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Superradiance of low-density Frenkel excitons in a crystal slab of three-level atoms:
The quantum interference effect
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We systematically study the fluorescence of low-density Frenkel excitons in a crystal slab containingNT

V-type three-level atoms. Based on symmetric quasispin realization of SU~3! in largeN limit, the two-mode
exciton operators are invoked to depict various collective excitations of the collection of these V-type atoms
starting from their ground state. By making use of the rotating-wave approximation, the light intensity of
radiation for the single-lattice layer is investigated in detail. As a quantum coherence effect, the quantum beat
phenomenon is discussed in detail for different initial excitonic states. We also test the above results analyti-
cally without the consideration of the rotating-wave approximation and the self-interaction of radiance field is
also included.
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I. INTRODUCTION

It is well known that the fluorescence of an exciton e
hibits superradiant character due to the appearance of m
roscopic transition dipole moment of the exciton.1–12 How-
ever this collective feature of exciton radiance depends u
dimensionality of crystal. In infinite bulk crystals, the exc
ton does not radiate because this exciton is dressed w
photon which has the same wave vector due to the tra
tional symmetry of the total system. As a result, a sta
polariton is formed.1 In the case of lower-dimensional sy
tems, one can show that the exciton decays superradia
due to breakdown of the translational symmetry. For
ample, the decay rates of exciton are of the order of (l/a)g
for one-dimensional~1D! crystals and (l/a)2g for 2D
crystals,2 with g being the radiative decay rate for an isolat
atom,a the lattice constant, andl the light wavelength.

The enhanced factor (l/a)D in the radiative width of ex-
citon is now regarded commonly as one of the evidence
‘‘superradiance,’’10 which has been demonstrated in expe
ments for Frenkel excitons13 and Wannier excitons.14 Since
the enhanced radiant effect can also appear in the usua
perradiance of an ensemble of atoms,15,16how can we distin-
guish the different features between the fluorescence of
excitons and that of the atomic ensemble? It is known tha
the fully population-inverted atom systems, the atoms rad
independently with each other in the initial stage. The ba
action of the emitted photon to the atoms results in the c
relation among atoms. Consequently, the atoms become
operative and thus the fluorescence from the atomic
semble will show different statistical properties in the init
and final stages. On the other hand, the exciton fluoresc
exhibits identical statistical character during the who
process.17 Physically, this is because the initial dipole m
ments of the atoms are spatially random in an atomic
semble, but in a semiconductor crystal, the dipole momen
exciton presents a macroscopic effect even at initial mom
So the optical properties of multidimensional quantu
confined semiconductor structures~MQCS!, such as quan-
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tum wells, quantum wires, and quantum dots, have their o
specific features in physical processes.

The optical properties of the MQCS in a semiconduc
microcavity ~SMC! have attracted more and more attenti
in the past decades.18 The SMC with high-reflectivity dielec-
tric mirrors leads to the realization of the strong coupli
between radiation and matter. Moreover, since the opti
mode structure of the SMC may be altered around
MQCS, many new phenomena, such as tailoring
spontaneous-radiation rate and pattern,19–21 the coupled
exciton-photon mode splitting in a SMC,22,23have been dem-
onstrated. The resonant interaction between excitons a
single-mode cavity field and the corresponding detuning
fect were further investigated.24,25

Most of these former works mentioned above dealt o
with the two-level lattice atom case. However, the three-le
atom case may be very useful to implement quantum in
mation encoding and processing.26–30 Over the past few
years, the cavity QED with the collective excitations of e
sembles of three-level atoms has attracted much attention
quantum computing implementations. In this case, many
oms are entangled through their interaction with the comm
cavity field. To maintain quantum coherence in this quant
information processing,31 it is important to reach the so
called strong-coupling regime where the single-photon
herent couplingg0@g, gcav, the atomic and cavity dissipa
tion ~decoherence! rates, respectively. It is the symmetr
collective excitation that can reach the strong-coupling
gime without requiring a high finesse cavity becauseg0

}AN, the total number of atomsN. The quantum decoher
ence induced by the spatially inhomogeneous coupling
tween the matter field and the light field was investigated32,33

to study the possibility of quantum information processi
and storage with atomic ensembles. In fact, the phenom
of superfluorescence or superradiance34–36constitute another
example of collective state dynamics. Recent experime
success clearly demonstrates the power of such an ato
ensemble based on the system for entangling macrosc
objects.37
©2003 The American Physical Society01-1



ow
e
th

th
ith

rs

n,
ia
de
er
e

lve

or
a

he
u
W
ol
In
an
id
he
igh
IV
rk

bi

h
a
s

d

rs

le

h

)

od

.
ack

G. R. JIN, P. ZHANG, YU-XI LIU, AND C. P. SUN PHYSICAL REVIEW B68, 134301 ~2003!
In the present paper, we study the fluorescence of l
density excitons in a crystal slab containing V-type thre
level atoms. The purpose of this paper is to investigate
quantum interference effect38 in the time evolution of light
intensity. In Sec. II, considering that the existence of
two-level atomic exciton is mathematically associated w
the infinite-dimensional reducible representation of SU~2!
Lie algebra,39 we can rationally define the exciton operato
for the three-level case associated with SU~3! algebra, which
contains various SU~2! subalgebras. With this conceptio
both the free part and the interaction part of the Hamilton
can be written down in terms of the introduced two-mo
exciton operators, which can be described by bosonic op
tors in the low-density limit. In Sec. III, with rotating-wav
approximation~RWA! for the interaction (e/mc)p•A, the
coupled equations for the exciton-photon system are so
with the help of Weisskopf-Wigner approach~WWA!.40,41 In
Sec. IV, the explicit expressions of the electric field operat
are derived for the monolayer case. The light intensity
well as the first- and second-order degree of quantum co
ence are calculated to show certain features of exciton fl
rescence in a crystal slab containing three-level atoms.
discuss the phenomenon of quantum beat in the time ev
tion of the light intensity for various initial exciton states.
Sec. V, we consider the roles of both the non-RWA terms
the self-interaction term of photon. This consideration avo
‘‘unphysical’’ roots of the characteristic equation when t
nonperturbation approach given in Ref. 17 is used. The l
intensity is calculated to compare with the results in Sec.
The conclusions are presented in Sec. VI with some rema

II. TWO-MODE EXCITON SYSTEM
WITH SU „3… STRUCTURE

We consider a plane crystal slab with a simple cu
structure which contains a stack ofN identical layers. V-type
three-level atoms, as shown in Fig. 1, occupyNT lattice sites,
whereNT5NLN andNL is the total lattice sites within eac
layer. The wave vectors of the excitons and light fields are
assumed perpendicular to the slab. We restrict ourselve
investigate only the low-density exciton region.

The interaction (e/mc)p•A between the radiation field
and the multiatom system is written in the secon
quantization form

Ĥ15\ (
q; l , j

g1~q!ue1& l j ^gu@ âq1â2q
† #eiqla

1\ (
q; l , j

g2~q!ue2& l j ^gu@ âq1â2q
† #eiqla1H.c., ~1!

whereâq and âq
† are the annihilation and creation operato

of the photon with wave vectorq alongz, respectively,j and
l denote the j th lattice site in the l th layer. g1(q)
5A2pV1

2 /V\uqucd1 , g2(q)5A2pV2
2 /V\uqucd2 are the

effective atom-photon coupling constants ofug&↔ue1& and
ug&↔ue2& atomic transitions with transition frequenciesV1
and V2, respectively. The corresponding transition dipo
13430
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moments are represented byd1 and d2. We assume thatd1
andd2 are parallel and lying in the slab plane.

Introduce the collective operators for thel th layer as17

Â( l )†5
1

ANL
(

j
ue1& l j ^gu, Â( l )5

1

ANL
(

j
ug& l j ^e1u,

B̂( l )†5
1

ANL
(

j
ue2& l j ^gu, B̂( l )5

1

ANL
(

j
ug& l j ^e2u.

~2!

It is easy to prove that two sets of the operators

E1
( l )5(

j
ue1& l j ^gu, F1

( l )5E1
( l )† ~3!

and

F2
( l )5(

j
ue2& l j ^gu, E2

( l )5F2
( l )† ~4!

just generate two SU~2! algebras not commuting with eac
other. This means the four collective operatorsE1

( l ) , E2
( l ) ,

F1
( l ) , and F2

( l ) do not span a product algebra SU(2
^ SU(2). A straightforward calculation in Appendix A
checks that they satisfy SU~3! algebra. Actually, the above
four collective operators define a spinor realization of SU~3!
of NL11 dimensions. Furthermore, the unique numberNL ,
atom number, determines the dimensionsNL11 of represen-
tations of the two SU~2! subalgebras. Since we understo
the single-mode exciton in terms of the largeNL limit of
representations of SU~2!, it is easy to prove for SU~3! case

FIG. 1. ~a! Energy structure of a V-type three-level atom.V1 is
the transition frequency ofug&↔ue1&, andV2 is that of ug&↔ue2&.
The direct transition between the two upper states is forbidden~b!
A plane crystal slab with simple cubic structure containing a st
of N identical layers withNL sites within each layer.
1-2
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that, in a very largeNL and the low-density excitation region
the above defined collective operatorsÂ( l ) and B̂( l ) become
the bosonic ones obeying the commutation relation

@Â( l ),Â( l 8)†#5d l ,l 8 , @B̂( l ),B̂( l 8)†#5d l ,l 8 , ~5!

where the ideal bosonic approximation is equivalent to
neglect of the phase-space filling effect and the excit
exciton interaction.42

In terms of these collective operators, the two-mode Fr
kel exciton operators with wave vectorsk5(2pm/Na) „m

52 1
2 (N21),2 1

2 (N23), . . . ,12 (N21)… are just the dis-
crete Fourier transformations for them:

Âk5
1

AN
(

l
e2 iklaÂ( l ),

B̂k5
1

AN
(

l
e2 iklaB̂( l ). ~6!

