52(Dv/v)/(DV/V).

Table V compares the Gru¨neisen constants obtained b
Raman scattering, neutron scattering, and the present a
sis. Forv5vz at qa50 andqz5qz

max of the in-plane longi-

FIG. 3. Dispersion curves of the two in-plane modes along
qa direction forqz50 at 0 and 293 K.qa

max54(p/3))1/2/a anda is
the nearest neighbor atomic spacing. Effect ofqz on the curves is
negligibly small except for nearqa50.

FIG. 4. Dispersion curves of the two in-plane modes along
qz direction for qa50 at 0 and 293 K.qz

max5p/c and c is the
interlayer spacing.
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TAKESHI NIHIRA AND TADAO IWATA PHYSICAL REVIEW B 68, 134305 ~2003!
tudinal and transverse modes and forv5vz8 at qa50 and
qz5qz

max of the out-of-plane mode, the experimentalg val-
ues agree rather well with the calculated ones.

For v5vD,t at qa5qa
max andqz50 of the in-plane trans-

verse mode, the Raman scattering,E2g(2) at 1579 cm21, has
given a low g value of 0.10 under pressure, whereqa

max

54(p/3))1/2/a anda is the nearest neighbor atomic spaci

FIG. 5. Dispersion curves of the two in-plane modes along
qz direction forqa5qa

max at 0 and 293 K.

FIG. 6. Dispersion curves of the out-of-plane mode along theqa

direction forqz50 andqz5qz
max at 0 and 293 K.
13430
in the layer plane. Hanflandet al. used 3Da/a instead of
DV/V so that they raised theg value to 1.06.84 Graphite is
known to have negative thermal expansion coefficients p
allel to the layer plane, i.e., (3/a)(da/dT),0, below about
650 K.59 Therefore, if we use 3Da/a instead ofDV/V in
derivingg by changing temperature, we will have a negati
g value.

Then, forv5vD,c at qa5qa
max and qz50 of the out-of-

plane mode, the present analysis gives an extraordina
large g value of about 50, which is related to the rapid d
crease ofk with temperature. There is no measurement og
for this vD,c , although Ivanovet al.87 measured the pressur

e

FIG. 7. Dispersion curves of the out-of-plane mode along theqz

direction forqa50 andqa5qa
max at 0 and 293 K.

FIG. 8. Frequency distribution functions of in-plane longitud
nal, in-plane transverse, and out-of-plane vibrations at 0 and 29
5-12
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FIG. 9. Enlarged frequency distribution functions for the lo
frequency region.
13430
dependence of the out-of-plane dispersion curve along thqa

axis for qa,0.25qa
max andqz50, and found thatz increases

with pressure butk decreases with it.
When the lattice specific heat at constant volume of

vibrational modei is Cv,i and the Gru¨neisen constant of the
modei is g i , if the average Gru¨neisen constantḡ is defined
by

ḡ5
( ig iCv,i

( iCv,i
S Cv5(

i
Cv,i D , ~47!

the following relation holds:88

ḡ5
avV

KCv
. ~48!

Putting, at 293 K,av52.7331025/K, V55.30 cm3/mol,
K52.80310212 cm2/dyn, andCv58.30 J/(mol K), we ob-
tain ḡ'0.62 at 293 K. Thisḡ value is smaller than the
experimentalg values given in Table V, except theg for v
5vD,t of the in-plane transverse mode obtained by Ram
scattering.

4. Temperature dependence ofk

The present analysis predicts thatk decreases rapidly with
c
TABLE V. Grüneisen constantsg in graphite.qa
25qx

21qy
2, qa

max54(p/3))1/2/a andqz
max5p/c, wherea is the nearest neighbor atomi

spacing andc is the interlayer spacing.

Vibrational
mode

(qa , qz , v) Temp.
~K!

Method 1

v

dv

dT
~K21!

1

V

dV

dT
~K21!

1

v

dv

dP
~kbar21!

1

V

dV

dP
~kbar21!

g

In-plane (0, qz
max, vz) 300 Raman scatteringa 1.1031022 22.9631023 3.7

longitudinal
and transverse

Present analysis 21.07531024 2.7331025 3.9

296–1463 Neutron scatteringb 21.04931024 2.8831025 3.6
Present analysis 29.6131025 2.8831025 3.3

In-plane (qa
max, 0, vD,t) 300 Raman scatteringa 2.9631024 22.9631023 0.10

transverse Present analysis 23.2331025 2.7331025 1.2

Out-of-plane (0, qz
max, vz8) 190–296 Neutron scatteringc 21.23631024 2.8231025 4.4

