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Superradiance of low-density Frenkel excitons in a crystal slab of three-level atoms:
The quantum interference effect
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We systematically study the fluorescence of low-density Frenkel excitons in a crystal slab coniéining
V-type three-level atoms. Based on symmetric quasispin realization (8) $tularge N limit, the two-mode
exciton operators are invoked to depict various collective excitations of the collection of these V-type atoms
starting from their ground state. By making use of the rotating-wave approximation, the light intensity of
radiation for the single-lattice layer is investigated in detail. As a quantum coherence effect, the quantum beat
phenomenon is discussed in detail for different initial excitonic states. We also test the above results analyti-
cally without the consideration of the rotating-wave approximation and the self-interaction of radiance field is
also included.
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[. INTRODUCTION tum wells, quantum wires, and quantum dots, have their own
specific features in physical processes.

It is well known that the fluorescence of an exciton ex- The optical properties of the MQCS in a semiconductor
hibits superradiant character due to the appearance of mamicrocavity (SMC) have attracted more and more attention
roscopic transition dipole moment of the excifoh? How-  in the past decadé& The SMC with high-reflectivity dielec-
ever this collective feature of exciton radiance depends upotric mirrors leads to the realization of the strong coupling
dimensionality of crystal. In infinite bulk crystals, the exci- between radiation and matter. Moreover, since the optical-
ton does not radiate because this exciton is dressed with mode structure of the SMC may be altered around the
photon which has the same wave vector due to the transMQCS, many new phenomena, such as tailoring the
tional symmetry of the total system. As a result, a stablespontaneous-radiation rate and patterf’ the coupled
polariton is formed. In the case of lower-dimensional sys- exciton-photon mode splitting in a SM&*have been dem-
tems, one can show that the exciton decays superradiantbnstrated. The resonant interaction between excitons and a
due to breakdown of the translational symmetry. For exsingle-mode cavity field and the corresponding detuning ef-
ample, the decay rates of exciton are of the ordendffy  fect were further investigated:>®

for one-dimensional(1D) crystals and X/a)?y for 2D Most of these former works mentioned above dealt only
crystals? with y being the radiative decay rate for an isolatedwith the two-level lattice atom case. However, the three-level
atom, a the lattice constant, and the light wavelength. atom case may be very useful to implement quantum infor-

The enhanced factoin(a)® in the radiative width of ex- mation encoding and processiffg>® Over the past few
citon is now regarded commonly as one of the evidences dfears, the cavity QED with the collective excitations of en-
“superradiance,® which has been demonstrated in experi-sembles of three-level atoms has attracted much attention for
ments for Frenkel excitofhdand Wannier exciton¥ Since  quantum computing implementations. In this case, many at-
the enhanced radiant effect can also appear in the usual soms are entangled through their interaction with the common
perradiance of an ensemble of atotm&®how can we distin- ~ cavity field. To maintain quantum coherence in this quantum
guish the different features between the fluorescence of thiaformation processing’ it is important to reach the so-
excitons and that of the atomic ensemble? It is known that, igalled strong-coupling regime where the single-photon co-
the fully population-inverted atom systems, the atoms radiat8erent couplinddo> v, ¥cay, the atomic and cavity dissipa-
independently with each other in the initial stage. The bacKion (decoherenderates, respectively. It is the symmetric
action of the emitted photon to the atoms results in the corcollective excitation that can reach the strong-coupling re-
relation among atoms. Consequently, the atoms become c@ime without requiring a high finesse cavity becaugge
operative and thus the fluorescence from the atomic enx /N, the total number of atomi. The quantum decoher-
semble will show different statistical properties in the initial ence induced by the spatially inhomogeneous coupling be-
and final stages. On the other hand, the exciton fluorescendeeen the matter field and the light field was investigétéd
exhibits identical statistical character during the wholeto study the possibility of quantum information processing
process’ Physically, this is because the initial dipole mo- and storage with atomic ensembles. In fact, the phenomena
ments of the atoms are spatially random in an atomic enef superfluorescence or superradiaficd constitute another
semble, but in a semiconductor crystal, the dipole moment oéxample of collective state dynamics. Recent experimental
exciton presents a macroscopic effect even at initial momensuccess clearly demonstrates the power of such an atomic
So the optical properties of multidimensional quantum-ensemble based on the system for entangling macroscopic
confined semiconductor structur@dQCS), such as quan- objectsf7
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In the present paper, we study the fluorescence of low- (a)
density excitons in a crystal slab containing V-type three-
level atoms. The purpose of this paper is to investigate the
quantum interference efféftin the time evolution of light
intensity. In Sec. Il, considering that the existence of the
two-level atomic exciton is mathematically associated with
the infinite-dimensional reducible representation of(3U
Lie algebra®® we can rationally define the exciton operators
for the three-level case associated with(Slalgebra, which
contains various S(2) subalgebras. With this conception,
both the free part and the interaction part of the Hamiltonian
can be written down in terms of the introduced two-mode (b)
exciton operators, which can be described by bosonic opera-
tors in the low-density limit. In Sec. Ill, with rotating-wave
approximation(RWA) for the interaction ¢/ mc)p-A, the
coupled equations for the exciton-photon system are solved
with the help of Weisskopf-Wigner approattWwA).4%4|n
Sec. 1V, the explicit expressions of the electric field operators
are derived for the monolayer case. The light intensity as
well as the first- and second-order degree of quantum coher-
ence are calculated to show certain features of exciton fluo-
rescence in a crystal slab containing three-level atoms. We FIG. 1. (&) Energy structure of a V-type three-level atofdy is
discuss the phenomenon of quantum beat in the time evoldPe transition frequency dfy)«|e;), andQ; is that of|g) —|e;).
tion of the light intensity for various initial exciton states. In 1he direct transition between the two upper states is forbiddgn.
Sec. V, we consider the roles of both the non-RWA terms and* pla_ne CFVSta' slab W'.th S'mple Cu.b'(.: structure containing a stack
the self-interaction term of photon. This consideration avoid®f N identical layers withN, sites within each layer.

“unphysical” roots of the characteristic equation when the

nonperturbation approach given in Ref. 17 is used. The lighfnoments are represented ty andd,. We assume thad,
intensity is calculated to compare with the results in Sec. Iva@ndd, are parallel and lying in the slab plane. .
The conclusions are presented in Sec. VI with some remarks, Introduce the collective operators for thté layer as

le>

le:D

fe= ]

. 1 X 1
IIl. TWO-MODE EXCITON SYSTEM ADT=— > Je))(gl, AV=—=2 |g)(edl,
WITH SU (3) STRUCTURE YN T VN

We consider a plane crystal slab with a simple cubic 1 A 1
structure which contains a stack Nfidentical layers. V-type BOT=— > |e)i(gl, BO=—=2 |g)(e,l.
three-level atoms, as shown in Fig. 1, occipylattice sites, VN ] VNL T
whereN;=N_N andN, is the total lattice sites within each @
layer. The wave vectors of the excitons and light fields are allt js easy to prove that two sets of the operators
assumed perpendicular to the slab. We restrict ourselves to
investigate only the low-density exciton region.

_ h_ (Ot
The interaction ¢/mc)p-A between the radiation field E(l)_; ley(gl, FP=EY ©)
and the multiatom system is written in the second-
guantization form and
N ~ A : I — ) =gt
Hi=h 2> gi(a)les)(gllag+al 1e*" FO=2 lea(gl ES'=FS @
a;lj

just generate two S@) algebras not commuting with each
+4 2, ga(q)e)(gl[ag+a’ j]e¥+H.c, (1) other. This means the four collective operat&d , ES,
al] F{" and FY’ do not span a product algebra SU(2)
. - ®SU(2). A straightforward calculation in Appendix A
wherea, and ag are the annihilation and creation operatorschecks that they satisfy $8) algebra. Actually, the above
of the photon with wave vectay alongz, respectivelyj and  four collective operators define a spinor realization of U
| denote thejth lattice site in thelth layer. gi(d)  of N +1 dimensions. Furthermore, the unique numier,
=\2mQ%IVh|qlcd,, g,(q)=+2mQ2/Vh|g|cd, are the atom number, determines the dimensidhs+ 1 of represen-
effective atom-photon coupling constants |gh«|e;) and  tations of the two S(2) subalgebras. Since we understood
|g)«|e,) atomic transitions with transition frequenci€s ~ the single-mode exciton in terms of the lartye limit of
and ., respectively. The corresponding transition dipolerepresentations of S@), it is easy to prove for S(3) case
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IIl. EQUATIONS OF MOTION WITH ROTATING-WAVE
APPROXIMATION

that, in a very largé\, and the low-density excitation region,

the above defined collective operat#$ andB() become

the bosonic ones obeying the commutation relation In this section, we consider the RWA to deal with the

A A0 A0) B0 inter_action e/mo)p-A be'gween the radiation field and 'Fhe
[ATLAT =6, [BY,BY T]=46, (5) multiatom system. After introducing the two-mode exciton

where the ideal bosonic approximation is equivalent to theoPerators in Eq(6), the interaction Hamiltonian between the

neglect of the phase-space filling effect and the exciton€Xcitons and photons with RWA is obtained as

exciton interactiorf?

