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Staggered-flux normal state in the weakly doped-J model
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A normal (nonsuperconductingground state of thé-J model may be variationally approximated by a
Gutzwiller-projected wave function. Within this approximation, at small hole doping near half-filling, the
normal state favors staggered-flux ordering. Such a staggered-flux state may occur in vortex cores of under-
doped high-temperature cuprate superconductors. From comparing the energies of the staggered-flux state and
of the superconducting state, we numerically obtain the condensation energy. Extracting the superfluid density
directly from the projected superconducting wave function, we can also estimate the coherence length at zero
temperature.
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Gutzwiller-projected(GP) wave functions are known to At zero doping, the staggered-flux state and dheave
give good variational energies for tird model in the range superconducting state yield the same variational wave func-
of parameters relevant for high-temperature cupratdéion upon Gutzwiller projection(projecting onto the no-
superconductors.® Not only do they correctly predict the double occupancy statesdue to the particle-hole
d-wave symmetry of the superconducting pairing, but theysymmetry'*2 The resulting wave function describes a spin
also successfully describe properties of the superconductinguid with the algebraic decay of spin correlatiofisThis
state, including doping dependence of the order parametespin-liquid state is not physically realized at zero doping
quasiparticle spectral weight, Drude weight, and even antibecause of the antiferromagnetiF) instability leading to
ferromagnetic instability at very low dopiﬁ‘gConceptually' the AF ordering. The use of GP wave functions for describ-
use of GP wave functions for studying cuprate superconductnd the ground state of thteJ model is based on the assump-
ors is tempting because of their resonating-valence-bonHion that upon doping this AF Mott insulator with holes, the
structure® which may be relevant for such effects as topo-AF instability disappears and the spin-liquid behavior is re-
logical order and spin-charge separation proposed for ex8tored-

plaining unconventional properties of underdoped N Most used variational ansatz for the weakly dapéd
cuprate$” model is thenearest-neighbor d-wave pairirgiate involving

If we indeed assume that GP wave functions capture th8nIy hearest-neighbor hopping and nearest-neigbboave

essential physics of underdoped cuprates, we may further u guring on the square lattice’ For such a SF"’.‘te' the equiva-
i L . ence of the staggered-flux and tthevave pairing states may
such wave functions for describing not only their supercon,

ducti but also th | state. While the * d , be extended to the case of nonzero doping, if the notion of
ucting, but aiso th&ormay state. e the “pseudogap” o i7yiller projection is modified in a SQ)-invariant way
normal phase appears above the superconducting trans't'?ﬂaspecting the particle-hole symmetry away from

tempgrature and is not accessible for the variatioqal Wavﬂalf-filling).l“ The projected wave function has algebraic de-
function approach, the normal state also appears in vortex,y of spin and current correlations. The algebraic decay of
cores within the superconducting phase. From the availablgyrrelation functions suggests that this wave function may
experimental evidence, the normal vortex cores are closer ifepresent a critical point and not a stable phase. In our further
their properties to the pseudogap phase than to the convegiiscussion we label this wave function as “criticalCR).
tional Fermi liquid®® Lee and Wen suggested that the nor- |t is known that the variational energy of the CR wave
mal state in the vortex core is a staggered-flux sta8uch a  function may be further lowered by adding a nonzero chemi-
state may be described by GP variational wave functions, ical potential before projectin@in the pairing gauge? In the
a manner similar to the superconducting state. mean-field theory, this chemical potential plays an important
The main goal of this paper is to construct a normalrole for stabilizing superconductivity.In the GP wave func-
ground-state wave function of tite) model by projecting the tion approach, the role of the chemical potential is less trans-
doped staggered-flux state and to compare the resultingarent; here it serves only as an additional variational param-
variational energy to that of the superconducting state. Teter. It shifts the nodes in the spectrum frémi2, 7/2) to an
make the paper self-contained, we start with a brief overviewncommensurate point along the diagonal of the Brillouin
of the relations between projected staggered-flux and superone. We conjecture that a nonzero chemical potential also
conducting wave functions. This part also explains our mo-cuts off the algebraic behavior of the correlation functions at
tivation to use the staggered-flux wave function for the nor-a finite correlation length, but this so far could not be con-
mal state. The second part of the paper contains theincingly proven by numerical calculations limited to rela-
variational Monte Carlo results on the condensation energyively small system sizes. The GP wave function with the
and their implications for the doping dependence of the covariationally optimized chemical potential we further denote
herence length. as “superconducting(SC).
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In fact, both the CR and SC wave functions are SUpercony .. ccea| o [ unprojected | sU@ | unprojected | g | unprojected
ducting in the sense that they break th@ lklectromagnetic ﬁ‘wiff fl‘wa_{f stafgerfg flu stzfger:g flux
gauge symmetry in the thermodynamic lintét a nonzero > i F SF
hole doping. Whi[e this property is rath_e'r obvious for the Py A sue Py
SC state, it requires an additional clarification for the CR /" projection

