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Surface elastic waves in solid composites of two-dimensional periodicity
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We have studied the elastic surface waves in a truncated two-dimensional solid composite. The periodic
structure is constituted by a square array of parallel tungsten~W! cylinders embedded in silicon~Si!. The
surface plane that terminates the crystal cuts perpendicularly the plane of periodicity along the~10! direction.
Thus the surface plane is parallel to the axes of a row of cylinders. We found that surface waves can propagate
with wave vector laying along the one dimensional surface periodicity that results from the truncation. Both
mixed and transverse polarizations were considered, but only surface waves of mixed polarization exist when
the truncation leaves complete cells at the surface. We have also studied the guidance of elastic waves by a
homogeneous layer of Si grown at the surface of the crystal. The wave confinement within this adlayer is
possible due to the scattering effects suffered by the field of displacement inside the periodic structure at
frequencies in the band gaps.
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ys

ra
n

ifi
a

in
d

de
m

tru
o
ic
g
,
th
th

ls
se
a
o

i-

p
e
g
tte
pe

tial

ws

of
se
s in
ri-
Si

u
-
e as

a-

of
I. INTRODUCTION

It is known that elastic vibrations in the periodic arra
called phononic crystals~PCs! satisfy a frequency band
structure.1–6 This means that depending on their structu
and material parameters the PCs can support freque
ranges of forbidden wave propagation—the band gaps. This
ability to avoid the propagation of acoustic energy in spec
frequency ranges gives these artificial material potential
plications in transducer and filter technology.7–10

Up to now the properties of the acoustic bulk bands
two-dimensional~2D! crystals have been a well studie
topic. Several reports of arrays of solid cylinders embed
in fluids or in a different solid, with materials as aluminu
~Al !, copper~Cu!, polymers, mercury~Hg!, air, etc., have
shown the existence of band gaps.11–16 In addition, surface
waves in truncated crystals have been also studied in s
tures with the plane of truncation parallel to the plane
periodicity.17–19The waves propagate along the 2D period
surface and decay exponentially into the crystal. Althou
scattering effects are present on the plane of propagation
may say that these waves are of Rayleigh type because
amplitude decays along the direction of homogeneity—
direction perpendicular to the plane of periodicity.

There exists, however, another configuration that a
supports elastic surface waves. In this paper we shall pre
some properties of the surface waves in a 2D PC of squ
symmetry with the plane of truncation parallel to the axes
a row of cylinders. The surface~now of implicit one-
dimensional periodicity! cuts the crystal through the interst
tial region ~see Fig. 1!. In addition to the Rayleigh-type
waves for which the displacement amplitude decays ex
nentially into the crystal, a special type of vibration confin
ment at the surface occurs due to the coherent scatterin
the waves inside the crystal. As we shall see, in the la
case the elastic displacement oscillates in the direction
0163-1829/2003/68~13!/134303~8!/$20.00 68 1343
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pendicular to the surface, but decays with an exponen
modulation.

Experimental evidence in a solid/fluid system that sho
the existence of surface waves was recently published.1 An
square array of Hg cylinders in Al with a lattice constanta
52.8 mm exhibited a surface vibration at the frequency
0.75 MHz. However, in spite of the accessibility of the
results, we are not aware of a report treating these wave
solid/solid composites. In what follows we present a nume
cal study of these waves in a crystal of W cylinders in
~impedance average contrastZW /ZSi54.2). The results are
representative of the general behavior~similar surface waves
were also found in systems of W cylinders in Al and C
cylinders in Al!. The only requirement is a relative high im
pedance contrast in order to produce band gaps as larg
possible for hosting the dispersion relationv(k) of the sur-
face waves. All the calculations were made employing m

FIG. 1. The truncated crystal withx,z the cutting plane. The
surface is defined byy50. The arrows represent the direction
propagation of surface waves.
©2003 The American Physical Society03-1
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terial parameters corresponding to the isotropic approxi
tion.