In fact their conjugatesAk
† andBk

† are just the generators fo
the quasispin wave states

uAk&5Âk
†ug1 ,g2 , . . . ,gNT

&,

uBk&5B̂k
†ug1 ,g2 , . . . ,gNT

&. ~7!

Since the operatorsÂk and B̂k commute with each other fo
very largeNL and low excitation, they form an independe
two-boson system. Then we obtain the interaction Ham
tonian for the the two-mode Frenkel exciton system coup
to a quantized electromagnetic field

Ĥ15\(
q,k

G1~q!O~k1q!@Âk1Â2k
† #@ âq1â2q

† #

1\(
q,k

G2~q!O~k1q!@B̂k1B̂2k
† #@ âq1â2q

† #, ~8!

where the coupling constants between the photons and e
tons take the following form:

G1~q!5ANTg1~q!5ANT

2pV1
2

V\vq
d1 ,

G2~q!5ANTg2~q!5ANT

2pV2
2

V\vq
d2 , ~9!

wherevq5uquc. The wave-vector matching factor17 in Eq.
~8! is

O~k1q!5
1

N (
l

ei (k1q) la5
1

N

sinS k1q

2
NaD

sinS k1q

2
aD , ~10!

which is real and equal to 1 fork1q50, and O(k1q)
,1, for k1qÞ0.
13430
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III. EQUATIONS OF MOTION WITH ROTATING-WAVE
APPROXIMATION

In this section, we consider the RWA to deal with th
interaction (e/mc)p•A between the radiation field and th
multiatom system. After introducing the two-mode excito
operators in Eq.~6!, the interaction Hamiltonian between th
excitons and photons with RWA is obtained as

ĤRWA5\(
q,k

G1~q!O~k1q!@Âkâ2q
† 1Â2k

† âq#

1\(
q,k

G2~q!O~k1q!@B̂kâ2q
† 1B̂2k

† âq#, ~11!

where we have neglected the higher-frequency~nonresonant!
terms:Â2k

† â2q
† , Âkâq , B̂2k

† â2q
† , andB̂kâq .

The Heisenberg equations for the exciton and photon
erators are

i
]

]t
Âk5V1Âk1(

q
G1~q!O~q2k!âq , ~12!

i
]

]t
B̂k5V2B̂k1(

q
G2~q!O~q2k!âq , ~13!

i
]

]t
âq5vqâq1G1~q!(

k
O~k2q!Âk

1G2~q!(
k

O~k2q!B̂k . ~14!

Taking the transform

Âk→Ãk5Âke
iV1t, B̂k→B̃k5B̂ke

iV2t ~15!

to remove the fast varying factors, we obtain the form
equation for the exciton operator:

]

]t
Ãk~ t !52 i(

q
G1~q!O~q2k!e2 i (vq2V1)tâq~0!

2(
q,k8

G1~q!G2~q!O~q2k!O~k82q!

3E
0

t

B̃k8~ t8!e2 i (vq2V1)tei (vq2V2)t8dt8

2(
q,k8

G1
2~q!O~q2k!O~k82q!

3E
0

t

Ãk8~ t8!e2 i (vq2V1)(t2t8)dt8. ~16!

Here, the first term proportional toâq(0) is the so-called
quantum noise term. The second term in the above equa
corresponds to a multiphoton process~MPP! including
stimulated emission and absorption effects. Its contribut
can be ignored since it is a higher-order term from the sta
point of perturbation.40 The last term in Eq.~16! can be
1-3
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solved by using the WWA, i.e., assuming thatÃk8(t8) varies
sufficiently slowly so that it can be factorized outside t
integral. The remaining part of the time integral of the la
term in Eq. ~16! can be evaluated and we get a Diracd
function with variable (vq2V1) and a principal part
P@ i /(vq2V1)# term, which contributes a frequency sh
~Lamb shift!.

The equation of motion forB̃k(t) can also be obtained in
the similar way. By using the WWA, and neglecting th
MMP, we can solve the equations for both the two-mo
excitons to obtainÃk(t) and B̃k(t). Substituting them into
Eq. ~14!, the explicit expression forâq(t) in terms ofâq(0),
Âk(0), andB̂k(0) can be obtained. Finally we can get th
positive-frequency part of the electric field,

Ê(1)~z,t !5 i(
q
A2p\vq

V
âq~ t !eiqz

5 i E
2`

`

dqA\vqL

2pA
âq~ t !eiqz, ~17!

where we have taken the photon normalization volumeV to
beLA, with A being the area of the crystal slab, and assum
th
ni

t

13430
t

e

d

that the slab is located at the middle of the volume. WheL
is sufficiently large, the sum overq has been replaced by a
integral:(q•••→(L/2p)*2`

` dq•••.
For an arbitrary initial stateuf&5ufex& ^ ufL& of the total

system, the light intensity radiated from the two-mode ex
ton system is defined as

I ~z,t !5
c

2p
^fu:Ê(2)~z,t !Ê(1)~z,t !:uf&, ~18!

where the symbol ‘‘:•••: ’’ means the normal product accord
ing to the exciton operators.z is the position of a detecto
relative to the crystal slab. The first-order degree of coh
ence of fluorescence is given by

g(1)~z;t,t1t!5

c

2p
^fu:Ê(2)~z,t !Ê(1)~z,t1t!:uf&

AI ~z,t !I ~z,t1t!
.

~19!

Similarly, one can also define the second-order degree
coherence as
g(2)~z;t,t1t!5

c2

4p2
^fu:Ê(2)~z,t !Ê(2)~z,t1t!Ê(1)~z,t1t!Ê(1)~z,t !:uf&

I ~z,t !I ~z,t1t!
. ~20!
-
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IV. QUANTUM INTERFERENCE EFFECT
IN LIGHT INTENSITY

In this section, the features of exciton fluorescence in
case of monolayer will be studied in detail. From the defi
tion of the wave vector of excitons, whenN51, it takes only
one valuek50 and the wave-vector matching factorO(q
2k)5O(k82q)[1. Thus with the help of WWA, we ge
the equations of motion for exciton modesA0 andB0 as

]

]t
Ã0~ t !52 i(

q
G1~q!e2 i (vq2V1)tâq~0!2

h1

2
Ã0~ t !,

~21!

]

]t
B̃0~ t !52 i(

q
G2~q!e2 i (vq2V2)tâq~0!2

h2

2
B̃0~ t !,

~22!

in which

h15
4pV1d1

2

\a2c
53S pl1

2

a2 D g1 , ~23!
e
-

h25
4pV2d2

2

\a2c
53S pl2

2

a2 D g2 , ~24!

whereg154V1
3d1

2/3\c3 is the radiative decay rate of an iso
lated atom fromue1& to ug&, andg254V2

3d2
2/3\c3 is that of

ue2& to ug& , respectively.l j5c/V j , for j 51, 2, denote the
reduced wavelengths. We find that, because of the implem
tation of WWA and the ignorance of MPP’s in the derivatio
of Eqs.~21! and~22!, the two-mode excitons decay indepe
dently in an exponential rule. Even though our treatm
seems to be bold, we can get a useful result that the de
rates of excitons in two-dimensional crystal slab are prop
tional to the enhanced factor (l/a)2. In Sec. V, we will con-
sider a more complex case, in which a nonperturbation
proach is used to restudy the radiative decay rates of
two-mode excitons without WWA, and the effects of MPP
will be also investigated there.

Substituting the solutions of Eqs.~21! and ~22! into Eq.
~14!, we get the explicit expression of the photon annihi
tion operatorâq(t) for the monolayer case:

âq~ t !5uq~ t !Â0~0!1vq~ t !B̂0~0!1e2 ivqtâq~0!

1(
q8

wq,q8~ t !âq8~0!, ~25!
1-4
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where

uq~ t !5G1~q!
e2 ivqt2e2h1t/2e2 iV01t

vq2V011 ih1/2
, ~26!

vq~ t !5G2~q!
e2 ivqt2e2h2t/2e2 iV02t

vq2V021 ih2/2
, ~27!

wq,q8~ t !5
G1~q!G1~q8!e2 ivqt

vq82V011 ih1/2
Fei (vq2V01)te2h1t/221

vq2V011 ih1/2

2
ei (vq2vq8)t21

vq2vq8
G1same with 1→2, ~28!

in which V0 j5V j1D j , for j 51, 2, are the renormalize
physical frequencies, andD j are the Lamb frequency shifts

D j52PE
0

`

dvq

r~vq!uGj~q!u2

vq2V j
. ~29!