state. As explained in Ref. 14, the CR state may be obtaine
by projecting an undoped staggered-flux state wave functiorp SC CR > SF
by means of the special “S@)-invariant” Gutzwiller pro-
jection. Slnce'the wave function before the prolectlonlls not FIG. 1. A schematic illustration of the construction of the GP
superconducting, one could doubt the superconducting na- functions SC. CR. and SE. Th ‘ les d

ture of the projected wave function. However, the (3% wave functions SC, CR, an . The top row of rectangles denotes
. . . L ’ ' unprojected wave functions. The unprojected nearest-neighbor
invariant Gutzwiller projection involves two species of slave

. -~ d-wave and staggered-flux statesuaj-—0 anduse=0 are related
bosons designed to convert both empty and doubly occuple&, a SU2) gauge transformation in the particle-hole space. Vertical

sites into physical holes. In the thermodynamic limit, thesesyjig arrows denote the Gutzwiller projectiéhs, and the dashed
two species of bosons form two Bose condensates. The relgeoy is the Sp)-invariant projection as defined in Ref. 14. The
tive phase between those condensates corresponds to the bgtted arrows connecting the CR state to SC and SF states are

ken U1) electromagnetic.gauge symmetry. drawn to illustrate that the two latter states are continuous deforma-
If one attempts to design a wave function of a supercontions of the CR state.

ducting vortex with the use of Gutzwiller projection, the bro-

ken U1) symmetry in the CR and SC wave functions comesThe condensation energy is involved in the energy balance
into play: It is not possible to construct a smooth vortex coredetermining the order parameter in nonuniform settings, e.g.,
by a slow variation of SC or CR wave functions. A naive in superconducting vortices. The energy of a superconduct-
way to resolve this problem is to suppress the order paraming state with a nonuniform phase of the order parameter
eter in the vortex core, as it happens in conventional supeimay be written in the Ginzburg-Landau form

conductors. However, as pointed out in Ref. 10, such a vor-

tex core may not require the least amount of energy. A more E=ec+ps(Vo)? (2
energetically favorable vortex core could be constructed by i

modifying the CR wave function into a nonsuperconducting’VNere ¢ is the phase of the order parameter, gnds the
one. For this purpose, we take the unprojected undopeﬁ“perﬂ“'d stiffnesgproportional to the superfluid densjty

staggered-flux state used in Ref. 14 for the(Stnvariant | € Size¢ of the vortex core may be estimated from mini-
Gutzwiller projection and dope it until the number of fermi- MiZing the total energy consisting of the two parts: the core

