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Dynamical mean-field theory of quantum stripe glasses
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We present a many body approach for nonequilibrium behavior and self-generated glassiness in strongly
correlated quantum systems. It combines the dynamical mean-field theory of equilibrium systems with the
replica theory for classical glasses without quenched disorder. We apply this approach to study a quantized
version of the Brazovskii model and find a self-generated quantum glass that remains in a quantum mechani-
cally mixed state asT→0. This quantum glass is formed by a large number of competing states spread over
an energy region which is determined within our theory.
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I. INTRODUCTION

The formation of glasses upon cooling is a well know
phenomenon for classical liquids. Even without quench
disorder, the relaxation times become so large that a fro
nonergodic state is reached before the nucleation into
crystalline solid sets in. The nucleation is especially easy
avoid if the material has many polymorphisms, as does,
example, SiO2. The system becomes unable to reach an e
librium configuration on the laboratory time scale and exh
its aging and memory effects. While extrinsic disorder
widely acknowledged to lead to glassy phenomena in qu
tum systems, can a similar self-generated glassiness o
for quantum liquids? Candidate materials for this behav
are strongly correlated electron systems which often exh
a competition between numerous locally ordered states
comparable energies. Examples of such behavior are colo
magnetoresistance materials,1–3 cuprate superconductors,4–11

and likely low density electron systems12 possibly close to
Wigner crystallization.

The possibility of self-generated quantum glassiness
such systems and the nature of the slow quantum dyna
has been little explored. Within a purely classical theory
‘‘stripe glass’’ state was recently proposed in Refs. 13 a
14. This proposal was stimulated by nuclear magne
resonance4–8 and m-spin relaxation experiments9–11 that
found static or quasistatic charge and spin configurati
similar to glassy or disordered systems. A prominent eff
which reflects this slowing down was the ‘‘wipe-out’’ effec
where below a certain temperature the typical time sca
become so long that the resulting rapid spin lattice relaxa
cannot be observed anymore.5,6,8 More recently, the dynami-
cal behavior of the stripe glass of Refs. 13 and 14, as de
mined by Groussonet al.,15 was found to be in quantitative
agreement with NMR experiments.16 Finally, recentm-spin
experiments10,11 analyzed the freezing temperatures as
function of the charge carrier concentration and disorder c
centration and found a quantum glass transition which w
insensitive to the amount of disorder added to the syst
This latter experiment, which seems to support a gen
explanation for glassiness, not caused by impurities, a
demonstrated the need for a more detailed investigatio
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the quantum regime of glassy systems. It is then importan
develop appropriate theoretical tools to predict whethe
given theoretical model for a quantum many body syst
will exhibit self-generated glassiness where the system fo
a glass for arbitrary weak disorder.

In this paper we develop a general approach to self g
erated quantum glasses that combines the dynamical m
field theory ~DMFT! of quantum many body systems17–19

with the replica technique of Refs. 20 and 21 which d
scribes classical glasses without quenched disorder. In a
tion, we also go beyond strict mean-field theory and estim
the spectrum of competing quantum states after very l
times. This approach is applied to study a model with co
peting interactions which has a fluctuation induced first-or
transition to a striped two-dimensional~2D!/lamellar ~3D!
phase. A quantum glass is shown to be in a quantum
chanical mixed state even atT50, formed by a large numbe
of states which can be considerably above the true gro
state. Using the concept of aneffective temperature22–24 for
the distribution of competing ground states, our theory
lows the investigation of glassy nonequilibrium dynamics
quantum systems using standard techniques of equilibr
quantum many body theory. On the mean field level, o
theory is in complete agreement with the explicit dynami
non-equilibrium approach developed by Cugliandolo a
Lozano25 for quenched disordered spin glasses with entro
crisis, which includes weak long-term memory effects a
the subtle interplay of aging and stationary dynamics.

We find that when quantum fluctuations are weak, i.e.,
a small quantum parameter,c @for a definition, see Eq.~1!
below#, the glass transition resembles that of classi
models26 that exhibit a dynamical transition at a temperatu
TA ~where mean field theory becomes non-ergodic! and a
Kauzmann entropy crisis atTK,TA if equilibrium were to
be achieved. The actual laboratory glass transition is loca
between these two temperatures and depends, for exam
on the cooling rate of the system. Beyond a criticalc, TK and
TA merge and the transitions change character. Within me
field theory, a discontinuous change of the relevant quan
mechanical states occurs at the glass transition. Even g
beyond the mean field, the system remains in a mixed qu
tum state, though with a nonextensive number of relev
©2003 The American Physical Society03-1
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quantum states. Still, at the quantum glass transition a
continuous change of the density matrix to a usual quan
liquid occurs. Put another way, a glass in contact with a b
at T50 is essentially a classical object, qualitatively distin
from a quantum fluid, enforcing the quantum glass transit
to be discontinuous. Our results clearly support the later s
nario, as can be seen in Fig. 2 .

In classical glass forming liquids an excess or configu
tional entropy with respect to the solid state due to an ex
nentially large number of metastable configurations emer
belowTA . Obviously, in the quantum limit a glass transitio
must be qualitatively different. Even a very large number
long lived excited states cannot compensate for their van
ing Boltzmann weight at equilibrium forT50. An exponen-
tially large ground state degeneracy, on the other hand
typically lifted by hybridization, saving kinetic energy. I
Ref. 27 it was then argued that for a glassy quantum sys
the Edwards-Anderson order parameter vanishes con
ously at the quantum glass transition~in contrast to the clas
sical behavior!. On the other hand, in Ref. 28 it was co
cluded that in certain spin glasses with quenched disorde
glass transition at sufficiently smallT is of first order.