The paper is organized as follows. In Sec. II we pres
the basic equations that govern the problem. Particular
phasis is placed in the supercell method that is usefu
obtain localized modes and surface waves. In Sec. III
show numerical results and discuss the physical propertie
the surface vibrations. Finally, in Sec. IV the conclusions
given.

II. THEORY

The crystal is composed of parallel solid cylinders
mass densityra , transverse velocitycta , and longitudinal
velocity cla embedded in a different solid of parametersrb ,
ctb , and clb . The array is square on thex,y plane; f
5pR2/a2 is the filling fraction, withR and a the radius of
the cylinders and the lattice constant, respectively. Ma
ematically the crystal is defined by the periodic mass den
r(rW)5r(rW1cW ) and velocitiesct(rW)5ct(rW1cW ), and cl(rW)
5cl(rW1cW ), where rW5x î1y ĵ and cW5cxî 1cy ĵ are the 2D
position vector and crystal translation vector, respectiv
The bulk modes in the structure are governed by the eq
tions

r
]2um

]t2 5
]smx

]x
1

]smy

]y
, m5x,y,z ~1!

whereuW (x,y,t)5(ux ,uy ,uz) is the vector of displacemen
The stress tensor has the components

smn5rct
2S ]um

]n
1

]un

]m D1r~cl
222ct

2!~¹•uW !dmn , ~2!

with m, n→x, y, z. Due to the crystalline periodicity the
solutions must satisfy the Bloch theorem. Then,

uW ~x,y,t !5exp~ ikW•xW !(
GW

uW GW ~kW !exp~ iGW •xW !exp~2 ivt !,

~3!

where kW5kxî 1ky ĵ is the Bloch wave vector andĜ
5(2p/a)(n î1m ĵ), with n andm integers, are the reciproca
lattice vectors~we are expanding the periodic part of th
solution with an infinite basis of plane waves!. Taking into
account the periodicity of both the mass density and the e
tic constants, we expand each functionr, rcl

2, andrct
2 in a

Fourier series employing the sameGW basis. By substituting
Eqs.~2! and ~3! into Eq. ~1! we obtain the next matrix rela
tion:

S Mxx
GW GW 8 Mxy

GW GW 8 0

M yx
GW GW 8 M yy

GW GW 8 0

0 0 Mzz
GW GW 8
D S ux~GW 8!

uy~GW 8!

uz~GW 8!
D

5v2NGW GW 8S 1 0 0

0 1 0

0 0 1
D S ux~GW 8!

uy~GW 8!

uz~GW 8!
D . ~4!
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The matrix elements are

Mxx
GW GW 85~kx1Gx8!~kx1Gx!l~GW 2GW 8!

1~ky1Gy!~ky1Gy8!t~GW 2GW 8!,

Mxy
GW GW 85~kx1Gx8!~ky1Gy!t~GW 2GW 8!

1@l~GW 2GW 8!22t~GW 2GW 8!#~kx1Gx!~ky1Gy8!,

M yx
GW GW 85~kx1Gx!~ky1Gy8!t~GW 2GW 8!

1@l~GW 2GW 8!22t~GW 2GW 8!#~kx1Gx8!~ky1Gy!,

M yy
GW GW 85~kx1Gx!~kx1Gx8!t~GW 2GW 8!

1~ky1Gy8!~ky1Gy!l~GW 2GW 8!,

NGW GW 85r~GW 2GW 8!,

where l(GW ), t(GW ), and r(GW ) are the coefficients of the
Fourier expansions forrcl

2(xW ), rct
2(xW ) and r(xW ), respec-

tively. @Each one of these three latter functions has a posi
dependence of the formx(xW )5xb1(xa2xb)Q(R2uxW u),
wherexa andxb are the constant value of the correspondi
parameter inside the rods or in the interstitial region, resp
tively, andQ~a! is the Heaviside function (Q51 for a>0,
Q50 for a,0).# The Fourier coefficientsX(GW ) are derived
from the integral equation

X~GW !5
1

Ac
E

Ac

x~xW !exp~2GW •xW !d2x,

in which Ac is the unit cell area. The final expression has t
form

X~GW !5xbdGW ,012~xa2xb!J1~GR!~12dGW ,0!/GR,

whereJ1 is a Bessel function of first kind.#
As can be easily deduced, Eq.~4! describes two types o

independent bulk vibrations that propagate with wave vec
on the plane of periodicity. One, the waves of mixed pol
ization with compressional and shear components (uW 5uxî

1uy ĵ ), and two, the transverse~shear! waves, with the dis-
placement vectoruW 5uzk̂.