Present analysis 21.08031024 2.6531025 4.1

190–890 Neutron scatteringc 29.6131025 2.8131025 3.4
Present analysis 21.03431024 2.7931025 3.7

4–1763 Neutron scatteringb 28.7331025 2.7431025 3.2
Present analysis 29.0431025 2.7431025 3.3

293 Neutron scatteringd 1.5231022 22.3431023e 6.5
Neutron scatteringf 1.7 31022 22.3 31023e 7.4

Present analysis 21.07631024 2.7331025 3.9

(qa
max, 0, vD,c) 293 Present analysis 21.43 31023 2.7331025 52

aReference 84. eThis contains (2/a)(da/dP)520.131023 kbar21,
calculated from elastic constants.bReference 55.

cReference 54. fReferences 86 and 87.
dReference 85.
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increasing temperature; the bending elastic constant
graphite layer decreases and the layers become easy to
In other words, the softening of the out-of-plane mode
curs such that the frequency of each out-of-plane mode
creases rapidly with temperature.

We suppose that the decrease ofk is related to the con-
traction of thea spacing in the layer planes. As previous
mentioned, thea spacing decreases with increasing tempe
ture below about 650 K, while thec spacing increases.59 It is
probable that the rapid increase in excitation of the out-
plane vibrations with temperature results in the contract
of the a spacing.

The results of high-pressure experiments are suggestiv
this respect. Both thec anda spacing decrease with pressur
Then, m increases with pressure. Namely, (1/c)(dc/dP)
522.231023/kbar,84–86 (1/a)(da/dP)52531025/kbar
~from elastic constants!,84 and (1/m)(dm/dP)51.6
31022/kbar.85–87 In the above measurement of the out-o
plane dispersion curve along theqa axis, Ivanovet al. found
that, althoughz increases with pressure,k2 decreases with it
and drops to about 60% of its initial value at 60 kbar;87 that
is, (1/z)(dz/dP)52.231022/kbar and (1/k)(dk/dP)
523.831023/kbar. They considered that the decrease ok
with pressure is the precursor of the phase transition fr
graphite to hexagonal diamond at around 140 kbar.89 These
results suggest that the decrease ofa spacing favors the de
crease ofk, although the decrease ofc spacing is against the
decrease ofk.

We estimate the relation ofk to thea spacing under pres
sure and upon increasing the temperature. The above r
of Ivanovet al. gives (dk/k)/(da/a)57.63101 under pres-
sure. Then, when the temperature is increased at room
perature, we have (dk/k)/(da/a)51.13103, because
(1/k)(dk/dT)521.531023/K from Eq. ~46! and (1/a)
3(da/dT)521.431026/K.90 There is a difference of one
order of magnitude in these estimates of (dk/k)/(da/a).
However, if we can exclude the effect of changes in thc
spacing, the ratio ofdk/k to da/a may be approximately the

FIG. 10. Comparison of the experimental and the calcula
second derivatives of the specific heat of graphite with respec
temperature.
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same under pressure and upon increasing the tempera
This indicates that the decrease ofk is closely related to the
contraction of thea spacing. The above difference may b
due mainly to the fact that thec spacing decreases with pre
sure as (dc/c)/(da/a)544, whereas it increases with tem
perature as (dc/c)/(da/a)5220. On the other hand
(dk/k)/(dc/c)51.7 under pressure, wherea
(dk/k)/(dc/c)5255 upon increasing the temperature; t
two cases are in opposite directions to each other. There
dk/k has no direct relation todc/c.

The predicted rapid decrease ofk with increasing tem-
perature should be tested by such experiments as neu
scattering, electron energy loss spectroscopy~EELS!, infra-
red reflection, and x-ray and neutron Bragg reflection. T
neutron scattering experiment gives the dispersion relat
directly as shown in Figs. 6 and 7. The surface phonon
persion curves have been measured by using EELS.91,92 As
the measured surface phonon dispersion curves in grap
are in good agreement with the calculated bulk dispers
curves,22 EELS is useful to test the temperature depende
of k in the bulk. The infrared reflection observed at 8
cm21 at room temperature has been identified as due to
A2u out-of-plane mode,93 which corresponds tov5vD,c at
qa5qa

max andqz50 of the out-of-plane mode in the prese
model. If the predicted temperature dependence ofk is valid,
when the sample temperature is decreased from room
perature to 77 K, the frequency of theA2u mode will shift to
a higher frequency of about 50% increase. Then, the in
sity of x-ray and neutron Bragg reflections depends on te
perature and the frequency distribution function through
Debye-Waller factor.65,94 The present analysis suggests th
except for the factor of the scattering vector, the intensity
the (00l ) reflection decreases more rapidly with increasi
temperature than that of the (hk0) reflection.