In terms of these collective operators, the two-mode Fren-
kel exciton operators with wave vectoks= (27m/Na) (m
=—2(N-1),—3(N-3), ... 3(N—1)) are just the dis-
crete Fourier transformations for them:

HRWA=h§ Gi(a)O(k+a)[Aa’ ;+AT a,]

+hq§|‘,( Ga(a)O(k+q)[Ba’ ;+B" a4], (1D

A _ 1 S o ikai() where we have neglected the higher-frequefmynresonant
KTUN A ’ terms:A" a" | Aa,, BT @', andB,a,.
The Heisenberg equations for the exciton and photon op-
A 1 o erators are
Bk:\/_N 2 e_lklaB(l). (6)
[ d . - -
i— A=A+ Gi(a)0(q-Kag, (12
In fact their conjugateal and Bl are just the generators for at ' q ' a
the quasispin wave states
0. R R
A)=Allg.0s. - G ). IEBk—QZBw; Go(a)O(q—k)ag, (13)
B)=B!g1,95, .. ..On.)- 7 . ~ .
| k> k|gl 92 gNT> ( ) Iﬁaq:wqaq"’_el(q); O(k—Q)Ak
Since the operator8, and B, commute with each other for
very largeN, and low excitation, they form an independent B
two-boson system. Then we obtain the interaction Hamil- +G2(q)2k O(k=a)B. (14
tonian for the the two-mode Frenkel exciton system coupled
to a quantized electromagnetic field Taking the transform
Ak—;/&k:Akeint, Bk—;ék: Bkeiﬂzt (15)

Hi=h2 Gi(a)O(k+q)[A+Al J[ag+al ] . .
a,k to remove the fast varying factors, we obtain the formal

equation for the exciton operator:
+12, Go(q)O(k+ q)[Bit Bl Jag+al ). @

d-~ _ . R
SR =~ Gi(q)O(q—k)e (o™ )5, (0)

where the coupling constants between the photons and exci- a

tons take the following form:

— 2 G1(9)G,(q)0(q—k)O(k'—q)

2779% a.k’
G1(9)=VN7g1(q)= \/ Ny z—da,
1 701 TVﬁwq 1

X Jt’ék/(t’)eii(wqiﬂl)tei(wqfﬂz)t’dtr
0
2779%
G,(g)=VN+g,(q)= \/:d , 9)
? e Tszwq 2

-2 GXq)0(q—k)O(k' —q)

where w,=|g|c. The wave-vector matching factdrin Eq. a.k’
(8) is t : ,
X f A (t)e eq-2t=-t)gr (16)
[k+q 0
1 sin = Na Here, the first t tional tag(0) is th lled
Ok+q) == ellcrala_= (0 ere, the first term proportional ta,(0) is the so-called
N 9 N  [k+qg quantum noise term. The second term in the above equation
s ——a corresponds to a multiphoton proces$®IPP) including

stimulated emission and absorption effects. Its contribution

which is real and equal to 1 fok+qg=0, and O(k+q)
<1, fork+q#0.

can be ignored since it is a higher-order term from the stand-
point of perturbatiof® The last term in Eq(16) can be
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solved by using the WWA, i.e., assuming tﬁa(t,(t’) varies that the slab is located at the middle of the volume. When

sufficiently slowly so that it can be factorized outside theis sufficiently large, the sum overhas been replaced by an
integral. The remaining part of the time integral of the lastintegral: 24 - - —(L/27) [~ _.dq- - -

term in Eq.(16) can be evaluated and we get a Dirdc For an arbitrary initial statep) =| e, ® |4 ) of the total
function with variable @,—;) and a principal part System, the light intensity radiated from the two-mode exci-
Plil(wq—Q1)] term, which contributes a frequency shift ton system is defined as

(Lamb shifb.
The equation of motion foB,(t) can also be obtained in c ) 2 (4) _
the similar way. By using the WWA, and neglecting the |(th)zﬁ<¢|-E (ZHEM(z,0):]4), (18)
MMP, we can solve the equations for both the two-mode
excitons to obtainA(t) and By(t). Substituting them into  where the symbol “- -:” means the normal product accord-
Eq. (14), the explicit expression faa(t) in terms ofay(0), ing to the exciton operatorz. is the position of a detector
A.(0), andB,(0) can be obtained. Finally we can get the relative to the crystal slab. The first-order degree of coher-
positive-frequency part of the electric field, ence of fluorescence is given by
. . 2mh g~ : c . .
E(”(z,t):I% v aq(De' 5 (¢EQZDE 2 t+ )] ¢)
gB(zt,t+ 1) = :
(= hwgl - VI(zH)l(z,t+7)
=IJ7xdq 5> d(t)e, 17) (19)

where we have taken the photon normalization volirmte  Similarly, one can also define the second-order degree of
beLA, with A being the area of the crystal slab, and assumedoherence as

2
%((ﬁkﬁ(‘)(z,t)ﬁ(‘)(z,t%— NEM(z,t+EM)(z,1):] $)
v

@zt t+7)=
gzt ZO (2t 7) (20
[
IV. QUANTUM INTERFERENCE EFFECT 470,02 2
2 2
IN LIGHT INTENSITY = :3( 5 )’)’2, (24)
ha“c a

In this section, the features of exciton fluorescence in the 3.2 3. o ]
case of monolayer will be studied in detail. From the defini-Wherey; =4€;d3/3hc”is the radiative decay rate of an iso-
tion of the wave vector of excitons, whéh=1, it takes only ~ lated atom frone,) to |g), andy,=405d5/3hc? is that of

one valuek=0 and the wave-vector matching facto(q  |€2) t0|9) , respectivelyx;=c/Q;, for j=1, 2, denote the
—K)=0(k'—g)=1. Thus with the help of WWA, we get reduced wavelengths. We find that, because of the implemen-

i i : tation of WWA and the ignorance of MPP’s in the derivation
the equations of motion for exciton modég andB, as of Egs.(21) and(22), the two-mode excitons decay indepen-
dently in an exponential rule. Even though our treatment
J~ ) TP N1~ seems to be bold, we can get a useful result that the decay
FradUh —i2 Gy(g)e (va~M)ta,(0)— > Po(L), rates of excitons in two-dimensional crystal slab are propor-

q 21) tional to the enhanced factoxfa)?. In Sec. V, we will con-
sider a more complex case, in which a nonperturbation ap-
proach is used to restudy the radiative decay rates of the
J._ ' _ R Mo two-mode excitons without WWA, and the effects of MPP’s
ZBo()= —i> Gy(g)e(va 2t (0)— - Bo(b), will be also investigated there.
q Substituting the solutions of Eq&21) and (22) into Eq.

(22) (14), we get the explicit expression of the photon annihila-
ti tora,(t) for th | :
in which ion operatora,(t) for the monolayer case
aq(t)=uq(t)AO(O)+vq(t)Bo(0)+e"ﬂ’qtaq(0)
47Q,d? 2 -
o — 1:3< 21))/1, (23) + 2 Wo g/ (t)ag(0), (25
hacc a q'
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where . N
Fa(z,t)= —f dt’ e~ mt'12g= 100t

e—iwqt_e—nlt/Ze—i901t py

Ug(t)=G(q) g Qo timi2 (26) ) - |
e iogt _ g~ matl2g= 100z . .

vq(t)=G2(q) wq— Qopti7,/2 (27) Replacing the integral variable, by wq—o;, we have

W (1) = G1(q)G4(q')e 1@dt[ gi(waQodtg=mt2_ 1 - o iftdt,e,,ltr,zemoﬂ
a.q wg — Qo t+in/2 wg— Qo tin/2 7)o

ei(wq—wqr)t_l iwq(t'ft).