The outline of this paper is as follows. In Sec. II w
introduce a quantized version of the Brazovskii model
microphase separation. We then discuss the replica appr
used in this paper as well as the dynamical mean-field the
employed for the solution of the problem in Secs. III and
respectively. Conclusions which are based on the appro
developed here but which go beyond the strict mean-fi
limit are discussed in Sec. V. Finally we present a summ
of our results in the concluding Sec. VI. The equivalence
the ‘‘cloned-liquid’’ replica approach and the Schwinge
Keldysh theory of non-equilibrium quantum systems is p
sented in the Appendix.

II. MODEL

We consider a Bose system with fieldwx governed by the
action S@wx# with competing interactions which cause
glass transition in the classical limit. Specifically we consid
a system with action

S5
1

2E d3xE dtF S ]wx

]ct D 2

1r 0
2wx1

u

2
wx

4

12q0
22~@¹21q0

2#wx!
2G . ~1!

Here, q0 is a wave number which supports strong fluctu
tions for momenta with amplitudeuqu5q0, i.e., modulated
field configurations. The classical version of the model@Eq.
~1!#, was shown by Brazovskii29 to give rise to a fluctuation
induced first order transition to a lamellar or smectic sta
Within equilibrium statistical mechanics, this ordered st
gives the lowest known free energy. In Refs. 13 and 14
demonstrated that, within nonequilibrium classical statisti
mechanics, an alternative scenario is a self-generated g
Instead of the transition to a smectic state, metastable s
tions built by a superposition of large amplitude waves
wave numberq0, but with random orientations and phas
13420
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emerge.30 Those form the stripe glass state discussed in R
13 and 14. It is unclear so far whether the glassy solut
occurs only if the ordered phase can be avoided by su
cooling or whether there is a parameter regime where
glass is favored regardless of the cooling rate.

In Eq. ~1! we consider additional quantum fluctuation
characterized by the velocityc. Clearly, quantum fluctuations
reduce the tendency towards a fluctuation induced first o
transition. This can be seen by evaluating the^w2(x,t)&
within the spherical approximation. In the classical lim
^w2(x,t)&;Tq0

2r 21/2, with renormalized mass r 5r 0

1u^w2(x,t)&, the solutionr 50 clearly does not exist. The
same fluctuations which suppress the occurrence of a se
order transition lead to a first order transition at the tempe
ture wherer 0.uTq0

2r 0
21/2.29 In the quantum limit the behav

ior is conceptually similar but fluctuations grow only log
rithmically, ^w2(x,t)&;q0

2log(L/r). For an exponentially
large correlation lengthr 21/2 there should also be a fluctua
tion induced first order transition to a smectic, which mig
be related to the state proposed in Ref. 31 in the contex
strongly correlated quantum systems. Another option, ho
ever, is the emergence of a stripe glass, even for large q
tum fluctuations, which results in an amorphous modula
state instead. The investigation of this option will be t
specific application of our theory. Before we go into specifi
of the model@Eq. ~1!#, we develop a general framework fo
the description of self generated quantum glasses.

III. ‘‘CLONED LIQUID’’ - REPLICA APPROACH

Competing interactions of a glassy system cause
ground state energy as well as the excitations to be v
sensitive to small additional perturbations. In order to qu
tify this we introduce, following Ref. 20, a static ‘‘ergodicit
breaking’’ field c according to

Sc@w#5S@w#1
g

2E dtd3x@cx2wx~t!#2,

and we take the limitg→0 eventually. The coupling betwee
w andc will bias the original energy landscape in the ‘‘d
rection’’ of the configurationc, enabling us to count distinc
configurations. Adopting a mean-field strategy, we assu
that even in the quantum limitc should be chosen as stat
variable, probing only time averaged configurations.

Introducing f̃ c52T logZc , with the biased partition
function Zc5*Dwe2Sc, f̃ c(T→0), corresponds to the
ground state energy for a givenc. If there are many com-
peting ground states, it is natural to assume thatf̃ c deter-
mines the probabilitypc for a given configuration. If we
identify the actual state of the system we gain the inform
tion Sc52 limg→0*Dcpclog pc . Maximizing this configu-
rational entropySc with respect topc yields the usual resul

pc}exp~2 f̃ c /Teff!, ~2!

where the effective temperature,Teff is the Lagrange multi-
plier enforcing the constraint that the typical energy isF̃

5 limg→0*Dcpc f̃ c . Teff is a measure for the width of th
3-2
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DYNAMICAL MEAN-FIELD THEORY OF QUANTUM . . . PHYSICAL REVIEW B 68, 134203 ~2003!
energy region within which the relevant ground state en
gies can be found. If the system is glassy,Teff.T and a
quantum mechanically mixed state results even asT→0.
Thus, a glass will not be in a pure quantum mechanical s
~characterized by a single wave function! even at zero tem-
perature.

Introducing the ratiom5T/Teff , it follows that pc}Zc
m ,

leading to

F̃5
]@mF~m!#

]m

Sc5
m

Teff

]F~m!

]m
,

where we introducedF5F̃2TeffSc with

F~m!52 lim
g→0

T

m
logE DcZm@c#.

It is now possible to integrate out the auxiliary variablec,
yielding an m-times replicated theory of the original var
ablesw with infinitesimal inter-replica coupling:

S5 (
a51

m

S@wa#2g (
a,b51

m E d3xdtdt8wx
a~t!wx

b~t8!, ~3!

similar to a random field model with infinitesimal random
nessg. The major difference here is that in systems with
tendency towards self-generated glassiness, the initial in
tesimal randomnessg will self-consistently be replaced by a
effective, interaction induced, self-generated randomn
Specifically this will be the off diagonal element of the se
energy in replica space.

