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Bosonic excitations in random media

V. Gurarie* and J. T. Chalker
Department of Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 20 May 2003; published 15 October 2003!

We consider classical normal modes and noninteracting bosonic excitations in disordered systems. We
emphasize generic aspects of such problems and parallels with disordered, noninteracting systems of fermions,
and discuss in particular the relevance for bosonic excitations of symmetry classes known in the fermionic
context. We also stress important differences between bosonic and fermionic problems. One of these follows
from the fact that ground-state stability of a system requires all bosonic excitation energy levels to be positive,
while stability in systems of noninteracting fermions is ensured by the exclusion principle, whatever the
single-particle energies. As a consequence, simple models of uncorrelated disorder are less useful for bosonic
systems than for fermionic ones, and it is generally important to study the excitation spectrum in conjunction
with the problem of constructing a disorder-dependent ground state: we show how a mapping to an operator
with chiral symmetry provides a useful tool for doing this. A second difference involves the distinction for
bosonic systems between excitations which are Goldstone modes and those which are not. In the case of
Goldstone modes we review established results illustrating the fact that disorder decouples from excitations in
the low-frequency limit, above a critical dimensiondc , which in different circumstances takes the valuesdc

52 anddc50. For bosonic excitations which are not Goldstone modes, we argue that an excitation density
varying with frequency asr(v)}v4 is a universal feature in systems with ground states that depend on the
disorder realization. We illustrate our conclusions with extensive analytical and some numerical calculations
for a variety of models in one dimension.

DOI: 10.1103/PhysRevB.68.134207 PACS number~s!: 73.20.Fz, 63.50.1x, 75.30.Ds
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I. INTRODUCTION

Excitations in condensed-matter systems with quenc
disorder have been a subject of intense study during the
several decades. Historically, it has been fermionic exc
tions in random systems that have received most atten
The reason for this lies in part with the rapid developmen
experiments and theory involving mesoscopic conduct
where the effects of disorder in phase-coherent electron
tems have been studied in great detail.1

It is, however, also of considerable interest to study r
dom systems with bosonic excitations, and there is an ex
sive literature treating problems of this type, too. For
stance, the propagation of phonons in glasses and
electromagnetic waves in media with random refractive
dex has long been a subject of active research,2,3 and trap-
ping of light via scattering from disorder is a principle o
which random lasers are based.4 Other examples of bosoni
excitations in random systems include vibrations of pinn
elastic structures such as charge-density waves,5 magnons in
diluted antiferromagnets and spin glasses,6–12 and quasipar-
ticles in superfluid liquid helium permeating a poro
medium.13 To some extent, work on these problems has
cussed on specific features of individual examples, and g
less emphasis to generic aspects than has been the ca
disordered fermionic problems.

In this paper we emphasize just these generic aspects
examine the relationship between universality classes ide
fied for fermionic problems and models for bosonic exci
tions, as well as features that are specific to bosonic p
lems. We also survey some of the known features of boso
excitations in disordered systems. In addition, we develo
general framework for treating bosonic excitations. We u
0163-1829/2003/68~13!/134207~19!/$20.00 68 1342
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this for a detailed study of excitations in the one-dimensio
random-fieldXY model, calculating their density of state
and localization properties. We also outline how the gene
approach may be applied to other one-dimensional, r
domly pinned systems, and in higher dimensions. Some
our results have been presented in short form elsewhere14

Our discussion is organized as follows. In Sec. II we
view the symmetry classes established within random ma
theory for disordered fermionic systems. We recall in Sec.
the general form for a quadratic bosonic Hamiltonian and
Bogoliubov transformation required to diagonalize it, a
show how it is useful to introduce an auxilliary problem wi
structure similar to that in the chiral symmetry class. In S
IV we discuss how various particular systems with boso
excitations fit into this general framework. Here we emph
size the distinction between excitations that are Goldst
modes and those that are not. For Goldstone modes, ta
phonons and spin waves as examples, we summarize
they decouple from disorder at low frequencies above a c
cal dimension, and discuss behavior below the critical
mension. For excitations which are not Goldstone modes,
outline an established argument that leads to the re
r(v)}v4. Then, as an illustrative case, we consider t
random-fieldXY spin chain, using our formalism as the bas
for a numerical study of the discrete system, presented
Sec. V, and giving an analytical treatment of the continu
limit in Sec. VI, recovering in both instances the behav
r(v)}v4. In Sec. VII we apply the same formalism to th
random-field Heisenberg spin chain and some related
simpler models, which are of interest because disorder en
them in a more general way than for theXY model. Finally,
we summarize the relevant experimental situation in S
VIII and end with concluding remarks in Sec. IX.
©2003 The American Physical Society07-1
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II. SYMMETRIES AND DISORDER

To provide a context for our discussion of bosonic s
tems, we begin by setting out the symmetry classes that
recognized within random matrix theory for fermion
systems.15,16 Models of noninteracting quasiparticles play
important role in the study of fermionic excitations in diso
dered conductors, insulators, and superconductors. It
long been appreciated that the properties of these model
controlled by the discrete symmetries of the single-part
Hamiltonians. Originally three symmetry classes for rand
Hamiltonians were identified.17,18 One class consists of ran
dom Hamiltonians that have time-reversal invariance but
Kramers degeneracy. In an appropriate basis the Hamilto
H is real, so that

H5H* . ~1!

Random Hamiltonians which obey Eq.~1! appear, for ex-
ample, when studying disordered conductors without app
magnetic field. A second symmetry class consists of tim
reversal invariant random Hamiltonians for particles w
half-integer spin and hence Kramers degeneracy. In this
the time-reversal operation includes spin inversion, and
variance requires

H5s2H* s2 . ~2!

~Here and in the following,s i for i 51, 2, or 3 represent the
conventional Pauli matrices, acting on a subspace ident
by the context.! In order for Eq.~2! to be different in an
essential way from Eq.~1!, spin rotation invariance must b
broken. Thus this case is of relevance for disordered cond
tors with spin-orbit coupling. A third symmetry class aris
when the Hamiltonian has no discrete symmetries. Exam
of these symmetry classes are provided by the three Wig
Dyson random matrix ensembles.17,18

More recently, it has been recognized19–22 that there are
seven additional classes of disordered fermionic Hami
nians. These arise where there exists a special referenc
ergy ~taken to be zero in the following! for the system, and a
symmetry operation which relates eigenstates in pairs. Th
of these seven are referred to as chiral symmetry classes19–21

Hamiltonians for these classes can be put into the form

H5S 0 Q

Q† 0 D , ~3!

where Q is itself a matrix or an operator. They obey th
symmetry condition

H52s3Hs3 . ~4!

This ensures that energy levels of such Hamiltonians ap
in pairs 6E, since if c is an eigenfunction with energyE,
thens3c is an eigenfunction with energy2E. The symme-
try condition of Eq.~4!, when combined with either Eq.~1!,
or Eq.~2!, or neither, leads altogether to three chiral symm
try classes. Chiral Hamiltonians appear as tight-bind
models with only off-diagonal disorder21,23–26 and in the
problem of classical diffusion in a random medium.27,28
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The remaining four symmetry classes arise in the study
disordered superconductors with pairing treated in the me
field approximation. The Hamiltonian for such a problem h
the Bogoliubov–de Gennes structure

H5S h D

D† 2hTD , ~5!

where the kinetic termh is Hermitian, while the gap function
D is antisymmetric. This structure leads to another defin
symmetry condition,

H52s1H* s1 . ~6!

As for chiral Hamiltonians, the symmetry displayed in E
~6! ensures that energy levels of Bogoliubov–de Gen
Hamiltonians appear in pairs,6E. There are four symmetry
classes of such Hamiltonians, according to whether or
the system has time-reversal and spin-rotation symme
making the total count ten.

A consequence of the conditions specified in Eqs.~4! and
~6! is that statistical properties of energy levels and, in s
tially extended systems, the associated eigenfunctions,
quite different in these additional symmetry classes near z
energy, compared to properties far from zero energy, o
the Wigner-Dyson symmetry classes.22

It is natural to ask whether this classification can be
tended to problems involving noninteracting bosonic exc
tions or, equivalently, classical normal modes. At first sig
it might seem that quasiparticle statistics are unimportant
noninteracting system. In one crucial respect, however,
is untrue, since stability of a system requires bosonic exc
tion energies to be positive, while for fermionic excitatio
stability is guaranteed by the Pauli exclusion principle, wh
ever the single-particle energy levels. This has two impli
tions. First, energy zero emerges as a special point in
spectrum of bosonic systems, as it does for the additio
fermionic symmetry classes discussed above. And sec
one anticipates that matrix elements of bosonic Hamiltoni
for random systems will have specific correlations, whi
ensure positivity of the spectrum. Thus, while the most g
eral form for a quadratic bosonic Hamiltonian@see Eq.~7!
below# is superficially similar to the Bogoliubov–de Genn
Hamiltonian, and while normal mode frequencies, like t
eigenvalues of Eq.~5!, appear in pairs6v, matrix elements
must satisfy constraints in order that frequencies are r
Such a requirement is in stark contrast with the assumpt
of statistical independence used in the construction of r
dom matrix ensembles for fermionic systems. To stress
significance of this point, imagine a treatment of a dis
dered, interacting system which proceeds in two stages
first finding the ground state and then calculating excitat
energies within a harmonic approximation. The spirit of ra
dom matrix theory for fermionic systems is to divorce the
two stages and approach the second one phenomenologi
choosing statistically independent matrix elements. By c
trast, for bosonic systems it is clear that the two stages c
not be completely separated. Indeed, whereas for ran
matrix theory universal spectral properties follow large
from symmetry and are independent of the details of
7-2
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BOSONIC EXCITATIONS IN RANDOM MEDIA PHYSICAL REVIEW B68, 134207 ~2003!
matrix element distribution, we argue here that for boso
excitations which are not Goldsone modes it is the requ
ments of stability and the ensuing correlations in the Ham
tonian for excitations that give rise to universal spect
properties.

III. BOSONIC HAMILTONIANS

In this section we discuss the most general form
bosonic Hamiltonians and summarize the diagonaliza
procedure, following standard lines~see, for example, Ref
29!. We also emphasize the distinction between oscilla
frequencies and stiffnesses. Finally, we show for oscillati
about a stable ground state that it is natural to rewrite
Hamiltonian in terms of a chiral matrix.

