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We present a many body approach for nonequilibrium behavior and self-generated glassiness in strongly
correlated quantum systems. It combines the dynamical mean-field theory of equilibrium systems with the
replica theory for classical glasses without quenched disorder. We apply this approach to study a quantized
version of the Brazovskii model and find a self-generated quantum glass that remains in a quantum mechani-
cally mixed state a3 —0. This quantum glass is formed by a large number of competing states spread over
an energy region which is determined within our theory.
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[. INTRODUCTION the quantum regime of glassy systems. It is then important to
develop appropriate theoretical tools to predict whether a
The formation of glasses upon cooling is a well knowngiven theoretical model for a quantum many body system
phenomenon for classical liquids. Even without quenchedwill exhibit self-generated glassiness where the system forms
disorder, the relaxation times become so large that a frozea glass for arbitrary weak disorder.
nonergodic state is reached before the nucleation into the In this paper we develop a general approach to self gen-
crystalline solid sets in. The nucleation is especially easy t@rated quantum glasses that combines the dynamical mean
avoid if the material has many polymorphisms, as does, fofield theory (DMFT) of quantum many body systehis™®
example, SiQ. The system becomes unable to reach an equiwith the replica technique of Refs. 20 and 21 which de-
librium configuration on the laboratory time scale and exhib-scribes classical glasses without quenched disorder. In addi-
its aging and memory effects. While extrinsic disorder istion, we also go beyond strict mean-field theory and estimate
widely acknowledged to lead to glassy phenomena in quarthe spectrum of competing quantum states after very long
tum systems, can a similar self-generated glassiness occtimes. This approach is applied to study a model with com-
for quantum liquids? Candidate materials for this behaviopeting interactions which has a fluctuation induced first-order
are strongly correlated electron systems which often exhibitransition to a striped two-dimensioné&D)/lamellar (3D)
a competition between numerous locally ordered states withhase. A quantum glass is shown to be in a quantum me-
comparable energies. Examples of such behavior are colossatanical mixed state even&it=0, formed by a large number
magnetoresistance materials,cuprate superconductots!!  of states which can be considerably above the true ground
and likely low density electron systefispossibly close to  state. Using the concept of affective temperatufé2*for
Wigner crystallization. the distribution of competing ground states, our theory al-
The possibility of self-generated quantum glassiness ifows the investigation of glassy nonequilibrium dynamics in
such systems and the nature of the slow quantum dynamicgiantum systems using standard techniques of equilibrium
has been little explored. Within a purely classical theory aquantum many body theory. On the mean field level, our
“stripe glass” state was recently proposed in Refs. 13 andheory is in complete agreement with the explicit dynamical
14. This proposal was stimulated by nuclear magneticon-equilibrium approach developed by Cugliandolo and
resonancE® and u-spin relaxation experimerfs! that Lozand” for quenched disordered spin glasses with entropy
found static or quasistatic charge and spin configurationsrisis, which includes weak long-term memory effects and
similar to glassy or disordered systems. A prominent effecthe subtle interplay of aging and stationary dynamics.
which reflects this slowing down was the “wipe-out” effect ~ We find that when quantum fluctuations are weak, i.e., for
where below a certain temperature the typical time scalea small quantum parametar,[for a definition, see Eq(1)
become so long that the resulting rapid spin lattice relaxatiodpelow], the glass transition resembles that of classical
cannot be observed anymar&® More recently, the dynami- modelg® that exhibit a dynamical transition at a temperature
cal behavior of the stripe glass of Refs. 13 and 14, as deteif, (where mean field theory becomes non-ergpdiod a
mined by Groussoet al,'® was found to be in quantitative Kauzmann entropy crisis &tx<Ta if equilibrium were to
agreement with NMR experiment8 Finally, recentu-spin  be achieved. The actual laboratory glass transition is located
experiment® ! analyzed the freezing temperatures as abetween these two temperatures and depends, for example,
function of the charge carrier concentration and disorder conen the cooling rate of the system. Beyond a critical x and
centration and found a quantum glass transition which wa3 , merge and the transitions change character. Within mean-
insensitive to the amount of disorder added to the systenfield theory, a discontinuous change of the relevant quantum
This latter experiment, which seems to support a generimmechanical states occurs at the glass transition. Even going
explanation for glassiness, not caused by impurities, alsbeyond the mean field, the system remains in a mixed quan-
demonstrated the need for a more detailed investigation dim state, though with a nonextensive number of relevant
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quantum states. Still, at the quantum glass transition a dissmerge®® Those form the stripe glass state discussed in Refs.
continuous change of the density matrix to a usual quanturi3 and 14. It is unclear so far whether the glassy solution
liquid occurs. Put another way, a glass in contact with a batloccurs only if the ordered phase can be avoided by super-
at T=0 is essentially a classical object, qualitatively distinctcooling or whether there is a parameter regime where the
from a quantum fluid, enforcing the quantum glass transitiorglass is favored regardless of the cooling rate.
to be discontinuous. Our results clearly support the later sce- In Eq. (1) we consider additional quantum fluctuations,
nario, as can be seen in Fig. 2 . characterized by the velocity Clearly, quantum fluctuations