Here ‘‘P’’ denotes for the Cauthy principle part, andr(vq)
is the density of states of the radiation field.

Therefore, one can obtain the positive-frequency par
the electric-field operator

Ê(1)~z,t !5Ê0
(1)~z,t !1Ap\V1h1

4Ac
FA~z,t !Â0~0!

1Ap\V2h2

4Ac
FB~z,t !B̂0~0!, ~30!

where

Ê0
(1)~z,t !5 i(

q
A2p\vq

V

3F âq~0!e2 ivqt1(
q8

wq,q8~ t !âq8~0!Geiqz.

~31!

The first term inÊ0
(1)(z,t) is just the free varying light field.

The second term is proportional to the square of coup
constants. As mentioned in Eq.~17!, the sum over the wave
vector q can be replaced by an integral, thus two tim
dependent functionsFA(z,t) andFB(z,t) in Eq. ~30! are

FA~z,t !5
i

pE0

`

dvq2 cosS vq

z

cD e2 ivqt2e2 iv1t

vq2v1
, ~32!

FB~z,t !5
i

pE0

`

dvq2 cosS vq

z

cD e2 ivqt2e2 iv2t

vq2v2
. ~33!

Herev15V012 ih1/2 andv25V022 ih2/2. In the Ref. 17,
similar expressions were presented. However, the autho
Ref. 17 did not calculate the integrals overdvq , which may
result in the light intensity going into the spacelike region.
this paper, we will further calculate the integral overdvq

~Refs. 40 and 43! to give an explicit expression ofÊ(1)(z,t),
13430
f
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FA~z,t !5
1

pE0

t

dt8e2h1t8/2e2 iV01t

3E
0

`

dvq2 cosS vq

z

cDei (vq2V01)(t82t). ~34!

Replacing the integral variablevq by vq2V01, we have

FA~z,t !5
1

pE0

t

dt8e2h1t8/2e2 iV01t

3E
2V01

`

dvq2 cosF ~vq1V01!z

c Geivq(t82t).

~35!

We assume thatV01 is much larger than all other quantitie
of the dimension of frequency,23 so the lower limit of the
integration can be extended to2`. Therefore, the above
integral overdvq can be approximated by twod functions
with variables (t82t1z/c) and (t82t2z/c). In the region
z.0 outside the layer, performing the integral overt8, we
get

FA~z,t !52e2h1(t2z/c)/2e2 iV01(t2z/c)QS t2
z

cD
52e2 iv1(t2z/c)QS t2

z

cD , ~36!

whereQ is a Heaviside function. Similarly, we can also o
tain

FB~z,t !52e2 iv2(t2z/c)QS t2
z

cD . ~37!

From Eqs.~36! and ~37!, one can find that there is no ad
vancedpropagatorproportional toe2 i (•••)(t1z/c) appeared in
the positive-frequency part of the electric-field opera
Ê(1)(z,t), so that the system is causal and well behaved40

It should be pointed out thatFA(z,t) andFB(z,t) in Eqs.
~36! and~37! show that the electric field of the fluorescen
emitted from the two-mode excitons is a temporal damp
plane wave, but does not decay withz. A realistic electric
field, however, should decrease withz, which happens, espe
cially when a light propagates from a medium with low r
fractive index to that of higher one. Besides, a realistic el
tric field should not simply be a plane wave. However, t
theoretical calculations with this subtle consideration will
very complicated and do not provide us with necessary ph
ics in general. Our ideal assumption of a plane wave pro
gating inz may work well for long-wavelength radiation nea
the crystal.

The vacuum state of the exciton may be defined as

Â0~0!u0&5B̂0~0!u0&50, ~38!

which represents that there is no exciton contained in
crystal slab. Then number states for the two-mode excit
are
1-5
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un&A5
1

An!
@Â0

†~0!#nu0&,

um&B5
1

Am!
@B̂0

†~0!#mu0&. ~39!

The coherent states can be formally defined as eigenve
of exciton annihilation operators:

Â0~0!ua&A5aua&A ,

B̂0~0!ub&B5bub&B . ~40!

It is noticed that this definition can work well only in the lo
excitation case. This is because the generic expansion
coherent state concerns the Fock states with higher ex
tions. However, the coherent state with smaller average
citon numbers can still approximately describe the quan
coherence natures of the exciton systems. Actually, we
understand the Fock state or the coherent state in terms o
single atomic states~for the details, please see Appendix A!.
In this sense, the initial state of Frenkel exciton can be w
ten according to the initial preparations of the single atom
states. A simplest illustration is that the vacuum state
Frenkel exciton is just the state formed by all atoms in
ground state. According to Appendix A, the Fock state
Frenkel exciton is a symmetrized many-atom state with c
tain atoms in the excited state. Especially, the coherent s
of Frenkel exciton is an atomic@SU~2!# coherent state.

The fluorescence of the two-mode excitons will be stud
in the following of this section. If one takes the initial sta
of total system asuf&5ufex& ^ u$0%&, i.e., all modes of the
light field are initially in vacuum state,Ê0

(1)(z,t) in the
positive-frequency part of the field operator of Eq.~30! gives
zero contribution. Therefore, in the following calculation
we can neglect safely the ‘‘quantum noise,’’ the terms p
portional toâq(0), andinvestigate only the influence of var
ous initial exciton states on the fluorescence of the lo
density excitations in the crystal slab.

We find that the light field emitted from the two-mod
exciton system contains two eigenmodes:V01 and V02.
These two modes of the light field can give an interferenc
there are nondiagonal terms in the light intensity. To see t
we need to calculate the light intensity first. Substituting E
~30! and its Hermitian conjugate into Eq.~18!, the light in-
tensity is

I ~z,t !5
1

8
\V1

h1

A
uFA~z,t !u2^Â0

†~0!Â0~0!&

1
1

8
\V2

h2

A
uFB~z,t !u2^B̂0

†~0!B̂0~0!&

1
1

8
\V3

h3

A
@FA* ~z,t !FB~z,t !^Â0

†~0!B̂0~0!&1c.c.#,

~41!
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where ^•••& denotes ensemble average,V35AV1V2,
and h35Ah1h2. The first two terms in Eq.~41! repre-
sent the average intensities of the two eigenmodesV01
and V02, respectively. The last term proportional
1
8 \V3(h3 /A)@•••#, however, gives a contribution of inter
ference of the light fields.

When the exciton system is initially in a separable st
r(0)5rA^ rB and bothrA andrB can be diagonal in Fock
representation, there are only two terms in the light intens
which represent the contributions from the two-mode ex
tons, respectively. There is no nondiagonal term in the li
intensity due tô Â0

†(0)B̂0(0)&50. The light intensity is

I ~z,t !5
1

8
\V1

h1

A
^n&A@4e2h1(t2z/c)

14xe2h2(t2z/c)#Q~ t2z/c!, ~42!

where x5x0^m&B /^n&A , x05V2h2 /V1h1, and ^n&A
(^m&B) is the initial mean number ofA0- (B0-! mode exci-
tons. Note thatx0 is only determined by the intrinsic prop
erties of the 2D sample. For a fixedx0 , x can be used to
describe the degree of unsymmetrical excitation within
crystal slab initially. Equation~42! is plotted in Fig. 2, and
our results show thatI (z,t) increases abruptly after th
propagation timet5z/c ~in Fig. 2, we takez52pc/V1; It is
not a necessary choice!, then decays exponentially, and n
interference pattern appears in this case. When^m&B50, i.e.,
theB0-mode excitons are initially in vacuum state, as sho
in Fig. 2 ~the solid line!, our result will go back to the two-
level crystal atoms case17 due to the using of RWA and ne
glecting MPP’s in the derivation of Eqs.~21! and ~22!, i.e.,
the mode of exciton being initially in the vacuum state giv
no contribution to the dynamics of the total system. Besid
from the dot line (̂m&B /^n&A51) and dashed-dot line
(^m&B /^n&A55) of Fig. 2, we find that, with the increase o
x, the amplitude of the light intensity becomes higher, wh
shows clearly that the amplitude of the light intensity is t

FIG. 2. Time evolution of light intensityI (z,t) at point z
52pc/V1 for the case that the density matrix of the initial excito
state is diagonal in Fock representation. The solid line~down!,
^m&B50; the dot line~middle!, ^m&B5^n&A ; the dashed-dot line
~up!, ^m&B55^n&A . The unit ofI (z,t) is 1

8 ^n&A\V1(h1 /A). t is in
unit of 1/V1 . h1/2V150.01, V250.5V1 , h25h1.
1-6
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sum of the contributions of the two eigenmodes of the rad
tion emitted from the two-mode excitons.

However, ifrA andrB are nondiagonal in Fock represe
tation, e.g., the exciton system initially being prepared in
factorized coherent stateufex&5ua&A^ ub&B , the light inten-
sity becomes

I ~z,t !5
1

8
\V1

h1

A
^n&AQ~ t2z/c!$4e2h1(t2z/c)

14xe2h2(t2z/c)18Axcos@~V012V02!~ t2z/c!1f#

3e2(h11h2)(t2z/c)/2%, ~43!

wheref is the phase difference between the two coher
states. The last term in Eq.~43! gives a nonzero contribution
The detector atz may register a fluorescence signal oscill
ing at frequencyuV012V02u. The temporal interference phe
nomenon may be observed by using a broadband detec40

because there is no way to know that the photon receive
the detector is emitted from which modes of excitons. N
knowing the ‘‘which-way’’ will result in the so-called quan
tum beat phenomenon.