® w,+0g)Z
xj dwg2 CO%M e
—Qo1 c

+same with 1-2, (28)

wq— wqr

in which Q¢;=Q;+A4A;, for j=1, 2, are the renormalized _ (35_).
physical frequencies, andl; are the Lamb frequency shifts, We assume thafo, is much larger than all other quantities
of the dimension of frequendy,so the lower limit of the
(a)q)|G (q)l2 integration can be extended te~. Therefore, the above
-P f do . (29 integral overdw, can be approximated by twé functions
with variables {' —t+z/c) and ' —t—2z/c). In the region
Here “P" denotes for the Cauthy prlnC|pIe part, apdwy)  z>0 outside the layer, performing the integral owér we
is the density of states of the radiation field. get
Therefore, one can obtain the positive-frequency part of
the electric-field operator

FA(Z,t) =26~ nl(tlec)/ZefiQO]_(t*Z/C)@ ( t— E)
Cc

. « wh{) «
EO)(z,0) =20+ |7 e FAZDA0) | ,
=Ze""1(tZ’C)®(t— E) , (36)
ThQon
+ T 8(2,1)Bo(0), (300 where® is a Heaviside function. Similarly, we can also ob-
tain
where
. 2mhw FB(z,t)=2e“‘°2(t‘Z’°)G)(t— ?). (37)
ESI(zt) =i, v A c
q

From Egs.(36) and (37), one can find that there is no ad-
vancedpropagatorproportional toe™'( - )¢+ gppeared in
the positive-frequency part of the electric-field operator
E(*)(z,t), so that the system is causal and well behdfed.
3D It should be pointed out thd&(z,t) andFg(z,t) in Egs.
The first term inIAEg*)(z,t) is just the free varying light field. (36} and(37) show that the elect_ric fiel_d of the fluorescence
The second term is proportional to the square of couplingMittéd from the two-mode excitons is a temporal damped

constants. As mentioned in E€L7), the sum over the wave lane wave, but does not decay withA realistic electric
vector g can be replaced by an integral, thus two time-fi€ld, however, should decrease wihwhich happens, espe-

dependent functionB A(z,t) andFx(z,t) in Eq. (30) are cially When a light propagates from a medium with IQW re-
P Alz) s(z:1) a- (30 fractive index to that of higher one. Besides, a realistic elec-

i (o 7\ e iogt— g iogt tric field should not simply be a plane wave. However, the
alz,t)= —f dwg2 coS( wq ) EE—

X| ag(0)e e+ X wy 4 (1)ag:(0) |2,
q!

, (32)  theoretical calculations with this subtle consideration will be
very complicated and do not provide us with necessary phys-

. ics in general. Our ideal assumption of a plane wave propa-

i [ z\ e '@t —gTlwat B L

Fa(z,t)= _f dw.2 co< o _) (33 9atinginzmay work well for long-wavelength radiation near
™ d dc Wq— W3 the crystal.

The vacuum state of the exciton may be defined as

a)q—wl

Here w12901—i 7]1/2 andwzzgoz_i 7]2/2 In the Ref 17,
similar expressions were presented. However, the authors of A A _
Ref. 17 did not calculate the integrals owkn,, which may Ao(0)[0)=B,(0)|0)=0, (38)
result in the light intensity going into the spacellke region. INwhich represents that there is no exciton contained in the
this paper, we will further calculate the integral ov®,  crystal slab. Then number states for the two-mode excitons
(Refs. 40 and 4Bto give an explicit expression (E“’(z,t), are
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1 L4y
— AT i
|n>A_\/ﬁ[Ao(0)]n|0>1 12 i \
w0} |\
1 E 8 ! \'\
N : | .
m)g=——[B}(0)]"0). (39 - I N
ym! 8 6f t N
= ! h \'\_
The coherent states can be formally defined as eigenvectors ! el S
of exciton annihilation operators: 2 e e
0 SR otirot ettt -
Ao(0)|01>A= ala)a, 0 50 130 150 200
é0(0)|,3>B:,3|,3>B (40) FIG. 2. Time evolution of light intensityl(z,t) at point z

=2mc/ Q4 for the case that the density matrix of the initial exciton

It is noticed that this definition can work well only in the low State is diagonal in Fock representation. The solid lidewn),

excitation case. This is because the generic expansion of (gVs=0: the dot line(middie), (m)g=(n),; the dashed-dot line

coherent state concerns the Fock states with higher excitdZP) {Me=5(n)a. The unit ofl (z,1) is g(n)afi1(n1/A). tisin

tions. However, the coherent state with smaller average ex™t Of 1A21- 7:/20,=0.01, Q,=0.%2y, 7,= 7.

citon numbers can still approximately describe the quantum

coherence natures of the exciton systems. Actually, we cawhere (---) denotes ensemble averag€)s;={;(Q,,

understand the Fock state or the coherent state in terms of tlad 73=\/7,7,. The first two terms in Eq(41) repre-

single atomic statedor the details, please see Appendix A sent the average intensities of the two eigenmofigs

In this sense, the initial state of Frenkel exciton can be writand Qg,, respectively. The last term proportional to

ten according to the initial preparations of the single atomics%Q5(73/A)[ - - -1, however, gives a contribution of inter-

states. A simplest illustration is that the vacuum state oference of the light fields.

Frenkel exciton is just the state formed by all atoms in the When the exciton system is initially in a separable state

ground state. According to Appendix A, the Fock state ofp(0)=pa®pg and bothp, andpg can be diagonal in Fock

Frenkel exciton is a symmetrized many-atom state with cerrepresentation, there are only two terms in the light intensity,

tain atoms in the excited state. Especially, the coherent statehich represent the contributions from the two-mode exci-

of Frenkel exciton is an atomicSU(2)] coherent state. tons, respectively. There is no nondiagonal term in the light
The fluorescence of the two-mode excitons will be studiedntensity due to{A}(0)B,(0))=0. The light intensity is

in the following of this section. If one takes the initial state

of total system a$¢p)=| e ®|{0}), i.e., all modes of the

light field are initially in vacuum stateE{”)(zt) in the |(z,t)=5mlﬂ<n>A[4e— na(t—2/c)
positive-frequency part of the field operator of E8Q) gives 8 A
zero contribution. Therefore, in the following calculations, +aye VZ(I’Z’C)](I—Z/C) (42)

we can neglect safely the “quantum noise,” the terms pro-

portional toéq(O), andinvestigate only the influence of vari- B _
ous initial exciton states on the fluorescence of the lowWNere X=xo(Ms/(N)a, Xo=Q27,/Q17;, and (nja
density excitations in the crystal slab. ((m)g) is the initial mean number ohy- (Bo-) mode exci-
We find that the light field emitted from the two-mode tONS: Note thak is only determined by the intrinsic prop-
exciton system contains two eigenmoded;, and Qqp. erties of the 2D sample. For a fixegd), x can be used to

These two modes of the light field can give an interference iff€SCribe the degree of unsymmetrical excitation within the

there are nondiagonal terms in the light intensity. To see thisCryStaI slab initially. Equatiori42) is plotted in Fig. 2, and

we need to calculate the light intensity first. Substituting Eq.OUr results show that(z,t) increases abruptly after the

(30) and its Hermitian conjugate into EL8), the light in-  Propagation timé=z/c (in Fig. 2, we takez=2mc/€,; Itis
not a necessary choigethen decays exponentially, and no

tensity is interference pattern appears in this case. Wmex=0, i.e.,
1 77 the By-mode excitons are initially in vacuum state, as shown
l(z,t)= —ﬁ91—1|FA(Z,t)|2(A$(0)Ao(0)) in Fig. 2 (the solid ling, our result will go back to the two-
8 A level crystal atoms casedue to the using of RWA and ne-
1 - . . glecting MPP’s ip the d.eri\{af[i.on of Eq$21) and (22), i.e.,'
+ gﬁQZK|FB(z,t)|2<B$(0)BO(0)> the mode of exciton being initially in the vacuum state gives

no contribution to the dynamics of the total system. Besides,
1 73 A . from the dot line (m)g/(n),=1) and dashed-dot line
+ ghQ3X[F’A‘(z,t)FB(z,t)(Ag(O)BO(O))+c.c.], ({m)g/{n),=5) of Fig. 2, we find that, with the increase of
X, the amplitude of the light intensity becomes higher, which
(41) shows clearly that the amplitude of the light intensity is the
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sum of the contributions of the two eigenmodes of the radia-
tion emitted from the two-mode excitons.