At this point it is useful to discuss similarities and diffe
ences of the present approach if compared to the con
tional replica approach of systems with quenched disor
First, on a technical level, the replica index has to be a
lytically continued tom5T/Teff<1 and not to zero. This
reflects the fact that slow metastable configurations do
equilibrate at the actual temperature,T, but at the effective
temperatureTeff . In other words, the system has an ess
tially equal probability to evolve into states which are spre
over a spectrum with widthTeff , even asT→0. If one ap-
plies the present approach to a system with explicit quenc
disorder, where one can apply the conventional rep
theory, and assumes replica symmetry, it turns out tham
corresponds to the break point of a solution with one s
replica symmetry breaking of the conventional replica a
proach and both techniques give identical results. Alter
tively one might also consider the model@Eq. ~1!# in the
limit of an infinitesimal random field with widthg and the
break point of a one step replica symmetry breakingm solu-
tion. This implies that the present approach captures the
sence of the glassy behavior in systems with two very d
tinct typical time scales. This will become particularly cle
if we compare our results with the one obtained within t
solution of the dynamical Schwinger-Keldysh theory in t
Appendix. A more physical relationship between the two re
13420
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lica approaches can be obtained by realizing that the typ
free energy of a frozen state,F̃, can also be written in the
usual replica language via

F̃5 lim
n→0

1

n
~Zc

n21!,

where the average is performed with respect to the distr
tion function pc}Zc

m . The distribution function of the self-
generated randomness is non-Gaussian. For example,m
→1, e2Sc[w] can also be interpreted as the generating fu
tional of the distributionpc .32 It is because this distribution
is characterized by ‘‘colored noise’’ that we find a se
generated glassy state of the kind discussed here. Final
one replaces (@¹21q0

2#w)2 in Eq. ~1! by the usual (¹w)2

term ~which is theq0→0 limit after appropriate rescaling o
w, c, u, etc.! there is no glass asg→0, making it evident that
self-generated glassiness is ultimately caused by the unif
frustration of the finiteq0 problem where modulated con
figurations,w(x)}cos(q0•x), with uq0u5q0 and arbitrary di-
rection have low energy.

IV. DYNAMICAL MEAN-FIELD THEORY

Due to the mean-field character of the theory, it is app
priate to proceed by using the ideas of the DMFT for eq
librium many body systems17–19 and assuming that the sel
energy of our replicated field theory is momentu
independent. Physically, ignoring the momentum dep
dence of the self-energy might be justified by the fact tha
glass transition usually occurs in a situation of intermedi
correlations, i.e., when the correlation length of the liqu
state is slightly larger but comparable to the typical mic
scopic length scales in the Hamiltonian.14 The free energy of
the system can be expressed in terms of the Matsu
Green’s functionGq

ab(vn)5^wq
a(vn)w2q

b (2vn)& and the
corresponding local~momentum independent! self energy
Sab(vn) as

F~m!5tr~SG!2tr logG1F@G#,

where the self energy is given byS5dF@G#/dG, and
F@G# is diagrammatically well defined for a given system33

The difference from the usual equilibrium DMF
approach17–19 is the occurrence of off diagonal elements
replica space, allowing us to map the system onto a lo
problem with the same interaction but dynamical ‘‘Weis
field matrix. This brings us to an effective zero-dimension
theory similar to the mode-coupling theory of classic
glasses.34 We furthermore make the ansatz20

Gq
ab~vn!5Gq~vn!dab1Fq

dn,0

T
, ~4!

with static off diagonal elements. A similar ansatz for t
self-energy leads to the following two Dyson equations
the diagonal and off diagonal propagators:
3-3
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WESTFAHL, SCHMALIAN, AND WOLYNES PHYSICAL REVIEW B68, 134203 ~2003!
Gq~vn!5@G0,q
21~vn!2SG~vn!#21,

Fq5SFGq~0!@Gq
21~0!2mSF /T#21. ~5!

Glassiness is associated with finite values of the Edwa
Anderson order parameterFq , whereas forFq50 we re-
cover the traditional theory of quantum liquids. The structu
of the Dyson equation already gives us crucial informatio
on the nature of the glass transition. From Eq.~5! it follows
immediately that, contrary to the classical case where gla
ness can occur withm51,13,14 in the quantum limit (T
→0) the only wayFq can be nonzero is to havem→0 such
thatm/T51/TeffÞ0. This imposes a constraint on the repli
symmetry breaking structure in the quantum limit of the re
lica approach developed in Ref. 20. Also, it is clear thatSF
defines a new length scale of the problem that is associ
with the glass transition.14 In the classical glass transition th
relationm51 is satisfied atTA . Then the two Dyson equa
tions can be decoupled into an equilibrium, diagonal~in rep-
lica space! part, and a nonequilibrium, off diagonal part. Th
allows us to interpretSG as related to the equilibrium corre
lation length and to associateSF with the Lindemann length
associated with the typical length scale of wandering of
fects of the equilibrium structure; see Ref. 14 for deta
However, it follows from the structure of the self-energi
that, in the quantum limit, wherem,1 atTA , the two Dyson
equations cannot be decoupled anymore. In this case, the
self-energies will combined define a correlation length an
Lindemann length which are not independent, but rat
closely intertwined.

