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We consider classical normal modes and noninteracting bosonic excitations in disordered systems. We
emphasize generic aspects of such problems and parallels with disordered, noninteracting systems of fermions,
and discuss in particular the relevance for bosonic excitations of symmetry classes known in the fermionic
context. We also stress important differences between bosonic and fermionic problems. One of these follows
from the fact that ground-state stability of a system requires all bosonic excitation energy levels to be positive,
while stability in systems of noninteracting fermions is ensured by the exclusion principle, whatever the
single-particle energies. As a consequence, simple models of uncorrelated disorder are less useful for bosonic
systems than for fermionic ones, and it is generally important to study the excitation spectrum in conjunction
with the problem of constructing a disorder-dependent ground state: we show how a mapping to an operator
with chiral symmetry provides a useful tool for doing this. A second difference involves the distinction for
bosonic systems between excitations which are Goldstone modes and those which are not. In the case of
Goldstone modes we review established results illustrating the fact that disorder decouples from excitations in
the low-frequency limit, above a critical dimensidg, which in different circumstances takes the valdgs
=2 andd.=0. For bosonic excitations which are not Goldstone modes, we argue that an excitation density
varying with frequency ap(w)=w* is a universal feature in systems with ground states that depend on the
disorder realization. We illustrate our conclusions with extensive analytical and some numerical calculations
for a variety of models in one dimension.
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[. INTRODUCTION this for a detailed study of excitations in the one-dimensional
random-field XY model, calculating their density of states
Excitations in condensed-matter systems with quenchednd localization properties. We also outline how the general
disorder have been a subject of intense study during the lasipproach may be applied to other one-dimensional, ran-
several decades. Historically, it has been fermionic excitadomly pinned systems, and in higher dimensions. Some of
tions in random systems that have received most attentiorour results have been presented in short form elsewfiere.
The reason for this lies in part with the rapid development of Our discussion is organized as follows. In Sec. Il we re-
experiments and theory involving mesoscopic conductorsyiew the symmetry classes established within random matrix
where the effects of disorder in phase-coherent electron sy#heory for disordered fermionic systems. We recall in Sec. llI
tems have been studied in great detail. the general form for a quadratic bosonic Hamiltonian and the
It is, however, also of considerable interest to study ranBogoliubov transformation required to diagonalize it, and
dom systems with bosonic excitations, and there is an extershow how it is useful to introduce an auxilliary problem with
sive literature treating problems of this type, too. For in-structure similar to that in the chiral symmetry class. In Sec.
stance, the propagation of phonons in glasses and d¥ we discuss how various particular systems with bosonic
electromagnetic waves in media with random refractive in-excitations fit into this general framework. Here we empha-
dex has long been a subject of active researcand trap-  size the distinction between excitations that are Goldstone
ping of light via scattering from disorder is a principle on modes and those that are not. For Goldstone modes, taking
which random lasers are bast@ther examples of bosonic phonons and spin waves as examples, we summarize how
excitations in random systems include vibrations of pinnedhey decouple from disorder at low frequencies above a criti-
elastic structures such as charge-density waveagnons in ~ cal dimension, and discuss behavior below the critical di-
diluted antiferromagnets and spin glas&e$,and quasipar- mension. For excitations which are not Goldstone modes, we
ticles in superfluid liquid helium permeating a porousoutline an established argument that leads to the result
medium® To some extent, work on these problems has fop(w)>w*. Then, as an illustrative case, we consider the
cussed on specific features of individual examples, and giverandom-fieldXY spin chain, using our formalism as the basis
less emphasis to generic aspects than has been the case ffor a numerical study of the discrete system, presented in
disordered fermionic problems. Sec. V, and giving an analytical treatment of the continuum
In this paper we emphasize just these generic aspects. Wit in Sec. VI, recovering in both instances the behavior
examine the relationship between universality classes identp(w)=w*. In Sec. VIl we apply the same formalism to the
fied for fermionic problems and models for bosonic excita-random-field Heisenberg spin chain and some related but
tions, as well as features that are specific to bosonic proksimpler models, which are of interest because disorder enters
lems. We also survey some of the known features of bosonithem in a more general way than for tk& model. Finally,
excitations in disordered systems. In addition, we develop &ve summarize the relevant experimental situation in Sec.
general framework for treating bosonic excitations. We usé/Ill and end with concluding remarks in Sec. IX.
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Il. SYMMETRIES AND DISORDER The remaining four symmetry classes arise in the study of

To provide a context for our discussion of bosonic s S_disordered superconductors with pairing treated in the mean-
P . ) YS¥ield approximation. The Hamiltonian for such a problem has
tems, we begin by setting out the symmetry classes that a

recognized within random matrix theory for fermionic the Bogoliubov—de Gennes structure
systems>® Models of noninteracting quasiparticles play an h A
important role in the study of fermionic excitations in disor- H :( + T), (5)
dered conductors, insulators, and superconductors. It has A" —h

long been appreciated that the properties of these models af@ere the kinetic terrh is Hermitian, while the gap function

controlled by the discrete symmetries of the single-particley s antisymmetric. This structure leads to another defining
Hamiltonians. Originally three symmetry classes for ra”dorrbymmetry condition

Hamiltonians were identifietf*® One class consists of ran-

dom Hamiltonians that have time-reversal invariance but no H=—oH*oy. (6)
Kramers degeneracy. In an appropriate basis the Hamiltonian
H is real, so that As for chiral Hamiltonians, the symmetry displayed in Eq.
(6) ensures that energy levels of Bogoliubov—de Gennes
H=H*. (1) Hamiltonians appear in pairs; E. There are four symmetry

o ) classes of such Hamiltonians, according to whether or not
Random Hamiltonians which obey E(l) appear, for ex- the system has time-reversal and spin-rotation symmetry,
ample, when studying disordered conductors without applie(,zlnaking the total count ten.
magnetic_field_. A second symmetry _class consis.ts of time- A consequence of the conditions specified in Edsand
reversal invariant random Hamiltonians for part|cles_W|th (6) is that statistical properties of energy levels and, in spa-
half-integer spin and hence Kramers degeneracy. In this caggyly extended systems, the associated eigenfunctions, are
the time-reversal operation includes spin inversion, and ingyite different in these additional symmetry classes near zero
variance requires energy, compared to properties far from zero energy, or in

. the Wigner-Dyson symmetry class®s.
H=0,H" 0. 2 It is natural to ask whether this classification can be ex-

(Here and in the followingg for i=1, 2, or 3 represent the tended to problems involving noninteracting bosonic excita-

conventional Pauli matrices, acting on a subspace identifieionS OF. équivalently, classical normal modes. At first sight,
by the contexl. In order for Eq.(2) to be different in an I Might seem that quasiparticle statistics are unimportant in a
essential way from Eq(1), spin rotation invariance must be Nonintéracting system. In one crucial respect, however, this
broken. Thus this case is of relevance for disordered condudS Untrue, since stability of a system requires bosonic excita-
tors with spin-orbit coupling. A third symmetry class arises!lon energies to be positive, Wh'le. for ferrmomg: excitations
when the Hamiltonian has no discrete symmetries. Example&aPility is guaranteed by the Pauli exclusion principle, what-

of these symmetry classes are provided by the three Wigne?,—ver thg single-particle energy levels. This ha; two.implica-
Dyson random matrix ensembl¥st® tions. First, energy zero emerges as a special point in the

More recently, it has been recogni?&d? that there are spectrum of bosonic systems, as it does for the additional
seven additional classes of disordered fermionic Hamiltof€'Mionic symmetry classes discussed above. And second,

nians. These arise where there exists a special reference ¢Hi€ anticipates that matrix elements of bosonic Hamiltonians
ergy (taken to be zero in the followindor the system, and a for random_ .SYSteTShW'" have Speﬁ'f'c c?]r{elar;uons, which
symmetry operation which relates eigenstates in pairs. Thre@'Sure positivity of the spectrum. Thus, while the most gen-

of these seven are referred to as chiral symmetry cldds®ls. ©ral form for a quadratic bosonic Hamiltonigsee Eq.(7)
Hamiltonians for these classes can be put into the form belov_v] IS .superf|C|aIIy_S|m|Iar to the Bogollubov—_de G_ennes
Hamiltonian, and while normal mode frequencies, like the

0 Q eigenvalues of Eq5), appear in pairst w, matrix elements
H={ .+ , (3) must satisfy constraints in order that frequencies are real.
Q0 Such a requirement is in stark contrast with the assumptions

of statistical independence used in the construction of ran-
dom matrix ensembles for fermionic systems. To stress the
significance of this point, imagine a treatment of a disor-
H=—osHos. (4 dered, interacting system which proceeds in two stages, by
first finding the ground state and then calculating excitation
This ensures that energy levels of such Hamiltonians appe&nergies within a harmonic approximation. The spirit of ran-
in pairs =E, since if ¢ is an eigenfunction with energlf, =~ dom matrix theory for fermionic systems is to divorce these
thenozi is an eigenfunction with energy E. The symme-  two stages and approach the second one phenomenologically,
try condition of Eq.(4), when combined with either Eq1), = choosing statistically independent matrix elements. By con-
or EqQ.(2), or neither, leads altogether to three chiral symme-rast, for bosonic systems it is clear that the two stages can-
try classes. Chiral Hamiltonians appear as tight-bindingnot be completely separated. Indeed, whereas for random
models with only off-diagonal disord&r™®>=?® and in the matrix theory universal spectral properties follow largely
problem of classical diffusion in a random medight® from symmetry and are independent of the details of the

where Q is itself a matrix or an operator. They obey the
symmetry condition
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matrix element distribution, we argue here that for bosonic 0=Qu,Q", (10)
excitations which are not Goldsone modes it is the require\—Nhich is explicitly Hermitian and. moreover. antisvmmetric
ments of stability and the ensuing correlations in the Hamil- plCItly ' ’ Y '

tonian for excitations that give rise to universal s ectralSO that frequencies come in pattsw; , with i=1,... N.
properties 9 P If Q) is interpreted as a random Hamiltonian, then accord-

ing to the classification scheme discussed in Sec. Il it be-
longs to one of the Bogoliubov—de Gennes classesre
[l. BOSONIC HAMILTONIANS precisely, to clas®, see Ref. 22 While this is indeed an
. . . indication that random oscillators behave in many ways like
In this section we discuss the most general form forrandom fermionic Hamiltonians from one of the additional

bosonic Hamiltonians and summarize the diagonalizatioréymmetry classethaving frequencies in pairs, with=0 as
procedure, following standard lindsee, for example, Ref. special point in the spectrpthe identification ofQ) as

29). We also emphasize the distinction between oscillatog|assp operator is not by itself necessarily helpful sir@e
frequencies and stiffnesses. Finally, we show for oscillationgjoes not have statistically independent matrix elements, but
about a stable ground state that it is natural to rewrite th@ather is constrained to have the form given in Ef0).