A. Stiffnesses and frequencies

The most general bosonic Hamiltonian can be written
the equivalent forms

H5
1

2 (
i , j 51

N

@Mi j pipj1Ki j qiqj12Ci j qipj #

[
1

2 ~p q! S M C

CT K D S p

qD
[

1

2 ~a† a! S G D

D† GTD S a

a†D . ~7!

Here,qi and pi are the coordinates and momenta of the
cillators, andai

† ,ai5(qi6 ipi)/A2 are bosonic creation an
annihilation operators. The matricesM and K are real and
symmetric, whileC is an arbitrary real matrix. Equivalently
G is Hermitian, whileD is symmetric. Physically,M is the
inverse mass matrix of the oscillators,K is the matrix of
spring constants, and couplings of the type represented bC
occur, for example, in spin systems. It is convenient to de
the 2N32N symmetric matrix

H5S M C

CT K D . ~8!

Two classes of system may be distinguished: those w
time-reversal symmetry (C50), and those without (C
Þ0).

We are interested in frequencies of oscillators descri
by Eq. ~7!. From Hamilton’s equations of motion it follow
that these frequencies are eigenvalues of the non-Herm
matrix

H85S 2 iCT 2 iK

iM iC D[s2H. ~9!

They are real if the system is stable, in which caseH is
bounded from below, the eigenvalues ofH are positive, and
we can writeH5QTQ with Q real. In these terms, to find
frequencies we need to diagonalize the matrixs2QTQ, but
its eigenvalues coincide with those of another matrix
13420
c
-

l-
l

r
n

r
s
e

n

-

e

th

d

an

V5Qs2QT, ~10!

which is explicitly Hermitian and, moreover, antisymmetri
so that frequencies come in pairs6v i , with i 51, . . . ,N.

If V is interpreted as a random Hamiltonian, then acco
ing to the classification scheme discussed in Sec. II it
longs to one of the Bogoliubov–de Gennes classes~more
precisely, to classD, see Ref. 22!. While this is indeed an
indication that random oscillators behave in many ways l
random fermionic Hamiltonians from one of the addition
symmetry classes~having frequencies in pairs, withv50 as
a special point in the spectrum!, the identification ofV as
classD operator is not by itself necessarily helpful sinceV
does not have statistically independent matrix elements,
rather is constrained to have the form given in Eq.~10!.
Instead, we shall see that a link to matrices wih chiral sy
metry proves more useful.

The computation of oscillator frequencies can equiv
lently be described as a Bogoliubov transformation for co
dinates and momenta, specified by real matricesg that obey

s25gs2gT ~11!

and transformH to gHgT. DiagonalizingH using this trans-
formation, the HamiltonianH of Eq. ~7! takes the form

H5(
i

uv i uai
†ai . ~12!

In addition to the frequencies, obtained as eigenvalue
V or by Bogoliubov transformation ofH, the eigenvalues of
H also have physical significance, for example as inve
static susceptibilities. We refer to them asstiffnesses, denot-
ing them byk i , i 51, . . . ,2N. In general, there is no simpl
relationship between stiffnesses and frequencies, but sev
special cases provide important exceptions, as follows. C
sider firstH with C50 andM51, representing oscillations
of particles, all with unit mass, connected by springs w
spring constantsKi j . In this example, half of all the stiff-
nesses are equal to 1, while the other half are the eigenva
k i of the matrixK; the frequencies and stiffnesses are rela
by

v i56Ak i . ~13!

A second special case arises for magnon excitations
weakly disordered ferromagnets, which have a Hamilton
of the form of Eq.~7! with M5K andC50. In that case, the
stiffnesses are the eigenvalues ofM and K, and come in
identical pairs. The frequencies are simply

v i56k i . ~14!

A final and important special case occurs when one stiffne
say k1, is much smaller than all others. In this regime,
approximate relation exists between the smallest freque
and the smallest stiffness:

v1}6Ak1. ~15!

To derive this relation, a more detailed analysis of t
structure ofH andV is required. SinceH is a real symmet-
ric matrix with positive eigenvalues, it can in general
represented as

H5UL2UT, ~16!
7-3
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V. GURARIE AND J. T. CHALKER PHYSICAL REVIEW B68, 134207 ~2003!
whereU is an orthogonal matrix andL i j 5l id i j is the diag-
onal matrix whose eigenvalues are square roots of the ei
values ofH. The corresponding matrixV can be written as

V5LUTs2UL. ~17!

Introducing an antisymmetric matrixA5UTs2U, we have

V i j 5l iAi j l j . ~18!

Suppose initially that one of the stiffnesses vanishes, so
l150. Then at least one frequency must vanish as w
since detV5detH. In fact, becauseV is antisymmetric and
its frequencies come in opposite pairs, two frequencies
zero. The mathematical mechanism for this is clear from
~18!. First, sinceV1i5V i150 for all i, one of the eigenval-
ues ofV is v150, with an eigenvectorc i

(1)5d1i . Second,
all other eigenvalues can be found by diagonalizing a sma
matrix V i j8 where 2< i , j <2N. But V8 is an odd-
dimensional antisymmetric matrix, and therefore has at le
one zero eigenvaluev2 with an associated normalized eige
vector which we write asc i

(2) , wherec1
(2)50. Now treat

small nonzerol1 using perturbation theory about this limi
with l1[e. The change inV is

dV i j 5e~d1iAi j l j1l iAi j d1 j !~12d1id1 j !. ~19!

Under this perturbation, the doubly degenerate eigenva
v50 of V splits into6v1, determined by diagonalizing th
232 matrix

eS 0 (
i 52

2N

A1il ic i
(2)

2(
i 52

2N

A1il ic i
(2) 0

D . ~20!

Hence

v156l1U(
i 52

2N

A1il ic i
(2)U}6Ak1 ~21!

barring an accidental vanishing of the matrix eleme
( i 52

2N A1il ic i
(2) .

The usefulness of this result lies in the following. Co
sider a random system with bosonic excitations that are
calized with a finite localization length at low frequency, a
let the density of stiffnesses bed(k). We expect that each
localization volume can be treated as an independent sys
and that each low-frequency excitation will have a frequen
much smaller than that of other excitations in its own loc
ization volume, and will therefore be associated with a sin
small stiffness. Applying Eq.~15!, the density of excitation
frequenciesr(v) for small v is

r~v!5d~v2!v. ~22!

One interesting check of these conclusions is provided
random matrix theory. Consider an ensemble of real rand
matricesQ, with size N@1 and probability distributionP
}exp(2QTQ). Let D be the typical magnitude of the eigen
value of H5QTQ closest to zero. ForH generated in this
13420
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way, one findsd(k)}k21/2 at bothk!D andk@D. Com-
puting the eigenvalue density ofV5Qs2QT using superin-
tegrals, one finds that30 r(v) is independent ofv for v
!D, while r(v)}v21/3 for v@D. It is clear that in the
regime v!D, Eq. ~22! is indeed applicable, while in the
opposite regime it breaks down.

B. Chiral symmetry

To study stiffnesses of bosonic oscillators withH
5QTQ, it is advantageous to introduceH̃, an auxiliary ma-
trix in which Q andQT enter linearly.

H̃5S 0 Q

QT 0 D . ~23!

Obviously, the eigenvaluesl i of H̃ are square roots of the
stiffnessesk i of H, and the matrixH̃ plays the role of the
square root of the original bosonic HamiltonianH. On the
other hand, the off-diagonal structure ofH̃ is the defining
feature of the chiral symmetry class, discussed in Sec
While the direct implications of this connection are limite
because the elements ofQ are not independent random var
ables as would be the case in a random matrix ensem
techniques originally developed for systems in this symme
class will prove useful in our treatment of one-dimension
systems, as we describe in Sec. V and Sec. VI.

To study the frequencies of the oscillators, as oppose
their stiffnesses, a second auxiliary matrix

H̃85S 0 Q

s2QT 0 D ~24!

is helpful. We shall call matrices with this structurechiral

bosonic matrices. The eigenvalue equation forH̃8 can be
written in the form

S 0 Q

QT 0 Dc5S 1 0

0 s2
DAvc, ~25!

which of course inherits its structure from Hamilton’s equ
tions.

The main difficulty in making use of these ideas is that,
practice, onlyH is known initially and a method must b
developed to findQ. Moreover,Q is defined only up to a left
multiplication by an arbitrary orthogonal matrix. For the in
troduction ofQ to be helpful, it will be important that it can
be chosen to have a simple form, with, for example, o
short range couplings. We shall show that this is indeed p
sible for a variety of problems.

IV. BOSONIC EXCITATIONS: GENERAL ASPECTS

It is a feature of models for disordered fermionic syste
from the chiral and Bogoliubov–de Gennes symme
classes that their characteristic behavior appears only clos
the reference energy, identified by the discrete symmetry
the Hamiltonian, while spectral properties at energies
from this are indistinguishable from those of the Wigne
7-4
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BOSONIC EXCITATIONS IN RANDOM MEDIA PHYSICAL REVIEW B68, 134207 ~2003!
Dyson classes. In a similar way, for bosonic excitations
disordered systems we expect it to be properties at low
quency that that are of particular interest. Examples of s
excitations can be divided into two categories, according
whether or not they are Goldstone modes, associated w
broken continuous symmetry. In this section we summa
for each of these categories some of the previously es
lished results. We also illustrate the introduction of a chi
HamiltonianH̃ for a one-dimensional phonon model.

A. Goldstone modes

1. General aspects

Important instances of Goldstone modes in disorde
systems include acoustic phonons in glasses and alloy2,3

and spin waves6–12 in dilute ferromagnets and antiferroma
nets, and spin glasses, which in each case are isotrop
spin space. In disorder-free versions of these systems,
frequency excitations have long wavelength and are
scribed by equations of motion that involve macrosco
properties of the system: density, elastic constants, magn
susceptibility, and spin stiffness. Disorder introduces lo
fluctuations in the values of these quantities, but one exp
excitations to couple only to fluctuations averaged ove
volume with linear dimensions set by a wavelength. Beca
of this, randomness only weakly affects low-frequency Go
stone modes, especially in higher dimensions for which
averaging is most effective. Such averaging is demonstr
by the low-frequency behavior of the excitation dens
r(v), which above a critical dimensiondc varies with the
same power ofv as in the disorder-free system. It is als
shown by localization properties of excitations: in one- a
two-dimensional systems, the localization lengthj(v) di-
verges asv approaches zero, while in higher-dimension
systems, all low-frequency states are extended. In this
section we review the behaviors ofr(v) and j(v) for
phonons in alloys and for spin waves in diluted antifer
magnets and spin glasses, considering the effect of w
disorder included in the relevant equation of motion. We a
use the Hamiltonian for phonons in a one-dimensional dis
dered system as an illustration of the general mapping
chiral models, introduced in Sec. III B.