In classical glass forming liquids an excess or configurareduce the tendency towards a fluctuation induced first order
tional entropy with respect to the solid state due to an expotransition. This can be seen by evaluating the*(x,7))
nentially large number of metastable configurations emergewithin the spherical approximation. In the classical limit
below T, . Obviously, in the quantum limit a glass transition (@?(x,7))~Taar ¥, with renormalized massr=r,
must be qualitatively different. Even a very large number of+ u{¢?(x,7)), the solutionr =0 clearly does not exist. The
long lived excited states cannot compensate for their vanistsame fluctuations which suppress the occurrence of a second
ing Boltzmann weight at equilibrium fofr=0. An exponen-  order transition lead to a first order transition at the tempera-
tially large ground state degeneracy, on the other hand, iure wherery=uTofr, ¥2.2% In the quantum limit the behav-
typically lifted by hybridization, saving kinetic energy. In jor is conceptually similar but fluctuations grow only loga-
Ref. 27 it was then argued that for a glassy quantum systefthmically, {@?(x,7))~q3log(A/r). For an exponentially
the Edwards-Anderson order parameter vanishes continyarge correlation length ™2 there should also be a fluctua-
ously at the quantum glass transition contrast to the clas- tion induced first order transition to a smectic, which might
sical behavior. On the other hand, in Ref. 28 it was con- pe related to the state proposed in Ref. 31 in the context of
cluded that_in certain s_pi_n glasses vv_ith qu_enched disorder tr@rongw correlated quantum systems. Another option, how-
glass transition at sufficiently smallis of first order. ever, is the emergence of a stripe glass, even for large quan-
__The outline of this paper is as follows. In Sec. Il wWe ym fluctuations, which results in an amorphous modulated
introduce a quantized version of the Brazovskii model ofstate instead. The investigation of this option will be the
microphase separation. We then discuss the replica approagecific application of our theory. Before we go into specifics
used in this paper as well as the dynamical mean-field theonys the model[Eq. (1)], we develop a general framework for

respectively. Conclusions which are based on the approach

developed here but which go beyond the strict mean-field

limit are discussed in Sec. V. Finally we present a summary

of our results in the concluding Sec. VI. The equivalence of Competing interactions of a glassy system cause the

the “cloned-liquid” replica approach and the Schwinger- ground state energy as well as the excitations to be very

Keldysh theory of non-equilibrium quantum systems is pre-sensitive to small additional perturbations. In order to quan-

sented in the Appendix. tify this we introduce, following Ref. 20, a static “ergodicity
breaking” field ¢+ according to

Ill. “CLONED LIQUID” - REPLICA APPROACH

Il. MODEL

We consider a Bose system with fiejg governed by the Slel=Sle]+ gf drd®[ ¢~ ex(7)1%,
action S[ o] with competing interactions which cause a
glass transition in the classical limit. Specifically we considerand we take the limig— 0 eventually. The coupling between
a system with action ¢ and ¢ will bias the original energy landscape in the “di-
rection” of the configurationy, enabling us to count distinct
52 i of |22
) X 7 Jcr

2 2 u , configurations. Adopting a mean-field strategy, we assume
Troext 5 ¢x
+200 AV + a5l ex)?].

that even in the quantum limit should be chosen as static
variable, probing only time averaged configurations.
1) Introducing T,=—TlogZ,, with the biased partition
function Z¢=fD<pe‘5w, 7¢(T—>0), corresponds to the
Here, g, is a wave number which supports strong fluctua-ground state energy for a givepr If there are many com-
tions for momenta with amplitudgg|=qo, i.e., modulated peting ground states, it is natural to assume thatleter-
field configurations. The classical version of the mdd&f.  mines the probabilityp,, for a given configuration. If we
(1)], was shown by BrazovsKi to give rise to a fluctuation identify the actual state of the system we gain the informa-
induced first order transition to a lamellar or smectic statetion S;=—limgy_ofD#p, logp,. Maximizing this configu-
Within equilibrium statistical mechanics, this ordered staterational entropyS; with respect tap,, yields the usual result
gives the lowest known free energy. In Refs. 13 and 14 we 5
demonstrated that, within nonequilibrium classical statistical pyocexp—f,/Ten), 2

mechanics, an alternative scenario is a self-generated glassh the effective t UrE is the L i
Instead of the transition to a smectic state, metastable sol(fY''€'€ e €liective temperatur€yq IS the Lagrange multi-

tions built by a superposition of large amplitude waves ofPlier enforcing the constraint that the typical energyFis
wave number,, but with random orientations and phases=limg_o/D#p,f,. Tex is @ measure for the width of the
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energy region within which the relevant ground state enerlica approaches can be obtained by realizing that the typical
gies can be found. If the system is glas3ys>T and a free energy of a frozen staté, can also be written in the
guantum mechanically mixed state results evenTasO. usual replica language via

Thus, a glass will not be in a pure quantum mechanical state

(characterized by a single wave functicgven at zero tem-

perature. E= Iimi(z[‘p— 1),
Introducing the ration=T/T, it follows thatpwoczrj, n—ofl
leading to
where the average is performed with respect to the distribu-
~ dmF(m)] tion function p¢oczg‘. The distribution function of the self-
F= om generated randomness is non-Gaussian. For exampte, if
—1, e ¢l can also be interpreted as the generating func-
m 9F(m) tional of the distributiorp,,.* It is because this distribution
C:T_eff am is characterized by “colored noise” that we find a self-

generated glassy state of the kind discussed here. Finally, if
where we introduced =F — TS, with one replaces[WV2+q5]e)? in Eq. (1) by the usual ¥ ¢)?
term (which is theqy— 0 limit after appropriate rescaling of
T @, C, U, etc) there is no glass ag— 0, making it evident that
F(m)=-— I'moa Iogf DyZaly]. self-generated glassiness is ultimately caused by the uniform
o frustration of the finiteqy problem where modulated con-
It is now possible to integrate out the auxiliary varialgle  figurations,p(x)«cos@o- x), with |go| =0 and arbitrary di-
yielding an mtimes replicated theory of the original vari- rection have low energy.
ables¢ with infinitesimal inter-replica coupling:

IV. DYNAMICAL MEAN-FIELD THEORY

m m
S= 02’1 S[go“]—ga;:l f d*xdrd7’ @f(n) @f(7"), (3) Due to the mean-field character of the theory, it is appro-
' priate to proceed by using the ideas of the DMFT for equi-
similar to a random field model with infinitesimal random- librium many body system$ *°and assuming that the self-
nessg. The major difference here is that in systems with aenergy of our replicated field theory is momentum
tendency towards self-generated glassiness, the initial infinindependent. Physically, ignoring the momentum depen-
tesimal randomneggpwill self-consistently be replaced by an dence of the self-energy might be justified by the fact that a
effective, interaction induced, self-generated randomnesgjlass transition usually occurs in a situation of intermediate
Specifically this will be the off diagonal element of the self- correlations, i.e., when the correlation length of the liquid
energy in replica space. state is slightly larger but comparable to the typical micro-
At this point it is useful to discuss similarities and differ- scopic length scales in the Hamiltoni&tThe free energy of
ences of the present approach if compared to the convemhe system can be expressed in terms of the Matsubara
tional replica approach of systems with quenched disordetreen’s functionGS‘B(wn)=(<p§(wn)qoth(—wn)> and the

First, on a technical level, the replica index has to be anacorresponding localmomentum independenSe” energy
lytically continued tom=T/Tgr<1 and not to zero. This 3 f(y ) as

reflects the fact that slow metastable configurations do not
equilibrate at the actual temperatufig,but at the effective F(m)=tr(3G)—trlog G+ ®[G]
temperaturel . In other words, the system has an essen- '

tially equal probability to evolve into states which are spreaolNhere the self energy is given bY=od[G]/5G, and

orer f\hspectrurr: with W'drgF[e“' evetn asT.t—h>O. ”I.O.?e ap- h CcIjJ[G] is diagrammatically well defined for a given systé.
pies the present approach to a system with explicit QUENCNEd o - gifarence from the usual equilibrium DMFT

disorder, where one can apply the conventional replicg, . 47-19i5 the occurrence of off diagonal elements in
theory, and assumes replica symmeiry, it turns out that replica space, allowing us to map the system onto a local

corr_esponds to the bree}k point of a SO'““Q” with one Steﬁ’)roblem with the same interaction but dynamical “Weiss”
replica symmetry breaking of the conventional replica aPfield matrix. This brings us to an effective zero-dimensional

proach and both techniques give identical results. Altemafheor L : .

. ) i ; y similar to the mode-coupling theory of classical
t_|ve_ly one _rm_ght a_lso consider t_he qu[é[q.' (D] in the glasses* We furthermore make the ans#tz

limit of an infinitesimal random field with widtly and the

break point of a one step replica symmetry breakimgolu- 5

tion. This implies that the present approach captures the es- ap _ “no

sence of the glassy behavior in systems with two very dis- Gy"(@n)=Yg(@n) dapt Fq— @
tinct typical time scales. This will become particularly clear

if we compare our results with the one obtained within thewith static off diagonal elements. A similar ansatz for the
solution of the dynamical Schwinger-Keldysh theory in theself-energy leads to the following two Dyson equations for
Appendix. A more physical relationship between the two repthe diagonal and off diagonal propagators:
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Golwn)=[Gog(@n) = Zg(wn)] ™, Do 1
g wn = -1 )
N N u "+l w,) +2vFG(w,)
Fa=25G4(0)[Gq H(0) —m2 -/ T] ™. () o " @
Glassiness is associated with finite values of the Edwards- —vF 2DS(O)
Anderson order parametef,, whereas for7,=0 we re- f:1+ 7]—"2Dg(0)/Tefr’

cover the traditional theory of quantum liquids. The structure

of the Dyson equation already gives us crucial informations;nq a pubble diagranil o w,) = yTE nG(@n+ om) G(wp).
on the nature of the glass transition. From E&).it follows Here Q(wm)=f[d3q/(2w)3rqu(wn) m anc? ]_Enzf[dﬁnq/

immediately that, contrary to the classical case where glass'tvzw)s]}—q are the momentum averaged propagators. The
H _ 1 13,14 ; Ho. 3 . L o
ness can occur witm=1,"""in the quantum limit T p\ET is usually formulated on a lattice and it is possible to
—0) the only wayF, can be nonzero is to have—0 such  cpoge the same dimensite.g., inverse energyor the mo-
thatm/T= 1/Teﬁf0. This imposes a constraint on the replica mentum dependent and momentum averaged propagator, by
symmetry breaking structure in the quantum limit of the rep-assyming the lattice spacing equal unity. In a continuum
lica approach developed in Ref. 20. Also, it is clear that  theory the role of the lattice spacing is played by the inverse
defines a new length scale of the problem that is assomatquper cutoff of the momentum integratioh, which enters
with the glass transitiori: In the classical glass transition the theory in Egs(7) through the constang=A ~3. In the
relationm=1 is satisfied aff, . Then the two Dyson equa- ase of the HamiltoniafiEg. (1)], all momentum integrals
tions can be decoupled into an equilibrium, diagdiarep- 416 convergent as — = and the scale which replaces the cut
lica spacaapa_rt, and a nonequilibrium, off d|ag_qnql part. This g is o, leading toy= qaa' We solved this set of self con-
allows us to interprek g as related to the equilibrium corre- g0y equations numerically. Before we present the results
lation length and to associater with the Lindemann length, .o st discuss the stability of the ansatz, E.
associated with the typical length scale of wandering of de- The local stability of the replica symmetric ansatz, .