In calculating the elastic surface modes of truncated cr
tals Eq.~4! is also useful. The only requirement is the appr
priate definition of a supercell. In reality, Eq.~4! allows one
to obtain the surface modes in a crystal slab with surfa
resembling the surface of the truncated crystal. The thic
the slab, the smaller the interaction between the modes
calized at each one of the two slab surfaces. Then, the
persion relation of such modes is expected to converge
that of the surface modes in a semi-infinite structure.

As an example, in Fig. 2 we show the half part of
symmetric supercell associated with a crystal slab of se
layers,Ls57a. Note that the repetition of this supercell
the sitesrWnm5na î1mL ĵ, with n and m integers, produces
3-2
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SURFACE ELASTIC WAVES IN SOLID COMPOSITES . . . PHYSICAL REVIEW B 68, 134303 ~2003!
an array of alternating crystal and vacuum slabs. The ke
the supercell method when surface modes are studied is
calculation of the frequency bands in this array; some ba
projected on the plane of the surface will correspond p
cisely to the surface vibrations. When both the vacuum
gion and the crystal slab are thick enough, the bands ass
ated with the surface modes will be very narrow w
frequencies lying inside the bulk gaps of the infinite cryst
The narrow bands that approach the curves of degene
modes correspond to the dispersion relations of the sur
waves in the semi-infinite crystal. For details of the superc
method, see Ref. 20.

In defining the supercell the most important issue is
selection of the medium that we are naming vacuum. A
known, the supercell method demands a finite interact
small as possible, between the modes of neighboring cry
slabs. In order to allow the displacement field to penetr
the vacuum regions we need to replace the real vacuum
convenient ~artificial! material. The only condition is to
choose the parameters properly in order to ensure the r
decay of the displacement amplitude—the shorter the p
etration into the ‘‘vacuum’’ the better the approximation
the real situation. From the boundary conditions at the in
face of the crystal-vacuum we can estimate the values of
mass density and the sound velocities that will define
artificial medium. The normal and tangential stress com
nents which are continuous through the interface are

syy5r~cl
22ct

2!
]ux

]x
1rcl

2 ]uy

]y
, ~5!

syx5rct
2F]ux

]y
1

]uy

]x G . ~6!

Allowing finite variations of the amplitude near the interfac
Eqs. ~5! and ~6! resemble the condition of a solid-vacuu
interface only when the mass density and the sound vel
ties of the artificial medium satisfyrct,l

2 →0 ~A solid-
vacuum interface is stress free. Thussyy5syx50.) In order
to avoid numerical conflicts, in practice the values ofrct,l

2

for the auxiliary medium are chosen to be as low as poss
with respect to their values for the constitutive materials
the crystal. Thus the previous absolute condition needs
replaced by

FIG. 2. One half of the supercell. In this example the super
hasn57 complete cells. The supercell contains a slab of W cy
ders embedded in Si bounded by vacuum on both sides.
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rcl ,t
2

~rcl ,t
2 !W,Si

→0. ~7!