Hamiltonian in terms of a chiral matrix. Instead, we shall see that a link to matrices wih chiral sym-
metry proves more useful.
A. Stiffnesses and frequencies The computation of oscillator frequencies can equiva-

lently be described as a Bogoliubov transformation for coor-

The most general bosonic Hamiltonian can be written inginates and momenta specified by real matrigéisat obey
the equivalent forms

02=0059" 11
B and transfornt{ to gHg". Diagonalizing/{ using this trans-
H=3 ”.241 [Mi;pip; +Kij a0 +2Ci; aip;] formation, the Hamiltoniam of Eq. (7) takes the form

e wlls
(P Dt ¢ g
(aT a) r A ) ( a

AT TT/\a ‘H also have physical significance, for example as inverse

) static susceptibilities. We refer to them stiffnessesdenot-

Here,qi and piTare the cqordlnates and momenta Qf the 0Sing them byx;, i=1, . ..,2N. In general, there is no simple
cillators, anda/ ,a;= (g; =ip;)/+/2 are bosonic creation and relationship between stiffnesses and frequencies, but several
annihilation operators. The matricdé4 andK are real and special cases provide important exceptions, as follows. Con-
symmetric, whileC is an arbitrary real matrix. Equivalently, sider first{ with C=0 andM =1, representing oscillations
I' is Hermitian, whileA is symmetric. PhysicallyM is the  of particles, all with unit mass, connected by springs with
inverse mass matrix of the oscillatork, is the matrix of  spring constant&;; . In this example, half of all the stiff-
spring constants, and couplings of the type represente@ by nesses are equal to 1, while the other half are the eigenvalues
occur, for example, in spin systems. It is convenient to defines; of the matrixK; the frequencies and stiffnesses are related

N

H=2 |wiala;. (12)

In addition to the frequencies, obtained as eigenvalues of
_ ) Q) or by Bogoliubov transformation df, the eigenvalues of

Nl NP

the 2N X 2N symmetric matrix by
M C wi=*+ k. (13)
H= cT K)' (8) A second special case arises for magnon excitations in

weakly disordered ferromagnets, which have a Hamiltonian

Two classes of system may be distinguished: those witt9f the form of Eq.(7) with M=K andC=0. In that case, the
time-reversal symmetry @=0), and those without @ stiffnesses are the eigenvalues Mf and K, and come in
£0) ' identical pairs. The frequencies are simply

We are interested in frequencies of oscillators described =K. (14)
by Eq. (7). From Hamilton’s equations of motion it follows
that these frequencies are eigenvalues of the non-Hermiti
matrix

aﬁfinal and important special case occurs when one stiffness,
say k,, is much smaller than all others. In this regime, an

approximate relation exists between the smallest frequency
( T —iK and the smallest stiffness:

iMiC )E‘TzH‘ © w01 = K. (15

To derive this relation, a more detailed analysis of the
structure ofH and(} is required. Sincé{ is a real symmet-
ric matrix with positive eigenvalues, it can in general be
represented as

H' =

They are real if the system is stable, in which c&eas
bounded from below, the eigenvaluesgfare positive, and
we can write{=Q'Q with Q real. In these terms, to find
frequencies we need to diagonalize the matrbQ'Q, but
its eigenvalues coincide with those of another matrix H=UA?UT, (16)
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whereU is an orthogonal matrix and;; =\;g;; is the diag-  way, one findsd(x)oc k2 at bothk<A and x>A. Com-
onal matrix whose eigenvalues are square roots of the eigeputing the eigenvalue density 6f=Qo,Q" using superin-
values ofH. The corresponding matriQ can be written as tegrals, one finds thi p(w) is independent ofw for w
. <A, while p(w)xw 3 for @>A. It is clear that in the
Q=AU oUA. 17 regime w<A, Eq. (22) is indeed applicable, while in the
Introducing an antisymmetric matr&=UTo,U, we have ~ OPPosite regime it breaks down.

Qi =NjAjjN (18 B. Chiral symmetry
Suppose initially that one of the stiffnesses vanishes, so that To study stiffnesses of bosonic oscillators with
N1=0. Then at least one frequency must vanish as weII.:QTQ, it is advantageous to introdu@é, an auxiliary ma-
since def) =detH. In fact, becausé€) is antisymmetric and  ix in which Q andQ" enter linearly.
its frequencies come in opposite pairs, two frequencies are
zero. The mathematical mechanism for this is clear from Eq. 5 ( 0 Q
(18). First, since)1;=;,=0 for all i, one of the eigenval- H=| .1 .
ues of(Q) is w;=0, with an eigenvectop!")= §,;. Second, Q0
all other eigenvalues can be found by diagonalizing a smalleppyiously, the eigenvalues; of 7 are square roots of the

: ) s . ©
(rjnatrlx Q] I where 2<i,j=<2N. BUtd% '? arrl] Odd'l stiffnesses«; of H, and the matrix/{ plays the role of the

Imensional antisymmetric matrix, and therefore has at eas§quare root of the original bosonic Hamiltonigh On the
one zero eigenvalue, with an associated normalized eigen-

vector which we write agi{®, where {*)=0. Now treat
small nonzero\; using perturbation theory about this limit
with A;=€. The change i) is

(23

other hand, the off-diagonal structure &f is the defining
feature of the chiral symmetry class, discussed in Sec. Il.
' While the direct implications of this connection are limited,
because the elements Qfare not independent random vari-
80 = €( AN+ NiA;; 81) (1= 84, 6y). (190  ables as would be the case in a random matrix ensemble,
techniques originally developed for systems in this symmetry
Under this perturbation, the doubly degenerate eigenvalugiass will prove useful in our treatment of one-dimensional
w=0 of Q) Sp"ts intOia)l, determined by diagonalizing the systems, as we describe in Sec. V and Sec. VI.

2X2 matrix To study the frequencies of the oscillators, as opposed to
N their stiffnesses, a second auxiliary matrix
g
0 22 All)\l 'ﬁ. ~ 0 Q ”
el oy : (20) “10,07 0 (24)
= AP 0 . . o .
TR is helpful. We shall call matrices with this structuchiral
Hence bosonic matricesThe eigenvalue equation fdf’ can be
written in the form
2N
w1= N1 2, Aghig D) o2 iy (2D 0 Q) (10
= = , 25
= o 0/"=lo o Ve¥ (25
barring an accidental vanishing of the matrix element | . . o .
LA NG which of course inherits its structure from Hamilton's equa-
i .

The usefulness of this result lies in the following. Con- tions. A . . . . .
. . : - The main difficulty in making use of these ideas is that, in
sider a random system with bosonic excitations that are lo-

calized with a finite localization length at low frequenc ,andpractice, onIyH is known initial'ly anq a method must be
let the density of stiffnesses hia(x)q We expectqthat gach developed to findQ. Moreover,Q is defined only up to a left

localization volume can be treated as an independent systerWmt'p“c"ﬁIon by an arbitrary orthogonal matrix. For the in-

o . froduction ofQ to be helpful, it will be important that it can
and that each low-frequency excitation will have afrequencybe chosen to have a simple form, with, for example, only

much smaller than that of other excitations in its own Iocal-Short ranae counlings. We shall show that this is indeed pos-
ization volume, and will therefore be associated with a single 9 pings. P

small stiffness. Applying Eq(15), the density of excitation Sible for a variety of problems.

frequenciep(w) for small @ is
IV. BOSONIC EXCITATIONS: GENERAL ASPECTS

— 2
plo)=d(w9)e. 22 It is a feature of models for disordered fermionic systems
One interesting check of these conclusions is provided byrom the chiral and Bogoliubov—de Gennes symmetry
random matrix theory. Consider an ensemble of real randonalasses that their characteristic behavior appears only close to
matricesQ, with size N>1 and probability distributiorP  the reference energy, identified by the discrete symmetry of
«exp(—Q'Q). Let A be the typical magnitude of the eigen- the Hamiltonian, while spectral properties at energies far
value of H=Q'Q closest to zero. Fol{ generated in this from this are indistinguishable from those of the Wigner-
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Dyson classes. In a similar way, for bosonic excitations inMoreover, from a calculation using the Born approximation,
disordered systems we expect it to be properties at low frethe Rayleigh scattering rate * varies asr '« w%™!. (This
quency that that are of particular interest. Examples of suchlependence combines a factor«ft from the frequency de-
excitations can be divided into two categories, according tpendence of coupling to disorder, and a factowdf * from
whether or not they are Goldstone modes, associated withthe density of final states for scattering processks one
broken continuous symmetry. In this section we summarizelimension, disorder localizes with a localization length pro-
for each of these categories some of the previously estalportional to the mean-free path, which herejs, and sé
lished results. We also illustrate the introduction of a chiral

Hamiltonian for a one-dimensional phonon model. “w)xw 2 (27)

In two dimensions it is a familiar feature of electronic sys-
A. Goldstone modes tems that the localization length is exponentially largégh
(wherekg is the Fermi wave vector andis the mean-free