2 .
ons exactly matches the required number of physical elec@Nergymé°e. (up to a numerical prefactor of order one de-
trons[such a doping opens Fermi pockets around (th2, pending on the specific shape of the order-parqmeter.proﬂle
7l2) points of the Brillouin zong If we further apply the ~&nd the supercurrent energyrasIn \/¢ (wherel is the in-
SU(2)-invariant Gutzwiller projection to this doped frared cutoff. The resulting vortex sizé (which may also be

staggered-flux wave function, only one of the two species of@lled Ginzburg-Landau coherence length at zero tempera-

bosons get involvedsince the number of the fermions ex- tUre IS

actly matches the required number of electrons, the doubly

occupied sites should not be converted into hglasd the £=\pslec. ©)
SU(2)-invariant Gutzwiller projection in this case coincides i )

with the usual oneprohibiting doubly occupied sitesThe The superfluid stiffness for strongly correlated systems
resulting state is obviously nonsuperconducting: It does nof@s discussed in detail in Ref. 16. Itis given by the sum of
break the electromagnetic() symmetry. Instead it breaks the diamagnetic ternfproportional to the_klnetlc energy in
the time-reversal and translational symmetries, as it has statjf® ground stateand of the paramagnetic term determined
currents circulating in the staggered-flux pattern. We furthePY the quasiparticle excitations. For our superconducting

denote this GP wave function as the “staggered-fli&P) state, at .the mean—field level, the low-lying qugsiparticles
state. have a Dirac-like spectrum around the nodal points. We as-

We schematically summarize the relationship betweersuMe that the low-lying quasiparticles preserve their mean-

those three types of the GP wave functié6®, SC, and SF field structure, then the paramagnetic contribution vanishes
in Fig. 1. From our construction it follows that both the SC at Z€ro temperatur€. Thus ps is given by the diamagnetic

and SF states may be obtained as deformations of the C{g™M &lone which, in our notation, equdls
state (with the required deformation being small at small

=_ 1
doping. Therefore, at small doping, SC and SF states are ps=—1s(Ev), )

close in energy, and this makes the SF state a good Ca”did%ereEt is the hopping part of theJ Hamiltonian, and the
for the competing ground state. average is taken in the SC state.
From comparing the energies of the SC stdigd and of Below we present our numerical results fqrandp, (by
the SF stateEs), we can deduce the condensation energyihe variational Monte Carlo methpih the t-J model with
t/J=3. We start with defining the variational parameters of
e.=Egr—Esgc. (1)  the wave functions. A GP wave function is constructed as
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where P is the “double” projection: First, it projects out ~ FIG. 3. (&) The gaps in the SF and SC stateslid circles and
components with doubly occupied sitge usual Gutzwiller ~ Squares, respectively, scale on the left sifed uscin the SC state
projection, and second, it fixes the number of particles to the(8Mpty squares, scale on the right gide different hole dopings.
required valugwe shall work with finite systems where the The optimization is performed on the 222 lattice with boundary

required doping will be enforced via projection?, is the conditions periodic in one and antiperiodic in the other direction.
_ ; ; P t/J=3. (b) The condensation energy. at different dopings and for
ground-state wave function of a BCS Hamiltonian: different system sizesNXN lattice with N=18,20,22,24) in the

units of J, per lattice site.
H= E [—X”C;‘ac]—a%— Ajj (c?}c}rl - ciTchTT) +H.c]. (6)
" was obtained by EI)_ee and Nagaosa after including the gauge-

Xij andAij are hopp|ng and pairing amp"tudes Variationa“y field ﬂUCtuatlonSl. As a result of this lineax dependence,

adjusted to minimize the expectation value of theHamil- ~ the core size remains finite in the small-doping limit. As the
tonian doping increases, the gaps in the SF and SC states decrease,