Consider first a scalar version of a model for acous
phonons, in which a mode with frequencyv has coordinate
q(r ) satisfying

v2q~r !52c2¹2q~r !. ~26!

Suppose that the speed of soundc has random fluctuations in
space, about an average valuec0, with only short-range cor-
relations. Work on this and related problems is reviewed
Ref. 3, and an early treatment of localization in this cont
was given in Ref. 2. The essentials for our purposes ar
follows. First, the fluctuations inc, averaged over a
d-dimensional volume of size set by the wavelength in
disorder-free system, decrease compared toc0 with decreas-
ing frequency asvd/2. Thus in this case the critical dimen
sion is dc50, and for anyd.dc the excitation density ap
proaches the form found without disorder at low frequen
13420
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Moreover, from a calculation using the Born approximatio
the Rayleigh scattering ratet21 varies ast21}vd11. ~This
dependence combines a factor ofv2 from the frequency de-
pendence of coupling to disorder, and a factor ofvd21 from
the density of final states for scattering processes!. In one
dimension, disorder localizes with a localization length p
portional to the mean-free path, which here isc0t, and so2

j~v!}v22. ~27!

In two dimensions it is a familiar feature of electronic sy
tems that the localization length is exponentially large inkFl
~wherekF is the Fermi wave vector andl is the mean-free
path!: the equivalent parameter for the phonon problem
vt, so that2

j~v!}exp~@v0 /v#2!, ~28!

wherev0 is a disorder-strength dependent constant.
These results contrast interestingly with those for an a

ferromagnet which has randomness generated either by
dilution ~taken small enough that the system is above
percolation threshold! or by substitution of impurity spins
with a magnetic moment different from that of the ho
spins.6,11 In a discussion of the random antiferromagnet, it
useful to begin from the dispersion relation for spin waves
a two-sublatticeferrimagnetwithout disorder. At small wave
vectork, this has the form

v21~Ma2Mb!v5c2k2, ~29!

whereMa2Mb is proportional to the difference between th
two sublattice magnetic moments, which are taken to be
positely aligned. SettingMa5Mb , one recovers the usua
dispersion relation in an antiferromagnet, with spin-wa
speedc. For the random antiferromagnet, independent dis
der on the two sublattices generates random fluctuation
the local value ofMa2Mb about a mean value of zero
Averaging these fluctuations over a volume of size set by
wavelength in the undiluted system gives a random varia
with an amplitude that scales asvd/2. Because of this, disor
der appears in Eq.~29! via the term (Ma2Mb)v, which
scales asvd/211. Above the critical dimensiondc52, disor-
der is irrelevant in the sense that this term may be be
glected for smallv compared tov2. The value of the critical
dimension is also apparent from a Born approximation c
culation of the rate for scattering of spin waves by disorde11

which yieldst21}vd21. Because of this, spin waves have
well-defined wave vector in the low-frequency limit ford
.dc , sincevt→` asv→0. Applying this approach below
the critical dimension, ford,dc we see that Eq.~29! deter-
mines a relation between the length scale of an excitat
which we denote by 1/k, and its frequency

kd/2v}k2 ~30!

at smallv. This implies ford51,

r~v!}v21/3 ~31!

and
7-5
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j~v!}v22/3. ~32!

We expect all these results for low-frequency behavior to
characteristic not only of disordered antiferromagnets,
also of spin glasses, since the two systems have in com
the crucial feature of a magnetization density that is loca
nonzero and random, but has zero average. A detailed t
ment of excitations in spin glasses, however, is much m
difficult than in weakly disordered antiferromagnets, beca
for spin glasses the ground state is generally disord
dependent and unknown. Instead, the established approa
a hydrodynamic one,8,10 which leads to linearly dispersin
modes with a speed determined by the macroscopic
stiffness and susceptibility. In the light of our discussion,
expect these hydrodynamic results to be correct ford.dc .
By contrast, for one-dimensional systems, microscopic
culations are possible since frustration is absent and gro
states can be determined. Results from computations31 in
one-dimensional models ofr(v) and j(v) coincide with
Eqs.~31! and~32!, above. Similar calculations are also po
sible in higher dimensions for the Mattis model, whic
shares with one-dimensional models the features that fru
tion is absent and the ground state is known for each diso
configuration. Ind52 these yieldr(v)}vu ln(v)u, where the
logarithm is characteristic of behavior at a critical dimensio
and ind53 they giver(v)}v2, in agreement with hydro-
dynamic theory.32 A discussion of excitations in the Matti
model, building on the methods described in this paper,
be presented elsewhere.33

Spin waves have also been investigated34 in the infinite-
range Heisenberg spin glass: one of the main findings
density of states that varies with frequency asr(v)}v3/2.
We have not been able to make contact between this re
and the approaches described here.

2. An example: Phonons in one dimension

As a next step, it is interesting to return to acous
phonons in disordered systems and use the one-dimens
version of this problem to illustrate some of the methods
out in Sec. III. In fact, in this context the mapping to a chir
problem was exploited in celebrated early work by Dyson35

and also in calculations by Ziman.25 Consider a one-
dimensional chain of particles with massesmi , connected by
nearest-neighbor springs with spring constantski , wheremi
andki are random and positive. Letpi andqi be the momen-
tum and displacement of thei th particle. The Hamiltonian is

H5(
i

F pi
2

2mi
1

ki

2
~qi2qi 21!2G . ~33!

It is convenient to make the canonical transformationpi

→Amipi andqi→qi /Ami , giving

H5(
i

F pi
2

2
1

ki

2 S qi

Ami

2
qi 21

Ami 21
D 2G , ~34!

which is a particular case of the general bosonic Hamilton
Eq. ~7!, in which M51 andC50, so that eigenfrequencie
are related to stiffnessesk that are eigenvalues of the matr
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K, as in Eq.~13!. Further discussion is easier in the co
tinuum limit: replacing the indexi with a continuous coordi-
natex, the Hamiltonian becomes

H5E dxF p2~x!

2
1

k~x!

2 S d

dxF q~x!

Am~x!
G D 2G . ~35!

To find the stiffnesses, one must solve the eigenvalue eq
tion Kq(x)5kq(x) with

Kq~x!52
1

Am~x!

d

dx
k~x!

d

dx

q~x!

Am~x!
. ~36!

Note that the operatorK must be positive definite, in orde
that the chain is stable. And indeed, defininga(x)5Ak(x)
andb(x)51/Am(x), it may be expressed as a square, in
form K5QTQ with Q5a(x)(d/dx)b(x). Introducing a chi-
ral Hamiltonian, as in Eq.~23!, we then have

S 0 a~x!
d

dx
b~x!

2b~x!
d

dx
a~x! 0

D c5vc. ~37!

At the equivalent point in his treatment, Dyson distinguish
between different possible choices for the form of disord
In one case, termedtype I, Eq. ~37! is effectively replaced by
Eq. ~75! below ~with ^V(x)&50), leading to the singularity
of Eq. ~61! in r(v). An alternative, termedtype II, retains
instead Eq.~37! with only short-range correlations ina(x)
andb(x), representing disorder that couples only weakly
small k, because it is multiplied by spatial derivatives. Th
yields25 a constantr(v) at smallv, in agreement with the
general arguments set out following Eq.~26!. Ziman25 has
given a detailed discussion in this context of the con
quences of different types of disorder.36

B. Non-Goldstone low-energy excitations

Without Goldstone modes, the very existence of the lo
lying excitations on which we have focussed our attention
not guaranteed. In fact, as seems first to have been app
ated in the context of atomic vibrations in glasses,37,38 disor-
der itself may provide a route to a gapless spectrum. T
essential ingredients are that the ground state should de
on the disorder realization, and that excitations at lo
frequency should be localized by disorder. Then it is reas
able to consider excitations within each localization volum
separately, and to expect disorder configurations that sup
low frequency excitations to occur with finite probabilit
Roughly speaking, these excitations occur in regions wh
the ground-state configuration is unusually sensitive to sm
changes in the disorder. In this section we summarize
established approach to this phenomenon of disord
generated low-frequency excitations, which concentrates
a single coordinate and its conjugate momentum. In sub
quent sections we apply the formalism developed in this
per to study the phenomenon more generally.
7-6
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Following Il’in, Karpov, and Parshin,37,38 consider a one-
dimensional anharmonic oscillator with momentump, mass
m, coordinateq, and potentialU(q). The Hamiltonian is

H5
p2

2m
1U~q!. ~38!

ChoosingU(q) to be a smooth random function, we wish
study the frequency of small-amplitude oscillations about
absolute minimum inU(q) and, specifically, the probability
distribution of this frequency. To give a more precise me
ing to the notion of a smooth random function, we expan
in Taylor series

U~q!5 (
n51

`

an

qn

n!
, ~39!

where, to fix the zero of energy, we setU(0)50. We take
the an to be random with joint probability distribution
P(a1 ,a2 , . . . ). Weshall assume thatP(a1 ,a2 , . . . ) is free
of zeros and divergences, but its detailed form will not
important.

Suppose thatU(q) has a minimum atq5q0. In order to
discuss excitations of the oscillator, we first Taylor expa
U(q) aroundq5q0, writing

U~q!5 (
n52

`

bnS ~q2q0!n

n!
2

~2q0!n

n! D . ~40!

The probability distribution of the coefficientsbn is related
to that for thean by

P~q0 ,b2 ,b3 , . . . !

5Udet
]~a1 ,a2 ,a3 , . . . !

]~q0 ,b2 ,b3 , . . . !
UP~a1 ,a2 ,a3 , . . . !.

Evaluating the Jacobian,39 one finds

P~q0 ,b2 ,b3 , . . . !5ub2uP~a1 ,a2 ,a3 , . . . !. ~41!

The probability distribution ofb2, the curvature of the po
tential U(q) at a turning point, is hence

P~b2!5ub2u E dq0db3db4•••P~a1 ,a2 ,a3 , . . . !. ~42!

Under the assumption thatP(a1 ,a2 , . . . ) is free of zeros
and divergences, this integral remains finite asb2→0, and so
for small b2 we haveP(b2)}b2.

Small amplitude oscillations aboutq0 have a frequency
v}Ab2, and it then follows that the probability distributio
of these oscillation frequencies varies for smallv as

r~v!}v3. ~43!