. o path: the equivalent parameter for the phonon problem is
Important instances of Goldstone modes in disordered, ; so that

systems include acoustic phonons in glasses and &ifoys,

and spin Wavés‘lzin dilute ferromagnets and antiferromag- E(w)cexp[we/w]?), (29
nets, and spin glasses, which in each case are isotropic in

spin space. In disorder-free versions of these systems, lowherew, is a disorder-strength dependent constant.
frequency excitations have long wavelength and are de- These results contrast interestingly with those for an anti-
scribed by equations of motion that involve macroscopicferromagnet which has randomness generated either by site
properties of the system: density, elastic constants, magnetilution (taken small enough that the system is above the
susceptibility, and spin stiffness. Disorder introduces locapercolation thresho)dor by substitution of impurity spins
fluctuations in the values of these quantities, but one expecwith a magnetic moment different from that of the host
excitations to couple only to fluctuations averaged over &pins>*™*In a discussion of the random antiferromagnet, it is
volume with linear dimensions set by a wavelength. Becauseseful to begin from the dispersion relation for spin waves in
of this, randomness only weakly affects low-frequency Gold-a two-sublatticéferrimagnetwithout disorder. At small wave
stone modes, especially in higher dimensions for which the&ectork, this has the form

averaging is most effective. Such averaging is demonstrated

by the low-frequency behavior of the excitation density ®?+(Ma—Mp)w=c?k?, (29

p(w), which above a critical dimensiod, varies with the whereM,— My, is proportional to the difference between the

same power Off" as in the d|§order-fre¢ system_. It is also two sublattice magnetic moments, which are taken to be op-
shown by localization properties of excitations: in one- and_ . . ) -
positely aligned. Settind,=M,, one recovers the usual

two-dimensional systems, the localization lengifw) di- dispersion relation in an antiferromagnet, with spin-wave

\S/eg?srisasg’” ?gxfgicziicze;?étgg'ﬁe'ne;'gsgég'%e?;':gﬁl speedc. For the random antiferromagnet, independent disor-
sthion ;Ne review qthe b)éhaviors and ) for er on the two sublattices generates random fluctuations in
9l ) £(w) the local value ofM,—M, about a mean value of zero.

phonons in alloys and for spin waves in diluted ar]t'ferro'Averaging these fluctuations over a volume of size set by the

magnets and Spin glasses, conS|der|_ng the effect of Wea%avelength in the undiluted system gives a random variable
disorder included in the relevant equation of motion. We als ith an amplitude that scales a2, Because of this, disor-

use the Hamiltonian for phonons in a one-dimensional .dlsorder appears in Eq29) via the term M,— M), which
dered system as an illustration of the general mapping tQ di+ 1 o . .0 .
. : : Scales a% . Above the critical dimensiod.= 2, disor-
chiral models, introduced in Sec. Il B. o . .
. X ) . der is irrelevant in the sense that this term may be be ne-
Consider first a scalar version of a model for acoustic 2 "
; . : . glected for smallv compared tav“. The value of the critical
phonons, in which a mode with frequenayhas coordinate

(r) satisfyin dime_nsion is also apparent f_rom a Born approximation cal-
q 9 culation of the rate for scattering of spin waves by disotder,

- -frequency limit far
Suppose that the speed of souridas random fluctuations in > dc, sincew7—* asw—0. Applying this approach below
Space' about an average Vah.,!ﬁ with On'y Short-range cor- the critical dimension, f0d<dc we see that EC{29) deter'
relations. Work on this and related problems is reviewed ifmines a relation between the length scale of an excitation,
Ref. 3, and an early treatment of localization in this contextwhich we denote by k[ and its frequency
was given in Ref. 2. The essentials for our purposes are as a4 )
follows. First, the fluctuations inc, averaged over a kK™ wock (30
d-dimensional volume of size set by the wavelength in th
disorder-free system, decrease comparechtwith decreas-
ing frequency as»??. Thus in this case the critical dimen-
sion isd.=0, and for anyd>d, the excitation density ap-
proaches the form found without disorder at low frequencyand

1. General aspects

€at smallw. This implies ford=1,

plw)rw M (31)
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fw)cw 28, (32 K, as in Eq.(13). Further discussion is easier in the con-

) tinuum limit: replacing the indexwith a continuous coordi-
We expect all these results for low-frequency behavior to bgatex, the Hamiltonian becomes

characteristic not only of disordered antiferromagnets, but
also of spin glasses, since the two systems have in common

2 2
the crucial feature of a magnetization density that is locally H =J dx P7(x) + k(x)/i 400 ) l (35
nonzero and random, but has zero average. A detailed treat- 2 2 \dx Vm(x)

ment of excitations in spin glasses, however, is much mor
difficult than in weakly disordered antiferromagnets, because.
for spin glasses the ground state is generally disorderion Ka(x)
dependent and unknown. Instead, the established approach is

a hydrodynamic on&2° which leads to linearly dispersing Ka(x)= 1 d K d qx)
modes with a speed determined by the macroscopic spin ax)=- m& (X)& Jm(x)
stiffness and susceptibility. In the light of our discussion, we

expect these hydrodynamic results to be correctdford, . Note that the operatak must be positive definite, in order
By contrast, for one-dimensional systems, microscopic calthat the chain is stable. And indeed, definiagx)= Vk(x)
culations are possible since frustration is absent and grounghdb(x) = 1/ym(x), it may be expressed as a square, in the
states can be determined. Results from computatioins  form K=Q'Q with Q=a(x)(d/dx)b(x). Introducing a chi-
one-dimensional models gi(w) and £(w) coincide with  ral Hamiltonian, as in Eq(23), we then have

Egs.(31) and(32), above. Similar calculations are also pos-

sible in higher dimensions for the Mattis model, which

30 find the stiffnesses, one must solve the eigenvalue equa-
= kq(x) with

(36)

shares with one-dimensional models the features that frustra- 0 a(x) &b(x)

tion is absent and the ground state is known for each disorder y=wy. (37
configuration. Ind=2 these yielth( ) = w|In(w)|, where the b(x) a a(x) 0

logarithm is characteristic of behavior at a critical dimension, dx

and ind=3 they givep(w)>*w?, in agreement with hydro- ) o .
dynamic theory? A discussion of excitations in the Mattis At the equivalent point in his treatment, Dyson distinguishes
model, building on the methods described in this paper, willPetween different possible ch0|c§as for the form of disorder.
be presented elsewhet®. In one case, termelype |, Eq.(37) is effectively replaced by

Spin waves have also been investigated the infinite-  EQ- (75 below (with (V(x))=0), leading to the singularity
range Heisenberg spin glass: one of the main findings is 8f Ed- (61) in p(w). An alternative, termedype Il retains

density of states that varies with frequency ) x w2, instead Eq(37) with onIy_ short-range correlations ia(x)
We have not been able to make contact between this resi@ddb(X), representing disorder that couples only weakly at
and the approaches described here. small x, because it is multiplied by spatial derivatives. This
yields?® a constanp(w) at smallw, in agreement with the
2. An example: Phonons in one dimension general arguments set out following E&6). Zimar?® has

N : . given a detailed discussion in this context of the conse-
As a next step, it is interesting to return to acoustic ences of different tvnes of disordér
phonons in disordered systems and use the one-dimensional yp '

version of this problem to illustrate some of the methods set o
out in Sec. lIl. In fact, in this context the mapping to a chiral B. Non-Goldstone low-energy excitations

problem was exploited in celebrated early work by Dy8bn,  without Goldstone modes, the very existence of the low-

(33

2
pi ki 2
—Zmi+§(Qi—Qi71) -

L
2 2

and also in calculations by Zim&fi. Consider a one- |ying excitations on which we have focussed our attention is
dimensional chain of particles with masses, connected by ot guaranteed. In fact, as seems first to have been appreci-
nearest-neighbor springs with spring constdqatswherem;  ated in the context of atomic vibrations in glas&e® disor-
andk; are random and positive. Lpt andg; be the momen-  der itself may provide a route to a gapless spectrum. The
tum and displacement of thi¢h particle. The Hamiltonian is  essential ingredients are that the ground state should depend
on the disorder realization, and that excitations at low-
H— 2 frequency should be localized by disorder. Then it is reason-
; able to consider excitations within each localization volume
_ ) ) _ separately, and to expect disorder configurations that support
It is_convenient to make the canonical transformatian |ow frequency excitations to occur with finite probability.
—/mip; andg;—q;//m;, giving Roughly speaking, these excitations occur in regions where
5 the ground-state configuration is unusually sensitive to small
H=2 9 Qi (34) changes in the disorder. In this section we summarize an
i \/ﬁ \/m ' established approach to this phenomenon of disorder-
generated low-frequency excitations, which concentrates on
which is a particular case of the general bosonic Hamiltoniara single coordinate and its conjugate momentum. In subse-
Eq. (7), in whichM =1 andC=0, so that eigenfrequencies quent sections we apply the formalism developed in this pa-
are related to stiffnessesthat are eigenvalues of the matrix per to study the phenomenon more generally.
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BOSONIC EXCITATIONS IN RANDOM MEDIA

Following Il'in, Karpov, and Parshif’® consider a one-
dimensional anharmonic oscillator with momentgmmass
m, coordinateq, and potential(q). The Hamiltonian is

p2
=—+ .
H=5—+U() (38)

PHYSICAL REVIEW B68, 134207 (2003

b b b
U()=U(do) + 5 (A do)*+ £(a—Go)*+ 54(a—do)*
+ee (44)

at O(q—qo)*. After truncation, we requirgds| <3b,b, in
order thatU(qgq) <U(q) for all g. This further suppresses the

ChoosingU(q) to be a smooth ran.dom funqtior_l, we wish to probability density for small curvatures, giving
study the frequency of small-amplitude oscillations about the

absolute minimum irJ(q) and, specifically, the probability

P(b)

distribution of this frequency. To give a more precise mean-

ing to the notion of a smooth random function, we expand it

in Taylor series

n

V(@)= 3 anr, (39

where, to fix the zero of energy, we 968{0)=0. We take
the a, to be random with joint probability distribution
P(a;,a,, ...). Weshall assume th®(a;,a,, ...) isfree

/355
:bzf dqodbA---f‘ “* dbs P(ag.a,, ...)xb32
[3b,b,

T VoP2b4

In turn, this brings the frequency distribution at smalito
the form

plw)xw”. (45

One expects that the result of including higher-order terms in

of zeros and divergences, but its detailed form will not beEd. (44), and of ensuring that no more distant minima are

important.
Suppose that(q) has a minimum atj=qq. In order to

lower than the one &y, will be to change the constant of
proportionality but not the power in E¢45).

discuss excitations of the oscillator, we first Taylor expand A question arises in an application of these ideas to sys-

U(q) aroundg=qgq, writing

U(q):n; b, (A=q)" (20"

n! n!