However, ifp, andpg are nondiagonal in Fock represen-
tation, e.g., the exciton system initially being prepared in a
factorized coherent statébe,) =|a)a®|B)g, the light inten-
sity becomes

Intensity

1
I(z,t)= §ﬁ91%<n>A®(t— z/c){4e m(t=2c)

+aye 27948 [ycod (Qgr— Qo) (t—2/C) + ¢]
— + t—2z/c)/

xe () )2}' (43 FIG. 3. Time evolution of light intensityl (z,t) at point z

=2mc/ Q4 for the case that the excitons are initially in a factorized

where ¢ is the phase difference between the two coherentoherent state. The solid lind3|>=|a|? the dot line, | 8|2

states. The last term in E43) gives a nonzero contribution. =5|«|?; the dashed-dot ling,3|2=10 «|?. Other parameters are

The detector ax may register a fluorescence signal oscillat-the same as in Fig. 2.

ing at frequencyQq;— Q. The temporal interference phe-

nomenon may be observed by using a broadband det@ctor 1) f ; f the time delay i lculated b

because there is no way to know that the photon received b (7)| as a function of the time delay is calculated by

. : X . ubstituting Eq.(30) and its Hermitian conjugate into Eq.
LT]eov(\j/ier;[giLoer '\s,vﬁ.rgﬁtt\,e}g;rm \:Vehs'ﬁn ir:]](:g:ssgfczﬁggogjén'\'_0t(19). We find that if one of the two-mode excitons is initially

b N in vacuum state, e.g{m)g=0, then|g¥)(7)|=1 regardless
tum beat phenomenon. L i o of the another mode state, which implies that single-mode
From Eq.(43), one can easily find tha(z,t) is oscillating  gyciton in the 2D crystal slab emits a complete coherent

with the time evolution. The detector atwill receive the  |ight. Mathematically, the complete coherent light is obtained
first peak after the propagation tinte=z/c. The influences \hen|g!)(7)|=1. This happens whéh

of y on the time evolution of the light intensity are investi- ~ R
gated in Fig. 3, where we have uséd=0, i.e., zero phase (ETNzZOEM (z,t+ 7)) E (2, )E(zt+ 1),  (44)
difference between the two coherent states. Our results Sho\\/’vvhere £z =(EM)(z1)), ie.. two-time correlation func-
that if one of the two-mode excitons is initially in vacuum _. H=( . >’. . .

- . tion of the total electric field may be factorized as the en-
state(say 8=0), we recover the normal exponential decay

. . . : ) 7 semble averages of the electric fields. As a special case,
.Of the_ light intensity. Bes@es, th? amplitudes of the IIghtwhen there is only one-mode exciton being excited initially,
intensity become larger with the increase yaf The result

. . ) I one can easily find that the factorized condition is satisfied.
that the light intensity at initial stage does not go down toTphe physical meaning af)(7) can be understood by con-

zero(the dot line and the dashed-dot |iris the consequence  sjgering the visibiIit;/ of the interference fringes, which is
of unsymmetrical excitation, i.e., the initial generation of theproportional to [g(7)|. A maximum visibility of the

two-mode excitons with different mean numbers. fringes is obtained whefg™"(7)|=1.

All our mentioned above are separable state cases, in |f both the two-mode excitons are populated initially with
which the density matrix of the two-mode exciton system,,  =p,®pg and bothp, and pg being diagonal in Fock
can be factorized initially. On the other hand, if the system isrepresentation, the factorized condition of the two-time cor-
initially in an entangled state, e.g|gey=(1/v2)(|0)s  relation function is broken, which leads te<0g")(7)|<1.
®|1)g+]1)a®|0)g), one may also observe the quantum The magnitude of the first-order degree of coherence for this
beat phenomenon. case is

The first-order degree of coherence of the light field

—(n2—1m1) 712 _ 20— (n2—m1)7
Wy tmta . :\/1+2Xe cog 0o~ Qo) 7+ x%€ 45
|g (Z,t,Z,t 7-)|Z—Ct . ( )
\/1+X+Xe*(772*771)T+X2e*(772*7)1)7'

We find that|g‘*)(7)| oscillates regularly withr, as shown in  as shown in Fig. @), |g¥(7)| is equal to 1 due to the
Fig. 4@). The magnitude of the first-order degree of coher-satisfaction of the factorized condition.

ence also depends gn the larger the degree of unsymmetri-  The second degree of coherefig€’)(7)| as a function of
cal excitation is, the smaller the oscillating amplitude of ris also calculated. We find that, when one of the two-mode
lg®(7)| is. Wheny—, |g)(7)| tends to 1. For the case excitons is initially in a vacuum statesay (m)s=0), then

of the excitons being initially in a factorized coherent state,(1) |g®(7)|=2, for the case of the other mode exciton be-
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The interaction Hamiltoniaii; between the Frenkel ex-
¢ citons and photons without RWA has been given in @jin
% Sec. Il. Our further discussion will also take the self-
508 interaction term é2/2mc?)A? into account. In second quan-
‘é tization, this self-interaction Hamiltonian is written as
0.6
Y
o ~ ~ ~ ~ ~ . '
v 0.4 H2=ﬁq§l f(q,9")[ag+al jJ[ag +a’ ,]el@r e, (46)
o g,
£0.2 in which
a
0 20 40 60 80 100 120 _
Time Delay f(q q ) mCV\/W E ’}\' (47)
wheregy, is the unit polarization vector of theg(\)-mode
g 2 photon withA =1,2. The sumEM, €y)+ had been given
5 for the two-level atom caé&’’ wit certaln assumptions.
E 0.8 Following them we can give a similar result for the V-type
9 three-level casdthe detailed calculations are presented in
w 0.6 Appendix B:
§0~4 f(q q’)—ﬂm d2+Q,d?]
202 . ' civilaq| Lt 02
0 20 40 60 80 100 120 :i iG ( )G ( r)+ iG ( )G ( /) (48)
Time Delay N Ql 1(Q)G1(q QZ 2(q)G2(q .

FIG. 4. |g®(7)| as a function of time delay. z=2wc/Q4, t
:277/91, T IS |n Un|t Of 1&1, 7]1/2912001, 02:0.5()1, 2
=17,. (8 The case that the density matrix of initial exciton state is . " ,
diagonal in Fock representation. The solid litep) is (m)g 2 gl@ra )a:NE O(q'—k)O(k+q), (49
=5Q(n),; the dot line(middle) is (m)g=10n)4; and the dashed-
dot line (down) is (m)g=(n). (b) For a factorized coherent-state We can get the self-interaction Hamiltonian of photep.
case. The Heisenberg equations for exciton and photon operators

can be obtained from the total interaction Hamiltonfagp,
ing in a chaotic state(2) |g®)(7)|=1-1/n, for the case of {4, +{, [Eq. (C1) in Appendix d. Performing half-side
the Ap-mode excitons being initially in a Fock stated) Fourier transformatioiHSFT)
|g®(7)|=1, for the coherent-state case. If both the two-

By making use of

mode excitons are populated initially, we find trhgf'z)(r)| Ag(w)= foch(t)eiwtdt (50)
oscillates regularly withr, and the oscillating amplitude of
|g®(7)| becomes smaller with the increase of on both sides of the equations, four algebraic equations about
A(w), By(w), ag(w), andaT_q(w) are obtained as listed in
V. NONPERTURBATION APPROACH Appendix C. Combining these equations we get
WITHOUT THE WWA 9
w
In general, the rotating-wave approximation andaq(®)—al(®)=—————-Gy(q)> O(k—q)
Weisskopf-Wigner approximation are used frequently in Qy(0"=q7c%) “
quantum optics to study the fluorescence emitted from a X{ o[ A(@)—Al ()]
single-atom system. However, for the case of exciton radi-
ance from a multiatom system, we do not know exactly if —i[Ak(O)—AT_k(O)]}
they are valid because of the superradiant feature of excitons.
In this section, we will restudy the fluorescence of Frenkel 20
excitons in the V-typed crystal slab by using nonperturbation + 2_ 2.2 GZ(Q)E O(k=q)
6. : . . . . QZ(w g=c ) k
approacf® without the rotating-wave approximation in the
interaction Hamiltonian €é/mc)p-A. The self-interaction x{w[Bk(w)—BT,k(w)]

term (€2/2mc®)A? is also included in our model to avoid
unphysical roots in the characteristic equations for the exci-

ton dispersion relatioh. Both the stimulated emission and i[B«(0)-B" O+ — |q|caq(0)
reabsorption effects are taken into account in the theoretical i

treatment. We focus our attention on the radiative decay rates ! a’ (0) (51)
of the excitons and the light intensities for various exciton o+|glc 4

initial states to compare with our previous results in Sec. IV.
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for the electric field of the fluorescence. In order to calculatevhere

it,t one need to knowA(w)—A" (0) and By(w)