We solved the impurity problem within a self-consiste
large-N approach, i.e. we generalize the scalar fieldw to an
N-component vector and consider the limit of largeN includ-
ing first 1/N corrections. This approach was used earlier
investigate self generated glassiness in the classical limit.13,14

In this limit it is also possible to solve the DMFT proble
exactly,35 demonstrating that glassiness found in the appro
mate large-N limit is very similar to the exact, finite-N
theory and thereby supporting the applicability of the largeN
expansion.

Within the self consistent large-N approach, the diagona
and off diagonal element of the self-energy are given as

SG~vn!5SG
H2

2

N
@FDG~vn!1DFG~vn!#

1T(
m

DG~vn1vm!G~vm!,

~6!

SF52
2

N
DFF,

with a Hartree contribution

SG
H52uT(

m
G~vm!2uF,

as well as
13420
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DG~vn!5
1

u211PG~vn!12gFG~vn!
,

~7!

DF5
2gF 2DG

2~0!

11gF 2DG~0!/Teff

,

and a bubble diagramPG(vn)5gT(mG(vn1vm)G(vm).
Here G(vm)5*@d3q/(2p)3#Gq(vn) and F5*@d3q/
(2p)3#Fq are the momentum averaged propagators. T
DMFT is usually formulated on a lattice and it is possible
chose the same dimension~e.g., inverse energy! for the mo-
mentum dependent and momentum averaged propagato
assuming the lattice spacing equal unity. In a continu
theory the role of the lattice spacing is played by the inve
upper cutoff of the momentum integrationL, which enters
our theory in Eqs.~7! through the constantg5L23. In the
case of the Hamiltonian@Eq. ~1!#, all momentum integrals
are convergent asL→` and the scale which replaces the c
off is q0, leading tog5q0

23. We solved this set of self con
sistent equations numerically. Before we present the res
we must discuss the stability of the ansatz, Eq.~4!.

The local stability of the replica symmetric ansatz, Eq.~4!
is determined by the lowest eigenvalue of the Hessian ma
d2F/dGabdGgd. Proceeding along the lines of Ref. 36 an
diagonalizing over the replica indices leads to the followi
matrix in momentum space:

Mq,q85d~q2q8!Gq
22~0!1C, ~8!

where

C5
d2F

dGabdGab
22

d2F

dGabdGad
1

d2F

dGabdGgd
, ~9!

with distincta,b,d, andd. Diagrammatically,C is a sum of
diagrams with four external legs with at least two distin
replica indices. Thus, asg→0 the constantC vanishes if
Fq→0, an observation which will be relevant in our discu
sion of the nature of the zero temperature glass transitio
a function of c. We find, for the lowest eigenvaluel of
Mq,q8 ,

C 215E d3q

~2p!3
@Gq

22~0!1l#21. ~10!

If l.0 the mean-field solution is stable, whereas it is m
ginal for l50. The fairly simple result@Eq. ~10!# for the
stability of the replica structure is a consequence of the m
mentum independence of the self-energy within the DM
which guarantees thatF@G# only depends on the momentum
averaged propagators. OtherwiseC would depend on mo-
mentum, making the analysis of the eigenvalues ofMq,q8 in
Eq. ~8! much more complicated. Thus, the investigation
our problem within dynamical mean-field theory is not on
convenient to obtain solutions forGq(vn) andFq , it is also
crucial to make progress in the analysis of the stability of t
3-4



le
d

r
e
e

o
n
di

en
t,

in
gu
sy
h
g

l
f-
e
, i

e

-
-

e
c-
el

ns
or

tic

e
en
is

on

o
as

-

in
w

it,
an-

lass
aliz-
er
nce
is
in-

p-
ame

ce
are
the

y

ssy

line

ition
e
rical
s

DYNAMICAL MEAN-FIELD THEORY OF QUANTUM . . . PHYSICAL REVIEW B 68, 134203 ~2003!
solution. We expect that it will be impossible to find a stab
replica symmetric solution@Eq. ~4!# once one goes beyon
the DMFT.

In real physical systems the slow degrees of freedom
lax on a finite time scaleta and the effective temperatur
Teff5T/m depends not only on the external parameters likT
and pressure, but also on the cooling rate, or equivalently
the time,tw , elapsed after quenching and thus on the eve
which, for a finite range system, can take the system to
ferent states of the spectrum characterized byTeff . Account-
ing for these effects goes beyond a mean-field treatm
However, fortw!ta mean field theory should apply. In fac
since within the mean-field approach the timeta is infinite,
this is intrinsically the regime we are constrained to with
the mean-field treatment. Then, the most important confi
rations of the order parameter are those which allow the
tem to explore the maximum number of ergodic regions. T
best way to achieve this, without being unstable, is throu
interconnecting saddle points.37 This leads to the margina
stability conditionl50, which we use to determine the e
fective temperatureTeff

0 , which corresponds to the effectiv
temperature right after a fast quench into the glassy state
Teff

0 5Teff(tw!ta):

C~Teff
0 !215E d3q

~2p!3
Gq

2~0,Teff
0 !. ~11!