fects of the equilibri{um strr]ucture; see F‘;efh 14 ';fC)r detailsj5 qetermined by the lowest eigenvalue of the Hessian matrix
However, it follows from the structure of the self-energies s2r; sGa85G79. proceeding along the lines of Ref. 36 and

that, if‘ the quantum limit, whema<1 atT,, the two Dyson diagonalizing over the replica indices leads to the following
equations cannot be decoupled anymore. In this case, the atrix in momentum space:

self-energies will combined define a correlation length and a
Lindemann length which are not independent, but rather

’ -2
closely intertwined. Maa=8a=0)Gs (O +C, ®
We solved the impurity problem within a self-consistentWhere
largeN approach, i.e. we generalize the scalar figltb an
N-component vector and consider the limit of lafgénclud- o 20 S0

ing first 1N corrections. This approach was used earlier to C= ) +
investigate self generated glassiness in the classical'firtit. SGBSGB T SGBSGY  SG*BSGYS’
In this limit it is also possible to solve the DMFT problem
exactly>® demonstrating that glassiness found in the approxiwith distinct o, 3,8, and 8. DiagrammaticallyC is a sum of
mate largeN limit is very similar to the exact, finitétd  diagrams with four external legs with at least two distinct
theory and thereby supporting the applicability of the laxge replica indices. Thus, ag—0 the constanC vanishes if
expansion. Fq—0, an observation which will be relevant in our discus-
Within the self consistent largd-approach, the diagonal sion of the nature of the zero temperature glass transition as
and off diagonal element of the self-energy are given as a function ofc. We find, for the lowest eigenvalug of
Mg

(€)

2
Sg(0n) =25~ §[FDglwn) +DG(wn)]

d3q
-1_ -2 -1
c —f (2w)3[gq (0)+A] (10)

If N\>0 the mean-field solution is stable, whereas it is mar-
©) ginal for A\=0. The fairly simple resulfEq. (10)] for the
stability of the replica structure is a consequence of the mo-
mentum independence of the self-energy within the DMFT
which guarantees thdt[ G] only depends on the momentum
with a Hartree contribution averaged propagators. Otherwi€ewould depend on mo-
mentum, making the analysis of the eigenvalueg¢f ; in
Eq. (8) much more complicated. Thus, the investigation of
our problem within dynamical mean-field theory is not only
convenient to obtain solutions f&f,(w,) and 7y, it is also
as well as crucial to make progress in the analysis of the stability of this

+T2, D(@n+ @m)Glwp),

2
E'F:_ND]:F,

SH=—uTY Glon)—uF,
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solution. We expect that it will be impossible to find a stablefourier transform algorithm using'2 frequencies. This accu-
replica symmetric solutiofiEg. (4)] once one goes beyond racy is needed mostly to be able to find solutions of Ef.
the DMFT. and(12).

In real physical systems the slow degrees of freedom re- The transition line between the liquid and glassy states in
lax on a finite time scale-, and the effective temperature the (c,T) space is presented in Fig. 1. Note that the low
T.= T/m depends not only on the external parametersTike temperaturgquantum regimebehavior is qualitatively dif-
and pressure, but also on the cooling rate, or equivalently oferent from the classical stripe glass. In the quantum limit,
the time,t,,, elapsed after quenching and thus on the event3, and Tx merge and the effective temperature at the tran-
which, for a finite range system, can take the system to difsition T2(T,) is always larger thaif,, i.e., m<1. Due to
ferent states of the spectrum characterized y. Account-  the reentrant character of the transition the quantum glass
ing for these effects goes beyond a mean-field treatmentan also be reached by heating up the system. By generaliz-
However, fort,,< 7, mean field theory should apply. In fact, ing Brazovskii's theory of the fluctuation induced first order
since within the mean-field approach the timgis infinite,  transition to the quantum case, we found a similar reentrance
this is intrinsically the regime we are constrained to withinbehavior for this equilibrium transition, suggesting that this
the mean-field treatment. Then, the most important configupeculiar shape of the phase border is determined by the in-
rations of the order parameter are those which allow the sysereasing relevance of fluctuations with wave vedaer|qq|
tem to explore the maximum number of ergodic regions. Theas one crosses over from a quantum to a classical regiese
best way to achieve this, without being unstable, is throughhe corresponding remarks made in Set.Ahother way the
interconnecting saddle poirté.This leads to the marginal quantum glass can be reached is of course via gutench.”
stability condition\ =0, which we use to determine the ef- Note also that the reentrant behavior we find within our ap-
fective temperaturd gﬁ, which corresponds to the effective proach happens at the point where numerically, at the same
temperature right after a fast quench into the glassy state, i.&ime, To— Tk vanishes (to within numerical precision