—B' (w), which are determined byg(w)+a’ j(w). In

Appendlx C, two coupled equations fag(w)— AT k(w) and F) QJ n af? , 87(;d?
By(w)— B, (w) are presented in detail. We solve these two o (@)= — 20 ' T j:ﬁ—a3’ (56)

equations consistently and replace them into &4). Then

we get the electric field by the inverse HSFT,

for j=1,2,3.F{)(w) for j=1,2 give the exciton wave func-

©o+ie .
E(z,t)= > _ E(z,w)e "“'do, (520  tion’s overlap for theAy- andBy-mode exciton, respectively,
R howeverF§)(w) is that between the two modes. Note that
where MPP has been taken into account in E¢s4) and (55).
a Then, we get the same characteristic equations for decay
. 2m|q|ch + i rates and frequency shifts of the two exciton modgsand
E(z,w>=|§ —y  lag(w)—al ()] B,,

_'fc M )— t ) i9zgy (53
=i _m\/ STA [a4(w a_q(w 1e'%4dq, {(w)=0, (57

for sufficiently largeL.
From the explicit form of the electric-field operator, the \yhere
radiative decay rates of Frenkel excitons can be solved. For
the sake of simplicity, we will restrict ourselves to the mono-
layer caseN=1, in which only zero wave vector of excitons Hw)= (wZ—QfH mw)(wz_ﬂgﬂ 720) + 17177202,
is involved in our model. Solving the two coupled equations (58)
for Ao(w)—Ag(w) andBy(w) — Bg(w) [see Egs(C13 and
(C19 in Appendix d, we get two independent equations

|

5 The roots of Eq(57) can be solved exactly,

2w 2
2 1
wz—Ql— 0, F( )(w)

2w
wz—Qg— o, (2)(0))

wl:QOI_iFl/21 w22_901_ir1/2,

2w? 2w
g, Fio(e )Q—ng?(w)][Ao(w)—Az(w)]
. ) ) 2(1)2 @ w3=Qoz—iF2/2, w4:_902_irz/2, (59)
=il w —QZ—Q—ZFOO(w) [(w+Q1)Ap(0)
—(0—Q)AN0)]+2i 0F(w)[ (w+Q,)Bo(0) which determine the poles ohy(w)—Ad(w) and By(w)
—Bg(w). The imaginary parts of the roots are the decay
2 . .
(0—Q,)BL(0)]—i —ng%)(w)(wz—Qg) rates of the excitons, and the real parts are the renormalized

physical frequencies. For the caQg=0,=(), i.e., the de-
generate case, we get

X[Ao(0)—AJ(0)], (54)
and .
oe pe? 01=Q, w3=Qo—i(n1+12)/2,
[ D) —QZ——F(Z)(w) wz—Qi— 0, (l)(w)
2 w;=—Q, w=—Qo—i(n1+12)/2, (60)
2w? 3) 2w 3) t
_Q_zFoo(w)Q—lFoo(w) [Bo(w)—Bg(w)]
s where
| 5 2 2w (1)
=l _Ql_ﬂ_lFOO(w) [(0+Q2)Bp(0)
—(0—Q,)BL(0)]+2i wF®) +01)A(0 ], 1 5 (m1+m2)?
(0=02)Bo(0)]+ 2 wF g5 (w)[(@+€Q1)Ag(0) Qo= \ Q%= Z(m+m)*~0[1-— |, (61)
8()

—(0—0Q)A}0)]- |2—F<2’(w>(w2—ni>

: For the nondegenerate ca$g +#(),, we assume that the
X[Bo(0)—=Bp(0)], (59 physical roots of the characteristic equation are not far away
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from +(); due to the conditiony;<(); . Therefore, one can contour integration in the upper complexplane, we get

expandw up to third order ofp; /(};, and get E(z,w) in the positivez region outside the crystal slab as the
i following:
2
71 1 mnp
Qo1=Qy) 1= 802 2 02_02|"
L 1 1 2] 2
E( ) Wﬁanlw Qz
] Z,w)=i1/
e 1 g {(w)
027 =2%2 1- 2 E 2 2|’ o) e} T i(w/c)z
L 843 05-01) X[(0+Q1)Ag(0) +(0—Q1)An(0)]e
[ 2 2 ] [ Qym, 02— 03
o |y 0t mod HN A gy L@+ 02Bo0)
1= 7 (Qi-ﬂ%)z 721 w
' ' +(0—Q)B{(0)]e! (@07, (64)
02— 7,02
F2: Mo L+~ n 22 772 21771 , (62 ) .
I (Q5—Q9) ] whereA is the area of the layer. As mentioned above, we

choose the normalization volume of the light fieldAls.
The electric fieldE(z,t) in the positivez region outside

the crystal slab can be calculated by E82). For the case

z—ct>0 (<0), the contour integral ovellw can be per-

where ; with j=1,2 are given in Eq923) and (24).

We compare our results with the two-level lattice atom
caset’ i2n v;/hich the radiative decay rate of excitons s
oo, atomo Lo/ denotes the.redluced wavelengin, and[orMmed by choosing the integration path n the uptine
physical frequency isy=Q[1— 72/802]. However, we complex w plane. The result is thaE(z,t)=0, for z—ct
see from Eq(62), for the three-level lattice atom case, the ~0; but forz—ct<0,
decay rated’; are different from the two-level atom ca
by a third-order correction, which comes from MBRclud-
ing stimulation emission, absorption, and other high-order E(zt)=£M(zH+H.c. (65
processes Here Qy;—Q; and Qq,—Q, denote the fre-

guency shifts for thé\p-mode andy-mode exciton, respec- . _ . .
tively. For the two-levoel case the f?equency shift7i&8Q2, The explicit expression o *)(z,t) in Appendix C shows

whereas for the three-level case considered here, the phalll: In Positivez region, the electric field generated by the

shifts for the two-mode exciton are’ /8QZ+ Lom /(Qz two-mode exciton is damped exponentially with two eigen-
I

_ 02 %), i,j=1,2. The last term in thel frequency th|fts is adecay rated’; andI',. The corresponding eigenmodes are

second-order correction, which can be adjusted by tuning thn€ar combinations af, andB, modes. The electric field in

energy spacing of the upper two levels of the lattice atoms nhegauvez (rjeg|on c(j:an also be derived snr?llarly an‘;:i shows
In the remainder of this paper, we will present the epr|C|tt atit is a damped wave propagating in the negatiueec-

expressions of the electric-field operator. The time evolutlorf on. Srl]nclfe "’ll" the ;OOIS 0]; the ClharaCtE”St'C equatlor} are in
and spatial distribution of the light intensity are calculated to'©Wer half plane of complex» plane, theng(z,t)=0, for

compare with the results of RWA in Sec. IV, z—ct>0, so our result is reasonable and obeys the causal
From Egs.(54) and (55), the explicit expressions for rule._ ) .
Ao(w)—Ag(w) [Eq. (C15] and Bo(w)—Bg(w) [Eq. (C16)] Similarly, we can also calculate the positive-frequency

part of the electric-field operator, which is determined by
a4(w). The explicit expression ay(w) can be obtained by
substituting Eqs(C15 and(C16) into Eq. (C4) (see details

in Appendix Q and omitting quantum noise terms. We get

are obtained. Replacing them into E§1), we get the ex-
plicit light field operator in terms of the initial exciton field
operators:

2i 0G1(q) (0> Q3)

ag(w)— atq(w) =

(02— q%c?) (o) 02— 02
w—lqlc)ag(w)=iG(q) ———
X[(@+Q1)Ag(0)+(0—01)AL0)] {(w)
o T
zlez(q)(wZ_Q%) X[(w+Ql)AO(O)+(w Ql)AO(O)]
7 2 2)5( ) [(w+Q5)By(0) o2 Qz

(0"=qc)i(w +iGo(a) 5oy [0+ Q2)Bo(0)

+(w—Q,)BY(0)], (63)
+(0—Q,)BH0)]. (66)

where we have neglected the quantum noise terms propor-
tional toa,(0) anda’ 4(0) in the above calculation. Substi-
tuting ag(w) — a,q(w) into Eq. (53) and choosing a proper Therefore, we get
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chlL .
E(”(zt)——j J’ \/|q| —a q(w)e't@zen
wo+tie e_i“’t
" gaer
—o+ije
y [ch Q1 m; (0*— 05
A47A {(w)
chQoms (
o= QDAIO) T+ \ "5

X[(w+Qz)Bo(0)+(w_Qz)Bg(O)]] . (67

wo+tie

00+IE

=5 dw

wq—w

)