(40

The probability distribution of the coefficients, is related
to that for thea, by

P(q01b21b31 )
d(ay,ap,ag, .. .)|
=|det P(a;,a,,as3, ...).
d(o,bz,bs, .. .)| (21,8225 )

Evaluating the Jacobiaii,one finds

P(qo,bz,b3, ...):|b2|P(a1,a2,a3, ) (41)

The probability distribution ob,, the curvature of the po-
tentialU(q) at a turning point, is hence

P(by)=[bs] | daotbdby: - Plas,az.as, ). (42

Under the assumption th&(a;,a,, ...) is free of zeros
and divergences, this integral remains finitdogs-0, and so
for smallb, we haveP(b,)«b,.

Small amplitude oscillations abouaf, have a frequency
wx+/b,, and it then follows that the probability distribution
of these oscillation frequencies varies for smalhs

plw)*ws. (43

It is a further restriction to demand that a minimurmggt
is the global minimum of U(q). A full treatment of this

tems with slow relaxation, such as glasses, which are un-
likely to reach their ground-state in experimental times:
should excitations be described by the ground state result,
Eq. (45), or by the result for local energy minima, E¢-3)?

In fact, one expects that the ground-state result should also
apply to metastable low-temperature states, because it de-
pends mainly on excluding local minima which are close to a
deeper neighboring minimum. Such pairs of minima are not
likely to be separated by large energy barriers and relaxation
between them will presumably be fast.

Clearly, a serious limitation of this discussion is that it is
restricted to a system with a single coordinate and conjugate
momentum. As with our closely related discussion of random
matrices, preceding Eq22), we expect the result to apply
quite generally, provided excitations are localized with a fi-
nite localization length at low frequency. In these circum-
stances, the coordinatgis interpreted as being the relevant
degree of freedom for a low-frequency excitation within a
localization volume. One of our objectives in Sec. V and Sec.
VI is to provide detailed evidence for the more general rel-
evance of Eq(45). similar behavior has also been reported
recently in numerical studies of a three-dimensional model
of coupled anharmonic oscillators, described in Ref. 40.

V. DISCRETE ONE-DIMENSIONAL
RANDOM-FIELD XY MODEL

In this section and Sec. VI we study the excitations of the
one-dimensional, classicalY spin chain in a random field.
This model provides a simple but nontrivial example of a
system with bosonic excitations which are not Goldstone
modes, and has been discussed previously in Refs. 41 and

constraint would be difficult but is fortunately not necessary:42. In what follows we apply the general approach described

the crucial condition is thatJ(q) should have no nearby
minima deeper than the one@. For that it is sufficient to
truncate the expansion

in Sec. lll. First, we set out definitions and write down the
Hamiltonian for small amplitude excitations. Second, we
find a localQ which satisfiest=Q'Q. As a result, we map
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our problem onto a well-known one, involving a one- BecauseK is tridiagonal, the matrixQ can be chosen
dimensional chiral Hamiltonian. We next review establishedbidiagonal, with nonzero element®;=A; and Q;;_;
results for such one-dimensional chiral Hamiltonians, which=—B;_; which satisfy

can be in one of two regimes, depending on the details of

their disorder distribution. We use the mapping to obtain

p(w) both numerically, andin Sec. V) analytically.

A. Definitions

The Hamiltonian for the random-fieldY spin chain is

N
3 123 cos i~ i1~ 3 hicod i~ x).
(46

HereIl; are momenta conjugate to the spin anglgs ex-
change energy is represented bgos,— ¢;.1), andh; and

N| -

H=

Ki=A?+Bf, Kii1=—Ai1Bi. (51)

To show this and find\; andB;, it is helpful to use the idea
of a partial energy, first introduced in this context by
Feigelmarf® £(¢,) is defined to be the ground-state energy
of a subsystem which consists of sitesi, considered as a
function of the orientation of the boundary spi#;. For-

mally,

a(¢i>=¢m_in,12 [1(hj= i+ 1) +hi(d]+hi($).
Lj<ii<i
' (52

xi are the amplitude and phase of a random field. It is con-

venient to introduce the notation(¢)=—cos(p) and

hi(¢)=—h;cosi@—xi)-

While the kinetic energy is quadratic in the momehiig

the potential energy is strongly anharmonic in the coordi-
natese; . We want to find the ground-state spin configuration

It satisfies the recursion relation

E(p)=min[l(¢—¢)+& ()] +hi(h). (53
v

#° and the frequencies of oscillations about that groungNow let the value ofy which results from the minimization

state. The ground state configuration satisfies

| ese=0 (@7
=0 V.

I =

ExpandingH about¢? to quadratic order, Eq46) reduces
to an expression of the general form given in Ef), and
specified by the matrices, M, andK. In this caseC=0 and
M=1. The symmetric matrix of spring constant&;
=32H/a¢ia¢j|d,:¢o, is tridiagonal, with nonzero entries

Kii= 31 ()= ¢2_ )+ 5 (60— ¢, )+ 5hi( i)
(48)

and

Kii+1=Kis1i=— 51 (60— df1 1) (49)

As discussed in Sec. Ill, witM, C, andK of this form, the
excitation frequencies of the system awe= =+ \/x;, where
the stiffnessex; are the eigenvalues ¢f. Our tasks, then,
are the linked ones of determinin;l_if’ and diagonalizing.

B. Mapping onto a chiral problem

SinceKj; is a real positive matrix, it can be written as the

square of another real matr@@, in the formK=Q'Q. Our

strategy is to findQ and then study the related chiral Hamil-

tonian
- 0 Q
H:(QT 0)' %0

in Eq. (53) be ¢y(¢), and definap; _, as a function ofp; by
& _1(i) = o(#i). With this notation, the condition that the
right side of Eq.(53) is at a minimum takes the form

=0yl (bi—di—1) T dpE—1(di-1)=0. (54)

By differentiating Eq.(54) with respect tog;, remembering
that ¢; 4 is a function of¢; in the sense described above,
we find

depi1 _ Iy (hi= i)
dé; é’i'(¢i_¢i—1)+325i—1(¢i—1).

(59

In addition, we differentiate Eq53) twice with respect to
¢; , again remembering tha 4 is a function of¢, , to find

I5hi(d1) = T5E(bi)— 51 (i — 1)
" I5Ei1(i—1)
I (hi— di—1)+PE_1(i—1)

This allows us to solve Eq$48), (49), and(51), obtaining

(56)

I (p)— )12
(9¢|(¢| ¢|—1)+a¢gl—l(¢|—1)
and
BZ =5l (01— )+ 5E(H)), (58)

As the frequencies coincide with the square roots of the eiwhich completes the derivation 6J.

genvalues oK, we will use w to denote the eigenvalues of

H in this and the following section.

Let us examine the chiral Hamiltoniak, Eq. (50). By
rearranging its rows and columns it can be put into the form
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0 B, O 0 0 o0
B, 0 A, 0 O 0 O
0O A, 0 B, O 0 0
- 0 0 B, 0 A; 0 0
"=lo o0 o0 A 0 o o[ g
0 0 0 0 0O --- 0 By
0 0 0 0 0O -~ By O
(59 10’ o e 0’
which is familiar as a one-dimensional tight-binding model ®
with only off-diagonal disorde??®and is also referred to as _ _ _
a random chiral one-dimensional Hamiltonian. FIG. 1. The integrated densitj¥(w) plotted as a function of

frequency w using logarithmic scales. Dashed, dotted, and dot-

dashed lines represent disorder strendths0.3, 0.1, and 0.01,

respectively. For all three cases, the integrated density converges at

large o to that of the disorder-free system, represented by the full
There has been extensive previous work on oneline which has gradient 1.

dimensional models of the type represented by(E§), with

disorder in theA; andB; which is uncorrelated and chosen to and hencea=(#5£)/2. We argue in Sec. VI thai3€)>0.

have a simple, known distribution. The results serve as &Ve therefore expect low-frequency states to be localized

guide for our calculations, and we summarize them herewith localization Iength§o<<a§5€>*1, and with a power-law

C. Established results for one-dimensional chiral problems
and implications for XY model

Parameterize the matrix eleme{sandB; as density, as in Eq(63). Quite separately, if states are local-
ized, the assumptions that led to resu(iw) = w* in Sec. IV
Ai=1+a+dA;, Bj=1-a+sB (60)  are justified, and so we expect the expon@nt4. We post-

and takesA, and 5B, to be independent Gaussian randomPone further ar_nalytical work to Sec. VI, and first treat the
variables with zero mean and standard deviatioBehavior ~Problem numerically.
at smallw is very different according to whether or nats

zero. D. Numerical study of the one-dimensional random-field

For a=0 and w<o, the density of states has a XY model
singularity* at =0 of a type first obtained in a related  Our numerical procedure involves several steps. First, for
problem by Dyson, a system of length., we construct the functios;(¢) for

eachi by iterating Eq.(53) from i=1 toi=L. Then we
(62) determineq‘)io, iterating fromi =L to i=1 and using the fact

plw)x ||0—3, 0 .0 o ) ;
o|log’e| that for eachy;, ¢;_; minimizes the right-hand side of Eq.
and the localization length of these states divergesafor (23 Knowing the ground-state spin configuration, we com-
0 as pute the matrix elements appearing in the chiral Hamiltonian
Eq. (59), using Egs.(57) and (58). Finally, we employ the
Ew)=|In(w)]. (62  transfer-matrix technique developed specifically for such