C. Second derivative of specific heat curve and frequency
distribution function

The dispersion relations of lattice vibrations have be
determined from neutron scattering experiments. Since
available flux of slow neutrons is limited, in practice th
measurements are made in the range ofv,131014 rad/s,
which is less than13 of the maximum frequency in the case
graphite. Then, Raman scattering and infrared measurem
can probe only the optically active region of the wave vec
space. On the contrary, the specific heat is unique in giv
information integrating the whole wave vector space.

In the past the problem of ‘‘inversion’’ of specific hea
curves was considered, in which the frequency distribut
function D(v) is calculated from the experimental specifi
heat curve.44 The result, however, was not so fruitful, be
cause the specific heat curve is remarkably insensitive
changes inD(v). Here, we show that the second derivati
of the specific heat curve with respect to temperature gi
information onD(v).

The second derivative of the specific heat at constant
ume is derived from Eq.~35! as follows:

d
to
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d2Cv

dT2 5kE
0

vDF]2E~T,v!

]T2 D~T,v!12
]E~T,v!

]T

]D~T,v!

]T

1E~T,v!
]2D~T,v!

]T2 Gdv, ~49!

where

E~T,v!5
z2ez

~ez21!2 , z5
\v

kT
,

]E~T,v!

]T
5

1

T

z2ez

~ez21!3 @z121~z22!ez#,

]2E~T,v!

]T2 5
1

T2

z2ez

~ez21!4 @z216z161~4z2212!ez

1~z226z16!e2z#.

Figure 10 compares the experimental and the calcula
results on the second derivative of the specific heat w
respect to temperature. The experimental curve~solid line! is
the second derivative of the formulas given in Table II. T
calculated points~white and black circles! are derived by
substituting D(v) of the present revised semicontinuu
model and that of Al-Jishi and Dresselhaus18 into Eq.~49!. In
the calculation, the second derivatives of theCp2Cv correc-
tion and the electronic specific heat are neglected. The
culated result for the revised semicontinuum model agr
well with the experimental curve below 120 K, but deviat
gradually from it above 120 K. Then, for the Al-Jishi an
Dresselhaus model,D(v) is independent of temperature. A
their calculated data points forD(v) are scarce in the low
frequency region, the calculation of the second derivative
made above 15 K. The characteristics ofD(v) for both mod-
els are reflected on the respective second derivatives. H
we do not discuss further the relation of the second der
tives andD(v), but would like to emphasize that the seco
derivative of the specific heat curve with respect to tempe
ture is useful in examining the validity ofD(v).

The second derivative of the experimental specific h
curve oscillates with temperature in the range of 300 to 7

*Present address: 513-3 Kuwada, Iwase-machi, Nishiibaraki-
Ibaraki-ken 309-1223, Japan.

†Present address: 1883-1 Toyooka, Tokai-mura, Naka-gun, Iba
ken 319-1105, Japan.
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K. We consider that the experimental curve is not good,
cause the integral of Eq.~49! becomes insensitive to the form
of D(v) at high temperatures and therefore the second
rivative curve cannot oscillate rapidly with temperature.
stated in Sec. V, the oscillatory behavior of the second
rivative in the range of 300 to 760 K seems to be artifici
which is due to the continuity condition of the first and se
ond derivatives imposed in determining the experimental f
mulas of Table II. We recommend that the raw data of
specific heat above 300 K cited in the literature77–81 should
be reevaluated.

VIII. SUMMARY

The semicontinuum model of lattice vibrations in graph
proposed by Komatsu and Nagamiya has been improved
taking account of the temperature dependence of elastic
stants and the thermal expansion. The specific heat prop
single-crystal graphite has been derived by evaluating
data reported in the literature. The bending elastic constan
a graphite layer has been determined by fitting the calcula
specific heat to the experimental one. With the bending e
tic constant thus determined, the improved semicontinu
model can explain the specific heat well in the temperat
range below 350 K. Then, the bending elastic constant
creases more rapidly with increasing temperature than
other elastic constants, which means that softening of
out-of-plane vibrations occurs. It has been suggested tha
softening of the out-of-plane vibrations with increasing te
perature is closely related to the contraction ofa spacing,
i.e., the negative thermal expansion parallel to the la
planes. The Gru¨neisen constants have been calculated
compared with the experimental ones. The second deriva
of the specific heat curve with respect to temperature gi
information on the frequency distribution function of lattic
vibrations. The value ofC44 at room temperature has bee
determined to be 0.42531011 dyn/cm2.
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