[(0+€1)Ao(0)

(1)_

{(w)

Q)

Q5 (wgrQp)e”

e
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A straightforward calculation gives the following results:

E()(zt)=0 fort<O, (68)

ThQqy
EM(z,t)= \/T[F(+)(z )Ao(0)+F$)(z,H)AL(0)]
hQ
VA RS (2,0B4(0)

+F$)(z,H)B{(0)] fort>0, (69

in which the time-dependent coefficiens;")(z,t) and
FGI(z,t) are

ot (03— Q%) (w0 )e ot

i o0
Fgﬂ(z,t):;fo dwy2

(wq_wl)(wq_wz)((ﬂq_w3)

(05— Q3) (w0 y)e o2

(0q—wy) - (0q= 01) (01~ ) (w1~ w3) (w1~ @y)

(05— Q3) (w3 £ Qy)e o3t

B (wq_0)2)(0’2_0)1)(0)2_603)(0)2_ wy) -

(wq_wg)(ﬁ)s_wl)(ws_ wy)(w3— wy)

(05— Q) (wsxQy)eodt z 20
" {wg w0 (@ ap) (@ ax)(wg—wg) 1 “9c)" (70
Fizt= - f "o (@ 0D(eE0eT (0f- 0w e
B ' m™Jo q (wq_wl)(wq_wZ)(wq_w3)(wq_w4) (wq_wl)(wl_wZ)(wl_w?,)(wl_w4)
- (05— Q%) (wy=Qy)e 1ot - (05— Q%) (w3 Qy)e 1ot
(wq=w)) (W= w1)(wy— w3) (W~ ) (Wg— w3)(W3— 1) (W3~ W) (W3~ wy)
(05— 0 (g 0y)e'odt z
— 4 v 2 cos wq—/, (72
(0q— wg) (w4~ 01) (03— w2) (04— w3) c
|
wherew;, for j=1,2,3,4, are four roots of the characteristic (wg_Qg)(w2+Ql)
equation of Eq(57). We again need to carry out the integra- Cr= )
(02— 1) (w2~ w3)(wy— )
tion overdw, in the above two equations. It is easy to prove
thatF(”(z t) can be simplified as
. c (05— Q) (w3+Qy)
i (= z = )
Fi(zt)= —f dwg2 cos( qu) ¥ (03— 01) (03— 0) (w3~ wy)
mJo
—lwgt _ a—iwogt —lwgt _ a—lwst
X cle : _e +cze i _e o (05— Q%) (w4t Q) 73
Wq— W @WqT @2 Y (w4~ 01) (04— ;) (04— w3)”
e—ia)qt_e—iw3t e—iwqt_e—iw4t
+C3 +Cy }, .
Wq— W3 Wg™ Wyq The above integral ovedw, can be done as Sec. IV. The
(72 explicit expressions oF )(z,t) andF§”(z,t) can also be
obtained with the same calculations. Our results also confirm
where the four coefficients are the causal rule.
For an arbitrary exciton initial stafeb.,), the light inten-
(02— 02) (w14 Qy) sity is defined by Eq(18). When the excitons are initially in
;= et Rt ' a state with density matrix(0)=p,® pg, and bothp, and
(w1~ w3) (w1~ w3) (w1~ wy4) pg diagonal in Fock representation, the light intensity is
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((myg/{n),=5) of Fig. 5, we find that with the increase of
X, the amplitude of the light intensity becomes higher, which
is the same as that obtained by using R(¥&y. 2). Contrary
to the results of Sec. IV, however, when we consider it with-
out RWA, the light intensity does not decay exponentially
but in an irregular way due to the existence of counterrotat-
ing terms inE(*)(z,t). Besides, it also deserves to be men-
tioned that the contributions of the nonrotating terms do not
appear as quivers presented in Ref. 17.

For the case that the two-mode excitons are initially in a
line factorized coherent state, the light intensity becomes

1
|(z,t)=—ml%

5 (Mal[FRO 02+ [FL (2 0)]%]

1 72 -
+ gh Q25 (Ml IFE (2 )2+ [FE (D],

(74
which is shown in Fig. 5. Whefm)z=0, the solid line, our

result will go back to the two-level lattice atom C&&From
the dot line (m)g/{n)p=1) and dashed-dot

7 - - —
l(z )= gh Q5 [aPIFR @0 2+ alPFi0 (2 0+ (%) 2R (2 OFL (2 + o?FO* (2D FLD (2]

+1ﬁﬂz—[|3| IFST 2,012+ BI2IFS (2,0) |2+ (8%)2FS* (z,)F§ (z,0) + B2FS * (2O FSP(z,1)]

8

1
+Sh05Bla* BEO* (2)FS)(2t) + a* BFS I (2DFS (2t + aBFS * (2D FS ) (2,)
8 A A B A B A B

+aB*F* (2,)FS ) (z,t) +c.cl, (75)

where the last term%Q4(73/A)[ - - -] gives a temporal in-  which is determined by the exciton splitting. The oscillation
terference term. The effects of phase difference between tHeehavior in the light intensity may take place as long as
two coherent states on the light intensity are studied in Fig|Qq;— Qo) >T';, i.e., the exciton splitting is greater than the
6. We find that the first peatatt=2z/c) of the light intensity  natural linewidth of exciton, so that one can observe the
becomes lower in amplitude with the increase of the phasbeating phenomenon within the lifetime of the exciton.
difference from¢=0 to ¢= 7 (monotonic regimg In fact, The spatial distribution of the light intensity is plotted in
the whole curve will be shifted left with the increase of the Fig. 7 for the case that the two-mode excitons are initially in
phase difference within the monotonic regime, which leadsa factorized Fock state. Our results show thé,tg) in-

to the magnitude of the pealat t=2z/c) becoming lower creases exponentiallisee Eq.(42)] within the regions 0
[comparing Figs. @) and c) with Fig. 6@]. When ¢ <|z|<ct, for the case of rotating-wave approximation, and
=, |(z,t=2/c) tends to zero, i.e., the first peak disappearsvanishes immediately 4| goes beyondt,. The solid lines
[see Fig. €c)]. Our results also show that both the phasein Fig. 7 are obtained without RWA and show small-
difference and the degree of unsymmetrical excitation do noamplitude oscillations due to the contribution of counterro-
affect the oscillation frequency of the light intensity, tating terms. Compared with the results of Ref. 17 our results
show that not only the electric field(z,t) but also the light

14

12

=
w o

Intensity
2]

intensity 1 (z,t) do meet the requirement of causal rule.

VI. CONCLUSION

In summary, we have studied the collective radiations of a
collection of many V-type three-level atoms in a crystal slab.
By introducing two-mode exciton operators in the lafge

limits of the collective quasispin operators, these coherent
radiations can be depicted as the fluorescence of low-density
~ Frenkel excitons. The exciton fluorescence exhibits the stron-
0 50 100 150 200 ger coherence natures that the statistical characters of spec-
€ trum are identical from the initial to final stages. This is
FIG. 5. Time evolution of light intensityl(z,t) at pointz  indeed different from the ensemble situation with free-
=2mc/Q, for the case that the density matrix of the initial exciton Moving atoms that the atoms need a finitely long time to
state is diagonal in Fock representation. The solid lidewn), produce a cooperative radiation, the enhanced fluorescence.
(m)g=0; the dot line(middle), (m)g=(n),; the dashed-dot line As a main result of this paper, the occurrence of the quan-
(up), {(mMyg=5(n), . Other parameters are the same as in Fig. 2. tum beat aroused from which quantum states of Frenkel ex-
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FIG. 6. Time evolution of light intensityl(z,t) at point z FIG. 7. S e . . .
_ . T i . 7. Space distribution of intensity(zty) with (a) tg
=2c/ ), for the case that the excitons are initially in a factorized =270, (b) ty=37/Q,, and (O) to=5m/Q;. (Mg=(N)n, 2

—qe® Wi i i
coherent statg3 = a€'?, with ¢ being the phase difference between —ctis in unit of c/);. Other parameters are the same as in Fig. 2.