From Eq.~43!, one can easily find thatI (z,t) is oscillating
with the time evolution. The detector atz will receive the
first peak after the propagation timet5z/c. The influences
of x on the time evolution of the light intensity are inves
gated in Fig. 3, where we have usedf50, i.e., zero phase
difference between the two coherent states. Our results s
that if one of the two-mode excitons is initially in vacuu
state~say b50), we recover the normal exponential dec
of the light intensity. Besides, the amplitudes of the lig
intensity become larger with the increase ofx. The result
that the light intensity at initial stage does not go down
zero~the dot line and the dashed-dot line! is the consequenc
of unsymmetrical excitation, i.e., the initial generation of t
two-mode excitons with different mean numbers.

All our mentioned above are separable state cases
which the density matrix of the two-mode exciton syste
can be factorized initially. On the other hand, if the system
initially in an entangled state, e.g.,ufex&5(1/A2)(u0&A
^ u1&B1u1&A^ u0&B), one may also observe the quantu
beat phenomenon.
er
ri-
o
e
te
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The first-order degree of coherence of the light fie
ug(1)(t)u as a function of the time delayt is calculated by
substituting Eq.~30! and its Hermitian conjugate into Eq
~19!. We find that if one of the two-mode excitons is initiall
in vacuum state, e.g.,^m&B50, thenug(1)(t)u51 regardless
of the another mode state, which implies that single-mo
exciton in the 2D crystal slab emits a complete coher
light. Mathematically, the complete coherent light is obtain
when ug(1)(t)u51. This happens when41

^Ê(2)~z,t !Ê(1)~z,t1t!&}E* ~z,t !E~z,t1t!, ~44!

whereE(z,t)5^Ê(1)(z,t)&, i.e., two-time correlation func-
tion of the total electric field may be factorized as the e
semble averages of the electric fields. As a special c
when there is only one-mode exciton being excited initia
one can easily find that the factorized condition is satisfi
The physical meaning ofg(1)(t) can be understood by con
sidering the visibility of the interference fringes, which
proportional to ug(1)(t)u. A maximum visibility of the
fringes is obtained whenug(1)(t)u51.

If both the two-mode excitons are populated initially wi
rex5rA^ rB and bothrA and rB being diagonal in Fock
representation, the factorized condition of the two-time c
relation function is broken, which leads to 0,ug(1)(t)u,1.
The magnitude of the first-order degree of coherence for
case is

FIG. 3. Time evolution of light intensityI (z,t) at point z
52pc/V1 for the case that the excitons are initially in a factoriz
coherent state. The solid line,ubu25uau2; the dot line, ubu2

55uau2; the dashed-dot line,ubu2510uau2. Other parameters are
the same as in Fig. 2.
ug(1)~z,t;z,t1t!uz5ct5
A112xe2(h22h1)t/2cos~V012V02!t1x2e2(h22h1)t

A11x1xe2(h22h1)t1x2e2(h22h1)t
. ~45!
de

e-
We find thatug(1)(t)u oscillates regularly witht, as shown in
Fig. 4~a!. The magnitude of the first-order degree of coh
ence also depends onx: the larger the degree of unsymmet
cal excitation is, the smaller the oscillating amplitude
ug(1)(t)u is. Whenx→`, ug(1)(t)u tends to 1. For the cas
of the excitons being initially in a factorized coherent sta
-

f

,

as shown in Fig. 4~b!, ug(1)(t)u is equal to 1 due to the
satisfaction of the factorized condition.

The second degree of coherenceug(2)(t)u as a function of
t is also calculated. We find that, when one of the two-mo
excitons is initially in a vacuum state~say ^m&B50), then
~1! ug(2)(t)u52, for the case of the other mode exciton b
1-7
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ing in a chaotic state,~2! ug(2)(t)u5121/n, for the case of
the A0-mode excitons being initially in a Fock state,~3!
ug(2)(t)u51, for the coherent-state case. If both the tw
mode excitons are populated initially, we find thatug(2)(t)u
oscillates regularly witht, and the oscillating amplitude o
ug(2)(t)u becomes smaller with the increase ofx.

V. NONPERTURBATION APPROACH
WITHOUT THE WWA

In general, the rotating-wave approximation a
Weisskopf-Wigner approximation are used frequently
quantum optics to study the fluorescence emitted from
single-atom system. However, for the case of exciton ra
ance from a multiatom system, we do not know exactly
they are valid because of the superradiant feature of excit
In this section, we will restudy the fluorescence of Fren
excitons in the V-typed crystal slab by using nonperturbat
approach3,6 without the rotating-wave approximation in th
interaction Hamiltonian (e/mc)p•A. The self-interaction
term (e2/2mc2)A2 is also included in our model to avoi
unphysical roots in the characteristic equations for the e
ton dispersion relation.17 Both the stimulated emission an
reabsorption effects are taken into account in the theore
treatment. We focus our attention on the radiative decay r
of the excitons and the light intensities for various excit
initial states to compare with our previous results in Sec.

FIG. 4. ug(1)(t)u as a function of time delayt. z52pc/V1 , t
52p/V1 , t is in unit of 1/V1 , h1/2V150.01, V250.5V1 , h2

5h1. ~a! The case that the density matrix of initial exciton state
diagonal in Fock representation. The solid line~up! is ^m&B

550̂ n&A ; the dot line~middle! is ^m&B510̂ n&A ; and the dashed
dot line ~down! is ^m&B5^n&A . ~b! For a factorized coherent-stat
case.
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The interaction HamiltonianH1 between the Frenkel ex
citons and photons without RWA has been given in Eq.~8! in
Sec. II. Our further discussion will also take the se
interaction term (e2/2mc2)A2 into account. In second quan
tization, this self-interaction Hamiltonian is written as

Ĥ25\ (
q,q8; l

f ~q,q8!@ âq1â2q
† #@ âq81â2q8

†
#ei (q1q8) la, ~46!

in which

f ~q,q8!5
NLpe2

mcVAuqq8u
(
l,l8

eql•eq8l8 , ~47!

whereeql is the unit polarization vector of the (q,l)-mode
photon withl51,2. The sum(l,l8eql•eq8l8 had been given
for the two-level atom case44,17 with certain assumptions
Following them we can give a similar result for the V-typ
three-level case~the detailed calculations are presented
Appendix B!:

f ~q,q8!5
2pNL

c\VAuqq8u
@V1d1

21V2d2
2#

5
1

N F 1

V1
G1~q!G1~q8!1

1

V2
G2~q!G2~q8!G . ~48!

By making use of

(
l

ei (q1q8) la5N(
k

O~q82k!O~k1q!, ~49!

we can get the self-interaction Hamiltonian of photonĤ2.
The Heisenberg equations for exciton and photon opera
can be obtained from the total interaction HamiltonianĤ int

5Ĥ11Ĥ2 @Eq. ~C1! in Appendix C#. Performing half-side
Fourier transformation~HSFT!

Aq~v!5E
0

`

Âq~ t !eivtdt ~50!

on both sides of the equations, four algebraic equations a
Ak(v), Bk(v), aq(v), anda2q

† (v) are obtained as listed in
Appendix C. Combining these equations we get

aq~v!2a2q
† ~v!5

2v

V1~v22q2c2!
G1~q!(

k
O~k2q!

3$v@Ak~v!2A2k
† ~v!#

2 i @Ak~0!2A2k
† ~0!#%

1
2v

V2~v22q2c2!
G2~q!(

k
O~k2q!

3$v@Bk~v!2B2k
† ~v!#

2 i @Bk~0!2B2k
† ~0!#%1

i

v2uquc
aq~0!

2
i

v1uquc
a2q

† ~0!, ~51!
1-8
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for the electric field of the fluorescence. In order to calcul
it, one need to know Ak(v)2A2k

† (v) and Bk(v)
2B2k

† (v), which are determined byaq(v)1a2q
† (v). In

Appendix C, two coupled equations forAk(v)2A2k
† (v) and

Bk(v)2B2k
† (v) are presented in detail. We solve these t

equations consistently and replace them into Eq.~51!. Then
we get the electric field by the inverse HSFT,

E~z,t !5
1

2pE2`1 i e

`1 i e

E~z,v!e2 ivtdv, ~52!

where

E~z,v!5 i(
q
A2puquc\

V
@aq~v!2a2q

† ~v!#eiqz

5 i E
2`

` Auquc\L

2pA
@aq~v!2a2q

† ~v!#eiqzdq, ~53!

for sufficiently largeL.
From the explicit form of the electric-field operator, th

radiative decay rates of Frenkel excitons can be solved.
the sake of simplicity, we will restrict ourselves to the mon
layer caseN51, in which only zero wave vector of exciton
is involved in our model. Solving the two coupled equatio
for A0(v)2A0

†(v) andB0(v)2B0
†(v) @see Eqs.~C13! and

~C14! in Appendix C#, we get two independent equations

H Fv22V1
22

2v2

V1
F00

(1)~v!GFv22V2
22

2v2

V2
F00

(2)~v!G
2

2v2

V1
F00

(3)~v!
2v2

V2
F00

(3)~v!J @A0~v!2A0
†~v!#

5 i Fv22V2
22

2v2

V2
F00

(2)~v!G@~v1V1!A0~0!