Within the large-N approximation used to determine th
propagator we can also evaluate the constantC of Eq. ~9!,
leading to

C~Teff
0 !5

2

N
@2DG

2~0!PF2DF#, ~12!

which is an implicit equation forTeff
0 . Note that, as we ar

gued before,C vanishes forF→0. Moreover, since the inte
gral on the right hand side of Eq.~11! is bounded from
above,C and thereforeFq must vanish discontinuously at th
transition even forT50. As explained above, from the stru
ture of the Dyson equation in replica space it immediat
follows that forc larger than some valuecA , Teff

0 /T must also
jump discontinuously fromTeff

0 /T.1 in the glass state to
Teff

0 /T51 in the quantum liquid state.
Together with Eq.~11! we have a closed set of equatio

which describe the quantum glass within mean-field the
We have solved this set of equations for the model@Eq. ~1!#,
and indeed found that there is a glassy state below a cri
value forc. Most interestingly, for increasingc ~i.e., increas-
ing quantum fluctuations! the rapidly quenched quantum
glass, which at some point becomes unstable, undergo
discontinuous reorganization of the density matrix upon
tering the quantum liquid state. It is crucial to solve th
many body problem within some conserving approximati
i.e., based upon a given functionalF(G), which must be
simultaneously used to determineS andC. The set of equa-
tions was solved numerically. The Matsubara frequency c
volutions were calculated on the imaginary time axis via f
13420
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fourier transform algorithm using 215 frequencies. This accu
racy is needed mostly to be able to find solutions of Eqs.~11!
and ~12!.

The transition line between the liquid and glassy states
the (c,T) space is presented in Fig. 1. Note that the lo
temperature~quantum regime! behavior is qualitatively dif-
ferent from the classical stripe glass. In the quantum lim
TA and TK merge and the effective temperature at the tr
sition Teff

0 (TA) is always larger thanTA , i.e., m,1. Due to
the reentrant character of the transition the quantum g
can also be reached by heating up the system. By gener
ing Brazovskii’s theory of the fluctuation induced first ord
transition to the quantum case, we found a similar reentra
behavior for this equilibrium transition, suggesting that th
peculiar shape of the phase border is determined by the
creasing relevance of fluctuations with wave vectorq5uq0u
as one crosses over from a quantum to a classical regime~see
the corresponding remarks made in Sec. II!. Another way the
quantum glass can be reached is of course via a ‘‘c quench.’’
Note also that the reentrant behavior we find within our a
proach happens at the point where numerically, at the s
time, TA2TK vanishes ~to within numerical precision!,
m(TA) starts falling with a larger derivative~see the inset of
Fig. 3!, andF(TA) reaches a minimum~see inset of Fig. 2!
before plateauing asT→0. This suggests that the reentran
behavior and the change of character of the transition
closely related. In Fig. 3 we show the dependence of
replica symmetry indexm5T/Teff

0 as a function ofc for dif-
ferent temperatures.

In the classical limit,c→0, Fq changes discontinuousl
at TA , whereasTeff changes continuously (m51), i.e., the
relevant metastable states—within which a classical gla

FIG. 1. DMFT Phase diagram for the model@Eq. ~1!# within the
one-loop self-consistent screening approximation. The solid
representsTA whereas the dashed line representsTK . The inset
shows the low temperature region of the phase diagram whereTA

andTK have merged and the effective temperature at the trans
is larger thanT @m(TA),1#. The line is simply a guide to the ey
whereas the dots are the actual numerical result. The nume
simulations in the paper were carried out using the parameterr 0

526, q050.3, and u52p2ur 0u. The stars refer to the (T,c)
points, of which the results in Fig. 4 are shown.
3-5
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system is trapped—connect gradually to the relevant st
which contribute to the liquid state partition function. A sim
lar behavior in the quantum limit would imply thatTeff and
thereforeFq andC vanish continuously at the quantum gla
transition. However, as discussed above, this is not poss
if one uses Eq.~11! to determine the effective temperatur
Thus, Teff changes discontinuously and one might expec
nucleation of liquid droplets within the unstable glass state
be important excitations which cause a quantum-melting
the glass. Even though one can formally introduce, along
lines of Ref. 23, a latent heatdQ5TeffSc at this transition,
we do not know of a scenario which, within mean-fie
theory, allows this energy to be realized within the labo
tory. The appearance of a first-order-like transition as o
enters the quantum regime, though without reentrance
havior, was first pointed out in Ref. 28 in a related case
spin glasses with quenched disorder.

Finally, we make contact between our theory and
Schwinger-Keldysh approach used in Ref. 25, which give
set of coupled equations for the symmetrized correlat
function Cx,x8(t,tw)5 1

2 ^@wx(tw1t),wx8(tw)#1& and the re-
tarded response functionGx,x8

r (t,tw)52 iu(t)^@wx(tw

1t),wx8(tw)#2&, where @ ,#6[AB6BA . In the classical
limit Cx,x8(t,tw)5^wx(tw1t)wx8(tw)& as usual. If tw , is
comparable tot the dynamics is complex and depends on
nature of the initial state~aging regime!. On the other hand
for tw large compared tot, C(t,tw) and Gr(t,tw) are ex-
pected to be dependent only ont ~stationary regime!. Corre-
spondingly, one can decompose the correlation function
aging and stationary contributions

C~t,tw!5CAG~t,tw!1CST~t!, ~13!

and similarly for Gr(t,tw). Cugliandolo and Kurchan24

showed within the mean-field theory of classical spin glas
that one cannot decouple the stationary dynamics from
aging regime. Instead, the system establishes a ‘‘weak
term memory’’ and one has to solve for the entire time d

FIG. 2. Low temperature behavior of the Edwards-Anders
order parameter as a function of the intensity of quantum fluc
tions. The temperatures are in the region displayed in the inse
Fig. 1. Inset: dependence of the order parameter at the trans
temperatureTA .
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pendence. An elegant way to encode the aging dynamics
generalized fluctuation dissipation theorem~FDT!
GAG

r (t,tw)52Teff
21(]/]tw)CAG(t,tw), with effective Teff .

This approach was generalized to the quantum case in
25.