the two coherent states.is in unit of 102,. (3 ¢:.O; (.b) ¢ The dot line is obtained by using RWA, and the solid line is ob-
=7/2; (c) ¢=r; other parameters are the same as in Fig. 2. tained without RWA
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consideration f(_)r the definition of the _multimode excitons APPENDIX A: SU(3) ALGEBRA STRUCTURE OF

can be .generallzed to.study _oth.er exciton system, e.g., the EXCITON OPERATORS FOR MANY-ATOM SYSTEM
guasispin wave collective excitations &ftype atom collec-

tion in lattice of crystal that can be used as a new type quan- From a point of view based on the representation of Lie
tum memory. algebra, this section describes the mathematical origin of
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definition of exciton operator. Physically, this description || be reduced to the bosonic relatii,B']=1 for those
will clarify why the conception of the exciton based on the angular momentum statdd,M) with much smallerM in
collective operators of many atoms can be valid only in thecomparison taN=2J. That is to say, in the limit with very
case of low excitation. We first discuss @algebra struc- |argeN and low excitation, the collective excitation behaves
ture of excitonic operators for the two-level many-atom sys-45 3 boson and thus we call it atomic exciton. The detailed
tem, since the SI3) case for the 2D crystal slab containing proof for this was given in Ref. 24 by considering the physi-
V-type three-level atoms shares the same basic idea as that@4| realization ofg-deformed boson algetffafor a very

SU(2). The detailed discussions for the &YJcase will fol- large, but finiteN. The main point to prove is that
low that of SU2) in this appendix.
We consider an ensemble Nftwo-level atoms with their 3. 1[1 1 2
ground statesg)! and the excited onele)!. Since we can ) \/ —+1] ——J,3_ (A8)
define the quasispin with the Pauli operators N 2[N N N?

o =o' =]g)(e|, o\=|e)i(e|-|g)(g], (A1) approaches-1/2 for the infiniteN and the low excitation.
- " z Since the operators can make sense by acting on the sym-

the total quasiangular momentum operators metric space, only for those low excitation staté ) with
N LN very smallM can we let the value of,J_/N? approach
j = 3. =)t =2 i A2 zero, so that the bosonic commutation relation is obtained.
;1 7 +=(-) z2 ;1 oz (A2 \e ¢an also prove that

define a representation with the highest wei@htN/2. The N
(2J+1)-dimensional irreducible spinor representation of B'B=> |e)i(e|+0
SU(2) in the symmetric subspace is embedded in the total =1

Hilbert space_of dlmen5|or_1'\2 . . which means that the free part of the many-atom Hamil-
Fora phy§|csAsyAsterAn Wlth dynamical G&)sz[nmetr)ﬁ S tonian can rationally be described as a free boson in the large

HamiltonianH=H(J_,J, ,J,) is a functional ofJ.. andJ,. N and the low excitation.

Since the Casimir operatd? commutes with) . andJ,, the Because the condensate in a ground state plays the crucial

eigenvaluel(J+ 1) will keep conservation in the time evo- role in defining the exciton operators, the introduction of

lution. Here,J can take one of the integers and half integersexciton operators has to depend on the configuration of the

N/2N/2—1,...,0. In ghysical process, which one of these atoms and thus on the form of interaction. This is just the

J takes depends on the initial state of the atomic ensemblédine, along which we will define the exciton operators for the

The symmetric statéJ=N/2M=—N/2)=1I"_,|g)' repre-  V-type atomic system with the interaction Hamiltoran

sents the “condensate” with all atoms filling in the ground

1
N) : (A9)

state. It is very similar to the situation of an electronic sys- . ~t N . ~ N .
tem that the filling in ground state forms the Fermi surface. Hi=g:a 241 l9)"(edl + 9.2 Z’l 9)"(ez| +H.c.
In this sense, we can introduce the atomic collective excita- (A10)

tion operators

It is easy to prove that
1.

~ 1. ~
B'=—2J,, B=-—=J_, (A3) N N
\/I\T] N Elzgl le))(al, Flzgl 19)"(edl,

which is very similar to the exciton operators for an electron-
hole pair. Considering

Ezzizl l9)(e,], Fzzzl le2)" (gl

3,=31-V(N+1)2-43,3_], (Ad)
as one solution for the basic angular momentum relation 1N
N Hi=5 2, (en) (il ~|0)(al),
32, 732, 72_ -
JX+Jy+JZ—§ §+1), (A5)
N
1 i i
N[N Ho=5 2 (19)"(gl—1ex)"(eal), (A11)
33 =324 32,73 32 3 2=
J+‘J*:‘JX+Jy+JZ:E §+1 _‘JZ+J21 (AG)

generate a S(3) algebra with the Cartan subalgebra spanned
the commutation relation for atomic collective excitation op-by H, andH,. The basic commutation relations are
erators
2 [Hi,Eil=Es, [Hy,F1]=—Fy,

R RT1=_ —
[B.87)=" (A7 [HoEol =z [HaFo)=—F,
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E; Fi states ofB-mode excitons can also be constructed by using
[H2.Eil=— 5 [HaFil=—, the same procedure as discussed above.
E, Fy APPENDIX B: THE SELF-INTERACTION TERM
[HiEol=— 5, [Hy,Fal=— (A12) OF THE LIGHT FIELD
Two sets of the operatof€,, F,, H,} and{E,, F,, H,} In this section we will calculat&, - &, for the three-

generate two noncommutation &) subalgebras, respec- level case. For an atom with a complete set of eigenvectors
tively. Actually, the above four collective operators define alln}: we have
spinor realization for the symmetric representation of U

in (N_+1)-dimensional space. The atom numbgr deter- €on €nv =(0leqn - €qar[9)
mines the dimensiondN, +1 of representations. In this 1
sense, we can understand the two-mode excitation in terms =i > (glegy-xIn)(n[p-eyry/|9)
of the largeN, limit of representations of S@3), which just % "n
corresponds to the low-density excitation region. Thus we
can define the collective operators — > (gleg-pIn)(n|x- ey, |g)
n
A=—F, Al=—E 2m
N TN s E Qn(gleg - dn)(nld-eqy|9),
B L E,, Bf ! F (A13) By
= — 2, = — 2. R
YN N where we have usedx,p]=if and p=(m/if)(xHa

For a very largeN and low excitation, it is easy to prove that —HaX). Ha is the free atomic Hamiltonian and gives the

A and B commute with each other and obey the standardtigenvalue equatioRi,|n)=Eg[n).

bosonic commutation relation. For the V-type three-level case, we take the three-level
Now we can consider the construction of Frenkel exci-approximation in the above equation as Ref. 17 for the two-

tonic states. In this way, the initial conditions for Frenkel level atom case, obtaining

exciton can be given in terms of the single-atom prepara-

tions. For example, when=0,1,2 ..., theFock states of 2m
the A-mode excitons €y €' ﬁ_ez[ﬂl(eqx'dl)(dl‘ €ar)
N n
1 . 1 . +Q -dy)(dy-eyryr) ], B2
ma= o A10)= r(z |e1>“<g|) 0) Ao Gzl (B2
n! n!\i= (AL14) where ;= (Ee, —Eg)/f and Q,=(Ee,—Eg)/% are atomic
) o transition frequencies foig)«|e;) and|g)«|e,), respec-
take the symmetric excitation states tively. d,=(e;|d|g)=(g|d|e;) andd,=(e,|d|g)=(g|d|e,)
are the corresponding transition dipole moments. Choosing
|O>:|g,g, ...,g>, eq as
A
1 g d;=d d,=d
Da=—= g, .6k 0), €1-01=01, €;-0,=0y,
D=5 2, la.g 9)
" eq/2'd1:0, eq/2~d2=0, (83)
1 )
2)p=—— O, .8 e ), we get
2)a Nﬁj;llgg ] fee )
2m ) )
(A15) eqx'eq'w“E[Qldﬁ)\,ﬁ)\‘w+de25>\,15)\,>\']-
The second example is the coherent state of Ahmode (B4)

Frenkel exciton, - . .
SubstitutingX, , €, - & into f(q,q"), we get Eq(45) in

- _ _ _ Sec. V. It is noticed that, for the case with single direction
| ) a exp(aAT)|O>=H1 [cos6|g)’ +sin oe'’|e;)], polarization of light,S, , €€y =1 strictly. The cutoff
= (A16) of the complete relation for the sum by only three levels,
_ however, will lead to the departure from 1. Only with this
where targ=|a|/ N anda=|a|e'?. The coherent nature of cutoff approximation the exactly solvable mode is built for
this many-atomic state is reflected by the fact that béimd ~ the two-mode excitons coupling to the quantized electromag-
¢ are independent of the indgxof atoms. The quantum netic fields.
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APPENDIX C: DETAILED NONPERTURBATION
CALCULATION

In this appendix, we will add the necessary details and list
the more expatiatory expressions for Sec. V. We start from

the total interaction Hamiltonian

Hin="2, Go(@)O(k+ q)[Ac+ALJ[aq+al ]
+ﬁq2k Go(q)O(k+q)[By+ B J[ag+a’ ]

+h

1
Q—lGl(Q)Gl(q’)O(q’ —k)O(k+q)
a9’k

2 LAt 1A ot
x[aq+a_q][aq,+a_q,]

+h

a9’k

1
0. G2 G2(a")0(q" —k)O(k+q)
2

x[ag+al Jlag+a’ ], (CD

which includes the non-RWA terms and the self-interaction

of the light field.