2~v2V1!A0
†~0!#12ivF00

(3)~v!@~v1V2!B0~0!

2~v2V2!B0
†~0!#2 i

2v

V1
F00

(1)~v!~v22V2
2!

3@A0~0!2A0
†~0!#, ~54!

and

H Fv22V2
22

2v2

V2
F00

(2)~v!GFv22V1
22

2v2

V1
F00

(1)~v!G
2

2v2

V2
F00

(3)~v!
2v2

V1
F00

(3)~v!J @B0~v!2B0
†~v!#

5 i Fv22V1
22

2v2

V1
F00

(1)~v!G@~v1V2!B0~0!

2~v2V2!B0
†~0!#12ivF00

(3)~v!@~v1V1!A0~0!

2~v2V1!A0
†~0!#2 i

2v

V2
F00

(2)~v!~v22V1
2!

3@B0~0!2B0
†~0!#, ~55!
13430
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where

F00
( j )~v!52 i

V jh j

2v
, h j5

a f j
2

2c
, f j

25
8pV jdj

2

\a3
, ~56!

for j 51,2,3.F00
( j )(v) for j 51,2 give the exciton wave func

tion’s overlap for theA0- andB0-mode exciton, respectively
howeverF00

(3)(v) is that between the two modes. Note th
MPP has been taken into account in Eqs.~54! and ~55!.
Then, we get the same characteristic equations for de
rates and frequency shifts of the two exciton modesA0 and
B0,

z~v!50, ~57!

where

z~v!5~v22V1
21 ih1v!~v22V2

21 ih2v!1h1h2v2.
~58!

The roots of Eq.~57! can be solved exactly,

v15V012 iG1/2, v252V012 iG1/2,

v35V022 iG2/2, v452V022 iG2/2, ~59!

which determine the poles ofA0(v)2A0
†(v) and B0(v)

2B0
†(v). The imaginary parts of the roots are the dec

rates of the excitons, and the real parts are the renormal
physical frequencies. For the caseV15V25V, i.e., the de-
generate case, we get

v15V, v35V02 i ~h11h2!/2,

v252V, v452V02 i ~h11h2!/2, ~60!

where

V05AV22
1

4
~h11h2!2'VF12

~h11h2!2

8V2 G . ~61!

For the nondegenerate caseV1ÞV2, we assume that the
physical roots of the characteristic equation are not far aw
1-9
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from 6V j due to the conditionh j!V j . Therefore, one can
expandv up to third order ofh j /V j , and get

V015V1F12
h1

2

8V1
2

2
1

2

h1h2

V1
22V2

2G ,

V025V2F12
h2

2

8V2
2

2
1

2

h1h2

V2
22V1

2G ,

G15h1F12
h2V1

22h1V2
2

~V1
22V2

2!2
h2G ,

G25h2F12
h1V2

22h2V1
2

~V2
22V1

2!2
h1G , ~62!

whereh j with j 51,2 are given in Eqs.~23! and ~24!.
We compare our results with the two-level lattice ato

case,17 in which the radiative decay rate of excitons ish
53(pl2/a2)g, whereg is the decay rate of an isolated la
tice atom, l5c/V denotes the reduced wavelength, a
physical frequency isV05V@12h2/8V2#. However, we
see from Eq.~62!, for the three-level lattice atom case, th
decay ratesG j are different from the two-level atom caseh j
by a third-order correction, which comes from MPP~includ-
ing stimulation emission, absorption, and other high-or
processes!. Here V012V1 and V022V2 denote the fre-
quency shifts for theA0-mode andB0-mode exciton, respec
tively. For the two-level case the frequency shift ish2/8V2,
whereas for the three-level case considered here, the p
shifts for the two-mode exciton areh i

2/8V i
21 1

2 h ih j /(V i
2

2V j
2), i , j 51,2. The last term in the frequency shifts is

second-order correction, which can be adjusted by tuning
energy spacing of the upper two levels of the lattice atom

In the remainder of this paper, we will present the expli
expressions of the electric-field operator. The time evolut
and spatial distribution of the light intensity are calculated
compare with the results of RWA in Sec. IV.

From Eqs. ~54! and ~55!, the explicit expressions fo
A0(v)2A0

†(v) @Eq. ~C15!# andB0(v)2B0
†(v) @Eq. ~C16!#

are obtained. Replacing them into Eq.~51!, we get the ex-
plicit light field operator in terms of the initial exciton fiel
operators:

aq~v!2a2q
† ~v!5

2ivG1~q!~v22V2
2!

~v22q2c2!z~v!

3@~v1V1!A0~0!1~v2V1!A0
†~0!#

1
2ivG2~q!~v22V1

2!

~v22q2c2!z~v!
@~v1V2!B0~0!

1~v2V2!B0
†~0!#, ~63!

where we have neglected the quantum noise terms pro
tional to aq(0) anda2q

† (0) in the above calculation. Subst
tuting aq(v)2a2q

† (v) into Eq. ~53! and choosing a prope
13430
r

ase

e
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n

or-

contour integration in the upper complexq plane, we get
E(z,v) in the positivez region outside the crystal slab as th
following:

E~z,v!5 iAp\V1h1

cA

v22V2
2

z~v!

3@~v1V1!A0~0!1~v2V1!A0
†~0!#ei (v/c)z

1 iAp\V2h2

cA

v22V1
2

z~v!
@~v1V2!B0~0!

1~v2V2!B0
†~0!#ei (v/c)z, ~64!

where A is the area of the layer. As mentioned above,
choose the normalization volume of the light field asAL.

The electric fieldE(z,t) in the positivez region outside
the crystal slab can be calculated by Eq.~52!. For the case
z2ct.0 (,0), the contour integral overdv can be per-
formed by choosing the integration path in the upper~lower!
complex v plane. The result is thatE(z,t)50, for z2ct
.0; but for z2ct,0,

E~z,t !5E (1)~z,t !1H.c. ~65!

The explicit expression forE (1)(z,t) in Appendix C shows
that, in positivez region, the electric field generated by th
two-mode exciton is damped exponentially with two eige
decay ratesG1 and G2. The corresponding eigenmodes a
linear combinations ofA0 andB0 modes. The electric field in
negativez region can also be derived similarly and show
that it is a damped wave propagating in the negativez direc-
tion. Since all the roots of the characteristic equation are
lower half plane of complexv plane, thenE(z,t)50, for
z2ct.0, so our result is reasonable and obeys the ca
rule.

Similarly, we can also calculate the positive-frequen
part of the electric-field operator, which is determined
aq(v). The explicit expression ofaq(v) can be obtained by
substituting Eqs.~C15! and ~C16! into Eq. ~C4! ~see details
in Appendix C! and omitting quantum noise terms. We ge

~v2uquc!aq~v!5 iG1~q!
v22V2

2

z~v!

3@~v1V1!A0~0!1~v2V1!A0
†~0!#

1 iG2~q!
v22V1

2

z~v!
@~v1V2!B0~0!

1~v2V2!B0
†~0!#. ~66!

Therefore, we get
1-10
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E(1)~z,t !5
i

2pE2`

`

dqE
2`1 i e

`1 i e

dvAuquc\L

2pA
aq~v!ei (qz2vt)

5
1

2pE2`

`

dqeiqzE
2`1 i e

`1 i e

dv
e2 ivt

vq2v

3HAc\V1h1

4pA

~v22V2
2!

z~v!
@~v1V1!A0~0!

1~v2V1!A0
†~0!#1Ac\V2h2

4pA

~v22V1
2!

z~v!

3@~v1V2!B0~0!1~v2V2!B0
†~0!#J . ~67!
tic
a-
ve

13430
A straightforward calculation gives the following result

E(1)~z,t !50 for t,0, ~68!

E(1)~z,t !5Ap\V1h1

4Ac
@FA

(1)~z,t !A0~0!1FA
(2)~z,t !A0

†~0!#

1Ap\V2h2

4Ac
@FB

(1)~z,t !B0~0!

1FB
(2)~z,t !B0

†~0!# for t.0, ~69!

in which the time-dependent coefficientsFA
(6)(z,t) and

FB
(6)(z,t) are
FA
(6)~z,t !5

i

pE0

`

dvq2F ~vq
22V2

2!~vq6V1!e2 ivqt

~vq2v1!~vq2v2!~vq2v3!~vq2v4!
2

~v1
22V2

2!~v16V1!e2 iv1t

~vq2v1!~v12v2!~v12v3!~v12v4!

2
~v2

22V2
2!~v26V1!e2 iv2t

~vq2v2!~v22v1!~v22v3!~v22v4!
2

~v3
22V2

2!~v36V1!e2 iv3t

~vq2v3!~v32v1!~v32v2!~v32v4!

2
~v4

22V2
2!~v46V1!e2 iv4t

~vq2v4!~v42v1!~v42v2!~v42v3!
GcosS vq

z

cD , ~70!