To= Tei(tw< 7o) m(T,) starts falling with a larger derivativesee the inset of
Fig. 3, and F(T,) reaches a minimuntsee inset of Fig. 2
4 before plateauing a6— 0. This suggests that the reentrance
0 \—1_ 9 20070 behavior and the change of character of the transition are
C(Tep) Gq(0.Ter). (11) :
(2m)3 closely related. In Fig. 3 we show the dependence of the

replica symmetry indexn= T/Tgff as a function ot for dif-
Within the largeN approximation used to determine the ferent temperatures.
propagator we can also evaluate the constanf Eq. (9), In the classical limitc—0, F, changes discontinuously
leading to at T, whereasT o4 changes continuouslyr(=1), i.e., the
relevant metastable states—within which a classical glassy

2
C(Ten) = [2DHO)I1 =Dy, (12 e

which is an implicit equation foff%;. Note that, as we ar-
gued before( vanishes fotF— 0. Moreover, since the inte-
gral on the right hand side of Ed1l) is bounded from
above C and thereforeF, must vanish discontinuously at the
transition even fof =0. As explained above, from the struc- & o.
ture of the Dyson equation in replica space it immediately
follows that forc larger than some valug, , T2/ T must also

jump discontinuously fromT%/T>1 in the glass state to 0.0
T%/T=1 in the quantum liquid state.

Together with Eq(11) we have a closed set of equations
which describe the quantum glass within mean-field theory.
We have solved this set of equations for the maéej. (1)],
and indeed found that there is a glassy state below a critica. ¢
yalue forc. Most interestingly, for i_ncreasing(i.e., increas- FIG. 1. DMFT Phase diagram for the modgl, (1)] within the
Ing quant_um fluctuatlorjsthe rapidly quenched quantum one-loop self-consistent screening approximation. The solid line
g!ass, \_Nh'Ch at some'p0|lnt becomes un.stable, ,undergoesr@presentsTA whereas the dashed line represefits. The inset
discontinuous reorganization of the density matrix Upon engnows the low temperature region of the phase diagram where
tering the quantum liquid state. It is crucial to solve thisgngT, have merged and the effective temperature at the transition
many body problem within some conserving approximation;s |arger tharT [m(T,)<1]. The line is simply a guide to the eye
i.e., based upon a given functiond@(G), which must be whereas the dots are the actual numerical result. The numerical
simultaneously used to determideandC. The set of equa- simulations in the paper were carried out using the paramegers
tions was solved numerically. The Matsubara frequency con=-6, q,=0.3, andu=2#|ry|. The stars refer to theT(c)
volutions were calculated on the imaginary time axis via fastpoints, of which the results in Fig. 4 are shown.

,_.

0.
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FIG. 2. Low temperature behavior of the Edwards-Anderson FIG. 3. Dependence of the effective temperature as functiaen of
order parameter as a function of the intensity of quantum fluctuafor different temperatures. Inset: dependencﬁ;}tTA onT, inthe
tions. The temperatures are in the region displayed in the inset dbw temperature regime displayed on the inset of Fig. 1.

Fig. 1. Inset: dependence of the order parameter at the transition

temperaturel , . pendence. An elegant way to encode the aging dynamics is a
) generalized fluctuation dissipation theorem(FDT)
system is trapped—connect gradually to the relevant stat%ke( )= _T;ﬁl( l0t,)Cag(mt,), With effective T

which contribute to the liquid state partition function. A simi- .2 approach was generalized to the quantum case in Ref.
lar behavior in the quantum limit would imply thdi.z and 5

thereforeF,; andC vanish continuously at the quantum glass 'AS shown in the Appendix, we find a complete equiva-
Fransmon. However, as dlscussed above, 'FhIS is not pos&bl@nce of the Schwinger-Keldysh theory of Ref. 25, if applied
if one uses Eq(11) to determine the effective temperature. 1, the quantized Brazovskii model, with our replica approach

Thus, Tt changes discontinuously and one might expect g e identify (after analytical continuation to real tie
nucleation of liquid droplets within the unstable glass state t ()=GL(t) and F=lim, .lim, ..Cac(ty.t) Toﬁ
W*}OC — 00 W . effs

be important excitations which cause a quantum-melting of | . o .
the glass. Even though one can formally introduce, along théé"hICh follows from.margmaht)[Eq. (1], is 'de”t'ca'gfg’ the
one of the generalized FDT, when we assump€r,, .

lines of Ref. 23, a latent hedQ =TS, at this transition,

we do not know of a scenario which, within mean-field

theory, allows this energy to be realized within the labora-  \, ASPECTS BEYOND THE STRICT MEAN-FIELD

tory. The appearance of a first-order-like transition as one THEORY

enters the quantum regime, though without reentrance be-

havior, was first pointed out in Ref. 28 in a related case of In this section we discuss several physically significant

spin glasses with quenched disorder. conclusions one can draw from our theory which go beyond
Finally, we make contact between our theory and thethe strict mean-field limit. In particular we will discuss sev-

Schwinger-Keldysh approach used in Ref. 25, which gives €ral aspects related to dynamical heterogeneity in glasses.