) Hamiltonians in Ref. 24 to find the integrated density of
By contrast, fom 0 (sometimes referred to as the staggeredstates. For the random field we choose a uniform distribution
regimé®) the density of states varies’ds of [h;cos(y.),hisin(x)] over a disk of radiu®, independently
for eachi. We find that it is sufficient for each disorder
strengthD to study a single realization in a system of length
with a powerg that depends om and . The localization ~L=1C". . . .
length is finite in the smal limit, and varies for smala as Our results for the integrated density of stiffnesses,
goc|al 7L N(w)=fgdw’p(w"), are shown in Fig. 1. Behavior at large
While the A; and B; which arise in our treatment of the « approaches that in the disorder-free system, as indicated.
XY model have specific correlations not present in the chiraf\t small w we expect the power law
problems studied previously, some comparisons are useful. (B+1)
In particular, considering for simplicity weak disordér, N(w)=*w ' (65)
<1, the system arising from theY model turns out to be in Thjs form and also the valug@=4 are both already apparent
theo stagogered regime. To see thlsé note that for weak disordgh Fig. 1, as was also the case, at lower precision, in earlier
|7 — pi_1|<1, so thatdyl (¢ — ¢ 1) =1, numerical results of Fogl& for much shorter chains. It is
Lo 0 L 0 more instructive, however, to observe that for a power-law
Ai~1=304&-1(Pi_1), Bi=1+3du&(d7) (64 density, dimensional analysis fixes the dependence on disor-

plw)*xwf, w<a, (63
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10° {= 05+ O5hl po(X), X ]} = w?y. (68)
Just as in the discrete case, because this equation describes
deviations from a minimum, all normal modes have positive
stiffnessk=w?. As a result, the operator appearing in Eq.

3 . (68) can be written as a square. We set
=z 10
w'a d2 2 T
= —— +dyh[$o(x),x]|=Q Q, (69)
dx?
e ‘ whereQ= —d/dx+V(x). In other words, we require a func-
107 10”7 10° tion V(x), which we term the chiral potential, that satisfies
(0]
dV(x)
FIG. 2. D®°N(w) vs w, for disorder strength®=0.3, 0.1, and “ax +V2(x)= a(zﬁh[qﬁo(x),x]. (70)

0.01, shown with dashed, dotted, and dash-dotted lines, respec-

tively. The straight line has a slop@{-1)=5. In order to understand properties of the chiral potential, it

is useful to introduceg(¢,x), a continuum version of the

~2p3 :
der strengthD to be p(w)=D 2/Bw”. In Fig. 2 we plot partial energy? defined following Eq.(52) by

D®3N(w) as a function ofw, showing collapse of data at

small w for three different disorder strengths, and power-law (X 5
behavior with3=4. step)= min [“ayi(a,6) 7 hsmyll (7D
We conclude that, while the exponeBitappearing in the d=¢

density of states is, for a generic chiral problem, disordeiSimilarly, the continuum version of E¢53) is

dependent and hence nonuniversal, the particular disorder

generated in the mapping from the random spin chain, fol- E+3(34E)°=h(,X), (72
lowing Egs.(53), (57), and(58), has a specific distribution hich can be thought of as a Hamilton-Jacobi equation for
and the correlations necessary to produce a universal densiﬁl(

4 . . e action& of a particle with coordinateb moving as a
of statesp(w)xw”. In the following section we present the . . ; ; !
. ) . function of time x in the time-dependent potential
analytic derivation of this result.

h[ ¢(x),x]. In addition, the continuum version of E(54)

relates the ground-state configuration to this action, via
VI. ANALYTIC TREATMENT OF THE RANDOM-FIELD

XY MODEL IN THE CONTINUUM LIMIT depo(X)

In this section we continue our examination of excitations
in the one-dimensional random-fielY model, using the |t is easy to check that by writing
continuum limit to make analytic progress. We find both the
localization length as a function of disorder strength and the V(x)zafbé{ bo(X),X] (79

density of states as a function of frequency, confirming heu- . .
ristic arguments and numerical results given above. we solve Eq.(?O). _Thus the chiral potentiaV(x) may be
expressed simply in terms of the dependence of the ground-

state energy of a half system on the boundary sp{ix): the

half system has coordinate taking values in the range 0
The continuum limit of the random-fielY spin chain is  <y=x. With V(x) in hand, we wish to study the continuum

reached at weak disordér,<1. In this limit it is possible to ~ version of Eq.(59): the chiral operator

replace the discrete indéxwvith a continuous variablg, and

A. Mapping to a chiral problem

the Hamiltonian of Eq(46) becomes _ i
5 ( 0 Q) 0 ax TV 5
1 1 = = !
H= [ ax 3124 S0 +h 600 |, (60 @O L o

with h[ ¢(x),x]=—h(x)cod #(X)—x(X)]. As in the discrete which has eigenvalues w that are the square roots of those
case, we are interested in the configuration of sphgéx) appearing in Eq(68).

that minimizes the potential energy. This configuration satis-
fies B. Treatment of one-dimensional chiral problems

—&§¢0(x)+(9¢h[¢o(x),x]=0 (67) As with the lattice version, discussed in Sec. V C, the

spectral properties of{, Eq. (75), have been studied exten-
and the amplitudes of normal mode excitations about theively with simple choices for the probability distribution of
ground statep, obey V(x). Behavior is as summarized for the lattice version in
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Sec. V C; a particularly detailed study is given in Ref. 44.with B=a—1. From an extension of this approach, one also
Here, for completeness we sketch the derivation of the resufinds™ that the localization lengtl at low frequency varies
that is of most importance for our work: the density of stateswith the staggeringV(x)) as é~(V(x)) %
at low frequency in the staggered regime, wh@véx))>0
for the continuum system plays the same rolaa® for the C. Calculation of the density of states
lattice model.

Following Ref. 44, consider the coupled first-order differ-
ential equations

A central difficulty of our problem, of course, is thé{x)
does not have a simple, given distribution. Instead, it should
be determined by solving Eq70), or calculated from the
partial energy using Eq74), after in either case first finding

0 — i+V(x) the ground-state configuratiapy(x), using Eq.(67) or Eq.
dx ("bl(x)) :w( ‘flll(x)) (73). Our detailed calculations are based on E@$®) and
d Pa(X) Pa(X) (67). Before presenting these calculations, it is useful to de-
&JFV(X) 0 velop some qualitative understanding by an alternative route,
(76) using the partial energ§(x, ¢) and its connection to Burgers
turbulence.
for x>0, with boundary conditiong/,(0)=0, ¢,(0)=1.
From the node counting theorem, the integrated density of 1. Analogies with Burgers turbluence
lstaters] IS gllvendby_the der;]sny of zeros M(X.) per unit The evolution ofé(x, ¢) with x is described by Eq(72),
Sngt " ntro uclng the par?]metrlzanon Y1(x) which is similar in form to the much-studied Kardar-Parisi-
= p(X)Sin #x), 42(X)=p(x)cos(x), one has Zhang (KPZ) equatior®® In this correspondence; and ¢
do(x) play the role_s of time an(_d space coordinates, respectively.
ix =w—V(X)sin26(x)]. (77) The stochastic KPZ equation, however, which reads
IE+3(046)*=DF5E=N(,X), (82)

Thus we require the average rate of increase in phase with
length,dé(x)/dx. To find this at smalk, note that, by as- differs from Eq.(72) in two respects. One is in the absence
sumption,V(x) is mainly positive, and for positivé(x) Eq.  of the dissipation term, with coefficiel; the other is in the
(77) has stable fixed points close t=nm, with n integer.  correlations of the force)(¢,x). The absence of dissipation
Rare fluctuations o¥/(x) which are negative for a long in- is of limited importance, because the relationship between
terval in x allow #(x) to grow, evolving with increasing.  the solutions of Eq(82) in the smallD limit and those of Eq.
from one such fixed point to the next. Suppa¥a) leaves (72) is well understood: while Eq(72) generally has solu-
the vicinity of one fixed point ak=x; and arrives in the tions with many branches, corresponding to local minima in
vicinity of the next atx=x,. Forx; <x<x, we neglectw in  the energy of the spin chain, by taking the solution of Eq.

Eq. (77) and obtain (82 for D—0 one finds the envelope of absolute ground
states as a function of the boundary sgifx). For this rea-
de son, it is rather natural to study E(B2) in our context.
f W: _f dxV(x). (78) By contrast, the nature of force correlations is more sig-

nificant: while in standard form the KPZ equation has a ran-
We estimate the integral on the left-hand side by noting thatlom forceh(¢,x) that is white noise in botx and ¢, our
the most important contribution comes from the end pointsjnterest lies with correlations that are long rangedbinand
where 6(x;)~nm, 6(x,)~(n+1)7 and sin(®¥)~w. For #  have the form
to increase byr we therefore require a fluctuation W(x) _
which is sufficiently negative and extends over a sufficiently  (h(¢1,X1)h($2,%2))=h cog ¢p1— ¢5) 5(Xx1—X5). (83)

large interval inx that Such correlations have been studied previously, in the con-

« text of Burgers turbulence, where the Burgers equation, Eq.
|n(w)>f zdxv(x), (79 (84) [equivalent to Eq(82) with D—0], together with the
Xq correlator Eq.(83), describes motion of a one-dimensional
fluid.