FB
(6)~z,t !5

i

pE0

`

dvq2F ~vq
22V1

2!~vq6V2!e2 ivqt

~vq2v1!~vq2v2!~vq2v3!~vq2v4!
2

~v1
22V1

2!~v16V2!e2 iv1t

~vq2v1!~v12v2!~v12v3!~v12v4!

2
~v2

22V1
2!~v26V2!e2 iv2t

~vq2v2!~v22v1!~v22v3!~v22v4!
2

~v3
22V1

2!~v36V2!e2 iv3t

~vq2v3!~v32v1!~v32v2!~v32v4!

2
~v4

22V1
2!~v46V2!e2 iv4t

~vq2v4!~v42v1!~v42v2!~v42v3!
GcosS vq

z

cD , ~71!
e

firm
wherev j , for j 51,2,3,4, are four roots of the characteris
equation of Eq.~57!. We again need to carry out the integr
tion overdvq in the above two equations. It is easy to pro
that FA

(1)(z,t) can be simplified as

FA
(1)~z,t !5

i

pE0

`

dvq2 cosS vq

z

cD
3Fc1

e2 ivqt2e2 iv1t

vq2v1
1c2

e2 ivqt2e2 iv2t

vq2v2

1c3

e2 ivqt2e2 iv3t

vq2v3
1c4

e2 ivqt2e2 iv4t

vq2v4
G ,
~72!

where the four coefficients are

c15
~v1

22V2
2!~v11V1!

~v12v2!~v12v3!~v12v4!
,

c25
~v2

22V2
2!~v21V1!

~v22v1!~v22v3!~v22v4!
,

c35
~v3

22V2
2!~v31V1!

~v32v1!~v32v2!~v32v4!
,

c45
~v4

22V2
2!~v41V1!

~v42v1!~v42v2!~v42v3!
. ~73!

The above integral overdvq can be done as Sec. IV. Th
explicit expressions ofFA

(2)(z,t) and FB
(6)(z,t) can also be

obtained with the same calculations. Our results also con
the causal rule.

For an arbitrary exciton initial stateufex&, the light inten-
sity is defined by Eq.~18!. When the excitons are initially in
a state with density matrixr(0)5rA^ rB , and bothrA and
rB diagonal in Fock representation, the light intensity is
1-11
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I ~z,t !5
1

8
\V1

h1

A
^n&A@ uFA

(1)~z,t !u21uFA
(2)~z,t !u2#

1
1

8
\V2

h2

A
^m&B@ uFB

(1)~z,t !u21uFB
(2)~z,t !u2#,

~74!

which is shown in Fig. 5. When̂m&B50, the solid line, our
result will go back to the two-level lattice atom case.17 From
the dot line (̂ m&B /^n&A51) and dashed-dot line
t
ig

as

he
d

ar
s
n
y,

n

.

13430
(^m&B /^n&A55) of Fig. 5, we find that with the increase o
x, the amplitude of the light intensity becomes higher, wh
is the same as that obtained by using RWA~Fig. 2!. Contrary
to the results of Sec. IV, however, when we consider it wi
out RWA, the light intensity does not decay exponentia
but in an irregular way due to the existence of counterro
ing terms inE(1)(z,t). Besides, it also deserves to be me
tioned that the contributions of the nonrotating terms do
appear as quivers presented in Ref. 17.

For the case that the two-mode excitons are initially in
factorized coherent state, the light intensity becomes
I ~z,t !5
1

8
\V1

h1

A
@ uau2uFA

(1)~z,t !u21uau2uFA
(2)~z,t !u21~a* !2FA

(1)* ~z,t !FA
(2)~z,t !1a2FA

(2)* ~z,t !FA
(1)~z,t !#

1
1

8
\V2

h2

A
@ ubu2uFB

(1)~z,t !u21ubu2uFB
(2)~z,t !u21~b* !2FB

(1)* ~z,t !FB
(2)~z,t !1b2FB

(2)* ~z,t !FB
(1)~z,t !#

1
1

8
\V3

h3

A
@a* bFA

(1)* ~z,t !FB
(1)~z,t !1a* b* FA

(1)* ~z,t !FB
(2)~z,t !1abFA

(2)* ~z,t !FB
(1)~z,t !

1ab* FA
(2)* ~z,t !FB

(2)~z,t !1c.c.#, ~75!
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where the last term1
8 \V3(h3 /A)@•••# gives a temporal in-

terference term. The effects of phase difference between
two coherent states on the light intensity are studied in F
6. We find that the first peak~at t5z/c) of the light intensity
becomes lower in amplitude with the increase of the ph
difference fromf50 to f5p ~monotonic regime!. In fact,
the whole curve will be shifted left with the increase of t
phase difference within the monotonic regime, which lea
to the magnitude of the peak~at t5z/c) becoming lower
@comparing Figs. 6~b! and 6~c! with Fig. 6~a!#. When f
5p, I (z,t5z/c) tends to zero, i.e., the first peak disappe
@see Fig. 6~c!#. Our results also show that both the pha
difference and the degree of unsymmetrical excitation do
affect the oscillation frequency of the light intensit

FIG. 5. Time evolution of light intensityI (z,t) at point z
52pc/V1 for the case that the density matrix of the initial excito
state is diagonal in Fock representation. The solid line~down!,
^m&B50; the dot line~middle!, ^m&B5^n&A ; the dashed-dot line
~up!, ^m&B55^n&A . Other parameters are the same as in Fig. 2
he
.

e

s

s
e
ot

which is determined by the exciton splitting. The oscillatio
behavior in the light intensity may take place as long
uV012V02u.G j , i.e., the exciton splitting is greater than th
natural linewidth of exciton, so that one can observe
beating phenomenon within the lifetime of the exciton.

The spatial distribution of the light intensity is plotted
Fig. 7 for the case that the two-mode excitons are initially
a factorized Fock state. Our results show thatI (z,t0) in-
creases exponentially@see Eq.~42!# within the regions 0
,uzu,ct0 for the case of rotating-wave approximation, a
vanishes immediately asuzu goes beyondct0. The solid lines
in Fig. 7 are obtained without RWA and show sma
amplitude oscillations due to the contribution of counter
tating terms. Compared with the results of Ref. 17 our res
show that not only the electric fieldE(z,t) but also the light
intensity I (z,t) do meet the requirement of causal rule.

VI. CONCLUSION

In summary, we have studied the collective radiations o
collection of many V-type three-level atoms in a crystal sla
By introducing two-mode exciton operators in the largeN
limits of the collective quasispin operators, these coher
radiations can be depicted as the fluorescence of low-den
Frenkel excitons. The exciton fluorescence exhibits the str
ger coherence natures that the statistical characters of s
trum are identical from the initial to final stages. This
indeed different from the ensemble situation with fre
moving atoms that the atoms need a finitely long time
produce a cooperative radiation, the enhanced fluoresce

As a main result of this paper, the occurrence of the qu
tum beat aroused from which quantum states of Frenkel
1-12
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citon is investigated in this paper. Our results show that
all the quantum states of excitons may lead to the oscilla
behavior in the light field radiated from the two-mode ex
tons. This quantum interference phenomenon may be
served when the two-mode excitons are initially in a fact
ized coherent state or an entangled state. We expect tha
theoretical study of quantum beat would be helpful in pr
tical experiment to measure quantum states of excitons.
ther study of the anharmonic exciton-exciton interaction
the model is needed. It is also pointed out that the algeb
consideration for the definition of the multimode excito
can be generalized to study other exciton system, e.g.,
quasispin wave collective excitations ofL-type atom collec-
tion in lattice of crystal that can be used as a new type qu
tum memory.

FIG. 6. Time evolution of light intensityI (z,t) at point z
52pc/V1 for the case that the excitons are initially in a factoriz
coherent state:b5aeif, with f being the phase difference betwee
the two coherent states.t is in unit of 1/V1. ~a! f50; ~b! f
5p/2; ~c! f5p; other parameters are the same as in Fig. 2.
13430
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APPENDIX A: SU„3… ALGEBRA STRUCTURE OF
EXCITON OPERATORS FOR MANY-ATOM SYSTEM

From a point of view based on the representation of
algebra, this section describes the mathematical origin

FIG. 7. Space distribution of intensityI (z,t0) with ~a! t0

52p/V1, ~b! t053p/V1, and ~c! t055p/V1 . ^m&B5^n&A , z
2ct is in unit of c/V1. Other parameters are the same as in Fig
The dot line is obtained by using RWA, and the solid line is o
tained without RWA.
1-13
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definition of exciton operator. Physically, this descripti
will clarify why the conception of the exciton based on t
collective operators of many atoms can be valid only in
case of low excitation. We first discuss SU~2! algebra struc-
ture of excitonic operators for the two-level many-atom s
tem, since the SU~3! case for the 2D crystal slab containin
V-type three-level atoms shares the same basic idea as th
SU~2!. The detailed discussions for the SU~3! case will fol-
low that of SU~2! in this appendix.

We consider an ensemble ofN two-level atoms with their
ground statesug& j and the excited onesue& j . Since we can
define the quasispin with the Pauli operators

s2
i 5~s1

i !†5ug& i i ^eu, sz
i 5ue& i i ^eu2ug& i i ^gu, ~A1!

the total quasiangular momentum operators

Ĵ25(
i 51

N

s2
i , Ĵ15~ Ĵ2!†, Ĵz5

1

2 (
i 51

N

sz
i ~A2!

define a representation with the highest weightJ5N/2. The
(2J11)-dimensional irreducible spinor representation
SU~2! in the symmetric subspace is embedded in the t
Hilbert space of dimension 2N.