set of coupled equations for the symmetrized correlation Going beyond mean-field theory, fdy>7,, the mar-

function Cy . (7,ty) = 3{[ @x(tw+ 7), ¢y (t,)]+) and the re-  ginal stability cannot be sustained, since the system can save

tarded response functionG. ,(7,t,)=—i6(7){[ ex(tw free energy via droplet formaticfi,which drives the system
+17),00(tw)]-), where[ ]+EA’BtBA In the classical towards equilibrium. As discussed in Ref. 26, the free-energy

limit Cy o (7,tw) = (@x(twt ) 0w (ta)) as usual. Ift,, is gain is due to a gain in configurational entropy which is

comparable ta- the dynamics is complex and depends on their_1hibiteO| within_ me?‘”'f‘?'d theory due to infinitely Iar_g_e bar-

nature of the initial statéaging regim@ On the other hand, €rS: but possible in finite subsystems where transitions be-

for t,, large compared ta, C(r,t,) and G'(rt,) are ex-’ tween distinct metastable states become allowed. Thus, the
w ’ sbw s bw

pected to be dependent only eristationary regime Corre- glass might be considered as consisting of a mosaic pattern

spondingly, one can decompose the correlation function intguilt of distinct mean-field metastable states. The size of the
aging and ,stationary contributions various droplets forming the mosaic is determined by a bal-

ance of the entropic driving forc@ropgfgtional to the vol-
— ume of the dropand the surface tensidn.

Clrtw)=Cas(mtw) + Corl 7). a3 One way to account phenomenologically for such a be-
and similarly for G'(rt,). Cugliandolo and Kurch&i havior within our theory is to assume th@it; becomes a
showed within the mean-field theory of classical spin glassetime dependent quantftyand that the exploration of phase
that one cannot decouple the stationary dynamics from thepace allows the system to “cool down” its frozen degrees of
aging regime. Instead, the system establishes a “weak lonfjeedom by realizing configurational entropy. One would
term memory” and one has to solve for the entire time de-naturally expectTqx(t,) to decrease towards a vall€y

134203-6



DYNAMICAL MEAN-FIELD THEORY OF QUANTUM . .. PHYSICAL REVIEW B 68, 134203 (2003

until either limy_..S.(T5)/N=0 or T%=T. In the former stiffness proportional to thémea_m field Edwards-Andersqn _
case there is no longer any extensive entropic driving forc@arameter. Thus, small fluctuations caused by the marginality
which favors the exploration of phase space, whereas in th@f the mean-field solution are considered, similar to the ones
latter case the system has reached equilibrium but with, igiven in Eq.(14). Further away fromT, such a linearized
general, a finite remaining configurational entropy. Theséheory is likely to break down because additional eigenvec-
two regimes are Separated by the Kauzmann temperatuﬁ@rs, not related.to the marglnal E|genV.alue, becom(_E relevant
where limy_...S,(T&)/N=0 atTg=T simultaneously® We and non-Gaussian fluctuations come into play. This should
cannot, of course, calculate the explicit time dependence d#!Wways be the case wheneis not close to unity, i.e., in the
Te(t,) here. However, we can parametrically St@yT ) _classmal regime for temperatur_es beldw and everywhe_re
versusT,y, i.e. keep the replica valua an open parameter N the quantum regime. One might expect droplet physics to
of the theory and analyze whether the trends for the variatioR€cOMe important theff.

of S(Te) at fixed temperaturd are sensible. Since we In both cases it is useful to analyze the evolution of the
determinedm previously by the marginality condition, an spec_trum of sfcates of this formally unstable Fheory, particu-
effective temperaturé’eﬁ<T2ﬁ implies that the replicon ei- larly if the replica structure of the theory remains unchanged.

genvalue is different from zero. We found numerically that'AiS SITIO\;V? mt F|>g. L \;\;]e foug.?f numterlcalll):):‘orf'thel m'?detli, Eq.

A <0, reflecting an instability of our solution likely related to (1), that fort,, ~ 7o, NFEE dIlierent possible final situations
some kind of dynamical heterogeneity. We argue that thigésult, depending on the relation between the bath tempera-
heterogeneity is different for temperatures closerljpand ture T_and the Ke_mu_zmann temperaturg : (1) Ta>T>Ty, .

Ty T Will relax until it reachesT, but an excess entropy will

We first discuss the behavior below but closdTjoin the ~ '€MaiN.(2) T="Ti, Teq will relax until it reachesT, in a state

classical regime where marginality gives a continuous™ith Zero configurational entropy3) T<Ty., Teq will relax

change ofm, i.e. T5(T,)=T. In this regime the system is gntil all the excess entropy yagishes, but.the system remains
close to equilibrium and it should be sensible to considef” & non-equilibrium state witfg>T. In th|s_ case there are
small fluctuations around the mean field solution. Such smalﬂIII many (even th_ough less than exponent!ally ’T‘hﬂ‘ﬁ‘es’
fluctuations are then dominated by the eigenvectors of thg'smbl"ted according to a Boltzmarln function with an effec-
replicon problem which correspond to the lowest eigenvaluetive temperaturel o Their energied , differ by nonexten-
From Eq.(8) we can easily determine the momentum depensive amounts in a range of ord@Z<TZ;. At a critical
dence of this eigenvector, which can be interpreted as thealue of the quantum parameter slightly belaw we find
fluctuating mean square of the long time correlation functiorthat T, and Ty merge and the nature of the glass transition