It is natural to select a small mass densityr. However, for
the velocities there exists an additional condition. We kn
that the wave vector component in the perpendicular dir
tion to the surface isky5(v2/cl ,t

2 2kx
2)1/2. This means that

the exponential decay of vibrations occurs whenkx
.v/cl ,t . Therefore, it is required for the auxiliary medium
that the transverse and longitudinal velocities be finite qu
tities. In fact they must be high enough~three or four orders
of magnitude higher than the velocities of the constitut
materials! to allow one the calculation of the surface mod
of the small wave vectorkx . The numerical results of Sec
III were obtained with the artificial vacuum satisfyingr
51027 gr/cm3 andrct

25rcl
251010 gr/(cm s2). For the con-

stitutive materials we have@in units of gr/~cm s2!#: rWctW
2

51.531012, rWclW
2 55.031012, rSictSi

2 50.831012, and
rSiclSi

2 51.6631012. Thus, the quotient of Eq.~7! with each
one of these parameters takes the values 0.006, 0.
0.0125, and 0.006, respectively. These small quotients en
good approximations for the system crystal-vacuum; the c
trast between the parameters of the crystal and the artifi
vacuum is high, but yet numerically treatable allowing
good numerical convergence. It is worth saying that calcu
tions for surface modes in 1D systems were made with th
same criteria; our results are consistent with those alre
published but obtained with alternative semianalytic
methods.21 @In treating acoustic bulk waves, similar cond
tions forr andct,l have been used by other authors when
vacuum is a crystal constituent. The condition involving t
mass density and velocities has been written as the
r/ci jkl →0, whereci jkl is the elastic constant tensor. In th
isotropic approximation it is proportional to the square v
locities. Thus the lower the mass density and more finite
sound velocities of the auxiliary medium, as in our syste
the better the approximation for the vacuum properties.11#

III. NUMERICAL RESULTS

From a series of calculations for truncated crystals w
complete cells at the surface, we concluded that surf
modes exist, but only of mixed polarization. Calculatio
were made using a supercell with a crystal slab of nine co
plete cells. A basis of 841 plane waves was used to obtain
bulk solutions. For the case of surface waves, we emplo
2025 waves; the solutions differ 0.25% and 0.55% fro
those obtained with 1865 and 1685 waves, respectiv
which means acceptable convergence.

Figure 3 shows the band structure along the border of
Brillouin zone ~the left side of the figure! and the projected
bands on the@10# plane~the right side of the figure! for both
shear (ux5uy50,uzÞ0) and mixed (uxÞ0,uyÞ0,uz50)
polarizations. On the right side we also include the disp
sion curves of the surface modes. As can be seen, the s
tural and material selected parameters~see the figure caption!
ensure the occurrence of a complete band gap not onl
frequency but also in polarization that extends from 4.4
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-
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4.7 in the reduced frequency units.
The specific characteristics of the surface modes in

dispersion curves depend on where they lay on the (kx ,v)
plane, to the right or to the left of each sound line@kx higher
or lower than (v/cl ,t) means an evanescent or oscillato
behavior of the corresponding longitudinal or transverse
placement inside the respective medium#. The surface modes
near the zone boundary (kxa.2.6) in the lower curve of the
dispersion are of Rayleigh type; they have a phase velo
lower than the velocities of the oscillatory solutions in W a
Si resembling one of the Rayleigh mode characteristics. F
ure 4~a! shows that the displacement intensity of these mo
inside the crystal indeed decays as a Rayleigh mode, b
slightly perturbed by the crystal periodicity. For wave ve
tors lower thankxa52.6 in the same curve the transver
displacement component has a small oscillation inside th
cylinders~the modes lie on the left vicinity of the W trans
verse sound line!, making the modes slightly less localized
the surface.

Now, the surface modes in the second gap of Fig. 3 h
different characters. Again, depending on where they are,
modes may even present a complete oscillatory beha
~with decay defined by an exponential envelope function!. In
such a case the localization of the elastic vibration at
surface results from scattering effects. The multiple Bra
reflections, a phenomenon also responsible for the oc
rence of frequency gaps, confine the elastic vibration to
first three or four layers away from the surface. As an
ample Fig. 4~b! presents the displacement intensity of t
mode B at kxa51.1. The intensity, repetitive at each ce
already decays substantially in the third inner cell.

