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Staggered-flux normal state in the weakly dopedt-J model
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A normal ~nonsuperconducting! ground state of thet-J model may be variationally approximated by a
Gutzwiller-projected wave function. Within this approximation, at small hole doping near half-filling, the
normal state favors staggered-flux ordering. Such a staggered-flux state may occur in vortex cores of under-
doped high-temperature cuprate superconductors. From comparing the energies of the staggered-flux state and
of the superconducting state, we numerically obtain the condensation energy. Extracting the superfluid density
directly from the projected superconducting wave function, we can also estimate the coherence length at zero
temperature.
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Gutzwiller-projected~GP! wave functions are known to
give good variational energies for thet-J model in the range
of parameters relevant for high-temperature cupr
superconductors.1–3 Not only do they correctly predict the
d-wave symmetry of the superconducting pairing, but th
also successfully describe properties of the superconduc
state, including doping dependence of the order param
quasiparticle spectral weight, Drude weight, and even a
ferromagnetic instability at very low doping.4 Conceptually,
use of GP wave functions for studying cuprate supercond
ors is tempting because of their resonating-valence-b
structure,5 which may be relevant for such effects as top
logical order and spin-charge separation proposed for
plaining unconventional properties of underdop
cuprates.6,7

If we indeed assume that GP wave functions capture
essential physics of underdoped cuprates, we may furthe
such wave functions for describing not only their superc
ducting, but also thenormal state. While the ‘‘pseudogap
normal phase appears above the superconducting trans
temperature and is not accessible for the variational w
function approach, the normal state also appears in vo
cores within the superconducting phase. From the availa
experimental evidence, the normal vortex cores are close
their properties to the pseudogap phase than to the con
tional Fermi liquid.8,9 Lee and Wen suggested that the no
mal state in the vortex core is a staggered-flux state.10 Such a
state may be described by GP variational wave functions
a manner similar to the superconducting state.

The main goal of this paper is to construct a norm
ground-state wave function of thet-J model by projecting the
doped staggered-flux state and to compare the resu
variational energy to that of the superconducting state.
make the paper self-contained, we start with a brief overv
of the relations between projected staggered-flux and su
conducting wave functions. This part also explains our m
tivation to use the staggered-flux wave function for the n
mal state. The second part of the paper contains
variational Monte Carlo results on the condensation ene
and their implications for the doping dependence of the
herence length.
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At zero doping, the staggered-flux state and thed-wave
superconducting state yield the same variational wave fu
tion upon Gutzwiller projection~projecting onto the no-
double occupancy states! due to the particle-hole
symmetry.11,12 The resulting wave function describes a sp
liquid with the algebraic decay of spin correlations.13 This
spin-liquid state is not physically realized at zero dopi
because of the antiferromagnetic~AF! instability leading to
the AF ordering. The use of GP wave functions for descr
ing the ground state of thet-J model is based on the assum
tion that upon doping this AF Mott insulator with holes, th
AF instability disappears and the spin-liquid behavior is
stored.

The most used variational ansatz for the weakly dopedt-J
model is thenearest-neighbor d-wave pairingstate involving
only nearest-neighbor hopping and nearest-neighbord-wave
pairing on the square lattice.2,3 For such a state, the equiva
lence of the staggered-flux and thed-wave pairing states may
be extended to the case of nonzero doping, if the notion
Gutzwiller projection is modified in a SU~2!-invariant way
~respecting the particle-hole symmetry away fro
half-filling!.14 The projected wave function has algebraic d
cay of spin and current correlations. The algebraic decay
correlation functions suggests that this wave function m
represent a critical point and not a stable phase. In our fur
discussion we label this wave function as ‘‘critical’’~CR!.

It is known that the variational energy of the CR wa
function may be further lowered by adding a nonzero che
cal potential before projecting~in the pairing gauge!.2 In the
mean-field theory, this chemical potential plays an import
role for stabilizing superconductivity.15 In the GP wave func-
tion approach, the role of the chemical potential is less tra
parent; here it serves only as an additional variational par
eter. It shifts the nodes in the spectrum from~p/2, p/2! to an
incommensurate point along the diagonal of the Brillou
zone. We conjecture that a nonzero chemical potential a
cuts off the algebraic behavior of the correlation functions
a finite correlation length, but this so far could not be co
vincingly proven by numerical calculations limited to rel
tively small system sizes. The GP wave function with t
variationally optimized chemical potential we further deno
as ‘‘superconducting’’~SC!.
©2003 The American Physical Society01-1
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In fact, both the CR and SC wave functions are superc
ducting in the sense that they break the U~1! electromagnetic
gauge symmetry in the thermodynamic limit~at a nonzero
hole doping!. While this property is rather obvious for th
SC state, it requires an additional clarification for the C
state. As explained in Ref. 14, the CR state may be obta
by projecting an undoped staggered-flux state wave func
by means of the special ‘‘SU~2!-invariant’’ Gutzwiller pro-
jection. Since the wave function before the projection is
superconducting, one could doubt the superconducting
ture of the projected wave function. However, the SU~2!-
invariant Gutzwiller projection involves two species of sla
bosons designed to convert both empty and doubly occu
sites into physical holes. In the thermodynamic limit, the
two species of bosons form two Bose condensates. The
tive phase between those condensates corresponds to th
ken U~1! electromagnetic gauge symmetry.