It is a further restriction to demand that a minimum atq0
is the global minimum of U(q). A full treatment of this
constraint would be difficult but is fortunately not necessa
the crucial condition is thatU(q) should have no nearb
minima deeper than the one atq0. For that it is sufficient to
truncate the expansion
13420
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U~q!5U~q0!1
b2

2
~q2q0!21

b3

6
~q2q0!31

b4

24
~q2q0!4

1••• ~44!

at O(q2q0)4. After truncation, we requireub3u,A3b2b4 in
order thatU(q0)<U(q) for all q. This further suppresses th
probability density for small curvatures, giving

P~b2!

5b2E dq0db4•••E
2A3b2b4

A3b2b4
db3 P~a1 ,a2 , . . . !}b2

3/2.

In turn, this brings the frequency distribution at smallv to
the form

r~v!}v4. ~45!

One expects that the result of including higher-order term
Eq. ~44!, and of ensuring that no more distant minima a
lower than the one atq0, will be to change the constant o
proportionality but not the power in Eq.~45!.

A question arises in an application of these ideas to s
tems with slow relaxation, such as glasses, which are
likely to reach their ground-state in experimental time
should excitations be described by the ground state re
Eq. ~45!, or by the result for local energy minima, Eq.~43!?
In fact, one expects that the ground-state result should
apply to metastable low-temperature states, because it
pends mainly on excluding local minima which are close t
deeper neighboring minimum. Such pairs of minima are
likely to be separated by large energy barriers and relaxa
between them will presumably be fast.

Clearly, a serious limitation of this discussion is that it
restricted to a system with a single coordinate and conjug
momentum. As with our closely related discussion of rand
matrices, preceding Eq.~22!, we expect the result to appl
quite generally, provided excitations are localized with a
nite localization length at low frequency. In these circum
stances, the coordinateq is interpreted as being the releva
degree of freedom for a low-frequency excitation within
localization volume. One of our objectives in Sec. V and S
VI is to provide detailed evidence for the more general r
evance of Eq.~45!. similar behavior has also been report
recently in numerical studies of a three-dimensional mo
of coupled anharmonic oscillators, described in Ref. 40.

V. DISCRETE ONE-DIMENSIONAL
RANDOM-FIELD XY MODEL

In this section and Sec. VI we study the excitations of t
one-dimensional, classicalXY spin chain in a random field
This model provides a simple but nontrivial example of
system with bosonic excitations which are not Goldsto
modes, and has been discussed previously in Refs. 41
42. In what follows we apply the general approach describ
in Sec. III. First, we set out definitions and write down th
HamiltonianH for small amplitude excitations. Second, w
find a localQ which satisfiesH5QTQ. As a result, we map
7-7
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V. GURARIE AND J. T. CHALKER PHYSICAL REVIEW B68, 134207 ~2003!
our problem onto a well-known one, involving a on
dimensional chiral Hamiltonian. We next review establish
results for such one-dimensional chiral Hamiltonians, wh
can be in one of two regimes, depending on the details
their disorder distribution. We use the mapping to obt
r(v) both numerically, and~in Sec. VI! analytically.

A. Definitions

The Hamiltonian for the random-fieldXY spin chain is

H5
1

2 (
i 51

N

P i
22(

i
cos~f i2f i 11!2(

i
hicos~f i2x i !.

~46!

Here P i are momenta conjugate to the spin anglesf i , ex-
change energy is represented by2cos(fi2fi11), andhi and
x i are the amplitude and phase of a random field. It is c
venient to introduce the notationI (f)[2cos(f) and
hi(f)[2hicos(f2xi).

While the kinetic energy is quadratic in the momentaP i ,
the potential energy is strongly anharmonic in the coor
natesf i . We want to find the ground-state spin configurati
f i

0 and the frequencies of oscillations about that grou
state. The ground state configuration satisfies

]H

]f i
uf5f050. ~47!

ExpandingH aboutf i
0 to quadratic order, Eq.~46! reduces

to an expression of the general form given in Eq.~7!, and
specified by the matricesC, M, andK. In this case,C50 and
M51. The symmetric matrix of spring constants,Ki j
5]2H/]f i]f j uf5f0, is tridiagonal, with nonzero entries

Kii 5]f
2 I ~f i

02f i 21
0 !1]f

2 I ~f i
02f i 11

0 !1]f
2 hi~f i !

~48!

and

Ki ,i 115Ki 11,i52]f
2 I ~f i

02f i 11
0 !. ~49!

As discussed in Sec. III, withM, C, andK of this form, the
excitation frequencies of the system arev i56Ak i , where
the stiffnessesk i are the eigenvalues ofK. Our tasks, then,
are the linked ones of determiningf i

0 and diagonalizingK.

B. Mapping onto a chiral problem

SinceKi j is a real positive matrix, it can be written as th
square of another real matrixQ, in the formK5QTQ. Our
strategy is to findQ and then study the related chiral Ham
tonian

H̃5S 0 Q

QT 0 D . ~50!

As the frequencies coincide with the square roots of the
genvalues ofK, we will usev to denote the eigenvalues o
H̃ in this and the following section.
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BecauseK is tridiagonal, the matrixQ can be chosen
bidiagonal, with nonzero elementsQii [Ai and Qi ,i 21
[2Bi 21 which satisfy

Kii 5Ai
21Bi

2 , Ki ,i 1152Ai 11Bi . ~51!

To show this and findAi andBi , it is helpful to use the idea
of a partial energy, first introduced in this context b
Feigelman:43 Ei(f i) is defined to be the ground-state ener
of a subsystem which consists of sitesj < i , considered as a
function of the orientation of the boundary spin,f i . For-
mally,

Ei~f i !5 min
f j , j , i

(
j , i

@ I ~f j2f j 11!1hj~f j !#1hi~f i !.

~52!

It satisfies the recursion relation

Ei~f!5min
c

@ I ~f2c!1Ei 21~c!#1hi~f!. ~53!

Now let the value ofc which results from the minimization
in Eq. ~53! bec0(f), and definef i 21 as a function off i by
f i 21(f i)[c0(f i). With this notation, the condition that th
right side of Eq.~53! is at a minimum takes the form

2]fI ~f i2f i 21!1]fEi 21~f i 21!50. ~54!

By differentiating Eq.~54! with respect tof i , remembering
that f i 21 is a function off i in the sense described abov
we find

df i 21

df i
5

]f
2 I ~f i2f i 21!

]f
2 I ~f i2f i 21!1]2Ei 21~f i 21!

. ~55!

In addition, we differentiate Eq.~53! twice with respect to
f i , again remembering thatf i 21 is a function off i , to find

]f
2 hi~f i !5]f

2 Ei~f i !2]f
2 I ~f i2f i 21!

3
]f

2 Ei 21~f i 21!

]f
2 I ~f i2f i 21!1]2Ei 21~f i 21!

. ~56!

This allows us to solve Eqs.~48!, ~49!, and~51!, obtaining

Ai
25

@]f
2 I ~f i

02f i 21
0 !#2

]f
2 I ~f i

02f i 21
0 !1]f

2 Ei 21~f i 21
0 !

~57!

and

Bi
25]f

2 I ~f i 11
0 2f i

0!1]f
2 Ei~f i

0!, ~58!

which completes the derivation ofQ.
Let us examine the chiral HamiltonianH̃, Eq. ~50!. By

rearranging its rows and columns it can be put into the fo
7-8
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BOSONIC EXCITATIONS IN RANDOM MEDIA PHYSICAL REVIEW B68, 134207 ~2003!
H̃51
0 B1 0 0 0 ••• 0 0

B1 0 A2 0 0 ••• 0 0

0 A2 0 B2 0 ••• 0 0

0 0 B2 0 A3 ••• 0 0

0 0 0 A3 0 ••• 0 0

••• ••• ••• ••• ••• ••• ••• •••

0 0 0 0 0 ••• 0 BN

0 0 0 0 0 ••• BN 0

2 ,

~59!

which is familiar as a one-dimensional tight-binding mod
with only off-diagonal disorder,24,26and is also referred to a
a random chiral one-dimensional Hamiltonian.

C. Established results for one-dimensional chiral problems
and implications for XY model

There has been extensive previous work on o
dimensional models of the type represented by Eq.~59!, with
disorder in theAi andBi which is uncorrelated and chosen
have a simple, known distribution. The results serve a
guide for our calculations, and we summarize them he
Parameterize the matrix elementsAi andBi as

Ai511a1dAi , Bi512a1dBi ~60!

and takedAi and dBi to be independent Gaussian rando
variables with zero mean and standard deviations. Behavior
at smallv is very different according to whether or nota is
zero.

For a50 and v!s, the density of states has
singularity24 at v50 of a type first obtained in a relate
problem by Dyson,

r~v!}
1

vu log3vu
, ~61!

and the localization length of these states diverges fov
→0 as

j~v!5u ln~v!u. ~62!

By contrast, foraÞ0 ~sometimes referred to as the stagge
regime26! the density of states varies as23

r~v!}vb, v!a, ~63!

with a powerb that depends ona and s. The localization
length is finite in the smallv limit, and varies for smalla as
j}uau21.

While the Ai and Bi which arise in our treatment of th
XY model have specific correlations not present in the ch
problems studied previously, some comparisons are us
In particular, considering for simplicity weak disorder,hi
!1, the system arising from theXY model turns out to be in
the staggered regime. To see this, note that for weak diso
uf i

02f i 21
0 u!1, so that]f

2 I (f i
02f i 21

0 ).1,

Ai'12 1
2 ]f

2 Ei 21~f i 21
0 !, Bi'11 1

2 ]f
2 Ei~f i

0! ~64!
13420
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and hencea5^]f
2 E&/2. We argue in Sec. VI that̂]f

2 E&.0.
We therefore expect low-frequency states to be locali
with localization lengthj}^]f

2 E&21, and with a power-law
density, as in Eq.~63!. Quite separately, if states are loca
ized, the assumptions that led to resultr(v)}v4 in Sec. IV
are justified, and so we expect the exponentb54. We post-
pone further analytical work to Sec. VI, and first treat t
problem numerically.

D. Numerical study of the one-dimensional random-field
XY model

Our numerical procedure involves several steps. First,
a system of lengthL, we construct the functionEi(f) for
each i by iterating Eq.~53! from i 51 to i 5L. Then we
determinef i

0 , iterating fromi 5L to i 51 and using the fact
that for eachf i

0 , f i 21
0 minimizes the right-hand side of Eq

~53!. Knowing the ground-state spin configuration, we co
pute the matrix elements appearing in the chiral Hamilton
Eq. ~59!, using Eqs.~57! and ~58!. Finally, we employ the
transfer-matrix technique developed specifically for su
Hamiltonians in Ref. 24 to find the integrated density
states. For the random field we choose a uniform distribut
of @hicos(xi),hisin(xi)# over a disk of radiusD, independently
for each i. We find that it is sufficient for each disorde
strengthD to study a single realization in a system of leng
L5106.