FIG. 3. Bulk band structure of a square array of W cylinde
(r519.3 gr/cm3, cl55.13105 cm/s, andct52.83105 cm/s) in Si
(r52.42 gr/cm3, cl58.33105 cm/s, andct55.83105 cm/s). The
filling fraction is f 50.4. The left panel shows the transver
~dashed curves! and mixed~continuum curves! modes along the
border of the Brillouin zone. The projected bulk bands on theG-X
direction and the dispersion curves of the surface modes are
sented in the right panel. The lined regions correspond to transv
waves while the shaded regions are for mixed modes. The so
lines are lines of slopeLl ,t5v/cl ,t .
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As an additional characteristic in Fig. 5 we plot the to
intensity ~shaded region! and the respective longitudina
~dotted curves! and transverse~dashed curves! contributions
of the two types of surface modes discussed above. Le
remember that the longitudinal component at the surface
compressional oscillation in the direction of the wave vec
kx ~the surface wave propagates along thex direction!. On
the other hand, the transverse component is the shear co
bution with a displacement in they direction, the direction
perpendicular tokx . It is found that along the same dispe
sion curve the longitudinal and transverse contributions va
apparently the polarization of the surface mode is mai
defined by the nearest sound lines. Figure 5 shows that m
A at the limit of the Brillouin zone in the lowest curve i
practically transverse. However, modeB in the second gap is
mainly longitudinal.

We may say that surface modeB in the second gap ha
much to do with the modes of the cells at the surface. Eff
tively, it is known that, inside the crystal, far from the su
face, the vibrational modes of all the cells couple to form t
bands. However, the modes of the last cells differ from th
of the inner cells due to the lack of the half crystal~the last
cells are stress free on one side!. Thus, they do not couple to
form bulk bands and separate from them appearing as
face modes. On the other hand, the Rayleigh type modA
appears because the composite has solid constituents
elastic properties. Because local pressure near the surfa
lower than the pressure inside the crystal~there is a gradient
of pressure!, an appropriate perturbation will produce high
displacements near the surface than far from it. This m
displacement can support vibrational modes, the surf
waves, that can be excited only by mixed waves—the co
pressional component is needed.

re-
se
nd

FIG. 4. Displacement intensity of the modes marked by dots
Fig. 3~a! The modeA, (kxd,va/ctW)5(p,2.8), is of Rayleigh type
because the intensity decays exponentially with some perturba
produced by the cylinders.~b! The modeB, ~1.1, 5.1!, corresponds
to the surface modes with a damped oscillatory intensity. The
placement intensity of the two types of modes are confined to
last three crystalline layers.
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We have not found shear surface modes when comp
cells form the surface. This means that the vibrational sh
modes of the last cells are not so different from the mode
the inner cells. Thus, all of them couple to form bands, w
the modes of the last cells probably laying just at the ba
edges. What we have is preliminary numerical evidence
shear modes occur only when the termination leaves t
cated cylinders at the surface. Of course this type of cry
truncation will modify the dispersion curves shown in Fig.
for mixed modes. However, an arbitrary truncation will
not discussed here; we have found that the additional st
ture at the surface makes the supercell method insufficien
inappropriate. Even employing many more waves for the d
placement expansion~and much more machine memory! we
were unable to find enough converged solutions. We c
cluded that in order to take into account the asymmetry
the last~truncated! cells, some other method for calculation
is required.

We next explore the guidance of elastic wave in a Si la
grown at the surface of the truncated crystal~see Fig. 6!.
Wave guiding is expected because the crystal supports
quency gaps that will confine the elastic oscillations ins
the layer. In some sense the guided modes in thisplanar
waveguide can be considered as surface waves of the cry
layer-vacuum system. We first evaluate the guided mode
a layer of thicknessdl5a, the same as the lattice consta
Becausea is also the thickness of the crystal layers para
to the additional homogeneous adlayer, we expect gui
modes with frequencies on the order of the projected ba
shown in Fig. 3.