Fq away from its mean-field value. It is given by changes. The system is either in a quantum fluid or in a
nonequilibrium frozen state and the identification of the glass
qg transition using equilibrium techniques alone becomes im-
VYo=VYo——, (14 possible. Note, however, that in the quantum glass regime,
g "~ even at temperaturdsarbitrarily close toT , , for t,> 7, we

whereW is a normalization constant. At marginality, these aways obtain lim_.S(T¢)/N=0 for Te>T (see the
modes in correlation function space are massless and th@shed curve in Fig.)4

easy to be excited. The typical length scale of these correla-
tion function fluctuations are determined Ggfqo, i.e., are

confined to a length scale determined By 2. Since this
length is not the actual correlation length, but rather deter- In summary, we have presented an approach to self-
mined by the shorter Lindemann length discussed on Ref. 14enerated quantum glasses which enables the counting of
the wandering of defects seem to set the scale on which theompeting ground state energiéguasiclassically of long
dynamics close tdl', evolves. Thus correlations over the lived metastable statgsin interacting quantum systems.
Lindemann length are fluctuating in space. Even though th&echnically very similar in form to the traditional quantum
fluctuating object is characterized by a rather short scale, itmany body theory of equilibrium systems, it allows one to
fluctuations are, of course, correlated over larger distancefvestigate whether a given system exhibits self-generated
as characterized by the nonlinear susceptibilig?”®  glassiness as a consequence of the frustrating interactions.
=(@a(X) @5(X) @, (X) @ 5(X)). x*#7% is the inverse of the Slow degrees of freedom are assumed to behave classically
Hessian and thus divergesf—0. Thus we conclude that and are shown to equilibrate to an effective temperature
close toT, this heterogeneity is driven by the correlation which is nonzero even a6—0 and which characterizes the
function fluctuations of shap®, of Eq. (14). We believe  width and rigidity of the energy landscape of the competing
that this “Goldstone”-type heterogeneity is very similar in states of the system. Applied to the specific mdée]. (1)],
character to the recent interesting approach to heterogeneitye do find a glass below a critical value for the quantum
resulting from the assumption of a local time reparametrizafluctuations. Using a marginality criterion to determihg;,

tion invariance’® This is supported by the close relation be- we can generally show that quantum glass transitions are
tween the reparametrization invariance and marginality, abound to be discontinuous transitions from pure to mixed
shown in Ref. 40. In addition, the approach of Ref. 39 con-quantum states. This leads to the interesting question of how
siders fluctuations relative to the mean field solution withquantum melting of the nonequilibrium quenched states can

VI. CONCLUSION
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3

Gy (t,t)=

0 Gy (t,t)
Gl (L) Cyx(tt) A

and self-energy

S

< ( 0 e (L)
we (Bt =1 _, ’ :
w(tt) oo (B 2 (tt)

5.(T,) (x 107)

where

1
Cx,x’(t1t/):§<[€9x(tw+ T)v(Px’(tw)]+>a

Gt 1) =Fi0(= (=t ex(1), @ (t)]).

FIG. 4. Parametric plot of the relaxation ©f; andS, for vary- In analogy to conventional perturbation theory, the com-

ing t,, after quenches to the three points indicated by stars in th%onems ofG and3S obey the Schwinger-Dyson equations
phase diagram Fig.1. In additio8, is shown for one point right at

the quantum glass transition with,=0.01>T. The direction of

evolution of the waiting timet,, is indicated by the arrows. The
system can relax from a state with marginal stability wit}y to At r—1 a—1 a
three different final states, as explained in the text. Inset: configu- CQ_GQ®[GOQ ®COQ®GOQ +Eq]®Gq' (A3)
rational entropy at the transition point as functionTgy.

Gy=Goq T Gpq® 2@ Gy, (A2)

We use® to distinguish the matrix product over tinméhe
time convolution where A®B(t,t')=[dsA(t,s)B(s,t’)
occur via nucleation of the corresponding quantum liquidfrom the scalar(element-wisg product, whereAB(t,t’)
state. Even going beyond mean-field theory by assuming a A(t,t")B(t,t’).
time dependent effective temperature, we find thatsatu- The first Schwinger-Dyson equatio@2) is similar to
rates(at least for extremely long timgst a valueT¢>T.  conventional perturbation theory. However it is coupled to
Finally we made connection to the dynamical approach fothe second equation @ (t,,t,) which admits nontrivial so-
non-equilibrium quantum many body systems of Ref. 25]utions. For simplicity, we choose an initial condition such
which shows that our theory properly takes into account thehatC,=0 and ImGj=0. This leads to thermalization &
effects of aging and long term memory. We believe that thgfyffillment of the FDT) in the absence of nonlinearities, so it
comparable simplicity of our approach allows it to apply ourjs an appropriate condition. Let us cali=t,, andt,=t,,
technique to a wide range of interesting problems in strongly; 7 e, the correlations between instants separatet drg
Interacting quantum systems. measured after the waiting tintg, has elapsed. The glassy
dynamics appears in a regimetQf—« andr—o . To pro-
ACKNOWLEDGMENTS ceed we assume that in this limit all correlation functions can

be decomposed into a slow, non-time-translation-invariant,

This research was supported by an award from Researc{ying parfAG) and a fast, time translation invariant, station-
Corporation(J.S), the Institute for Complex Adaptive Mat- ary part(ST) like in Eq. (13).
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of Energy by lowa State University under Contract No.teristic time scalers and it represents the correlations be-
W-7405-Eng-82H.W.,Jr. and J.$, and the National Science tween degrees of freedom which are in equilibrium with the
Foundation Grant No. CHE-953068(.G.W). H.W., Jr.  thermal reservoir at temperatufei.e., retarded and Keldysh
acknowledges support from FAPESP Project No. 02forrelation functions are related by the FDT. The aging part,
01229-7. on the other hand, depends weaklytgnaging phenomena
and varies slowly onr in a characteristic large time scale
APPENDIX: SCHWINGER-KELDYSH FORMALISM 7,2 7, Which allows us to neglect its derivatives. More-
over, as in Ref. 25, we enforce a relationship betwégg
In this section we apply the Schwinger and KeldyshandC,g by defining an effective temperatufies at which

close-time path Green function formalism applied to quanthe long time correlations thermalize through a generalized
tum glasses without quenched disorder. We follow closely=pT relation