The HSFT'’s of the Heisenberg equations governed by the

total Hamiltonian(C1) are

<w—ﬂl>Ak<w>=§ G1(@)0(g—Kk)[ag(w) +a’ ((»)]

+iAK(0), (C2

<w—ﬂz>Bk<w>=§ G(a)O(g—K)[ag(w) +a' 4(w)]

+iB(0), (C3

for excitons, and

(w_|Q|C)aq(w)

- 5-Gi@) O(k-a)[Alw) A ()]
1 k
1
—i=—Gy(q)> O(k—a)[A(0)—AT (0)]
O, X
+ Gy, O(k—q)[Bi(w)—B ()]
Q, X

1
~i G2l X O(k=q)[BK(0)—~BL,(0)]
2 k

+iag(0), (C4

PHYSICAL REVIEW B8, 134301 (2003

(w+]dle)a’ 4(w)

—— -G Ok—[Aw) Al ()]
1 k

1

+i 5 Gu(M 2 Ok=a)[A(0)~AT(0)]
1 k

~ -GS O(k=q)[B(@)~BT ()]
2 k

1
+i g Ga(@) X O(k=a)[B(0)~BL4(0)]
2 k

+ia’ (0), (C5)

for photons. Here, we have eliminaté, G(q')O(q" —k)
[ag (w)+ aiq,(w)] in the derivation of Eqs(C4) and(C5).
Combining the above two equations, we get
(0’ —g*c?)[ag(w)+al o(w)]

=i(w+|glc)aq(0) +i(w—|glc)a’ 4(0)
+2|q|cﬂﬂlel<q>§ O(k—q)[Ad(w) ~ AT ()]

2
—j |i|cGl(q)E O(k—q)[A(0)—AT (0)]
Ql k

+2|q|c§262<q>§ O(k—q)[By(w) B ()]

2
- l(?|cez(q>2 O(k—q)[Bk(0)— BT (0)].
2 k

(C6)

Substituting Eq.(C6) into Egs. (C2) and (C3), after a
straightforward calculation, we obtain two coupled equations
for the Frenkel exciton operators:

2 2

S | (@2 0] oo 5 F) | [Ac(e) ~AT (0)]

k’
=i[(@+0)A(0)~ (0= 01)AL(0)]

2q(0)
w—|glc

a’ 4(0)
w+|glc

+2iw% G1(9)0(q—k)
25 3 FQ (@) [Ac(0)~ AT, (0)]
1 k!

25 > FE(@)[Be(0)~B'(0)]
2 K

20? 3) ot
o 2 Fiw(@)[Be (@) =B (0)] (7
2 K

and
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) ) 2w? e k'+ wlc
2 | (2= 080 - 0, Fe(@) |[Be(w) - B ()] 2q. | s Na  kiwezy,
k' () y_ _
Pl @)=~ gNco| K Fwlc Kkt wlc
=i[(@+0)B(0)~ (0—02)BL,(0)] Sit——a sin——a
T k'— wlc
. | 20 alq(0) sin————Na
+2|w§ G2(q)0O(q—Kk) w—lqlc T tlqlc B > aik— wlc/2) gt
k'— wlc k= wlc
@ sin—,—a sin——a
—2i 5~ 2 Fi(@)[B(0)~B',,(0)]
QZ k!
k=K' Lo
si——Na sin—a
L@ (3) t + 2 ¢
—2'91 2 Fre(@)[Aw(0)—AZ,,(0)] k—k’ k+ w/c | [k— wlC
si——a sin alsin a
2 2 2
2w?
oy 2 Fa@lAc(e) Al (w) (e:] (C1D
WhenN—oo, the first two terms tend to zero, thus
where only the initial photon operators and the exciton op- L
erators are concerned. Three factors introduced in EJ3. _ af?Q, 5'”53
and(C8) are lim F(),(0)=— Ok k-
N oo 8cw k+ wl/c k—wlc ‘
sin a|sin a
2 2
£y s HleCH@O@— KOk ~g (€12
e (@)= 3 w?—g2c? ' The above results will be used to determireg(w)
—a_q(w) explicitly in Sec. V.
For the single-lattice layer case, ignoring the quantum
noise terms proportional ta,(0) or aT_q(O) induced by the
@) E 2|q|cG (9)0(g—k)O(k'—q) backgrqund light field, we obtain the coupled equations of
Frie (@)= ' the exciton operators:
q w?—q?c?
2w?
w? ==~ Fi5(w)|[Bo(w) ~Bg(w)]
£0) ()= 2 2|q/cG1(a)G,(q)O(q—k)O(k —q)
Pl 02— 2c? ' =i[(w+Q2)Bg(0)— (0—Q2)BH(0)]— 2|—F(2)(w)

(C9)

w
X [Bo(0)~BH(0)]~2i 5~ () [Ao(0) ~AK(0)]
which represent the overlap of exciton wave functions with 1
different wave vectors. We take the photon normalization 2w
volumeV to be AL whereA is the area of the crystal slab, + Q—FB%)(w)[Ao(w)—Ag(w)] (C13
and place the slab at the middle of the volume. Wheis !
sufficiently large, the sum over can be replaced by an in- gnd
tegral:2,- - - —(L/27) [~ .dqg- - -. Thus

22 20 (1) T
w _Ql_Q_lFOO(w) [Ao(w) —Ag(w)]

NaQifizfoo O(gq—k)O(k' —q)

Fiy ()= . =i[(0+Q1)Ax(0)— (0—Q1)AL(0)]-2i —F“’(w)
4’7TC2 2 w
e
) w
(C10 X[ Agl0) = AY(0)]—2i 5-F(F(w)[Bo(0)~B{(0)]
2
By carrying out the integrations as in Ref. 17 the explicit + ZiFg%)(w)[Bo(w)— Bi(w)]. (C14
expressions are Q,
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These two equations lead to two decoupled equations, Eqg,(w)—B] Nw)
(54) and (55), in Sec. V for Ag(w)—Al(w) and By(w)

— Bo(w). The solutions of Eqs(54) and (55) are o —91+' o,

=i (0 0)Bo(0) ~ (0= Q2)B(0)]

Ao( @)~ Af(w) Qe

.
PEINC T iy L0+ Q)A(0)— (0= 0)AKO)]
i (0T Q)AG0)~ (0= Q) AY(0)]

Bo(0)—BY(0)], C16
+ 2 (04 0,)84(0)— (- 0,)8}(0) " Fay (¢ 0D[Bo0) B0 (
where{(w) is defined in Eq(58). The above two equations
m s 2 + determineaq(w)—aT_q(w) and give the nonzero electric
) (0= Q3)[Ao(0) —Ag(0)] (€19 field E(z,t) [Eq. (65) in Sec. V],
E(z,t)=EM)(z,t)+H.c,
and for z—ct<0, where

75 Q " (w2_Q2)efiwl(t*Z/C)
(0= \Tga Lort Q) AY0) + (w1~ ) A0 o —

w7) (w1~ w3)(w1— wy4)

75 Q 7 (wZ_QZ)efiw:i(I*Z/C)
+ (@3 Q1) Ag(0) + (w3~ Q1) AN0) ] ————2
CA ((,03

1) (w3~ w7) (w3~ wy4)

ThQ 7 (wZ_QZ)efiwl(t*Z/C)
+ L (@1+02)Bo(0) + (0~ Q) BH(0) ] —————
CA ((1)1

w5) (w1~ w3) (w1~ wy4)

ThQ 7 (wZ_QZ)efiw:;(t*Z/C)
VoA 103+ 02By(0)+ (01 02)BHO) o — = , (€17

w1)(w3— @) (w3~ wy)
wherew;, for j=1,2,3,4, are four roots of the characteristic equation of (B@. Equation(C17) shows that, in positive
region, the electric field generated by the two-mode exciton is damped exponentially with two eigendechy eatd$’,.

Unlike the results of Sec. IV, the corresponding eigenmodes, however, are two linear combinationd patitB, modes.
This is because we include non-RWA terms and MPP in the derivation of(Edjsand(55) in Sec. V.
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