Let P(w) be the probability per unit length for such a fluc- In this analogy, we views(x) as the coordinate of a par-

tuation to occur: the integrated density of staf(w)dw, ticle as a function of timex, and interpret Eq(67) as the

is simply P(w). It is natural to expect this probability to be gqyation of motion for the particle. Imagine a fluid of such

exponentially small in Ing) for smallw, so that, introducing  particles, without pressure and stirred randomly with force

a constant, correlations derived from Eq83). Let u(¢,x) =dd¢/dx be
the velocity, which satisfies the Burgers equation

P(w)~exgaln(w)]=w" (80
—+ =
and hence U+ UdHu=dgh(,X), (84)
where comparison with Eq(72) shows thatu=d,E. The
p(w)~ P (81)  chiral potential is therefore given bBy(x) = d,u[ ¢o(x),X],
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the velocity gradient in a one-dimensional fluid flowing in a This equation should be integrated froxs=0 towardsx
time-dependent potenti&l(4,x), calculated at a point that =L, with initial condition V(x)—c for x—0 since this is
moves with the fluid. the behavior oﬁfbé’[ ¢o(x),x] at smallx andV(x) is related
From literature on the Burgers equati¢see Refs. 46— to the partial energy by Eq74). Crucially, Eq.(86) is un-
48), or alternatively by thinking about the ground state of astable in the sense that, ¥(x) reaches sufficiently large
spin chain as the boundary spi(x) is varied;” one arrives  negative values foW?(x) to dominate overf(x), the solu-
at the following picture foré(¢,x). As a function of¢ it tion escapes towardg(x) = —c, with the form V(x)o(x
typically consists of a few piecewise smooth sections, which-x.) "1 asx approaches,, the position of the instability,
meet at cusps that are local maximadgt,x). These cusps from below. If such an instability is reached, it signals the
in £(¢,x) are negative discontinuities shocksof the Bur-  fact that the trajectoryby(x) no longer represents the abso-

gers velocity fieldu(¢,x), at which lute ground state of the spin chain but is instead a local
maximum in the energy as a functional of configuration. If
lim[u(é+e,x)—u(¢,x)]<0. (85  the forcing term is derived from the ground-state configura-

x=0 tion usingf(x) = &ih[d)o(x),x], it will have correlations that

ensure this instability is never reached. But if we treat Eq.
n(86) as a Markov process in the way we set out below, some
realizations will prove unstable in this sense. Such trajecto-
ries should be discarded, and this can be arranged by supple-

They occur at the points where the ground-state spin co
figuration of the half chain changes discontinuously ¢as
varies. With increasing system leng#y they undergo an

evolution in which existing cusps merge and new cusps ar : ; ; o
born, at matching average rates. If the trajectory ofaparticl?nentlng Eq.(86) with absorbing boundary conditions at

. . ; (X)=—o0. The surviving trajectories must be weighted in
moving W'.th the Burgers fluid should meet a shock, the Pasrder to sample ground states appropriately, and we return to
ticle remains trapped by the shock for all subsequefRtrom this aspect in due course
these statements it is clear th&dr almost all boundary con- First we check that sbecifyin@ (x) and dygho(x) at x
ditions (L )] the ground-state trajectoryo(x) does notin-  _ =~ | integrating E(;]s(.67) and (700) togethexr, Sve indeed
terzsect any shocks. As a next s_tep, fro”_‘ this we expect thEf‘ntave a Markov process. This is seen most clearly by return-
<‘29¢5[ $o(x),x])>0, on the basis that, first, an average %fing to the discrete equations, taking E§6) in place of Eq.
_r7¢8(¢_,x)_z f9(,)u(¢,x_) overall ¢ must be zero, smc_e(qb,x) (70) and settingﬂil ~1 to obtain
is periodic in¢, while, second, an average restrictedd¢i
avoids negative discontinuities af ¢,x). Finally, returning V.
to excitations of the spin chain viewed as a chiral problem, Viz;l
we conclude that this is in the staggered regime and expect a 1+Vig
finite localization Iength§~(ﬁf/)6[¢0(x),x])>0; from di-

mensional analysis, we expegt-h 13,
~ Two weaknesses of the argument we have given are clear: =i 1+ 94E-1(di-1). (89)
first, @ more detailed treatment of averages over ground
statesgo(x) would be desirable; and second, it is not certainit is now clear that, since; is determined by, for j<i, it
that behavior known for chiral problems with disorder uncor-js independent of the functidm(¢). Moreover, by construc-
related _inx will necessarily_be present in our system, with tion, eachh;(#) is an independent random function. Return-
correlations ofV(x) determined from ground-state proper- ing to the continuum limit and noting the correlator for
ties. Nevertheless, results of the detailed calculations belowi(4,x) given in Eq.(83), we see that in E¢(86) we should
are consistent with the foregoing conclusions. take f(x) Gaussian distributed, with zero mean and cor-
relator

+a5hi( ). (87)

Similarly, in place of Eq(73), Eq. (54) can be written as

2. Path-integral treatment

To make further progress, we need to study statistical (f(x)f(y))zﬁ&(x—y). (89
properties ofV(x). We find that a direct attack on this prob-
lem using the boundary conditions that are physically appro- [n light of the discussion given in Sec. VI B, our next step
priate [in which the values oipo(x) are specified ak=0 s to find the probability of an unusually large negative fluc-
and x=L] is too difficult mathematically. Instead, we ap- tuation inV(x), integrated over an interval of lengthx,
proach it indirectly, by relating it to a version of the problem —x,. To this end, it is helpful first to defin§(a) by the
with simpler boundary conditions, in whiclgy(x) and  equation
dyo(X) are specified at=0. With the latter boundary con-
ditions, we solve jointly Eq(67) for ¢¢(x) and Eq.(70) for X2
V(x). To discuss the connection between the two alternative <exp( - aJ dXV(X)> > =exgdx—I1S(e)],  (90)
sets of boundary conditions, consider E¢Q) with an arbi- X

trary forcing term, written a$(x): where the angular brackets indicate averaging dyand we

will find that S(«) is independent of whenl is large. We
denote this probabilityfwhich appeared previously in Eg.
(80)] by Py(w) below, and calculate it using

dV(x)
dx

+V2(x)=f(x). (86)
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oo Therefore
Po(w)=maxf ~daexd —IS(a)+aln(w)]. (92
i
Po(w)xw®, (94
At small ® we can approximate the integral by its value at
the saddle point, determined from wherea is the solution to Eq(93).
JS Now we must comput&(«). A convenient method is to
—I&—+In(w)=0. (92)  derive from the Langevin equatio(86) a Fokker-Planck
o

equation, make a similarity transformation of the latter to
In turn, the maximization oh(remembering that the value of OPtain & Schrdinger equation, and express this as a path

« at the saddle point is itself a function bf gives integral. The absorbing boundary condition \&t —oo is
built in automatically in this approach. These methods are
S(a)=0. (93 described, for example, in Ref. 50. In this way we find

(99)

The path integrals in this expression are propagators imearby maximum, but we make errors of two kinds. First, we
imaginary timex for a particle moving with coordinaté(x) fail to exclude local minima that have no nearby maximum
in a polynomial potential, which i¥*—V(1—«) in the case and are separated by a large distance in configuration space
of the numerator an¥*—V in the case of the denominator. from the true ground state: we assufas in Sec. IV B that

For largel, both path integrals are dominated by ground-stateexcitations about such local minima have the same statistical
contributions, justifying thd dependence displayed in Eq. properties as those about the true ground state. Second, we
(90). In this limit, moreoverS(«) is given by the difference wrongly exclude true ground states that have nearby
in ground-state energies for the two potentials. It is clear thamaxima: we assume that those ground states which remain

S(a)=S(2— @) and thatS(0)=0. Henceay=2 and are characteristic of the whole set. We remark finally that if
the factorP,(w) is omitted, we obtain an excitation density
Po(w) > w?. (96) averaged over all configurations that are local energy
minima.
It is incidentally also apparent th4V)>0, confirming our To find thew dependence of these two weighting factors,
earlier argument that the chiral description of spin-chain exywe consider a family of nearby configurations(s,x)
citations is in the staggered regime. =do(X)+ 7(s,X) for x;<x=<x,, parametrized bys. The

To complete our calculation of the density of excitationscorresponding family of chiral potentials M(s,x)=V(X)
in frequency, a further step is necessary. We have so far \y(s x), and we restrict attention to sma#(s,x) and
considered spin configurationso(x) that are generated in \y(s x). The weightP,(w) appears because, in disorder re-
the ensemble of disorder realizations using fixed values fog|izations which generate negative fluctuationd/¢%), tra-
$o(x) and dy¢o(x) at x=0, and are local minima of the jectories ofg(s,x) as a function ok are compressed by an
energy but not necessarily the absolute minimum. We shouldmount which increases with the size of the integrated po-
weight these configurations by a fact®i(w), according 10 tential fluctuation. It is therefore determined by comparing
the probability that they appear in an ensemble with physi-; (s x.y with #(s,x,). The weightP,(») is determined by
cally appropriate boundary conditions, in whigh,(x) is  finding the probability for escape &f/(s,x) to negative in-
fixed atx=0 andx=L. In addition, to obtain properties of fjnjty, signaling the occurrence of an energy maximum.
excitations about the ground state, we require a further \ye find the evolution ofy(s,x) andW(s,x) in terms of
weighting factorP,(w), involving the probability that a con- /() py linearizing Eqs(67) and (70), respectively, obtain-
figuration is the absolute minimum in energy. This is, i”ing
principle, a difficult quantity to determirf&, because it in-
volves global features of the system, and we content our-
selves with a heuristic approach which is in a similar spirit to dy
our discussion of an anharmonic oscillator in Sec. IV B. Spe- ax - VX)7(sx) (97)
cifically, we discard all configurations that have a nearby
maximum of the energy. In this way we correctly exclude
local minima that are separated from the ground state by thand
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dw 3
ax +2V(X)W(s,x) = dgh(¢,x) n(s,X).