For a physics system with dynamical SU~2! symmetry, its
HamiltonianĤ5Ĥ( Ĵ2 ,Ĵ1 ,Ĵz) is a functional ofĴ6 andĴz .
Since the Casimir operatorĴ2 commutes withĴ6 andĴz , the
eigenvalueJ(J11) will keep conservation in the time evo
lution. Here,J can take one of the integers and half integ
N/2,N/221, . . . ,0. In aphysical process, which one of thes
J takes depends on the initial state of the atomic ensem
The symmetric stateuJ5N/2,M52N/2&5) i 51

N ug& i repre-
sents the ‘‘condensate’’ with all atoms filling in the groun
state. It is very similar to the situation of an electronic sy
tem that the filling in ground state forms the Fermi surfa
In this sense, we can introduce the atomic collective exc
tion operators

B̂†5
1

AN
Ĵ1 , B̂5

1

AN
Ĵ2 , ~A3!

which is very similar to the exciton operators for an electro
hole pair. Considering

Ĵz5
1
2 @12A~N11!224Ĵ1Ĵ2#, ~A4!

as one solution for the basic angular momentum relation

Ĵx
21 Ĵy

21 Ĵz
25

N

2 S N

2
11D , ~A5!

Ĵ1Ĵ25 Ĵx
21 Ĵy

21 Ĵz5
N

2 S N

2
11D2 Ĵz

21 Ĵz , ~A6!

the commutation relation for atomic collective excitation o
erators

@B̂,B̂†#52
2

N
Ĵz ~A7!
13430
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will be reduced to the bosonic relation@B̂,B̂†#51 for those
angular momentum statesuJ,M & with much smallerM in
comparison toN52J. That is to say, in the limit with very
largeN and low excitation, the collective excitation behav
as a boson and thus we call it atomic exciton. The deta
proof for this was given in Ref. 24 by considering the phy
cal realization ofq-deformed boson algebra45 for a very
large, but finiteN. The main point to prove is that

Ĵz

N
5

1

2 F 1

N
2AS 1

N
11D 2

2
4

N2
Ĵ1Ĵ2G ~A8!

approaches21/2 for the infiniteN and the low excitation.
Since the operators can make sense by acting on the s
metric space, only for those low excitation statesuJ,M & with
very small M can we let the value ofĴ1Ĵ2 /N2 approach
zero, so that the bosonic commutation relation is obtain
We can also prove that

B̂†B̂5(
i 51

N

ue& i i ^eu1OS 1

ND , ~A9!

which means that the free part of the many-atom Ham
tonian can rationally be described as a free boson in the la
N and the low excitation.

Because the condensate in a ground state plays the cr
role in defining the exciton operators, the introduction
exciton operators has to depend on the configuration of
atoms and thus on the form of interaction. This is just t
line, along which we will define the exciton operators for t
V-type atomic system with the interaction Hamiltonian39

ĤI5g1â†(
i 51

N

ug& i i ^e1u1g2â†(
i 51

N

ug& i i ^e2u1H.c.

~A10!

It is easy to prove that

E15(
i 51

N

ue1&
i i ^gu, F15(

i 51

N

ug& i i ^e1u,

E25(
i 51

N

ug& i i ^e2u, F25(
i 51

N

ue2&
i i ^gu,

H15
1

2 (
i 51

N

~ ue1&
i i ^e1u2ug& i i ^gu!,

H25
1

2 (
i 51

N

~ ug& i i ^gu2ue2&
i i ^e2u!, ~A11!

generate a SU~3! algebra with the Cartan subalgebra spann
by H1 andH2. The basic commutation relations are

@H1 ,E1#5E1 , @H1 ,F1#52F1 ,

@H2 ,E2#5E2 , @H2 ,F2#52F2 ,
1-14
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@H2 ,E1#52
E1

2
, @H2 ,F1#5

F1

2
,

@H1 ,E2#52
E2

2
, @H1 ,F2#5

F2

2
. ~A12!

Two sets of the operators$E1 , F1 , H1% and $E2 , F2 , H2%
generate two noncommutation SU~2! subalgebras, respec
tively. Actually, the above four collective operators define
spinor realization for the symmetric representation of SU~3!
in (NL11)-dimensional space. The atom numberNL deter-
mines the dimensionsNL11 of representations. In thi
sense, we can understand the two-mode excitation in te
of the largeNL limit of representations of SU~3!, which just
corresponds to the low-density excitation region. Thus
can define the collective operators

Â5
1

AN
F1 , Â†5

1

AN
E1 ,

B̂5
1

AN
E2 , B̂†5

1

AN
F2 . ~A13!

For a very largeN and low excitation, it is easy to prove tha
Â and B̂ commute with each other and obey the stand
bosonic commutation relation.

Now we can consider the construction of Frenkel ex
tonic states. In this way, the initial conditions for Frenk
exciton can be given in terms of the single-atom prepa
tions. For example, whenn50,1,2, . . . , theFock states of
the A-mode excitons

un&A5
1

An!
~Â†!nu0&5

1

Nn/2An!
S (

i 51

N

ue1&
i i ^gu D n

u0&

~A14!

take the symmetric excitation states

u0&5ug,g, . . . ,g&,

u1&A5
1

AN
(
j 51

N

ug,g, . . . ,e1
j , . . . ,g&,

u2&A5
1

NA2
(

j ,k51

N

ug,g, . . . ,e1
j , . . . ,e1

k , . . . ,g&,

•••. ~A15!

The second example is the coherent state of theA-mode
Frenkel exciton,

ua&A} exp~aÂ†!u0&5)
j 51

@cosuug& j1sinueifue1&
j ],

~A16!

where tanu5uau/AN anda5uaueif. The coherent nature o
this many-atomic state is reflected by the fact that bothu and
f are independent of the indexj of atoms. The quantum
13430
s
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d

-
l
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states ofB-mode excitons can also be constructed by us
the same procedure as discussed above.

APPENDIX B: THE SELF-INTERACTION TERM
OF THE LIGHT FIELD

In this section we will calculateeql•eq8l8 for the three-
level case. For an atom with a complete set of eigenvec
$un&%, we have

eql•eq8l85^gueql•eq8l8ug&

5
1

i\ (
n

^gueql•xun&^nup•eq8l8ug&

2(
n

^gueql•pun&^nux•eq8l8ug&

5
2m

\e2 (
n

Vn^gueql•dzn&^nud•eq8l8ug&,

~B1!

where we have used@x,p#5 i\ and p5(m/ i\)(xĤA

2ĤAx). ĤA is the free atomic Hamiltonian and gives th
eigenvalue equationĤAun&5Enun&.

For the V-type three-level case, we take the three-le
approximation in the above equation as Ref. 17 for the tw
level atom case, obtaining

eql•eq8l8'
2m

\e2
@V1~eql•d1!~d1•eq8l8!

1V2~eql•d2!~d2•eq8l8!#, ~B2!

whereV15(Ee1
2Eg)/\ and V25(Ee2

2Eg)/\ are atomic

transition frequencies forug&↔ue1& and ug&↔ue2&, respec-
tively. d15^e1udug&5^gudue1& and d25^e2udug&5^gudue2&
are the corresponding transition dipole moments. Choos
eql as

eq1•d15d1 , eq1•d25d2 ,

eq82•d150, eq82•d250, ~B3!

we get

eql•eq8l8'
2m

\e2
@V1d1

2dl,1dl,l81V2d2
2dl,1dl,l8#.

~B4!

Substituting(l,l8eql•eq8l8 into f (q,q8), we get Eq.~45! in
Sec. V. It is noticed that, for the case with single directi
polarization of light,(l,l8eql•eq8l851 strictly. The cutoff
of the complete relation for the sum by only three leve
however, will lead to the departure from 1. Only with th
cutoff approximation the exactly solvable mode is built f
the two-mode excitons coupling to the quantized electrom
netic fields.
1-15
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APPENDIX C: DETAILED NONPERTURBATION
CALCULATION

In this appendix, we will add the necessary details and
the more expatiatory expressions for Sec. V. We start fr
the total interaction Hamiltonian

Ĥ int5\(
q,k

G1~q!O~k1q!@Âk1Â2k
† #@ âq1â2q

† #

1\(
q,k

G2~q!O~k1q!@B̂k1B̂2k
† #@ âq1â2q

† #

1\ (
q,q8,k

1

V1
G1~q!G1~q8!O~q82k!O~k1q!

3@ âq1â2q
† #@ âq81â2q8

†
#

1\ (
q,q8,k

1

V2
G2~q!G2~q8!O~q82k!O~k1q!

3@ âq1â2q
† #@ âq81â2q8

†
#, ~C1!

which includes the non-RWA terms and the self-interact
of the light field.

The HSFT’s of the Heisenberg equations governed by
total Hamiltonian~C1! are

~v2V1!Ak~v!5(
q

G1~q!O~q2k!@aq~v!1a2q
† ~v!#

1 iAk~0!, ~C2!