Our results for the integrated density of stiffness
N(v)5*0

vdv8r(v8), are shown in Fig. 1. Behavior at larg
v approaches that in the disorder-free system, as indica
At small v we expect the power law

N~v!}v (b11). ~65!

This form and also the valueb54 are both already apparen
in Fig. 1, as was also the case, at lower precision, in ea
numerical results of Fogler42 for much shorter chains. It is
more instructive, however, to observe that for a power-l
density, dimensional analysis fixes the dependence on d

FIG. 1. The integrated densityN(v) plotted as a function of
frequencyv using logarithmic scales. Dashed, dotted, and d
dashed lines represent disorder strengthsD50.3, 0.1, and 0.01,
respectively. For all three cases, the integrated density converg
largev to that of the disorder-free system, represented by the
line which has gradient 1.
7-9
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V. GURARIE AND J. T. CHALKER PHYSICAL REVIEW B68, 134207 ~2003!
der strengthD to be r(v)}D22b/3vb. In Fig. 2 we plot
D8/3N(v) as a function ofv, showing collapse of data a
smallv for three different disorder strengths, and power-l
behavior withb54.

We conclude that, while the exponentb appearing in the
density of states is, for a generic chiral problem, disor
dependent and hence nonuniversal, the particular diso
generated in the mapping from the random spin chain,
lowing Eqs.~53!, ~57!, and ~58!, has a specific distribution
and the correlations necessary to produce a universal de
of states,r(v)}v4. In the following section we present th
analytic derivation of this result.

VI. ANALYTIC TREATMENT OF THE RANDOM-FIELD
XY MODEL IN THE CONTINUUM LIMIT

In this section we continue our examination of excitatio
in the one-dimensional random-fieldXY model, using the
continuum limit to make analytic progress. We find both t
localization length as a function of disorder strength and
density of states as a function of frequency, confirming h
ristic arguments and numerical results given above.

A. Mapping to a chiral problem

The continuum limit of the random-fieldXY spin chain is
reached at weak disorder,hi!1. In this limit it is possible to
replace the discrete indexi with a continuous variablex, and
the Hamiltonian of Eq.~46! becomes

H5E dxF1

2
P21

1

2
~]xf!1h@f~x!,x#G , ~66!

with h@f(x),x#52h(x)cos@f(x)2x(x)#. As in the discrete
case, we are interested in the configuration of spinsf0(x)
that minimizes the potential energy. This configuration sa
fies

2]x
2f0~x!1]fh@f0~x!,x#50 ~67!

and the amplitudes of normal mode excitations about
ground statef0 obey

FIG. 2. D8/3N(v) vs v, for disorder strengthsD50.3, 0.1, and
0.01, shown with dashed, dotted, and dash-dotted lines, res
tively. The straight line has a slope (b11)55.
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21]f

2 h@f0~x!,x#%c5v2c. ~68!

Just as in the discrete case, because this equation desc
deviations from a minimum, all normal modes have posit
stiffnessk5v2. As a result, the operator appearing in E
~68! can be written as a square. We set

F2
d2

dx2
1]f

2 h@f0~x!,x#G5QTQ, ~69!

whereQ52d/dx1V(x). In other words, we require a func
tion V(x), which we term the chiral potential, that satisfie

dV~x!

dx
1V2~x!5]f

2 h@f0~x!,x#. ~70!

In order to understand properties of the chiral potentia
is useful to introduceE(f,x), a continuum version of the
partial energy,43 defined following Eq.~52! by

E~w,x!5 min
f(x)5w

E
0

x

dy$~]yf!21h@f~y!,y#%. ~71!

Similarly, the continuum version of Eq.~53! is

]xE1 1
2 ~]fE!25h~f,x!, ~72!

which can be thought of as a Hamilton-Jacobi equation
the actionE of a particle with coordinatef moving as a
function of time x in the time-dependent potentia
h@f(x),x#. In addition, the continuum version of Eq.~54!
relates the ground-state configuration to this action, via

df0~x!

dx
5]fE@f0~x!,x#. ~73!

It is easy to check that by writing

V~x![]f
2 E@f0~x!,x# ~74!

we solve Eq.~70!. Thus the chiral potentialV(x) may be
expressed simply in terms of the dependence of the grou
state energy of a half system on the boundary spin,f(x): the
half system has coordinatey taking values in the range 0
<y<x. With V(x) in hand, we wish to study the continuum
version of Eq.~59!: the chiral operator

H̃5S 0 Q

QT 0 D 5S 0 2
d

dx
1V~x!

d

dx
1V~x! 0

D , ~75!

which has eigenvalues6v that are the square roots of thos
appearing in Eq.~68!.

B. Treatment of one-dimensional chiral problems

As with the lattice version, discussed in Sec. V C, t
spectral properties ofH̃, Eq. ~75!, have been studied exten
sively with simple choices for the probability distribution o
V(x). Behavior is as summarized for the lattice version

c-
7-10



4
su
te

r-

w

-

ha
ts

tl

c-

e

lso

uld

de-
ute,
s

i-

ely.

ce

n
en

in
q.

nd

ig-
n-

on-
Eq.

al

-

ch
ce

BOSONIC EXCITATIONS IN RANDOM MEDIA PHYSICAL REVIEW B68, 134207 ~2003!
Sec. V C; a particularly detailed study is given in Ref. 4
Here, for completeness we sketch the derivation of the re
that is of most importance for our work: the density of sta
at low frequency in the staggered regime, where^V(x)&.0
for the continuum system plays the same role asa.0 for the
lattice model.

Following Ref. 44, consider the coupled first-order diffe
ential equations

S 0 2
d

dx
1V~x!

d

dx
1V~x! 0

D S c1~x!

c2~x!
D 5vS c1~x!

c2~x!
D
~76!

for x.0, with boundary conditionsc1(0)50, c2(0)51.
From the node counting theorem, the integrated density
states is given by the density of zeros ofc1(x) per unit
length. Introducing the parametrization c1(x)
5r(x)sinu(x),c2(x)5r(x)cosu(x), one has

du~x!

dx
5v2V~x!sin@2u~x!#. ~77!

Thus we require the average rate of increase in phase
length,du(x)/dx. To find this at smallv, note that, by as-
sumption,V(x) is mainly positive, and for positiveV(x) Eq.
~77! has stable fixed points close tou5np, with n integer.
Rare fluctuations ofV(x) which are negative for a long in
terval in x allow u(x) to grow, evolving with increasingx
from one such fixed point to the next. Supposeu(x) leaves
the vicinity of one fixed point atx5x1 and arrives in the
vicinity of the next atx5x2. For x1,x,x2 we neglectv in
Eq. ~77! and obtain

E du

sin~2u!
52E dxV~x!. ~78!

We estimate the integral on the left-hand side by noting t
the most important contribution comes from the end poin
whereu(x1)'np, u(x2)'(n11)p and sin(2u);v. For u
to increase byp we therefore require a fluctuation inV(x)
which is sufficiently negative and extends over a sufficien
large interval inx that

ln~v!.E
x1

x2
dxV~x!. ~79!

Let P(v) be the probability per unit length for such a flu
tuation to occur: the integrated density of states,*0

vr(v)dv,
is simply P(v). It is natural to expect this probability to b
exponentially small in ln(v) for smallv, so that, introducing
a constanta,

P~v!;exp@a ln~v!#5va ~80!

and hence

r~v!;vb ~81!
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with b5a21. From an extension of this approach, one a
finds44 that the localization lengthj at low frequency varies
with the staggerinĝV(x)& asj;^V(x)&21.

C. Calculation of the density of states

A central difficulty of our problem, of course, is thatV(x)
does not have a simple, given distribution. Instead, it sho
be determined by solving Eq.~70!, or calculated from the
partial energy using Eq.~74!, after in either case first finding
the ground-state configurationf0(x), using Eq.~67! or Eq.
~73!. Our detailed calculations are based on Eqs.~70! and
~67!. Before presenting these calculations, it is useful to
velop some qualitative understanding by an alternative ro
using the partial energyE(x,f) and its connection to Burger
turbulence.

1. Analogies with Burgers turbluence

The evolution ofE(x,f) with x is described by Eq.~72!,
which is similar in form to the much-studied Kardar-Paris
Zhang ~KPZ! equation.45 In this correspondence,x and f
play the roles of time and space coordinates, respectiv
The stochastic KPZ equation, however, which reads

]xE1 1
2 ~]fE!22D]f

2 E5h~f,x!, ~82!

differs from Eq.~72! in two respects. One is in the absen
of the dissipation term, with coefficientD; the other is in the
correlations of the force,h(f,x). The absence of dissipatio
is of limited importance, because the relationship betwe
the solutions of Eq.~82! in the smallD limit and those of Eq.
~72! is well understood: while Eq.~72! generally has solu-
tions with many branches, corresponding to local minima
the energy of the spin chain, by taking the solution of E
~82! for D→0 one finds the envelope of absolute grou
states as a function of the boundary spinf(x). For this rea-
son, it is rather natural to study Eq.~82! in our context.

By contrast, the nature of force correlations is more s
nificant: while in standard form the KPZ equation has a ra
dom forceh(f,x) that is white noise in bothx and f, our
interest lies with correlations that are long ranged inf, and
have the form

^h~f1 ,x1!h~f2 ,x2!&5h̃ cos~f12f2!d~x12x2!. ~83!

Such correlations have been studied previously, in the c
text of Burgers turbulence, where the Burgers equation,
~84! @equivalent to Eq.~82! with D→0], together with the
correlator Eq.~83!, describes motion of a one-dimension
fluid.

In this analogy, we viewf(x) as the coordinate of a par
ticle as a function of time,x, and interpret Eq.~67! as the
equation of motion for the particle. Imagine a fluid of su
particles, without pressure and stirred randomly with for
correlations derived from Eq.~83!. Let u(f,x)5df/dx be
the velocity, which satisfies the Burgers equation

]xu1u]fu5]fh~f,x!, ~84!

where comparison with Eq.~72! shows thatu5]fE. The
chiral potential is therefore given byV(x)5]fu@f0(x),x#,
7-11
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V. GURARIE AND J. T. CHALKER PHYSICAL REVIEW B68, 134207 ~2003!
the velocity gradient in a one-dimensional fluid flowing in
time-dependent potentialh(f,x), calculated at a point tha
moves with the fluid.