These equations have the solutions

(98)

7ﬂsx)=eX%deywy)vﬂ&XQ 99)
X1

and
W(s,x)zexp( —ZJXdyV(y)){W(s,xl)Jr 7(S,Xq)
xJ:dy expn(sfxzdzv(z))aj,h[%(y),y]”.
(100

Let us choose the parametrizatienn such a way that as
=0, 7(s,x1)=0 and V(s,x;) has a minimum. Then for
smalls, 7(s,x;)*s andW(s,x;)=s?. We findP,(w) as fol-
lows. For the integrated value &f(s,x) along a trajectory
from the family to have a value similar to that st 0, the

PHYSICAL REVIEW B68, 134207 (2003

VII. OTHER SYSTEMS WITHOUT GOLDSTONE MODES

In this section we discuss the extent to which the ap-
proach we have set out for the random-fiXd spin chain
can be extended to treat excitations in other models for dis-
ordered systems without a broken continuous symmetry. The
XY spin chain has two obvious and important simplifying
features: disorder couples only to one of the dynamical vari-
ables (@ but notll), so that frequencies are simply related to
stiffnesses; and the system is one dimensional. The calcula-
tions we have described involved several steps: mapping to a
chiral formulation; analytic determination of the excitation
density in frequency via a study of statistical properties of
disorder within this chiral formulation; and, for an efficient
numerical treatment, the use of a partial energy. As we
broaden the range of models under consideration, fewer of
these steps remain possible. We consider, first, a generic one-
dimensional continuum system, with a pair of conjugate dy-
namical variables at each point and disorder that couples to
both, and second, a specific example of such a problem, the
random-field Heisenberg spin chain. In these cases we find a
chiral description and introduce a partial energy, but are not

integral of W(s,x,) must not be too large. We hence selectable to determine statistical properties of the disorder appear-

those values of for which f)x(idxv\/(s,x)sl. Using Eq.
(100 and that fact thatfiide(O,x)=ln(w), this requires
|s|=w, which in turn implies that|7(s,x;)|sw® and

ing in this description. Instead, we derive for such problems
the general relation between densities of stiffnesses and of
excitation frequencies, suggested from an analysis of random
matrix theory in Eq(22) above. Third, for the random-field

| 7(s,%,)| =< w?. Since the physically relevant boundary con- XY model in two dimensions we show how to introduce a

ditions for the spin chain fix the value @f(x) atx=L (that
is, at largerx), we weight configurations uniformly in
7(s,X,) and conclude thaP;(w)*w?. Turning to P,(w),

we require thatW(s,x,) calculated using our linearization

should not be large and negative for aygince otherwise a

full treatment, including nonlinearities, would with high

probability result in escape. MinimizingV(s,x,) with re-
spect tos, using Eq.(100), we require

minW(s,x,)x—w 21?°=—1,
S

(101
where

. (102

X2
sz dx
X1

exp( 3fxxdyV(y)

Iyhl do(x),X]

chiral description, but leave applications of this for future
work. For all these problems, we expegdiw) < w? at small
w, on the general grounds discussed in Sec. Il

A. Generic one-dimensional problem

Consider a one-dimensional system with conjugate dy-
namical variablesp;(x) and ¢,(x), and the Hamiltonian

1((d¢.\? [de,
HZJd4§H37 *«—‘

dx
We wish to study harmonic excitations about the ground
state: fori=1,2, let$? be the configuration that minimizes
the energy, Eq(105), and writeh;= ¢+ ;. Expanding to

2

+h(¢11¢21x)

For smallw and largdx,—x,|, | is a random variable whose quadratic order inj;,

distribution is independent ab, and hence the probability

that minW(sx)=—1 is Py(w) > w.
Combining these results with the form derived Ry(w),

we find an integrated density of states for excitations, aver-

aging over all local minima of Eq46), which varies as

N(@)xPo(@)Py(w)=w?, (103
while for the global minimum we find
N(w)*Po(@)P1(0)Py(w)=w®. (104

HenceB=3 or 8=4, in agreement with Eq$43) and (45).
Strikingly, the behavior derived here for the random-fi¥M

— 92+ 52«51“
= (1006

dg,94,h )
d4,04,h

— g+ d4h

To write this asH=Q'Q and findQ, we essentially repeat
the sequence of arguments which led from Ef) to Eq.
(75). We introduce a partial energy( ¢, ,¢,,x) which sat-
isfies

1
e+ 5

o€

9E\? 2
(9751) +((9752) ]=h(¢1,¢2,x) (107

chain matches that expected from the simple discussion of aand may be used to find the ground-state configuration via

anharmonic oscillator, given in Sec. IV B.

the analog of Eq(73),

134207-14



BOSONIC EXCITATIONS IN RANDOM MEDIA PHYSICAL REVIEW B68, 134207 (2003

d¢? o .0 from the evolution ofa with x, via a node-counting theorem.
W:%E(%"f’z’x)- (108  The evolution equation foa is, in the case of stiffnesses,
from Eq. (112),
Then we define a 2 matrix version of the chiral potential,

via dag
0 o d—=)\(1+a§)—aSV—VTa5, (114
Vij = (9¢Ia¢18( ¢11¢2 1X)' (109) X
It satisfies and in the case of frequencies, from Ety13),
2
iv + 2 ViVi=d4d,h( by, dax) (110 da
dx &y Tk 0% R L 2 d—xf=e(02+af2)—afV—VTaf. (115

and therefor& can be chosen to have elements

d These equations are the equivalent for the two-channel
Qij=— =8 +V;. (111 problem of Eq.(77) for the single-channel problem. Follow-
dx ing Ref. 51, the density of states is given by the rate at which

In this way, we have written E¢106) as a type of chiral the eiggnvalues_(ﬂs_oraf move with _increas_ing( along the
problem, which we termwo channelbecauseV is a 2x 2 real axis. Our aim is to compare this rate in the two cases,
matrix. taking k andw small, in a way that does not require detailed
Further analysis can be divided into two stages. Onénowledge of the distribution o¥. We assume only thats
stage, giverV, is to findd(x) andp(w), as was done for the for single-channel problemV qu_ctuates about a nonzero
single-channel problem in Sec. VI B. The other stage is tdn€an, and that both the fluctuations and the meavi lodve
determine the distribution fov, as was done for the single- comparable importance in the evolutionafanda; with x.
channel problem in Sec. VI C. General one-dimensional mul- In outline, this evolution is as follows. If fluctuations Yh
tichannel chiral problems of the type that arise in our calcu&ré omittedas anda; have stable fixed points at which both
lation of stiffnesses have been studied in Refs. 26 and 5iheir eigenvalues are small inand w, respectively. In both
with V chosen Gaussian distributed and uncorrelated.in cases, the stable fixed point has a basin of attraction with a
However, as far as we are aware, there has been no previopgundary that is reached when an eigenvaluafr ay is
work on multichannel chiral problems of the type that givelarge and positivg O(\™") or O(e™ "), respectively. Re-
frequencies. For the two-channel problem, while we have nogtoring fluctuations itv, with increasingc we find (partly on
been able to make progress in obtaining the distributiov, of the basis of simulations, not presented hett a5 or ay
we have been able to find a general relation between calcidluctuates in the vicinity of its fixed point for intervals that
lations of stiffnesses and frequencies. This connefts) are long if k or w is small. Each such interval ends when

and p(w) in the way given by Eq(22). We present these fluctuations take the matrix to the boundary of the basin of
arguments next. attraction. One eigenvalue af or a; then runs off to posi-

tive infinity, reappears from negative infinity, and returns to
the vicinity of the fixed point. This is entirely analogous to
) ) _ __ the evolution in the single-channel problem of téh@s 6

In this subsection we compare the calculation of stiff-jncreases fron~nm to 6~ (n+ 1), which is described in
nessesc=\?, determined from the eigenvalue problem Sec. VI B.

To develop the picture further, we consider separately the

B. Two-channel Bosonic chiral problems

0 _ i+v regions close to the fixed points, which are different dgr
dx U2 B ¥ 112 and a;, and the region far from the fixed points, which is
d Wy =A Wy (112 essentially the same in both cases. It is useful to introduce an
dx +V7T 0 explicit coordinate system. We write
with the calculation of frequencies=e-, determined from V=1(14 &Gl + £+ £303), (116
d
0 — d—+v whereéy, &1, and&; are random with mean zero, afd) is
X (‘pl) :e( 2! ) (113 taken proportional to the unit matrix, with a proportionality
- 0 A oothy) constant that can be changed by a rescaling of the length
dx +V coordinatex. We also set
We do this following the technique set out for the single- a1 =1+ 2101+ 2oy + 2305, (117)

channel problem after E76), and described for multichan-
nel problems in Ref. 51. For both stiffnesses and frequencies,
we write ¢/, =ay,, wherea is anx-dependent X2 matrix. For calculation of stiffnesses using this coordinate system,
The eigenvalue densityl(«) or p(w), is then determined one hasz,=0 and Eq.(114) becomes
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dz borhoods. Characterizing by the value of its trace, and

Ox - ersa—nt ot &S, combining the fixed-point coordinates with the rescalings
used to arrive at Eq120), the value of Ta in this region is

dzs O(\?) in the first instance an®(e*) in the second. From

5227\523—2# §oZ3t €38, this, we conclude that the integrated densities of stiffnesses

and frequencies are equal fa~e*. We hence recover
ds from this discussion of one-dimensional systems the result
&=>\(SZ+ Z+Z5)+ N—s+ &S+ E2y+ E525. (118 given in Eq.(22), which was reached in Sec. lll by a very
different route.
If fluctuations in V are omitted (by setting §=0 for i For completeness, we remark that the derivation presented
=0,1, and 3), these equations have a stable fixed point afere crucially depends ofV(x))#0, and assumes thas,
$~\, 2;=23=0. Including fluctuations inV, the typical ¢, andé&; become comparable to 1 only during their rare
magnitudes o8, z;, andz; are O(A). , , large fluctuations. And indeed, faiV(x))=0 it has been
By contrast, for calculation of frequencies B§15 gives  copjectured and checked numericBfiythat in that case
p(w)xw ? even though it is well knowt that d(x)

dz In(x).
——=2eS71— 21+ &gz, t €4S,

dx
dz C. The random-field Heisenberg spin chain
2
WZZGSZZJFG_ZZJF%ZZ’ The random-field Heisenberg spin chain is perhaps the
most obvious example of the generic one-dimensional prob-
dz, lems discussed above. The conjugate dynamical variables
x2S~ 23t SoZat £sS, are, of course, the two components for displacement of a
spin from its orientation in the ground state, and phase space
ds is made up of spheres for each point on the chain. The cur-

d—X=e(32+ B+ 7Z5+25) st &St Ezy+E3z5. (119 vature of phase space is responsible for some changes in
formulas derived in Sec. VII A, which we now set out.
In this case, if fluctuations iV are omitted there is a fixed The continuum version of the random-field Heisenberg
point ats~ €3, z,~¢, z;=2;=0. Including fluctuations, the spin chain, parametrizing spin orientations using the angles
typical magnitudes o8, z;, andz; are O(€°), while z, re- A(x) and ¢(x), is

mainsO(e).
Now consider escape @f; or a; from the vicinity of the
relevant fixed point, which requiress>\ in the case of stiff- 1(/d6\? dg)\2
nesses ands €° in the case of frequencies. In these regimes H=f dx 5{(@ +sink( 9)(& +h(¢,0,x)|.