~v2V2!Bk~v!5(
q

G2~q!O~q2k!@aq~v!1a2q
† ~v!#

1 iBk~0!, ~C3!

for excitons, and

~v2uquc!aq~v!

5
v

V1
G1~q!(

k
O~k2q!@Ak~v!2A2k

† ~v!#

2 i
1

V1
G1~q!(

k
O~k2q!@Ak~0!2A2k

† ~0!#

1
v

V2
G2~q!(

k
O~k2q!@Bk~v!2B2k

† ~v!#

2 i
1

V2
G2~q!(

k
O~k2q!@Bk~0!2B2k

† ~0!#

1 iaq~0!, ~C4!
13430
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~v1uquc!a2q
† ~v!

52
v

V1
G1~q!(

k
O~k2q!@Ak~v!2A2k

† ~v!#

1 i
1

V1
G1~q!(

k
O~k2q!@Ak~0!2A2k

† ~0!#

2
v

V2
G2~q!(

k
O~k2q!@Bk~v!2B2k

† ~v!#

1 i
1

V2
G2~q!(

k
O~k2q!@Bk~0!2B2k

† ~0!#

1 ia2q
† ~0!, ~C5!

for photons. Here, we have eliminated(q8G(q8)O(q82k)
@aq8(v)1a2q8

† (v)# in the derivation of Eqs.~C4! and~C5!.
Combining the above two equations, we get

~v22q2c2!@aq~v!1a2q
† ~v!#

5 i ~v1uquc!aq~0!1 i ~v2uquc!a2q
† ~0!

12uquc
v

V1
G1~q!(

k
O~k2q!@Ak~v!2A2k

† ~v!#

2 i
2uquc
V1

G1~q!(
k

O~k2q!@Ak~0!2A2k
† ~0!#

12uquc
v

V2
G2~q!(

k
O~k2q!@Bk~v!2B2k

† ~v!#

2 i
2uquc
V2

G2~q!(
k

O~k2q!@Bk~0!2B2k
† ~0!#.

~C6!

Substituting Eq.~C6! into Eqs. ~C2! and ~C3!, after a
straightforward calculation, we obtain two coupled equatio
for the Frenkel exciton operators:

(
k8

F ~v22V1
2!dkk82

2v2

V1
Fkk8

(1)
~v!G@Ak8~v!2A2k8

†
~v!#

5 i @~v1V1!Ak~0!2~v2V1!A2k
† ~0!#

12iv(
q

G1~q!O~q2k!F aq~0!

v2uquc
1

a2q
† ~0!

v1uqucG
22i

v

V1
(
k8

Fkk8
(1)

~v!@Ak8~0!2A2k8
†

~0!#

22i
v

V2
(
k8

Fkk8
(3)

~v!@Bk8~0!2B2k8
†

~0!#

1
2v2

V2
(
k8

Fkk8
(3)

~v!@Bk8~v!2B2k8
†

~v!# ~C7!

and
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(
k8

F ~v22V2
2!dk,k82

2v2

V2
Fkk8

(2)
~v!G@Bk8~v!2B2k8

†
~v!#

5 i @~v1V2!Bk~0!2~v2V2!B2k
† ~0!#

12iv(
q

G2~q!O~q2k!F aq~0!

v2uquc
1

a2q
† ~0!

v1uqucG
22i

v

V2
(
k8

Fkk8
(2)

~v!@Bk8~0!2B2k8
†

~0!#

22i
v

V1
(
k8

Fkk8
(3)

~v!@Ak8~0!2A2k8
†

~0!#

1
2v2

V1
(
k8

Fkk8
(3)

~v!@Ak8~v!2A2k8
†

~v!#, ~C8!

where only the initial photon operators and the exciton
erators are concerned. Three factors introduced in Eqs.~C7!
and ~C8! are

Fkk8
(1)

~v!5(
q

2uqucG1
2~q!O~q2k!O~k82q!

v22q2c2
,

Fkk8
(2)

~v!5(
q

2uqucG2
2~q!O~q2k!O~k82q!

v22q2c2
,

Fkk8
(3)

~v!5(
q

2uqucG1~q!G2~q!O~q2k!O~k82q!

v22q2c2
,

~C9!

which represent the overlap of exciton wave functions w
different wave vectors. We take the photon normalizat
volume V to be AL whereA is the area of the crystal slab
and place the slab at the middle of the volume. WhenL is
sufficiently large, the sum overq can be replaced by an in
tegral:(q•••→(L/2p)*2`

` dq•••. Thus

Fkk8
( i )

~v!52
NaV i f i

2

4pc2 E
2`

`

dq
O~q2k!O~k82q!

q22S v

c D 2 .

~C10!

By carrying out the integrations as in Ref. 17 the expli
expressions are
13430
-

n

t

Fkk8
( i )

~v!52
a fi

2V i

8Ncv F sin
k81 v/c

2
Na

sin
k81 v/c

2
a

ei k1v/c/2Na

sin
k1 v/c

2
a

2

sin
k82 v/c

2
Na

sin
k82 v/c

2
a

eik2 v/c/2Nat

sin
k2 v/c

2
a

1

sin
k2k8

2
Na

sin
k2k8

2
a

sin
v

c
a

sinS k1 v/c

2
aD sinS k2 v/c

2
aD G .

~C11!

WhenN→`, the first two terms tend to zero, thus

lim
N→`

Fkk8
( i )

~v!52
a fi

2V i

8cv

sin
v

c
a

sinS k1v/c

2
aD sinS k2v/c

2
aD dk,k8 .

~C12!

The above results will be used to determineaq(v)
2a2q

† (v) explicitly in Sec. V.
For the single-lattice layer case, ignoring the quant

noise terms proportional toaq(0) or a2q
† (0) induced by the

background light field, we obtain the coupled equations
the exciton operators:

Fv22V2
22

2v2

V2
F00

(2)~v!G@B0~v!2B0
†~v!#

5 i @~v1V2!B0~0!2~v2V2!B0
†~0!#22i

v

V2
F00

(2)~v!

3@B0~0!2B0
†~0!#22i

v

V1
F00

(3)~v!@A0~0!2A0
†~0!#

1
2v2

V1
F00

(3)~v!@A0~v!2A0
†~v!# ~C13!

and

Fv22V1
22

2v2

V1
F00

(1)~v!G@A0~v!2A0
†~v!#

5 i @~v1V1!A0~0!2~v2V1!A0
†~0!#22i

v

V1
F00

(1)~v!

3@A0~0!2A0
†~0!#22i

v

V2
F00

(3)~v!@B0~0!2B0
†~0!#

1
2v2

V2
F00

(3)~v!@B0~v!2B0
†~v!#. ~C14!
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These two equations lead to two decoupled equations,
~54! and ~55!, in Sec. V for A0(v)2A0

†(v) and B0(v)
2B0

†(v). The solutions of Eqs.~54! and ~55! are

A0~v!2A0
†~v!

5 i
v22V2

21 ih2v

z~v!
@~v1V1!A0~0!2~v2V1!A0

†~0!#

1
V3h3

z~v!
@~v1V2!B0~0!2~v2V2!B0

†~0!#

2
h1

z~v!
~v22V2

2!@A0~0!2A0
†~0!# ~C15!

and
ic

u

hy

.

13430
s.B0~v!2B0
†~v!

5 i
v22V1

21 ih1v

z~v!
@~v1V2!B0~0!2~v2V2!B0

†~0!#

1
V3h3

z~v!
@~v1V1!A0~0!2~v2V1!A0

†~0!#

2
h2

z~v!
~v22V1

2!@B0~0!2B0
†~0!#, ~C16!

wherez(v) is defined in Eq.~58!. The above two equation
determineaq(v)2a2q

† (v) and give the nonzero electri
field E(z,t) @Eq. ~65! in Sec. V#,

E~z,t !5E (1)~z,t !1H.c.,

for z2ct,0, where
E (1)~z,t !5Ap\V1h1

cA
@~v11V1!A0~0!1~v12V1!A0

†~0!#
~v1

22V2
2!e2 iv1(t2z/c)

~v12v2!~v12v3!~v12v4!

1Ap\V1h1

cA
@~v31V1!A0~0!1~v32V1!A0

†~0!#
~v3

22V2
2!e2 iv3(t2z/c)

~v32v1!~v32v2!~v32v4!

1Ap\V2h2

cA
@~v11V2!B0~0!1~v12V2!B0

†~0!#
~v1

22V1
2!e2 iv1(t2z/c)

~v12v2!~v12v3!~v12v4!
1

1Ap\V2h2

cA
@~v31V2!B0~0!1~v12V2!B0

†~0!#
~v3

22V1
2!e2 iv3(t2z/c)

~v32v1!~v32v2!~v32v4!
, ~C17!

wherev j , for j 51,2,3,4, are four roots of the characteristic equation of Eq.~57!. Equation~C17! shows that, in positivez
region, the electric field generated by the two-mode exciton is damped exponentially with two eigendecay ratesG1 andG2.
Unlike the results of Sec. IV, the corresponding eigenmodes, however, are two linear combinations of theA0 andB0 modes.
This is because we include non-RWA terms and MPP in the derivation of Eqs.~54! and ~55! in Sec. V.
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