From literature on the Burgers equation~see Refs. 46–
48!, or alternatively by thinking about the ground state o
spin chain as the boundary spinf(x) is varied,42 one arrives
at the following picture forE(f,x). As a function off it
typically consists of a few piecewise smooth sections, wh
meet at cusps that are local maxima ofE(f,x). These cusps
in E(f,x) are negative discontinuities orshocksof the Bur-
gers velocity field,u(f,x), at which

lim
x→0

@u~f1e,x!2u~f,x!#,0. ~85!

They occur at the points where the ground-state spin c
figuration of the half chain changes discontinuously asf
varies. With increasing system lengthx, they undergo an
evolution in which existing cusps merge and new cusps
born, at matching average rates. If the trajectory of a part
moving with the Burgers fluid should meet a shock, the p
ticle remains trapped by the shock for all subsequentx. From
these statements it is clear that@for almost all boundary con
ditions f(L)] the ground-state trajectoryf0(x) does not in-
tersect any shocks. As a next step, from this we expect
^]f

2 E@f0(x),x#&.0, on the basis that, first, an average
]f

2 E(f,x)[]fu(f,x) overall f must be zero, sinceu(f,x)
is periodic inf, while, second, an average restricted tof0
avoids negative discontinuities ofu(f,x). Finally, returning
to excitations of the spin chain viewed as a chiral proble
we conclude that this is in the staggered regime and expe
finite localization lengthj;^]f

2 E@f0(x),x#&.0; from di-

mensional analysis, we expectj;h̃21/3.
Two weaknesses of the argument we have given are c

first, a more detailed treatment of averages over gro
statesf0(x) would be desirable; and second, it is not certa
that behavior known for chiral problems with disorder unc
related inx will necessarily be present in our system, wi
correlations ofV(x) determined from ground-state prope
ties. Nevertheless, results of the detailed calculations be
are consistent with the foregoing conclusions.

2. Path-integral treatment

To make further progress, we need to study statist
properties ofV(x). We find that a direct attack on this prob
lem using the boundary conditions that are physically app
priate @in which the values off0(x) are specified atx50
and x5L] is too difficult mathematically. Instead, we ap
proach it indirectly, by relating it to a version of the proble
with simpler boundary conditions, in whichf0(x) and
]xf0(x) are specified atx50. With the latter boundary con
ditions, we solve jointly Eq.~67! for f0(x) and Eq.~70! for
V(x). To discuss the connection between the two alterna
sets of boundary conditions, consider Eq.~70! with an arbi-
trary forcing term, written asf (x):

dV~x!

dx
1V2~x!5 f ~x!. ~86!
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This equation should be integrated fromx50 towardsx
5L, with initial condition V(x)→` for x→0 since this is
the behavior of]f

2 E@f0(x),x# at smallx andV(x) is related
to the partial energy by Eq.~74!. Crucially, Eq.~86! is un-
stable in the sense that, ifV(x) reaches sufficiently large
negative values forV2(x) to dominate overf (x), the solu-
tion escapes towardsV(x)52`, with the form V(x)}(x
2x0)21 as x approachesx0, the position of the instability,
from below. If such an instability is reached, it signals t
fact that the trajectoryf0(x) no longer represents the abs
lute ground state of the spin chain but is instead a lo
maximum in the energy as a functional of configuration.
the forcing term is derived from the ground-state configu
tion usingf (x)5]f

2 h@f0(x),x#, it will have correlations that
ensure this instability is never reached. But if we treat E
~86! as a Markov process in the way we set out below, so
realizations will prove unstable in this sense. Such trajec
ries should be discarded, and this can be arranged by sup
menting Eq. ~86! with absorbing boundary conditions a
V(x)52`. The surviving trajectories must be weighted
order to sample ground states appropriately, and we retur
this aspect in due course.

First we check that, specifyingf0(x) and ]xf0(x) at x
50 and integrating Eqs.~67! and ~70! together, we indeed
have a Markov process. This is seen most clearly by retu
ing to the discrete equations, taking Eq.~56! in place of Eq.
~70! and setting]f

2 I'1 to obtain

Vi5
Vi 21

11Vi 21
1]f

2 hi~f i !. ~87!

Similarly, in place of Eq.~73!, Eq. ~54! can be written as

f i5f i 211]fEi 21~f i 21!. ~88!

It is now clear that, sincef i is determined byhj for j , i , it
is independent of the functionhi(f). Moreover, by construc-
tion, eachhj (f) is an independent random function. Retur
ing to the continuum limit and noting the correlator fo
h(f,x) given in Eq.~83!, we see that in Eq.~86! we should
take f (x) Gaussian distributed, with zero mean and c
relator

^ f ~x! f ~y!&5h̃d~x2y!. ~89!

In light of the discussion given in Sec. VI B, our next ste
is to find the probability of an unusually large negative flu
tuation in V(x), integrated over an interval of lengthl 5x2
2x1. To this end, it is helpful first to defineS(a) by the
equation

K expS 2aE
x1

x2
dxV~x! D L 5exp@x2 lS~a!#, ~90!

where the angular brackets indicate averaging overV, and we
will find that S(a) is independent ofl when l is large. We
denote this probability@which appeared previously in Eq
~80!# by P0(v) below, and calculate it using
7-12
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P0~v!5max
l
E

2 i`

i`

da exp@2 lS~a!1a ln~v!#. ~91!

At small v we can approximate the integral by its value
the saddle point, determined from

2 l
]S

]a
1 ln~v!50. ~92!

In turn, the maximization onl ~remembering that the value o
a at the saddle point is itself a function ofl ) gives

S~a!50. ~93!
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Therefore

P0~v!}va0, ~94!

wherea0 is the solution to Eq.~93!.
Now we must computeS(a). A convenient method is to

derive from the Langevin equation~86! a Fokker-Planck
equation, make a similarity transformation of the latter
obtain a Schro¨dinger equation, and express this as a p
integral. The absorbing boundary condition atV52` is
built in automatically in this approach. These methods
described, for example, in Ref. 50. In this way we find
exp@2 lS~a!#5

E DVexpS 2E
0

l

dxH 1

2h̃
F S dV

dxD 2

1V4G2V~12a!J D
E DV expS 2E

0

l

dx H 1

2h̃
F S dV

dxD 2

1V4G2VJ D . ~95!
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The path integrals in this expression are propagators
imaginary timex for a particle moving with coordinateV(x)
in a polynomial potential, which isV42V(12a) in the case
of the numerator andV42V in the case of the denominato
For largel, both path integrals are dominated by ground-st
contributions, justifying thel dependence displayed in Eq
~90!. In this limit, moreover,S(a) is given by the difference
in ground-state energies for the two potentials. It is clear t
S(a)5S(22a) and thatS(0)50. Hencea052 and

P0~v!}v2. ~96!

It is incidentally also apparent that^V&.0, confirming our
earlier argument that the chiral description of spin-chain
citations is in the staggered regime.

To complete our calculation of the density of excitatio
in frequency, a further step is necessary. We have so
considered spin configurationsf0(x) that are generated in
the ensemble of disorder realizations using fixed values
f0(x) and ]xf0(x) at x50, and are local minima of the
energy but not necessarily the absolute minimum. We sho
weight these configurations by a factorP1(v), according to
the probability that they appear in an ensemble with phy
cally appropriate boundary conditions, in whichf0(x) is
fixed atx50 andx5L. In addition, to obtain properties o
excitations about the ground state, we require a furt
weighting factorP2(v), involving the probability that a con
figuration is the absolute minimum in energy. This is,
principle, a difficult quantity to determine,49 because it in-
volves global features of the system, and we content o
selves with a heuristic approach which is in a similar spirit
our discussion of an anharmonic oscillator in Sec. IV B. S
cifically, we discard all configurations that have a near
maximum of the energy. In this way we correctly exclu
local minima that are separated from the ground state by
in
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nearby maximum, but we make errors of two kinds. First,
fail to exclude local minima that have no nearby maximu
and are separated by a large distance in configuration s
from the true ground state: we assume~as in Sec. IV B! that
excitations about such local minima have the same statis
properties as those about the true ground state. Second
wrongly exclude true ground states that have nea
maxima: we assume that those ground states which rem
are characteristic of the whole set. We remark finally tha
the factorP2(v) is omitted, we obtain an excitation densi
averaged over all configurations that are local ene
minima.

To find thev dependence of these two weighting facto
we consider a family of nearby configurationsf(s,x)
5f0(x)1h(s,x) for x1<x<x2, parametrized bys. The
corresponding family of chiral potentials isV(s,x)5V(x)
1W(s,x), and we restrict attention to smallh(s,x) and
W(s,x). The weightP1(v) appears because, in disorder r
alizations which generate negative fluctuations ofV(x), tra-
jectories off(s,x) as a function ofx are compressed by a
amount which increases with the size of the integrated
tential fluctuation. It is therefore determined by compari
h(s,x2) with h(s,x1). The weightP2(v) is determined by
finding the probability for escape ofW(s,x) to negative in-
finity, signaling the occurrence of an energy maximum.

We find the evolution ofh(s,x) andW(s,x) in terms of
V(x) by linearizing Eqs.~67! and ~70!, respectively, obtain-
ing

dh

dx
5V~x!h~s,x! ~97!

and
7-13
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dW

dx
12V~x!W~s,x!5]f

3 h~f,x!h~s,x!. ~98!

These equations have the solutions

h~s,x!5expF E
x1

x

dyV~y!Gh~s,x1! ~99!

and

W~s,x!5expS 22E
x1

x

dyV~y! D H W~s,x1!1h~s,x1!

3E
x1

x

dy FexpS 3E
x1

z

dzV~z! D ]f
3 h@f0~y!,y#G J .

~100!

Let us choose the parametrizations in such a way that ats
50, h(s,x1)50 and V(s,x1) has a minimum. Then for
smalls, h(s,x1)}s andW(s,x1)}s2. We findP1(v) as fol-
lows. For the integrated value ofV(s,x) along a trajectory
from the family to have a value similar to that ats50, the
integral of W(s,x2) must not be too large. We hence sele
those values ofs for which *x1

x2dxW(s,x)&1. Using Eq.