As shown in the Appendix, we find a complete equiv
lence of the Schwinger-Keldysh theory of Ref. 25, if appli
to the quantized Brazovskii model, with our replica approa
if we identify ~after analytical continuation to real time!:
G(t)5GST

r (t) and F5 limtw→`limt→`CAG(tw ,t). Teff
0 ,

which follows from marginality@Eq. ~11!#, is identical to the
one of the generalized FDT, when we assumetw!ta .38

V. ASPECTS BEYOND THE STRICT MEAN-FIELD
THEORY

In this section we discuss several physically significa
conclusions one can draw from our theory which go beyo
the strict mean-field limit. In particular we will discuss se
eral aspects related to dynamical heterogeneity in glasse

Going beyond mean-field theory, fortw@ta , the mar-
ginal stability cannot be sustained, since the system can
free energy via droplet formation,26 which drives the system
towards equilibrium. As discussed in Ref. 26, the free-ene
gain is due to a gain in configurational entropy which
inhibited within mean-field theory due to infinitely large ba
riers, but possible in finite subsystems where transitions
tween distinct metastable states become allowed. Thus
glass might be considered as consisting of a mosaic pa
built of distinct mean-field metastable states. The size of
various droplets forming the mosaic is determined by a b
ance of the entropic driving force~proportional to the vol-
ume of the drop! and the surface tension.26

One way to account phenomenologically for such a
havior within our theory is to assume thatTeff becomes a
time dependent quantity23 and that the exploration of phas
space allows the system to ‘‘cool down’’ its frozen degrees
freedom by realizing configurational entropy. One wou
naturally expectTeff(tw) to decrease towards a valueTeff

`

n
-

of
on

FIG. 3. Dependence of the effective temperature as functionc
for different temperatures. Inset: dependence ofTeff

0 /TA on TA in the
low temperature regime displayed on the inset of Fig. 1.
3-6
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until either limN→`Sc(Teff
` )/N50 or Teff

` 5T. In the former
case there is no longer any extensive entropic driving fo
which favors the exploration of phase space, whereas in
latter case the system has reached equilibrium but with
general, a finite remaining configurational entropy. The
two regimes are separated by the Kauzmann tempera
where limN→`Sc(Teff

` )/N50 atTeff
` 5T simultaneously.26 We

cannot, of course, calculate the explicit time dependenc
Teff(tw) here. However, we can parametrically studySc(Teff)
versusTeff , i.e. keep the replica valuem an open paramete
of the theory and analyze whether the trends for the varia
of Sc(Teff) at fixed temperatureT are sensible. Since w
determinedm previously by the marginality condition, a
effective temperatureTeff,Teff

0 implies that the replicon ei-
genvalue is different from zero. We found numerically th
l,0, reflecting an instability of our solution likely related t
some kind of dynamical heterogeneity. We argue that
heterogeneity is different for temperatures close toTA and
TK .

We first discuss the behavior below but close toTA in the
classical regime where marginality gives a continuo
change ofm, i.e. Teff

` (TA)5T. In this regime the system i
close to equilibrium and it should be sensible to consi
small fluctuations around the mean field solution. Such sm
fluctuations are then dominated by the eigenvectors of
replicon problem which correspond to the lowest eigenva
From Eq.~8! we can easily determine the momentum dep
dence of this eigenvector, which can be interpreted as
fluctuating mean square of the long time correlation funct
Fq away from its mean-field value. It is given by

Cq5C0

q0
4

Gq
222l

, ~14!

whereC0 is a normalization constant. At marginality, the
modes in correlation function space are massless and
easy to be excited. The typical length scale of these corr
tion function fluctuations are determined byGq5q0

22 , i.e., are

confined to a length scale determined bySG
21/2. Since this

length is not the actual correlation length, but rather de
mined by the shorter Lindemann length discussed on Ref.
the wandering of defects seem to set the scale on which
dynamics close toTA evolves. Thus correlations over th
Lindemann length are fluctuating in space. Even though
fluctuating object is characterized by a rather short scale
fluctuations are, of course, correlated over larger distan
as characterized by the nonlinear susceptibilityxabgd

5^wa(x)wb(x)wg(x)wd(x)&. xabgd is the inverse of the
Hessian and thus diverges ifl→0. Thus we conclude tha
close toTA this heterogeneity is driven by the correlatio
function fluctuations of shapeCq of Eq. ~14!. We believe
that this ‘‘Goldstone’’-type heterogeneity is very similar
character to the recent interesting approach to heteroge
resulting from the assumption of a local time reparametri
tion invariance.39 This is supported by the close relation b
tween the reparametrization invariance and marginality,
shown in Ref. 40. In addition, the approach of Ref. 39 co
siders fluctuations relative to the mean field solution w
13420
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stiffness proportional to the~mean field! Edwards-Anderson
parameter. Thus, small fluctuations caused by the margin
of the mean-field solution are considered, similar to the o
given in Eq.~14!. Further away fromTA such a linearized
theory is likely to break down because additional eigenv
tors, not related to the marginal eigenvalue, become rele
and non-Gaussian fluctuations come into play. This sho
always be the case wherem is not close to unity, i.e., in the
classical regime for temperatures belowTA and everywhere
in the quantum regime. One might expect droplet physics
become important then.26

In both cases it is useful to analyze the evolution of t
spectrum of states of this formally unstable theory, parti
larly if the replica structure of the theory remains unchang
As shown in Fig. 1, we found numerically for the model, E
~1!, that for tw@ta , three different possible final situation
result, depending on the relation between the bath temp
ture T and the Kauzmann temperatureTK : ~1! TA.T.TK ,
Teff will relax until it reachesT, but an excess entropy wil
remain.~2! T5TK , Teff will relax until it reachesT, in a state
with zero configurational entropy.~3! T,TK , Teff will relax
until all the excess entropy vanishes, but the system rem
in a non-equilibrium state withTeff