which eventually leads to a decrease in the condensation en-
HePol S [—tch.ct J(S-S -1 b - ergy . When the gaps c_Iosg, the SF and SC states again
~ el < [—tCiaCiat IS -S=2mn)]|Pe. (7)) coincide(with pee= usp), yielding s.=0.
The profile ofe, versus doping resembles the doping de-
in the stateW gp. pendence ofl; in the cuprates. It seems reasonable to inter-
The CR state hag;; and Aj; nonzero only on nearest- pret the regions of increasing and decreasipgas under-
neighbor links:y;; = x, Ajj=*A, with + for vertical and doped and overdoped regimes, respectively. With this
horizontal links, respectively. The SC state differs from theinterpretation, our results indicate that in the uderdojae
CR state only by the on-site tery); = — ugc. The SF state  possibly also in the weakly overdopetkgime the normal
hasAj; =0, x;j=€'®i, wherea;;= = ®/4 is the vector poten- state inside the vortex core has a staggered-flux order. This
tial defining the staggered flux pattern with the flix[Fig.  order disappears in the strongly overdoped regime.
2(a)]. The SF state also contains the chemical potential We further compute the superfluid stiffness using Eq.
=—pugg, Which is fixed to provide the required hole density (4). In Fig. 4@ we plot the hopping energg; in the SC
and is not a variational parametéunlike usc in the SC  state as a function of dopinhere we use the optimized
statg. At zero doping, all the three states coincide withvalues ofA andusd). The doping dependence pf is neary

wsc=pse=0, Al y=tan@®/4). linear as expectet!:?°
The variational parameters apesc and A/y in the SC Combining the results foe. and for pg, we find the
state, andb in the SF state. We determine these parameters
as a function of doping by minimizing the energy on the g & [lattice spacings]
22X 22 lattice with the boundary conditions periodic in one ' ' 10 ' '

and antiperiodic in the other direction. The results are plottedo6 - 1
in Fig. 3(@). We find that while the gap in the superconduct-
ing state closes at around 30% dopifighe gap in the SF
state closes at a smaller dopifeyound 20%

We further use those variational parameters to determine
the condensation energy.. The finite-size effects are very 2T
strong in the SF state, because the Fermi podkéts 2(b)]
are represented only by a small number of points in the mo- o . . 1 . .
mentum space. To estimate the magnitude of the finite-size 0 dooin 02 03 0 04 dopin 02 03
effects, we plote, for different system sizes, but with the pne @ P ®)

same variational parameters, in Figb8 At small doping e FIG. 4. (a) The hopping energg, in the SC state as a function
grows roughly linearly with doping. This linear doping de- of doping(in the units oft, per lattice site The data shown are for
pendence is not intuitive: the mean-field theory would givethe 22<22 lattice ¢/J=3). The finite-size effects and the error
x32 dependence on the doping from the energy of the bars are smaller than the symbol sig®. The coherence lengthas
Fermi pockets. Remarkably, the same lingadependence a function of the doping fot/J= 3. Note the logarithmic scale fat

04 k
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Ginzburg-Landau coherence lengthaccording to Eq.(3). rect only if the boundary is slowly varying and it surely
The results are shown in Fig(h). breaks down when the distance scale is about one lattice
Even though the staggered-flux core requires relativelyconstant.
little energy, the resulting coherence length is very short in In our treatment we neglected the possible AF order
the underdoped region. We find the coherence length of th&thich probably plays a role at very low dopifigelow 0.3."
order of one lattice spacing, which is smaller than the experi¥Ve expect that taking into account possible AF ordering both
mental finding€:°2! Such a short coherence length must beil the normal and in the s_upercondu_c_tlng states lowers the
considered a lower bound only, because SF core of the siZ&nergy of both and only slightly modifies our results at the
of one lattice spacing does not make any physical sens&€"Y low doping.
When we approximated the core energyb§e., we used P.A.L. acknowledges support by NSF Grant No. DMR-
the bulk energy density and ignored the energy requiremerg201069. Most of the numerical computations have been
of the boundary between the SF and SC, i.e., the energy gferformed on the Beowulf cluster Asgard at ETHrigh.
smoothly connecting the two states. This assumption is co.l. thanks ETH Zuich for its hospitality.
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