If one attempts to design a wave function of a superc
ducting vortex with the use of Gutzwiller projection, the br
ken U~1! symmetry in the CR and SC wave functions com
into play: It is not possible to construct a smooth vortex c
by a slow variation of SC or CR wave functions. A naiv
way to resolve this problem is to suppress the order par
eter in the vortex core, as it happens in conventional su
conductors. However, as pointed out in Ref. 10, such a v
tex core may not require the least amount of energy. A m
energetically favorable vortex core could be constructed
modifying the CR wave function into a nonsuperconduct
one. For this purpose, we take the unprojected undo
staggered-flux state used in Ref. 14 for the SU~2!-invariant
Gutzwiller projection and dope it until the number of ferm
ons exactly matches the required number of physical e
trons @such a doping opens Fermi pockets around the~p/2,
p/2! points of the Brillouin zone#. If we further apply the
SU~2!-invariant Gutzwiller projection to this dope
staggered-flux wave function, only one of the two species
bosons get involved~since the number of the fermions e
actly matches the required number of electrons, the dou
occupied sites should not be converted into holes!, and the
SU~2!-invariant Gutzwiller projection in this case coincide
with the usual one~prohibiting doubly occupied sites!. The
resulting state is obviously nonsuperconducting: It does
break the electromagnetic U~1! symmetry. Instead it break
the time-reversal and translational symmetries, as it has s
currents circulating in the staggered-flux pattern. We furt
denote this GP wave function as the ‘‘staggered-flux’’~SF!
state.

We schematically summarize the relationship betwe
those three types of the GP wave functions~CR, SC, and SF!
in Fig. 1. From our construction it follows that both the S
and SF states may be obtained as deformations of the
state ~with the required deformation being small at sm
doping!. Therefore, at small doping, SC and SF states
close in energy, and this makes the SF state a good cand
for the competing ground state.

From comparing the energies of the SC state (ESC) and of
the SF state (ESF), we can deduce the condensation ener

«c5ESF2ESC. ~1!
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The condensation energy is involved in the energy bala
determining the order parameter in nonuniform settings, e
in superconducting vortices. The energy of a supercond
ing state with a nonuniform phase of the order parame
may be written in the Ginzburg-Landau form

E5«c1rs~¹w!2, ~2!

wherew is the phase of the order parameter, andrs is the
superfluid stiffness~proportional to the superfluid density!.
The sizej of the vortex core may be estimated from min
mizing the total energy consisting of the two parts: the c
energypj2«c ~up to a numerical prefactor of order one d
pending on the specific shape of the order-parameter pro!
and the supercurrent energy 2prs ln l/j ~wherel is the in-
frared cutoff!. The resulting vortex sizej ~which may also be
called Ginzburg-Landau coherence length at zero temp
ture! is

j5Ars /«c. ~3!

The superfluid stiffness for strongly correlated syste
was discussed in detail in Ref. 16. It is given by the sum
the diamagnetic term~proportional to the kinetic energy in
the ground state! and of the paramagnetic term determin
by the quasiparticle excitations. For our superconduct
state, at the mean-field level, the low-lying quasipartic
have a Dirac-like spectrum around the nodal points. We
sume that the low-lying quasiparticles preserve their me
field structure, then the paramagnetic contribution vanis
at zero temperature.17 Thus rs is given by the diamagnetic
term alone which, in our notation, equals16

rs52 1
16 ^Et&, ~4!

whereEt is the hopping part of thet-J Hamiltonian, and the
average is taken in the SC state.

Below we present our numerical results for«c andrs ~by
the variational Monte Carlo method! in the t-J model with
t/J53. We start with defining the variational parameters
the wave functions. A GP wave function is constructed a

FIG. 1. A schematic illustration of the construction of the G
wave functions SC, CR, and SF. The top row of rectangles den
unprojected wave functions. The unprojected nearest-neigh
d-wave and staggered-flux states atmSC50 andmSF50 are related
by a SU~2! gauge transformation in the particle-hole space. Verti
solid arrows denote the Gutzwiller projectionPG , and the dashed
arrow is the SU~2!-invariant projection as defined in Ref. 14. Th
dotted arrows connecting the CR state to SC and SF states
drawn to illustrate that the two latter states are continuous defor
tions of the CR state.
1-2
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CGP5PGC0 , ~5!

where PG is the ‘‘double’’ projection: First, it projects ou
components with doubly occupied sites~the usual Gutzwiller
projection!, and second, it fixes the number of particles to
required value~we shall work with finite systems where th
required doping will be enforced via projection!. C0 is the
ground-state wave function of a BCS Hamiltonian:

H5(
i j

@2x i j cia
† cj a1D i j ~ci↑

† cj↓
† 2ci↓

† cj↑
† !1H.c.#. ~6!

x i j andD i j are hopping and pairing amplitudes variationa
adjusted to minimize the expectation value of thet-J Hamil-
tonian

H5PGF(
i j

@2tcia
† cj a1J~Si•Sj2

1
4 ninj !#GPG . ~7!

in the stateCGP.
The CR state hasx i j and D i j nonzero only on nearest

neighbor links:x i j 5x, D i j 56D, with 6 for vertical and
horizontal links, respectively. The SC state differs from t
CR state only by the on-site termx i i 52mSC. The SF state
hasD i j 50, x i j 5eiai j , whereai j 56F/4 is the vector poten-
tial defining the staggered flux pattern with the fluxF @Fig.
2~a!#. The SF state also contains the chemical potentialx i i
52mSF, which is fixed to provide the required hole dens
and is not a variational parameter~unlike mSC in the SC
state!. At zero doping, all the three states coincide w
mSC5mSF50, D/x5tan(F/4).

The variational parameters aremSC and D/x in the SC
state, andF in the SF state. We determine these parame
as a function of doping by minimizing the energy on t
22322 lattice with the boundary conditions periodic in o
and antiperiodic in the other direction. The results are plot
in Fig. 3~a!. We find that while the gap in the supercondu
ing state closes at around 30% doping,18 the gap in the SF
state closes at a smaller doping~around 20%!.

We further use those variational parameters to determ
the condensation energy«c . The finite-size effects are ver
strong in the SF state, because the Fermi pockets@Fig. 2~b!#
are represented only by a small number of points in the m
mentum space. To estimate the magnitude of the finite-
effects, we plot«c for different system sizes, but with th
same variational parameters, in Fig. 3~b!. At small doping,«c
grows roughly linearly with doping. This linear doping d
pendence is not intuitive: the mean-field theory would g
x3/2 dependence on the dopingx, from the energy of the
Fermi pockets. Remarkably, the same linearx dependence

FIG. 2. ~a! The vector potential in the staggered-flux state.~b!
The Fermi pockets around~p/2, p/2! points in the staggered-flux
state.
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was obtained by Lee and Nagaosa after including the gau
field fluctuations.19 As a result of this linearx dependence,
the core size remains finite in the small-doping limit. As t
doping increases, the gaps in the SF and SC states decr
which eventually leads to a decrease in the condensation
ergy «c . When the gaps close, the SF and SC states a
coincide~with mSC5mSF), yielding «c50.

The profile of«c versus doping resembles the doping d
pendence ofTc in the cuprates. It seems reasonable to int
pret the regions of increasing and decreasing«c as under-
doped and overdoped regimes, respectively. With t
interpretation, our results indicate that in the uderdoped~and
possibly also in the weakly overdoped! regime the normal
state inside the vortex core has a staggered-flux order.
order disappears in the strongly overdoped regime.

We further compute the superfluid stiffnessrs using Eq.
~4!. In Fig. 4~a! we plot the hopping energyEt in the SC
state as a function of doping~here we use the optimize
values ofD andmSC). The doping dependence ofrs is neary
linear as expected.17,20

Combining the results for«c and for rs , we find the

FIG. 3. ~a! The gaps in the SF and SC states~solid circles and
squares, respectively, scale on the left side! andmSC in the SC state
~empty squares, scale on the right side! at different hole dopings.
The optimization is performed on the 22322 lattice with boundary
conditions periodic in one and antiperiodic in the other directio
t/J53. ~b! The condensation energy«c at different dopings and for
different system sizes (N3N lattice with N518,20,22,24) in the
units of J, per lattice site.

FIG. 4. ~a! The hopping energyEt in the SC state as a functio
of doping~in the units oft, per lattice site!. The data shown are fo
the 22322 lattice (t/J53). The finite-size effects and the erro
bars are smaller than the symbol size.~b! The coherence lengthj as
a function of the doping fort/J53. Note the logarithmic scale forj.
1-3
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Ginzburg-Landau coherence lengthj according to Eq.~3!.
The results are shown in Fig. 4~b!.

Even though the staggered-flux core requires relativ
little energy, the resulting coherence length is very shor
the underdoped region. We find the coherence length of
order of one lattice spacing, which is smaller than the exp
mental findings.8,9,21 Such a short coherence length must
considered a lower bound only, because SF core of the
of one lattice spacing does not make any physical se
When we approximated the core energy bypj2«c , we used
the bulk energy density and ignored the energy requirem
of the boundary between the SF and SC, i.e., the energ
smoothly connecting the two states. This assumption is
c
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rect only if the boundary is slowly varying and it sure
breaks down when the distance scale is about one la
constant.

In our treatment we neglected the possible AF ord
which probably plays a role at very low doping~below 0.1!.4

We expect that taking into account possible AF ordering b
in the normal and in the superconducting states lowers
energy of both and only slightly modifies our results at t
very low doping.
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