~100! and that fact that*x1

x2dxV(0,x)5 ln(v), this requires

usu&v, which in turn implies that uh(s,x1)u&v and
uh(s,x2)u&v2. Since the physically relevant boundary co
ditions for the spin chain fix the value off(x) at x5L ~that
is, at larger x), we weight configurations uniformly in
h(s,x2) and conclude thatP1(v)}v2. Turning to P2(v),
we require thatW(s,x2) calculated using our linearizatio
should not be large and negative for anys, since otherwise a
full treatment, including nonlinearities, would with hig
probability result in escape. MinimizingW(s,x2) with re-
spect tos, using Eq.~100!, we require

min
s

W~s,x2!}2v22I 2*21, ~101!

where

I 5E
x1

x2
dxFexpS 3E

x1

x

dyV~y! D ]f
3 h@f0~x!,x#G . ~102!

For smallv and largeux22x1u, I is a random variable whos
distribution is independent ofv, and hence the probability
that minsW(s,x2)*21 is P2(v)}v.

Combining these results with the form derived forP0(v),
we find an integrated density of states for excitations, av
aging over all local minima of Eq.~46!, which varies as

N~v!}P0~v!P1~v!5v4, ~103!

while for the global minimum we find

N~v!}P0~v!P1~v!P2~v!5v5. ~104!

Henceb53 or b54, in agreement with Eqs.~43! and~45!.
Strikingly, the behavior derived here for the random-fieldXY
chain matches that expected from the simple discussion o
anharmonic oscillator, given in Sec. IV B.
13420
t

r-

an

VII. OTHER SYSTEMS WITHOUT GOLDSTONE MODES

In this section we discuss the extent to which the a
proach we have set out for the random-fieldXY spin chain
can be extended to treat excitations in other models for
ordered systems without a broken continuous symmetry.
XY spin chain has two obvious and important simplifyin
features: disorder couples only to one of the dynamical v
ables (f but notP), so that frequencies are simply related
stiffnesses; and the system is one dimensional. The calc
tions we have described involved several steps: mapping
chiral formulation; analytic determination of the excitatio
density in frequency via a study of statistical properties
disorder within this chiral formulation; and, for an efficien
numerical treatment, the use of a partial energy. As
broaden the range of models under consideration, fewe
these steps remain possible. We consider, first, a generic
dimensional continuum system, with a pair of conjugate d
namical variables at each point and disorder that couple
both, and second, a specific example of such a problem,
random-field Heisenberg spin chain. In these cases we fi
chiral description and introduce a partial energy, but are
able to determine statistical properties of the disorder app
ing in this description. Instead, we derive for such proble
the general relation between densities of stiffnesses an
excitation frequencies, suggested from an analysis of rand
matrix theory in Eq.~22! above. Third, for the random-field
XY model in two dimensions we show how to introduce
chiral description, but leave applications of this for futu
work. For all these problems, we expectr(v)}v4 at small
v, on the general grounds discussed in Sec. III.

A. Generic one-dimensional problem

Consider a one-dimensional system with conjugate
namical variablesf1(x) andf2(x), and the Hamiltonian

H5E dxF1

2 H S df1

dx D 2

1S df2

dx D 2J 1h~f1 ,f2 ,x!G .
~105!

We wish to study harmonic excitations about the grou
state: fori 51,2, letf i

0 be the configuration that minimize
the energy, Eq.~105!, and writef i5f i

01c i . Expanding to
quadratic order inc i ,

H5S 2]x
21]f1

2 h ]f1
]f2

h

]f1
]f2

h 2]x
21]f2

2 hD . ~106!

To write this asH5QTQ and findQ, we essentially repea
the sequence of arguments which led from Eq.~66! to Eq.
~75!. We introduce a partial energyE(f1 ,f2 ,x) which sat-
isfies

]xE1
1

2 H S ]E
]f1

D 2

1S ]E
]f2

D 2J 5h~f1 ,f2 ,x! ~107!

and may be used to find the ground-state configuration
the analog of Eq.~73!,
7-14
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df i
0

dx
5]f i

E~f1
0 ,f2

0 ,x!. ~108!

Then we define a 232 matrix version of the chiral potentia
via

Vi j 5]f i
]f j

E~f1
0 ,f2

0 ,x!. ~109!

It satisfies

d

dx
Vi j 1 (

k51

2

VikVk j5]f i
]f j

h~f1 ,f2 ,x! ~110!

and thereforeQ can be chosen to have elements

Qi j 52
d

dx
d i j 1Vi j . ~111!

In this way, we have written Eq.~106! as a type of chiral
problem, which we termtwo channelbecauseV is a 232
matrix.

Further analysis can be divided into two stages. O
stage, givenV, is to findd(k) andr(v), as was done for the
single-channel problem in Sec. VI B. The other stage is
determine the distribution forV, as was done for the single
channel problem in Sec. VI C. General one-dimensional m
tichannel chiral problems of the type that arise in our cal
lation of stiffnesses have been studied in Refs. 26 and
with V chosen Gaussian distributed and uncorrelated inx.
However, as far as we are aware, there has been no pre
work on multichannel chiral problems of the type that gi
frequencies. For the two-channel problem, while we have
been able to make progress in obtaining the distribution oV,
we have been able to find a general relation between ca
lations of stiffnesses and frequencies. This connectsd(k)
and r(v) in the way given by Eq.~22!. We present these
arguments next.

B. Two-channel Bosonic chiral problems

In this subsection we compare the calculation of st
nessesk[l2, determined from the eigenvalue problem

S 0 2
d

dx
1V

d

dx
1VT 0

D S c1

c2
D 5lS c1

c2
D , ~112!

with the calculation of frequenciesv[e2, determined from

S 0 2
d

dx
1V

d

dx
1VT 0

D S c1

c2
D 5eS c1

s2c2
D . ~113!

We do this following the technique set out for the sing
channel problem after Eq.~76!, and described for multichan
nel problems in Ref. 51. For both stiffnesses and frequenc
we write c15ac2, wherea is anx-dependent 232 matrix.
The eigenvalue density,d(k) or r(v), is then determined
13420
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from the evolution ofa with x, via a node-counting theorem
The evolution equation fora is, in the case of stiffnesses
from Eq. ~112!,

das

dx
5l~11as

2!2asV2VTas , ~114!

and in the case of frequencies, from Eq.~113!,

daf

dx
5e~s21af

2!2afV2VTaf . ~115!

These equations are the equivalent for the two-chan
problem of Eq.~77! for the single-channel problem. Follow
ing Ref. 51, the density of states is given by the rate at wh
the eigenvalues ofas or af move with increasingx along the
real axis. Our aim is to compare this rate in the two cas
takingk andv small, in a way that does not require detaile
knowledge of the distribution ofV. We assume only that~as
for single-channel problem! V fluctuates about a nonzer
mean, and that both the fluctuations and the mean ofV have
comparable importance in the evolution ofas andaf with x.

In outline, this evolution is as follows. If fluctuations inV
are omitted,as andaf have stable fixed points at which bot
their eigenvalues are small ink andv, respectively. In both
cases, the stable fixed point has a basin of attraction wi
boundary that is reached when an eigenvalue ofas or af is
large and positive@O(l21) or O(e21), respectively#. Re-
storing fluctuations inV, with increasingx we find ~partly on
the basis of simulations, not presented here! that as or af
fluctuates in the vicinity of its fixed point for intervals tha
are long if k or v is small. Each such interval ends whe
fluctuations take the matrix to the boundary of the basin
attraction. One eigenvalue ofas or af then runs off to posi-
tive infinity, reappears from negative infinity, and returns
the vicinity of the fixed point. This is entirely analogous
the evolution in the single-channel problem of tan(u) as u
increases fromu'np to u'(n11)p, which is described in
Sec. VI B.

To develop the picture further, we consider separately
regions close to the fixed points, which are different foras
and af , and the region far from the fixed points, which
essentially the same in both cases. It is useful to introduce
explicit coordinate system. We write

V5 1
2 ~11j011j1s11j3s3!, ~116!

wherej0 , j1, andj3 are random with mean zero, and^V& is
taken proportional to the unit matrix, with a proportionali
constant that can be changed by a rescaling of the len
coordinatex. We also set

as, f5s11z1s11z2s21z3s3 . ~117!

For calculation of stiffnesses using this coordinate syste
one hasz250 and Eq.~114! becomes
7-15
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dz1

dx
52lsz12z11j0z11j1s,

dz3

dx
52lsz32z31j0z31j3s,

ds

dx
5l~s21z1

21z3
2!1l2s1j0s1j1z11j3z3 . ~118!

If fluctuations in V are omitted ~by setting j i50 for i
50,1, and 3), these equations have a stable fixed poin
s'l, z15z350. Including fluctuations inV, the typical
magnitudes ofs, z1, andz3 areO(l).

By contrast, for calculation of frequencies Eq.~115! gives

dz1

dx
52esz12z11j0z11j1s,

dz2

dx
52esz21e2z21j0z2 ,

dz3

dx
52esz32z31j0z31j3s,

ds

dx
5e~s21z1

21z2
21z3

2!2s1j0s1j1z11j3z3 . ~119!

In this case, if fluctuations inV are omitted there is a fixed
point ats'e3, z2'e, z15z350. Including fluctuations, the
typical magnitudes ofs, z1, andz3 areO(e3), while z2 re-
mainsO(e).

Now consider escape ofas or af from the vicinity of the
relevant fixed point, which requiress@l in the case of stiff-
nesses ands@e3 in the case of frequencies. In these regim
we argue that the evolution equations in the two instances
essentially equivalent. More specifically, we make two a
proximations. First, we takez250 in both cases, even
though this is exact only in the first case. We do so beca
in the second case it is clear from Eq.~119! that z2;e pro-
vided s,(2e)21, and hence that nonzeroz2 has no impor-
tant effect on the evolution ofz1 , z3, ands. Second, foras or
af far from its fixed point, we omit the terms independent
as or af ~and small ink or v) from the right-hand sides o
Eqs. ~114! and ~115!. With these approximations, and ma
ing the rescalingsa5las and a5eaf , the two equations
both become

da

dt
5a22aV2VTa. ~120!

This stochastic process results in a stationary probability
tribution for a if absorbing boundary conditions are impos
at infinity and probability flux is injected neara50. In the
stationary state there is an eigenvalue flux along the pos
real axis, with a rate that is determined by the probabi
density in a region neara50. The size of this region, an
therefore the probability density within it, follows in eac
case from our discussion of the fixed points and their nei
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borhoods. Characterizinga by the value of its trace, and
combining the fixed-point coordinates with the rescalin
used to arrive at Eq.~120!, the value of Tra in this region is
O(l2) in the first instance andO(e4) in the second. From
this, we conclude that the integrated densities of stiffnes
and frequencies are equal forl2;e4. We hence recover
from this discussion of one-dimensional systems the re
given in Eq.~22!, which was reached in Sec. III by a ver
different route.