we argue that the evolution equations in the two instances are
essentially equivalent. More specifically, we make two ap-
proximations. First, we take,=0 in both cases, even Tpe eyolution equation for the partial energy is
though this is exact only in the first case. We do so because
in the second case it is clear from EG19 thatz,~ € pro-
vided s<(2¢) %, and hence that nonzem has no impor- o9& 1([a€\2 1 9E
tant effect on the evolution af;, z3, ands. Second, fola or —+ —( ( ) + —(—
a; far from its fixed point, we omit the terms independent of A SIr(0)\ 0
as or a; (and small ink or w) from the right-hand sides of
Egs. (114 and(115. With these approximations, and mak-
ing the rescalinga=\a; and a=e€a;, the two equations
both become

2
ﬁ ) ]:h(¢,0,X)

and, given&, the ground-state configuration can be calcu-
lated using

da a’—avV—V'a (120 de 1 de

—=9%— — . 0 0
at dx ~ si&(9) %S ax 0

This stochastic process results in a stationary probability dis-

tribution for a if absorbing boundary conditions are imposed

at infinity and probability flux is injected near=0. In the  Introducing coordinates for deviations from the ground-state

stationary state there is an eigenvalue flux along the positiveonfiguration,f= 6+ ¢, and ¢= ¢o+ 4, we take as ca-

real axis, with a rate that is determined by the probabilitynonical variables), and #,sin(¢;). The quadratic Hamil-

density in a region neaa=0. The size of this region, and tonian can be writtefit=Q'Q, with Q given by Eq.(111) in

therefore the probability density within it, follows in each terms of the 22 matrix V, which can be computed froi

case from our discussion of the fixed points and their neighusing
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O+ = 220300, ¢
S| N S T i) e 2 )

1 3404 %€

sin(6o) " *7° ’

This formalism would provide the starting point for a treat- be considered classically, and excitations that can be treated
ment of the one-dimensional random-field Heisenberg modeds weakly interacting normal modes. These requirements

similar to that presented for théY model in Sec. V. may be met for vibrational modes, either in glasses, or in
randomly pinned phases with broken translational symmetry
D. Two-dimensional random-field XY model such as charge-density-wave states. They may also be satis-

The two-dimensional random-fielY model provides an fied_ for magnetic exc_itatio_ns in disorde_red fer_romagn(_ets or
example for which our formulation of excitation problems antiférromagnets, or in spin glasses, either with or without
using chiral Hamiltonians can be carried through in moreSignificant magnetic anisotropy. The most specific feature for
than one dimension. The two-dimensional version of EqWhich one would like experimental evidence is probably the
(66) is frequency dependengs(w)>=w* of the density for excita-

tions that are not Goldstone modes. Alternatively, for excita-
B 1, ) ) tions thatare Goldstone modes, interest focusses on the fre-
K‘f E[H +(0x¢)"+(dy$)"1+h(¢.xy) dxdy quency dependence of the mean-free path at smadir, in
the case of Heisenberg antiferromagnets and spin glasses
which are quasi-one-dimensional, the low-frequency form of
the density of states.
b0+ dg4h(bo,x,y)=0. (121) Before summarizing the experimental situation, it is use-
ful to outline ways in which excitations in a disordered sys-
tem may fall outside the framework we have used. Large
quantum fluctuations are the obvious route to different phys-
ics, and may be important in at least two ways. First, it can
y=E. (122 happen that a ground state is very far from being a classical
configuration dressed with small zero-point fluctuations: ran-
dom singlet phasé$in disordered quantum spin chains con-
stitute a well-studied example. Second, it may be that even
low-lying quantized excitations are unlike weakly interacting
bosonic modes. To have a concrete example, consider the
single mode problem for an anharmonic oscillator with po-

and the ground staté, satisfies

P 5P
R + N
ax?  ay?

The amplitudes of normal mode excitations obey

P
———— 4PN,
PYPY. #h(d.X.y)

We introduce a chiral potentid(x,y), defined as the solu-
tion to

FV+ (V) 2+ NV +(9,V)*=35h(bo.x.y), (123

and the matrixQ, given by tentialU(q), as reviewed in Sec. IV B. Typically, this poten-
tial energy will have local minima separated by barriers from
—oxt N —dy—dV the absolute minimum, and the importance of quantum mo-
= . 124) ' i i i
Q —OH AN OtV (1249 tion through or over the barrier will depend on the size of the

massm appearing in Eq(38). Thus, for a giverJ(q), in the
Then the matrix<=Q'Q is diagonal, with the operator of semiclassical limit the low-lying quantum states will be close
Eq. (121) as diagonal element. The construction of a chiralto harmonic oscillator levels with the classical normal mode

matrix H is therefore complete for this problem, to&: in  frequency. However, if quantum fluctuations are large, tun-
fact has the form of a random Dirac Hamiltonian, studied inneling through barriers may hybridize levels associated with
Ref. 53. While we have not been able to find a quantity fordifferent classical minima, generating two-level systems, or
the two-dimensional system that plays the role of the partiafhe low-lying levels may be determined by the formlbfq)
energy in one dimension, we have formulated a generalizal regions too far from its absolute minimum for the classical
tion of the Burgers equation, which is sufficient to show thathormal mode frequency to be relevant. In the ensemble, this
a solution to Eq(123) exists. The practical determination of crossover takes place as a function of frequency, as discussed
the chiral potential, however, remains an open problem iin Refs. 37 and 38. As a result, one expects harmonic exci-
this case. tations with a density(w)=w* at higher frequencies, and
two-level systems with a constant density at lower frequen-
VIIl. RELATION TO EXPERIMENT cies. _ .
Turning to experiments, somewhat surprisingly, the best
The range of physical systems to which the ideas we havevidence that we are aware of for an excitation density with
set out may apply is potentially very wide. The essentialan »* dependence is from studies of vibrational excitations
requirements are quenched disorder, a ground state that can glasses. Here, inelastic neutron scattering and other
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measurements indicate an excess density of harmonic bosonic excitations, Eq7), we have noted a formal similar-
modes, compared to what is expected from Debye theory anity between it and fermionic random matrix Hamiltonians
the measured speed of sound. Analysis of the temperatufeom the additional symmetry classesg., Eq.(5)]. We have
dependence of the heat capatitgeparates two contribu- argued that this has limited direct consequences, because sta-
tions that are additional to the Debye value. One is approxibility of the ground state requires correlations between ma-
mately linear in temperatur€, dominates at lowl, and is trix elements of the bosonic Hamiltonian which invalidate a
attributed to two-level systems. The other varies T|&  random matrix approach. Instead we have shown that there is
dominates at highef, and is attributed to harmonic modes a useful mapping to an auxiliary problem with the structure
with the stated frequency dependence for their density. Fromf the chiral symmetry class, which we have set out explic-
a theoretical viewpoint, such excitations differ in an impor-itly for a range of models.
tant way from the one we have discussed, because they co- Examples of bosonic excitations in disordered media
exist with propagating phonon modes. The consequences sgparate into those that are Goldstone modes, and those that
coupling between the two sets of modes have been discussace not. For the former, we have reviewed established results,
in Ref. 57, and coupling between localized anharmonic viwhich demonstrate that low-frequency excitations decouple
brational modes and phonons has been studied in Ref. 58.from disorder except for some systems in and below a mar-
A context in which localized vibrational modes are ex- ginal dimensiond.=2. For excitations that are not Gold-
pected without any coexisting propagating phonons is prostone modes, we have underlined the way in which disorder
vided by pinned charge-density waves, represented in onieself generates low-frequency excitations, and the universal
dimension by the model studied in Sec. VI. Indeed, it was inform expected for their density(w) < w*. Taking as an ex-
this framework that Aleiner and RuZthand Foglet? argued  ample the one-dimension&lY model in a random field, we
for a density of harmonic proportional ®@*, with a cross- have used our techniques in detailed analytical and numeri-
over at low frequenc} to a constant density of two-level cal calculations, obtaining results that illustrate this behavior
systems. As reviewed by Fogférexisting measurements of of p(w).

frequency-dependent conductivitydo not show the re- Afurther application of the techniques we have developed
sponse expected from such harmonic modes, possibly bé&ere is to Mattis models. These model spin glasses lack frus-
cause the low-temperature limit is not accessed. tration, and their statistical mechanical properties are equiva-

Studies of spin waves in disordered magnetic systemkent under a gauge transformation to those of ferromagnets.
present opportunities to examine both Goldstone and noriFhey have ground-state spin configurations which are known
Goldstone modes. In particular, inelastic neutron scatteringor each disorder configuration, but excitations are neverthe-
measurements of spin dynamics in a dilute near-Heisenbelgss affected in a nontrivial way by disordérBecause the
antiferromagnéf show the expected broadening in wave ground state is known explicitly, the magnons in Mattis
vector of excitations with increasing frequency. In contrastglasses are much easier to study than in a real spin glass.
magnetic neutron-scattering measurements on amorpholeing Goldstone modes, these magnons fall into the same
magnetic alloys in which there is local magnetic anisotPopy category as those in weakly disordered antiferromagnets, dis-
find modes which are broad in wave vector at all frequenciescussed in this paper. In particular, their critical dimension is
In this case the density of excitations is approximately cond,=2. In future work® by one of the present authors and
stant in frequency over the measured range. From our resultsjtland, the localization and transport properties of magnons
we expect a decrease in this density at low frequency, andia two- and three-dimensional Mattis glasses will be
more detailed examination of low-frequency behavior wouldexplored.
be of considerable interest.
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