FIG. 5. Longitudinal and transverse contributions to the d
placement intensities shown in Fig. 4. Dashed curves repre
transversal~shear! vibrations and dotted curves correspond to lo
gitudinal oscillations. The profiles are taken at the midcells alo
the y direction from the surface. The shaded regions are the t
intensities.~a! The Rayleigh type surface modeA ~b! The surface
modeB.
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With this selection we found the modes whose dispers
curves are shown in Fig. 7. First we note that the cu
shown by the dashed line for shear waves approaches the
LtSi of the transverse bulk modes in homogeneous silic
This is a known behavior for ordinary guidance: the disp
sion curve of the guided waves converges asymptotically
the line of bulk propagation, with a perpendicular wave ve
tor component of zero. Figure 7 shows that two mix
guided waves also appear in the second gap; as the frequ
increases their dispersion curves penetrate into the se
band, appearing again in the third gap. The most interes

-
nt

-
g
al

FIG. 6. Structure for wave guidance; a layer of thicknessdl is
added at the top of the crystal. Although strictly we speak of gu
ance by the layer, we may see such solutions as surface mod
the complete system.

FIG. 7. Dispersion relations of transverse and mixed guid
waves, dashed and continuum curves, respectively. The curves
to one or the other sound line depending on their polarization.RLSi

is the Rayleigh line of Si~see the text!. The curve at the right corne
corresponds to modes that approach the Rayleigh behavior.
3-5



ir
ch
t i
th
o

er
io

e

w
i

ta
en
fi
a
a

e
nc
h

r
e
-
t

r

9
e
tic
C

th
o

th
u
e
er
de
d
av
-

re
as

i
wi
th
e

e

su

an
dis-
dic

n

the

er
ary

pe
h a

and
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result is the tendency of the curve on the right. In the th
gap it lies on the right side of the two sound lines, whi
means the modes do not have an oscillatory componen
side the layer in the perpendicular direction away from
surface. However, the position of point 3 on the left side
the W sound lines allows oscillations in the cylinders to p
turb the pure exponential decay in the Si. The dispers
curve tends to the lineRLSi , the Rayleigh line of silicon~the
line of slopev/kx55.053103 m/s the phase velocity of th
Rayleigh surface waves in Si!.22 The field profile for the
modes marked in Fig. 7 are shown in Fig. 8. For the first t
modes the nearness to the respective sound lines determ
the main contribution, longitudinal or transverse, to the to
intensity uuu2. The third mode has a transverse compon
slightly more penetrating. In general the displacement pro
of the modes along the same dispersion curve changes
the vibrational fields of modes with frequencies near the
lowed bands penetrate more into the crystal.

As for ordinary guidance by a planar waveguide, w
found that the number of guided waves for a given freque
depends on the adlayer thickness. Figure 9 shows the s
modes in the second gap whendl varies froma to 5a at the
fixed wave vectorkxa52. More modes exist as the laye
becomes thicker, and all their dispersion curves converg
the transverse sound lineLtSi . We can make a rough estima
tion of the expected number of shear modes considering
Si layer as one of planar surfaces; the maximum numbe
modes can be written as

nmax5
dl

ap S ctW
2

ctSi
2 V22~kxa!2D 1/2

,

whereV is the reduced frequency. For example, atV55.5
and kxa50.2 it givesnmax5(dl /a)0.55. Thus withdl52a,
4a, and 6a we havenmax;1, 2, and 3, respectively. Figure
shows that this is a good estimation of the number of sh
guided waves by the adlayer which will guide the elas
vibration only in frequency regions corresponding to P
band gaps.