For completeness, we remark that the derivation prese
here crucially depends on̂V(x)&Þ0, and assumes thatj0 ,
j1, and j3 become comparable to 1 only during their ra
large fluctuations. And indeed, for̂V(x)&50 it has been
conjectured and checked numerically52 that in that case
r(v)}v21/3 even though it is well known51 that d(k)
} ln(k).

C. The random-field Heisenberg spin chain

The random-field Heisenberg spin chain is perhaps
most obvious example of the generic one-dimensional pr
lems discussed above. The conjugate dynamical varia
are, of course, the two components for displacement o
spin from its orientation in the ground state, and phase sp
is made up of spheres for each point on the chain. The
vature of phase space is responsible for some change
formulas derived in Sec. VII A, which we now set out.

The continuum version of the random-field Heisenbe
spin chain, parametrizing spin orientations using the ang
u(x) andf(x), is

H5E dx F1

2 H S du

dxD
2

1sin2~u!S df

dx D 2J 1h~f,u,x!G .
The evolution equation for the partial energy is

]E
]x

1
1

2 H S ]E
]u D 2

1
1

sin2~u!S ]E
]f D 2J 5h~f,u,x!

and, givenE, the ground-state configuration can be calc
lated using

df0

dx
5

1

sin2~u!
]fE,

du0

dx
5]uE.

Introducing coordinates for deviations from the ground-st
configuration,u5u01cu and f5f01cf , we take as ca-
nonical variablescu and cfsin(u0). The quadratic Hamil-
tonian can be writtenH5QTQ, with Q given by Eq.~111! in
terms of the 232 matrix V, which can be computed fromE
using
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cot~u0!1
1

sin2~u0!
]f

2 E 1

sin2~u0!
]u]fE22

cos~u0!

sin3~u0!
]fE

.
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This formalism would provide the starting point for a trea
ment of the one-dimensional random-field Heisenberg mo
similar to that presented for theXY model in Sec. V.

D. Two-dimensional random-fieldXY model

The two-dimensional random-fieldXY model provides an
example for which our formulation of excitation problem
using chiral Hamiltonians can be carried through in mo
than one dimension. The two-dimensional version of E
~66! is

K5E H 1

2
@P21~]xf!21~]yf!2#1h~f,x,y!J dxdy

and the ground statef0 satisfies

2F ]2

]x2
1

]2

]y2Gf01]fh~f0 ,x,y!50. ~121!

The amplitudes of normal mode excitations obey

F2
]2

]x2
2

]2

]y2
1]f

2 h~f,x,y!Gc5Ec. ~122!

We introduce a chiral potentialV(x,y), defined as the solu
tion to

]x
2V1~]xV!21]y

2V1~]yV!25]f
2 h~f0 ,x,y!, ~123!

and the matrixQ, given by

Q5S 2]x1]xV 2]y2]yV

2]y1]yV ]x1]xV
D . ~124!

Then the matrixH[QTQ is diagonal, with the operator o
Eq. ~121! as diagonal element. The construction of a chi
matrix H̃ is therefore complete for this problem, too:H̃ in
fact has the form of a random Dirac Hamiltonian, studied
Ref. 53. While we have not been able to find a quantity
the two-dimensional system that plays the role of the par
energy in one dimension, we have formulated a general
tion of the Burgers equation, which is sufficient to show th
a solution to Eq.~123! exists. The practical determination o
the chiral potential, however, remains an open problem
this case.

VIII. RELATION TO EXPERIMENT

The range of physical systems to which the ideas we h
set out may apply is potentially very wide. The essen
requirements are quenched disorder, a ground state tha
13420
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be considered classically, and excitations that can be tre
as weakly interacting normal modes. These requireme
may be met for vibrational modes, either in glasses, or
randomly pinned phases with broken translational symme
such as charge-density-wave states. They may also be s
fied for magnetic excitations in disordered ferromagnets
antiferromagnets, or in spin glasses, either with or with
significant magnetic anisotropy. The most specific feature
which one would like experimental evidence is probably t
frequency dependencer(v)}v4 of the density for excita-
tions that are not Goldstone modes. Alternatively, for exc
tions thatare Goldstone modes, interest focusses on the
quency dependence of the mean-free path at smallv, or, in
the case of Heisenberg antiferromagnets and spin gla
which are quasi-one-dimensional, the low-frequency form
the density of states.

Before summarizing the experimental situation, it is us
ful to outline ways in which excitations in a disordered sy
tem may fall outside the framework we have used. La
quantum fluctuations are the obvious route to different ph
ics, and may be important in at least two ways. First, it c
happen that a ground state is very far from being a class
configuration dressed with small zero-point fluctuations: r
dom singlet phases54 in disordered quantum spin chains co
stitute a well-studied example. Second, it may be that e
low-lying quantized excitations are unlike weakly interacti
bosonic modes. To have a concrete example, consider
single mode problem for an anharmonic oscillator with p
tentialU(q), as reviewed in Sec. IV B. Typically, this poten
tial energy will have local minima separated by barriers fro
the absolute minimum, and the importance of quantum m
tion through or over the barrier will depend on the size of t
massm appearing in Eq.~38!. Thus, for a givenU(q), in the
semiclassical limit the low-lying quantum states will be clo
to harmonic oscillator levels with the classical normal mo
frequency. However, if quantum fluctuations are large, tu
neling through barriers may hybridize levels associated w
different classical minima, generating two-level systems,
the low-lying levels may be determined by the form ofU(q)
in regions too far from its absolute minimum for the classic
normal mode frequency to be relevant. In the ensemble,
crossover takes place as a function of frequency, as discu
in Refs. 37 and 38. As a result, one expects harmonic e
tations with a densityr(v)}v4 at higher frequencies, an
two-level systems with a constant density at lower frequ
cies.

Turning to experiments, somewhat surprisingly, the b
evidence that we are aware of for an excitation density w
an v4 dependence is from studies of vibrational excitatio
in glasses. Here, inelastic neutron scattering and o
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measurements55 indicate an excess density of harmon
modes, compared to what is expected from Debye theory
the measured speed of sound. Analysis of the tempera
dependence of the heat capacity56 separates two contribu
tions that are additional to the Debye value. One is appro
mately linear in temperatureT, dominates at lowT, and is
attributed to two-level systems. The other varies asT5,
dominates at higherT, and is attributed to harmonic mode
with the stated frequency dependence for their density. F
a theoretical viewpoint, such excitations differ in an impo
tant way from the one we have discussed, because they
exist with propagating phonon modes. The consequence
coupling between the two sets of modes have been discu
in Ref. 57, and coupling between localized anharmonic
brational modes and phonons has been studied in Ref. 5

A context in which localized vibrational modes are e
pected without any coexisting propagating phonons is p
vided by pinned charge-density waves, represented in
dimension by the model studied in Sec. VI. Indeed, it was
this framework that Aleiner and Ruzin41 and Fogler42 argued
for a density of harmonic proportional tov4, with a cross-
over at low frequency42 to a constant density of two-leve
systems. As reviewed by Fogler,42 existing measurements o
frequency-dependent conductivity59 do not show the re-
sponse expected from such harmonic modes, possibly
cause the low-temperature limit is not accessed.

Studies of spin waves in disordered magnetic syste
present opportunities to examine both Goldstone and n
Goldstone modes. In particular, inelastic neutron scatte
measurements of spin dynamics in a dilute near-Heisen
antiferromagnet60 show the expected broadening in wa
vector of excitations with increasing frequency. In contra
magnetic neutron-scattering measurements on amorp
magnetic alloys in which there is local magnetic anisotrop61

find modes which are broad in wave vector at all frequenc
In this case the density of excitations is approximately c
stant in frequency over the measured range. From our res
we expect a decrease in this density at low frequency, a
more detailed examination of low-frequency behavior wo
be of considerable interest.

IX. CONCLUDING REMARKS

Since we have investigated a variety of different dire
tions in this paper, it is perhaps useful to close with a sh
summary of our main points.

Considering the general quadratic Hamiltonian

*Present address: Department of Physics, University of Color
CB 390, Boulder, CO 80309.

1For a review, see Y. Imry,Introduction to Mesoscopic Physic
~Oxford University Press, New York, 1997!.

2S. John, H. Sompolinsky, and M.J. Stephen, Phys. Rev. B27,
5592 ~1983!.

3For a review, see:Scattering and Localization of Classical Wav
in Random Media, edited by P. Sheng~World Scientific, Sin-
gapore, 1990!.

4A.Z. Genack and J.M. Drake, Nature~London! 368, 400 ~1994!.
13420
nd
re

i-

m
-
o-
of
ed

i-
.

-
ne
n

e-

s
n-
g
rg

t,
us

s.
-

lts,
a

-
rt

r

bosonic excitations, Eq.~7!, we have noted a formal similar
ity between it and fermionic random matrix Hamiltonian
from the additional symmetry classes@e.g., Eq.~5!#. We have
argued that this has limited direct consequences, because
bility of the ground state requires correlations between m
trix elements of the bosonic Hamiltonian which invalidate
random matrix approach. Instead we have shown that the
a useful mapping to an auxiliary problem with the structu
of the chiral symmetry class, which we have set out exp
itly for a range of models.

Examples of bosonic excitations in disordered me
separate into those that are Goldstone modes, and those
are not. For the former, we have reviewed established res
which demonstrate that low-frequency excitations decou
from disorder except for some systems in and below a m
ginal dimensiondc52. For excitations that are not Gold
stone modes, we have underlined the way in which disor
itself generates low-frequency excitations, and the unive
form expected for their density,r(v)}v4. Taking as an ex-
ample the one-dimensionalXY model in a random field, we
have used our techniques in detailed analytical and num
cal calculations, obtaining results that illustrate this behav
of r(v).

A further application of the techniques we have develop
here is to Mattis models. These model spin glasses lack f
tration, and their statistical mechanical properties are equ
lent under a gauge transformation to those of ferromagn
They have ground-state spin configurations which are kno
for each disorder configuration, but excitations are nevert
less affected in a nontrivial way by disorder.32 Because the
ground state is known explicitly, the magnons in Mat
glasses are much easier to study than in a real spin g
Being Goldstone modes, these magnons fall into the sa
category as those in weakly disordered antiferromagnets,
cussed in this paper. In particular, their critical dimension
dc52. In future work33 by one of the present authors an
Altland, the localization and transport properties of magno
in two- and three-dimensional Mattis glasses will
explored.
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