Cugliandolo and Lozan®,who applied the technique to spin

glasses with quenched disorder. In this formalism response

and correlation functions are treated as independent objects, Gag(T,t)=— T.0 5 Cac(7). (A4)
coupled through a set of equations called Schwinger-Dyson ef

equations. A perturbation theory scheme can be set up byort<r, we can neglect the time dependencelgf, lead-
considering the generalized matrix Green function ing to a constanT g(t) — Teg-
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Using the above assumptions, the first Schwinger-Dysomnd the polarization bubbles are given by the elementwise
equation(A2) in the stationary regime can be solved by aproducts(no time or space convolutions
Fourier transform, which gives
I1"'=yCG", (A13)
1

Gog ()~ S5 w)

Here we will explore solutions whef@),g(7,ty) is small but

Gsrq(@)= (A5) 1= y[(G®)2+(G")2+C2]. (A14)
The stationary and aging contributions to the self energies
finite. Thi d h e .and polarizations can be calculated analogously by using
Inite. This corresponds to the weak long term scenariqyeginitions (A13) and (A14) and separating the stationary

N . ;
where, even t?ough lim..lim..Gya(7,1) —0, the integral  fom the aging contribution according to their asymptotic
lim;_..[odt' Gag(7,t") is still finite. In other words, we con-  time behavior. This gives

sider that the system keeps a vanishingly small memory of
what happened in the past which, when accumulated over ] ; ; ;
long times, gives a finite contribution to the dynamics. Thus, =st=Cac®DsrtDag®Ggrt Cs1® Dgrt D@ G,

following along the lines of Ref. 25, for the aging regime we (A15)
get
% ac=Dac®Gnc, (A16)
G/rAG q( T'tW) = E/rAG( T,tw) grST q(o)z' (AG) and
Analogously, the second Schwinger-Dyson equa(i®)
can be solved for the same two regimes, yielding 5= ¥(CacGsr+ Cs1Gsy) (A17)
and
G (@) =3 & @) Gar4(@)? (A7)
and Mc= yCag. (A18)
; It is easy to verify accordingly thdfl sy andIlg; are related
_ EAG(T’tw)gSTq by FDT at the temperatur€ andI1,g andIl); are related
Chac o(7:tw) . (A8) . AG i
(o)1 sk by the classical FDT at a temperatufg;. The last term in
s1q(0) "= Ter Ac(7:tw) Eg. (A15) is exactly the Matsubara convolution ¢8). The

) ] _ ) ) ) remaining terms are calculated as follows:
Note that if we identify the real time correlation functions

with the inter-replica correlation function& and G as fol-

lows: !
Didw)= _ (A19)
st(@) u i+ HFST(w)
lim lim Cag(m,ty)=F (A9)
T—% ty—® —1II Dr w:o)
DAG: AG ST( 1 ] (AZO)
G ) =Gl g 0 +15), (A10) so=0" g T

we get that the Schwinger-Dyson equatidA®) and (A8)  sing relations(A9) and (A10) and performing the usual
are exactly equivalent to the replica equations in 5, provideqyatsubara sums, we gelfl ;=115 and I 4(i wp— w+i0)
that the self energies in the two schemes are also equivalen;,HrST(w) which yields D,g=D 5 and Dg(iw:—>w+i0)

: _ r RS :

e, 2pe=—2r andXgw) =Zg(iwg—~w+id). To prove  _pr () Therefore, Eqs(AL9), (A20), (AL5), and (A16)
this last requirement, we apply the same one-loop Selffogether prove thaBs=3 and Sh(w)=3 ion—

consistent screening perturbative scheme for the real tim?Hé) and that there is a complete connection between rep-

DMFT self energies.. This gives lica and Schwinger-Keldysh formalisms. There is still one
more independent equation, namely, EG@6), in the

_ 0 C®D3+D®G? Schwinger-Keldysh formalism which bares no analog on the

3 Dyson equations for the inter-replica correlation functions.

= r r a a r r
CeD'+DeG D3G+D'®G+DeC However, if we integrate ovey both sides of Eq(A6) and

where dressed interactions are given by substitute the definitio®c=Cac® D+ Dac®Gpg iNto
Eq. (A6) with Ds=TT,sD3-(0), we obtain

D'=u+ull'®D", (A11)

diq
2D2(0)I1K-.— DX f— 2(0)=1, (A21
D=ull"®D+ull@D?, (A12) (2P Ollas Pl (Zw)ngTq() (A21)
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which is exactly the marginality condition of the replica ap- |imit one cannot disregard the time dependencégtt) and
proach. This proves our previous statement that the saddieis thus not possible to write a closed form like H821).
point condition gives the dynamical behavior at the timeNevertheless, the equilibrium approach based on the replica
scaleg,,— > andr—« with t,<<7,. In this limit the effec-  trick, together with the droplet relaxation picture enables us
tive temperature is not yet in equilibrium. In the oppositeto access the behavior @f«(t,,) in the time limitt,>7,.
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