On the other hand, a more rich behavior was found for
guided waves of mixed polarization. In Fig. 10 a series
panels show the modes in the second gap. With a very
layer the solutions are of course the same as in Fig. 3. Fig
10~a! shows that surface modes of Rayleigh type disapp
whendl50.2a; their dispersion curve merges with the low
band edge of the first band while the curve of surface mo
in the second gap moves upward and the first guided mo
appear just below the second band in the regime of low w
vectors. Panels~b!, ~c!, and~d! present variations of the dis
persion curves for thicknessesdl,a. Panels~e! ~f!, and~g!
for dl52a, 3a, and 5a, respectively, show that again mo
guided modes appear as the thickness of the layer incre
Now the two sound lines for silicon are relevant because
the regime of high frequencies the dispersion curves
converge to one of them. There exist, however, modes
lay beyond the two sound lines. As the guide becom
thicker they behave more and more like Rayleigh wav
Panel ~f! shows that already fordl53a their dispersion
curve corresponds almost exactly to that of the Rayleigh
13430
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face waves of the single interface vacuum-silicon. This is
expected result because such modes have a finite decay
tance. For a thick enough layer the presence of the perio
structure does not affect them.@For example, at the fre-
quencyva/ctW54.5 the Rayleigh wavelength of silicon i
terms of the lattice constant islR52.5a and the decay dis-
tance in the perpendicular direction to the surface of
transverse and longitudinal components areb t50.8a and
b l50.5a, respectively. Thus, for a thickness layer of ord
of lR or larger these guided modes are essentially ordin
Rayleigh modes.#

We finally remark that the surface modes of Rayleigh ty
shown in Fig. 3 have the complete characteristics of suc

FIG. 8. The total displacement intensity and the transverse
longitudinal contributions of the three circled modes in Fig. 7.~a!
Mode 1, (kxd,va/ctW)5(1.3,4.7).~b! Mode 2,~2.2, 4.8!. ~c! Mode
3, ~p, 5.88!.
3-6



a
s

he

un
ed
w
a

tio
m
th
t

ha
tio

al
ur-

p-
s by
ure
en-
rre-
ad-
the
Si-

ter-

cia

s

ion
es
nels
er

ne

SURFACE ELASTIC WAVES IN SOLID COMPOSITES . . . PHYSICAL REVIEW B 68, 134303 ~2003!
mode, but do not correspond to one of the constitutive m
terials, as we have just discussed for the Si layer. They re
from the periodicity of the medium and exist only below t
first bulk band.

IV. CONCLUSIONS

We have found that surface elastic waves exist in tr
cated 2D phononic crystals of parallel W cylinders emb
ded in Si. The array is square and the plane of truncation
chosen parallel to a row of cylinders. With complete cells
the surface we found surface modes of mixed polariza
only. Modes without counterparts in homogeneous syste
arise due to scattering effects in the periodic structure—
Bragg reflections; these effects are also responsible for
elastic band gap occurrence. The elastic surface modes
an amplitude that vanishes in the perpendicular direc

FIG. 9. Shear guided waves as function ofdl for the fixed wave
vectorkxa52. One more mode arises when the thickness increa
in 2a, approximately.
.
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13430
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away from the surface, with profile either oscillatory~with an
exponential envelope function! or exponential~like a Ray-
leigh wave!. With the purpose of finding additional structur
conditions for the localization of elastic vibrations at the s
face, we have added a Si layer of thicknessdl above the
truncated crystal. Asdl increases the surface modes disa
pear and the guidance of transverse and mixed vibration
this adlayerbegins. This special waveguide has the struct
PC-Si-vacuum; therefore, in order to avoid a leakage of
ergy, the elastic guided waves may have frequencies co
sponding to the PC band gaps only. For a thick enough
layer we found that one of the solutions corresponds to
Rayleigh surface waves associated to the interface
vacuum; in such a case the PC is far enough from this in
face to produce no appreciable perturbation.
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es

FIG. 10. Dispersion curves of mixed guided waves as funct
of dl . Panel~a! shows that with a very thin layer the surface mod
of Fig. 3 almost disappear giving place to the guided waves. Pa
~b!, ~c!, and ~d! present the evolution of the curves prior the lay
reachesdl5a ~see Fig. 7!. Panels~e!, ~f!, and ~g! show that one
curve overlays the Rayleigh line while all the other converge to o
or the other sound line.
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