` .T. In this case there are
still many ~even though less than exponentially many! states,
distributed according to a Boltzmann function with an effe
tive temperatureTeff

` . Their energiesf̃ c differ by nonexten-
sive amounts in a range of orderTeff

` ,Teff
0 . At a critical

value of the quantum parameter slightly belowcA we find
that TA andTK merge and the nature of the glass transiti
changes. The system is either in a quantum fluid or in
nonequilibrium frozen state and the identification of the gla
transition using equilibrium techniques alone becomes
possible. Note, however, that in the quantum glass regi
even at temperaturesT arbitrarily close toTA , for tw@ta we
always obtain limN→`Sc(Teff

` )/N50 for Teff
` .T ~see the

dashed curve in Fig. 4!.

VI. CONCLUSION

In summary, we have presented an approach to s
generated quantum glasses which enables the countin
competing ground state energies~quasiclassically of long
lived metastable states! in interacting quantum systems
Technically very similar in form to the traditional quantu
many body theory of equilibrium systems, it allows one
investigate whether a given system exhibits self-genera
glassiness as a consequence of the frustrating interact
Slow degrees of freedom are assumed to behave classi
and are shown to equilibrate to an effective temperat
which is nonzero even asT→0 and which characterizes th
width and rigidity of the energy landscape of the compet
states of the system. Applied to the specific model@Eq. ~1!#,
we do find a glass below a critical value for the quantu
fluctuations. Using a marginality criterion to determineTeff ,
we can generally show that quantum glass transitions
bound to be discontinuous transitions from pure to mix
quantum states. This leads to the interesting question of
quantum melting of the nonequilibrium quenched states
3-7
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WESTFAHL, SCHMALIAN, AND WOLYNES PHYSICAL REVIEW B68, 134203 ~2003!
occur via nucleation of the corresponding quantum liq
state. Even going beyond mean-field theory by assumin
time dependent effective temperature, we find thatTeff satu-
rates~at least for extremely long times! at a valueTeff

` .T.
Finally we made connection to the dynamical approach
non-equilibrium quantum many body systems of Ref.
which shows that our theory properly takes into account
effects of aging and long term memory. We believe that
comparable simplicity of our approach allows it to apply o
technique to a wide range of interesting problems in stron
interacting quantum systems.
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APPENDIX: SCHWINGER-KELDYSH FORMALISM

In this section we apply the Schwinger and Keldy
close-time path Green function formalism applied to qu
tum glasses without quenched disorder. We follow clos
Cugliandolo and Lozano,25 who applied the technique to spi
glasses with quenched disorder. In this formalism respo
and correlation functions are treated as independent obj
coupled through a set of equations called Schwinger-Dy
equations. A perturbation theory scheme can be set up
considering the generalized matrix Green function

FIG. 4. Parametric plot of the relaxation ofTeff andSc for vary-
ing tw after quenches to the three points indicated by stars in
phase diagram Fig.1. In addition,Sc is shown for one point right a
the quantum glass transition withTA50.01.T. The direction of
evolution of the waiting timetw is indicated by the arrows. The
system can relax from a state with marginal stability withTeff

0 to
three different final states, as explained in the text. Inset: confi
rational entropy at the transition point as function ofTA .
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G̃x,x8~ t,t8!5S 0 Gx,x8
a

~ t,t8!

Gx,x8
r

~ t,t8! Cx,x8~ t,t8!
D ~A1!

and self-energy

S̃x,x8~ t,t8!5S 0 Sx,x8
a

~ t,t8!

Sx,x8
r

~ t,t8! Sx,x8~ t,t8!
D ,

where

Cx,x8~ t,t8!5
1

2
^@wx~ tw1t!,wx8~ tw!#1&,

Gx,x8
r (a)

~ t,t8!57 iu~6~ t2t8!!^@wx~ t !,wx8~ t8!#&.

In analogy to conventional perturbation theory, the co
ponents ofG̃ and S̃ obey the Schwinger-Dyson equations

Gq
r 5G0q

r 1G0q
r

^ Sq
r

^ Gq
r , ~A2!

Cq5Gq
r

^ @G0q
r 21

^ C0q^ G0q
a211Sq# ^ Gq

a . ~A3!

We use^ to distinguish the matrix product over time~the
time convolution! where A^ B(t,t8)[*dsA(t,s)B(s,t8)
from the scalar~element-wise! product, whereAB(t,t8)
5A(t,t8)B(t,t8).

The first Schwinger-Dyson equation~A2! is similar to
conventional perturbation theory. However it is coupled
the second equation ofC(t1 ,t2) which admits nontrivial so-
lutions. For simplicity, we choose an initial condition suc
thatC050 and ImG0

r 50. This leads to thermalization ofGr

~fulfillment of the FDT! in the absence of nonlinearities, so
is an appropriate condition. Let us callt25tw and t15tw
1t, i.e., the correlations between instants separated byt are
measured after the waiting timetw has elapsed. The glass
dynamics appears in a regime oftw→` andt→` . To pro-
ceed we assume that in this limit all correlation functions c
be decomposed into a slow, non-time-translation-invaria
aging part~AG! and a fast, time translation invariant, statio
ary part~ST! like in Eq. ~13!.

In this approach the stationary term decays on a cha
teristic time scaletb and it represents the correlations b
tween degrees of freedom which are in equilibrium with t
thermal reservoir at temperatureT, i.e., retarded and Keldysh
correlation functions are related by the FDT. The aging p
on the other hand, depends weakly ontw ~aging phenomena!
and varies slowly ont in a characteristic large time sca
ta@tb , which allows us to neglect itst derivatives. More-
over, as in Ref. 25, we enforce a relationship betweenGAG

r

and CAG by defining an effective temperatureTeff at which
the long time correlations thermalize through a generali
FDT relation

GAG
r ~t,t !52

1

Teff~ t !

]

]t
CAG~t,t !. ~A4!

For t!ta we can neglect the time dependence ofTeff , lead-
ing to a constantTeff(t)→Teff .

e

u-
3-8
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Using the above assumptions, the first Schwinger-Dy
equation~A2! in the stationary regime can be solved by
Fourier transform, which gives

GSTq
r ~v!5

1

G0q
r 21~v!2SST

r ~v!
. ~A5!

Here we will explore solutions whereGAG
r (t,tw) is small but

finite. This corresponds to the weak long term scena
where, even though limt→`limt→`GAG

r (t,t)→0, the integral
limt→`*0

t dt8GAG
r (t,t8) is still finite. In other words, we con

sider that the system keeps a vanishingly small memory
what happened in the past which, when accumulated o
long times, gives a finite contribution to the dynamics. Th
following along the lines of Ref. 25, for the aging regime w
get

GAG q
r ~t,tw!5SAG

r ~t,tw!GST q
r ~0!2. ~A6!

Analogously, the second Schwinger-Dyson equation~A3!
can be solved for the same two regimes, yielding

GST q
K ~v!5SST

K ~v!GST q
r ~v!2 ~A7!

and

CAG q~t,tw!5
SAG~t,tw!GST q

r

GST q
r ~0!212

1

Teff
SAG

K ~t,tw!

. ~A8!

Note that if we identify the real time correlation function
with the inter-replica correlation functionsF and G as fol-
lows:

lim
t→`

lim
tw→`

CAG~t,tw![F ~A9!

GST
r ~v![G~ ivn→v1 id!, ~A10!

we get that the Schwinger-Dyson equations~A5! and ~A8!
are exactly equivalent to the replica equations in 5, provid
that the self energies in the two schemes are also equiva
i.e., SAG52SF and SST

r (v)5SG( ivn→v1 id). To prove
this last requirement, we apply the same one-loop s
consistent screening perturbative scheme for the real
DMFT self energiesS̃. This gives

S̃5S 0 C^ Da1D ^ Ga

C^ Dr1D ^ Gr Da
^ Ga1Dr

^ Gr1D ^ CD
where dressed interactions are given by

Dr5u1uP r
^ Dr , ~A11!

D5uP r
^ D1uP ^ Da, ~A12!
13420
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and the polarization bubbles are given by the elementw
products~no time or space convolutions!

P r5gCGr , ~A13!

P5g@~Ga!21~Gr !21C2#. ~A14!

The stationary and aging contributions to the self energ
and polarizations can be calculated analogously by us
definitions ~A13! and ~A14! and separating the stationar
from the aging contribution according to their asympto
time behavior. This gives

SST
r 5CAG^ DST

r 1DAG^ GST
r 1CST^ DST

r 1DST^ GST
r ,
~A15!

SAG5DAG^ GAG , ~A16!

and

PST
r 5g~CAGGST

r 1CSTGST
r ! ~A17!

and

PAG5gCAG
2 . ~A18!

It is easy to verify accordingly thatPST andPST
r are related

by FDT at the temperatureT andPAG andPAG
r are related

by the classical FDT at a temperatureTeff . The last term in
Eq. ~A15! is exactly the Matsubara convolution on~6!. The
remaining terms are calculated as follows:

DST
r ~v!5

1

u211PST
r ~v!

, ~A19!

DAG5
2PAGDST

r ~v50!

DST
r ~v50!211

1

Teff
PAG

. ~A20!

Using relations~A9! and ~A10! and performing the usua
Matsubara sums, we get,PF5PAG and PG( ivn→v1 i0)
5PST

r (v) which yields DAG5DF and DG( ivn→v1 i0)
5DST

r (v). Therefore, Eqs.~A19!, ~A20!, ~A15!, and ~A16!
together prove thatSAG5SF and SST

r (v)5SG( ivn→v
1 id), and that there is a complete connection between r
lica and Schwinger-Keldysh formalisms. There is still o
more independent equation, namely, Eq.~A6!, in the
Schwinger-Keldysh formalism which bares no analog on
Dyson equations for the inter-replica correlation function
However, if we integrate overq both sides of Eq.~A6! and
substitute the definitionSAG

r 5CAG^ DAG
r 1DAG^ GAG

r into
Eq. ~A6! with DAG

r 5PAG
r DST

2 (0), weobtain

@2DST
2 ~0!PAG

K 2DAG
K #E ddq

~2p!d
GSTq

2~0!51, ~A21!
3-9
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which is exactly the marginality condition of the replica a
proach. This proves our previous statement that the sa
point condition gives the dynamical behavior at the tim
scalestw→` andt→` with tw!ta . In this limit the effec-
tive temperature is not yet in equilibrium. In the oppos
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13420
le
limit one cannot disregard the time dependence ofTeff(t) and
it is thus not possible to write a closed form like Eq.~A21!.
Nevertheless, the equilibrium approach based on the rep
trick, together with the droplet relaxation picture enables
to access the behavior ofTeff(tw) in the time limit tw@ta .
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